MAX9977AKCCQ-D [MAXIM]

PWM Based Peripheral Driver, CMOS, PQCC100, PLASTIC, QFN-100;
MAX9977AKCCQ-D
型号: MAX9977AKCCQ-D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

PWM Based Peripheral Driver, CMOS, PQCC100, PLASTIC, QFN-100

驱动器
文件: 总17页 (文件大小:1103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0383; Rev 0; 7/05  
Quad, Low-Power, 1200Mbps  
ATE Driver  
General Description  
Features  
Low Power Dissipation: 0.8W/Channel  
High Speed: 1200Mbps at 3V and 1800Mbps  
The MAX9977 quad, low-power, high-speed, pin-elec-  
tronics driver includes, for each channel, a three-level  
pin driver. The driver features a wide voltage range and  
high-speed operation, includes high-impedance and  
active-termination (3rd-level drive) modes, and is highly  
linear even at low voltage swings.  
P-P  
at 1V  
P-P  
Low Timing Dispersion  
Wide -1.5V to +6.5V Operating Range  
Interfaces Easily with Most Logic Families  
Active Termination (3rd-Level Drive)  
The MAX9977 provides high-speed, differential control  
inputs with internal 50(100LVDS) termination resistors  
that allow compatibility with 1.8V and 3.5V terminated  
CML, reducing the discrete component count  
required on the circuit board. The MAX9977AD has no  
internal termination.  
Internal 50Termination Resistors on Control  
Inputs  
0.4V  
P-P  
Low Gain and Offset Errors  
Pin Compatible with the MAX9963 and MAX9965  
Quad Drivers  
A 3-wire, low-voltage, CMOS-compatible serial interface  
programs the low-leakage and tri-state/terminate opera-  
tional configurations of the MAX9977.  
Ordering Information  
EXPOSED  
The MAX9977’s operating range is -1.5V to +6.5V (con-  
sult factory for other operating ranges), and features a  
maximum power dissipation of only 0.8W per channel.  
The device is available in a 100-pin, 14mm x 14mm  
x 0.1mm body, and 0.5mm pitch TQFP. An exposed  
8mm x 8mm die pad on the top of the package facili-  
tates efficient heat removal. The device is specified to  
operate with an internal die temperature of +60°C to  
+100°C, and features a die temperature monitor output.  
TEMP  
RANGE  
PIN-  
PACKAGE  
PAD  
VARIATION  
CODE  
PART  
MAX9977AKCCQ  
0°C to +70°C 100 TQFP-IDP** C100E-8R  
MAX9977AKCCQ+ 0°C to +70°C 100 TQFP-IDP** C100E-8R  
100 TQFP-IDP**  
100 TQFP-IDP**  
MAX9977ADCCQ* 0°C to +70°C  
MAX9977ADCCQ+* 0°C to +70°C  
C100E-8R  
C100E-8R  
*Future product—contact factory for availability.  
**IDP = Inverted die pad.  
Applications  
Medium-Performance System-on-Chip ATE and  
Memory Applications  
+Denotes lead-free package.  
Pin Configuration and Selector Guide appear at end of  
data sheet.  
Functional Diagram  
CH_ MODE BITS  
V
V
CC  
CS  
EE  
SERIAL INTERFACE IS COMMON  
TO ALL FOUR CHANNELS.  
MODE BITS INDEPENDENTLY  
LATCHED FOR EACH CHANNEL.  
SCLK  
DIN  
TMSEL  
LLEAK  
SERIAL INTERFACE  
TEMP  
GND  
RST  
THR  
DLV_  
DHV_  
47Ω  
MULTIPLEXER  
BUFFER  
0
DUT_  
DTV_  
GS  
LLEAK  
OPTIONAL R  
OPTIONAL R  
DATA  
2 x 50Ω  
RCV  
2 x 50Ω  
V _ _  
T
MAX9977  
DATA_  
NDATA_  
RCV_  
HIGH IMPEDANCE  
NRCV_  
TMSEL  
ONE OF FOUR IDENTICAL CHANNELS SHOWN.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Quad, Low-Power, 1200Mbps  
ATE Driver  
ABSOLUTE MAXIMUM RATINGS  
V
V
V
to GND............................................................-0.3V to +11V  
to GND..........................................................-5.75V to +0.3V  
DHV_ to DTV_ ...................................................................... 10V  
DLV_ to DTV_....................................................................... 10V  
GS to GND............................................................................. 1V  
CC  
EE  
CC  
- V ...........................................................-0.3V to +16.75V  
EE  
DUT_ to GND.......................................................-2.75V to +7.5V  
DATA_, NDATA_, RCV_, NRCV_ to GND.................-2.5V to +5V  
DATA_ to NDATA_, RCV_ to NRCV_ .................................. 1.5V  
All Other Pins to GND ......................(V - 0.3V) to (V  
TEMP Current...................................................-0.5mA to +20mA  
DUT_ Short Circuit to -1.5V to +6.5V..........................Continuous  
+ 0.3V)  
EE  
CC  
V 12, V 34 to GND...................................................-2.5V to +5V  
Continuous Power Dissipation (T = +70°C)  
T
T
A
DATA_, NDATA_, RCV_, NRCV_ to V 12 or V 34 ................. 2V  
100-Pin TQFP (derate 167mW/°C above +70°C) .........13.3W*  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature .....................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
T
T
SCLK, DIN, CS, RST to GND ......................................-1V to +5V  
DHV_, DLV_, DTV_ to GND ...................................-2.5V to +7.5V  
DHV_ to DLV_ ...................................................................... 10V  
*Dissipation wattage values are based on still air with no heat sink. Actual maximum power dissipation is a function of heat extraction  
technique and may be substantially higher.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +9.75V, V = -4.75V, V = 0, V 12 = V 34 = 1.8V, T = +85°C, unless otherwise noted. All temperature coefficients are measured  
CC  
EE  
GS  
T
T
J
at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
POWER SUPPLIES  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Positive Supply  
Negative Supply  
V
9.5  
9.75  
-4.75  
192  
175  
-224  
-207  
3.0  
10.5  
-4.50  
215  
196  
-251  
-232  
3.3  
V
V
CC  
V
-5.25  
EE  
Drivers active  
Positive Supply Current (Note 2)  
Negative Supply Current (Note 2)  
Power Dissipation (Note 2)  
I
mA  
mA  
W
CC  
Drivers in high impedance  
Drivers active  
I
EE  
Drivers in high impedance  
Drivers active  
P
D
Drivers in high impedance  
2.7  
3.1  
DUT_ CHARACTERISTICS  
Operating Voltage Range  
V
(Note 3)  
-1.5  
+6.5  
3
V
DUT  
Leakage Current in  
High-Impedance Mode  
I
LLEAK = 0; V  
LLEAK = 1; V  
_ = -1.5V, 0, +3V, +6.5V  
_ = -1.5V, 0, +3V, +6.5V  
µA  
DUT  
DUT  
Leakage Current in  
Low-Leakage Mode  
5
50  
nA  
pF  
DUT  
Driver in term mode (DUT_ = DTV_)  
Driver in high-impedance mode  
(Notes 4, 5)  
2
4
5
6
Combined Capacitance  
C
DUT  
Low-Leakage Enable Time  
Low-Leakage Disable Time  
20  
0.1  
µs  
µs  
(Notes 5, 6)  
Time to return to the specified maximum  
leakage after a 3V, 4V/ns step at DUT_  
(Notes 5, 6)  
Low-Leakage Recovery  
5
µs  
2
_______________________________________________________________________________________  
Quad, Low-Power, 1200Mbps  
ATE Driver  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +9.75V, V = -4.75V, V = 0, V 12 = V 34 = 1.8V, T = +85°C, unless otherwise noted. All temperature coefficients are measured  
CC  
EE  
GS  
T
T
J
at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CONTROL AND LEVELS INPUTS  
LEVEL PROGRAMMING INPUTS (DHV_, DLV_, DTV_)  
Input Bias Current  
Settling Time  
I
25  
µA  
µs  
BIAS  
To 0.1% of full-scale change  
1
DIFFERENTIAL CONTROL INPUTS (DATA_, NDATA_, RCV_, NRCV_)  
Input High Voltage  
Input Low Voltage  
V
0
3.5  
V
V
IHD  
V
-0.2  
0.15  
+3.2  
1.00  
ILD  
Between differential inputs  
Differential Input Voltage  
V
V
DIFF  
Between a differential input and its  
termination voltage  
1.9  
+3.5  
52.5  
Input Termination Voltage  
Input Termination Resistor  
V
0
V
T_ _  
Between signal and corresponding  
termination voltage input  
47.5  
50  
SINGLE-ENDED CONTROL INPUTS (CS, SCLK, DIN, RST)  
Internal Threshold Reference  
V
1.05  
1.25  
20  
1.45  
V
kΩ  
V
THRINT  
Internal Reference Output  
Resistance  
R
O
External Threshold Reference  
V
0.43  
1.73  
3.5  
THR  
V
+
THR  
0.2  
Input High Voltage  
V
V
IH  
V
-
THR  
0.2  
Input Low Voltage  
Input Bias Current  
V
-0.1  
V
IL  
I
25  
µA  
B
SERIAL INTERFACE TIMING (Figure 4)  
SCLK Frequency  
f
50  
MHz  
ns  
SCLK  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
CS Low to SCLK High Setup  
CS High to SCLK High Setup  
SCLK High to CS High Hold  
DIN to SCLK High Setup  
DIN to SCLK High Hold  
CS Pulse-Width High  
t
8
CH  
t
8
ns  
CL  
t
t
3.5  
3.5  
3.5  
3.5  
3.5  
20  
ns  
CSS0  
CSS1  
CSH1  
ns  
t
ns  
t
ns  
DS  
DH  
t
ns  
t
ns  
CSWH  
TEMPERATURE MONITOR (TEMP)  
Nominal Voltage  
T = +70°C, R 10MΩ  
3.33  
+10  
20  
V
J
L
Temperature Coefficient  
Output Resistance  
mV/°C  
kΩ  
_______________________________________________________________________________________  
3
Quad, Low-Power, 1200Mbps  
ATE Driver  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +9.75V, V = -4.75V, V = 0, V 12 = V 34 = 1.8V, T = +85°C, unless otherwise noted. All temperature coefficients are measured  
CC  
EE  
GS  
T
T
J
at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
DRIVERS (Note 7)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC OUTPUT CHARACTERISTICS (R 10M)  
L
DHV_, DLV_, DTV_  
Output Offset Voltage  
At DUT_ with V  
independently tested at +1.5V  
_, V  
_, V  
_
DHV  
DTV  
DLV  
V
15  
mV  
mV  
OS  
V
V
= +100mV, V  
_ = 6.5V + 100mV  
DHV  
2
2
GS  
GS  
Output Offset Voltage Due to  
Ground Sense  
V
GSOS  
= -100mV, V  
_ = -1.5V - 100mV  
DLV  
DHV_, DLV_, DTV_ Output Offset  
Temperature Coefficient  
+200  
1.00  
-50  
µV/°C  
V/V  
Measured with V  
and V  
_, V  
_,  
DHV  
DLV  
DHV_, DLV_, DTV_ Gain  
A
V
0.997  
1.003  
_ at 0 and 4.5V  
DTV  
DHV_, DLV_, DTV_ Gain  
Temperature Coefficient  
ppm/°C  
mV  
V
_ = 1.5V, 3V (Note 8)  
DUT  
5
15  
2
Linearity Error  
Full range (Notes 8, 9)  
DHV_ to DLV_ Crosstalk  
DLV_ to DHV_ Crosstalk  
V
V
_ = 0; V  
_ = 200mV, 6.5V  
DHV  
mV  
mV  
DLV  
DHV  
_ = 5V; V  
_ = -1.5V, +4.8V  
2
DLV  
DTV_ to DLV_ and DHV_  
Crosstalk  
V
V
_ = 3V; V  
_ = -1.5V, +6.5V  
_ = 0;  
DHV  
DLV  
2
mV  
DTV  
DHV_ to DTV_ Crosstalk  
DLV_ to DTV_ Crosstalk  
V
V
_ = 1.5V; V  
_ = 1.5V; V  
_ = 0; V _ = 1.6V, 3V  
DHV  
2
2
mV  
mV  
DTV  
DLV  
_ = 3V; V _ = 0, 1.4V  
DHV DLV  
DTV  
DHV_, DTV_, DLV_ DC  
Power-Supply Rejection Ratio  
PSRR  
(Note 10)  
18  
mV/V  
Maximum DC Drive Current  
DC Output Resistance  
I
_
40  
46  
80  
48  
1
mA  
DUT  
R
_
DUT  
I
I
I
_ = 30mA (Note 11)  
_ = 1mA, 8mA  
47  
0.5  
DUT  
DUT  
DUT  
DC Output Resistance Variation  
R  
_
DUT  
_ = 1mA, 8mA, 15mA, 40mA  
0.75  
1.5  
DYNAMIC OUTPUT CHARACTERISTICS (Z = 50)  
L
AC Drive Current  
80  
mA  
mV  
V
V
V
V
V
V
V
V
V
V
_ = 0, V  
_ = 0, V  
_ = 0, V  
_ = 0, V  
_ = 0, V  
_ = 0, V  
_ = 0.1V  
_ = 1V  
_ = 3V  
_ = 0.1V  
_ = 1V  
_ = 3V  
15  
110  
210  
4
22  
130  
370  
11  
DLV  
DLV  
DLV  
DLV  
DLV  
DLV  
DHV  
DHV  
DHV  
DHV  
DHV  
DHV  
DHV  
Drive-Mode Overshoot  
Drive-Mode Undershoot  
20  
65  
mV  
30  
185  
250  
250  
_ = V  
_ = 1V, V  
_ = 0  
180  
180  
100  
100  
DTV  
DLV  
Term-Mode Spike  
mV  
mV  
_ = V  
_ = 0, V  
_ = 1V  
DHV  
DLV  
DLV  
DLV  
DTV  
_ = -1.0V, V  
_ = 0  
DHV  
High-Impedance-Mode Spike  
_ = 0, V  
_ = 1V  
DHV  
4
