MAXQ611X-XXXX+ [MAXIM]

RISC Microcontroller, CMOS;
MAXQ611X-XXXX+
型号: MAXQ611X-XXXX+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

RISC Microcontroller, CMOS

微控制器 外围集成电路
文件: 总30页 (文件大小:1086K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAXQ611  
Infrared Remote Control System-On-Chip  
General Description  
Features  
®
The MAXQ611 is a low-power, 16-bit MAXQ micro-  
controller designed for low-power applications including  
universal remote controls, consumer electronics, and  
white goods. The device combines a powerful 16-bit RISC  
microcontroller and integrated peripherals including a  
universal synchronous/asynchronous receiver-transmitter  
High-Performance, Low-Power, 16-Bit RISC Core  
Internal 12MHz Oscillator Requires No External  
Components  
1.7V to 3.6V Operating Voltage  
Dedicated Pointer for Direct Read from Code Space  
16-Bit Instruction Word, 16-Bit Data Bus  
2
(USART), SPI master/slave and I C communications  
ports, along with an IR module with carrier frequency  
generation and flexible port I/O capable of multiplexed  
keypad control. An internal amplifier eliminates the need  
for external circuitry to drive the IR receiver pin.  
Memory Features  
• 80KB Flash Memory  
• 2KB Data SRAM  
Infrared Module Features  
• IR Learning Circuit  
The device provides 80KB of flash memory and 2KB of  
data SRAM.  
• Automatic IR Carrier Frequency Generation  
and Modulation  
• IR Transmit Driver with 200mA (min) Sink Current  
at 1.8V  
For the ultimate in low-power battery-operated perfor-  
mance, the device includes an ultra-low-power stop mode.  
In this mode, the minimum amount of circuitry is powered.  
Wake-up sources include external interrupts, the power-fail  
interrupt, and a timer interrupt.  
Additional Peripherals  
• Power-Fail Warning  
• Power-On Reset (POR)/Brownout Reset  
• Two 16-Bit Programmable Timers/Counters  
with Prescaler and Capture/Compare  
Applications  
Universal Remote Controls for Tablets  
Universal Remote Controls for Smartphones  
2
• SPI, I C, and USART Peripherals  
• Programmable Watchdog Timer  
• 8kHz Nanopower Ring Oscillator Wake-Up Timer  
• Up to 32 (TQFN) or 38 (Bare Die) GPIO  
Block Diagram  
Low Power Consumption  
0.15µA (typ), 2.0µA (max) in Stop Mode,  
MAXQ611  
T = +25NC, Power-Fail Monitor Disabled  
A
2.0mA (typ) at 12MHz in Active Mode  
16-BIT MAXQ  
RISC CPU  
IR DRIVER  
IR TIMER  
SPI  
REGULATOR  
80KB FLASH  
MEMORY  
VOLTAGE  
MONITOR  
Ordering Information/Selector Guide appears at end of  
data sheet.  
CLOCK  
GPIO  
2
I C  
UTILITY  
ROM  
WATCHDOG  
For documentation and recommended products to use with this part,  
refer to www.maximintegrated.com/MAXQ611.resources.  
2 x  
8kHz NANO  
RING  
2KB  
DATA SRAM  
USART  
For related parts, refer to www.maximintegrated.com/MAXQ611.related.  
16-BIT TIMER  
Note: Some revisions of this device may incorporate deviations from  
published specifications known as errata. Multiple revisions of any  
device may be simultaneously available through various sales channels.  
For information about device errata, go to: www.maximintegrated.  
com/errata.  
MAXQ is a registered trademark of Maxim Integrated Products,  
Inc.  
19-7309; Rev 0; 3/14  
MAXQ611  
Infrared Remote Control System-On-Chip  
TABLE OF CONTENTS  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Detailed Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Microprocessor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Stack Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Utility ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Watchdog Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
IR Carrier Generation and Modulation Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Carrier Generation Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
IR Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
IR Receive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Carrier Burst-Count Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
16-Bit Timers/Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Serial Peripherals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Serial Peripheral Interface (SPI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
2
I C Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
General-Purpose I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
On-Chip Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Power-Fail Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Grounds and Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Additional Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Development and Technical Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Ordering Information/Selector Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Maxim Integrated  
2  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
TABLE OF CONTENTS (continued)  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Appendix A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2
I C Serial Peripheral Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
2
I C Serial Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Serial Peripheral Interface (SPI) Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SPI Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
USART Mode 0 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
USART Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
LIST OF FIGURES  
Figure 1. IR Transmit Frequency Shifting Example (IRCFME = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 2. IR Transmit Carrier Generation and Carrier Modulator Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 3. IR Transmission Waveform (IRCFME = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 4. IR Capture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 5. Receive Burst-Count Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 6. Power-Fail Detection During Normal Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 7. Stop Mode Power-Fail Detection States with Power-Fail Monitor Enabled . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 8. Stop Mode Power-Fail Detection with Power-Fail Monitor Disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 9. Series Resistors (RS) for Protecting Against High-Voltage Spikes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 10. I2C Bus Controller Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 11. SPI Master Communication Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 12. SPI Slave Communication Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 13. USART Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
LIST OF TABLES  
Table 1. Watchdog Timer Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Table 2. USART Mode Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 3. Power-Fail Detection States During Normal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 4. Stop Mode Power-Fail Detection States with Power-Fail Monitor Enabled. . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Table 5. Stop Mode Power-Fail Detection States with Power-Fail Monitor Disabled . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Maxim Integrated  
3  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
Absolute Maximum Ratings  
(All voltages with respect to GND.)  
Operating Temperature Range........................... -20°C to +70°C  
Storage Temperature Range............................ -65°C to +150°C  
Soldering Temperature (reflow).......................................+260°C  
Voltage Range on V .........................................-0.3V to +3.6V  
DD  
Voltage Range on Any Lead Except V ....-0.3V to (V  
+ 0.5V)  
DD  
DD  
Continuous Power Dissipation (T = +70°C)  
A
TQFN (multilayer board)  
(derate 37mW/°C above +70°C)................................2963mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Thermal Characteristics (Note 1)  
TQFN  
Junction-to-Ambient Thermal Resistance (θ )...........27°C/W  
JA  
Junction-to-Case Thermal Resistance (θ )..................1°C/W  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(Limits are 100% tested at T = +25°C and T = +70°C. Limits over the operating temperature range and relevant supply voltage range  
A
A
are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER  
Supply Voltage  
V
V
3.6  
V
V
DD  
RST  
1.8V Internal Regulator  
V
1.62  
1.8  
1.98  
1.75  
1.85  
1.95  
2.06  
2.16  
2.26  
2.36  
2.47  
2.57  
2.67  
2.78  
2.88  
2.98  
3.09  
3.19  
3.29  
1.70  
REG18  
V
PFWARNCN = 0000  
1.65  
1.75  
1.85  
1.94  
2.04  
2.14  
2.24  
2.33  
2.43  
2.53  
2.62  
2.72  
2.82  
2.91  
3.01  
3.11  
1.64  
1.70  
1.80  
1.9  
PFW1_70  
PFW1_80  
PFW1_90  
PFW2_00  
PFW2_10  
PFW2_20  
PFW2_30  
PFW2_40  
PFW2_50  
PFW2_60  
PFW2_70  
PFW2_80  
PFW2_90  
PFW3_00  
PFW3_10  
PFW3_20  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
PFWARNCN = 0001 (default), GBD  
PFWARNCN = 0010, GBD  
PFWARNCN = 0011, GBD  
PFWARNCN = 0100, GBD  
PFWARNCN = 0101, GBD  
PFWARNCN = 0110, GBD  
PFWARNCN = 0111, GBD  
PFWARNCN = 1000, GBD  
PFWARNCN = 1001, GBD  
PFWARNCN = 1010, GBD  
PFWARNCN = 1011, GBD  
PFWARNCN = 1100, GBD  
PFWARNCN = 1101, GBD  
PFWARNCN = 1110, GBD  
PFWARNCN = 1111, GBD  
2.0  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
Power-Fail Warning Voltage  
V
Power-Fail Reset Voltage  
V
RST  
Maxim Integrated  
4  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
Electrical Characteristics (continued)  
(Limits are 100% tested at T = +25°C and T = +85°C. Limits over the operating temperature range and relevant supply voltage range  
A
A
are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
PFWARNCN = 0000, V  
MIN  
TYP  
MAX  
UNITS  
Power-Fail Warning/Reset  
Offset  
V
> V  
RST  
30  
mV  
PFWRST  
PFW  
Power-On Reset Voltage  
V
V
Monitors V  
1.2  
1.0  
V
V
POR  
DD  
RAM Data Retention Voltage  
DRV  
f
= 12MHz, executing code from  
SYS  
flash memory, all inputs connected to  
Active Current  
I
2
3.7  
mA  
µA  
DD_1  
GND/V , outputs do not source or  
DD  
sink current  
T
T
T
T
= +25°C (power-fail off)  
0.15  
0.15  
22  
2.0  
8
A
A
A
A
I
I
S1  
S2  
= -20°C to +70°C (power-fail off)  
= +25°C (power-fail on)  
Stop Mode Current  
31  
38  
µA  
nA  
= -20°C to +70°C (power-fail on)  
27.6  
Power Consumption During  
Power-On Reset  
I
V
< V  
POR  
100  
POR  
DD  
3/f  
NANO  
Stop Mode Resume Time  
t
+ 1024/  
µs  
ON  
f
OSC  
CLOCKS  
Internal Oscillator Frequency  
f
12  
MHz  
OSC  
T
T
T
= +25°C, V  
= +25°C, V  
= 1.8V ±5%  
= 1.8V  
±0.5%  
A
DD  
Internal Oscillator Variability  
f
±0.5%  
±1%  
OSC_VAR  
A
DD  
= -20°C to +70°C  
A
f
/system clock divisor  
OSC  
System Clock Frequency  
System Clock Period  
f
t
12  
MHz  
SYS  
(1/2/4/8/256)  
1/f  
SYS  
SYS  
T
T
= +25°C  
3.0  
1.7  
12.0  
20.0  
kHz  
kHz  
A
Nanopower Ring Frequency  
f
NANO  
= +25°C, V  
= V  
2.4  
A
DD  
POR  
GENERAL-PURPOSE I/O AND SPECIAL FUNCTIONS  
Input Low Voltage for IRRX  
and All Port Pins  
0.3 x  
V
V
V
IL  
GND  
V
DD  
Input High Voltage for IRRX  
and All Port Pins  
0.7 x  
V
V
V
IH  
DD  
V
DD  
Input Hysteresis (Schmitt)  
V
V
V
V
V
= 3.3V, T = +25°C  
300  
0.4  
0.4  
0.4  
mV  
IHYS  
DD  
DD  
DD  
DD  
A
= 3.6V, I = 11mA  
0.5  
0.5  
0.5  
OL  
Output Low Voltage for All Port  
Pins  
V
= 2.35V, I = 8mA  
V
V
OL  
OL  
= 1.8V, I = 4.5mA  
OL  
Output High Voltage All Port  
Pins  
V
0.5  
-
DD  
V
IOH = -2mA  
V
DD  
OH  
Maxim Integrated  
5  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
Electrical Characteristics (continued)  
(Limits are 100% tested at T = +25°C and T = +85°C. Limits over the operating temperature range and relevant supply voltage range  
A
A
are guaranteed by design and characterization. Specifications marked GBD are guaranteed by design and not production tested.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input/Output Pin Capacitance  
for All Port Pins  
C
15  
pF  
IO  
L
Input Leakage Current for All  
Pins  
I
-100  
+100  
nA  
Input Pullup Resistor for  
RESET, IRRX, and All Port  
Pins  
V
V
= 3.0V, V = 0.4V  
16  
18  
28  
31  
39  
43  
DD  
OL  
R
kΩ  
PU  
= 1.8V, V = 0.4V  
DD  
OL  
IR MODULE  
IRRX Input Filter Pulse-Width  
Reject  
t
50  
ns  
IRRX_R  
IRRX Input Filter Pulse-Width  
Accept  
t
300  
200  
ns  
IRRX_A  
IRTX Sink Current  
I
V
≥ 0.25V  
mA  
IRTX  
IRTX  
WAKE-UP TIMER  
1/  
65,535/  
f
NANO  
Wake-Up Timer Interval  
t
s
WAKEUP  
f
NANO  
FLASH MEMORY  
Flash Memory Controller Clock  
Frequency During Program/  
Erase  
f
/(FCKDIV[3:0] + 1) must equal  
SRC  
f
1MHz, verify PFI = 0 before calling  
utility ROM  
1
MHz  
FP  
Flash Mass Erase Time  
Flash Page Erase Time  
t
40  
40  
ms  
ms  
ME  
t
ERASE  
Flash Programming Time per  
Word  
t
Excluding utility ROM overhead  
40  
μs  
PROG  
Write/Erase Cycles  
Data Retention  
20,000  
100  
Cycles  
Years  
T
= +25°C  
A
Maxim Integrated  
6  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
Pin Configuration  
TOP VIEW  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
P2.4/TCK  
P2.5/TDI  
P1.5/INT5  
P1.4/INT4  
GND  
P3.6/INT14  
P3.7/INT15  
P2.6/TMS  
P2.7/TDO  
RESET  
V
DD  
REG18  
MAXQ611  
GND  
P3.3/INT11  
P3.2/INT10  
P1.3/INT3  
P1.2/INT2  
P1.1/INT1  
V
DD  
GND  
IRTX  
IRRX  
*EP  
+
TQFN  
*EXPOSED PAD = GND  
Pin Description  
PIN  
PIN  
NAME  
DIE  
POWER  
24, 26  
TQFN  
FUNCTION  
19, 41  
V
Supply Voltage. Bypass to ground with a 4.7µF capacitor.  
Ground. Connect directly to the ground plane.  
DD  
17, 20,  
28, 42  
22, 47  
23  
GND  
1.8V Regulator Output. This pin must be connected to ground through a 1.0μF external  
capacitor. The capacitor should be placed as close to this pin as possible. No devices  
other than the capacitor should be connected to this pin.  
18  
REG18  
EP  
Exposed Pad. Connect to GND or leave electrically unconnnected.  
RESET  
Digital, Active-Low Reset Input/Output. The device remains in reset while this bidirectional  
pin is in its active state. When the pin transitions to its inactive state the device exits  
reset and begins execution. External circuits must be able to sink in excess of 250µA to  
overcome the internal pullup current source and take the pin to its active state. This pin  
should be left unconnected if the application does not provide a reset signal to the device.  
This pin is driven active as an output when an internal reset condition occurs.  
45  
40  
RESET  
IR FUNCTION  
IR Receive Input. This pin functions as the dedicated IR receiver. This pin defaults to a  
high-impedance input after reset.  
49  
44  
43  
IRRX  
IRTX  
IR Transmit Output. This pin functions as the dedicated IR transmitter. This pin defaults to  
a high-impedance input after reset.  
48  
Maxim Integrated  
7  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
DIE  
TQFN  
GENERAL-PURPOSE I/O AND SPECIAL FUNCTIONS  
P0.0: General-Purpose I/O, Port 0 Pin 0  
IRTXM: IR Transmit Modulation  
1
3
5
1
3
5
P0.0/IRTXM  
P0.1/RX0  
P0.2/TX0  
P0.1: General Purpose I/O, Port 0 Pin 1  
RX0: USART 0 Receive  
P0.2: General-Purpose I/O, Port 0 Pin 2  
TX0: USART 0 Transmit  
P0.3: General-Purpose I/O, Port 0 Pin 3  
RX1: USART 1 Receive  
SCL: I C Clock  
P0.3/RX1/  
SCL  
6
8
9
6
7
8
2
P0.4: General-Purpose I/O, Port 0 Pin 4  
TX1: USART 1 Transmit  
P0.4/TX1/  
SDA  
2
SDA: I C Data  
P0.5: General-Purpose I/O, Port 0 Pin 5  
TBA0: Timer B A0  
TBA1: Timer B A1  
P0.5/TBA0/  
TBA1  
P0.6: General-Purpose I/O, Port 0 Pin 6  
TBB0: Timer B B0  
11  
13  
15  
17  
18  
19  
25  
17  
31  
32  
33  
34  
37  
9
P0.6/TBB0  
P0.7/TBB1  
P1.0/INT0  
P1.1/INT1  
P1.2/INT2  
P1.3/INT3  
P1.4/INT4  
P1.5/INT5  
P1.6/INT6  
P1.7/INT7  
P2.0/MOSI  
P2.1/MISO  
P2.2/SCLK  
P0.7: General-Purpose I/O, Port 0 Pin 7  
TBB1: Timer B B1  
10  
11  
12  
13  
14  
21  
22  
25  
26  
27  
29  
32  
P1.0: General-Purpose I/O, Port 1 Pin 0  
EXT0: External Interrupt 0  
P1.1: General-Purpose I/O, Port 1 Pin 1  
EXT1: External Interrupt 1  
P1.2: General-Purpose I/O, Port 1 Pin 2  
EXT2: External Interrupt 2  
P1.3: General-Purpose I/O, Port 1 Pin 3  
EXT3: External Interrupt 3  
P1.4: General-Purpose I/O, Port 1 Pin 4  
EXT4: External Interrupt 4  
P1.5: General-Purpose I/O, Port 1 Pin 5  
EXT5: External Interrupt 5  
P1.6: General-Purpose I/O, Port 1 Pin 6  
EXT6: External Interrupt 6  
P1.7: General-Purpose I/O, Port 1 Pin 7  
EXT7: External Interrupt 7  
P2.0: General-Purpose I/O, Port 2 Pin 0  
MOSI: SPI Master-Out/Slave-In  
P2.1: General-Purpose I/O, Port 2 Pin 1  
MISO: SPI Master-In/Slave-Out  
P2.2: General-Purpose I/O, Port 2 Pin 2  
SCLK: SPI Clock  
Maxim Integrated  
8  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
DIE  
TQFN  
P2.3: General-Purpose I/O, Port 2 Pin 3  
SSEL: SPI Slave Select  
38  
33  
P2.3/SSEL  
P2.4/TCK  
P2.5/TDI  
P2.4: General-Purpose I/O, Port 2 Pin 4  
TCK: JTAG Clock. The POR default for the PD2.4 bit activates the weak pullup.  
39  
40  
34  
35  
P2.5: General-Purpose I/O, Port 2 Pin 5  
TDI: JTAG Data In. The POR default for the PD2.5 bit activates the weak pullup.  
P2.6: General-Purpose I/O, Port 2 Pin 6  
43  
38  
P2.6/TMS  
TMS: JTAG Test Mode Select. The POR default for the PD2.6 bit activates the weak  
pullup.  
P2.7: General-Purpose I/O, Port 2 Pin 7  
TDO: JTAG Data Output. The POR default for the PD2.7 bit activates the weak pullup.  
44  
2
39  
2
P2.7/TDO  
P3.0/INT8  
P3.1/INT9  
P3.2/INT10  
P3.3/INT11  
P3.4/INT12  
P3.5/INT13  
P3.6/INT14  
P3.7/INT15  
P3.0: General-Purpose I/O, Port 3 Pin 0  
External Interrupt 8  
P3.1: General-Purpose I/O, Port 3 Pin 1  
External Interrupt 9  
4
4
P3.2: General-Purpose I/O, Port 3 Pin 2  
External Interrupt 10  
20  
21  
35  
36  
41  
42  
15  
16  
30  
31  
36  
37  
P3.3: General-Purpose I/O, Port 3 Pin 3  
External Interrupt 11  
P3.4: General-Purpose I/O, Port 3 Pin 4  
External Interrupt 12  
P3.5: General-Purpose I/O, Port 3 Pin 5  
External Interrupt 13  
P3.6: General-Purpose I/O, Port 3 Pin 6  
External Interrupt 14  
P3.7: General-Purpose I/O, Port 3 Pin 7  
External Interrupt 15  
7
P4.0  
P4.1  
P4.2  
P4.3  
P4.4  
P4.5  
P4.0: General-Purpose I/O, Port 4 Pin 0  
P4.1: General-Purpose I/O, Port 4 Pin 1  
P4.2: General-Purpose I/O, Port 4 Pin 2  
P4.3: General-Purpose I/O, Port 4 Pin 3  
P4.4: General-Purpose I/O, Port 4 Pin 4  
P4.5: General-Purpose I/O, Port 4 Pin 5  
10  
12  
14  
16  
26  
NO CONNECTIONS  
23, 24  
D.N.C.  
N.C.  
Do Not Connect. Internally connected.  
Do Not Connect  
27, 29,  
30  
Maxim Integrated  
9  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
accumulator module consists of sixteen 16-bit registers  
and is tightly coupled with the arithmetic logic unit (ALU).  
A configurable soft stack supports program flow.  
Detailed Description  
The MAXQ611 provides integrated, low-cost solutions  
that simplify the design of IR communications equipment  
such as universal remote controls. The internal 12MHz  
oscillator requires no external components. Standard fea-  
tures include the highly optimized, single-cycle, MAXQ,  
16-bit RISC core; 80KB flash memory; 2KB data RAM;  
soft stack; 16 general-purpose registers; and three data  
pointers. The MAXQ core has the industry’s best MIPS/  
mA rating, allowing developers to achieve the same per-  
formance as competing microcontrollers at substantially  
lower clock rates. Application-specific peripherals include  
flexible timers for generating IR carrier frequencies and  
modulation. A high-current IR drive pin operates with an  
internal receiver amplifier without external components. It  
also includes general-purpose I/O pins ideal for keypad  
matrix input, and a power-fail-detection circuit to notify  
the application when the supply voltage is nearing the  
microcontroller’s minimum operating voltage.  
Execution of instructions is triggered by data transfer  
between functional register modules or between a func-  
tional register module and memory. Because data move-  
ment involves only source and destination modules, cir-  
cuit switching activities are limited to active modules only.  
This approach localizes power dissipation and minimizes  
switching noise.  
The MAXQ instruction set is highly orthogonal. All arith-  
metical and logical operations can use any register in  
conjunction with the accumulator. Data movement is sup-  
ported from any register to any other register. Memory  
is accessed through specific data-pointer registers with  
autoincrement/decrement support.  
Memory  
The microcontroller incorporates several memory types:  
The combination of high-performance instructions and  
ultra-low stop-mode current increases battery life over  
competing microcontrollers. An integrated POR circuit  
with brownout support resets the device to a known con-  
dition following a power-up cycle or brownout condition.  
Additionally, a power-fail warning flag is set, and a power-  
fail interrupt can be generated when the system voltage  
80KB flash memory  
2KB SRAM data memory  
Dedicated utility ROM  
Soft stack  
Memory Protection  
falls below the power-fail warning voltage, V  
. The  
The optional memory-protection feature segments code  
memory into three areas with different access privileges.  
This allows unique code segments to be loaded at differ-  
ent steps in the manufacturing process, while restricting  
access to higher-privilege segments that might have been  
loaded earlier in the process. The memory protection seg-  
ments are:  
PFW  
power-fail warning feature allows the application to notify  
the user that the system supply is low and appropriate  
action should be taken.  
Microprocessor  
The MAXQ611 is based on Maxim Integrated’s low-  
power, 16-bit MAXQ20S. The core supports the Harvard  
memory architecture with separate 16-bit program and  
data address buses. A fixed 16-bit instruction word is  
standard, but data can be arranged in 8 or 16 bits. The  
MAXQ core is a pipelined processor. Almost all instruc-  
tions execute in a single clock cycle, with performance  
approaching 1MIPS per MHz. The 16-bit data path is  
implemented around register modules, and each register  
module contributes specific functions to the core. The  
System (highest privilege)  
User-loader (medium privilege)  
User-application (lowest privilege)  
Code in the system area is typically loaded by the OEM,  
and can be read/write protected from code executing in  
lower privilege segments. In a similar manner, the user-  
loader segment can be read/write protected from code  
executing in the user-application area.  
Maxim Integrated  
10  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
Stack Memory  
Watchdog Timer  
The MAXQ20S core provides a soft stack that can be  
used to store program return addresses (for subroutine  
calls and interrupt handling) and other general-purpose  
data. This soft stack is located in data memory, which  
means that the SRAM data memory must be shared  
between the soft stack and general-purpose application  
data storage. However, the location and size of the soft  
stack is determined by the user, providing maximum flex-  
ibility when allocating resources for a particular applica-  
tion. The stack is used automatically by the processor  
when the CALL, RET, and RETI instructions are executed  
and when an interrupt is serviced. An application can  
also store and retrieve values explicitly using the stack by  
means of the PUSH, POP, and POPI instructions.  
The internal watchdog timer greatly increases system reli-  
ability. The timer resets the device if software execution  
is disturbed. The watchdog timer is a free-running coun-  
ter designed to be periodically reset by the application  
software. If software is operating correctly, the counter is  
periodically reset and never reaches its maximum count.  
However, if software operation is interrupted, the timer  
does not reset, triggering a system reset and optionally a  
watchdog timer interrupt. This protects the system against  
electrical noise or electrostatic discharge (ESD) upsets  
that could cause uncontrolled processor operation. The  
internal watchdog timer is an upgrade to older designs  
with external watchdog devices, reducing system cost  
and simultaneously increasing reliability.  
The SP pointer indicates the current top of the stack,  
which initializes by default to the top of the SRAM data  
memory. As values are pushed onto the stack, the SP  
pointer decrements, which means that the stack grows  
downward towards the bottom (lowest address) of the  
data memory. Popping values off the stack causes the SP  
pointer value to increase.  
The watchdog timer functions as the source of both the  
watchdog timer timeout and the watchdog timer reset.  
The timeout period is user-programmable using the WD  
bits as shown in Table 1. An interrupt is generated when  
the timeout period expires if the interrupt is enabled. All  
watchdog timer resets follow the programmed interrupt  
timeouts by 512 system clock cycles. If the watchdog  
timer is not restarted for another full interval in this time  
period, a system reset occurs when the reset timeout  
expires. See Table 1.  
Utility ROM  
The utility ROM is located in program space beginning at  
address 8000h. This ROM includes the following routines:  
IR Carrier Generation and Modulation  
Timer  
The IR module provides a low-cost solution to IR commu-  
nication. The dedicated IR timer/counter simplifies carrier  
and modulation generation.  
Production test routines (internal memory tests, mem-  
ory loader, etc.), which are used for internal testing  
only, and are generally of no use to the end-application  
developer  
User-callable routines for buffer copying and fast table  
lookup  
The IR timer is composed of a carrier generator and a  
carrier modulator. The carrier generation module uses  
the 16-bit IR carrier register (IRCA) to define the high  
and low time of the carrier through the IR carrier high  
byte (IRCAH) and IR carrier low byte (IRCAL). The carrier  
modulator uses the IR data bit (IRDATA) and IR modulator  
time register (IRMT) to determine whether the carrier or  
the idle condition is present on IRTX.  
Following any reset, execution begins in the utility ROM at  
address 8000h. At this point, unless test mode has been  
invoked (which requires special programming through  
the JTAG interface), the utility ROM in the device always  
automatically jumps to location 0000h, which is the begin-  
ning of user application code.  
Table 1. Watchdog Timer Settings  
WD  
(CD = 00)  
PERIOD  
INTERRUPT (f  
= 12MHz)  
RESET (f  
= 12MHz)  
SYS  
SYS  
15  
00  
01  
10  
11  
2
2
2
2
/f  
/f  
/f  
/f  
2.7ms  
42.7µs  
42.7µs  
42.7µs  
42.7µs  
SYS  
SYS  
SYS  
SYS  
18  
21  
24  
21.9ms  
174.7ms  
1.4s  
Maxim Integrated  
11  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
The IR timer is enabled when the IR enable bit (IREN) is  
set to 1. The IR Value register (IRV) defines the begin-  
ning value for the carrier modulator. During transmission,  
the IRV register is initially loaded with the IRMT value  
and begins down counting towards 0000h, whereas in  
receive mode it counts upward from the initial IRV register  
value. During the receive operation, the IRV register can  
be configured to reload with 0000h when capture occurs  
on detection of selected edges or can be allowed to con-  
tinue free-running throughout the receive operation. An  
overflow occurs when the IR timer value rolls over from  
0FFFFh to 0000h. The IR overflow flag (IROV) is set to 1  
and an interrupt is generated if enabled (IRIE = 1).  
rier modulation can be performed as a function of carrier  
cycles or IRCLK cycles dependent on the setting of the  
IRCFME bit. When IRCFME = 0, the IRV down counter  
is clocked by the carrier frequency and thus the modula-  
tion is a function of carrier cycles. When IRCFME = 1, the  
IRV down counter is clocked by IRCLK, allowing carrier  
modulation timing with IRCLK resolution.  
The IRTXPOL bit defines the starting/idle state as well as  
the carrier polarity for the IRTX pin. If IRTXPOL = 1, the  
IRTX pin is set to a logic-high when the IR timer module is  
enabled. If IRTXPOL = 0, the IRTX pin is set to a logic-low  
when the IR timer is enabled.  
A separate register bit, IR data (IRDATA), is used to determine  
whether the carrier generator output is output to the IRTX pin  
for the next IRMT carrier cycles. When IRDATA = 1, the car-  
rier waveform (or inversion of this waveform if IRTXPOL = 1)  
is output on the IRTX pin during the next IRMT cycles. When  
IRDATA = 0, the idle condition, as defined by IRTXPOL, is  
output on the IRTX pin during the next IRMT cycles.  
Carrier Generation Module  
The IRCAH byte defines the carrier high time in terms of  
the number of IR input clocks, whereas the IRCAL byte  
defines the carrier low time.  
IRDIV[2:0]  
IR Input Clock (f  
) = f  
/2  
IRCLK  
SYS  
Carrier Frequency (f  
) = f  
CARRIER  
/(IRCAH + IRCAL + 2)  
IRCLK  
The IR timer acts as a down counter in transmit mode.  
An IR transmission starts when the IREN bit is set to 1  
when IRMODE = 1; when the IRMODE bit is set to 1 when  
IREN = 1; or when IREN and IRMODE are both set to 1 in  
the same instruction. The IRMT and IRCA registers, along  
with the IRDATA and IRTXPOL bits, are sampled at the  
beginning of the transmit process and every time the IR  
timer value reload its value. When the IRV reaches 0000h  
value, on the next carrier clock, it does the following:  
Carrier High Time = IRCAH + 1  
Carrier Low Time = IRCAL + 1  
Carrier Duty Cycle = (IRCAH + 1)/(IRCAH + IRCAL + 2)  
During transmission, the IRCA register is latched for each  
IRV down-count interval, and is sampled along with the  
IRTXPOL and IRDATA bits at the beginning of each new  
IRV down-count interval so that duty-cycle variation and  
frequency shifting is possible from one interval to the next,  
which is illustrated in Figure 1.  
1) Reloads IRV with IRMT.  
2) Samples IRCA, IRDATA, and IRTXPOL.  
3) Generates IRTX accordingly.  
Figure 2 illustrates the basic carrier generation and its  
path to the IRTX output pin. The IR transmit polarity bit  
(IRTXPOL) defines the starting/idle state and the carrier  
polarity of the IRTX pin when the IR timer is enabled.  
4) Sets IRIF to 1.  
5) Generates an interrupt to the CPU if enabled (IRIE = 1).  
IR Transmission  
To terminate the current transmission, the user can switch  
to receive mode (IRMODE = 0) or clear IREN to 0.  
During IR transmission (IRMODE = 1), the carrier gen-  
erator creates the appropriate carrier waveform, while  
the carrier modulator performs the modulation. The car-  
Carrier Modulation Time = IRMT + 1 carrier cycles  
Maxim Integrated  
12  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
IRCA  
IRCA = 0202h  
IRMT = 3  
IRCA = 0002h  
IRMT = 5  
IRMT  
IRCA, IRMT, IRDATA SAMPLED AT END OF IRV  
DOWN-COUNT INTERVAL  
3
2
1
0
5
4
3
2
1
0
CARRIER OUTPUT  
(IRV)  
IRDATA  
0
1
0
IR INTERRUPT  
IRTX  
IRTXPOL = 1  
IRTX  
IRTXPOL = 0  
Figure 1. IR Transmit Frequency Shifting Example (IRCFME = 0)  
IRTXPOL  
0
1
CARRIER GENERATION  
IRTX PIN  
IRCLK  
CARRIER  
IRCAH + 1  
IRCAL + 1  
IRCFME  
0
1
SAMPLE  
IRDATA ON  
IRV = 0000h  
IR INTERRUPT  
IRDATA  
IRMT  
CARRIER MODULATION  
Figure 2. IR Transmit Carrier Generation and Carrier Modulator Control  
Maxim Integrated  
13  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
IRMT = 3  
CARRIER OUTPUT  
(IRV)  
3
2
1
0
3
2
1
0
IRDATA  
0
1
0
IR INTERRUPT  
IRTX  
IRTXPOL = 1  
IRTX  
IRTXPOL = 0  
Figure 3. IR Transmission Waveform (IRCFME = 0)  
On the next qualified event, the IR module does the following:  
IR Receive  
When configured in receive mode (IRMODE = 0), the  
IR hardware supports the IRRX capture function. The  
IRRXSEL bits define which edge(s) of the IRRX pin  
should trigger the IR timer capture function.  
1) Captures the IRRX pin state and transfers its value to  
IRDATA. If a falling edge occurs, IRDATA = 0. If a rising  
edge occurs, IRDATA = 1.  
2) Transfers its current IRV value to the IRMT.  
3) Resets IRV content to 0000h (if IRXRL = 1).  
4) Continues counting again until the next qualified event.  
The IR module starts operating in the receive mode when  
IRMODE = 0 and IREN = 1. Once started, the IR timer  
(IRV) starts up counting from 0000h when a qualified  
capture event as defined by IRRXSEL happens. The IRV  
register is, by default, counting carrier cycles as defined  
by the IRCA register. However, the IR carrier frequency  
detect (IRCFME) bit can be set to 1 to allow clocking of  
the IRV register directly with the IRCLK for finer resolu-  
tion. When IRCFME = 0, the IRCA defined carrier is  
counted by IRV. When IRCFME = 1, the IRCLK clocks  
the IRV register.  
If the IR timer value rolls over from 0FFFFh to 0000h  
before a qualified event happens, the IR timer overflow  
(IROV) flag is set to 1 and an interrupt is generated, if  
enabled. The IR module continues to operate in receive  
mode until it is stopped by switching into transmit mode  
(IRMODE = 1) or clearing IREN = 0.  
Maxim Integrated  
14  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
CARRIER GENERATION  
CARRIER MODULATION  
IR TIMER OVERFLOW  
INTERRUPT TO CPU  
IRCLK  
0
1
IRCAH + 1  
IRCAL + 1  
0000h  
IRV  
IRCFME  
IR INTERRUPT  
COPY IRV TO IRMT  
ON EDGE DETECT  
IRXRL  
RESET IRV TO 0000h  
IRRX PIN  
EDGE DETECT  
IRDATA  
Figure 4. IR Capture  
The IRCFME bit is still used to define whether the IRV  
register is counting system IRCLK clocks or IRCA-defined  
carrier cycles. The IRXRL bit defines whether the IRV  
register is reloaded with 0000h on detection of a qualified  
edge (per the IRRXSEL bits). Figure 5 and the descriptive  
sequence embedded in the figure illustrate the expected  
usage of the receive burst-count mode.  
Carrier Burst-Count Mode  
A special mode reduces the CPU processing burden  
when performing IR learning functions. Typically, when  
operating in an IR learning capacity, some number of  
carrier cycles are examined for frequency determina-  
tion. Once the frequency has been determined, the IR  
receive function can be reduced to counting the number  
of carrier pulses in the burst and the duration of the  
combined mark-space time within the burst. To simplify  
this process, the receive burst-count mode (as enabled  
by the RXBCNT bit) can be used. When RXBCNT = 0,  
the standard IR receive capture functionality is in place.  
When RXBCNT = 1, the IRV capture operation is disabled  
and the interrupt flag associated with the capture no lon-  
ger denotes a capture. In the carrier burst-count mode,  
the IRMT register only counts qualified edges. The IRIF  
interrupt flag (normally used to signal a capture when  
RXBCNT = 0) now becomes set if two IRCA cycles elapse  
without getting a qualified edge. The IRIF interrupt flag  
thus denotes absence of the carrier and the beginning of  
a space in the receive signal. When the RXBCNT bit is  
changed from 0 to 1, the IRMT register is set to 0001h.  
16-Bit Timers/Counters  
Two instances of the timer/counter B are provided. These  
timer/counters provide the following functions:  
16-bit timer/counter  
16-bit up/down autoreload  
Counter function of external pulse  
16-bit timer with capture  
16-bit timer with compare  
Input/output enhancements for pulse-width modulation  
Set/reset/toggle output state on comparator match  
n
Prescaler with 2 divider (for n = 0, 2, 4, 6, 8, 10)  
Maxim Integrated  
15  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
CARRIER FREQUENCY  
CALCULATION  
IRMT = PULSE COUNTING  
IRMT = PULSE COUNTING  
IRV = CARRIER CYCLE COUNTING  
IRRX  
IRV  
IRMT  
1
2
3
4
6
7
8
9
5
CAPTURE INTERRUPT (IRIF = 1).  
IRV IRMT.  
IRV = 0 (IF IRXRL = 1).  
1
TO  
4
5
SOFTWARE SETS IRCA = CARRIER FREQUENCY.  
SOFTWARE SETS RXBCNT = 1 (WHICH CLEARS IRMT = 0001 IN HARDWARE).  
SOFTWARE CLEARS IRCFME = 0 SO THAT IRV COUNTS CARRIER CYCLES. IRV IS RESET TO 0 ON QUALIFIED EDGE DETECTION IF IRXRL = 1.  
SOFTWARE ADDS TO IRMT THE NUMBER OF PULSES USED FOR CARRIER MEASUREMENT.  
IRCA x 2x COUNTER FOR SPACE CAN BEGIN IMMEDIATELY (QUALIFIED EDGE RESETS).  
QUALIFIED EDGE DETECTED: IRMT++  
IRV RESET TO 0 IF IRXRL = 1.  
6
7
IRCA x 2 PERIOD ELAPSES: IRIF = 1; CARRIER ABSENCE = SPACE.  
BURST MARK = IRMT PULSES.  
SOFTWARE CLEARS RXBCNT = 0 SO THAT WE CAPTURE ON THE NEXT QUALIFIED EDGE.  
8
9
QUALIFIED EDGE DETECTED: IRIF = 1, CAPTURE IRV IRMT AS THE BURST SPACE (PLUS UP TO ONE CARRIER CYCLE).  
SOFTWARE SET RXBCNT = 1 AS IN (5).  
CONTINUE (5) TO (8) UNTIL LEARNING SPACE EXCEEDS SOME DURATION. IRV ROLLOVERS CAN BE USED.  
Figure 5. Receive Burst-Count Example  
Data can be transferred as an 8-bit or 16-bit value, MSB  
first. In addition, the SPI module supports configuration of  
the active SSEL state through the slave active-select pin.  
Serial Peripherals  
Serial Peripheral Interface (SPI)  
One instance of the SPI peripheral is provided. The SPI  
is an interdevice bus protocol that provides fast, synchro-  
nous, full-duplex communications between devices. The  
integrated SPI interface acts as either an SPI master or  
slave device. The master drives the synchronous clock  
and selects which of several slaves is being addressed.  
Every SPI peripheral consists of a single shift register and  
control circuitry so that an addressed serial peripheral  
interface SPI peripheral is simultaneously transmitting  
and receiving. The maximum SPI master transfer rate is  
Four signals are used in SPI communication:  
SCLK: The synchronous clock used by all devices.  
The master drives this clock and the slaves receive the  
clock. Note that SCLK can be gated and need not be  
driven between SPI transactions.  
MOSI: Master out-slave in. This is the main data line  
driven by the master to all slaves on the SPI bus. Only  
the selected slave clocks data from MOSI.  
f . The maximum SPI slave transfer rate is f  
SYS/2  
.
SYS/4  
Maxim Integrated  
16  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
MISO: Master in-slave out. This is the main data line  
driven by the selected slave to the master. Only the  
selected slave may drive this circuit. In fact, it is the  
only circuit in the SPI bus arrangement that a slave is  
ever permitted to drive.  
General-Purpose I/O  
The microcontroller provides port pins for general-pur-  
pose I/O that have the following features:  
CMOS output drivers  
Schmitt trigger inputs  
SSEL: This signal is unique to each slave. When  
active (generally low), the selected slave must drive  
MISO.  
Optional weak pullup to V  
mode  
when operating in input  
DD  
While the microcontroller is in a reset state, all port pins  
become high impedance with both weak pullups and input  
buffers disabled, unless otherwise noted.  
2
I C Bus  
One instance of the I2C bus master/slave peripheral is  
provided. The I2C bus is a 2-wire, bidirectional bus using  
two bus lines—the serial data line (SDA) and the serial  
clock line (SCL)—and a ground line. Both the SDA and  
SDL lines must be driven as open-collector/drain outputs.  
External resistors are required to pull the lines to a logic-  
high state.  
General-purpose, digital I/O pins (GPIO) have their input  
and output states controlled by direction (PDx), output  
(POx), and input (PIx) registers. From a software per-  
spective, each 8-bit port appears as a group of peripheral  
registers with unique addresses. All port pins default to  
high-impedance mode after a reset, unless otherwise  
noted. Software must configure these pins after release  
from reset to remove the high-impedance condition.  
The device supports both the master and slave proto-  
cols. In the master mode, the device has ownership of  
the I2C bus, drives the clock, and generates the START  
and STOP signals. This allows it to send data to a slave  
or receive data from a slave as required. In slave mode,  
the device relies on an externally generated clock to drive  
SCL and responds to data and commands only when  
requested by the I2C master device.  
Many GPIO pins share special functions with device  
peripherals. All special functions must be enabled from  
software before they can be used.  
On-Chip Oscillator  
An internal 12MHz oscillator is provided that requires no  
external components, thereby reducig system cost, PCB  
area, and radiated EMI.  
USART  
Two instances of the USART peripheral are provided. The  
USARTS provide the following features:  
Operating Modes  
2-wire interface  
The lowest power mode of operation is stop mode. In this  
mode, CPU state and memories are preserved, but the  
CPU is not actively running. Wake-up sources include  
external I/O interrupts, the power-fail warning interrupt,  
wake-up timer, or a power-fail reset. Any time the micro-  
controller is in a state where code does not need to be  
executed, the user software can put the device into stop  
mode. The nanopower ring oscillator is an internal ultra-  
low-power 8kHz ring oscillator that can drive a wake-up  
timer that exits stop mode. The wake-up timer is program-  
mable by software in steps of 125Fs up to approximately  
8s.  
Full-duplex operation for asynchronous data transfers  
Half-duplex operation for synchronous data transfers  
Programmable interrupt when transmit or receive data  
operation completes  
Independent programmable baud-rate generator  
Optional 9th bit parity support  
Start/stop bit support  
Table 2. USART Mode Details  
MODE  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
TYPE  
START BITS  
DATA BITS  
STOP BITS  
Synchronous  
Asynchronous  
Asynchronous  
Asynchronous  
N/A  
1
8
N/A  
1
8
1
8 + 1  
8 + 1  
1
1
1
Maxim Integrated  
17  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
11  
The power-fail monitor is always active during normal  
operation.  
2
2
2
nanopower ring oscillator clocks (~256ms)  
nanopower ring oscillator clocks (~512ms)  
nanopower ring oscillator clocks (~1.024s)  
12  
13  
During stop mode, the power-fail monitor can be enabled  
using the power-fail monitor bit (PFD). It is disabled  
In the case where the power-fail circuitry is periodically  
turned on, the power-fail detection is turned on for two  
nanopower ring-oscillator cycles. If V  
detection, V  
ring-oscillator period. If V  
third nanopower ring period, the CPU exits the reset state  
and resumes normal operation from utility ROM at 8000h  
after satisfying the crystal warmup period.  
(PFD = 1) by default after a POR. If disabled, the V  
<
DD  
V
RST  
condition does not invoke a reset state. Regardless  
> V  
during  
DD  
RST  
of the PFD bit, the V  
< V  
condition generates a  
DD  
POR  
is monitored for an additional nanopower  
DD  
POR in stop mode.  
remains above V  
for the  
DD  
RST  
Regardless of the state of the PFD bit, the power-fail  
monitor is enabled immediately prior to exiting stop mode.  
If a power-fail warning condition (V  
< V ) is then  
PFW  
DD  
detected, the power-fail interrupt flag is set on stop mode  
exit. If a power-fail condition is detected (V < V ),  
The voltage (V  
generated is user configurable through the PFWARNCN  
bits. See the Electrical Characteristics table for the V  
) below that a power-fail warning is  
PFW  
DD  
RST  
the device remains in reset and drives the RESET pin low.  
PFW  
Power-Fail Detection  
options and corresponding PFWARNCN values.  
Figure 6, Figure 7, and Figure 8 show the power-fail  
detection and response during normal and stop-mode  
operation. If a reset is caused by a power-fail, the power-  
fail monitor can be set to one of the following intervals:  
If the RESET pin is being driven active by an external  
source, or a watchdog timer reset occurs, the power-fail,  
internal regulator, and crystal oscillator (if present) remain  
on during the reset event. The reset is exited in less than  
20 f  
cycles after the reset source is removed.  
Always on—continuous monitoring  
OSC  
V
DD  
t < t  
PFW  
t t  
PFW  
t t  
t t  
PFW  
PFW  
C
V
PFW  
G
V
RST  
E
H
F
B
D
V
POR  
I
A
INTERNAL RESET  
(ACTIVE HIGH)  
Figure 6. Power-Fail Detection During Normal Operation  
Maxim Integrated  
18  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
Table 3. Power-Fail Detection States During Normal Operation  
INTERNAL  
REGULATOR  
CRYSTAL  
OSCILLATOR  
SRAM  
RETENTION  
STATE  
POWER-FAIL  
COMMENTS  
A
On  
Off  
On  
Off  
On  
V
V
< V  
.
DD  
POR  
< V  
< V  
.
POR  
DD  
RST  
B
On  
Crystal warmup time, t  
.
XTAL_RDY  
CPU held in reset.  
V
> V  
.
DD  
RST  
C
D
On  
On  
On  
On  
On  
On  
CPU normal operation.  
Power drop too short.  
Power-fail not detected.  
V
< V  
< V  
.
RST  
DD  
PFW  
PFI is set when V  
< V  
< V  
and  
RST  
DD  
PFW  
maintains this state for at least t  
time a power-fail interrupt is generated (if  
, at which  
PFW  
E
On  
On  
On  
enabled).  
CPU continues normal operation.  
V
< V  
< V  
.
POR  
DD  
RST  
On  
Power-fail detected.  
CPU goes into reset.  
F
Off  
On  
Off  
On  
Yes  
(Periodically)  
Power-fail monitor turns on periodically.  
> V  
V
.
RST  
DD  
G
On  
Crystal warmup time, t  
.
XTAL_RDY  
CPU resumes normal operation from 8000h.  
V
< V < V  
.
RST  
POR  
DD  
On  
Power-fail detected.  
CPU goes into reset.  
H
I
Off  
Off  
Off  
Off  
Yes  
(Periodically)  
Power-fail monitor turns on periodically.  
< V  
V
.
POR  
DD  
Off  
Device held in reset. No operation allowed.  
Maxim Integrated  
19  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
V
DD  
t < t  
PFW  
t t  
PFW  
t t  
PFW  
A
V
PFW  
D
V
RST  
B
C
E
V
POR  
F
STOP  
INTERNAL RESET  
(ACTIVE HIGH)  
Figure 7. Stop Mode Power-Fail Detection States with Power-Fail Monitor Enabled  
Table 4. Stop Mode Power-Fail Detection States with Power-Fail Monitor Enabled  
INTERNAL  
REGULATOR  
CRYSTAL  
OSCILLATOR  
SRAM  
RETENTION  
STATE  
POWER-FAIL  
COMMENTS  
Application enters stop mode.  
A
B
On  
On  
Off  
Off  
Off  
Off  
Yes  
Yes  
V
> V  
.
DD  
RST  
CPU in stop mode.  
Power drop too short.  
Power-fail not detected.  
V
< V  
< V  
.
RST  
DD  
PFW  
Power-fail warning detected.  
C
D
On  
On  
On  
Off  
On  
Off  
Yes  
Yes  
Turn on regulator and crystal.  
Crystal warmup time, t  
Exit stop mode.  
.
XTAL_RDY  
Application enters stop mode.  
> V  
V
.
RST  
DD  
CPU in stop mode.  
< V < V .  
RST  
V
POR  
DD  
On  
Power-fail detected.  
CPU goes into reset.  
E
F
Off  
Off  
Off  
Off  
Yes  
(Periodically)  
Power-fail monitor turns on periodically.  
< V  
V
.
POR  
DD  
Off  
Device held in reset. No operation allowed.  
Maxim Integrated  
20  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
V
DD  
A
D
V
PFW  
B
V
RST  
C
E
V
POR  
F
STOP  
INTERNAL RESET  
(ACTIVE HIGH)  
INTERRUPT  
Figure 8. Stop Mode Power-Fail Detection with Power-Fail Monitor Disabled  
Table 5. Stop Mode Power-Fail Detection States with Power-Fail Monitor Disabled  
INTERNAL  
REGULATOR  
CRYSTAL  
OSCILLATOR  
SRAM  
RETENTION  
STATE  
POWER-FAIL  
COMMENTS  
Application enters stop mode.  
A
Off  
Off  
Off  
Off  
Off  
Yes  
Yes  
V
> V  
.
DD  
RST  
CPU in stop mode.  
V
< V .  
PFW  
DD  
B
Off  
On  
Power-fail not detected because power-fail  
monitor is disabled.  
V
< V  
< V  
.
RST  
DD  
PFW  
An interrupt occurs that causes the CPU to  
exit stop mode.  
Power-fail monitor is turned on, detects a  
power-fail warning, and sets the power-fail  
interrupt flag.  
C
On  
On  
Yes  
Turn on regulator and crystal.  
Crystal warmup time, t  
.
XTAL_RDY  
On stop mode exit, CPU vectors to the  
higher priority of power-fail and the interrupt  
that causes stop mode exit.  
Maxim Integrated  
21  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
Table 5. Stop Mode Power-Fail Detection States with Power-Fail Monitor Disabled  
(continued)  
INTERNAL  
REGULATOR  
CRYSTAL  
OSCILLATOR  
SRAM  
RETENTION  
STATE  
POWER-FAIL  
COMMENTS  
Application enters stop mode.  
D
Off  
Off  
Off  
Yes  
V
> V  
.
DD  
RST  
CPU in stop mode.  
< V < V .  
RST  
V
POR  
DD  
An interrupt occurs that causes the CPU to  
On  
exit stop mode.  
E
F
Off  
Off  
Off  
Off  
Yes  
(Periodically)  
Power-fail monitor is turned on, detects a  
power-fail, and puts CPU in reset.  
Power-fail monitor is turned on periodically.  
V
< V  
.
DD  
POR  
Off  
Device held in reset. No operation allowed.  
CMOS design guidelines for any semiconductor require  
that no pin be taken above V or below GND. Violation  
Applications Information  
DD  
The low-power, high-performance RISC architecture of  
this device makes it an excellent fit for many portable or  
battery-powered applications. It is ideally suited for appli-  
cations such as universal remote controls that require the  
cost-effective integration of IR transmit/receive capability.  
of this guideline can result in a hard failure (damage to  
the silicon inside the device) or a soft failure (unintentional  
modification of memory contents). Voltage spikes above  
or below the device’s absolute maximum ratings can  
potentially cause a devastating IC latchup.  
Grounds and Bypassing  
Microcontrollers commonly experience negative voltage  
spikes through either their power pins or general-purpose  
I/O pins. Negative voltage spikes on power pins are espe-  
cially problematic as they directly couple to the internal  
power buses. Devices such as keypads can conduct  
electrostatic discharges directly into the microcontroller  
and seriously damage the device. System designers must  
protect components against these transients that can cor-  
rupt system memory.  
Careful PCB layout significantly minimizes system-level  
digital noise that could interact with the microcontroller  
or peripheral components. The use of multilayer boards  
is essential to allow the use of dedicated power planes.  
The area under any digital components should be a con-  
tinuous ground plane if possible. Keep bypass capacitor  
leads short for best noise rejection and place the capaci-  
tors as close to the leads of the devices as possible.  
Maxim Integrated  
22  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
Additional Documentation  
Engineers must have the following documents to fully use  
this device:  
Development and Technical Support  
Contact technical support for information about highly  
versatile, affordable development tools, available from  
Maxim Integrated and third-party vendors.  
This data sheet, containing pin descriptions, feature  
overviews, and electrical specifications.  
Evaluation kits  
The device-appropriate user guide, containing detailed  
information and programming guidelines for core features  
and peripherals.  
Compilers  
Integrated development environments (IDEs)  
USB interface modules for programming and debugging  
Errata sheets for specific revisions noting deviations from  
published specifications.  
For technical support, go to  
support.maximintegrated.com/micro.  
For information regarding these documents, visit Technical  
Support at support.maximintegrated.com/micro.  
Ordering Information/Selector Guide  
OPERATING  
VOLTAGE (V)  
PROGRAM  
MEMORY (KB)  
DATA  
MEMORY (KB)  
PART  
TEMP RANGE  
GPIO  
PIN-PACKAGE  
MAXQ611J-XXXX+T*  
MAXQ611X-XXXX+  
-20°C to +70°C  
-20°C to +70°C  
1.70 to 3.6  
80 Flash  
2
2
32  
38  
44 TQFN-EP**  
Bare die  
1.70 to 3.6  
80 Flash  
Note: The 4-digit suffix “-XXXX” indicates a device preprogrammed at Maxim Integrated with proprietary customer-supplied software.  
For more information on factory preprogramming of this device, contact Maxim Integrated at support.maximintegrated.com/micro.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*Future product—contact factory for availability.  
**EP = Exposed pad.  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
PACKAGE TYPE  
PACKAGE CODE  
OUTLINE NO.  
21-0144  
LAND PATTERN NO.  
90-0128  
44 TQFN-EP  
T4477+3C  
Maxim Integrated  
23  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
Appendix A  
2
I C Serial Peripheral Specifications  
(See Figure 9 and Figure 10.)  
STANDARD MODE  
FAST MODE  
MIN MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
MIN  
MAX  
Supply voltages that  
2
mismatch I C bus levels  
Input Low Voltage  
V
-0.5  
0.3 x V  
-0.5  
0.3 x V  
DD  
V
IL_I2C  
DD  
must relate input levels to  
the R pullup voltage  
P
Supply voltages that  
2
mismatch I C bus levels  
V
0.5V  
+
DD  
Input High Voltage  
V
0.7 x V  
0.7 x V  
V
IH_I2C  
DD  
DD  
must relate input levels to  
the R pullup voltage  
P
Input Hysteresis  
(Schmitt)  
0.05 x  
V
V
V
> 2V  
V
V
IHYS_I2C  
DD  
DD  
V
DD  
Output Logic-Low (Open  
Drain or Open Collector)  
> 2V, 3mA sink  
V
0
0.4  
0
0.4  
OL_I2C  
current  
Capacitive Load for Each  
Bus Line  
C
400  
400  
pF  
B
Output Fall Time from  
t
t
exceeds  
, which permits  
R/F_I2C  
OF_I2C  
V
to V  
with  
20 +  
IH_MIN  
IL_MAX  
t
250  
250  
50  
ns  
ns  
OF_I2C  
Bus Capacitance from  
RS to be connected as  
0.1C  
B
10pF to 400pF  
shown in figure  
Pulse Width of Spike  
Filtering That Must Be  
Suppressed by Input  
Filter  
t
0
SP_I2C  
Input voltage from  
Input Current on I/O  
I/O Capacitance  
I
-10  
0
+10  
10  
-10  
+10  
10  
FA  
pF  
IN_I2C  
0.1 x V  
to 0.9 x V  
DD  
DD  
C
IO_I2C  
2
I C Bus Operating  
f
100  
0
400  
kHz  
I2C  
Frequency  
System Frequency  
f
0.90  
3.60  
MHz  
Hz  
SYS  
2
I C Bit Rate  
f
f
/8  
f
/8  
SYS  
I2C  
SYS  
Hold Time After  
(Repeated) START  
t
4.0  
0.6  
Fs  
HD:STA  
Clock Low Period  
Clock High Period  
t
4.7  
4.0  
1.3  
0.6  
Fs  
Fs  
LOW_I2C  
t
HIGH_I2C  
Setup Time for Repeated  
START  
t
4.7  
0.6  
Fs  
SU:STA  
Maxim Integrated  
24  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
2
I C Serial Peripheral Specification (continued)  
(See Figure 9 and Figure 10.)  
STANDARD MODE  
FAST MODE  
MIN MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
UNITS  
MIN  
MAX  
A device must internally  
provide a hold time  
of at least 300ns for  
V
to bridge the  
IH_I2C(MIN)  
undefined region of the  
falling edge of SCL. The  
Hold Time for Data  
t
0
3.45  
0
0.9  
Fs  
HD:DAT  
maximum t  
needs  
HD:DAT  
to be met only if the  
device does not stretch  
the SCL low period  
2
A fast-mode I C bus  
device can be used in  
2
a standard-mode I C  
bus system; if such a  
device does not stretch  
the low period of the SCL  
signal, it must output  
the next data bit to the  
Setup Time for Data  
t
250  
100  
ns  
ns  
SU:DAT  
SDA line t  
+
R_I2C(MAX)  
t
= 1000 + 250  
SU:DAT  
= 1250ns (according to  
2
the standard-mode I C  
specification) before the  
SCL line is released  
20 +  
SDA/SCL Fall Time  
t
300  
300  
300  
F_I2C  
0.1C  
B
20 +  
SDA/SCL Rise Time  
Setup Time for STOP  
t
1000  
ns  
Fs  
Fs  
R_I2C  
0.1C  
B
t
4.0  
4.7  
0.6  
SU:STO  
Bus Free Time Between  
STOP and START  
t
1.3  
BUF  
Noise Margin at the  
Low Level for Each  
Connected Device  
(Including Hysteresis)  
V
0.1 x V  
0.1 x V  
V
V
nL_I2C  
DD  
DD  
DD  
DD  
Noise Margin at the  
Low Level for Each  
Connected Device  
(Including Hysteresis)  
V
0.2 x V  
0.2 x V  
nH_I2C  
Maxim Integrated  
25  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
2
I C Serial Diagrams  
V
DD  
2
I C  
2
I C  
DEVICE  
DEVICE  
R
R
P
P
MAXQ617  
R
S
R
R
R
S
S
S
SDA  
SCL  
Figure 9. Series Resistors (R ) for Protecting Against High-Voltage Spikes  
S
S
SR  
P
S
SDA  
t
BUF  
t
t
R_I2C  
F_I2C  
t
t
t
SU:STA  
LOW_I2C  
SU:DAT  
SCL  
t
t
HIGH_I2C  
HD:STA  
t
t
SU:STO  
HD:DAT  
NOTE: TIMING REFERENCED TO V  
AND V  
IL_I2C(MAX).  
IH_I2C(MIN)  
2
Figure 10. I C Bus Controller Timing Diagram  
Maxim Integrated  
26  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
Serial Peripheral Interface (SPI) Specifications  
(See Figure 11 and Figure 12.)  
PARAMETER  
SPI Master Frequency  
SPI Slave Frequency  
SPI Master Period  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
f
f
f
/2  
MCK  
SYS  
f
/4  
MHz  
SCK  
MCK  
SYS  
t
1/f  
MCK  
SPI Slave Period  
t
1/f  
SCK  
SCK  
SCLK Output Pulse-Width High/  
Low  
t
t
,
t
t
t
/2  
MCH  
MCK  
- 35  
ns  
ns  
ns  
ns  
ns  
MCL  
MOSI Output Hold Time After SCLK  
Sample Edge  
/2  
MCK  
- 35  
t
MOH  
/2  
MCK  
- 35  
MOSI Output Valid to Sample Edge  
t
MOV  
MISO Input Valid to SCLK Sample  
Edge Rise/Fall Setup  
t
35  
0
MIS  
MIH  
MISO Input to SCLK Sample Edge  
Rise/Fall Hold  
t
SCLK Input Pulse-Width High/Low  
SSEL Active to First Shift Edge  
t
, t  
t
/2  
ns  
ns  
SCH SCL  
SCK  
50  
t
SSE  
MOSI Input to SCLK Sample Edge  
Rise/Fall Setup  
t
35  
35  
ns  
ns  
SIS  
MOSI Input from SCLK Sample  
Edge Transition Hold  
t
SIH  
MISO Output Valid After SCLK Shift  
Edge Transition  
t
70  
ns  
ns  
SOV  
SCLK Inactive to SSEL Rising  
t
35  
SD  
Maxim Integrated  
27  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
SPI Timing Diagrams  
SHIFT  
SAMPLE  
SHIFT  
SAMPLE  
SSEL  
(ACTIVE LOW)  
t
MCK  
SCLK  
CKPOL/CKPHA  
0/1 OR 1/0  
t
t
MCH  
MCL  
SCLK  
CKPOL/CKPHA  
0/0 OR 1/1  
t
MOH  
t
t
RF  
t
MLH  
MOV  
MOSI  
MISO  
MSB  
MSB-1  
LSB  
t
t
MIH  
MIS  
MSB  
MSB-1  
LSB  
Figure 11. SPI Master Communication Timing  
SHIFT  
SAMPLE  
SHIFT  
SAMPLE  
SSEL  
(ACTIVE LOW)  
t
SSH  
t
SSE  
t
SD  
t
SCK  
SCLK  
CKPOL/CKPHA  
0/1 OR 1/0  
t
t
SCH  
SCL  
SCLK  
CKPOL/CKPHA  
0/0 OR 1/1  
t
t
SIH  
SIS  
MOSI  
MISO  
MSB  
MSB-1  
LSB  
t
t
RF  
t
SLH  
SOV  
MSB  
MSB-1  
LSB  
Figure 12. SPI Slave Communication Timing  
Maxim Integrated  
28  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
USART Mode 0 Specifications  
(See Figure 13.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
USART Clock Period  
t
1/f  
CLCL  
SYS  
CLCL  
CLCL  
CLCL  
CLCL  
SM2 = 0  
SM2 = 1  
SM2 = 0  
SM2 = 1  
SM2 = 0  
SM2 = 1  
SM2 = 0  
SM2 = 1  
SM2 = 0  
SM2 = 1  
SM2 = 0  
SM2 = 1  
12t  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TXD Clock Period  
t
XLXL  
4t  
3t  
2t  
TXD Clock High Time  
t
XHXL  
10t  
RXD Output Data Valid to TXD  
Clock Rising Edge  
CLCL  
CLCL  
CLCL  
CLCL  
CLCL  
CLCL  
CLCL  
CLCL  
t
QVXH  
XHQH  
3t  
2t  
RXD Output Data Hold from TXD  
Clock Rising Edge  
t
t
t
t
t
t
RXD Input Data Valid to TXD  
Clock Rising Edge  
t
DVXH  
XHDH  
RXD Input Data Hold after TXD  
Clock Rising Edge  
t
USART Timing  
t
XLXL  
TXD CLOCK  
RXD INPUT  
t
XHXL  
t
t
XHDH  
DVXH  
BIT X  
BIT X + 1  
t
t
XHQH  
QVXH  
RXD OUTPUT  
BIT X  
Figure 13. USART Timing Diagram  
Maxim Integrated  
29  
www.maximintegrated.com  
MAXQ611  
Infrared Remote Control System-On-Chip  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
3/14  
Initial release  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2014 Maxim Integrated Products, Inc.  
30  

相关型号:

MAXQ612

16-Bit Microcontrollers with Infrared Module and Optional USB
MAXIM

MAXQ612G-0000

16-Bit Microcontrollers with Infrared Module and Optional USB
MAXIM

MAXQ612G-0000+

16-Bit Microcontrollers with Infrared Module and Optional USB
MAXIM

MAXQ612J-0000

16-Bit Microcontrollers with Infrared Module and Optional USB
MAXIM

MAXQ612J-0000+

16-Bit Microcontrollers with Infrared Module and Optional USB
MAXIM

MAXQ612_1

16-Bit Microcontrollers with Infrared Module and Optional USB
MAXIM

MAXQ612_11

16-Bit Microcontrollers with Infrared Module and Optional USB
MAXIM

MAXQ613

16-Bit Microcontroller with Infrared Module
MAXIM

MAXQ613A-0000+

16-Bit Microcontroller with Infrared Module
MAXIM

MAXQ613J-0000+

16-Bit Microcontroller with Infrared Module
MAXIM

MAXQ613X-0000+

16-Bit Microcontroller with Infrared Module
MAXIM