MAX9963BHCCQ [MAXIM]

Quad, Low-Power, 500Mbps ATE Driver/Comparator; 四,低功耗, 500Mbps的ATE驱动器/比较器
MAX9963BHCCQ
型号: MAX9963BHCCQ
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Quad, Low-Power, 500Mbps ATE Driver/Comparator
四,低功耗, 500Mbps的ATE驱动器/比较器

驱动器 比较器
文件: 总25页 (文件大小:744K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2977; Rev 1; 1/04  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
General Description  
Features  
The MAX9963/MAX9964 four-channel, low-power, high-  
speed pin electronics driver and comparator ICs  
include, for each channel, a three-level pin driver, a dual  
comparator, and variable clamps. The driver features a  
wide voltage range and high-speed operation, includes  
high-Z and active-termination (3rd-level drive) modes,  
and is highly linear even at low-voltage swings. The dual  
comparator provides low dispersion (timing variation)  
over a wide variety of input conditions. The clamps pro-  
vide damping of high-speed DUT waveforms when the  
device is configured as a high-impedance receiver.  
High-speed, differential control inputs compatible with  
ECL, LVPECL, LVDS, and GTL levels are provided for  
each channel. ECL/LVPECL or flexible open-collector  
outputs are available for the comparators.  
Small Footprint—Four Channels in 0.4in2  
Low Power Dissipation: 825mW/Channel (typ)  
High Speed: 500Mbps at 3VP-P  
Low Timing Dispersion  
Wide -1.5V to +6.5V Operating Range  
Active Termination (3rd-Level Drive)  
Low-Leakage Mode: 15nA (max)  
Integrated Clamps  
Interface Easily with Most Logic Families  
Digitally Programmable Slew Rate  
Internal Logic Termination Resistors  
Low Gain and Offset Error  
The A-grade version provides tight matching of gain  
and offset for the drivers and comparators, allowing ref-  
erence levels to be shared across multiple channels in  
cost-sensitive systems. For system designs that incor-  
porate independent reference levels for each channel,  
the B-grade version is available at reduced cost.  
Ordering Information  
PART  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EP**  
100 TQFP-EP**  
100 TQFP-EP**  
100 TQFP-EP**  
100 TQFP-EP**  
100 TQFP-EP**  
100 TQFP-EP**  
100 TQFP-EP**  
100 TQFP-EP**  
100 TQFP-EP**  
MAX9963ADCCQ*  
MAX9963AKCCQ*  
MAX9963AGCCQ*  
MAX9963AHCCQ*  
MAX9963AJCCQ  
MAX9963BDCCQ*  
MAX9963BKCCQ*  
MAX9963BGCCQ  
MAX9963BHCCQ*  
MAX9963BJCCQ*  
MAX9964ADCCQ*  
MAX9964AKCCQ*  
MAX9964AGCCQ*  
MAX9964AHCCQ*  
MAX9964AJCCQ*  
MAX9964BDCCQ*  
MAX9964BKCCQ*  
MAX9964BGCCQ  
MAX9964BHCCQ*  
MAX9964BJCCQ*  
Optional internal resistors at the high-speed inputs pro-  
vide differential termination of LVDS inputs, while  
optional internal resistors provide the pullup voltage  
and source termination for open-collector comparator  
outputs. These features significantly reduce the dis-  
crete component count on the circuit board.  
Low-leakage, slew rate, and tri-state/terminate controls  
are operational configurations that are programmed  
through a 3-wire, low-voltage, CMOS-compatible serial  
interface.  
The MAX9963/MAX9964 operating range is -1.5V to  
+6.5V, with power dissipation of only 825mW per channel.  
These devices are available in a 100-pin, 14mm x  
14mm body, 0.5mm pitch TQFP with an exposed 8mm  
x 8mm die pad on the top (MAX9963) or bottom  
(MAX9964) of the package for efficient heat removal.  
The MAX9963/MAX9964 are specified to operate with  
an internal die temperature of +70°C to +100°C, and  
feature a die temperature monitor output.  
Applications  
Flash Memory Testers  
*Future product—contact factory for availability.  
**EP = Exposed pad.  
Commodity DRAM Testers  
Low-Cost Mixed-Signal/System-on-Chip Testers  
Active Burn-In Systems  
Pin Configurations appear at end of data sheet.  
Selector Guide appears at end of data sheet.  
Structural Testers  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
ABSOLUTE MAXIMUM RATINGS  
V
V
to GND .........................................................-0.3V to +11.5V  
to GND............................................................-7.0V to +0.3V  
DLV_ to DTV_....................................................................... 10V  
CHV_ or CLV_ to DUT_........................................................ 10V  
CH_, NCH_, CL_, NCL_ to GND...............................-2.5V to +5V  
Current into DHV_, DLV_, DTV_, CHV_,  
CC  
EE  
All Other Pins....................................(V - 0.3V) to (V + 0.3V)  
V
EE  
CC  
- V ................................................................-0.3V to +18V  
CC  
EE  
DUT_ to GND.........................................................-2.5V to +7.5V  
DATA_, NDATA_, RCV_, NRCV_ to GND..............-2.5V to +5.0V  
DATA_ to NDATA_.............................................................. 1.5V  
RCV_ to NRCV_ .................................................................. 1.5V  
CLV_, CPHV_, CPLV_................................................... 10mA  
Current into TEMP............................................-0.5mA to +20mA  
DUT_ Short Circuit to -1.5V to +6.5V..........................Continuous  
Power Dissipation (T = +70°C)  
A
V
to GND ........................................................-0.3V to +5V  
MAX9963_ _CCQ (derate 167mW/°C above  
CCO_ _  
SCLK, DIN, CS, RST to GND ...................................-1.0V to +5V  
DHV_, DLV_, DTV_, CHV_, CLV_ to GND .............-2.5V to +7.5V  
CPHV_ to GND ......................................................-2.5V to +8.5V  
CPLV_ to GND.......................................................-3.5V to +7.5V  
DHV_ to DLV_ ...................................................................... 10V  
DHV_ to DTV_ ...................................................................... 10V  
T = +70°C)..................................................................13.3W*  
A
MAX9964_ _CCQ (derate 47.6mW/°C above  
T = +70°C)....................................................................3.8W*  
A
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature .....................................................+125°C  
Lead Temperature (soldering, 10s) .................................+300°C  
*Dissipation wattage values are based on still air with no heat sink for the MAX9963 and slug soldered to board copper for the  
MAX9964. Actual maximum power dissipation is a function of the user’s heat-extraction technique and will vary.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +9.75V, V = -5.25V, V  
= 2.5V, SC1 = SC0 = 0, V  
