MAX9995ETX+TD [MAXIM]

Double Balanced Mixer, 1700MHz Min, 2200MHz Max, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220, TQFN-36;
MAX9995ETX+TD
型号: MAX9995ETX+TD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Double Balanced Mixer, 1700MHz Min, 2200MHz Max, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220, TQFN-36

信息通信管理
文件: 总13页 (文件大小:359K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3383; Rev 0; 8/04  
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
General Description  
Features  
1700MHz to 2200MHz RF Frequency Range  
The MAX9995 dual, high-linearity, downconversion  
mixer provides 6.1dB gain, +25.6dBm IIP3, and 9.8dB  
NF for UMTS/WCDMA, DCS, and PCS base-station  
applications. The MAX9995 is ideal for low-side LO  
injection. (For a mixer variant optimized for high-side  
LO injection, contact the factory.)  
1400MHz to 2000MHz LO Frequency Range  
(MAX9995)  
1900MHz to 2400MHz LO Frequency Range  
(Contact Factory)  
This device integrates baluns in the RF and LO ports, a  
dual-input LO selectable switch, an LO buffer, two double-  
balanced mixers, and a pair of differential IF output ampli-  
fiers. The MAX9995 requires a typical LO drive of 0dBm  
and supply current is guaranteed to be below 380mA.  
40MHz to 350MHz IF Frequency Range  
6.1dB Conversion Gain  
+25.6dBm Input IP3  
9.8dB Noise Figure  
These devices are available in a compact 36-pin thin  
QFN package (6mm × 6mm) with an exposed paddle.  
Electrical performance is guaranteed over the extended  
66dBc 2RF–2LO Spurious Rejection at  
P
RF  
= -10dBm  
Dual Channels Ideal for Diversity Receiver  
temperature range, from T = -40°C to +85°C.  
C
Applications  
Integrated LO Buffer  
Applications  
PHS/PAS Base Stations  
Integrated RF and LO Baluns for Single-Ended  
UMTS/WCDMA and  
cdma2000® 3G Base  
Stations  
Inputs  
Fixed Broadband  
Wireless Access  
Low -3dBm to +3dBm LO Drive  
Built-In SPDT LO Switch with 50dB LO1–LO2  
DCS1800 and EDGE  
Base Stations  
Wireless Local Loop  
Private Mobile Radio  
Military Systems  
Isolation and 50ns Switching Time  
44dB Channel-to-Channel Isolation  
PCS1900 and EDGE  
Base Stations  
Pin Configuration/  
Functional Diagram  
Ordering Information  
PART  
MAX9995ETX  
MAX9995ETX-T  
TEMP RANGE  
PIN-PACKAGE  
TOP VIEW  
T ** = -40°C to +85°C 36 Thin QFN-EP*  
C
T
= -40°C to +85°C 36 Thin QFN-EP*  
C
C
36 Thin QFN-EP*  
= -40°C to +85°C  
1
27  
MAX9995ETX+D  
T
RFMAIN  
LO2  
lead free, bulk  
MAX9995  
2
3
4
5
6
7
8
9
26  
TAPMAIN  
GND  
GND  
36 Thin QFN-EP*  
= -40°C to +85°C  
MAX9995ETX+TD  
T
C
lead free, T/R  
25  
24  
23  
22  
21  
20  
19  
GND  
*EP = Exposed pad.  
V
CC  
GND  
**T = Case temperature.  
C
GND  
LOSEL  
GND  
V
CC  
V
CC  
GND  
TAPDIV  
RFDIV  
EXPOSED  
PADDLE  
GND  
LO1  
6mm x 6mm THIN QFN (EXPOSED PADDLE)  
EXPOSED PADDLE ON THE BOTTOM OF THE PACKAGE  
cdma2000 is a registered trademark of Telecommunications  
Industry Association.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
........................................................................-0.3V to +5.5V  
Continuous Power Dissipation (T = +70°C)  
A
LO1, LO2 to GND ............................................................... 0.3V  
IFM_, IFD_, IFM_SET, IFD_SET, LOSEL,  
36-Lead Thin QFN (derate 26mW/°C  
above +70°C).............................................................2100mW  
LO_ADJ_M, LO_ADJ_D to GND.............-0.3V to (V  
+ 0.3V)  
θ
θ
.................................................................................+38°C/W  
................................................................................+7.4°C/W  
CC  
JA  
JC  
RFMAIN, RFDIV, and LO_ Input Power..........................+20dBm  
RFMAIN, RFDIV Current (RF is DC shorted to GND through  
balun)..................................................................................50mA  
Operating Temperature Range (Note A) ....T = -40°C to +85°C  
C
Maximum Junction Temperature Range..........................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Note A: T is the temperature on the exposed paddle of the package.  
C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, no input RF or LO signals applied, V  
= 4.75V to 5.25V, T = -40°C to +85°C. Typical values are at V  
C CC  
CC  
= 5.0V, T = +25°C, unless otherwise noted.)  
C
PARAMETER  
Supply Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
5
MAX  
5.25  
380  
90  
UNITS  
V
4.75  
V
CC  
CC  
Total supply current  
332  
82  
V
V
(pin 16)  
(pin 30)  
CC  
CC  
Supply Current  
I
97  
110  
90  
mA  
IFM+/IFM- (total of both)  
IFD+/IFD- (total of both)  
70  
70  
90  
LOSEL Input High Voltage  
LOSEL Input Low Voltage  
LOSEL Input Current  
V
2
V
V
IH  
V
0.8  
IL  
I
and I  
-10  
+10  
µA  
IL  
IH  
AC ELECTRICAL CHARACTERISTICS  
(Typical Application Circuit, V  
= 4.75V to 5.25V, RF and LO ports are driven from 50sources, P  
= -3dBm to +3dBm, f  
=
=
CC  
LO  
RF  
1700MHz to 2200MHz, f = 1400MHz to 2000MHz, f = 200MHz, with f > f , T = -40°C to +85°C. Typical values are at V  
LO  
IF  
RF  
LO  
C
CC  
5.0V, P = 0dBm, f = 1900MHz, f = 1700MHz, f = 200MHz, and T = +25°C, unless otherwise noted.) (Notes 1, 2)  
LO  
RF  
LO  
IF  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1700  
1400  
1900  
TYP  
MAX UNITS  
RF Frequency  
f
(Note 7)  
(Note 7)  
2200  
2000  
2400  
MHz  
MHz  
MHz  
RF  
LO Frequency  
f
LO  
(Contact factory) (Note 7)  
Meeting RF and LO frequency ranges;  
IF matching components affect the IF  
frequency range (Note 7)  
IF Frequency  
f
IF  
40  
350  
MHz  
f
RF  
f
RF  
f
RF  
= 1710MHz to 1875MHz  
= 1850MHz to 1910MHz  
= 2110MHz to 2170MHz  
6
Conversion Gain  
G
6.2  
6.1  
dB  
C
2
_______________________________________________________________________________________  
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
AC ELECTRICAL CHARACTERISTICS (continued)  
(Typical Application Circuit, V  
= 4.75V to 5.25V, RF and LO ports are driven from 50sources, P  
= -3dBm to +3dBm, f  
=
=
CC  
LO  
RF  
1700MHz to 2200MHz, f = 1400MHz to 2000MHz, f = 200MHz, with f > f , T = -40°C to +85°C. Typical values are at V  
LO  
IF  
RF  
LO  
C
CC  
5.0V, P = 0dBm, f = 1900MHz, f = 1700MHz, f = 200MHz, and T = +25°C, unless otherwise noted.) (Notes 1, 2)  
LO  
RF  
LO  
IF  
C
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
f
RF  
f
RF  
f
RF  
= 1710MHz to 1875MHz  
0.5  
1
V
= 5.0V,  
= +25°C,  
= 0dBm,  
= -10dBm  
CC  
T
C
Gain Variation from Nominal  
P
P
= 1850MHz to 1910MHz  
= 2110MHz to 2170MHz  
0.5  
0.5  
1
1
dB  
LO  
RF  
(Note 3)  
Gain Variation with Temperature  
Noise Figure  
0.75  
9.7  
dB  
dB  
f
RF  
f
RF  
f
RF  
= 1710MHz to 1875MHz  
= 1850MHz to 1910MHz  
= 2110MHz to 2170MHz  
No blockers  
present  
NF  
9.8  
9.9  
8dBm blocker tone applied to RF port at  
Noise Figure (with Blocker)  
2000MHz, f = 1900MHz, f = 1710MHz,  
22  
dB  
RF  
LO  
P
= -3dBm  
LO  
Input 1dB Compression Point  
P
(Note 3)  
9.5  
23  
12.6  
25.6  
dBm  
dBm  
1dB  
Input Third-Order Intercept Point  
IIP3  
(Notes 3, 4)  
f
f
f
= 1900MHz,  
= 1700MHz,  
RF  
P
P
P
P
= -10dBm  
= -5dBm  
= -10dBm  
= -5dBm  
66  
61  
88  
78  
RF  
RF  
RF  
RF  
2RF-2LO Spur Rejection  
3RF-3LO Spur Rejection  
2 x 2  
3 x 3  
dBc  
dBc  
LO  
= 1800MHz (Note 3)  
SPUR  
f
f
f
= 1900MHz,  
= 1700MHz,  
= 1766.7MHz (Note 3)  
RF  
70  
60  
LO  
SPUR  
Maximum LO Leakage at RF Port  
Maximum 2LO Leakage at RF Port  
Maximum LO Leakage at IF Port  
Minimum RF to IF Isolation  
LO1-LO2 Isolation  
f
f
f
f
= 1400MHz to 2000MHz  
= 1400MHz to 2000MHz  
= 1400MHz to 2000MHz  
-29  
-17  
-25  
37  
dBm  
dBm  
dBm  
dB  
LO  
LO  
LO  
RF  
= 1700MHz to 2200MHz, f = 200MHz  
IF  
P
= 0dBm, P  
= 0dBm (Note 5)  
40  
40  
50.5  
dB  
LO1  
LO2  
P
= -10dBm, RFMAIN (RFDIV)  
RF  
power measured at IFDIV (IFMAIN),  
relative to IFMAIN (IFDIV),  
Minimum Channel-to-Channel  
Isolation  
44  
dB  
all unused parts terminated at 50  
LO Switching Time  
RF Return Loss  
50% of LOSEL to IF settled to within 2°  
50  
14  
18  
21  
21  
ns  
dB  
LO port selected  
LO Return Loss  
IF Return Loss  
dB  
dB  
LO port unselected  
LO driven at 0dBm, RF terminated into 50Ω  
Note 1: Guaranteed by design and characterization.  
Note 2: All limits reflect losses of external components. Output measurements taken at IF outputs of Typical Application Circuit.  
Note 3: Production tested.  
Note 4: Two tones 3MHz spacing, -5dBm per tone at RF port.  
Note 5: Measured at IF port at IF frequency. f  
and f  
are offset by 1MHz.  
LO1  
LO2  
Note 6: IF return loss can be optimized by external matching components.  
Note 7: Operation outside this frequency band is possible but has not been characterized. See the Typical Operating Characteristics.  
_______________________________________________________________________________________  
3
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics  
(Typical Application Circuit, V  
= 5.0V, P = -5dBm, P = 0dBm, LO is low-side injected for a 200MHz IF, T = +25°C.)  
CC  
RF  
LO  
C
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
CONVERSION GAIN vs. RF FREQUENCY  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
6.5  
6.4  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
6.5  
6.4  
6.3  
6.2  
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
P
= -3dBm to +3dBm  
LO  
V
= 4.75V  
CC  
T
= -20°C  
C
T
= +25°C  
C
V
= 5.0V  
CC  
T
= +85°C  
C
V
= 5.25V  
1800  
CC  
1700  
1800  
1900  
2000  
2100  
2200  
1700  
1800  
1900  
2000  
2100  
2200  
1700  
1900  
2000  
2100  
2200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
INPUT IP3 vs. RF FREQUENCY  
26.8  
26.4  
26.0  
25.6  
25.2  
24.8  
24.4  
26.6  
26.4  
26.2  
26.0  
25.8  
25.6  
25.4  
25.2  
27.0  
26.6  
26.2  
25.8  
25.4  
25.0  
24.6  
T
= +85°C  
C
P
= 0dBm  
LO  
V
= 5.25V  
CC  
P
= +3dBm  
LO  
T
= -20°C  
C
T
= +25°C  
C
V
= 4.75V  
CC  
V
= 5.0V  
CC  
P
= -3dBm  
1900  
LO  
1700  
1800  
1900  
2000  
2100  
2200  
1700  
1800  
2000  
2100  
2200  
1700  
1800  
1900  
2000  
2100  
2200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
2RF - 2LO vs. FUNDAMENTAL FREQUENCY  
2RF - 2LO vs. FUNDAMENTAL FREQUENCY  
2RF - 2LO vs. FUNDAMENTAL FREQUENCY  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
66  
64  
62  
60  
58  
56  
54  
52  
50  
66  
64  
62  
60  
58  
56  
54  
52  
50  
P
= -5dBm  
RF  
P
= -5dBm  
P
= -5dBm  
RF  
RF  
T
= +85°C  
C
P
= -3dBm  
LO  
V
= 4.75V  
CC  
P
= 0dBm  
V
= 5.25V  
CC  
LO  
V
= 5.0V  
T
= +25°C  
CC  
C
P
= +3dBm  
LO  
T
= -20°C  
C
1700  
1800  
1900  
2000  
2100  
2200  
1700  
1800  
1900  
2000  
2100  
2200  
1700  
1800  
1900  
2000  
2100  
2200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
4
_______________________________________________________________________________________  
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 5.0V, P = -5dBm, P = 0dBm, LO is low-side injected for a 200MHz IF, T = +25°C.)  
CC  
RF  
LO  
C
3RF - 3LO vs. FUNDAMENTAL FREQUENCY  
3RF - 3LO vs. FUNDAMENTAL FREQUENCY  
3RF - 3LO vs. FUNDAMENTAL FREQUENCY  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
88  
86  
84  
82  
80  
78  
76  
74  
72  
88  
86  
84  
82  
80  
78  
76  
74  
72  
P
= -5dBm  
RF  
P
= -5dBm  
P
= -5dBm  
RF  
RF  
P
= 0dBm  
V
= 5.0V  
LO  
CC  
T
= -20°C  
C
P
= -3dBm  
LO  
T
= +25°C  
C
P
= +3dBm  
LO  
V
= 5.25V  
CC  
T
= +85°C  
C
V
= 4.75V  
CC  
1700  
1800  
1900  
2000  
2100  
2200  
1700  
1800  
1900  
2000  
2100  
2200  
1700  
1800  
1900  
2000  
2100  
2200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
INPUT P  
vs. RF FREQUENCY  
1dB  
1dB  
1dB  
14.4  
14.0  
13.6  
13.2  
12.8  
12.4  
13.8  
13.7  
13.6  
13.5  
13.4  
13.3  
13.2  
13.1  
13.0  
12.9  
14.4  
14.2  
14.0  
13.8  
13.6  
13.4  
13.2  
13.0  
12.8  
12.6  
12.4  
P
= 0dBm  
LO  
V
= 5.25V  
CC  
T
= +85°C  
T
= +25°C  
C
C
V
= 5.0V  
CC  
P
= -3dBm  
LO  
P
= +3dBm  
2100  
LO  
V
= 4.75V  
1800  
CC  
T
= -20°C  
C
1700  
1800  
1900  
2000  
2100  
2200  
1700  
1800  
1900  
2000  
2200  
1700  
1900  
2000  
2100  
2200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
LO SWITCH ISOLATION vs. LO FREQUENCY  
LO SWITCH ISOLATION vs. LO FREQUENCY  
LO SWITCH ISOLATION vs. LO FREQUENCY  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
54  
53  
52  
51  
50  
49  
48  
47  
54  
53  
52  
51  
50  
49  
48  
47  
V
= 4.75V TO 5.25V  
CC  
T
= -20°C  
C
P
= -3dBm  
LO  
P
= 0dBm  
LO  
P
= +3dBm  
LO  
T
= +25°C  
C
T
= +85°C  
C
1400 1500 1600 1700 1800 1900 2000  
FREQUENCY (MHz)  
1400 1500 1600 1700 1800 1900 2000  
FREQUENCY (MHz)  
1400 1500 1600 1700 1800 1900 2000  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
5
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 5.0V, P = -5dBm, P = 0dBm, LO is low-side injected for a 200MHz IF, T = +25°C.)  
CC  
RF  
LO  
C
CHANNEL ISOLATION vs. RF FREQUENCY  
CHANNEL ISOLATION vs. RF FREQUENCY  
CHANNEL ISOLATION vs. RF FREQUENCY  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
50  
40  
30  
T
= +85°C  
T
= +25°C  
C
C
V
= 4.75V  
P
= 0dBm  
V
= 5.0V  
CC  
LO  
CC  
P
= +3dBm  
LO  
T
= -20°C  
C
P
= -3dBm  
LO  
V
= 5.25V  
CC  
1700  
1800  
1900  
2000  
2100  
2200  
1700  
1800  
1900  
2000  
2100  
2200  
1700  
1800  
1900  
2000  
2100  
2200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
LO LEAKAGE AT IF PORT vs. LO FREQUENCY  
-20  
-25  
-25  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-30  
-30  
-35  
-40  
-45  
-50  
V
= 5.25V  
CC  
P
= -3dBm  
LO  
T
= -20°C  
C
-35  
-40  
V
= 4.75V  
CC  
-45  
-50  
-55  
T
= +25°C  
C
P
= +3dBm  
P
= 0dBm  
LO  
LO  
T
= +85°C  
C
V
= 5.0V  
CC  
1400 1500 1600 1700 1800 1900 2000  
FREQUENCY (MHz)  
1400 1500 1600 1700 1800 1900 2000  
FREQUENCY (MHz)  
1400 1500 1600 1700 1800 1900 2000  
FREQUENCY (MHz)  
LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
-20  
LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
LO LEAKAGE AT RF PORT vs. LO FREQUENCY  
-20  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
V
= 4.75V TO 5.25V  
CC  
-25  
-30  
-35  
-40  
-45  
-25  
T
= -20°C  
C
-30  
-35  
P
= +3dBm  
LO  
-40  
-45  
-50  
T
= +25°C  
C
T
= +85°C  
C
P
= -3dBm  
LO  
-50  
-55  
P
= 0dBm  
LO  
1400 1500 1600 1700 1800 1900 2000  
FREQUENCY (MHz)  
1400 1500 1600 1700 1800 1900 2000  
FREQUENCY (MHz)  
1400 1500 1600 1700 1800 1900 2000  
FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 5.0V, P = -5dBm, P = 0dBm, LO is low-side injected for a 200MHz IF, T = +25°C.)  
CC  
RF  
LO  
C
RF TO IF ISOLATION vs. RF FREQUENCY  
RF TO IF ISOLATION vs. RF FREQUENCY  
RF TO IF ISOLATION vs. RF FREQUENCY  
45  
44  
43  
42  
41  
40  
39  
38  
46  
43.0  
42.5  
42.0  
41.5  
41.0  
40.5  
40.0  
39.5  
P
= -3dBm TO +3dBm  
LO  
45  
44  
T
= +85°C  
C
V
= 5.25V  
CC  
43  
42  
41  
40  
39  
38  
37  
36  
V
= 4.75V  
CC  
V
= 5.0V  
2100  
CC  
T
= +25°C  
C
T
= -20°C  
C
1700  
1800  
1900  
2000  
2100  
2200  
1700  
1800  
1900  
2000  
2100  
2200  
1700  
1800  
1900  
2000  
2200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
NOISE FIGURE vs. RF FREQUENCY  
10.5  
10.4  
10.3  
10.2  
10.1  
10.0  
9.9  
14  
13  
12  
11  
10  
9
10.2  
10.1  
10.0  
9.9  
P
= -3dBm  
LO  
V
= 5.25V  
CC  
T
= +85°C  
T
= +25°C  
P
= 0dBm  
C
C
LO  
V
= 5.0V  
CC  
9.8  
P
= +3dBm  
2000  
LO  
9.8  
8
T
= -20°C  
C
9.7  
9.7  
V
= 4.75V  
1900  
CC  
7
9.6  
9.5  
6
9.6  
1700  
1800  
2000  
2100  
2200  
1700  
1800  
1900  
2000  
2100  
2200  
1700  
1800  
1900  
2100  
2200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
LO RETURN LOSS vs. LO FREQUENCY  
(LO INPUT SELECTED)  
IF RETURN LOSS vs. IF FREQUENCY  
RF RETURN LOSS vs. RF FREQUENCY  
0
5
0
5
0
5
P
= -3dBm TO +3dBm  
LO  
10  
15  
20  
25  
30  
35  
40  
45  
10  
15  
20  
25  
30  
10  
15  
20  
25  
P
= +3dBm  
LO  
P
= 0dBm  
LO  
P
= -3dBm  
LO  
40 80 120 160 200 240 280 320 360  
FREQUENCY (MHz)  
1700  
1800  
1900  
2000  
2100  
2200  
1400 1500 1600 1700 1800 1900 2000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Operating Characteristics (continued)  
(Typical Application Circuit, V  
= 5.0V, P = -5dBm, P = 0dBm, LO is low-side injected for a 200MHz IF, T = +25°C.)  
CC  
RF  
LO  
C
LO RETURN LOSS vs. LO FREQUENCY  
(LO INPUT UN SELECTED)  
SUPPLY CURRENT vs. TEMPERATURE (T )  
C
0
5
365  
360  
P
= -3dBm TO +3dBm  
LO  
355  
350  
10  
15  
20  
25  
30  
35  
V
= 5.25V  
CC  
345  
340  
335  
330  
325  
V
= 5.0V  
CC  
V
= 4.75V  
CC  
320  
315  
310  
1400 1500 1600 1700 1800 1900 2000  
FREQUENCY (MHz)  
-20  
-5  
10  
25  
40  
55  
70  
85  
°
TEMPERATURE ( C)  
Pin Description  
PIN  
1
NAME  
FUNCTION  
Main Channel RF Input. Internally matched to 50. Requires an input DC-blocking capacitor.  
TAPMAIN Main Channel Balun Center Tap. Connect a 0.033µF capacitor from this pin to the board ground.  
RFMAIN  
2
3, 5, 7, 12, 20, 22,  
24, 25, 26, 34  
GND  
Ground  
4, 6, 10, 16, 21, 30,  
36  
Power Supply. Connect bypass capacitors as close to the pin as possible (see the Typical  
Application Circuit).  
V
CC  
8
9
TAPDIV  
RFDIV  
Diversity Channel Balun Center Tap. Connect a 0.033µF capacitor from this pin to the ground.  
Diversity Channel RF Input. Internally matched to 50. Requires an input DC-blocking capacitor.  
IF Diversity Amplifier Bias Control. Connect a 1.2kresistor from this pin to ground to set the  
bias current for the diversity IF amplifier.  
11  
IFD_SET  
Diversity Mixer Differential IF Output. Connect pullup inductors from each of these pins to V  
(see the Typical Application Circuit).  
CC  
13, 14  
15  
IFD+, IFD-  
IND_EXTD Connect a 10nH inductor from this pin to ground to increase the RF-IF and LO-IF isolation.  
LO Diversity Amplifier Bias Control. Connect a 392resistor from this pin to ground to set the  
bias current for the diversity LO amplifier.  
17  
LO_ADJ_D  
N.C.  
18, 28  
19  
No Connection. Not internally connected.  
Local Oscillator 1 Input. This input is internally matched to 50. Requires an input DC-blocking  
capacitor.  
LO1  
23  
LOSEL  
Local Oscillator Select. Set this pin to high to select LO1. Set to low to select LO2.  
8
_______________________________________________________________________________________  
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
Pin Description (continued)  
PIN  
NAME  
DESCRIPTION  
Local Oscillator 2 Input. This input is internally matched to 50. Requires an input DC-blocking  
capacitor.  
27  
LO2  
LO Main Amplifier Bias Control. Connect a 392resistor from this pin to ground to set the bias  
current for the main LO amplifier.  
29  
31  
LO_ADJ_M  
IND_EXTM Connect a 10nH inductor from this pin to ground to increase the RF-IF and LO-IF isolation.  
Main Mixer Differential IF Output. Connect pullup inductors from each of these pins to V  
(see the Typical Application Circuit).  
CC  
32, 33  
IFM-, IFM+  
IFM_SET  
GND  
IF Main Amplifier Bias Control. Connect a 1.2kresistor from this pin to ground to set the bias  
current for the main IF amplifier.  
35  
Exposed Ground Plane. This paddle affects RF performance and provides heat dissipation. The  
paddle must be connected to ground.  
Exposed Paddle  
integrated LO buffer provides a high drive level to the  
Detailed Description  
mixer core, reducing the LO drive required at the  
MAX9995’s inputs to -3dBm. The IF port incorporates a  
differential output, which is ideal for providing  
enhanced 2RF-2LO performance.  
The MAX9995 dual, high-linearity, downconversion  
mixer provides 6.1dB gain and +25.6dBm IIP3, with a  
9.8dB noise figure. Integrated baluns and matching cir-  
cuitry allow 50single-ended interfaces to the RF and  
LO ports. A single-pole, double-throw (SPDT) LO  
switch provides 50ns switching time between LO  
inputs, with 50dB LO-to-LO isolation. Furthermore, the  
Specifications are guaranteed over broad frequency  
ranges to allow for use in UMTS/WCDMA and  
2G/2.5G/3G DCS1800, PCS1900, and cdma2000 base  
stations. The MAX9995 is specified to operate over an  
RF input range of 1700MHz to 2200MHz, an LO range  
of 1400MHz to 2000MHz, and an IF range of 40MHz to  
350MHz. Operation beyond this is possible; however,  
performance is not characterized. This device can  
operate in high-side LO injection applications with an  
Table 1. Component Values  
COMPONENT  
VALUE  
DESCRIPTION  
C1, C8  
4pF  
Microwave capacitors (0402)  
Microwave capacitors (0402)  
C2, C7  
10pF  
extended LO range, but performance degrades as f  
LO  
C3, C6  
0.033µF Microwave capacitors (0603)  
continues to increase. For a device with better high-  
side performance, contact the factory. This device is  
available in a compact 6mm x 6mm, 36-pin thin QFN  
package with an exposed paddle.  
C4, C5, C14, C16  
22pF Microwave capacitors (0402)  
C9, C13, C15,  
C17, C18  
0.01µF Microwave capacitors (0402)  
RF Input and Balun  
The MAX9995’s two RF inputs (RFMAIN and RFDIV) are  
internally matched to 50, requiring no external match-  
ing components. DC-blocking capacitors are required  
as the inputs are internally DC shorted to ground  
through the on-chip baluns. Input return loss is typically  
14dB over the entire RF frequency range of 1700MHz  
to 2200MHz.  
C10, C11, C12,  
C19, C20, C21  
150pF  
330nH  
10nH  
Microwave capacitors (0603)  
Wire-wound high-Q inductors  
(0805)  
L1, L2, L4, L5  
L3, L6  
Wire-wound high-Q inductors  
(0603)  
LO Input, Switch, Buffer, and Balun  
The mixers can be used for either high-side or low-side  
injection applications with an LO frequency range of  
1400MHz to 2000MHz. For a device with an LO fre-  
quency range of 1900MHz to 2400MHz, contact the  
factory. As an added feature, the MAX9995 includes an  
1.21kΩ  
392Ω  
10Ω  
1% resistors (0402)  
1% resistors (0402)  
1% resistors (1206)  
R1, R4  
R2, R5  
R3, R6  
4:1  
(200:50)  
T1, T2  
IF baluns  
_______________________________________________________________________________________  
9
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
Typical Application Circuit  
C19  
T1  
L1  
L2  
IF MAIN OUTPUT  
V
CC  
C21  
R3  
4:1  
R1  
C20  
V
CC  
V
CC  
L3  
C18  
R2  
C17  
C1  
C16  
RFMAIN  
TAPMAIN  
GND  
LO2  
RF MAIN INPUT  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
LO2  
GND  
GND  
GND  
MAX9995  
C3  
C2  
V
CC  
V
CC  
C4  
GND  
LOSEL  
GND  
LO SELECT  
V
CC  
V
CC  
V
CC  
C5  
C6  
GND  
TAPDIV  
RFDIV  
V
CC  
C7  
C15  
EXPOSED  
PADDLE  
GND  
LO1  
RF DIV INPUT  
LO1  
C14  
C8  
V
CC  
C9  
R4  
V
CC  
R5  
C13  
L6  
C11  
T2  
L5  
L4  
V
CC  
C12  
R6  
IF DIV OUTPUT  
4:1  
C10  
10 ______________________________________________________________________________________  
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
internal LO SPDT switch that can be used for frequen-  
cy-hopping applications. The switch selects one of the  
two single-ended LO ports, allowing the external oscil-  
lator to settle on a particular frequency before it is  
switched in. LO switching time is typically less than  
50ns, which is more than adequate for virtually all GSM  
applications. If frequency hopping is not employed, set  
the switch to either of the LO inputs. The switch is con-  
trolled by a digital input (LOSEL): logic high selects  
LO1, and logic low selects LO2. LO1 and LO2 inputs  
are internally matched to 50, requiring only a 22pF  
DC-blocking capacitor.  
The IF output impedance is 200(differential). For  
evaluation, an external low-loss 4:1 (impedance ratio)  
balun transforms this impedance down to a 50single-  
ended output (see the Typical Application Circuit).  
Bias Resistors  
Bias currents for the LO buffer and the IF amplifier are  
optimized by fine tuning the resistors R1, R2, R4, and R5.  
If reduced current is required at the expense of perfor-  
mance, contact factory. If the 1% bias resistor values  
are not readily available, substitute standard 5% values.  
Layout Considerations  
A properly designed PC board is an essential part of  
any RF/microwave circuit. Keep RF signal lines as short  
as possible to reduce losses, radiation, and induc-  
tance. For the best performance, route the ground pin  
traces directly to the exposed pad under the package.  
The PC board exposed pad MUST be connected to the  
ground plane of the PC board. It is suggested that mul-  
tiple vias be used to connect this pad to the lower-level  
ground planes. This method provides a good RF/ther-  
mal-conduction path for the device. Solder the exposed  
pad on the bottom of the device package to the PC  
board. The MAX9995 Evaluation Kit can be used as a  
reference for board layout. Gerber files are available  
upon request at www.maxim-ic.com.  
A two-stage internal LO buffer allows a wide input  
power range for the LO drive. All guaranteed specifica-  
tions are for an LO signal power from -3dBm to +3dBm.  
The on-chip low-loss balun, along with an LO buffer,  
drives the double-balanced mixer. All interfacing and  
matching components from the LO inputs to the IF out-  
puts are integrated on-chip.  
High Linearity Mixers  
The core of the MAX9995 is a pair of double-balanced,  
high-performance passive mixers. Exceptional linearity  
is provided by the large LO swing from the on-chip LO  
buffer. When combined with the integrated IF ampli-  
fiers, the cascaded IIP3, 2RF-2LO rejection, and NF  
performance is typically +25.6dBm, 66dBc, and 9.8dB,  
respectively.  
Power-Supply Bypassing  
Proper voltage-supply bypassing is essential for high-  
Differential IF Output Amplifiers  
The MAX9995 mixers have an IF frequency range of  
40MHz to 350MHz. The differential, open-collector IF  
frequency circuit stability. Bypass each V  
pin with a  
CC  
capacitor as close to the pin as possible (Typical  
Application Circuit).  
output ports require external pullup inductors to V  
.
CC  
Note that these differential outputs are ideal for provid-  
ing enhanced 2RF-2LO rejection performance. Single-  
ended IF applications require a 4:1 balun to transform  
the 200differential output impedance to a 50single-  
ended output. After the balun, VSWR is typically 1.5:1.  
Exposed Pad RF/Thermal Considerations  
The exposed paddle (EP) of the MAX9995’s 36-pin thin  
QFN-EP package provides a low thermal-resistance  
path to the die. It is important that the PC board on  
which the MAX9995 is mounted be designed to con-  
duct heat from the EP. In addition, provide the EP with  
a low-inductance path to electrical ground. The EP  
MUST be soldered to a ground plane on the PC board,  
either directly or through an array of plated via holes.  
Applications Information  
Input and Output Matching  
The RF and LO inputs are internally matched to 50.  
No matching components are required. Return loss at  
each RF port is typically 14dB over the entire input  
range (1700MHz to 2200MHz), and return loss at the  
LO ports is typically 18dB (1400MHz to 2000MHz). RF  
and LO inputs require only DC-blocking capacitors for  
interfacing.  
Chip Information  
TRANSISTOR COUNT: 1414  
PROCESS: SiGe BiCMOS  
______________________________________________________________________________________ 11  
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
C
L
b
D/2  
D2/2  
k
E/2  
E2/2  
(NE-1) X  
e
C
L
E
E2  
k
L
e
(ND-1) X  
e
e
L
C
C
L
L
L1  
L
L
e
e
A
A1  
A2  
PACKAGE OUTLINE  
36, 40, 48L THIN QFN, 6x6x0.8mm  
1
E
21-0141  
2
12 ______________________________________________________________________________________  
Dual, SiGe, High-Linearity, 1700MHz to 2200MHz  
Downconversion Mixer with LO Buffer/Switch  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT FOR 0.4mm LEAD PITCH PACKAGE T4866-1.  
PACKAGE OUTLINE  
36, 40, 48L THIN QFN, 6x6x0.8mm  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
2
E
21-0141  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX9995ETX-D

Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9995ETX-T

Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9995ETX-TD

Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9995ETXT

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9995_11

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9995_13

Dual, SiGe, High-Linearity, 1700MHz to 2700MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9996

SiGe High-Linearity, 1700MHz2 2200MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9996ETP

SiGe High-Linearity, 1700MHz2 2200MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9996ETP+D

SiGe High-Linearity, 1700MHz2 2200MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9996ETP+T

Down Converter, BICMOS, 5 X 5 MM, QFN-20
MAXIM

MAX9996ETP+TD

SiGe High-Linearity, 1700MHz2 2200MHz Downconversion Mixer with LO Buffer/Switch
MAXIM

MAX9996ETP-T

SiGe High-Linearity, 1700MHz2 2200MHz Downconversion Mixer with LO Buffer/Switch
MAXIM