_______________________________________________________________________________________  
Quad, Low-Power, 1200Mbps  
ATE Driver  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +9.75V, V = -4.75V, V = 0, V 12 = V 34 = 1.8V, T = +85°C, unless otherwise noted. All temperature coefficients are measured  
CC  
EE  
GS  
T
T
J
at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
Settling Time to within 25mV  
Settling Time to within 5mV  
SYMBOL  
CONDITIONS  
MIN  
TYP  
4
MAX  
UNITS  
ns  
3V step (Note 12)  
3V step (Note 12)  
40  
ns  
TIMING CHARACTERISTICS (Z = 50) (Note 13)  
L
Prop Delay, Data to Output  
Prop Delay Match, t vs. t  
t
1.2  
1.5  
40  
1.9  
ns  
ps  
PDD  
3V  
P-P  
100  
LH  
HL  
Prop Delay Match, Drivers within  
Package  
(Note 14)  
40  
+1.6  
25  
ps  
Prop-Delay Temperature  
Coefficient  
ps/°C  
0.2V , 40MHz, 0.6ns to 24.4ns pulse  
P-P  
width, relative to 12.5ns pulse width  
50  
50  
55  
60  
1V , 40MHz, 0.6ns to 24.4ns pulse width,  
P-P  
relative to 12.5ns pulse width  
25  
2V , 40MHz, 0.75ns to 24.25ns pulse  
P-P  
width, relative to 12.5ns pulse width  
Prop Delay Change vs.  
Pulse Width  
30  
ps  
3V , 40MHz, 0.9ns to 24.1ns pulse width,  
P-P  
relative to 12.5ns pulse width  
35  
5V , Z = 500, 40MHz, 1.4ns to 23.6ns  
pulse width, relative to 12.5ns pulse width  
P-P  
L
100  
50  
Prop Delay Change vs.  
Common-Mode Voltage  
V
V
V
_ - V  
_ = 1V, V _ = 0 to 6V  
DHV  
75  
2.6  
3.9  
-0.7  
ps  
ns  
ns  
ns  
DHV  
DHV  
DHV  
DLV  
Prop Delay, Drive to  
High Impedance  
t
t
_ = 1.0V, V  
_ = -1.0V, V  
_ = -1.0V, V  
_ = 0  
_ = 0  
1.6  
2.6  
2.1  
3.2  
-1.1  
PDDZ  
PDZD  
DLV  
DLV  
DTV  
Prop Delay, High  
Impedance to Drive  
_ = 1.0V, V  
DTV  
Prop Delay Match,  
-1.5  
t
vs. t  
PDZD  
PDDZ  
Prop Delay Match, t  
vs. t  
0.2  
1.3  
0.6  
1.8  
1.0  
2.3  
ns  
ns  
ns  
ns  
ns  
PDDZ  
LH  
Prop Delay, Drive to Term  
Prop Delay, Term to Drive  
t
t
V
V
_ = 3V, V  
_ = 3V, V  
_ = 0, V  
_ = 0, V  
_ = 1.5V  
_ = 1.5V  
PDDT  
PDTD  
DHV  
DLV  
DTV  
1.6  
2.1  
2.7  
DHV  
DLV  
DTV  
Prop Delay Match, t  
vs. t  
-0.7  
-0.1  
-0.3  
+0.3  
-0.1  
+0.7  
PDDT  
PDTD  
Prop Delay Match, t  
vs. t  
LH  
PDDT  
DYNAMIC PERFORMANCE (Z = 50)  
L
0.2V , 10% to 90%  
260  
330  
430  
500  
800  
310  
390  
500  
650  
1000  
50  
360  
450  
570  
750  
1200  
P-P  
1V , 10% to 90%  
P-P  
2V , 10% to 90%  
P-P  
Rise and Fall Time  
t , t  
ps  
ps  
R
F
3V , 10% to 90%  
P-P  
5V , Z = 500, 10% to 90%  
P-P  
L
Rise and Fall Time Match  
t
vs. t  
3V , 10% to 90%  
P-P  
R
F
_______________________________________________________________________________________  
5
Quad, Low-Power, 1200Mbps  
ATE Driver  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +9.75V, V = -4.75V, V = 0, V 12 = V 34 = 1.8V, T = +85°C, unless otherwise noted. All temperature coefficients are measured  
CC  
EE  
GS  
T
T
J
at T = +60°C to +100°C, unless otherwise noted.) (Note 1)  
J
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
550  
MAX  
UNITS  
0.2V  
P-P  
1V  
2V  
3V  
550  
630  
750  
P-P  
Minimum Pulse Width  
(Note 15)  
650  
ps  
P-P  
P-P  
850  
1000  
5V , Z = 500Ω  
1300  
1800  
1800  
1500  
1200  
800  
P-P  
L
0.2V  
P-P  
1V  
2V  
3V  
P-P  
Data Rate  
(Note 16)  
Mbps  
P-P  
P-P  
5V , Z = 500Ω  
P-P  
L
Dynamic Crosstalk  
(Note 17)  
15  
mV  
P-P  
V
_ = 3V, V  
_ = 0, V  
_ = 1.5V,  
DTV  
DHV  
DLV  
Rise and Fall Time, Drive to Term  
t
t
, t  
0.6  
0.6  
1.0  
1.0  
1.3  
1.3  
ns  
DTR DTF  
10% to 90%, Figure 1a (Note 18)  
V
_ = 3V, V _ = 0, V _ = 1.5V,  
DHV  
DLV  
DTV  
Rise and Fall Time, Term to Drive  
, t  
ns  
TDR TDF  
10% to 90%, Figure 1b (Note 18)  
GROUND SENSE  
GS Voltage Range  
GS Input Bias Current  
V
250  
mV  
µA  
GS  
V
= 0  
25  
GS  
Note 1: Unless otherwise specified, all minimum and maximum DC and AC driver 3V rise and fall time test limits are 100% tested at  
production. All other test limits are guaranteed by design. All tests are performed at nominal supply voltages, unless other-  
wise noted.  
Note 2: Total is for a quad device and is specified at the worst-case setting. The supply currents are measured with typical supply  
voltages.  
Note 3: Externally forced voltages may exceed this range provided that the Absolute Maximum Ratings are not exceeded.  
Note 4: Transition time from LLEAK being asserted to leakage current dropping below specified limits.  
Note 5: Based on simulation results only.  
Note 6: Transition time from LLEAK being deasserted to output returning to normal operating mode.  
Note 7: With the exception of offset and gain/CMRR tests, reference input values are calibrated for offset and gain.  
Note 8: Specifications measured at the end points of the full range. Full range is -1.3V V  
+6.5V, -1.5V V  
+6.3V,  
DLV_  
DHV_  
-1.5V V  
+6.5V.  
DTV_  
Note 9: Relative to straight line between 0 and 4.5V.  
Note 10: Change in offset voltage with power supplies independently set to their minimum and maximum values.  
Note 11: Nominal target value is 47. Contact factory for alternate trim selections within the 45to 51range.  
Note 12: Measured from the crossing point of DATA_ inputs to the settling of the driver output.  
Note 13: Prop delays are measured from the crossing point of the differential input signals to the 50% point of the expected output  
swing. Rise time of the differential inputs DATA_ and RCV_ are 250ps (10% to 90%).  
Note 14: Rising edge to rising edge or falling edge to falling edge.  
Note 15: Specified amplitude is programmed. At this pulse width, the output reaches at least 90% of its nominal (DC) amplitude. The  
pulse width is measured at DATA_.  
Note 16: Specified amplitude is programmed. Maximum data rate is specified in transitions per second. A square wave that reaches  
at least 90% of its programmed amplitude may be generated at one-half of this frequency.  
Note 17: Crosstalk from one driver to any other. Aggressor channel is driving 3V  
into a 50load. Victim channel is in term mode  
P-P  
with V  
= +1.5V.  
DTV_  
Note 18: Indicative of switching speed from DHV_ or DLV_ to DTV_ and DTV_ to DHV_ or DLV_ when V  
< V  
< V  
. If  
DHV_  
DLV_  
DTV_  
V
< V  
or V  
> V  
, switching speed is degraded by a factor of approximately 3.  
DHV_  
DTV_  
DLV_  
DTV_  
6
_______________________________________________________________________________________  
Quad, Low-Power, 1200Mbps  
ATE Driver  
t
DTF  
90%  
DHV_  
DLV_  
10%  
90%  
DTV_  
10%  
t
DTR  
(a) DRIVE-TO-TERM RISE AND FALL TIME  
t
TDR  
90%  
DHV_  
10%  
90%  
DTV_  
DLV_  
TDF  
10%  
t
(b) TERM-TO-DRIVE RISE AND FALL TIME  
Figure 1. Drive-to-Term and Term-to-Drive Rise and Fall Times  
Typical Operating Characteristics  
(V = +9.75V, V = -4.75V, V = 0, T = +85°C, unless otherwise noted.)  
CC  
EE  
GS  
J
DRIVER LARGE-SIGNAL RESPONSE  
INTO 500  
DRIVER SMALL-SIGNAL RESPONSE  
DRIVER LARGE-SIGNAL RESPONSE  
V
= 0  
V
= 0  
V
= 0  
DLV_  
R = 500  
L
DLV_  
R = 50Ω  
L
DLV_  
R = 50Ω  
L
V
= 5V  
= 3V  
= 1V  
DHV_  
V
= 5V  
= 3V  
= 1V  
V
= 500mV  
DHV_  
DHV_  
V
V
DHV_  
DHV_  
DHV_  
V
= 200mV  
= 100mV  
DHV_  
DHV_  
V
V
DHV_  
V
0
0
0
t = 2.0ns/div  
t = 2.0ns/div  
t = 2.0ns/div  
_______________________________________________________________________________________  
7
Quad, Low-Power, 1200Mbps  
ATE Driver  
Typical Operating Characteristics (continued)  
(V = +9.75V, V = -4.75V, V = 0, T = +85°C, unless otherwise noted.)  
CC  
EE  
GS  
J
DRIVER 1V, 600Mbps  
SIGNAL RESPONSE  
DRIVER 1V, 1800Mbps  
SIGNAL RESPONSE  
DRIVER 3V, 400Mbps  
SIGNAL RESPONSE  
V
V
= 0  
V
= 0, V  
= 1V, R = 50Ω  
V
= 0, V  
= 1V, R = 50Ω  
DLV_  
DHV_  
L
DLV_  
DHV_  
L
DLV_  
DHV_  
L
= 3V  
R = 50Ω  
0
0
0
t = 1ns/div  
t = 500ps/div  
t = 1ns/div  
DRIVER 3V, 1200Mbps  
SIGNAL RESPONSE  
DRIVER DYNAMIC  
CURRENT-LIMIT RESPONSE  
DRIVER 3V TRAILING-EDGE TIMING  
ERROR vs. PULSE WIDTH  
40  
V
V
= 0  
= 3V  
R = 50Ω  
DLV_  
DHV_  
L
20  
0
DRIVER SOURCING  
DRIVER SINKING  
-20  
-40  
-60  
-80  
0
0
NORMALIZED AT PW = 12.5ns  
-100  
-120  
PERIOD = 25ns, V  
= +3V, V  
= 0  
R = 10Ω  
L
DHV_  
DLV_  
t = 500ps/div  
t = 50ns/div  
0
5
10  
15  
20  
25  
PULSE WIDTH (ns)  
DRIVER TIME DELAY  
vs. COMMON-MODE VOLTAGE  
DRIVER 1V TRAILING-EDGE TIMING  
ERROR vs. PULSE WIDTH  
DRIVE TO TERM TRANSITION  
20  
15  
60  
50  
40  
30  
20  
10  
0
NORMALIZED AT PW = 12.5ns  
PERIOD = 25ns, V  
= +1V, V  
= 0  
DHV_  
DLV_  
10  
DHV_ TO DTV_  
5
0
-5  
-10  
-15  
-20  
-25  
-30  
DLV_ TO DTV_  
-10  
-20  
0
R = 50Ω  
L
NORMALIZED AT V = 1.5V  
CM  
0
5
10  
15  
20  
25  
-1  
0
1
2
3
4
5
6
t = 2.0ns/div  
PULSE WIDTH (ns)  
COMMON-MODE VOLTAGE (V)  
8
_______________________________________________________________________________________  
Quad, Low-Power, 1200Mbps  
ATE Driver  
Typical Operating Characteristics (continued)  
(V = +9.75V, V = -4.75V, V = 0, T = +85°C, unless otherwise noted.)  
CC  
EE  
GS  
J
DRIVE TO  
HIGH-IMPEDANCE TRANSITION  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
12  
10  
8
8
6
DUT_ = DHV_  
DUT_ = DLV_  
DHV_ TO HIGH IMPEDANCE  
V
V
= -1.5V  
= 0  
V
V
= +6.5V  
= 0  
DLV_  
DTV_  
DHV_  
DTV_  
4
6
2
0
4
0
2
-2  
-4  
-6  
-8  
0
-2  
-4  
DLV_ TO HIGH IMPEDANCE  
R = 50Ω  
L
t = 2.0ns/div  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
V
V
DUT_  
DUT_  
DRIVER LINEARITY ERROR  
vs. OUTPUT VOLTAGE  
CROSSTALK TO DUT_ FROM  
DLV_ WITH DUT_ = DHV_  
CROSSTALK TO DUT_ FROM  
DHV_ WITH DUT_ = DLV_  
7
6
1.0  
0.8  
1.0  
0.8  
V
V
= 5V  
DHV_  
DTV_  
V
V
= 0  
= 1.5V  
DUT_ = DTV_  
DLV_  
DTV_  
= 1.5V  
V
V
= -1.5V  
= +6.5V  
DLV_  
DHV_  
0.6  
0.6  
5
0.4  
4
0.4  
3
0.2  
0.2  
2
0
0
1
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
-1  
-2  
-3  
NORMALIZED AT V  
= 5V  
NORMALIZED AT V  
= 0  
DHV_  
DLV_  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
V
V
V
DHV_  
DUT_  
DLV_  
CROSSTALK TO DUT_ FROM  
DTV_ WITH DUT_ = DHV_  
CROSSTALK TO DUT_ FROM  
DTV_ WITH DUT_ = DLV_  
CROSSTALK TO DUT_ FROM  
DLV_ WITH DUT_ = DTV_  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
V
V
= 6.5V  
= 0  
V
V
= 6.5V  
DHV_  
DTV_  
V
V
= 3V  
= 0  
DHV_  
DLV_  
DHV_  
DLV_  
= 1.5V  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
NORMALIZED AT V  
= 1.5V  
NORMALIZED AT V  
= 1.5V  
NORMALIZED AT V  
= 0  
DTV_  
DTV_  
DLV_  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
V
V
V
DLV_  
DTV_  
DTV_  
_______________________________________________________________________________________  
9
Quad, Low-Power, 1200Mbps  
ATE Driver  
Typical Operating Characteristics (continued)  
(V = +9.75V, V = -4.75V, V = 0, T = +85°C, unless otherwise noted.)  
CC  
EE  
GS  
J
CROSSTALK TO DUT_ FROM  
DHV_ WITH DUT_ = DTV_  
DRIVER GAIN vs. TEMPERATURE  
DRIVER OFFSET vs. TEMPERATURE  
1.0  
1.0012  
1.0010  
1.0008  
1.0006  
1.0004  
1.0002  
1.0000  
0.9998  
0.9996  
0.9994  
0.9992  
4
3
V
V
= 1.5V  
= -1.5V  
DTV_  
DLV_  
0.8  
0.6  
2
0.4  
1
0.2  
0
0
-1  
-2  
-3  
-4  
-5  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
NORMALIZED AT V  
= 3V  
NORMALIZED AT T = +85°C  
DHV_  
J
NORMALIZED AT T = +85°C  
J
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
(V)  
60 65 70 75 80 85 90 95 100  
60 65 70 75 80 85 90 95 100  
V
DIE TEMPERATURE (°C)  
DIE TEMPERATURE (°C)  
DHV_  
HIGH-IMPEDANCE CURRENT  
vs. DUT_ VOLTAGE  
LOW-LEAKAGE CURRENT  
vs. DUT_ VOLTAGE  
DRIVE 1V TO  
LOW-LEAKAGE TRANSITION  
2
1
-0.50  
-0.55  
-0.60  
-0.65  
-0.70  
-0.75  
-0.80  
-0.85  
-0.90  
-0.95  
-1.00  
-1.05  
-1.10  
R = 50Ω  
L
L
C = 10pF  
0
-1  
-2  
-3  
-4  
-5  
0
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
0
t = 1ns/div  
V
(V)  
V
(V)  
DUT_  
DUT_  
LOW-LEAKAGE TO  
DRIVE 1V TRANSITION  
DRIVER REFERENCE CURRENT  
vs. DRIVER REFERENCE VOLTAGE  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
R = 50Ω  
L
L
C = 10pF  
DHV_  
DLV_  
DTV_  
0
0
t = 1ns/div  
-1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5  
REFERENCE VOLTAGE (V)  
10 ______________________________________________________________________________________  
Quad, Low-Power, 1200Mbps  
ATE Driver  
Typical Operating Characteristics (continued)  
(V = +9.75V, V = -4.75V, V = 0, T = +85°C, unless otherwise noted.)  
CC  
EE  
GS  
J
SUPPLY CURRENT I vs.  
EE  
SUPPLY CURRENT I  
vs. VOLTAGE CURRENT V  
CC  
VOLTAGE CURRENT V  
EE  
CC  
200  
195  
190  
185  
180  
175  
170  
165  
160  
-190  
-195  
-200  
-205  
-210  
-215  
-220  
-225  
-230  
A
B
A
B
9.5  
9.7  
= V  
9.9  
10.1  
10.3  
10.5  
-5.25  
-5.10  
-4.95  
-4.80  
DHV_  
-4.65  
-4.50  
V
(V)  
V
(V)  
CC  
EE  
A: V  
= 1.5V, V  
= 3V, V  
= 0,  
A: V  
= V  
= 1.5V, V  
= 3V, V  
= 0,  
DUT_  
L
DTV_  
DHV_  
DLV_  
DUT_  
DTV_  
DLV_  
R = 10k, V = -4.75V  
B: SAME AS A EXCEPT DRIVER IN HIGH-IMPEDANCE  
R = 10k, V = 9.75V  
EE  
L CC  
B: SAME AS A EXCEPT DRIVER IN HIGH-IMPEDANCE  
MODE  
MODE  
DRIVER OUTPUT-VOLTAGE ERROR  
vs. GROUND-SENSE VOLTAGE  
SUPPLY CURRENT I vs. TEMPERATURE  
SUPPLY CURRENT I vs. TEMPERATURE  
CC  
EE  
8
6
210  
-200  
-205  
-210  
-215  
-220  
-225  
-230  
-235  
-240  
V
= V  
= 1.5V, V  
CC  
= 3V, V  
= 0,  
V
= V  
= 1.5V, V  
= 3V, V  
= 0,  
DUT_  
DTV_  
DHV_  
EE  
DLV_  
DUT_  
DTV_  
DHV_  
DLV_  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
R = 10k, V = 9.75V, V = -4.75V  
L
R = 10k, V = 9.75V, V = -4.75V  
L CC EE  
V
= V  
= 3V  
DUT_  
DHV_  
4
2
0
-2  
-4  
-6  
-8  
-10  
-12  
V
= V  
= -1.5V  
DUT_  
DLV_  
V
= 1.5V, R = 10kΩ,  
L
DTV_  
NORMALIZED AT V = 0  
GS  
-250  
-150  
-50  
V
50  
150  
250  
80  
85  
90  
TEMPERATURE (°C)  
95  
100  
80  
85  
90  
TEMPERATURE (°C)  
95  
100  
(mV)  
GS  
______________________________________________________________________________________ 11  
Quad, Low-Power, 1200Mbps  
ATE Driver  
Pin Description  
PIN  
NAME  
FUNCTION  
Channel 3/4 Termination Voltage Input Differential Inputs, DATA3, NDATA3, RCV3, NRCV3, DATA4,  
NDATA4, RCV4, and NRCV4. See the Functional Diagram.  
1
V 34  
T
Channel 4 Multiplexer Control Inputs. Differential controls DATA4 and NDATA4 select driver 4s input  
from DHV4 or DLV4. Drive DATA4 above NDATA4 to select DHV4. Drive NDATA4 above DATA4 to  
select DLV4. See Table 1.  
2
3
DATA4  
NDATA4  
Channel 4 Multiplexer Control Inputs. Differential controls RCV4 and NRCV4 place channel 4 into  
receive mode. Drive RCV4 above NRCV4 to place channel 4 into receive mode. Drive NRCV4 above  
RCV4 to place channel 4 into drive mode. See Table 1.  
Channel 3 Multiplexer Control Inputs. Differential controls DATA3 and NDATA3 select driver 3s input  
from DHV3 or DLV3. Drive DATA3 above NDATA3 to select DHV3. Drive NDATA3 above DATA3 to  
select DLV3. See Table 1.  
Channel 3 Multiplexer Control Inputs. Differential controls RCV3 and NRCV3 place channel 3 into  
receive mode. Drive RCV3 above NRCV3 to place channel 3 into receive mode. Drive NRCV3 above  
RCV3 to place channel 3 into drive mode. See Table 1.  
4
5
6
7
8
9
RCV4  
NRCV4  
DATA3  
NDATA3  
RCV3  
NRCV3  
10, 27, 54, 55,  
60, 61, 65, 66,  
71, 72, 99  
V
Negative Power-Supply Input  
Ground Connection  
EE  
11, 28, 51, 56,  
62, 64, 70, 75,  
98  
GND  
12  
13  
RST  
CS  
Reset Input. Asynchronous reset input for the serial register. RST is active low. See Figure 3.  
Chip-Select Input. Serial-port activation input. CS is active low.  
Serial-Clock Input. Clock for serial port.  
14  
15  
SCLK  
DIN  
Data Input. Serial-port data input.  
16, 26, 52, 58,  
68, 74, 100  
V
Positive Power-Supply Input  
CC  
Channel 2 Multiplexer Control Inputs. Differential controls RCV2 and NRCV2 place channel 2 into  
receive mode. Drive RCV2 above NRCV2 to place channel 2 into receive mode. Drive NRCV2 above  
RCV2 to place channel 2 into drive mode. See Table 1.  
Channel 2 Multiplexer Control Inputs. Differential controls DATA2 and NDATA2 select driver 2s input  
from DHV2 or DLV2. Drive DATA2 above NDATA2 to select DHV2. Drive NDATA2 above DATA2 to  
select DLV2. See Table 1.  
Channel 1 Multiplexer Control Inputs. Differential controls RCV1 and NRCV1 place channel 1 into  
receive mode. Drive RCV1 above NRCV1 to place channel 1 into receive mode. Drive NRCV1 above  
RCV1 to place channel 1 into drive mode. See Table 1.  
17  
18  
19  
20  
21  
22  
NRCV2  
RCV2  
NDATA2  
DATA2  
NRCV1  
RCV1  
Channel 1 Multiplexer Control Inputs. Differential controls DATA1 and NDATA1 select driver 1s input  
from DHV1 or DLV1. Drive DATA1 above NDATA1 to select DHV1. Drive NDATA1 above DATA1 to  
select DLV1. See Table 1.  
23  
24  
NDATA1  
DATA1  
Channel 1/2 Termination Voltage Input Differential Inputs, DATA1, NDATA1, RCV1, NRCV1, DATA2,  
NDATA2, RCV2, and NRCV2. See the Functional Diagram.  
25  
V 12  
T
2938, 43, 44,  
45, 49, 50, 57,  
69, 76, 77, 81,  
82, 83, 8897  
N.C.  
No Connection. Leave unconnected.  
12 ______________________________________________________________________________________  
Quad, Low-Power, 1200Mbps  
ATE Driver  
Pin Description (continued)  
PIN  
39  
40  
41  
42  
46  
47  
48  
53  
59  
63  
67  
73  
78  
79  
80  
84  
85  
86  
87  
NAME  
DHV2  
DLV2  
DTV2  
GS  
FUNCTION  
Channel 2 Driver High Voltage Input  
Channel 2 Driver Low Voltage Input  
Channel 2 Driver Termination Voltage Input  
Ground-Sense Voltage Input for All Channels  
Channel 1 Driver High Voltage Input  
DHV1  
DLV1  
DTV1  
DUT1  
DUT2  
TEMP  
DUT3  
DUT4  
DTV4  
DLV4  
DHV4  
THR  
Channel 1 Driver Low Voltage Input  
Channel 1 Driver Termination Voltage Input  
Channel 1 Device-Under-Test Input/Output  
Channel 2 Device-Under-Test Input/Output  
Temperature Monitor Output, One per Device  
Channel 3 Device-Under-Test Input/Output  
Channel 4 Device-Under-Test Input/Output  
Channel 4 Driver Termination Voltage Input  
Channel 4 Driver Low Voltage Input  
Channel 4 Driver High Voltage Input  
Single-Ended Logic Threshold Reference for All Channels  
Channel 3 Driver Termination Voltage Input  
Channel 3 Driver Low Voltage Input  
DTV3  
DLV3  
DHV3  
Channel 3 Driver High Voltage Input  
2) THR on the MAX9977 is in the position of CHV3 on  
Detailed Description  
the MAX9963/MAX9965. If CHV3 is being controlled  
by a DAC that is referenced to ground sense, reas-  
sign this input to a reference that is not affected by  
changes in ground sense.  
The MAX9977 low-power, high-speed, pin-electronics  
IC includes four three-level pin drivers. The drivers fea-  
ture a -1.5V to +6.5V operating range and high-speed  
operation, include high-impedance and active-termina-  
tion (3rd-level drive) modes, and are highly linear even  
at low voltage swings.  
3) MAX9977AK DRV_ and RCV_ inputs have center  
taps V 12 and V 34 for the internal termination  
T
T
resistors in the positions of V  
and V  
of  
CCO34  
CCO12  
Optional internal resistors at the high-speed inputs pro-  
vide compatibility with CML interfaces and reduce the  
discrete component count on the circuit board. Connect  
the MAX9963/MAX9965, the comparator-output  
resistor termination points. Bias these termination  
points accordingly.  
the termination voltage inputs, V 12 and V 34, to a volt-  
T
T
age appropriate for the drive circuits to terminate the  
Output Driver  
The driver input is a high-speed multiplexer that selects  
one of three voltage inputs: DHV_, DLV_, or DTV_. This  
switching is controlled by high-speed inputs DATA_  
and RCV_ and mode-control bit TMSEL (Table 1).  
multiplexer control inputs (see the Functional Diagram).  
A 3-wire, low-voltage CMOS-compatible serial interface  
programs the low-leakage and tri-state/terminate opera-  
tional configurations of the MAX9977.  
DUT_ can be toggled at high speed between the buffer  
output and high-impedance mode, or it can be placed  
into low-leakage mode (Figure 2, Table 1). High-speed  
input RCV_ and mode-control bits TMSEL and LLEAK  
control the switching. In high-impedance mode, the  
bias current at DUT_ is less than 3µA over the -1.5V to  
+6.5V range, while the node maintains its ability to track  
Compatibility with the MAX9963  
and MAX9965  
To upgrade from the MAX9963 or MAX9965 to the  
MAX9977 take these steps:  
1) GS on the MAX9977 is in the position of CHV2 on the  
MAX9963/MAX9965. Program CHV2 to zero volts.  
______________________________________________________________________________________ 13  
Quad, Low-Power, 1200Mbps  
ATE Driver  
HIGH-SPEED REFERENCE  
INPUTS  
INPUTS  
0
1
DLV_  
0
1
47Ω  
BUFFER  
DUT_  
DHV_  
DTV_  
0
DATA_  
RCV_  
2
SERIAL  
INTERFACE  
MAX9977  
Figure 2. Simplified Driver Channel  
Serial Interface and  
Device Control  
Table 1. Driver Logic  
INTERNAL  
EXTERNAL  
A CMOS-compatible serial interface controls the  
MAX9977 modes (Figure 3 and Table 2). Control data  
flow into an 8-bit shift register (MSB first) and are  
latched when CS is taken high, as shown in Figure 4.  
Latches contain 2 control bits for each channel of the  
MAX9977. Data from the shift register are then loaded  
to any or all of a group of four quad latches as deter-  
mined by bits D4 and D7. The control bits, in conjunc-  
tion with external inputs DATA_ and RCV_, manage the  
features of each channel. RST sets LLEAK = 1 for all  
channels, forcing them into low-leakage mode. All other  
bits are unaffected. At power-up, hold RST low until  
CONTROL  
DRIVER  
OUTPUT  
CONNECTIONS  
REGISTER  
DATA  
RCV  
TMSEL LLEAK  
1
0
0
0
X
X
0
0
Drive to DHV_  
Drive to DLV_  
Drive to DTV_  
(term mode)  
X
1
1
0
High-impedance mode  
(high-Z)  
X
X
1
X
0
X
0
1
Low-leakage mode  
V
and V have stabilized.  
EE  
CC  
Analog control input THR sets the threshold for the  
input logic, allowing operation with CMOS logic as low  
as 0.9V. Leaving THR unconnected results in a nominal  
threshold of 1.25V from an internal reference, providing  
compatibility with 2.5V to 3.3V logic.  
high-speed signals. In low-leakage mode, the bias cur-  
rent at DUT_ is further reduced to less than 50nA, and  
signal tracking slows. See the Low-Leakage Mode,  
LLEAK section for more details.  
The nominal driver output resistance is 47. Contact  
the factory for custom resistance values within the 45Ω  
to 51range.  
Low-Leakage Mode, LLEAK  
Asserting LLEAK through the serial port or with RST  
places the MAX9977 into a low-leakage state (see the  
Electrical Characteristics table). This mode is convenient  
14 ______________________________________________________________________________________  
Quad, Low-Power, 1200Mbps  
ATE Driver  
SCLK  
DIN  
CS  
SHIFT REGISTER  
0
1
2
3
4
5
6
7
MAX9977  
ENABLE  
F/F  
F/F  
F/F  
F/F  
3
7
3
6
3
5
3
4
Q
D
D
Q
D
D
ENABLE  
SET  
ENABLE  
SET  
ENABLE  
SET  
ENABLE  
SET  
RST  
F/F  
D
F/F  
D
F/F  
D
F/F  
D
0
6
0
7
0
5
0
4
Q
Q
Q
Q
ENABLE  
ENABLE  
ENABLE  
ENABLE  
20k  
V
= 1.25V  
THR  
THRINT  
TMSEL  
TMSEL  
TMSEL  
TMSEL  
LLEAK  
LLEAK  
LLEAK  
LLEAK  
CHANNEL 1 MODE BITS  
CHANNEL 2 MODE BITS  
CHANNEL 3 MODE BITS  
CHANNEL 4 MODE BITS  
Figure 3. Serial Interface  
Table 2. Serial Interface Bit Description  
BIT STATE AFTER  
RESET AND AT  
POWER-UP  
BIT  
NAME  
DESCRIPTION  
Channel 1 Write Enable. Set to 1 to update the control byte for channel 1. Set to 0 to make  
no changes to channel 1.  
D7  
D6  
D5  
CH1  
CH2  
CH3  
CH4  
0
0
0
0
Channel 2 Write Enable. Set to 1 to update the control byte for channel 2. Set to 0 to make  
no changes to channel 2.  
Channel 3 Write Enable. Set to 1 to update the control byte for channel 3. Set to 0 to make  
no changes to channel 3.  
Channel 4 Write Enable. Set to 1 to update the control byte for channel 4. Set to 0 to make  
no changes to channel 4.  
D4  
D3  
LLEAK Low-Leakage Select. Set to 1 to put driver in low-leakage mode. Set to 0 for normal operation.  
1
X
X
0
D2 UNUSED  
D1 UNUSED  
These bits are not used. Their logic state has no effect.  
D0  
TMSEL Termination Select. Driver termination select bit.  
______________________________________________________________________________________ 15  
Quad, Low-Power, 1200Mbps  
ATE Driver  
t
CH  
SCLK  
t
t
CSS0  
t
CL  
CSS1  
t
CSH1  
CS  
t
t
CSWH  
DH  
t
DS  
DIN  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 4. Serial-Interface Timing  
for making IDDQ and PMU measurements without the  
need for an output disconnect relay. LLEAK is pro-  
grammed independently for each channel.  
Heat Removal  
Under normal circumstances, the MAX9977 requires  
heat removal through the exposed pad by use of an  
When DUT_ is driven with a high-speed signal while  
LLEAK is asserted, the leakage current momentarily  
increases beyond the limits specified for normal opera-  
tion. The low-leakage recovery specification in the  
Electrical Characteristics table indicates device behav-  
ior under this condition.  
external heat sink. The exposed pad is electrically at V  
EE  
potential, and must be either connected to V or isolat-  
EE  
ed.  
θJC of the exposed-pad package is approximately  
1°C/W to 2°C/W. Die temperature is thus highly depen-  
dent upon the heat removal techniques used in the  
application. Maximum total power dissipation occurs  
under the following conditions:  
GS Input  
The ground-sense input, GS, provides a ground refer-  
ence for the mux inputs. Connect GS to the ground of  
the DAC circuits driving DHV_, DTV_, and DLV_.  
V  
= +10.5V  
CC  
V = -5.25V  
EE  
To maintain an 8V range in the presence of GS variations,  
GS offsets DHV_, DLV_, and DTV_ ranges. Adequate  
supply headroom must be maintained in the presence of  
GS variations. Ensure:  
V  
= 6.5V, DATA = HIGH  
DHV_  
Short-circuit current = 60mA  
Under these extreme conditions, the total power dissi-  
pation is 5.8W. If the die temperature cannot be main-  
tained at an acceptable level under these conditions,  
use software clamping to limit the load output currents  
to lower values and/or reduce the supply voltages.  
V
9.5V + Max (V  
)
CC  
GS  
V
EE  
-4.5V + Min (V  
)
GS  
Temperature Monitor  
Power-Supply Considerations  
The MAX9977 supplies a temperature output signal,  
TEMP, that asserts a 3.33V nominal output voltage at a  
+70°C (343K) die temperature. The output voltage  
changes proportionally with temperature at 10mV/°C.  
Bypass all V  
and V power input pins with 0.01µF  
EE  
CC  
capacitors, and use bulk bypassing of at least 10µF on  
each supply.  
16 ______________________________________________________________________________________  
Quad, Low-Power, 1200Mbps  
ATE Driver  
Pin Configuration  
TOP VIEW  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
V 34  
T
1
2
75 GND  
74  
73 DUT4  
DATA4  
NDATA4  
RCV4  
V
CC  
3
4
72  
71  
V
V
EE  
EE  
MAX9977  
NRCV4  
DATA3  
NDATA3  
RCV3  
5
6
70 GND  
69 N.C.  
7
8
68  
V
CC  
NRCV3  
9
67 DUT3  
V
10  
66  
65  
V
V
EE  
EE  
EE  
GND 11  
RST 12  
CS 13  
64 GND  
63 TEMP  
62 GND  
SCLK 14  
DIN 15  
61  
60  
V
V
EE  
EE  
V
CC  
16  
NRCV2 17  
RCV2 18  
59 DUT2  
58  
V
CC  
NDATA2 19  
DATA2 20  
NRCV1 21  
RCV1 22  
57 N.C.  
56 GND  
55  
54  
V
V
EE  
EE  
NDATA1 23  
DATA1 24  
53 DUT1  
52  
51 GND  
V
CC  
V 12 25  
T
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
TQFP-IDP  
Selector Guide  
Package Information  
For the latest package outline information, go to  
www.maxim-ic.com/packages.  
INTERNAL DATA_ AND  
HEAT  
PART  
RCV_ TERMINATIONS EXTRACTION  
MAX9977AKCCQ  
MAX9977ADCCQ*  
100with center tap  
Top  
Top  
None  
*Future productcontact factory for availability.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX9977AKCCQ-TD

PWM Based Peripheral Driver, CMOS, PQCC100, PLASTIC, QFN-100
MAXIM

MAX9979KCTK+TD

D/A Converter, 1 Func, Serial Input Loading, 20us Settling Time, 10 X 10 MM, 1 MM HEIGHT, ROHS COMPLIANT, TQFN-68
MAXIM

MAX997ESA

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V,Beyond-the-Rails Comparators
MAXIM

MAX997ESA+

Comparator, 1 Func, 2000uV Offset-Max, 4.5ns Response Time, CMOS, PDSO8, 0.150 INCH, LEAD FREE, SOIC-8
MAXIM

MAX997ESA+T

暂无描述
MAXIM

MAX997ESA-T

Comparator, 1 Func, 2000uV Offset-Max, 4.5ns Response Time, CMOS, PDSO8, 0.150 INCH, MS-012AA, SOIC-8
MAXIM

MAX997EUA

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V,Beyond-the-Rails Comparators
MAXIM

MAX997EUA+

暂无描述
MAXIM

MAX997EUA+T

Comparator, 1 Func, 4500uV Offset-Max, 4.5ns Response Time, CMOS, PDSO8, LEAD FREE, UMAX-8
MAXIM

MAX997EUA-T

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators
MAXIM

MAX997EUT-T

Comparator, 1 Func, PDSO6, SOT-23, 6 PIN
MAXIM

MAX998

Single/Dual/Quad, SOT23, Single-Supply, High-Speed, Low-Power Comparators
MAXIM