= 7.2V, V = -2.2V, T = +85°C, unless otherwise noted. All tem-  
CPLV_ J  
CC  
EE  
CCO_ _  
CPHV_  
perature coefficients are measured at T = +70°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
POWER SUPPLIES  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Positive Supply  
Negative Supply  
Positive Supply  
Negative Supply  
V
9.5  
9.75  
-5.25  
165  
10.5  
-4.5  
200  
V
CC  
V
-6.5  
V
EE  
I
(Note 2)  
(Note 2)  
mA  
mA  
CC  
I
-320  
-380  
EE  
Calculated at typical V  
(Notes 2, 3)  
and V  
EE  
CC  
Power Dissipation  
P
3.3  
4.0  
W
D
DUT_ CHARACTERISTICS  
Operating Voltage Range  
Maximum  
V
(Note 4)  
-1.5  
+6.5  
V
DUT  
LLEAK = 0, 0V V  
3V  
1.5  
3
DUT_  
Leakage Current in High-Z Mode  
I
µA  
DUT  
LLEAK = 0, V  
= -1.5V, 6.5V  
DUT_  
LLEAK = 1, 0 V  
3V, T < +90°C  
10  
15  
DUT_  
J
LLEAK = 1, V  
= -1.5V,T < +90°C  
J
DUT_  
Leakage Current in Low-Leakage  
Mode  
nA  
pF  
LLEAK = 1, V  
= 6.5V, V  
= V  
=
CLV_  
DUT_  
CHV_  
15  
-1.5V, T < +90°C  
J
Driver in term mode (DUT_ = DTV_)  
Driver in high-Z mode  
3
5
Combined Capacitance  
C
DUT  
2
_______________________________________________________________________________________  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +9.75V, V = -5.25V, V  
= 2.5V, SC1 = SC0 = 0, V  
= 7.2V, V = -2.2V, T = +85°C, unless otherwise noted. All tem-  
CPLV_ J  
CC  
EE  
CCO_ _  
CPHV_  
perature coefficients are measured at T = +70°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
Low-Leakage Enable Time  
Low-Leakage Disable Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
20  
MAX  
UNITS  
µs  
(Notes 5, 7)  
(Notes 6, 7)  
20  
µs  
Time to return to the specified maximum  
leakage after a 3V, 4V/ns step at DUT_  
(Note 7)  
Low-Leakage Recovery  
10  
1
µs  
LEVEL PROGRAMMING INPUTS (DHV_, DLV_, DTV_, CHV_, CLV_, CPHV_, CPLV_)  
Input Bias Current  
Settling Time  
I
25  
µA  
µs  
BIAS  
To 5mV  
DIFFERENTIAL CONTROL INPUTS (DATA_, NDATA_, RCV_, NRCV_)  
Input High Voltage  
Input Low Voltage  
V
-1.6  
-2.0  
0.15  
+3.5  
+3.1  
1.00  
25  
V
V
IH  
V
IL  
Differential Input Voltage  
Input Bias Current  
V
DIFF  
BIAS  
V
I
MAX996_ _DCCQ, MAX996_ _HCCQ  
µA  
MAX996_ _KCCQ, MAX996_ _GCCQ,  
and MAX996_ _JCCQ, between signal and  
complement  
Input Termination Resistor  
96  
104  
SINGLE-ENDED CONTROL INPUTS (CS, RST, SCLK, DIN)  
Input High  
Input Low  
V
1.6  
3.5  
V
V
IH  
V
-0.1  
+0.9  
IL  
SERIAL INTERFACE TIMING (Figure 5)  
SCLK Frequency  
f
50  
MHz  
ns  
SCLK  
SCLK Pulse Width High  
SCLK Pulse Width Low  
CS Low to SCLK High Setup  
CS High to SCLK High Setup  
SCLK High to CS High Hold  
DIN to SCLK High Setup  
DIN to SCLK High Hold  
CS Pulse Width High  
t
8
CH  
t
8
ns  
CL  
t
t
3.5  
3.5  
3.5  
3.5  
3.5  
20  
ns  
CSS0  
CSS1  
CSH1  
ns  
t
ns  
t
ns  
DS  
DH  
t
ns  
t
ns  
CSWH  
TEMPERATURE MONITOR (TEMP)  
Nominal Voltage  
T = +70°C, R 10MΩ  
3.43  
+10  
15  
V
J
L
Temperature Coefficient  
Output Resistance  
mV/°C  
kΩ  
_______________________________________________________________________________________  
3
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +9.75V, V = -5.25V, V  
= 2.5V, SC1 = SC0 = 0, V  
= 7.2V, V = -2.2V, T = +85°C, unless otherwise noted. All tem-  
CPLV_ J  
CC  
EE  
CCO_ _  
CPHV_  
perature coefficients are measured at T = +70°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
DRIVERS (Note 8)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC OUTPUT CHARACTERISTICS (R 10M)  
L
At DUT_ with V  
,
DHV_  
MAX996_A  
MAX996_B  
15  
DHV_, DLV_, DTV_, Output Offset  
Voltage  
V
V
DLV_, DTV_  
V
mV  
OS  
independently  
tested at +1.5V  
100  
DHV_, DLV_, DTV_, Output Offset  
Temperature Coefficient  
65  
µV/°C  
Measured with  
MAX996_A  
MAX996_B  
0.999  
0.960  
1.00  
1.001  
1.001  
DHV_, DLV_, DTV_, Gain  
A
V/V  
V
, V  
V
V
DHV_ DLV_, DTV_  
at 0 and 4.5V  
DHV_, DLV_, DTV_, Gain  
Temperature Coefficient  
-35  
ppm/°C  
0 V  
3V (Note 9)  
5
15  
7
DUT_  
Linearity Error  
mV  
Full range (Notes 9, 10)  
DHV_ to DLV_ Crosstalk  
DLV_ to DHV_ Crosstalk  
V
V
= 0, V  
= 200mV, 6.5V  
mV  
mV  
DLV_  
DHV_  
DHV_  
= 5V, V  
= -1.5V, 4.8V  
= 0,  
8
DLV_  
DLV_  
DTV_ to DLV_ and DHV_  
Crosstalk  
V
V
= 3V, V  
DHV_  
DTV_  
2
mV  
= -1.5V, 6.5V  
DHV_ to DTV_ Crosstalk  
DLV_ to DTV_ Crosstalk  
V
V
V
= 1.5V, V  
= 1.5V, V  
= 0, V  
DHV_  
= 1.6V, 3V  
= 0, 1.4V  
3
3
mV  
mV  
DTV_  
DTV_  
DLV_  
DHV  
= 3V, V  
DLV_  
DHV_, DLV_, DTV_ DC Power-  
Supply Rejection Ratio  
and V independently set to their  
EE  
CC  
PSRR  
40  
dB  
minimum and maximum values  
Maximum DC Drive Current  
DC Output Resistance  
DC Output Resistance Variation  
I
R
R  
_
60  
49  
120  
51  
mA  
DUT  
_
DUT  
I
I
=
=
30mA (Note 11)  
1mA to 40mA  
50  
1
DUT  
_
DUT  
DUT  
DYNAMIC OUTPUT CHARACTERISTICS (Z = 50)  
L
V
V
V
= 0V, V  
= 0V, V  
= 0V, V  
= 0.1V  
= 1V  
30  
40  
50  
0
DLV_  
DLV_  
DLV_  
DHV_  
DHV_  
DHV_  
Drive Mode Overshoot  
mV  
= 3V  
Term Mode Overshoot  
(Note 12)  
mV  
ns  
Settling Time to Within 25mV  
Settling Time to Within 5mV  
3V step (Note 13)  
3V step (Note 13)  
10  
20  
ns  
4
_______________________________________________________________________________________  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +9.75V, V = -5.25V, V  
= 2.5V, SC1 = SC0 = 0, V  
= 7.2V, V = -2.2V, T = +85°C, unless otherwise noted. All tem-  
CPLV_ J  
CC  
EE  
CCO_ _  
CPHV_  
perature coefficients are measured at T = +70°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS (Note 14) (Z = 50)  
L_  
PDD  
Prop Delay, Data to Output  
Prop Delay Match, t vs. t  
t
2
ns  
ps  
3V  
P-P  
50  
LH  
HL  
Prop Delay Match, Drivers Within  
Package  
(Note 15)  
40  
+3  
60  
85  
ps  
ps/°C  
ps  
Prop Delay Temperature  
Coefficient  
Prop Delay Change vs. Pulse  
Width  
3V , 40MHz, 2.5ns to 22.5ns pulse width,  
P-P  
relative to 12.5ns pulse width  
Prop Delay Change vs. Common-  
Mode Voltage  
V
- V  
= 1V, V = 0 to 6V  
DHV_  
ps  
DHV_  
DLV_  
Prop Delay, Drive to High-Z  
Prop Delay, High-Z to Drive  
Prop Delay, Drive to Term  
Prop Delay, Term to Drive  
t
t
V
V
V
V
= 1.0V, V  
= 1.0V, V  
= -1.0V, V  
= -1.0V, V  
= 0  
= 0  
2.9  
2.9  
2.2  
1.8  
ns  
ns  
ns  
ns  
PDDZ  
PDZD  
DHV_  
DHV_  
DHV_  
DHV_  
DLV_  
DLV_  
DTV_  
DTV_  
t
t
= 3V, V  
= 3V, V  
= 0, V  
= 1.5V  
= 1.5V  
PDDT  
PDTD  
DLV_  
DLV_  
DTV_  
DTV_  
= 0, V  
DYNAMIC PERFORMANCE (Z = 50)  
L
0.2V  
20% to 80%  
330  
670  
1.3  
2.0  
P-P,  
ps  
ns  
%
1V  
3V  
5V  
10% to 90%  
10% to 90%  
10% to 90%  
P-P,  
P-P,  
P-P,  
Rise and Fall Time  
t , t  
R F  
1.1  
1.6  
Percent of full speed (SC0 = SC1 = 0),  
3V , 20% to 80%  
P-P  
SC1 = 0, SC0 = 1 Slew Rate  
SC1 = 1, SC0 = 0 Slew Rate  
SC1 = 1, SC0 = 1 Slew Rate  
75  
50  
25  
Percent of full speed (SC0 = SC1 = 0),  
3V , 20% to 80%  
P-P  
%
Percent of full speed (SC0 = SC1 = 0),  
3V , 20% to 80%  
P-P  
%
0.2V  
650  
1.0  
ps  
P-P  
1V  
3V  
5V  
P-P  
Minimum Pulse Width (Note 16)  
Data Rate (Note 17)  
2.0  
ns  
P-P  
P-P  
2.9  
0.2V  
1700  
1000  
500  
350  
20  
P-P  
1V  
3V  
5V  
P-P  
Mbps  
P-P  
P-P  
Dynamic Crosstalk  
(Note 18)  
mV  
P-P  
V
= 3V, V  
= 0, V  
= 0, V  
= 1.5V, 10%  
= 1.5V, 10%  
DHV_  
DLV_  
DTV_  
Rise and Fall Time, Drive to Term  
t
t
, t  
1.6  
0.7  
ns  
DTR DTF  
to 90% (Note 19)  
V
= 3V, V  
DHV_  
DLV_  
DTV_  
Rise and Fall Time, Term to Drive  
, t  
ns  
TDR TDF  
to 90% (Note 19)  
_______________________________________________________________________________________  
5
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +9.75V, V = -5.25V, V  
= 2.5V, SC1 = SC0 = 0, V  
= 7.2V, V = -2.2V, T = +85°C, unless otherwise noted. All tem-  
CPLV_ J  
CC  
EE  
CCO_ _  
CPHV_  
perature coefficients are measured at T = +70°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
COMPARATORS (Note 20)  
DC CHARACTERISTICS  
Input Voltage Range  
Differential Input Voltage  
Hysteresis  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
(Note 4)  
-1.5  
8
+6.5  
V
V
IN  
V
DIFF  
V
0
mV  
HYST  
MAX996_A  
MAX996_B  
15  
Input Offset Voltage  
V
V
= 1.5V  
mV  
OS  
DUT_  
100  
Input Offset Voltage Temperature  
Coefficient  
50  
µV/°C  
V
V
V
V
V
V
= 0, 3V  
47  
54  
44  
78  
78  
61  
3
DUT_  
DUT_  
DUT_  
DUT_  
DUT_  
DUT_  
Common-Mode Rejection Ratio  
(Note 21)  
CMRR  
dB  
= 0, 6.5V  
= -1.5V, 6.5V  
= 0 to 3V  
= 6.5V  
Linearity Error (Note 9)  
15  
25  
mV  
= -1.5V  
V
Ratio  
Power-Supply Rejection  
CC  
PSRR  
PSRR  
V
= -1.5V, 6.5V (Note 22)  
57  
82  
dB  
dB  
DUT_  
V
V
= 0, 6.5V  
= -1.5V  
44  
33  
70  
45  
DUT_  
DUT_  
V
Power-Supply Rejection  
EE  
Ratio (Note 22)  
AC CHARACTERISTICS (Note 23)  
MAX996_ _GCCQ  
0.75  
1.3  
2.2  
+6  
Minimum Pulse Width  
t
(min) (Note 24)  
PDL  
ns  
PW  
MAX996_ _HCCQ,  
MAX996_ _JCCQ  
Prop Delay  
t
ns  
Prop Delay Temperature  
Coefficient  
ps/°C  
Prop Delay Match, High/Low vs.  
Low/High  
25  
35  
ps  
ps  
Prop Delay Match, Comparators  
Within Package  
(Note 15)  
V
V
V
= 0, 6.4V  
= -1.4V  
75  
CHV_ = CLV_  
Prop Delay Dispersion vs.  
Common-Mode Input (Note 25)  
ps  
ps  
V
175  
CHV_ = CLV_  
Prop Delay Dispersion vs.  
Overdrive  
100mV to 2V  
200  
35  
MAX996_ _GCCQ  
2.5ns to 22.5ns pulse  
width, relative to 12.5ns  
pulse width  
Prop Delay Dispersion vs. Pulse  
Width  
ps  
ps  
MAX996_ _HCCQ,  
MAX996_ _JCCQ  
70  
Prop Delay Dispersion vs. Slew  
Rate  
0.5V/ns to 2V/ns slew rate  
100  
6
_______________________________________________________________________________________  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +9.75V, V = -5.25V, V  
= 2.5V, SC1 = SC0 = 0, V  
= 7.2V, V = -2.2V, T = +85°C, unless otherwise noted. All tem-  
CPLV_ J  
CC  
EE  
CCO_ _  
CPHV_  
perature coefficients are measured at T = +70°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
250  
500  
MAX  
UNITS  
V
= 1.0V , t  
t = 1.0ns 10% to 90%,  
F
=
P-P R  
DUT_  
Term mode  
Waveform Tracking 10% to 90%  
ps  
relative to timing at  
50% point  
High-Z mode  
OPEN-COLLECTOR LOGIC OUTPUTS (CH_, NCH_, CL_, NCL_: MAX996_ _DCCQ, MAX996_ _KCCQ, and MAX996_ _GCCQ )  
V
Voltage Range  
V
0
3.5  
V
V
CCO_ _  
VCCO_ _  
Output Low-Voltage Compliance  
Set by I  
, R  
, and V  
-0.5  
OUT TERM  
CCO_ _  
I
= I  
= I  
= I  
= 0mA,  
V
V
CCO_  
- 0.04  
CH_  
NCH_  
CL_  
NCL_  
CCO_  
Output High Voltage  
V
V
OH  
MAX996_ _GCCQ  
- 0.10  
I
= I = I  
= I  
= 0mA,  
V
CCO_  
- 0.38  
CH_  
NCH_  
CL_  
NCL_  
Output Low Voltage  
Output Voltage Swing  
Termination Resistor  
V
V
V
OL  
MAX996_ _GCCQ  
0.30  
47.5  
0.33  
0.40  
Single-ended measurement from V  
CH_, NCH_, CL_, NCL_, MAX996_ _GCCQ  
to  
CCO_ _  
R
52.5  
+3.5  
TERM  
Differential Rise Time  
Differential Fall Time  
t
20% to 80%  
20% to 80%  
350  
350  
ps  
ps  
R
t
F
OPEN-EMITTER LOGIC OUTPUTS (CH_, NCH_, CL_, NCL_: MAX996_ _HCCQ and MAX996_ _JCCQ)  
V
V
Voltage Range  
Supply Current  
V
-0.1  
V
CCO_ _  
CCO_ _  
VCCO_ _  
VCCO_ _  
I
All outputs 50 to (V  
- 2V)  
330  
mA  
VCCO_ _  
V
CCO_ _  
- 0.9  
Output High Voltage  
Output Low Voltage  
V
50to (V  
- 2V)  
V
V
OH  
VCCO_ _  
V
CCO_ _  
- 1.7  
V
50to (V  
50to (V  
- 2V)  
- 2V)  
OL  
VCCO_ _  
Output Voltage Swing  
Differential Rise Time  
Differential Fall Time  
750  
850  
600  
600  
950  
mV  
ps  
ps  
VCCO_ _  
t
20% to 80%  
20% to 80%  
R
t
F
CLAMPS  
High Clamp Input Voltage Range  
Low Clamp Input Voltage Range  
V
-0.3  
-2.5  
+7.5  
+5.3  
100  
V
V
CPH_  
V
CPL_  
At DUT_ with I  
At DUT_ with I  
= 1mA, V  
= 0  
= 0  
DUT_  
CPHV_  
Clamp Offset Voltage  
V
mV  
OS  
= -1mA, V  
100  
DUT_  
CPLV_  
Offset Voltage Temperature  
Coefficient  
0.5  
mV/°C  
V
and V independently varied full  
EE  
CC  
40  
40  
range, I  
= 1mA, V  
= 0  
CPHV_  
DUT_  
Clamp Power-Supply Rejection  
PSRR  
dB  
V
and V independently varied full  
EE  
CC  
range, I  
= -1mA, V  
= 0  
DUT_  
CPLV_  
_______________________________________________________________________________________  
7
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +9.75V, V = -5.25V, V  
= 2.5V, SC1 = SC0 = 0, V  
= 7.2V, V = -2.2V, T = +85°C, unless otherwise noted. All tem-  
CPLV_ J  
CC  
EE  
CCO_ _  
CPHV_  
perature coefficients are measured at T = +70°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
Voltage Gain  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
A
0.96  
1.00  
V/V  
V
Voltage-Gain Temperature  
Coefficient  
-100  
10  
ppm/°C  
I
= 1mA, V  
= -1.5V, V  
= -0.3  
= -1.5  
DUT  
CPLV_  
CPHV_  
CPLV_  
to 6.5V  
Clamp Linearity  
mV  
I
= -1mA, V  
= 6.5V, V  
CPHV_  
DUT  
10  
to 5.3V  
V
V
= 0, V  
= 6.0V  
= -1.5V,  
CPHV_  
CPLV_  
50  
-95  
50  
95  
-50  
55  
DUT_  
Short-Circuit Output Current  
Clamp DC Impedance  
mA  
V
V
= 5V, V  
= -1.0V  
= 6.5V,  
= 0,  
CPLV_  
CPHV_  
CPLV_  
DUT_  
V
= 3V, V  
= -5mA and -15mA  
CPHV_  
I
DUT  
V
= 3V, V  
= 5mA and 15mA  
= 0,  
CPLV_  
CPHV_  
50  
55  
I
DUT  
Note 1: All MIN and MAX limits are 100% tested in production.  
Note 2: Total for quad device at worst-case setting. R 10M. The applicable supply currents are measured with typical supply  
L_  
voltages.  
Note 3: Does not include internal dissipation of the comparator outputs. With output loads of 50to (V  
- 2V), this adds  
VCCO_ _  
240mW (typ) to the total chip power (MAX996_ _HCCQ, MAX996_ _JCCQ).  
Note 4: Externally forced voltages may exceed this range provided that the absolute maximum ratings are not exceeded.  
Note 5: Transition time from LLEAK being asserted to leakage current dropping below specified limits.  
Note 6: Transition time from LLEAK being deasserted to output returning to normal operating mode.  
Note 7: Based on simulation results only.  
Note 8: With the exception of offset and gain/CMRR tests, reference input values are calibrated for offset and gain.  
Note 9: Relative to straight line between 0 and 3V.  
Note 10: Full ranges are -1.3V V  
6.5V, -1.5V V  
6.5V, -1.5V V  
6.3V.  
DHV_  
DTV_  
DLV_  
Note 11: Nominal target value is 50. Contact factory for alternate trim selections within the 45to 51range.  
Note 12: V  
= 1.5V, R = 50. External signal driven into T-line is a 0 to 3V edge with 1.2ns rise time (10% to 90%).  
DTV_  
S
Measurement is made using the comparator.  
Note 13: Measured from the crossing point of DATA_ inputs to the settling of the driver output.  
Note 14: Prop delays are measured from the crossing point of the differential input signals to the 50% point of expected output  
swing. Rise time of the differential inputs DATA_ and RCV_ is 250ps (10% to 90%).  
8
_______________________________________________________________________________________  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +9.75V, V = -5.25V, V  
= 2.5V, SC1 = SC0 = 0, V  
= 7.2V, V = -2.2V, T = +85°C, unless otherwise noted. All tem-  
CPLV_ J  
CC  
EE  
CCO_ _  
CPHV_  
perature coefficients are measured at T = +70°C to +100°C, unless otherwise noted.) (Note 1)  
J
Note 15: Rising edge to rising edge or falling edge to falling edge.  
Note 16: Specified amplitude is programmed. At this pulse width, the output reaches at least 95% of its nominal (DC) amplitude.  
The pulse width is measured at DATA_.  
Note 17: Specified amplitude is programmed. Maximum data rate specified in transitions per second. A square wave that reaches  
at least 95% of its programmed amplitude may be generated at one-half this frequency.  
Note 18: Crosstalk from any driver to the other three channels. Aggressor channel is driving 3V  
into a 50load. Victim channels  
P-P  
are in term mode with V  
= 1.5V.  
DTV_  
Note 19: Indicative of switching speed from DHV_ or DLV_ to DTV_ and DTV_ to DHV_ or DLV_ when V  
< V  
< V  
. If  
DHV_  
DLV_  
DTV_  
V
< V  
or V  
> V  
, switching speed is degraded by approximately a factor of 3.  
DHV_  
DTV_  
DLV_  
DTV_  
Note 20: Both high and low comparators are tested.  
Note 21: Change in offset voltage over input range.  
Note 22: Change in offset voltage with power supplies independently set to their minimum and maximum values.  
Note 23: Unless otherwise noted, all prop delays are measured at 40MHz, V = 0 to 2V, V = V = 1V, slew rate = 2V/ns,  
DUT_  
CHV_  
CLV_  
Z
V
= 50, driver in term mode with V  
CCO_ _  
= 0V. Comparator outputs are terminated with 50to GND at scope input with  
S
DTV_  
=2V. Open-collector outputs are also terminated (internally or externally) with R  
= 50to V  
Measured  
CCO_ _.  
TERM  
from V  
crossing calibrated CHV_/CLV_ threshold to the crossing point of differential outputs.  
DUT_  
Note 24: V  
= 0 to 1V, V  
= V  
= 0.5V. At this pulse width, the output reaches at least 90% of its DC voltage swing. The  
DUT_  
CHV_  
CLV_  
pulse width is measured at the crossing points of the differential outputs.  
Note 25: Relative to propagation delay at V  
= V  
= 1.5V. V  
= 200mV . Overdrive = 100mV.  
DUT_ P-P  
CHV_  
CLV_  
Typical Operating Characteristics  
DRIVE TO TERM TRANSITION  
DRIVER SMALL-SIGNAL RESPONSE  
DRIVER LARGE-SIGNAL RESPONSE  
DLV_ = 0V  
R = 50  
L
DLV_ = 0V  
R = 50Ω  
L
DHV_ =  
500mV  
DHV_ = 5V  
DHV_ TO DTV_  
DHV_ = 3V  
DHV_ =  
200mV  
DHV_ =  
100mV  
DHV_ = 1V  
DLV_ TO DTV_  
0
0
0
R = 50Ω  
L
t = 5.0ns/div  
t = 2.50ns/div  
t = 2.50ns/div  
_______________________________________________________________________________________  
9
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
Typical Operating Characteristics (continued)  
COMPARATOR DIFFERENTIAL  
OUTPUT RESPONSE, MAX996_ _JCCQ  
DRIVER TIME DELAY  
vs. COMMON-MODE VOLTAGE  
DRIVER TRAILING-EDGE TIMING ERROR  
vs. PULSE WIDTH  
40  
20  
70  
60  
50  
40  
30  
20  
10  
0
RISING EDGE  
0
-20  
-40  
-60  
-80  
-100  
0
FALLING EDGE  
LOW PULSE  
HIGH PULSE  
-10  
-20  
-30  
NORMALIZED TO PW = 12.5ns  
PERIOD = 25ns, DHV_ = 3V, DLV_ = 0  
NORMALIZED TO V = 1.5V  
CM  
t = 2.50ns/div  
0
5
10  
15  
20  
25  
-1  
0
1
2
3
4
5
6
PULSE WIDTH (ns)  
COMMON-MODE VOLTAGE (V)  
V
= 0 TO 3V PULSE, CHV_ = CLV_ = 1.5V  
DUT  
EXTERNAL LOAD = 50Ω  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
HIGH-Z TO DRIVE TRANSITION  
HIGH-Z TO DHV_  
10  
8
10  
8
DUT_ = DHV_  
DUT_ = DLV_  
6
6
4
4
0
2
2
0
0
HIGH-Z TO DLV_  
R = 50Ω  
L
-2  
-2  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
t = 5.0ns/div  
V
V
OUT_  
DUT_  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
CROSSTALK TO DUT_ FROM DLV_  
WITH DUT_ = DHV_  
CROSSTALK TO DUT_ FROM DTV_  
WITH DUT_ = DHV_  
10  
8
9
8
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
DHV_ = 5V  
DTV_ = 1.5V  
DUT_ = DTV_  
DHV_ = 3V  
DLV_ = 0  
7
6
6
5
4
4
3
2
2
1
0
0
-1  
-2  
-0.02  
-0.04  
NORMALIZED AT DLV_ = 0  
NORMALIZED AT DTV_ = 1.5V  
-2  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
-1.5  
0
1.5  
3.0  
4.5  
6.0  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
DTV_ VOLTAGE (V)  
V
(V)  
DLV_ VOLTAGE (V)  
DUT_  
10 ______________________________________________________________________________________  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
Typical Operating Characteristics (continued)  
CROSSTALK TO DUT_ FROM DHV_  
WITH DUT_ = DLV_  
CROSSTALK TO DUT_ FROM DTV_  
WITH DUT_ = DLV_  
CROSSTALK TO DUT_ FROM DLV_  
WITH DUT_ = DTV_  
3
2
6
4
0.06  
0.04  
0.02  
0
DLV_ = 0  
DTV_ = 1.5V  
DTV_ = 1.5V  
DHV_ = 3V  
DLV_ = 0  
DHV_ = 3V  
1
0
2
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.12  
0
-2  
-4  
-6  
NORMALIZED AT DLV_ = 0  
NORMALIZED AT DTV_ = 1.5V  
NORMALIZED AT DHV_ = 5V  
-0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
DHV_ VOLTAGE (V)  
-1.5  
0
1.5  
3.0  
4.5  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
DTV_VOLTAGE (V)  
DLV_ VOLTAGE (V)  
CROSSTALK TO DUT_ FROM DHV_  
WITH DUT_ = DTV_  
DRIVER OFFSET vs. TEMPERATURE  
DRIVER GAIN vs. TEMPERATURE  
1.0020  
1.0015  
1.0010  
1.0005  
1.0000  
0.9995  
0.9990  
1.0  
0.5  
2
1
DTV_ = 1.5V  
DLV_ = 0  
0
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
NORMALIZED AT +85°C  
NORMALIZED AT T = +85°C  
J
NORMALIZED AT DHV_ = 3V  
25  
40  
55  
70  
85  
100  
25  
40  
55  
70  
85  
100  
-0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
DHV_ VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
COMPARATOR OFFSET  
vs. COMMON-MODE VOLTAGE  
COMPARATOR RISING-EDGE TIMING  
VARIATION vs. COMMON-MODE VOLTAGE  
COMPARATOR FALLING-EDGE TIMING  
VARIATION vs. COMMON-MODE VOLTAGE  
0.6  
0.4  
150  
100  
50  
150  
100  
50  
V
= -4.5V  
EE  
0.2  
V
= -4.5V  
= -5.5V  
0
EE  
V
= -5.5V  
EE  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
-1.8  
V
= -4.5V  
EE  
V
EE  
V
= -5.5V  
EE  
0
0
-50  
-100  
-150  
-50  
-100  
-150  
V
= -6.5V  
EE  
V
= -6.5V  
EE  
V
= -6.5V  
EE  
NORMALIZED AT  
= 1.5V AND V = -5.25V  
NORMALIZED AT  
= 1.5V AND V = -5.25V  
NORMALIZED AT  
V = 1.5V AND V = -5.25V  
CM  
V
V
CM  
EE  
CM  
EE  
EE  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
COMMON-MODE VOLTAGE (V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
COMMON-MODE VOLTAGE (V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
COMMON-MODE VOLTAGE (V)  
______________________________________________________________________________________ 11  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
Typical Operating Characteristics (continued)  
COMPARATOR TRAILING-EDGE TIMING  
ERROR vs. PULSE WIDTH, MAX996_ _GCCQ  
COMPARATOR TIMING VARIATION  
vs. OVERDRIVE  
COMPARATOR TRAILING-EDGE TIMING  
ERROR vs. PULSE WIDTH, MAX996_ _JCCQ  
30  
100  
450  
400  
350  
300  
250  
200  
150  
100  
50  
20  
10  
50  
0
HIGH PULSE  
0
-10  
-20  
-30  
-40  
-50  
-60  
-50  
HIGH PULSE  
LOW PULSE  
LOW PULSE  
-100  
-150  
-200  
NORMALIZED TO  
OVERDRIVE = 0.5V  
NORMALIZED TO PW = 12.5ns  
PERIOD = 25ns  
NORMALIZED TO PW = 12.5ns  
PERIOD = 25ns  
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
OVERDRIVE (V)  
PULSE WIDTH (ns)  
PULSE WIDTH (ns)  
COMPARATOR TIMING VARIATION  
vs. INPUT SLEW RATE, DUT_ FALLING  
COMPARATOR TIMING VARIATION  
vs. INPUT SLEW RATE, DUT_ RISING  
COMPARATOR DIFFERENTIAL  
OUTPUT RESPONSE, MAX996_ _GCCQ  
50  
40  
50  
40  
30  
30  
20  
20  
10  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
NORMALIZED TO SR = 0.84V/ns  
NORMALIZED TO SR = 0.824V/ns  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
SLEW RATE (V/ns)  
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
SLEW RATE (V/ns)  
t = 2.50ns/div  
V
= 0 TO 3V PULSE, CHV_ = CLV_ = 1.5V  
DUT  
EXTERNAL LOAD = 50Ω  
COMPARATOR RESPONSE  
vs. HIGH SLEW RATE OVERDRIVE  
COMPARATOR OFFSET  
vs. TEMPERATURE  
CLAMP RESPONSE  
0.8  
0.6  
HIGH-Z MODE  
0.4  
RISING EDGE  
0.2  
DIGITIZED  
OUTPUT  
INPUT  
0.0  
-0.2  
-0.4  
-0.6  
FALLING EDGE  
0
0
INPUT SLEW RATE = 6V/ns  
t = 2.50ns/div  
NORMALIZED TO T = +85°C  
J
t = 5.0ns/div  
65 70 75 80 85 90 95 100 105  
TEMPERATURE (°C)  
V
R
= 0 TO 3V SQUARE WAVE  
DUT  
= 25Ω  
S
CPLV_ = -0.1V, CPHV_ = +3.1V  
12 ______________________________________________________________________________________  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
Typical Operating Characteristics (continued)  
HIGH-Z LEAKAGE CURRENT  
vs. DUT_ VOLTAGE  
CLAMP CURRENT  
vs. DIFFERENCE VOLTAGE  
CLAMP CURRENT  
vs. DIFFERENCE VOLTAGE  
0.8  
0.6  
0.4  
0.2  
0
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
100  
0
V
= 3V  
DUT_  
CPLV_ = 0  
-100  
-200  
-300  
-400  
-500  
-600  
-700  
-800  
-900  
-1000  
-1100  
-1200  
-0.2  
-0.4  
-0.6  
-0.8  
V
= 0  
DUT_  
-100  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
DUT_ VOLTAGE (V)  
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0  
CPHV_ VOLTAGE (V)  
-1.50 -1.25 -1.00 -0.75 -0.50 -0.25  
0
CPLV_ VOLTAGE (V)  
LOW-LEAKAGE CURRENT  
vs. DUT_ VOLTAGE  
DRIVER REFERENCE INPUT CURRENT  
vs. INPUT VOLTAGE  
9
8
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
DTV_  
7
DLV_  
6
CHV_ = CLV_ = 6.5V  
5
4
3
DHV_  
CHV_ = CLV_ = 5V  
CHV_ = CLV_ < 3V  
2
1
0
-1  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
DUT_ VOLTAGE (V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
INPUT VOLTAGE (V)  
INPUT CURRENT  
vs. INPUT VOLTAGE, CPHV_  
COMPARATOR REFERENCE INPUT CURRENT  
vs. INPUT VOLTAGE  
700  
600  
500  
400  
300  
200  
300  
CPLV_ = -2.2V  
CHV  
250  
200  
150  
100  
50  
CLV  
0
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
CPHV_ VOLTAGE (V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
INPUT VOLTAGE (V)  
______________________________________________________________________________________ 13  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
Typical Operating Characteristics (continued)  
INPUT CURRENT  
vs. INPUT VOLTAGE, CPLV_  
SUPPLY CURRENT  
vs. V  
SUPPLY CURRENT  
vs. V  
I
I
CC  
CC  
EE  
EE  
0
185  
170  
155  
140  
125  
110  
95  
-220  
-240  
-260  
-280  
-300  
-320  
-340  
-360  
-380  
-400  
A
B
C
-1  
-2  
-3  
-4  
-5  
B
A
C
80  
A: DUT_ = DTV_ = 1.5V, DHV_ = 3V,  
A:: DLV_ = 0, CHV_ = CLV_ = 0,  
A:: CPHV_ = 7.2V, CPLV_ = -2.2V.  
B: SAME AS A EXCEPT DUT_ = HIGH-Z.  
C: SAME AS B EXCEPT DUT_ = LOW LEAK.  
A: DUT_ = DTV_ = 1.5V, DHV_ = 3V,  
A:: DLV_ = 0, CHV_ = CLV_ = 0,  
A:: CPHV_ = 7.2V, CPLV_ = -2.2V.  
B: SAME AS A EXCEPT DUT_ = HIGH-Z.  
C: SAME AS B EXCEPT DUT_ = LOW LEAK.  
65  
50  
CPHV_ = 7.2V  
35  
20  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
CPLV_ VOLTAGE (V)  
9.50  
9.75  
10.00  
(V)  
10.25  
10.50  
-6.50 -6.25 -6.00 -5.75 -5.50 -5.25 -5.00 -4.75 -4.50  
V
V
(V)  
CC  
EE  
I
CC  
vs. TEMPERATURE  
I
EE  
vs. TEMPERATURE  
166.0  
165.5  
165.0  
164.5  
164.0  
163.5  
163.0  
162.5  
-313.0  
-313.2  
-313.4  
-313.6  
-313.8  
-314.0  
-314.2  
DUT_ = DTV_ = 1.5V, DHV_ = 3V,  
DLV_ = 0, CHV_ = CLV_ = 0,  
CPHV_ = 7.2V, CPLV_ = -2.2V,  
DUT_ = DTV_ = 1.5V, DHV_ = 3V,  
DLV_ = 0, CHV_ = CLV_ = 0,  
CPHV_ = 7.2V, CPLV_ = -2.2V,  
V
= 9.75V, V = -5.25V  
V
= 9.75V, V = -5.25V  
CC  
EE  
CC  
EE  
60  
70  
80  
90  
100  
110  
60  
70  
80  
90  
100  
110  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
14 ______________________________________________________________________________________  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX9963  
MAX9964  
Collector Voltage Input, Channels 3 and 4. For open-collector outputs, this is the  
pullup voltage for the internal termination resistors. For open-emitter outputs, this is  
1
25  
V
34 the collector voltage of the output transistors. Not internally connected on open-  
CCO  
collector versions without internal termination resistors. V 34 services both  
CCO  
channel 3 and channel 4.  
Channel 4 Multiplexer Control Inputs. Differential controls DATA4 and NDATA4  
select driver 4’s input from DHV4 or DLV4. Drive DATA4 above NDATA4 to select  
DHV4. Drive NDATA4 above DATA4 to select DLV4.  
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
17  
DATA4  
NDATA4  
RCV4  
Channel 4 Multiplexer Control Inputs. Differential controls RCV4 and NRCV4 place  
channel 4 into receive mode. Drive RCV4 above NRCV4 to place channel 4 into  
receive mode. Drive NRCV4 above RCV4 to place channel 4 into drive mode.  
NRCV4  
DATA3  
NDATA3  
RCV3  
Channel 3 Multiplexer Control Inputs. Differential controls DATA3 and NDATA3  
select driver 3’s input from DHV3 or DLV3. Drive DATA3 above NDATA3 to select  
DHV3. Drive NDATA3 above DATA3 to select DLV3.  
Channel 3 Multiplexer Control Inputs. Differential controls RCV3 and NRCV3 place  
channel 3 into receive mode. Drive RCV3 above NRCV3 to place channel 3 into  
receive mode. Drive NRCV3 above RCV3 to place channel 3 into drive mode.  
NRCV3  
10, 27, 54, 55,  
60, 61, 65, 66,  
71, 72, 99  
16, 27, 54, 55,  
60, 61, 65, 66,  
71, 72, 99  
V
Negative Power-Supply Input  
EE  
11, 28, 51, 56,  
62, 64, 70,  
75, 98  
15, 28, 51, 56,  
62, 64, 70,  
75, 98  
GND  
Ground Connection  
Reset Input. Asynchronous reset input for the serial register. RST is active low and  
12  
14  
RST  
asserts low-leakage mode. At power-up, hold RST low until V and V have  
CC EE  
stabilized.  
13  
14  
15  
13  
12  
11  
CS  
SCLK  
DIN  
Chip-Select Input. Serial-port activation input. CS is active low.  
Serial Clock Input. Clock for serial port.  
Data Input. Serial port data input.  
16, 26, 52, 58,  
68, 74, 100  
10, 26, 52, 58,  
68, 74, 100  
V
Positive Power-Supply Input  
CC  
Channel 2 Multiplexer Control Inputs. Differential controls RCV2 and NRCV2 place  
channel 2 into receive mode. Drive RCV2 above NRCV2 to place channel 2 into  
receive mode. Drive NRCV2 above RCV2 to place channel 2 into drive mode.  
17  
18  
19  
20  
9
8
7
6
NRCV2  
RCV2  
Channel 2 Multiplexer Control Inputs. Differential controls DATA2 and NDATA2  
select driver 2’s input from DHV2 or DLV2. Drive DATA2 above NDATA2 to select  
DHV2. Drive NDATA2 above DATA2 to select DLV2.  
NDATA2  
DATA2  
______________________________________________________________________________________ 15  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX9963  
MAX9964  
Channel 1 Multiplexer Control Inputs. Differential controls RCV1 and NRCV1 place  
channel 1 into receive mode. Drive RCV1 above NRCV1 to place channel 1 into  
receive mode. Drive NRCV1 above RCV1 to place channel 1 into drive mode.  
21  
5
NRCV1  
RCV1  
22  
23  
24  
4
3
2
Channel 1 Multiplexer Control Inputs. Differential controls DATA1 and NDATA1  
select driver 1’s input from DHV1 or DLV1. Drive DATA1 above NDATA1 to select  
DHV1. Drive NDATA1 above DATA1 to select DLV1.  
NDATA1  
DATA1  
Collector Voltage Input, Channels 1 and 2. For open-collector outputs, this is the  
pullup voltage for the internal termination resistors. For open-emitter outputs, this is  
25  
1
V
12 the collector voltage of the output transistors. Not internally connected on open-  
CCO  
collector versions without internal termination resistors. V 12 services both  
CCO  
channel 1 and channel 2.  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
NCL2  
CL2  
Channel 2 Low-Comparator Output. Differential output of channel 2 low comparator.  
NCH2  
CH2  
Channel 2 High-Comparator Output. Differential output of channel 2 high  
comparator.  
NCL1  
CL1  
Channel 1 Low-Comparator Output. Differential output of channel 1 low comparator.  
NCH1  
CH1  
Channel 1 High-Comparator Output. Differential output of channel 1 high  
comparator.  
CPHV2 Channel 2 High-Clamp Reference Input  
CPLV2 Channel 2 Low-Clamp Reference Input  
DHV2  
DLV2  
DTV2  
CHV2  
CLV2  
Channel 2 Driver-High Reference Input  
Channel 2 Driver-Low Reference Input  
Channel 2 Driver-Termination Reference Input  
Channel 2 High-Comparator Reference Input  
Channel 2 Low-Comparator Reference Input  
CPHV1 Channel 1 High-Clamp Reference Input  
CPLV1 Channel 1 Low-Clamp Reference Input  
DHV1  
DLV1  
DTV1  
CHV1  
CLV1  
Channel 1 Driver-High Reference Input  
Channel 1 Driver-Low Reference Input  
Channel 1 Driver-Termination Reference Input  
Channel 1 High-Comparator Reference Input  
Channel 1 Low-Comparator Reference Input  
Channel 1 Device Under Test Input/Output. Combined I/O for driver, comparator,  
and clamp.  
53  
73  
DUT1  
57, 69  
59  
57, 69  
67  
N.C.  
DUT2  
TEMP  
No Connection. Leave open.  
Channel 2 Device Under Test Input/Output. Combined I/O for driver, comparator,  
and clamp.  
63  
63  
Temperature Monitor Output  
16 ______________________________________________________________________________________  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX9963  
MAX9964  
Channel 3 Device Under Test Input/Output. Combined I/O for driver, comparator,  
and clamp.  
67  
59  
DUT3  
Channel 4 Device Under Test Input/Output. Combined I/O for driver, comparator,  
and clamp.  
73  
53  
DUT4  
CLV4  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
Channel 4 Low-Comparator Reference Input  
CHV4 Channel 4 High-Comparator Reference Input  
DTV4  
DLV4  
Channel 4 Driver-Termination Reference Input  
Channel 4 Driver-Low Reference Input  
DHV4 Channel 4 Driver-High Reference Input  
CPLV4 Channel 4 Low-Clamp Reference Input  
CPHV4 Channel 4 High-Clamp Reference Input  
CLV3  
Channel 3 Low-Comparator Reference Input  
CHV3 Channel 3 High-Comparator Reference Input  
DTV3  
DLV3  
Channel 3 Driver-Termination Reference Input  
Channel 3 Driver-Low Reference Input  
DHV3 Channel 3 Driver-High Reference Input  
CPLV3 Channel 3 Low-Clamp Reference Input  
CPHV3 Channel 3 High-Clamp Reference Input  
89  
90  
91  
92  
93  
94  
95  
96  
97  
37  
36  
35  
34  
33  
32  
31  
30  
29  
CH4  
NCH4  
CL4  
NCL4  
CH3  
Channel 4 High-Comparator Output. Differential output of channel 4 high  
comparator.  
Channel 4 Low-Comparator Output. Differential output of channel 4 low  
comparator.  
Channel 3 High-Comparator Output. Differential output of channel 3 high  
comparator.  
NCH3  
CL3  
Channel 3 Low-Comparator Output. Differential output of channel 3 low  
comparator.  
NCL3  
signal levels, with optional 100differential input termi-  
Detailed Description  
nations. Optional internal resistors at DATA_ and RCV_  
provide differential termination of LVDS inputs. Optional  
internal resistors at CH_ and CL_ provide the pullup  
voltage and source termination for open-collector com-  
parator outputs. These options significantly reduce the  
discrete component count on the circuit board.  
The MAX9963/MAX9964 four-channel, high-speed pin  
electronics driver and comparator ICs for automatic  
test equipment include, for each channel, a three-level  
pin driver, a dual comparator, and variable clamps  
(Figure 1). The driver features a -1.5V to +6.5V operat-  
ing range and high-speed operation, including high-Z  
and active termination (3rd-level drive) modes, which is  
highly linear even at low-voltage swings. The comparator  
provides low timing dispersion regardless of changes in  
input slew rate and pulse width. The clamps provide  
damping of high-speed DUT_ waveforms when the  
device is configured as a high-impedance receiver.  
The MAX9963/MAX9964 are available in two grade  
options. An A-grade version provides tighter matching  
of gain and offset of the drivers, and tighter offset  
matching of the comparators. This allows reference lev-  
els to be shared across multiple channels in cost-sensi-  
tive systems. A B-grade version provides lower cost for  
system designs that incorporate independent reference  
levels for each channel.  
Each of the four channels has high-speed, differential  
inputs compatible with ECL, LVPECL, LVDS, and GTL  
______________________________________________________________________________________ 17  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
ONE OF FOUR IDENTICAL CHANNELS SHOWN  
MAX9963  
MAX9964  
SLEW-  
RATE  
CONTROL  
DLV_  
DHV_  
DTV_  
MULTIPLEXER  
BUFFER  
50  
DUT_  
OPTIONAL  
SC0 SC1  
LLEAK  
100Ω  
DATA_  
NDATA_  
RCV_  
HIGH-Z  
NRCV_  
100Ω  
TMSEL  
OPTIONAL  
CPHV_  
CLAMPS  
CPLV_  
CHV_  
CH_  
NCH_  
7Ω  
7Ω  
COMPARATORS  
4 x 43Ω  
OPTIONAL  
V
CCO  
_ _  
CL_  
NCL_  
CLV_  
TEMP  
CH_ MODE BITS  
SERIAL INTERFACE IS COMMON TO ALL FOUR CHANNELS.  
MODE BITS ARE INDEPENDENTLY  
V
V
CC  
LLEAK  
SC0  
LATCHED FOR EACH CHANNEL.  
CS  
SCLK  
DIN  
SERIAL  
INTERFACE  
EE  
SC1  
GND  
RST  
TMSEL  
Figure 1. MAX9963/MAX9964 Block Diagram  
18 ______________________________________________________________________________________  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
HIGH-  
SPEED  
INPUTS  
REFERENCE  
INPUTS  
0
1
DLV_  
0
1
0
SLEW RATE  
BUFFER  
DHV_  
DTV_  
0
50Ω  
DUT_  
1
DATA_  
RCV_  
CPHV_  
CPLV_  
CLAMPS  
4
MODE  
COMPARATORS  
Figure 2. Simplified Driver Channel  
Table 1. Slew Rate Logic  
The MAX9963/MAX9964 modal operation is pro-  
grammed through a 3-wire, low-voltage CMOS-compat-  
ible serial interface.  
SC1  
SC0  
DRIVER SLEW RATE (%)  
0
0
1
1
0
1
0
1
100  
75  
Output Driver  
The driver input is a high-speed multiplexer that selects  
one of three voltage inputs, DHV_, DLV_, or DTV_. This  
switching is controlled by high-speed inputs DATA_  
and RCV_, and mode control bit TMSEL. A slew rate  
circuit controls the slew rate of the buffer input. One of  
four possible slew rates can be selected (Table 1). The  
slew rate of the internal multiplexer sets the 100% dri-  
ver slew rate (see the Driver Large-Signal Response  
graph in the Typical Operating Characteristics).  
50  
25  
Table 2. Driver Logic  
INTERNAL  
CONTROL  
REGISTER  
EXTERNAL  
CONNECTIONS  
DRIVER OUTPUT  
DATA_ RCV_ TMSEL LLEAK  
DUT_ can be toggled at high speed between the buffer  
output and high-impedance mode, or it can be placed  
in low-leakage mode (Figure 2, Table 2). In high-imped-  
ance mode, the clamps are connected. This switching  
is controlled by high-speed input RCV_ and mode con-  
trol bits TMSEL and LLEAK. In high-impedance mode,  
the bias current at DUT_ is less than 3µA, while the  
node maintains its ability to track high-speed signals. In  
1
0
0
0
X
X
0
0
Drive to DHV_  
Drive to DLV_  
Drive to DTV_  
(term mode)  
X
1
1
0
High-impedance  
(high-z) mode  
X
X
1
X
0
X
0
1
Low-leakage mode  
______________________________________________________________________________________ 19  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
low-leakage mode, the bias current at DUT_ is further  
reduced to less than 15nA, and signal tracking slows.  
DUT_ voltage range; overvoltage protection remains  
active without loading DUT_.  
The nominal driver output resistance is 50. Contact  
the factory for different resistance values within the  
45to 51range.  
Comparators  
The MAX9963/MAX9964 have two independent high-  
speed comparators for each channel. Each comparator  
has one input connected internally to DUT_ and the  
other input connected to either CHV_ or CLV_  
(Figure 1). Comparator outputs are a logical result of  
the input conditions, as indicated in Table 3.  
Clamps  
A pair of voltage clamps (high and low) can be config-  
ured to limit the voltage at DUT_, and to suppress  
reflections when the channel is configured as a high-  
impedance receiver. The clamps behave as diodes  
connected to the outputs of high-current buffers.  
Internal circuitry compensates for the diode drop at  
1mA clamp current. Set the clamp voltages using exter-  
nal connections CPHV_ and CPLV_. The clamps are  
enabled only when the driver is in the high-impedance  
mode (Figure 2). For transient suppression, set the  
clamp voltages to approximately the minimum and  
maximum expected DUT_ voltage range. The optimal  
clamp voltages are application specific and must be  
empirically determined. If clamping is not desired, set  
the clamp voltages at least 0.7V outside the expected  
Three configurations are available for the comparator  
differential outputs to ease interfacing with a wide vari-  
ety of logic families. An open-collector configuration  
switches an 8mA current source between the two out-  
puts. This configuration is available with and without  
internal termination resistors connected to V  
CCO_ _  
(Figure 3). For versions without internal termination  
resistors, leave V unconnected and add the  
CCO_ _  
required external resistors. These resistors are typically  
50to the pullup voltage at the receiving end of the  
output trace. Alternate configurations can be used, pro-  
vided that the Absolute Maximum Ratings are not  
exceeded. For versions with internal terminations, con-  
nect V  
to the desired V  
provides a nominal 400mV  
termination.  
voltage. Each output  
OH  
swing and 50source  
CCO_ _  
Table 3. Comparator Logic  
P-P  
DUT_ > CHV_  
DUT_ > CLV_  
CH_  
CL_  
0
0
0
1
1
0
1
0
1
0
0
1
1
1
0
CH_  
1
100Ω  
100Ω  
DUT_  
CHV_  
CH_  
8mA  
DUT_  
CHV_  
NCH_  
V
EE  
NCH_  
V
_ _  
CCO  
7  
7Ω  
CL_  
4 x 43Ω  
OPTIONAL  
V
_ _  
CCO  
100Ω  
100Ω  
CL_  
8mA  
CLV_  
CLV_  
NCL_  
V
EE  
NCL_  
Figure 3. Open-Collector Comparator Outputs  
Figure 4. Open-Emitter Comparator Outputs  
20 ______________________________________________________________________________________  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
An open-emitter configuration is also available (Figure  
Table 4. Shift Register Functions  
4). Connect an external collector voltage to V  
CCO_ _  
and add external pulldown resistors. These resistors  
- 2V at the receiving end  
of the output trace. Alternate configurations can be  
used, provided that the Absolute Maximum Ratings are  
not exceeded.  
BIT  
NAME  
DESCRIPTION  
are typically 50to V  
CCO_ _  
Channel 1 Write Enable. Set to 1 to  
update the control byte for channel 1. Set  
to zero to make no changes to channel 1.  
D7  
1E  
Channel 2 Write Enable. Set to 1 to  
update the control byte for channel 2. Set  
to zero to make no changes to channel 2.  
Low-Leakage Mode, LLEAK  
Asserting LLEAK through the serial port or with RST  
places the MAX9963/MAX9964 into a very-low-leakage  
state in which the DUT_ input current is less than 10nA  
over the 0 to 3V range. In this mode, the comparators  
still function at full speed but the driver and clamps are  
disabled. This mode is convenient for making IDDQ  
and PMU measurements without the need for an output  
disconnect relay. LLEAK is programmed independently  
for each channel.  
D6  
D5  
D4  
2E  
3E  
4E  
Channel 3 Write Enable. Set to 1 to  
update the control byte for channel 3. Set  
to zero to make no changes to channel 3.  
Channel 4 Write Enable. Set to 1 to  
update the control byte for channel 4. Set  
to zero to make no changes to channel 4.  
If DUT_ is driven with a high-speed signal while LLEAK  
is asserted, leakage current momentarily increases  
beyond the limits specified for normal operation. The  
low-leakage recovery specification in the Electrical  
Characteristics table indicates device behavior under  
this condition.  
Low-Leakage Select. Set to 1 to put driver  
and clamps into a low-leakage mode.  
LLEAK Comparators remain active in low-  
leakage mode. Set to zero for normal  
operation.  
D3  
D2  
D1  
SC1  
SC0  
Driver Slew-Rate Select. SC1 and SC0 set  
the driver slew rate. See Table 1.  
Temperature Monitor  
Each device supplies a single temperature output sig-  
nal, TEMP, that asserts a nominal output voltage of  
3.43V at a die temperature of +70°C (343K). The output  
voltage increases proportionately with temperature at a  
rate of 10mV/°C. The temperature sensor output imped-  
ance is 15k(typ).  
Driver Termination Select. Set to 1 to  
force the driver output to the DTV_  
voltage (term mode) when RCV_ = 1. Set  
to zero to place the driver into a high-  
impedance state (high-Z mode) when  
RCV_ = 1. See Table 2.  
D0  
TMSEL  
t
CH  
SCLK  
t
t
t
CSS0  
CSS1  
CL  
t
CSH1  
CS  
t
CSWH  
t
DH  
t
DS  
DIN  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 5. Serial Interface Timing  
______________________________________________________________________________________ 21  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
Serial Interface and Device Control  
Heat Removal  
A CMOS-compatible serial interface controls the  
These devices require heat removal under normal cir-  
cumstances through the exposed pad, either by solder-  
ing to circuit board copper (MAX9964) or by use of an  
external heat sink (MAX9963). The exposed pad is  
electrically at VEE potential for both package types, and  
must be either connected to VEE or isolated.  
MAX9963/MAX9964 modes (Figure 6). Control data flow  
into an 8-bit shift register (MSB first) and are latched  
when CS is taken high, as shown in Figure 5. Data from  
the shift register are then loaded into any or all of a  
group of four quad latches, determined by bits D4  
through D7, as indicated in Figure 6 and Table 4. The  
quad latches contain the 4 mode bits for each channel  
of the quad pin driver. The mode bits, in conjunction  
with external inputs DATA_ and RCV_, manage the fea-  
tures of each channel, as shown in Tables 1 and 2. RST  
sets LLEAK=1 for all channels, forcing them into low-  
leakage mode. All other bits are unaffected. At power-  
Chip Information  
TRANSISTOR COUNT: 6499  
PROCESS: Bipolar  
Package Information  
up, hold RST low until V  
and V have stabilized.  
EE  
CC  
For the latest package outline information, go to  
www.maxim-ic.com/packages.  
SHIFT REGISTER  
SCLK  
DIN  
CS  
0
1
2
3
4
5
6
7
ENABLE  
F/F  
F/F  
F/F  
F/F  
3
7
3
6
3
5
3
4
D
Q
D
Q
D
Q
D
Q
ENABLE  
RST  
ENABLE  
RST  
ENABLE  
RST  
ENABLE  
RST  
RST  
F/F  
D
F/F  
D
F/F  
D
F/F  
D
0-2  
7
0-2  
6
0-2  
5
0-2  
4
Q
Q
Q
Q
3
1
3
1
3
1
3
1
ENABLE  
ENABLE  
ENABLE  
ENABLE  
TMSEL, SC0, SC1 LLEAK  
MODE BITS CHANNEL 1  
TMSEL, SC0, SC1 LLEAK  
MODE BITS CHANNEL 2  
TMSEL, SC0, SC1 LLEAK  
MODE BITS CHANNEL 3  
TMSEL, SC0, SC1 LLEAK  
MODE BITS CHANNEL 4  
Figure 6. Serial Interface  
22 ______________________________________________________________________________________  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
Selector Guide  
COMPARATOR  
OUTPUT  
TERMINATION  
HIGH-SPEED  
DIGITAL INPUT  
TERMINATION  
ACCURACY  
GRADE  
COMPARATOR  
OUTPUT TYPE  
HEAT  
EXTRACTION  
PART  
PIN-PACKAGE  
MAX9963ADCCQ*  
MAX9963AKCCQ*  
MAX9963AGCCQ*  
MAX9963AHCCQ*  
MAX9963AJCCQ  
MAX9963BDCCQ*  
MAX9963BKCCQ*  
MAX9963BGCCQ  
MAX9963BHCCQ*  
MAX9963BJCCQ*  
MAX9964ADCCQ*  
MAX9964AKCCQ*  
MAX9964AGCCQ*  
MAX9964AHCCQ*  
MAX9964AJCCQ*  
MAX9964BDCCQ*  
MAX9964BKCCQ*  
MAX9964BGCCQ  
MAX9964BHCCQ*  
MAX9964BJCCQ*  
A
A
A
A
A
B
B
B
B
B
A
A
A
A
A
B
B
B
B
B
Open collector  
Open collector  
Open collector  
Open emitter  
Open emitter  
Open collector  
Open collector  
Open collector  
Open emitter  
Open emitter  
Open collector  
Open collector  
Open collector  
Open emitter  
Open emitter  
Open collector  
Open collector  
Open collector  
Open emitter  
Open emitter  
None  
None  
None  
Top  
Top  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EPR  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
100LVDS  
100LVDS  
None  
50to V  
Top  
CCO_ _  
None  
Top  
None  
None  
None  
100LVDS  
None  
Top  
Top  
100LVDS  
100LVDS  
None  
Top  
50to V  
Top  
CCO_ _  
None  
None  
None  
None  
Top  
100LVDS  
None  
Top  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
Bottom  
100LVDS  
100LVDS  
None  
50to V  
CCO_ _  
None  
None  
None  
None  
100LVDS  
None  
100LVDS  
100LVDS  
None  
50to V  
CCO_ _  
None  
None  
100LVDS  
*Future product—contact factory for availability.  
______________________________________________________________________________________ 23  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
Pin Configurations  
TOP VIEW  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
GND  
75  
74  
V
34  
1
2
CCO  
V
CC  
DATA4  
NDATA4  
RCV4  
73 DUT4  
3
72  
71  
V
EE  
V
EE  
4
NRCV4  
DATA3  
NDATA3  
RCV3  
5
70 GND  
69 N.C.  
6
7
68  
V
CC  
8
67 DUT3  
NRCV3  
9
V
V
66  
65  
EE  
V
10  
EE  
GND 11  
RST 12  
CS 13  
EE  
64 GND  
63  
TEMP  
MAX9963  
62 GND  
SCLK 14  
DIN 15  
61  
60  
V
V
EE  
EE  
V
CC  
16  
59 DUT2  
58  
NRCV2 17  
RCV2 18  
V
CC  
57 N.C.  
56 GND  
NDATA2 19  
DATA2 20  
NRCV1 21  
RCV1 22  
55  
54  
V
EE  
V
EE  
53 DUT1  
NDATA1 23  
DATA1 24  
52  
51  
V
CC  
GND  
V
CCO  
12 25  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
TQFP-EPR  
24 ______________________________________________________________________________________  
Quad, Low-Power, 500Mbps  
ATE Driver/Comparator  
Pin Configurations (continued)  
TOP VIEW  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
GND  
75  
74  
V
12  
1
2
CCO  
V
CC  
DATA1  
NDATA1  
RCV1  
73 DUT1  
3
72  
71  
V
EE  
V
EE  
4
NRCV1  
DATA2  
NDATA2  
RCV2  
5
70 GND  
69 N.C.  
6
7
68  
V
CC  
8
67 DUT2  
NRCV2  
9
V
V
66  
65  
EE  
V
10  
CC  
DIN 11  
EE  
SCLK  
64 GND  
12  
63  
CS 13  
TEMP  
MAX9964  
62 GND  
14  
GND 15  
16  
RST  
61  
60  
V
V
EE  
EE  
V
EE  
59 DUT3  
58  
NRCV3 17  
RCV3 18  
V
CC  
57 N.C.  
56 GND  
NDATA3 19  
DATA3 20  
NRCV4 21  
RCV4 22  
55  
54  
V
EE  
V
EE  
53 DUT4  
NDATA4 23  
DATA4 24  
52  
51  
V
CC  
GND  
V
CCO  
34 25  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
TQFP-EP  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 25  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY