MX7839AS [MAXIM]

Octal, 13-Bit Voltage-Output DAC with Parallel Interface; 八路, 13位电压输出DAC ,并行接口
MX7839AS
型号: MX7839AS
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Octal, 13-Bit Voltage-Output DAC with Parallel Interface
八路, 13位电压输出DAC ,并行接口

文件: 总14页 (文件大小:374K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2952; Rev 0; 7/03  
Octal, 13-Bit Voltage-Output DAC  
with Parallel Interface  
General Description  
Features  
The MX7839 contains eight 13-bit, voltage-output digital-  
to-analog converters (DACs). On-chip precision output  
amplifiers provide the voltage outputs. The device oper-  
ates from ±1ꢀ5 supplies. ꢁts bipolar output voltage sꢂing  
is ±1ꢃ5 and is achieved ꢂith no eꢄternal components.  
The MX7839 has three pairs of differential reference  
inputs; tꢂo of these pairs are connected to tꢂo DACs  
each, and a third pair is connected to four DACs. The  
references are independently controlled, providing differ-  
ent full-scale output voltages to the respective DACs.  
o Full 13-Bit Performance without Adjustments  
o Eight DACs in a Single Package  
o Buffered Voltage Outputs  
o Unipolar or Bipolar Voltage Swing to 1ꢀV  
o 31µs Output Settling Time  
o Low Power Consumption: 8mA (typ)  
o Small 44-Pin MQFP Package  
The MX7839 features double-buffered interface logic  
ꢂith a 13-bit parallel data bus. Each DAC has an input  
latch and a DAC latch. Data in the DAC latch sets the  
output voltage. The eight input latches are addressed  
ꢂith three address lines. Data is loaded to the input  
latch ꢂith a single ꢂrite instruction. An asynchronous  
load input (LDAC) transfers data from the input latch to  
the DAC latch. The LDAC input controls all DACs;  
therefore, all DACs can be updated simultaneously by  
asserting LDAC.  
o Double-Buffered Digital Inputs  
o Asynchronous Load Updates All DACs  
Simultaneously  
o Asynchronous CLR Forces All DACs to  
DUTGND_ _ Potential  
Ordering Information  
An asynchronous CLR input sets the output of all eight  
DACs to the respective DUTGND input of the op amp.  
Note that CLR is a CMOS input, ꢂhich is poꢂered by  
INL  
(LSB)  
PART  
TEMP RANGE  
PIN-PACKAGE  
5 . All other logic inputs are TTL/CMOS compatible.  
DD  
MX7839AS  
-4ꢃ°C to +8ꢀ°C  
44 MQFP  
±±  
The MX7839 is pin-for-pin compatible ꢂith AD7839.  
Applications  
Automatic Test Equipment (ATE)  
ꢁndustrial Process Controls  
Pin Configuration  
TOP VIEW  
Arbitrary Function Generators  
Avionics Equipment  
Minimum Component Count Analog Systems  
Digital Offset/Gain Adjustment  
SONET Applications  
DUTGNDAB  
OUTA  
1
33 DUTGNDGH  
32 OUTH  
2
3
4
5
6
7
8
9
REFAB-  
REFAB+  
31 REFGH-  
30 REFGH+  
V
DD  
29  
V
SS  
V
SS  
28 CLR  
27 DB12  
26 DB11  
25 DB10  
24 DB9  
23 DB8  
MX7839  
LDAC  
A2  
A1  
A0 10  
CS 11  
Functional Diagram appears at end of data sheet.  
MQFP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing delivery, and ordering information please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Octal, 13-Bit Voltage-Output DAC  
with Parallel Interface  
ABSOLUTE MAXIMUM RATINGS  
5
5
5
to GND ...........................................................-ꢃ.35 to +175  
to GND ........................................................... -175 to +ꢃ.35  
to GND ............................................................ -ꢃ.35 to +65  
Maꢄimum Current into Any Signal Pin ..............................±ꢃmA  
OUT_ Short-Circuit Duration to 5 , 5 , and GND ................1s  
DD  
SS  
CC  
DD SS  
Continuous Poꢂer Dissipation (T = +7ꢃ°C)  
A
A_, DB_, WR, CS, LDAC, CLR to GND .....+ꢃ.35 to (5  
REF_ _ _ _+, REF_ _ _ _-,  
+ ꢃ.35)  
44-Pin MQFP (derate 11.1mW/°C above +7ꢃ°C).........87ꢃmW  
Operating Temperature Range ...........................-4ꢃ°C to +8ꢀ°C  
Junction Temperature......................................................+1ꢀꢃ°C  
Storage Temperature Range.............................-6ꢀ°C to +1ꢀꢃ°C  
Lead Temperature (soldering, 1ꢃs) .................................+3ꢃꢃ°C  
CC  
DUTGND_ _ .................................(5 - ꢃ.35) to (5  
+ ꢃ.35)  
SS  
DD  
OUT_ ..........................................................................5  
Maꢄimum Current into REF_ _ _ _ _, DUTGND_ _ ...........±1ꢃmA  
to 5  
SS  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(5  
= +1ꢀ5 ±ꢅ, 5 = -1ꢀ5 ±ꢅ, 5  
= +ꢀ5 ±ꢅ, 5  
= 5  
= ꢃ, 5 _ _ _ _+ = +ꢀ5, 5 _ _ _ _- = -ꢀ5, R = ꢀk,  
REF REF L  
DD  
SS  
to T  
CC  
GND  
DUTGND_ _  
C = ꢀꢃpF, T = T  
, unless otherꢂise noted. Typical values are at T = +±ꢀ°C.)  
L
A
MꢁN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE (ANALOG SECTION)  
Resolution  
N
13  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
Zero-Scale Error  
Full-Scale Error  
Gain Error  
ꢁNL  
DNL  
±±  
±.9  
±8  
Guaranteed monotonic  
±±  
±1  
±1  
±4  
ppm  
FSR/°C  
Gain Temperature Coefficient  
(Note 1)  
(Note 1)  
ꢃ.ꢀ  
7ꢀ  
1ꢃ  
DC Crosstalk  
1±ꢃ  
µ5  
REFERENCE INPUTS  
ꢁnput Resistance  
1ꢃꢃ  
MΩ  
µA  
5
ꢁnput Current  
±1  
REF_ _ _ _+ ꢁnput Range  
REF_ _ _ _- ꢁnput Range  
-ꢀ  
5
(REF_ _ _ _+) - (REF_ _ _ _-)  
Range  
±
1ꢃ  
5
ANALOG OUTPUTS  
Output 5oltage Sꢂing  
Resistive Load to GND  
Capacitive Load to GND  
DC Output ꢁmpedance  
-1ꢃ  
+1ꢃ  
kΩ  
kΩ  
pF  
ꢀꢃ  
(Note 1)  
ꢃ.ꢀ  
2
_______________________________________________________________________________________  
Octal, 13-Bit Voltage-Output DAC  
with Parallel Interface  
ELECTRICAL CHARACTERISTICS (continued)  
(5  
= +1ꢀ5 ±ꢅ, 5 = -1ꢀ5 ±ꢅ, 5  
= +ꢀ5 ±ꢅ, 5  
= 5  
= ꢃ, 5 _ _ _ _+ = +ꢀ5, 5 _ _ _ _- = -ꢀ5, R = ꢀk,  
REF REF L  
DD  
SS  
to T  
CC  
GND  
DUTGND_ _  
C = ꢀꢃpF, T = T  
, unless otherꢂise noted. Typical values are at T = +±ꢀ°C.)  
L
A
MꢁN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DUTGND_ _ CHARACTERISTICS  
ꢁnput ꢁmpedance per DAC  
Maꢄimum ꢁnput Current per DAC  
ꢁnput Range  
6ꢃ  
kΩ  
µA  
5
±3ꢃꢃ  
-±  
+±  
DIGITAL INPUTS  
ꢁnput 5oltage High  
5
±.4  
5
5
ꢁH  
ꢁnput 5oltage Loꢂ  
5
ꢃ.8  
1ꢃ  
ꢁL  
ꢁnput Capacitance  
C
(Note 1)  
pF  
µA  
ꢁN  
ꢁnput Current  
ꢁN  
Digital inputs = ꢃ5 or 5  
±1  
±1ꢃ  
CC  
POWER SUPPLIES  
5
Analog Poꢂer-Supply  
DD  
5
14.±ꢀ  
1ꢀ.7ꢀ  
5
5
DD  
Range  
5
SS  
Analog Poꢂer-Supply  
5
-14.±ꢀ  
4.7ꢀ  
-1ꢀ.7ꢀ  
SS  
Range  
5
CC  
Digital Poꢂer Supply  
5
CC  
ꢀ.±ꢀ  
1ꢃ  
5
Positive Supply Current  
Negative Supply Current  
Digital Supply Current  
R = ∞  
8
8
mA  
mA  
mA  
dB  
dB  
DD  
L
SS  
R = ∞  
L
1ꢃ  
Digital inputs = ꢃ5 or 5 (Note ±)  
ꢃ.ꢀ  
CC  
CC  
PSRR, 5  
PSRR, 5  
/ 5  
/ 5  
5
DD  
5
SS  
= +1ꢀ5 ±ꢅ  
= -1ꢀ5 ±ꢅ  
9ꢃ  
9ꢃ  
OUT  
OUT  
DD  
SS  
INTERFACE TIMING CHARACTERISTICS  
(5  
= +1ꢀ5 ±ꢅ, 5 = -1ꢀ5 ±ꢅ, 5  
= +ꢀ5 ±ꢅ, 5  
= 5  
= ꢃ, 5  
_ _ _ _+ = +ꢀ5, 5 _ _ _ _- = -ꢀ5, Figure ±a,  
REF REF  
DD  
SS  
CC  
GND  
DUTGND_ _  
T
A
= T  
to T  
, unless otherꢂise noted.)  
MꢁN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
ꢀꢃ  
ꢀꢃ  
ꢀꢃ  
TYP  
MAX  
UNITS  
ns  
t
1
CS Pulse Width Loꢂ  
t
±
ns  
WR Pulse Width Loꢂ  
t
3
ns  
LDAC Pulse Width Loꢂ  
CS Loꢂ to WR Loꢂ  
t
4
ns  
t
ns  
CS High to WR High  
t
±ꢃ  
ns  
Data 5alid to WR Setup  
Data 5alid to WR Hold  
Address 5alid to WR Setup  
Address 5alid to WR Hold  
CLR Pulse-Activation Time  
6
t
7
ns  
t
8
1ꢀ  
ns  
t
9
ns  
t
1ꢃ  
Figure ±b  
3ꢃꢃ  
ns  
_______________________________________________________________________________________  
3
Octal, 13-Bit Voltage-Output DAC  
with Parallel Interface  
DYNAMIC CHARACTERISTICS  
(5  
= +1ꢀ5 ±ꢅ, 5 = -1ꢀ5 ±ꢅ, 5  
= +ꢀ5 ±ꢅ, 5  
= 5  
= ꢃ, 5 _ _ _ _+ = +ꢀ5, 5 _ _ _ _- = -ꢀ5, R = ꢀk,  
REF REF L  
DD  
SS  
to T  
CC  
GND  
DUTGND_ _  
C = ꢀꢃpF, T = T  
, unless otherꢂise noted. Typical values are at T = +±ꢀ°C.)  
L
A
MꢁN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
To ±.ꢀ LSB of full scale  
MIN  
TYP  
MAX  
UNITS  
µs  
Output Settling Time  
Output Sleꢂ Rate  
Digital Feedthrough  
Digital Crosstalk  
31  
ꢃ.7  
ꢃ.1  
ꢃ.±  
±3ꢃ  
4ꢃ  
5/µs  
n5-s  
n5-s  
n5-s  
n5-s  
dB  
(Note 3)  
(Note 4)  
Digital-to-Analog Glitch ꢁmpulse  
DAC-to-DAC Crosstalk  
Channel-to-Channel ꢁsolation  
Output Noise Spectral Density  
99  
5
REF+  
= 5  
= ꢃ5  
±ꢃꢃ  
n5/Hz  
REF-  
Note 1: Guaranteed by design. Not production tested.  
Note 2: All digital inputs (DB_, A_, WR, CS, LDAC, and CLR) at GND or 5  
potential.  
CC  
Note 3: All digital inputs (DB_, A_, WR, CS, LDAC, and CLR) at +ꢃ.85 or +±.45.  
Note 4: All digital inputs (DBꢃ to DB1±) transition from GND to 5  
ꢂith WR = 5  
.
CC  
CC  
Typical Operating Characteristics  
(5  
= +1ꢀ5 ±ꢅ, 5 = -1ꢀ5 ±ꢅ, 5  
= +ꢀ5 ±ꢅ, 5  
= 5  
= ꢃ, 5  
_ _ _ _+ = +ꢀ5, 5  
_ _ _ _- = -ꢀ5, T = +±ꢀ°C,  
REF A  
DD  
SS  
CC  
GND  
DUTGND_ _  
REF  
unless otherꢂise noted.)  
INL AND DNL ERROR  
vs. TEMPERATURE  
INL vs. CODE  
DNL vs. CODE  
0.400  
0.300  
0.200  
0.100  
0
0.300  
0.200  
0.100  
0.4  
0.3  
0.2  
0.1  
DNL  
0
-0.100  
-0.200  
0
-0.100  
-0.200  
-0.300  
-0.400  
-0.1  
-0.2  
-0.3  
-0.4  
INL  
-0.300  
0
2048  
4096  
6144  
8192  
0
2048  
4096  
6144  
8192  
-40  
-20  
0
20  
40  
60  
80  
CODE  
CODE  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
Octal, 13-Bit Voltage-Output DAC  
with Parallel Interface  
Typical Operating Characteristics (continued)  
(5  
= +1ꢀ5 ±ꢅ, 5 = -1ꢀ5 ±ꢅ, 5  
= +ꢀ5 ±ꢅ, 5  
= 5  
= ꢃ, 5  
_ _ _ _+ = +ꢀ5, 5  
_ _ _ _- = -ꢀ5, T = +±ꢀ°C,  
REF A  
DD  
SS  
CC  
GND  
DUTGND_ _  
REF  
unless otherꢂise noted.)  
ZERO-SCALE AND FULL-SCALE ERROR  
DIGITAL SUPPLY CURRENT  
vs. TEMPERATURE  
I
AND I  
SS  
DD  
vs. TEMPERATURE  
vs. TEMPERATURE  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
25.0  
24.5  
24.0  
23.5  
23.0  
22.5  
22.0  
21.5  
21.0  
20.5  
20.0  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
I
DD  
ZERO SCALE  
I
SS  
-0.2  
-0.4  
-0.6  
-0.8  
FULL SCALE  
-40  
-20  
0
20  
40  
60  
80  
-40 -25 -10  
5
20 35 50 65 80  
-40 -25 -10  
5
20 35 50 65 80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SETTLING TIME  
vs. CAPACITIVE LOAD  
REFERENCE INPUT FREQUENCY RESPONSE  
LARGE-SIGNAL STEP RESPONSE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5
REF_ _ _ _ _ = 200mV  
P-P  
0
LDAC  
-5  
5V/div  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
OUT_  
5V/div  
10  
100  
1000  
10,000  
100,000  
1k  
10k  
100k  
1M  
10M  
10µs/div  
CAPACITIVE LOAD (pF)  
FREQUENCY (Hz)  
NOISE VOLTAGE DENSITY  
vs. FREQUENCY  
POSITIVE SETTLING TIME  
NEGATIVE SETTLING TIME  
1000  
LDAC  
5V/div  
LDAC  
5V/div  
OUT_  
1mV/div  
OUT_  
1mV/div  
100  
10µs/div  
10µs/div  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
_______________________________________________________________________________________  
5
Octal, 13-Bit Voltage-Output DAC  
with Parallel Interface  
Typical Operating Characteristics (continued)  
(5  
= +1ꢀ5 ±ꢅ, 5 = -1ꢀ5 ±ꢅ, 5  
= +ꢀ5 ±ꢅ, 5  
= 5  
= ꢃ, 5  
_ _ _ _+ = +ꢀ5, 5  
_ _ _ _- = -ꢀ5, T = +±ꢀ°C,  
REF A  
DD  
SS  
CC  
GND  
DUTGND_ _  
REF  
unless otherꢂise noted.)  
MAJOR CARRY GLITCH IMPULSE  
REF  
(0xOFFF–0x1000)  
MX7839 toc13  
1.0  
0.8  
0.6  
0.4  
0.2  
0
LDAC  
LDAC  
5V/div  
5V/div  
OUT  
OUT  
5mV/div  
-0.2  
-0.4  
-0.6  
-0.8  
5mV/div  
-1.0  
0
2µs/div  
2µs/div  
2
4
6
8
10  
V
REF  
(V)  
FULL-SCALE ERROR  
vs. V  
(V  
- V  
)
)
)
REF REF+  
REF-  
1.0  
0.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0.6  
0.4  
0.2  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
2
4
6
8
10  
0
2
8
10  
0
2
8
10  
V (V)  
REF  
V
REF  
(V)  
V
REF  
(V)  
INL (MAX, MIN)  
SHORT-CIRCUIT CURRENT  
vs. TEMPERATURE  
vs. V  
(V  
- V  
)
REF REF+  
REF-  
1.0  
0.8  
0.6  
0.4  
0.2  
0
30  
20  
ZERO-SCALE OUTPUT,  
SINKING CURRENT  
10  
0
-10  
-20  
-30  
-40  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
FULL-SCALE OUTPUT,  
SOURCING CURRENT  
0
2
4
6
8
10  
-40 -25 -10  
5
20 35 50 65 80  
°
TEMPERATURE ( C)  
V
REF  
(V)  
6
_______________________________________________________________________________________  
Octal, 13-Bit Voltage-Output DAC  
with Parallel Interface  
Pin Description  
PIN  
NAME  
FUNCTION  
Device Sense Ground ꢁnput for OUTA and OUTB. ꢁn normal operation, OUTA and OUTB are referenced  
to DUTGNDAB. When CLR is loꢂ, OUTA and OUTB are forced to the potential on DUTGNDAB.  
1
DUTGNDAB  
±
3
4
OUTA  
REFAB-  
REFAB+  
DAC A Buffered Output 5oltage  
Negative Reference ꢁnput for DACs A and B  
Positive Reference ꢁnput for DACs A and B  
Positive Analog Poꢂer Supply. Normally set to +1ꢀ5. Connect both pins to the supply voltage. See the  
Power Supplies, Grounding, and Bypassing section for bypass requirements.  
ꢀ, 38  
6, ±9  
5
DD  
Negative Analog Poꢂer Supply. Normally set to -1ꢀ5. See the Power Supplies, Grounding, and  
Bypassing section for bypass requirements.  
5
SS  
Load ꢁnput. Drive this asynchronous input loꢂ to transfer the contents of the input latches to their  
7
LDAC  
respective DAC latches. DAC latches are transparent ꢂhen LDAC is loꢂ and latched ꢂhen LDAC is  
high.  
8
9
A±  
A1  
Aꢃ  
CS  
Address Bit ± (MSB)  
Address Bit 1  
1ꢃ  
11  
Address Bit ꢃ (LSB)  
Chip Select. Active-loꢂ input.  
Write ꢁnput. Active-loꢂ strobe for conventional memory ꢂrite sequence. ꢁnput data latches are transpar-  
ent ꢂhen WR and CS are both loꢂ. WR latches data into the DAC input latch selected by A±, A1, Aꢃ on  
the rising edge of CS.  
1±  
13  
WR  
Digital Poꢂer Supply. Normally set to +ꢀ5. See the Power Supplies, Grounding, and Bypassing section  
for bypass requirements.  
5
CC  
14  
GND  
Ground  
1ꢀ–±7  
DBꢃ–DB1±  
Data Bits ꢃ–1±. Offset binary coding.  
Clear ꢁnput. Drive CLR loꢂ to force all DAC outputs to the voltage on their respective DUTGND _ _.  
±8  
CLR  
Does not affect the status of internal registers. All DACs return to their previous levels ꢂhen CLR goes  
high.  
3ꢃ  
31  
REFGH+  
REFGH-  
Positive Reference ꢁnput for DACs G and H  
Negative Reference ꢁnput for DACs G and H  
_______________________________________________________________________________________  
7
Octal, 13-Bit Voltage-Output DAC  
with Parallel Interface  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
3±  
OUTH  
DAC H Buffered Output 5oltage  
Device Sense Ground ꢁnput for OUTG and OUTH. ꢁn normal operation, OUTG and OUTH are referenced  
to DUTGNDGH. When CLR is loꢂ, OUTG and OUTH are forced to the potential on DUTGNDGH.  
33  
DUTGNDGH  
34  
3ꢀ  
OUTG  
OUTF  
DAC G Buffered Output 5oltage  
DAC F Buffered Output 5oltage  
Device Sense Ground ꢁnput for OUTE and OUTF. ꢁn normal operation, OUTE and OUTF are referenced  
to DUTGNDEF. When CLR is loꢂ, OUTE and OUTF are forced to the potential on DUTGNDEF.  
36  
DUTGNDEF  
37  
39  
4ꢃ  
41  
OUTE  
REFCDEF+  
REFCDEF-  
OUTD  
DAC E Buffered Output 5oltage  
Positive Reference ꢁnput for DACs C, D, E, and F  
Negative Reference ꢁnput for DACs C, D, E, and F  
DAC D Buffered Output 5oltage  
Device Sense Ground ꢁnput for OUTC and OUTD. ꢁn normal operation, OUTC and OUTD are referenced  
to DUTGNDCD. When CLR is loꢂ, OUTC and OUTD are forced to the potential on DUTGNDCD.  
4±  
DUTGNDCD  
43  
44  
OUTC  
OUTB  
DAC C Buffered Output 5oltage  
DAC B Buffered Output 5oltage  
8
_______________________________________________________________________________________  
Octal, 13-Bit Voltage-Output DAC  
with Parallel Interface  
_______________Detailed Description  
CLR  
Analog Section  
R
R
The MX7839 contains eight 13-bit voltage-output DACs.  
OUT  
These DACs are inverted R-±R ladder netꢂorks that  
convert 13-bit digital inputs into equivalent analog out-  
2R  
2R  
2R  
2R  
2R  
2R  
put voltages, in proportion to the applied reference volt-  
ages (Figure 1). The MX7839 has three positive  
reference inputs (REF_ _ _ _+) and three negative refer-  
ence inputs (REF_ _ _ _-). The difference from  
REF_ _ _ _+ to REF_ _ _ _-, multiplied by tꢂo, sets the  
DAC output span.  
D0  
D12  
D13  
DUTGND  
REF-  
REF+  
ꢁn addition to the differential reference inputs, the  
MX7839 has four analog-ground input pins  
(DUTGND_ _). When CLR is high (unasserted), the volt-  
age on DUTGND_ _ offsets the DAC output voltage  
range. ꢁf CLR is asserted, the output amplifier is forced  
to the voltage present on DUTGND_ _.  
Figure 1. DAC Simplified Circuit  
Reference and DUTGND Inputs  
All of the MX7839’s reference inputs are buffered ꢂith  
precision amplifiers. This alloꢂs the fleꢄibility of using  
resistive dividers to set the reference voltages. Because  
of the relatively high multiplying bandꢂidth of the refer-  
ence input (188kHz), any signal present on the reference  
pin ꢂithin this bandꢂidth is replicated on the DAC output.  
t
1
CS  
t
4
t
5
The DUTGND pins of the MX7839 are connected to the  
negative source resistor (nominally 11ꢀk) of the out-  
put amplifier. The DUTGND pins are typically connect-  
ed directly to analog ground. Each of these pins has an  
input current that varies ꢂith the DAC digital code. ꢁf  
the DUTGND pins are driven by eꢄternal circuitry, bud-  
get ±±ꢃꢃµA per DAC for load current.  
t
2
WR  
t
8
t
9
A0–A2  
Output-Buffer Amplifiers  
The MX7839’s voltage outputs are internally buffered by  
precision gain-of-tꢂo amplifiers ꢂith a typical sleꢂ rate  
of 15/µs. With a full-scale transition at its output, the  
typical settling time to ±1/± LSB is 31µs. This settling  
time does not significantly vary ꢂith capacitive loads  
less than 1ꢃ,ꢃꢃꢃpF.  
t
6
t
7
DB0–DB12  
t
t
3
(NOTE 3)  
3
LDAC  
CLR  
NOTES:  
1. ALL INPUT RISE AND FALL TIMES MEASURED FROM 10% TO 90% OF  
+5V. t = t = 5ns.  
r
f
V
OUT_  
2. MEASUREMENT REFERENCE LEVEL IS (V + V ) / 2.  
INH  
INL  
t
10  
t
10  
3. IF LDAC IS ACTIVATED WHILE WR IS LOW, THEN LDAC MUST STAY LOW  
FOR t OR LONGER AFTER WR GOES HIGH.  
3
Figure 2a. Digital Timing Diagram  
Figure 2b. Digital Timing Diagram  
_______________________________________________________________________________________  
9
Octal, 13-Bit Voltage-Output DAC  
with Parallel Interface  
input latches and the DAC latches are transparent  
Output Deglitching Circuit  
The MX7839’s internal connection from the DAC ladder  
to the output amplifier contains special deglitch circuitry.  
This glitch/deglitch circuitry is enabled on the falling  
edge of LDAC to remove the glitch from the R-±R DAC.  
This enables the MX7839 to eꢄhibit a fraction of the glitch  
impulse energy of parts ꢂithout the deglitching circuit.  
ꢂhen CS, WR, and LDAC are all loꢂ. Any change of  
DBꢃ–DB1± during this condition appears at the output  
instantly. Transfer data from the input latches to the  
DAC latches by asserting the asynchronous LDAC sig-  
nal. Each DAC’s analog output reflects the data held in  
its DAC latch. All control inputs are level triggered.  
Table ± is an interface truth table.  
Digital Inputs and Interface Logic  
All digital inputs are compatible ꢂith both TTL and  
CMOS logic. The MX7839 interfaces ꢂith microproces-  
sors using a data bus at least 13 bits ꢂide. The inter-  
face is double buffered, alloꢂing simultaneous  
updating of all DACs. There are tꢂo latches for each  
DAC (see the Functional Diagram): an input latch that  
receives data from the data bus, and a DAC latch that  
receives data from the input latch. Address lines Aꢃ,  
A1, and A± select ꢂhich DAC’s input latch receives  
data from the data bus as shoꢂn in Table 1. Both the  
Input Write Cycle  
Data can be latched or transferred directly to the DAC.  
CS and WR control the input latch, and LDAC transfers  
information from the input latch to the DAC latch. The  
input latch is transparent ꢂhen CS and WR are loꢂ,  
and the DAC latch is transparent ꢂhen LDAC is loꢂ.  
The address lines (Aꢃ, A1, A±) must be valid for the  
duration that CS and WR are loꢂ (Figure ±a) to prevent  
data from being inadvertently ꢂritten to the ꢂrong DAC.  
Data is latched ꢂithin the input latch ꢂhen either CS or  
WR is high.  
Table 1. MX7839 DAC Addressing  
Loading the DACs  
Taking LDAC high latches data into the DAC latches. ꢁf  
LDAC is brought loꢂ ꢂhen WR and CS are loꢂ, the  
DAC addressed by Aꢃ, A1, and A± is directly con-  
trolled by the data on DBꢃ–DB1±. This alloꢂs the maꢄi-  
mum digital update rate; hoꢂever, it is sensitive to any  
glitches or skeꢂ in the input data stream.  
A2  
A1  
Aꢀ  
FUNCTION  
DAC A input latch  
DAC B input latch  
DAC C input latch  
DAC D input latch  
DAC E input latch  
DAC F input latch  
DAC G input latch  
DAC H input latch  
1
1
1
1
Asynchronous Clear  
The MX7839 has an asynchronous clear pin (CLR) that,  
ꢂhen asserted, sets all DAC outputs to the voltage pre-  
sent on their respective DUTGND pins. Deassert CLR to  
return the DAC output to its previous voltage. Note that  
CLR does not clear any of the internal digital registers.  
See Figure ±b.  
1
1
1
1
1
1
1
1
Table 2. Interface Truth Table  
Applications Information  
FUNCTION  
CLR  
X
LD  
X
WR  
CS  
Multiplying Operation  
The MX7839 can be used for multiplying applications.  
ꢁts reference accepts both DC and AC signals. Since  
the reference inputs are unipolar, the multiplying opera-  
tion is limited to tꢂo quadrants. See the graphs in the  
Typical Operating Characteristics for dynamic perfor-  
mance of the DACs and output buffers.  
ꢁnput register transparent  
ꢁnput register latched  
ꢁnput register latched  
DAC register transparent  
DAC register latched  
X
X
X
1
X
X
1
X
X
X
X
X
1
X
X
Digital Code and  
Analog Output Voltage  
Outputs of DACs at  
DUTGND_ _  
1
X
1
X
X
X
X
The MX7839 uses offset binary coding. A 13-bit tꢂo’s  
complement code is converted to a 13-bit offset binary  
Outputs of DACs set to volt-  
age defined by the DAC  
register, the references,  
and the corresponding  
DUTGND_ _  
1±  
code by adding ± = 4ꢃ96.  
X = Don’t care.  
1ꢀ ______________________________________________________________________________________  
Octal, 13-Bit Voltage-Output DAC  
with Parallel Interface  
Table 3. Analog Voltage vs. Digital Code  
± REF+ − REF−  
(
)
LSB =  
OUTPUT  
13  
INPUT CODE  
±
VOLTAGE (V)  
1 1111 1111 1111  
1 0000 0000 0000  
0 1001 1101 1001  
0 0000 0000 0001  
0 0000 0000 0000  
+9.997558  
0
Reference Selection  
Because the MX7839 has precision buffers on its refer-  
ence inputs, the requirements for interfacing to these  
inputs are minimal. Select a loꢂ-drift, loꢂ-noise refer-  
ence ꢂithin the recommended REF+ and REF- voltage  
ranges. The MX7839 does not require bypass capaci-  
tors on its reference inputs. Add capacitors only if the  
reference voltage source requires them to meet system  
specifications.  
-3.845215  
-9.997558  
-10  
Note: Output voltage is based on REF+ = +5V, REF- = -5V, and  
DUTGND = 0V.  
Output Voltage Range  
Minimizing Output Glitch  
The MX7839’s internal deglitch circuitry is enabled on  
the falling edge of LDAC. Therefore, to achieve opti-  
mum performance, drive LDAC loꢂ after the inputs are  
either latched or steady state. This is best accom-  
plished by having the falling edge of LDAC occur at  
least ꢀꢃns after the rising edge of CS.  
For typical operation, connect DUTGND to signal ground,  
5
+ to +ꢀ5, and 5  
- to -ꢀ5. Table 3 shoꢂs the rela-  
tionship betꢂeen digital code and output voltage.  
REF  
REF  
The DAC digital code controls each leg of the 13-bit  
R-±R ladder. A code of ꢃꢄꢃ connects all legs of the lad-  
der to REF-, corresponding to a DAC output voltage  
(5  
) equal to REF-. A code of ꢃꢄ1FFF connects all  
DAC  
Power Supplies, Grounding,  
and Bypassing  
For optimum performance, use a multilayer PC board  
ꢂith an unbroken analog ground. For normal operation,  
connect the four DUTGND pins directly to the ground  
plane. Avoid sharing the connections of these sensitive  
pins ꢂith other ground traces.  
legs of the ladder to REF+, corresponding to a 5  
approꢄimately equal to REF+.  
DAC  
The output amplifier multiplies 5  
by ±, yielding an out-  
DAC  
put voltage range of ± REF- to ± REF+ (Figure 1).  
Further manipulation of the output voltage span is accom-  
plished by offsetting DUTGND. The output voltage of the  
MX7839 is described by the folloꢂing equation:  
As ꢂith any sensitive data-acquisition system, connect  
the digital and analog ground planes together at a sin-  
gle point, preferably directly underneath the MX7839.  
Avoid routing digital signals underneath the MX7839 to  
minimize their coupling into the ꢁC.  
DATA  
5
= ± 5  
5  
+ 5  
REF−  
(
)
OUT  
REF+  
REF−  
13  
±
5  
DUTGND  
For normal operation, bypass 5  
and 5 ꢂith ꢃ.1µF  
SS  
DD  
ꢂhere DATA is the numeric value of the DAC’s binary  
input code, and DATA ranges from ꢃ to 8191  
(± - 1). The resolution of the MX7839, defined as  
1 LSB, is described by the folloꢂing equation:  
ceramic chip capacitors to the analog ground plane. To  
enhance transient response and capacitive drive capa-  
bility, add 1ꢃµF tantalum capacitors in parallel ꢂith the  
ceramic capacitors. Note, hoꢂever, that the MX7839  
does not require the additional capacitance for stability.  
13  
Bypass 5  
ꢂith a ꢃ.1µF ceramic chip capacitor to the  
CC  
digital ground plane.  
______________________________________________________________________________________ 11  
Octal, 13-Bit Voltage-Output DAC  
with Parallel Interface  
Power-Supply Sequencing  
To guarantee proper operation of the MX7839, ensure  
that power is applied to V  
before V and V . Also  
SS CC  
DD  
ensure that V  
is never more than 300mV above  
SS  
V
SS  
V
SS  
V
SS  
ground. To prevent this situation, connect a Schottky  
diode between V and the analog ground plane, as  
SS  
shown in Figure 3. Do not power up the logic input pins  
before establishing the supply voltages. If this is not  
possible and the digital lines can drive more than  
10mA, place current-limiting resistors (e.g., 470) in  
series with the logic pins.  
MX7839  
1N5817  
GND  
Driving Capacitive Loads  
The MX7839 typically drives capacitive loads up to  
0.01µF without a series output resistor. However, when-  
ever driving high capacitive loads, it is prudent to use a  
220series resistor between the MX7839 output and  
the capacitive load.  
SYSTEM GND  
Figure 3. Schottky Diode Between V and GND  
SS  
Chip Information  
TRANSISTOR COUNT: 13,225  
PROCESS: BiCMOS  
12 ______________________________________________________________________________________  
Octal, 13-Bit Voltage-Output DAC  
with Parallel Interface  
Functional Diagram  
REFAB-  
REFAB+  
REFCDEF-  
REFCDEF+  
REFGH-  
REFGH+  
______________________________________________________________________________________ 13  
Octal, 13-Bit Voltage-Output DAC  
with Parallel Interface  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
44L MQFP, 1.60 LEAD FORM  
1
21-0826  
D
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY