MAX9951DCCB+TD [MAXIM]

Dual Per-Pin Parametric Measurement Units; 双每个引脚参数测量单元
MAX9951DCCB+TD
型号: MAX9951DCCB+TD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual Per-Pin Parametric Measurement Units
双每个引脚参数测量单元

电源电路 电源管理电路 信息通信管理
文件: 总24页 (文件大小:291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3267; Rev 6; 11/09  
Dual Per-Pin Parametric  
Measurement Units  
1/MAX952  
General Description  
Features  
o Force Voltage/Measure Current (FVMI)  
o Force Current/Measure Voltage (FIMV)  
o Force Voltage/Measure Voltage (FVMV)  
o Force Current/Measure Current (FIMI)  
o Force Nothing/Measure Voltage (FNMV)  
The MAX9951/MAX9952 dual parametric measurement  
units (PMUs) feature a small package size, wide force and  
measurement range, and high accuracy, making the  
devices ideal for automatic test equipment (ATE) and other  
instrumentation that requires a PMU per pin or per site.  
The MAX9951/MAX9952 force or measure voltages in the  
-2V to +7V through -7V to +13V ranges, dependent upon  
o Force Nothing/Measure Current (FNMI,  
Range E Only)  
the supply voltage (V  
and V ). The devices handle  
EE  
CC  
o Termination/Measure Current  
o Termination/Measure Voltage  
o Five Programmable Current Ranges  
supply voltages of up to +30V (V  
to V ) and a 20V  
EE  
CC  
device-under-test (DUT) voltage swing at full current. The  
MAX9951/MAX9952 also force or measure currents up to  
±±6mA with a lowest full-scale range of ±2ꢀA. ꢁntegrated  
support circuitry facilitates use of an external buffer ampli-  
fier for current ranges greater than ±±6mA.  
±±20µ  
±±20µ  
±±220µ  
±±mµ  
A voltage proportional to the measured output voltage  
or current is provided at the MSR_ output. ꢁntegrated  
comparators, with externally set voltage thresholds,  
provide detection for both voltage and current levels.  
The MSR_ and comparator outputs can be placed in a  
high-impedance state. Separate FORCE and SENSE  
connections are short-circuit protected for voltages  
±ꢀ6mµ  
o -±V to +7V Through -7V to +13V Input-Voltage  
Range  
o Force-Current/Measure-Current µdjustable-  
Voltage Offset (IOS)  
o Programmable Voltage Clamps at Force Output  
from (V - 0.3V) to (V  
+ 0.3V). The FORCE output  
CC  
also features a low-leakage, high-impedance state.  
o Low-Leakage, High-Impedance Measure, and  
EE  
Force States  
o 3-Wire Serial Interface  
o Low ꢀmµ (max) Quiescent Current per PMU  
ꢁntegrated voltage clamps limit the force output to lev-  
els set externally. The force-current or the measure-cur-  
rent voltage can be offset -0.2V to +6.6V (ꢁOS). This  
feature allows for the centering of the control or mea-  
sured signal within the external DAC or ADC range.  
Ordering Information  
PµRT  
TEMP RµNGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PµCKµGE  
±6 TQFP-EPR*  
±6 TQFP-EPR*  
±6 TQFP-EPR*  
±6 TQFP-EPR*  
±6 TQFP-EPR*  
±6 TQFP-EPR*  
±6 TQFP-EPR*  
±6 TQFP-EPR*  
±6 TQFP-EP**  
±6 TQFP-EP**  
±6 TQFP-EP**  
±6 TQFP-EP**  
±6 TQFP-EP**  
±6 TQFP-EP**  
±6 TQFP-EP**  
±6 TQFP-EP**  
MµX9951DCCB+D  
MAX9951DCCB+TD  
MAX9951DCCB-D  
MAX9951DCCB-TD  
MAX9951FCCB+  
MAX9951FCCB+T  
MAX9951FCCB-D  
MAX9951FCCB-TD  
MµX995±DCCB+  
MAX9952DCCB+T  
MAX9952DCCB-D  
MAX9952DCCB-TD  
MAX9952FCCB+  
MAX9952FCCB+T  
MAX9952FCCB-D  
MAX9952FCCB-TD  
The MAX9951D/MAX9952D feature an integrated 10kΩ  
force-sense resistor between FORCE_ and SENSE_.  
The MAX9951F/MAX9952F have no internal force-sense  
resistor. These devices are available in a ±6-pin, 10mm  
x 10mm, 0.5mm pitch TQFP package with an exposed  
8mm x 8mm die pad on the top (MAX9951) or the bot-  
tom (MAX9952) of the package for efficient heat  
removal. The exposed pad is internally connected to  
V
. The MAX9951/MAX9952 are specified over the  
EE  
commercial 0°C to +70°C temperature range.  
Applications  
Memory Testers  
VLSꢁ Testers  
System-on-a-Chip Testers  
Structural Testers  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
-Denotes a package containing lead(Pb).  
Pin Configurations and Selector Guide appear at end of  
data sheet.  
D = Dry pack.  
*EPR = Top side exposed pad.  
**EP = Exposed pad.  
T = Tape and reel.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-ꢀ±9-6ꢀ6±,  
or visit Maxim’s website at www.maxim-ic.com.  
Dual Per-Pin Parametric  
Measurement Units  
µBSOLUTE MµXIMUM RµTINGS  
V
V
V
to AGND.......................................................................+20V  
to AGND.........................................................................-15V  
θ
θ
θ
θ
MAX9951_CCB (Note 1) ...........................................+8°C/W  
MAX9951_CCB (Note 1) ...........................................+2°C/W  
MAX9952_CCB (Note 1) .........................................+23°C/W  
MAX9952_CCB (Note 1) ...........................................+2°C/W  
JA  
JC  
JA  
JC  
CC  
EE  
CC  
to V ...........................................................................+32V  
EE  
V to AGND............................................................................+±V  
L
AGND to DGND.....................................................-0.5V to +0.5V  
Digital ꢁnputs/Outputs ..................................-0.3V to (V + 0.3V)  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-±5°C to +150°C  
Operating Temperature Range (commercial) ........0°C to +70°C  
Lead Temperature (soldering 10s) ..................................+300°C  
L
CC  
All Other Pins to AGND....................(V - 0.3V) to (V  
+ 0.3V)  
EE  
Continuous Power Dissipation (T = +70°C)  
A
MAX9951_CCB (derate 125mW/°C above +70°C)...10,000mW  
MAX9952_CCB (derate 63.5mW/°C above +70°C).....3678mW  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICµL CHµRµCTERISTICS  
(V  
= +12V, V = -7V, V = +3.3V, T = +25°C, unless otherwise noted. Specifications at T = T  
and T = T  
are guaranteed  
MAX  
CC  
EE  
L
A
A
MꢁN  
A
1/MAX952  
by design and characterization. Typical values are at T = +25°C, unless otherwise noted.) (Note 2)  
A
PµRµMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MµX  
UNITS  
FORCE VOLTµGE  
Force ꢁnput Voltage  
Range  
V
V
,
ꢁN0_  
ꢁN1_  
V
V
+ 2.5  
V
V
- 2.5  
CC  
V
V
EE  
V
V
= +12V, V = -7V  
-2  
-7  
+7  
+13  
- 2.5  
CC  
CC  
EE  
DUT current at full scale  
DUT current = 0  
Forced Voltage  
V
= +18V, V = -12V  
EE  
DUT  
+ 2.5  
EE  
CC  
ꢁnput Bias Current  
±1  
ꢀA  
Forced-Voltage Offset  
V
V
-25  
-1  
+25  
mV  
FOS  
Forced-Voltage-Offset  
Temperature Coefficient  
±100  
0.005  
±10  
ꢀV/°C  
%
Forced-Voltage Gain  
Error  
Nominal gain of +1  
+1  
FGE  
Forced-Voltage-Gain  
Temperature Coefficient  
ppm/°C  
%FSR  
Forced-Voltage Linearity  
Error  
V
Gain and offset errors calibrated out (Notes 3, 6)  
(Note 3)  
-0.02  
-1  
+0.02  
+1  
FLER  
MEµSURE CURRENT  
Measure-Current Offset  
%FSR  
MOS  
Measure-Current-Offset  
Temperature Coefficient  
±20  
±20  
ppm/°C  
Measure-Current Gain  
Error  
(Note 5)  
-1  
+1  
%
MGE  
Measure-Current-Gain  
Temperature Coefficient  
ppm/°C  
%FSR  
Gain and offset errors calibrated out  
(Notes 3, 6, ±)  
Linearity Error  
-0.02  
+0.02  
MLER  
±
_______________________________________________________________________________________  
Dual Per-Pin Parametric  
Measurement Units  
1/MAX952  
DC ELECTRICµL CHµRµCTERISTICS (continued)  
(V  
= +12V, V = -7V, V = +3.3V, T = +25°C, unless otherwise noted. Specifications at T = T  
and T = T  
are guaranteed  
MAX  
CC  
EE  
L
A
A
MꢁN  
A
by design and characterization. Typical values are at T = +25°C, unless otherwise noted.) (Note 2)  
A
PµRµMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MµX  
+6  
UNITS  
Measure-Output-Voltage  
Range Over Full-Current  
Range  
V
V
= V  
-6  
ꢁOS_  
ꢁOS_  
DUTGND  
V
V
MSR  
= 6V + V  
0
+8  
DUTGND  
Current-Sense Amp  
Offset-Voltage ꢁnput  
V
Relative to V  
-0.2  
+6.6  
V
ꢁOS  
DUTGND  
Rejection of Output-  
Measure Error Due to  
Common-Mode Sense  
Voltage  
CMVR  
(Notes 5 and 7)  
+0.001  
+0.007 %FSR/V  
+2  
LER  
Range E, R_E = 500kΩ  
Range D, R_D = 50kΩ  
Range C, R_C = 5kΩ  
Range B, R_B = 500Ω  
Range A, R_A = 15.±Ω  
-2  
-20  
-200  
-2  
ꢀA  
+20  
+200  
+2  
Measure-Current Range  
mA  
-±6  
+±6  
FORCE CURRENT  
ꢁnput Voltage Range for  
Setting Forced Current  
Over Full Range  
V
V
= V  
-6  
0
+6  
+8  
ꢁOS_  
ꢁOS_  
DUTGND  
V
V
ꢁN0_,  
V
V
ꢁN1_  
= 6V + V  
DUTGND  
Current-Sense Amp  
Offset-Voltage ꢁnput  
V
Relative to V  
(Note 3)  
-0.2  
-1  
+6.6  
+1  
ꢁOS  
DUTGND  
ꢁOS_ ꢁnput Bias Current  
Forced-Current Offset  
±1  
ꢀA  
%FSR  
Forced-Current-Offset  
Temperature Coefficient  
±20  
ppm/°C  
%
Forced-Current Gain  
Error  
(Note 5)  
-1  
+1  
Forced-Current-Gain  
Temperature Coefficient  
±20  
ppm/°C  
%FSR  
Forced-Current Linearity  
Error  
Gain and offset errors calibrated out  
(Notes 3, 6, ±)  
-0.02  
+0.02  
FLER  
Rejection of Output Error  
Due to Common-Mode  
Load Voltage  
CMRꢁ  
(Notes 5 and 7)  
+0.001  
+0.007 %FSR/V  
+2  
OER  
Range E, R_E = 500kΩ  
Range D, R_D = 50kΩ  
Range C, R_C = 5kΩ  
Range B, R_B = 500Ω  
Range A, R_A = 15.±Ω  
-2  
-20  
-200  
-2  
ꢀA  
+20  
+200  
+2  
Forced-Current Range  
mA  
-±6  
+±6  
_______________________________________________________________________________________  
3
Dual Per-Pin Parametric  
Measurement Units  
DC ELECTRICµL CHµRµCTERISTICS (continued)  
(V  
= +12V, V = -7V, V = +3.3V, T = +25°C, unless otherwise noted. Specifications at T = T  
and T = T  
are guaranteed  
MAX  
CC  
EE  
L
A
A
MꢁN  
A
by design and characterization. Typical values are at T = +25°C, unless otherwise noted.) (Note 2)  
A
PµRµMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MµX  
UNITS  
MEµSURE VOLTµGE  
Measure-Voltage-Offset  
V
-25  
+25  
mV  
ꢀV/°C  
%
MOS  
Measure-Voltage-Offset  
Temperature Coefficient  
±100  
±0.005  
±10  
Gain Error  
V
Nominal gain of +1  
-1  
+1  
MGER  
Measure-Voltage-Gain  
Temperature Coefficient  
ppm/°C  
Measure-Voltage  
Linearity Error  
Gain and offset errors calibrated out  
(Notes 3, 6, ±)  
V
-0.02  
+0.02  
%FSR  
V
MLER  
V
V
= +12V, V = -7V  
EE  
-2  
-7  
+7  
CC  
CC  
Measure-Output-Voltage  
Range Over Full DUT  
Voltage  
DUT current at full scale  
DUT current = 0  
V
= +18V, V = -12V  
EE  
+13  
MSR  
1/MAX952  
V
+ 2.5  
V
- 2.5  
CC  
EE  
FORCE OUTPUT  
Off-State Leakage  
Current  
-1  
+1  
nA  
-92  
+±5  
8
-±5  
+92  
12  
LꢁM-  
Short-Circuit Current  
Limit  
mA  
LꢁM+  
Force-to-Sense Resistor  
SENSE INPUT  
R
D option only  
F option only  
10  
kΩ  
FS  
ꢁnput Voltage Range  
Leakage Current  
V
V
+ 2.5  
V
V
- 2.5  
CC  
V
EE  
-1  
+1  
nA  
COMPµRµTOR INPUTS  
ꢁnput Voltage Range  
Offset Voltage  
+ 2.5  
- 2.5  
CC  
V
EE  
-25  
+25  
mV  
ꢀA  
ꢁnput Bias Current  
VOLTµGE CLµMPS  
±1  
V
V
,
CLLO_  
ꢁnput Control Voltage  
V
+ 2.6  
V
- 2.6  
CC  
V
EE  
CLHꢁ_  
Clamp Voltage  
Accuracy  
(Note 8)  
-100  
+100  
mV  
DIGITµL INPUTS  
V = 5V  
L
+3.5  
+2.0  
+1.7  
ꢁnput High Voltage  
(Note 9)  
V
V
V
V = 3.3V  
L
ꢁH  
V = 2.5V  
L
V = 5V or 3.3V  
+0.8  
+0.7  
L
ꢁnput Low Voltage  
(Note 9)  
V
ꢁL  
V = 2.5V  
L
ꢁnput Current  
±1  
ꢀA  
pF  
ꢁN  
ꢁnput Capacitance  
C
3.0  
ꢁN  
6
_______________________________________________________________________________________  
Dual Per-Pin Parametric  
Measurement Units  
1/MAX952  
DC ELECTRICµL CHµRµCTERISTICS (continued)  
(V  
= +12V, V = -7V, V = +3.3V, T = +25°C, unless otherwise noted. Specifications at T = T  
and T = T  
are guaranteed  
MAX  
CC  
EE  
L
A
A
MꢁN  
A
by design and characterization. Typical values are at T = +25°C, unless otherwise noted.) (Note 2)  
A
PµRµMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MµX  
UNITS  
COMPµRµTOR OUTPUTS  
Output High Voltage  
V
V = +2.375V to +5.5V, R  
= 1kΩ  
V - 0.2  
L
V
V
OH  
L
PUP  
Output Low Voltage  
V
V = +2.375V to +5.5V, R  
= 1kΩ  
+0.6  
OL  
L
PUP  
High-ꢁmpedance-State  
Leakage Current  
±1  
ꢀA  
pF  
High-ꢁmpedance-State  
Output Capacitance  
±.0  
DIGITµL OUTPUTS  
= 1mA, V = +2.375V to +5.5V,  
L
OUT  
Output High Voltage  
V
V - 0.25  
L
V
V
OH  
relative to DGND  
= -1mA, V = +2.375V to +5.5V,  
OUT  
L
Output Low Voltage  
V
+0.2  
OL  
relative to DGND  
POWER SUPPLY  
Positive Supply  
Negative Supply  
V
(Note 2)  
(Note 2)  
(Note 10)  
+10  
-15  
+12  
-7  
+18  
-5  
V
CC  
V
V
EE  
Total Supply Voltage  
Logic Supply  
V
- V  
+30  
+5.5  
10.0  
10.0  
1.2  
V
CC  
EE  
V
+2.375  
V
L
Positive Supply Current  
Negative Supply Current  
Logic Supply Current  
Analog Ground Current  
Digital Ground Current  
No load, clamps enabled  
mA  
mA  
mA  
mA  
mA  
CC  
No load, clamps enabled  
EE  
No load, all digital inputs at rails  
No load, clamps enabled  
L
0.9  
1.6  
20  
AGND  
DGND  
No load, all digital inputs at rails  
1MHz, measured at force output  
±0Hz, measured at force output  
Power-Supply Rejection  
Ratio  
PSRR  
dB  
85  
_______________________________________________________________________________________  
5
Dual Per-Pin Parametric  
Measurement Units  
µC ELECTRICµL CHµRµCTERISTICS  
(V  
= +12V, V = -7V, V = +3.3V, C  
= 120pF, C = 100pF, T = +25°C, unless otherwise noted. Specifications at T = T  
CC  
EE  
L
CM L A A MꢁN  
and T = T  
are guaranteed by design and characterization. Typical values are at T = +25°C, unless otherwise noted.) (Note 2)  
A
MAX  
A
PµRµMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MµX  
UNITS  
FORCE VOLTµGE (Notes 10, 11)  
Range E, R_E = 500kΩ  
150  
50  
20  
20  
25  
Range D, R_D = 50kΩ  
Range C, R_C = 5kΩ  
Range B, R_B = 500Ω  
Range A, R_A = 15.±Ω  
Settling Time  
30  
ꢀs  
FORCE VOLTµGE/MEµSURE CURRENT (Notes 11, 12)  
Range E, R_E = 500kΩ  
500  
100  
30  
Range D, R_D = 50kΩ  
Settling Time  
Range C, R_C = 5kΩ  
Range B, R_B = 500Ω  
Range A, R_A = 15.±Ω  
55  
ꢀs  
ꢀs  
25  
1/MAX952  
25  
ꢁn addition to force-voltage and measure-current  
settling times, range A to range B, R_A = 15.±Ω,  
R_B = 500Ω  
Range Change  
Switching  
12  
FORCE CURRENT/MEµSURE VOLTµGE (Notes 11, 12)  
Range E, R_E = 500kΩ  
2500  
350  
30  
Range D, R_D = 50kΩ  
Settling Time  
Range C, R_C = 5kΩ  
Range B, R_B = 500Ω  
Range A, R_A = 15.±Ω  
±0  
ꢀs  
ꢀs  
25  
25  
ꢁn addition to force-current and measure-voltage  
settling times, range A to range B, R_A = 15.±Ω,  
R_B = 500Ω  
Range Change  
Switching  
12  
SENSE INPUT TO MEµSURE OUTPUT PµTH  
Propagation Delay  
C
= 100pF  
0.2  
ꢀs  
LMSR  
MEµSURE OUTPUT  
Maximum Stable Load  
Capacitance  
1000  
pF  
COMPµRµTORS (C  
= 20pF, R  
= 1kΩ)  
PUP  
LCOMP  
50mV overdrive, 1V , measured from input-  
P-P  
threshold zero crossing to 50% of output voltage  
(Note 13)  
Propagation Delay  
75  
ns  
Rise Time  
Fall Time  
20% to 80%  
80% to 20%  
±0  
5
ns  
ns  
SERIµL PORT (V = +3.3V, C  
= 10pF)  
L
DOUT  
Serial Clock Frequency  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
f
(Note 16)  
20  
MHz  
ns  
SCLK  
t
12  
12  
CH  
t
ns  
CL  
_______________________________________________________________________________________  
Dual Per-Pin Parametric  
Measurement Units  
1/MAX952  
µC ELECTRICµL CHµRµCTERISTICS (continued)  
(V  
= +12V, V = -7V, V = +3.3V, C  
= 120pF, C = 100pF, T = +25°C, unless otherwise noted. Specifications at T = T  
CC  
EE  
L
CM L A A MꢁN  
and T = T  
are guaranteed by design and characterization. Typical values are at T = +25°C, unless otherwise noted.) (Note 2)  
A
MAX  
A
PµRµMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MµX  
UNITS  
SCLK Fall to DOUT Valid  
t
22  
ns  
DO  
CS Low to SCLK High  
Setup  
t
10  
22  
0
ns  
CSS0  
CSH1  
CSH0  
SCLK High to CS High  
Hold  
t
t
ns  
ns  
ns  
SCLK High to CS Low  
Hold  
CS High to SCLK High  
Setup  
t
5
CSS1  
DꢁN to SCLK High Setup  
DꢁN to SCLK High Hold  
CS Pulse-Width High  
CS Pulse-Width Low  
t
10  
0
ns  
ns  
ns  
ns  
ns  
DS  
t
(Note 13)  
(Note 13)  
DH  
t
10  
10  
20  
CSWH  
t
CSWL  
LOAD Pulse-Width Low  
t
LDW  
V
High to CS Low  
DD  
500  
ns  
(Power-Up)  
Note ±: The device operates properly with different supply voltages with equally different voltage swings.  
Note 3: ꢁnterpret errors expressed in terms of %FSR (percent of full-scale range) as a percentage of the end-point-to-end-point  
range, i.e., for the ±±6mA range, the full-scale range = 128mA, and a 1% error = 1.28mA.  
Note 6: Case must be maintained ±5°C for linearity specifications.  
Note 5: Tested in range C.  
Note ꢀ: Current linearity specifications are maintained to within 700mV of the clamp voltages when the clamps are enabled.  
Note 7: Specified as the percent of full-scale range change at the output per volt change in the DUT voltage.  
Note 8:  
V
and V  
should differ by at least 700mV.  
CLLO_  
CLHꢁ_  
Note 9: The digital interface accepts +5V, +3.3V, and +2.5V CMOS logic levels. The voltage at V adjusts the threshold.  
L
Note 12: Guaranteed by design.  
Note 11: Settling times are to 0.1% of FSR. Cx_ = ±0pF.  
Note 1±: All settling times are specified using a single compensation capacitor (Cx_) across all current-sense resistors. Use an indi-  
vidual capacitor across each sense resistor for better performance across all current ranges, particularly the lower ranges.  
Note 13: The propagation delay time is only guaranteed over the force-voltage output range. Propagation delay is measured by  
holding V  
steady and transitioning THMAX_ or THMꢁN_.  
SENSE_  
Note 16: Maximum serial clock frequency may diminish at V < +3.3V.  
L
_______________________________________________________________________________________  
7
Dual Per-Pin Parametric  
Measurement Units  
Typical Operating Characteristics  
(V  
= +12V, V = -7V, C = 100pF, C  
= 120pF, C  
L
= ±0pF, R to +2.5V, range A: R_A = 15.±Ω, R = 70.3Ω; range B: R_B =  
CC  
EE  
L
CM_  
CX_ L L  
500Ω, R = 2.25kΩ; range C: R_C = 5kΩ, R = 22.5kΩ; range D: R_D = 50kΩ, R = 225kΩ; range E: R_E = 500kΩ, R = 2.25MΩ, T  
L
L
L
A
= +25°C.)  
TRANSIENT RESPONSE  
FVMI MODE, RANGES A, B, C  
TRANSIENT RESPONSE  
FVMI MODE, RANGE D  
TRANSIENT RESPONSE  
FVMI MODE, RANGE E  
MAX9551 toc01  
MAX9551 toc02  
MAX9551 toc03  
IN_  
IN_  
IN_  
5V/div  
5V/div  
5V/div  
0
0
0
FORCE_  
5V/div  
FORCE_  
5V/div  
FORCE_  
5V/div  
0
0
0
1/MAX952  
20μs/div  
100μs/div  
1ms/div  
TRANSIENT RESPONSE  
FVMV MODE, RANGE C  
TRANSIENT RESPONSE  
FIMI MODE, RANGES A, B, C  
TRANSIENT RESPONSE  
FIMI MODE, RANGE D  
MAX9551 toc04  
MAX9551 toc05  
MAX9551 toc06  
IN_  
5V/div  
IN_  
5V/div  
IN_  
5V/div  
0
0
0
FORCE_  
5V/div  
FORCE_  
5V/div  
FORCE_  
5V/div  
0
0
0
20μs/div  
20μs/div  
100μs/div  
TRANSIENT RESPONSE  
FIMI MODE, RANGE E  
TRANSIENT RESPONSE  
FIMI MODE, RANGE C  
IOS vs. POWER SUPPLIES  
MAX9551 toc07  
MAX9551 toc08  
MAX9951 toc09  
20  
15  
10  
5
IN_  
5V/div  
IN_  
5V/div  
V
CC  
11.2  
4.4  
0
0
IOS (MAX)  
IOS (MIN)  
FORCE_  
5V/div  
FORCE_  
5V/div  
3.2  
1.8  
0
0
0
-0.2  
-7  
-5  
V
EE  
-10  
-15  
2ms/div  
40μs/div  
8
_______________________________________________________________________________________  
Dual Per-Pin Parametric  
Measurement Units  
1/MAX952  
Pin Description  
PIN  
NµME  
FUNCTION  
MµX9951 MµX995±  
PMU-A Sense ꢁnput. A Kelvin connection to the DUT. Provides the feedback signal in FVMꢁ  
mode and the measured signal in FꢁMV mode for PMU-A.  
1
2
3
68  
67  
6±  
SENSEA  
FORCEA PMU-A Driver Output. Forces a current or voltage to the DUT for PMU-A.  
PMU-A Compensation Capacitor Connection. Provides compensation for the PMU-A main  
amplifier. Connect a 120pF capacitor from CCA to CCOMA.  
CCA  
5, 15,  
36, 66  
5, 15,  
36, 66  
V
Negative Analog-Supply ꢁnput  
Positive Analog-Supply ꢁnput  
EE  
6, 16,  
35, 65  
6, 16,  
35, 65  
V
CC  
±
7
63  
62  
61  
60  
39  
38  
37  
CCOMA Common Connection of CMA and CXA for PMU-A  
RAAS  
RAA  
RAB  
RAC  
RAD  
RAE  
PMU-A Range Setting Resistor-Sense Connection  
PMU-A Range A Setting Resistor Connection  
PMU-A Range B Setting Resistor Connection  
PMU-A Range C Setting Resistor Connection  
PMU-A Range D Setting Resistor Connection  
PMU-A Range E Setting Resistor Connection  
8
9
10  
11  
12  
PMU-A Current-Range Sense-Resistor Connection. Connects to the external current range  
sense resistor for PMU-A.  
13  
1±  
17  
3±  
33  
32  
RAX  
EXTSELA PMU-A External Current-Range Selector. Selects the external current range for PMU-A.  
PMU-A Window Comparator Lower Comparator Output. A high output indicates that the sensed  
DUTLA  
voltage at the window comparator is above V  
. DUTLA is an open-drain output.  
THMꢁNA  
PMU-A Window Comparator Higher Comparator Output. A high output indicates that the  
sensed voltage at the window comparator is below V . DUTHA is an open-drain output.  
18  
19  
20  
31  
30  
29  
DUTHA  
HI-ZA  
THMAXA  
MSRA Tri-State Control ꢁnput. A logic-low places MSRA in a high-impedance state.  
ꢁnput Select PMU-A. ꢁNSELA is a logic input that selects between ꢁN0A and ꢁN1A. Force  
ꢁNSELA low to select ꢁN0A. ꢁNSELA is OR’ed with control register bit ꢁNMODEA.  
ꢁNSELA  
21  
22  
23  
26  
25  
28  
27  
2±  
25  
26  
TEMP  
Temperature Output. V  
Digital Ground  
= 10mV/°C. T (°C) = (100)V  
- 273.  
TEMP  
DꢁE  
TEMP  
DGND  
V
Logic-Supply Voltage ꢁnput. The voltage applied at V sets the upper logic-voltage level.  
L
L
DOUT  
DꢁN  
Serial-Data Output. A standard SPꢁ™-compatible output. Data appears at DOUT MSB first.  
Serial-Data ꢁnput. Load data into DꢁN MSB first.  
Serial-Port Load ꢁnput. A logic-low asynchronously loads data from the input registers into the  
PMU registers.  
2±  
23  
LOAD  
SPꢁ is a trademark of Motorola, ꢁnc.  
_______________________________________________________________________________________  
9
Dual Per-Pin Parametric  
Measurement Units  
Pin Description (continued)  
PIN  
NµME  
FUNCTION  
MµX9951 MµX995±  
27  
28  
22  
21  
SCLK  
Serial-Clock ꢁnput. SCLK accepts external clock frequencies up to 20MHz.  
CS  
Chip-Select ꢁnput. Force CS low to enable the serial interface.  
ꢁnput Select PMU-B. ꢁNSELB is a logic input that selects between ꢁN0B and ꢁN1B. Force  
ꢁNSELB low to select ꢁN0B. ꢁNSELB is OR’ed with control register bit ꢁNMODEB.  
29  
30  
31  
20  
19  
18  
ꢁNSELB  
HI-ZB  
MSRB Tri-State Control ꢁnput. A logic-low places MSRB in a high-impedance state.  
PMU-B Window Comparator Higher Comparator Output. A high output indicates that the  
DUTHB  
sensed voltage at the window comparator is below V  
. DUTHB is an open-drain output.  
THMAXB  
PMU-B Window Comparator Lower Comparator Output. A high output indicates that the sensed  
voltage at the window comparator is above V . DUTLB is an open-drain output.  
32  
33  
3±  
17  
1±  
13  
DUTLB  
THMꢁNB  
EXTSELB PMU-B External Current-Range Selector. Selects the external current range for PMU-B.  
PMU-B Current-Range Sense-Resistor Connection. Connects to the external current-range  
sense resistor for PMU-B.  
RBX  
1/MAX952  
37  
38  
39  
60  
61  
62  
63  
12  
11  
10  
9
RBE  
RBD  
RBC  
RBB  
RBA  
RBAS  
PMU-B Range E Setting Resistor Connection  
PMU-B Range D Setting Resistor Connection  
PMU-B Range C Setting Resistor Connection  
PMU-B Range B Setting Resistor Connection  
PMU-B Range A Setting Resistor Connection  
PMU-B Range A Setting Resistor-Sense Connection  
8
7
±
CCOMB Common Connection of CMB and CXB for PMU-B  
PMU-B Compensation Capacitor Connection. Provides compensation for the PMU-B main  
amplifier. Connect a 120pF capacitor from CCB to CCOMB.  
6±  
67  
68  
3
2
1
CCB  
FORCEB PMU-B Driver Output. Forces a current or voltage to the DUT for PMU-B.  
PMU-B Sense ꢁnput. A Kelvin connection to the DUT. Provides the feedback signal in FVMꢁ  
mode and the measured signal in FꢁMV mode for PMU-B.  
SENSEB  
PMU-B Window Comparator Upper Threshold Voltage ꢁnput. Sets the upper voltage threshold  
for the PMU-B window comparator.  
69  
50  
±6  
±3  
THMAXB  
PMU-B Window Comparator Lower Threshold Voltage ꢁnput. Sets the lower voltage threshold for  
the PMU-B window comparator.  
THMꢁNB  
51  
52  
±2  
±1  
CLHꢁB  
PMU-B Upper-Clamp Voltage ꢁnput. Sets the upper-clamp voltage level.  
PMU-B Lower-Clamp Voltage ꢁnput. Sets the lower-clamp voltage level.  
CLLOB  
Force-Threshold Current ꢁnput for PMU-B. Sets the forced voltage in FV mode or the forced  
current in Fꢁ mode.  
53  
56  
±0  
59  
ꢁN0B  
ꢁN1B  
Force-Threshold Voltage ꢁnput for PMU-B. Sets the forced voltage in FV mode or the forced  
current in Fꢁ mode  
12 ______________________________________________________________________________________  
Dual Per-Pin Parametric  
Measurement Units  
1/MAX952  
Pin Description (continued)  
PIN  
NµME  
FUNCTION  
MµX9951 MµX995±  
PMU-B Measurement Output. Provides a voltage equal to the SENSE voltage in FꢁMV mode,  
and provides a voltage proportional to the DUT current in FVMꢁ mode for PMU-B. Force HI-ZB  
low to place MSRB in a high-impedance state.  
55  
58  
MSRB  
5±  
57  
57  
5±  
AGND  
ꢁOS  
Analog Ground  
Offset-Voltage ꢁnput. Sets an offset voltage for the internal current-sense amplifiers of both  
channels.  
PMU-A Measurement Output. Provides a voltage equal to the SENSE voltage in FꢁMV mode,  
and provides a voltage proportional to the DUT current in FVMꢁ mode for PMU-A. Force HI-ZA  
low to place MSRA in a high-impedance state.  
58  
55  
MSRA  
Force-Threshold Voltage ꢁnput for PMU-A. Sets the forced voltage in FV mode or the forced  
current in Fꢁ mode.  
59  
±0  
56  
53  
ꢁN1A  
ꢁN0A  
Force-Threshold Current ꢁnput for PMU-A. Sets the forced voltage in FV mode or the forced  
current in Fꢁ mode.  
±1  
±2  
52  
51  
CLLOA  
CLHꢁA  
PMU-A Lower-Clamp Voltage ꢁnput. Sets the lower-clamp voltage level.  
PMU-A Upper-Clamp Voltage ꢁnput. Sets the upper-clamp voltage level.  
PMU-A Window Comparator Lower Threshold Voltage ꢁnput. Sets the lower voltage threshold for  
the PMU-A window comparator.  
±3  
±6  
50  
69  
THMꢁNA  
THMAXA  
EP  
PMU-A Window Comparator Upper Threshold Voltage ꢁnput. Sets the upper voltage threshold  
for the PMU-A window comparator.  
Exposed Pad. ꢁnternally biased to V . Connect to a large ground plane or heatsink to  
EE  
maximize thermal performance. Not intended as an electrical connection point.  
______________________________________________________________________________________ 11  
Dual Per-Pin Parametric  
Measurement Units  
Functional Diagram  
TO EXTERNAL CURRENT BOOSTER  
FOR HIGHEST RANGE  
C
X_  
RE  
RD  
RC  
RB  
RA  
CM_  
V
CC  
V
EE  
V
L
CC_  
CCOM_  
EXTSEL_  
R_X  
R_E R_D R_C R_B R_A  
R_AS**  
1
IN1_  
IN0_  
0
RANGE RESISTOR SELECT  
FORCE_  
1/MAX952  
OR  
GATE  
INSEL_  
1.5MΩ  
DGND  
CLLO_  
CLHI_  
IOS  
1
0
CS  
SCLK  
LOAD  
DIN  
SERIAL  
INTERFACE  
F
MODE_  
M
MODE_  
DOUT  
R
FS*  
V
L
10  
TO OTHER PMU CHANNEL  
1.5MΩ  
1
0
HI-Z_  
MSR_  
SENSE_  
THMAX_  
DUTH_  
DUTL_  
MAX9951  
MAX9952  
THMIN_  
AGND  
DGND  
*R INTERNAL TO MAX9951D/MAX9952D ONLY  
FS  
**CONNECT R_AS AS CLOSE TO RESISTOR “RA” AS POSSIBLE  
1± ______________________________________________________________________________________  
Dual Per-Pin Parametric  
Measurement Units  
1/MAX952  
Detailed Description  
Serial Interface  
The MAX9951/MAX9952 force or measure voltages in  
the -2V to +7V through -7V to +13V ranges, dependent  
The MAX9951/MAX9952 use a standard 3-wire  
SPꢁ/QSPꢁ™/MꢁCROWꢁRE™-compatible serial port.  
Once the input data register fills, the data becomes  
available at DOUT MSB first. This data output allows for  
daisy-chaining multiple devices. Figures 1, 2, and 3  
show the serial interface timing diagrams.  
upon the supply voltage range (V  
and V ). These  
EE  
CC  
devices also force or measure currents up to ±±6mA,  
with a lowest full-scale range of ±2ꢀA. Use an external  
buffer amplifier for current ranges greater than ±±6mA.  
MSR_ presents a voltage proportional to the measured  
voltage or current. Place MSR_ in a low-leakage, high-  
impedance state by forcing HI-Z_ low. ꢁntegrated com-  
parators with externally programmable voltage  
thresholds provide “too low” (DUTL_) and “too high”  
(DUTH_) voltage-monitoring outputs. Each comparator  
output features a selectable high-impedance state. The  
devices feature separate FORCE_ and SENSE_ con-  
nections and are fully protected against short circuits.  
The FORCE_ output has two voltage clamps, negative  
(CLLO_) and positive (CLHꢁ_), to limit the voltage to  
externally provided levels. Two control-voltage inputs,  
selected independently of the PMU mode, allow for  
greater flexibility.  
Serial Port Operation  
The serial interface has two ranks (Figure 6). Each PMU  
has an input register that loads from the serial port shift  
register. Each PMU also has a PMU register that loads  
from the input register. Data does not affect the PMU  
until it reaches the PMU register. This register configura-  
tion permits loading of the PMU data into the input regis-  
ter at one time and then latching the input register data  
into the PMU register later, at which time the PMU func-  
tion changes accordingly. The register configuration also  
provides the ability to change the state of the PMU asyn-  
chronously, with respect to the loading of that PMU’s  
data into the serial port. Thus, the PMU easily updates  
simultaneously with other PMUs or other devices.  
CS  
INPUT  
REGISTER(S)  
UPDATED  
SCLK  
DIN  
D15  
D14  
Q15  
D13  
Q14  
D12  
Q13  
D11  
Q12  
D10  
Q11  
D9  
D8  
Q9  
D7  
Q8  
D6  
Q7  
D5  
Q6  
D4  
Q5  
D3  
Q4  
D2  
Q3  
D1  
Q2  
D0  
Q1  
DOUT  
Q10  
Q0  
LAST BIT FROM  
PREVIOUS WRITE  
FIRST BIT FROM  
PREVIOUS WRITE  
LOAD  
PMU REGISTERS  
UPDATED  
Figure 1. Serial Port Timing with Asynchronous Load  
QSPꢁ is a trademark of Motorola, ꢁnc.  
MꢁCROWꢁRE is a trademark of National Semiconductor Corp.  
______________________________________________________________________________________ 13  
Dual Per-Pin Parametric  
Measurement Units  
CS  
INPUT AND PMU  
REGISTER(S)  
UPDATED  
SCLK  
DIN  
D15  
D14  
Q15  
D13  
Q14  
D12  
Q13  
D11  
Q12  
D10  
Q11  
D9  
D8  
Q9  
D7  
Q8  
D6  
Q7  
D5  
Q6  
D4  
Q5  
D3  
Q4  
D2  
Q3  
D1  
Q2  
D0  
Q1  
DOUT  
Q10  
Q0  
LAST BIT FROM  
PREVIOUS WRITE  
FIRST BIT FROM  
PREVIOUS WRITE  
1/MAX952  
LOAD  
LOAD = 0  
Figure 2. Serial Port Timing with Synchronous Load  
t
CH  
SCLK  
t
CL  
t
CSSO  
t
CSS1  
t
CSH1  
t
CSHO  
CS  
t
t
CSWH  
DH  
t
DS  
D15  
D14  
D13  
D12  
D11  
D10  
D1  
D0  
DIN  
DOUT  
D15last  
D14last  
D13last  
D12last  
D11last  
DO  
D10last  
D1last  
D0last  
t
t
LDW  
LOAD  
Figure 3. Detailed Serial Port Timing Diagram  
16 ______________________________________________________________________________________  
Dual Per-Pin Parametric  
Measurement Units  
1/MAX952  
Table 1. Bit µssignments  
BIT  
BIT NµME  
ꢁNMODE  
FMODE  
MMODE  
RS2  
0 (LSB)  
CS  
SCLK  
DIN  
SHIFT REGISTER /16  
INPUT REGISTER A  
DOUT  
1
2
4
12  
3
6
RS1  
CONTROL  
DECODE  
5
RS0  
INPUT REGISTER B  
12  
±
CLENABLE  
HI-ZFORCE  
HI-ZMSR  
DISABLE  
B2  
12  
7
8
PMU REGISTER A  
PMU REGISTER B  
LOAD  
9
10  
12  
12  
11  
B1  
TO PMUA  
TO PMUB  
12  
A2  
13  
A1  
16  
C2  
Figure 6. Dual PMU Serial Port Block Diagram  
15 (MSB)  
C1  
Use LOAD to asynchronously load all input registers  
into the PMU registers. ꢁf LOAD remains low when data  
latches into an input register, the data also transfers to  
the PMU register.  
Table ±. µddress Bit  
(BIT 1±) (BIT 13)  
OPERµTION  
Bit Order  
µ±  
µ1  
The MAX9951/MAX9952 use the bit order, MSB first in  
and first out. Table 1 shows bit asignments.  
0
0
1
0
1
0
Do not update any input register (NOP).  
Only update input register A.  
Only update input register B.  
PMU Control  
Programming both PMUs with the same data requires a  
1±-bit word. Programming each PMU with separate  
data requires two 1±-bit words.  
Update both input registers with the same  
data.  
1
1
The address bits specify which input registers the shift-  
register loads. Table 2 describes the function of the  
address bits.  
Table 3. Control Bit  
(BIT 16) (BIT 15)  
Bits C1 and C2 specify how the data loads into the sec-  
ond rank PMU registers. These 2 control bits serve a  
similar function as the LOAD input. The specified  
actions occur when CS goes high, whereas the LOAD  
input loads the PMU register at anytime. When either  
C1 or C2 is low, the corresponding PMU register is  
transparent. Table 3 describes the function of the 2  
control bits.  
OPERµTION  
C±  
C1  
0
0
Data stays in input register.  
Transfer PMU-A input register to PMU  
register.  
0
1
1
1
0
1
Transfer PMU-B input register to PMU  
register.  
The NOP operation requires A1 = A2 = C1 = C2 = 0. ꢁn  
this case, the data transfers through the shift register  
without changing the state of the device.  
Transfer both input registers to the PMU  
registers.  
______________________________________________________________________________________ 15  
Dual Per-Pin Parametric  
Measurement Units  
C1 = C2 = 0 allows for data transfer from the shift regis-  
ter to the input register without transferring data to the  
PMU register (unless LOAD is low). This permits the  
latching of data into the PMU register at a later time by  
LOAD or subsequent command. Table 6 summarizes  
the possible control and address bit combinations.  
When asynchronously latching only one PMU’s data,  
the input register of the other PMU maintains the same  
data. Therefore, loading both PMU registers would  
update the one PMU with new data while the other PMU  
remains in its current state.  
Mode Selection  
Four bits from the control word select between the vari-  
ous force-measure modes of operation. ꢁNMODE  
selects between the two input analog control voltages.  
FMODE selects whether the PMU forces a voltage or a  
current. MMODE selects whether the DUT current or  
DUT voltage is directed to MSR_. HI-ZFORCE places  
the driver amplifier in a high-output-impedance state.  
Table 5 describes the various force and measure  
modes of operation.  
Table 6. PMU Operation Using Control and µddress Bits  
BIT (1±:13)  
BIT (16:15)  
PMU-µ OPERµTION  
PMU-B OPERµTION  
µ±  
0
µ1  
0
C±  
0
C1  
0
NOP: data just passes through  
1/MAX952  
0
0
0
1
Transfer PMU register A from input register A.  
NOP.  
NOP.  
0
0
1
0
Transfer PMU register B from input register B.  
Transfer PMU register B from input register B.  
NOP.  
0
0
1
1
Transfer PMU register A from input register A.  
Transfer input register A from shift register.  
0
1
0
0
Transfer input register A and PMU register A  
from shift register.  
0
0
0
1
1
1
0
1
1
1
0
1
NOP.  
Transfer input register A from shift register.  
Transfer PMU register B from input register B.  
Transfer PMU register B from input register B.  
Transfer input register A and PMU register A  
from shift register.  
1
1
0
0
0
0
0
1
NOP.  
Transfer input register B from shift register.  
Transfer input register B from shift register.  
Transfer PMU register A from input register A.  
Transfer input register B and PMU register B  
from shift register.  
1
0
1
0
NOP.  
Transfer input register B and PMU register B  
from shift register.  
1
1
1
0
1
1
1
0
0
1
0
1
Transfer PMU register A from input register A.  
Transfer input register A from shift register.  
Transfer input register B from shift register.  
Transfer input register A and PMU register A  
from shift register.  
Transfer input register B from shift register.  
Transfer input register B and PMU register B  
from shift register.  
1
1
1
1
1
1
0
1
Transfer input register A from shift register.  
Transfer input register A and PMU register A  
from shift register.  
Transfer input register B and PMU register B  
from shift register.  
1ꢀ ______________________________________________________________________________________  
Dual Per-Pin Parametric  
Measurement Units  
1/MAX952  
Table 5. PMU Force-Measure Mode Selection  
(BIT 2)  
IN MODE*  
(BIT 1)  
F MODE  
(BIT ±)  
M MODE  
(BIT 7)  
HI-ZFORCE  
FORCE  
OUTPUT  
MEµSURE  
OUTPUT  
µCTIVE  
INPUT  
PMU MODE  
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
FVMꢁ  
FVMꢁ  
FVMV  
FVMV  
FꢁMꢁ  
Voltage  
Voltage  
Voltage  
Voltage  
Current  
Current  
Current  
Current  
V
V
V
V
V
V
V
V
DUT  
DUT  
ꢁN0  
ꢁN1  
ꢁN0  
ꢁN1  
ꢁN0  
ꢁN1  
ꢁN0  
ꢁN1  
V
V
DUT  
DUT  
DUT  
DUT  
FꢁMꢁ  
FꢁMV  
FꢁMV  
V
V
DUT  
DUT  
FNMꢁ  
(range E only)  
High-  
ꢁmpedance  
X
X
0
0
1
0
0
0
X
X
DUT  
High-  
ꢁmpedance  
FNMV  
V
DUT  
0
1
0
1
1
1
1
1
0
0
1
1
0
0
0
0
Termination  
Termination  
Termination  
Termination  
Voltage  
Voltage  
Voltage  
Voltage  
V
V
V
V
V
V
DUT  
DUT  
DUT  
DUT  
ꢁN0  
ꢁN1  
ꢁN0  
ꢁN1  
*ꢁNSEL = 0  
Table ꢀ. Current-Range Selection  
Clamp Enable  
The CLENABLE bit enables the force-output-voltage  
clamps when high and disables the clamps when low.  
There is hysteresis equal to approximately 5% of the  
current range for clamp when serial bit 11 is 1. For bit  
11 = 0, no hysteresis, but clamp voltage is less accurate.  
NOMINµL  
RµNGE RESISTOR VµLUE  
(Ω)  
(BIT 3)  
RS±  
(BIT 6)  
RS1  
(BIT 5)  
RS2  
0
0
0
1
1
1
0
1
1
0
X
1
X
0
1
0
1
0
±2ꢀA  
±20ꢀA  
±200ꢀA  
±2mA  
R_E = 500k  
R_D = 50k  
R_C = 5k  
R_B = 500  
R_A = 15.±  
Measure Output High-Impedance Control  
MSR_ attains a low-leakage, high-impedance state by  
using the HI-ZMSR control bit, or the HI-Z_ input. HI-Z_ is  
internally pulled up to V with a 1.5MΩ resistor. The 2  
L
±±6mA  
External  
bits are logically ANDed together to control the MSR_  
output. HI-Z_ allows external multiplexing among several  
PMU MSR_ outputs without using the serial interface.  
Table 7 explains the various output modes for the MSR_  
output.  
Table 7. MSR_ Output Truth Table  
(BIT 8) HI-ZMSR  
HI-Z_  
MSR_  
Digital Output (DOUT)  
The digital output follows the last output of the serial-  
shift register and clocks out on the falling edge of  
SCLK. DOUT serially shifts the first bit of the incoming  
serial data word 1±.5 clock cycles later. This allows for  
daisy-chaining additional devices using DOUT and the  
same clock.  
1
0
1
0
1
1
0
0
Measure output enabled  
High impedance  
High impedance  
High impedance  
Current-Range Selection  
Three bits from the control word, RS0, RS1, and RS2,  
control the full-scale current range for either Fꢁ (force  
current) or Mꢁ (measure current). Table ± describes the  
full-scale current-range control.  
______________________________________________________________________________________ 17  
Dual Per-Pin Parametric  
Measurement Units  
and convert the sensed DUT current to the MSR_ out-  
put voltage (Mꢁ). When ꢁOS equals zero relative to  
DUTGND (the GND voltage at the DUT, which the level-  
setting DACs and the ADC are presumed to use as a  
ground reference), the nominal voltage range that cor-  
responds to ±full-scale current is -6V to +6V. Any volt-  
age applied to ꢁOS adds directly to this control  
input/measure output voltage range, i.e., applying +6V  
to ꢁOS forces the voltage range that corresponds to  
±full-scale current from 0 to +8V.  
“Quick Load” Using Chip Select  
ꢁf CS goes low and then returns high without any clock  
activity, the data from the input registers latch into the  
PMU registers. This extra function is not standard for  
SPꢁ/QSPꢁ/MꢁCROWꢁRE interfaces. The quick load mim-  
ics the function of LOAD without forcing LOAD low.  
Comparators  
Two comparators configured as a window comparator  
monitor MSR_. THMAX_ and THMꢁN_ set the high and  
low thresholds that determine the window. Both out-  
puts are open drain and share a single disable control  
that places the outputs in a high-impedance, low-leak-  
age state. Table 8 describes the comparator output  
states of the MAX9951/MAX9952.  
The following equations determine the minimum and  
maximum currents for each current range correspond-  
ing to the input voltage or measure voltage:  
V
= V  
= V  
+ 6V  
- 6V  
MAXCURRENT  
ꢁOS  
ꢁOS  
V
MꢁNCURRENT  
Applications Information  
Choose ꢁOS so the limits of MSR_ do not go closer than  
2.8V to either V or V . For example, with supplies of  
ꢁn force-voltage (FV) mode, the voltage at FORCE_ is  
directly proportional to the input control voltage. ꢁn  
force-current (Fꢁ) mode, the current flowing out of  
FORCE_ is proportional to the input control voltage.  
Positive current flows out of the PMU.  
EE  
CC  
5
+10V and -5V, limit the MSR_ output to -2.2V and  
+7.2V. Therefore, set ꢁOS between +1.8V and +3.2V.  
MSR_ could clip if ꢁOS is not within this range. Use  
these general equations for the limits on ꢁOS:  
ꢁn force-nothing (FN) mode, FORCE_ is high impedance.  
Minimum V  
= V + ±.8V  
EE  
ꢁOS  
ꢁn measure-current (Mꢁ) mode, the voltage at MSR_ is  
directly proportional to the current exiting FORCE_.  
Positive current flows out of the PMU.  
Maximum V  
= V  
- ±.8V  
ꢁOS  
CC  
Current Booster for Highest Current Range  
An external buffer amplifier can be used to provide a  
current range greater than the MAX9951/MAX9952  
maximum ±±6mA output current (Figure 5). This func-  
tion operates as follows:  
ꢁn measure-voltage (MV) mode, the voltage at MSR_ is  
directly proportional to the voltage at SENSE_.  
Current-Sense-Amplifier  
Offset-Voltage Input  
ꢁOS is a buffered input to the current-sense amplifiers.  
The current-sense amplifiers convert the input control  
voltage (ꢁN0_ or ꢁN1_) to the forced DUT current (Fꢁ),  
R
EXT  
RA  
RE  
Table 8. Comparator Truth Table  
CCOM_  
EXTSEL_  
(BIT 9)  
DISABLE  
CONDITION  
DUTH  
DUTL  
50Ω  
VIN_  
A
E
0
1
1
1
1
X
High-Z  
High-Z  
DUT  
FORCE_  
V
> V  
and V  
0
1
1
0
1
1
0
0
MSR  
THMAX  
THMꢁN  
> V  
MSR THMꢁN  
MAIN AMP  
V
> V  
THMAX  
X
A
E
V
and V  
> V  
> V  
THMAX  
THMꢁN  
> V  
MSR  
*
V
MAX9951  
MAX9952  
THMꢁN  
MSR  
THMAX  
x4  
CURRENT-  
SENSE AMP  
*V  
> V  
constitutes normal operation. This condition,  
THMAX  
however, has V  
THMꢁN  
> V  
and does not cause any prob-  
THMꢁN  
THMAX  
lems with the operation of the comparators.  
MSR_  
SENSE_  
PMU  
Figure 5. External Current Boost  
18 ______________________________________________________________________________________  
Dual Per-Pin Parametric  
Measurement Units  
1/MAX952  
A digital output decoded from the range select bits,  
EXTSEL_, indicates when to activate the booster.  
CCOM_ serves as an input to an external buffer through  
an internal 50Ω current-limit series resistor. Connect the  
external buffer output to the external current-sense resis-  
ꢁndependent control of these switches and the Hꢁ-  
ZFORCE state permits flexible modes of operation  
beyond the traditional force-voltage/measure-current  
(FVMꢁ) and force-current/measure-voltage (FꢁMV)  
modes. The MAX9951/MAX9952 support the following  
eight modes:  
tor, R  
, and to R_X. Connect the other side of R_X to  
EXT  
FORCE_. Ensure that the external switch is low leakage.  
FVMꢁ  
• FꢁMV  
Voltage Clamps  
The voltage clamps limit FORCE_ and operate over the  
entire specified current range. Set the clamp voltages  
externally at CLHꢁ_ and CLLO_. The voltage at FORCE_  
triggers the clamps independent of the voltage at  
SENSE_. When enabled, the clamps function in Fꢁ  
mode only. Use clamp voltages of 0.7V above and  
below the FORCE_ voltage range to ensure proper  
operation of the PMU.  
• FVMV  
• FꢁMꢁ  
• FNMV  
• FNMꢁ (range E only)  
• Terminate/Measure V  
• Terminate/Measure ꢁ  
Figure ± shows the internal path structure for force-volt-  
age/measure-current mode. ꢁn force-voltage/measure-  
current mode, the current across the appropriate  
external sense resistor (R_A to R_E) provides a voltage  
at MSR_. SENSE_ samples the voltage at the DUT and  
feeds the buffered result back to the negative input of  
the voltage amplifier. The voltage at MSR_ is propor-  
tional to the FORCE_ current in accordance with the fol-  
lowing formula:  
Current Limit  
The FORCE_ current-limiting circuitry, 92mA (maximum),  
ensures a well-behaved MSR_ output for currents  
between the full current range and the current limits. For  
currents greater than the full-scale current, the MSR_  
voltage is greater than +6V, and for currents less than  
the full-scale current, the MSR_ voltage is less than -6V.  
Additionally, serial interface bit B2 enables a range-sen-  
sitive current limit of 2.5 times the nominal current range.  
Table 9 shows the current-limit operation.  
V
MSR_  
= ꢁ  
x R  
x 6  
SENSE  
FORCE_  
Figure 7 shows the internal path structure for the force-  
current/measure-voltage mode. ꢁn force-current/mea-  
sure-voltage mode, the appropriate external sense  
resistor (R_A to R_E) provides a feedback voltage to  
Independent Control of the Feedback  
Switch and the Measure Switch  
Two single-pole-double-throw (SPDT) switches deter-  
mine the mode of operation of the PMU. One switch  
determines whether the sensed DUT current or DUT  
voltage feeds back to the input, and thus determines  
whether the MAX9951/MAX9952 force current or volt-  
age. The other switch determines whether MSR_ sens-  
es the DUT current or DUT voltage.  
IN1_  
R
SENSE  
FORCE_  
SENSE_  
DUT  
Table 9. Current Limit  
A = +4  
V
B±  
(BIT 12)  
FMODE  
RµNGE  
CURRENT LIMIT  
DUTGND  
X
0
0
0
0
0
Any  
A
0
1
1
1
1
1
±5mA to 92mA  
±5mA to 92mA  
5mA  
MSR_  
B
C
500ꢀA  
D
50ꢀA  
E
5ꢀA  
Figure ±. Force-Voltage/Measure-Current Functional Diagram  
______________________________________________________________________________________ 19  
Dual Per-Pin Parametric  
Measurement Units  
V
DUT_  
IN1_  
R
SENSE  
V
V
- 2.5V  
- 5V  
CC  
FORCE_  
CC  
DUT  
A = +4  
V
I
DUT_  
SENSE_  
DUTGND  
V
V
+ 5V  
EE  
MSR_  
+ 2.5V  
EE  
I
I
MAX  
MIN  
1/MAX952  
Figure 7. Force-Current/Measure-Voltage Functional Diagram  
Figure 8. PMU Force-Output Capability  
the inverting input of the voltage amplifier. SENSE_  
samples the voltage at the DUT and provides a  
buffered result at MSR_.  
Mode and Range Change Transients  
The MAX9951/MAX9952 feature make-before-break  
switching to minimize glitches. The integrated voltage  
clamps also reduce glitching at the output.  
High-Impedance States  
The FORCE_, MSR_, and comparator outputs feature  
individual high-impedance control that places them into  
a high-impedance, low-leakage state. The high-imped-  
ance state allows busing of MSR_ and comparator out-  
puts with other PMU measure and comparator outputs.  
The FORCE_ output high-impedance state allows for  
additional modes of operation as described in Table 5  
and can eliminate the need for a series relay in some  
applications.  
DUT Voltage Swing vs. DUT Current  
and Power-Supply Voltages  
Several factors limit the actual DUT voltage that the  
PMU delivers:  
The overhead required by the device amplifiers and  
other integrated circuitry; this is typically 2.5V from  
each rail independent of load.  
The voltage drop across the current-range select  
resistor and internal circuitry in series with the sense  
resistor. At full current, the combined voltage drop is  
typically 2.5V.  
The FORCE_, MSR_, and comparator outputs power up  
in the high-impedance state.  
Input Source Selection  
Either one of two input signals, ꢁN0_ or ꢁN1_, can con-  
trol both the forced voltage and the forced current. ꢁn  
this case, the two input signals represent alternate forc-  
ing values that can be selected either with the serial  
interface or ꢁNSEL_. Alternatively, each input signal can  
be dedicated to control a single forcing function (i.e.,  
voltage or current).  
Variations in the power supplies.  
Variation of DUT ground vs. PMU ground.  
Neglecting the effects of the third and fourth items,  
Figure 8 demonstrates the force-output capabilities of  
the PMU. For zero DUT current, the DUT voltage swings  
from (V + 2.5V) to (V  
- 2.5V). For larger positive DUT  
EE  
CC  
currents, the positive swing drops off linearly until it  
reaches (V - 5V) at full current. Similarly, for larger  
CC  
Short-Circuit Protection  
FORCE_ and SENSE_ input can withstand a short to  
any voltage between the supply rails.  
negative DUT currents, the negative voltage swing drops  
off linearly until it reaches (V + 5V) at full current.  
EE  
±2 ______________________________________________________________________________________  
Dual Per-Pin Parametric  
Measurement Units  
1/MAX952  
Ground, DUT Ground, and IOS  
The MAX9951/MAX9952 utilize two local grounds,  
AGND (analog ground) and DGND (digital ground).  
Connect AGND and DGND together on the PC board.  
ꢁn a typical ATE system, the PMU force voltage is rela-  
tive to DUT ground. ꢁn this case, reference the input  
voltages ꢁN0_ and ꢁN1_ to DUT ground. Similarly, refer-  
ence ꢁOS to DUT ground. ꢁf it is not desired to offset the  
current control and measure voltages, connect ꢁOS to  
DUT ground potential.  
Temperature Monitor  
Each device supplies a single temperature output signal,  
TEMP, that asserts a nominal output voltage of 2.98V at a  
die temperature of +25°C (298K). The output voltage  
increases proportionately with temperature at a rate of  
10mV/°C. The temperature sensor output impedance is  
15kΩ (typ). Determine the die temperature using:  
T
DꢁE  
= (100) x V  
- 273 [°C]  
TEMP  
Exposed Pad  
The exposed pad is internally biased to V . Connect  
EE  
Reference the MSR_ output to DUT ground.  
to a large ground plane or heatsink to maximize thermal  
performance. Not intended as an electrical connection  
point. Leave EP electrically unconnected, or connect to  
Settling Times and  
Compensation Capacitors  
V
EE  
. Do not connect EP to ground.  
The data in the Electrical Characteristics table reflects  
the circuit shown in the Functional Diagram that  
includes a single compensation capacitor (CX_) effec-  
tively across all the sense resistors. Placing individual  
capacitors, CRA, CRB, CRC, CRD, and CRE directly  
across the sense resistors, R_A, R_B, R_C, R_D, and  
R_E, independently optimizes each range.  
Selector Guide  
PµRT  
DESCRIPTION  
ꢁnternal 10kΩ force-sense resistor  
External force-sense resistor  
ꢁnternal 10kΩ force-sense resistor  
External force-sense resistor  
MAX9951DCCB  
MAX9951FCCB  
MAX9952DCCB  
MAX9952FCCB  
The combination of the capacitance across the sense  
resistors, along with the main amplifier compensation  
comparator, CM_, ensures stability into the maximum  
expected load capacitance while optimizing settling  
time for a given load.  
Digital Inputs (SCLK, DIN, CS, and LOAD)  
The digital inputs incorporate hysteresis to mitigate  
issues with noise, as well as provide for compatibility  
with opto-isolators that can have slow edges.  
Chip Information  
PROCESS: BiCMOS  
______________________________________________________________________________________ ±1  
Dual Per-Pin Parametric  
Measurement Units  
Pin Configurations  
TOP VIEW  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48 SENSEB  
47 FORCEB  
46 CCB  
SENSEA  
FORCEA  
CCA  
3
4
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
V
V
V
CC  
EE  
CC  
5
V
EE  
6
CCOMB  
RBAS  
RBA  
CCOMA  
RAAS  
RAA  
1/MAX952  
7
8
MAX9951  
9
RBB  
RAB  
10  
11  
12  
13  
14  
15  
RBC  
RAC  
RBD  
RAD  
RBE  
RAE  
RBX  
RAX  
*EP  
V
CC  
V
CC  
V
EE  
V
EE  
EXTSELB  
EXTSELA 16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
TQFP-EPR  
*EP = EXPOSED PAD.  
±± ______________________________________________________________________________________  
Dual Per-Pin Parametric  
Measurement Units  
1/MAX952  
Pin Configurations (continued)  
TOP VIEW  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48 SENSEA  
47 FORCEA  
46 CCA  
SENSEB  
FORCEB  
CCB  
3
4
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
V
V
V
CC  
EE  
CC  
5
V
EE  
6
CCOMA  
RAAS  
RAA  
CCOMB  
RBAS  
RBA  
7
8
MAX9952  
9
RAB  
RBB  
10  
11  
12  
13  
14  
15  
RAC  
RBC  
RAD  
RBD  
RAE  
RBE  
RAX  
*EP  
RBX  
V
CC  
V
CC  
V
EE  
V
EE  
EXTSELA  
EXTSELB 16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
TQFP-EP  
*EP = EXPOSED PAD.  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
PµCKµGE TYPE  
±6 TQFP-EPR  
±6 TQFP-EP  
PµCKµGE CODE  
C±6E-±  
DOCUMENT NO.  
±1-2286  
C±6E-9R  
±1-21ꢀ±  
______________________________________________________________________________________ ±3  
Dual Per-Pin Parametric  
Measurement Units  
Revision History  
REVISION REVISION  
PµGES  
CHµNGED  
DESCRIPTION  
NUMBER  
DµTE  
Corrected bit ordering in Figures 1, 2, and 3; updated Ordering Information;  
added exposed pad information  
1, 11, 13, 16,  
21, 22, 23  
6
10/09  
1/MAX952  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
±6 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2009 Maxim ꢁntegrated Products  
Maxim is a registered trademark of Maxim ꢁntegrated Products, ꢁnc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY