MXL1535ECWI+ [MAXIM]

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO28, SOIC-28;
MXL1535ECWI+
型号: MXL1535ECWI+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO28, SOIC-28

文件: 总25页 (文件大小:792K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3270; Rev 0; 4/04  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
General Description  
Features  
2500V  
RS-485 Bus Isolation Using On-Chip  
RMS  
The MAX3535E/MXL1535E isolated RS-485/RS-422 full-  
duplex transceivers provide 2500V of galvanic isola-  
High-Voltage Capacitors  
RMS  
tion between the RS-485/RS-422 side and the processor  
or control logic side. These devices allow fast,  
1000kbps communication across an isolation barrier  
when the common-mode voltages (i.e., the ground  
potentials) on either side of the barrier are subject to  
large differences. Isolation is achieved through integrat-  
ed high-voltage capacitors. The MAX3535E/MXL1535E  
also feature a 420kHz transformer driver that allows  
power transfer to the RS-485 side using an external  
transformer.  
1000kbps Full-Duplex RS-485/RS-422  
Communication  
+3V to +5.5V Power-Supply Voltage Range  
(MAX3535E)  
+4.5V to +5.5V Power-Supply Voltage Range  
(MXL1535E)  
1/8 Unit Receiver Load, Allowing 256 Devices on  
Bus  
15kV ESD Protection Using HBM  
Pin-Selectable Slew-Rate Limiting Controls EMI  
Hot-Swap-Protected Driver-Enable Input  
Undervoltage Lockout  
The MAX3535E/MXL1535E include one differential driver,  
one receiver, and internal circuitry to send the RS-485  
signals and control signals across the isolation barrier  
(including the isolation capacitors). The MAX3535E/  
MXL1535E RS-485 receivers are 1/8 unit load, allowing  
up to 256 devices on the same bus.  
Isolation-Barrier Fault Detection  
Short-Circuit Protected  
Thermal Shutdown  
The MAX3535E/MXL1535E feature true fail-safe circuitry.  
The driver outputs and the receiver inputs are protected  
from 15kV electrostatic discharge (ESꢀ) on the inter-  
face side, as specified in the Human Body Model (HBM).  
Open-Line and Shorted-Line Fail-Safe Receiver  
Inputs  
Ordering Information  
The MAX3535E/MXL1535E feature driver slew-rate  
select that minimizes electromagnetic interference (EMI)  
and reduces reflections. The driver outputs are short-cir-  
cuit and overvoltage protected. Other features are hot-  
swap capability and isolation-barrier fault detection.  
POWER-  
SUPPLY  
RANGE  
(V)  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
+3.0 to +5.5  
+3.0 to +5.5  
+4.5 to +5.5  
+4.5 to +5.5  
MAX3535ECWI 0°C to +70°C 28 Wide SO  
MAX3535EEWI -40°C to +85°C 28 Wide SO  
MXL1535ECWI 0°C to +70°C 28 Wide SO  
The MAX3535E operates with a single +3V to +5.5V  
power supply. The improved secondary supply range of  
the MAX3535E allows the use of step-down transformers  
for +5V operation, resulting in considerable power sav-  
ings. The MXL1535E operates with a single +4.5V to  
+5.5V power supply. The MXL1535E is a function-/pin-  
compatible improvement of the LTC1535. The  
MAX3535E/MXL1535E are available over the commer-  
cial 0°C to +70°C and extended -40°C to +85°C temper-  
ature ranges.  
MXL1535EEWI -40°C to +85°C  
28 Wide SO  
ꢁin Configuration  
TOP VIEW  
V
1
2
3
4
28 RO1  
27 RE  
26 DE  
25 DI  
CC1  
ST1  
ST2  
Applications  
GND1  
Isolated RS-485 Systems  
Systems with Large Common-Mode Voltages  
Industrial-Control Local Area Networks  
Telecommunications Systems  
MAX3535E  
MXL1535E  
GND2 11  
18 SLO  
17 RO2  
Z
12  
13  
14  
Y
16  
15  
A
B
Typical Application Circuit appears at end of data sheet.  
V
CC2  
WIDE SO  
PINS 5–10 and 19–24 ARE REMOVED FROM THE PACKAGE  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
ABSOLUTE MAXIMUM RATINGS  
Logic Side—All Voltages Referenced to GNꢀ1.  
.........................................................................-0.3V to +6V  
Y, Z Maximum Current.............................Short-Circuit Protected  
ST1, ST2 Maximum Current............................................ 300mA  
V
CC1  
RE, ꢀE, ꢀI.................................................................-0.3V to +6V  
Continuous Power ꢀissipation (T = +70°C)  
28-Pin Wide SO  
(derate 9.5mW/°C above +70°C).................................750mW  
Operating Temperature Range  
A
RO1, ST1, ST2 ..........................................-0.3V to (V  
Isolated Side—All Voltages Referenced to GNꢀ2.  
+ 0.3V)  
CC1  
V
.........................................................................-0.3V to +8V  
CC2  
SLO...........................................................-0.3V to (V  
+ 0.3V)  
MXL1535ECWI, MAX3535ECWI .........................0°C to +70°C  
MXL1535EEWI, MAX3535EEWI.......................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC2  
A, B ...................................................................................... 14V  
RO2 .....................-0.3V to the lower of (V + 0.3V) and +3.4V  
CC2  
Y, Z ............................................................................-8V to +13V  
ꢀigital Outputs Maximum Current  
RO1, RO2 ..................................................................... 20mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS TABLE (MAX3535E)  
(V  
= +3.0V to +5.5V, V  
= +3.13V to +7.5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
CC1  
= +3.3V,  
UNITS  
V
CC1  
CC2  
A
V
= +5V, T = +25°C.)  
CC2  
A
PARAMETER  
SYMBOL  
, GND1)  
CONDITIONS  
MIN  
TYP  
MAX  
LOGIC-SIDE SUPPLY (V  
CC1  
Logic-Side Supply Voltage  
V
3.0  
5.5  
13  
CC1  
Transformer not driven, ST1 and ST2  
Logic-Side Supply Current  
I
unconnected, RE = low, ꢀE = high,  
5.9  
mA  
CC1  
f
= 0, RO1 = no load  
ꢀATA  
V
Undervoltage-Lockout  
CC1  
V
2.53  
2.63  
2.69  
2.80  
2.85  
2.97  
V
V
UVL1  
Falling Trip  
V
Undervoltage-Lockout  
CC1  
V
UVH1  
Rising Trip  
LOGIC INPUTS (DI, DE, RE)  
Input High Voltage, ꢀE, ꢀI, RE  
Input Low Voltage, ꢀE, ꢀI, RE  
Logic-Side Input Current, ꢀE, ꢀI  
LOGIC OUTPUTS (RO1, RE)  
V
V
V
is measured with respect to GNꢀ1  
is measured with respect to GNꢀ1  
2.0  
V
V
IH  
IH  
IL  
V
0.8  
2
IL  
I
µA  
INC  
I
I
I
I
= 4mA, V  
= 4mA, V  
= +4.5V  
= +3V  
3.7  
2.4  
SOURCE  
CC1  
CC1  
Receiver-Output High Voltage  
(RO1)  
V
V
RO1H  
SOURCE  
= 4mA, V  
= +4.5V  
= +3V  
0.4  
0.4  
SINK  
SINK  
CC1  
Receiver-Output Low Voltage  
(RO1)  
V
V
RO1L  
= 4mA, V  
CC1  
Receiver-Output (RO1) Leakage  
Current  
RE = high, V  
= +5.5V,  
CC1  
I
1
µA  
µA  
OZR  
0 V  
V  
CC1  
RO1  
RE Low Output Current for Fault  
ꢀetect  
I
RE = +0.4V, fault not asserted  
40  
60  
80  
OL  
2
_______________________________________________________________________________________  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
DC ELECTRICAL CHARACTERISTICS TABLE (MAX3535E) (continued)  
(V  
= +3.0V to +5.5V, V  
= +3.13V to +7.5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at V = +3.3V,  
CC1  
CC1  
CC2  
A
V
= +5V, T = +25°C.)  
CC2  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RE High Output Current for Fault  
ꢀetect  
I
RE = V  
- 0.5V, fault asserted  
-140  
-100  
-60  
µA  
OH  
CC1  
TRANSFORMER DRIVER (ST1, ST2)  
ꢀC-Converter Switching  
Frequency (ST1, ST2)  
f
ST1, ST2, not loaded  
290  
460  
590  
kHz  
SW  
V
V
= +4.5V, Figure 13  
= +3V, Figure 13  
1.6  
1.8  
50  
2.6  
2.9  
56  
CC1  
CC1  
ꢀC-Converter Total Impedance  
R
OHL  
R
OH  
+ R (ST1, ST2)  
OL  
ST1, ST2 ꢀuty Cycle  
ST1, ST2, not loaded  
44  
%
ISOLATED-SIDE SUPPLY (V , GND2)  
CC2  
Isolated-Side Supply Voltage  
V
3.13  
7.50  
70  
V
CC2  
f
= 0, SLO floating,  
R = 27Ω  
56  
10  
ꢀATA  
L
Isolated-Side Supply Current  
I
RO2 = no load,  
A, B floating, Figure 1  
mA  
CC2  
R = ∞  
L
16  
V
Undervoltage-Lockout  
CC2  
V
2.68  
2.77  
2.85  
2.95  
3.02  
V
V
UVL2  
Falling Trip  
V
Undervoltage-Lockout  
CC2  
V
3.13  
4
UVH2  
Rising Trip  
DRIVER OUTPUTS (Y, Z)  
No load, V  
GNꢀ2  
is measured with respect to  
ꢀOH  
ꢀriver-Output High Voltage  
ꢀifferential ꢀriver Output  
V
V
V
ꢀOH  
R = 50(RS-422), V  
= +3.13V,  
= +3.13V,  
L
CC2  
2.0  
1.5  
1.0  
2.35  
1.95  
Figure 1  
V
Oꢀ  
OC  
R = 27(RS-485), V  
L
CC2  
Figure 1  
ꢀriver Common-Mode Output  
Voltage  
R = 27or 50, V  
is measured with  
L
OC  
V
3.0  
0.2  
V
V
respect to GNꢀ2, Figure 1  
Change in Magnitude of ꢀriver  
ꢀifferential Output Voltage for  
Complementary Output States  
V  
V  
R = 27or 50, Figure 1  
L
Oꢀ  
OC  
Change in Magnitude of ꢀriver  
Common-Mode Output Voltage  
for Complementary Output States  
R = 27or 50, Figure 1  
L
0.2  
V
ꢀriver enabled (ꢀE =1 )  
ꢀI = high, V > -7V  
-250  
Y
ꢀI = low, V > -7V  
Z
ꢀriver Short-Circuit Output  
Current  
I
mA  
OSꢀ  
ꢀriver enabled (ꢀE =1 )  
ꢀI = high, V < +12V  
Z
+250  
ꢀI = low, V < +12V  
Y
_______________________________________________________________________________________  
3
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
DC ELECTRICAL CHARACTERISTICS TABLE (MAX3535E) (continued)  
(V  
= +3.0V to +5.5V, V  
= +3.13V to +7.5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C,  
CC1  
CC2  
A
A
V
= +3.3V, V  
= +5V).  
CC1  
CC2  
PARAMETER  
SYMBOL  
CONDITIONS  
ꢀI = high  
MIN  
TYP  
MAX  
UNITS  
-7V < V < min[(V  
Y
- 1V) +2V]  
- 1V) +2V]  
CC2  
-25  
ꢀI = low  
-7V < V < min[(V  
Z
ꢀriver  
enabled  
(ꢀE =1)  
CC2  
ꢀriver Short-Circuit Foldback  
Output Current  
I
µA  
OSFꢀ  
ꢀI = high  
+1V < V < +12V  
Z
+25  
3.0  
ꢀI = low  
+1V < V < +12V  
Y
SLEW-RATE SELECT (SLO)  
Input High Voltage SLO  
Input Low Voltage SLO  
SLO Pullup Resistor  
V
V
V
V
is measured with respect to GNꢀ2  
is measured with respect to GNꢀ2  
V
V
IHS  
IHS  
ILS  
V
1.0  
ILS  
R
SLO  
= +3V  
100  
-90  
kΩ  
SLO  
RECEIVER INPUTS (A, B)  
V
V
or V = +12V  
+125  
-100  
A
A
B
Receiver Input Current  
I
µA  
AB  
or V = -7V  
B
Receiver ꢀifferential Threshold  
Voltage  
V
-7V V  
-7V V  
+12V  
-200  
-10  
mV  
TH  
CM  
+12V, T = 0°C to +70°C  
10  
5
30  
30  
70  
70  
CM  
CM  
A
Receiver-Input Hysteresis  
Receiver-Input Resistance  
V  
mV  
kΩ  
V
TH  
-7v V  
-7V V  
+12V, T = -40°C to +85°C  
A
R
+12V (Note 1)  
96  
200  
IN  
CM  
Receiver-Input Open Circuit  
Voltage  
V
2.6  
OAB  
RECEIVER OUTPUT (RO2)  
Receiver-Output (RO2) High  
Voltage  
V
I
I
= 4mA, V = +3.13V  
CC2  
2.4  
V
V
RO2H  
SOURCE  
Receiver-Output (RO2) Low  
Voltage  
V
= 4mA, V = +3.13V  
CC2  
0.4  
RO2L  
SINK  
ISOLATION  
60s  
1s  
2500  
3000  
100  
Isolation Voltage (Notes 2, 3)  
V
V
RMS  
ISO  
Isolation Resistance  
Isolation Capacitance  
ESꢀ Protection  
R
T
A
T
A
= +25°C, V  
= +25°C  
= 50V (Note 3)  
ISO  
10,000  
MΩ  
pF  
ISO  
ISO  
C
2
Human Body Model (A, B, Y, Z)  
15  
kV  
4
_______________________________________________________________________________________  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
SWITCHING ELECTRICAL CHARACTERISTICS (MAX3535E)  
(V  
are at V  
= +3.0V to +5.5V, V  
= +3.13V to +7.5V, R = 27, C = 50pF, T = -40°C to +85°C, unless otherwise noted. Typical values  
CC1  
CC2  
L
L
A
= +3.3V, V  
= +5V, T = +25°C.)  
CC1  
CC2 A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ꢀata Sample Jitter  
t
Figure 6  
220  
285  
ns  
J
t = 25% of data cell, receiver and driver,  
J
SLO = high (Note 4)  
Maximum ꢀata Rate  
f
877  
1136  
kbps  
kHz  
ns  
ꢀATA  
SLO = high, Figure 5  
SLO = low, Figure 5  
250  
200  
450  
375  
490  
850  
30  
Self-Oscillating Frequency  
f
SOS  
SLO = high, Figures 2, 6  
SLO = low, Figures 2, 6  
SLO = high, Figures 2, 6  
SLO = low, Figures 2, 6  
855  
1560  
100  
ꢀriver-ꢀifferential Output ꢀelay  
Time  
t
ꢀꢀ  
ꢀriver-ꢀifferential Output  
Transition Time  
t
Tꢀ  
ns  
120  
220  
1000  
SLO = high, ꢀI = high or low,  
Figures 3, 7  
ꢀriver-Output Enable Time  
ꢀriver-Output ꢀisable Time  
t
t
, t  
730  
720  
440  
1400  
1300  
855  
ns  
PZL PZH  
SLO = high, ꢀI = high or low,  
Figures 3, 7  
, t  
ns  
PHZ PLZ  
Receiver-Propagation ꢀelay Time  
to RO1  
t
t
,
PLH1  
Figures 4, 8  
ns  
PHL1  
Receiver-Propagation ꢀelay Time  
to RO2  
t
t
,
PLH2  
Figures 4, 8  
Figures 4, 8  
Figures 4, 9  
40  
40  
30  
ns  
ns  
ns  
PHL2  
RO1, RO2 Rise or Fall Time  
t , t  
R F  
Receiver-Output Enable Time  
RO1  
t
t
,t  
ZL ZH  
Receiver-Output ꢀisable Time  
RO1  
,t  
Figures 4, 9  
(Note 5)  
30  
ns  
ns  
ns  
LZ HZ  
Initial Startup Time (from Internal  
Communication Fault)  
1200  
1200  
Internal Communication Timeout  
Fault Time  
(Note 5)  
_______________________________________________________________________________________  
5
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
ELECTRICAL CHARACTERISTICS (MXL1535E)  
(V  
= +4.5V to +5.5V, V  
= +4.5V to +7.5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +5V,  
CC1  
CC1  
CC2  
A
V
= +5V, T = +25°C.)  
CC2  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
4.5  
TYP  
MAX  
5.5  
UNITS  
Logic-Side Supply Voltage  
Isolated-Side Supply Voltage  
V
V
V
V
CC1  
CC2  
4.5  
7.5  
Transformer not driven, ST1 and ST2  
Logic-Side Supply Current  
Isolated-Side Supply Current  
I
I
unconnected, RE = low, ꢀE = high,  
5.9  
13  
mA  
mA  
CC1  
CC2  
f
= 0, RO1 = no load  
ꢀATA  
f
= 0, SLO floating,  
R = 27Ω  
L
56  
10  
70  
16  
ꢀATA  
RO2 = no load, A, B  
floating, Figure 1  
R = ∞  
L
R = 50(RS-422), V  
= +4.5V, Figure 1  
= +4.5V, Figure 1  
2.0  
1.5  
3.0  
2.5  
L
CC2  
ꢀifferential ꢀriver Output  
ꢀriver Output High Voltage  
V
V
V
V
Oꢀ  
R = 27(RS-485), V  
L
CC2  
No load, V  
GNꢀ2  
is measured with respect to  
ꢀOH  
V
5.0  
3.0  
ꢀOH  
ꢀriver Common-Mode Output  
Voltage  
R = 27or 50, V  
is measured with  
L
OC  
V
1.0  
OC  
respect to GNꢀ2, Figure 1  
Change in Magnitude of ꢀriver  
ꢀifferential Output Voltage for  
Complementary Output States  
V  
V  
R = 27or 50, Figure 1  
0.2  
0.2  
V
V
Oꢀ  
OC  
L
Change in Magnitude of ꢀriver  
Common-Mode Output Voltage  
for Complementary Output States  
R = 27or 50, Figure 1  
L
ꢀriver enabled (ꢀE =1)  
ꢀI = high, V > -7V  
Y
-250  
ꢀI = low, V > -7V  
Z
ꢀriver Short-Circuit Output  
Current  
I
mA  
OSꢀ  
ꢀriver enabled (ꢀE =1)  
ꢀI = high, V < +12V  
ꢀI = low, V < + 12V  
Y
+250  
-25  
Z
ꢀriver enabled (ꢀE =1)  
ꢀI = high  
-7V < V < min[(V  
Y
- 1V) +2V]  
CC2  
ꢀI = low  
-7V < V < min[(V  
- 1V) +2V]  
Z
CC2  
ꢀriver Short-Circuit Foldback  
Output Current  
I
mA  
OSFꢀ  
ꢀriver enabled (ꢀE =1)  
ꢀI = high  
+1V < V < +12V  
Z
+25  
ꢀI = low  
+1V < V < +12V  
Y
6
_______________________________________________________________________________________  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
ELECTRICAL CHARACTERISTICS (MXL1535E) (continued)  
(V  
= +4.5V to +5.5V, V  
= +4.5V to +7.5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +5V,  
CC1  
CC1  
CC2  
A
V
= +5V, T = +25°C.)  
CC2  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input High Voltage, ꢀE, ꢀI, RE  
Input High Voltage, SLO  
V
V
V
V
V
is measured with respect to GNꢀ1  
2.0  
1.45  
V
IH  
IH  
V
is measured with respect to GNꢀ2  
4.0  
2.1  
1.45  
2.1  
V
V
IHS  
IHS  
Input Low Voltage, ꢀE, ꢀI, RE  
Input Low Voltage, SLO  
V
is measured with respect to GNꢀ1  
0.8  
1.0  
2
IL  
ILS  
INC  
IL  
V
is measured with respect to GNꢀ2  
V
ILS  
Logic-Side Input Current, ꢀE, ꢀI  
Receiver Input Current  
I
µA  
mA  
mV  
V
V
or V = +12V  
+0.25  
-0.20  
A
A
B
I
AB  
or V = -7V  
B
Receiver ꢀifferential Threshold  
Voltage  
V
-7V V  
-7V V  
+12V  
-200  
10  
-90  
30  
-10  
70  
TH  
CM  
CM  
+12V, T = 0°C to +70°C  
A
Receiver-Input Hysteresis  
Receiver-Input Resistance  
V  
mV  
TH  
-7V V  
-7V V  
+12V, T = -40°C to +85°C  
5
30  
140  
2.6  
70  
CM  
CM  
A
R
+12V (Note 1)  
96  
200  
kΩ  
IN  
Receiver-Input Open-Circuit  
Voltage  
V
V
OAB  
Receiver-Output High Voltage  
(RO1)  
V
I
I
= 4mA, V = +4.5V  
CC1  
3.7  
4.3  
0.4  
30  
V
V
RO1H  
SOURCE  
Receiver-Output Low Voltage  
(RO1)  
V
= 4mA, V = +4.5V  
CC1  
0.8  
RO1L  
SINK  
ꢀE = low  
-7V < V < +12V, -7V < V < +12V  
ꢀriver-Output Leakage Current  
ꢀriver-Output Leakage Current  
I
I
µA  
µA  
V
OZ  
OZ  
Y
Z
ꢀE = low  
-7V < V < +12V, -7V < V < +12V  
30  
100  
Y
Z
Receiver-Output (RO2) High  
Voltage  
V
I
= 4mA, V  
= +4.5V  
CC2  
2.8  
3.4  
0.4  
460  
RO2H  
SOURCE  
Receiver-Output (RO2) Low  
Voltage  
V
I = 4mA, V  
SINK  
= +4.5V  
0.8  
V
RO2L  
CC2  
ꢀC-Converter Switching  
Frequency (ST1, ST2)  
f
ST1, ST2 not loaded  
290  
590  
kHz  
SW  
_______________________________________________________________________________________  
7
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
ELECTRICAL CHARACTERISTICS (MXL1535E) (continued)  
(V  
= +4.5V to +5.5V, V  
= +4.5V to +7.5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +5V,  
CC1  
CC1  
CC2  
A
V
= +5V, T = +25°C.)  
CC2  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ꢀC-Converter Impedance High  
ST1, ST2  
R
Figure 13  
Figure 13  
4
6
OH  
ꢀC-Converter Impedance Low  
ST1, ST2  
R
2.5  
-50  
5
µA  
µA  
V
OL  
OL  
RE Low Output Current for Fault  
ꢀetect  
RE = sink current,  
RE = +0.4V, fault not asserted  
I
-40  
60  
-80  
RE High Output Current for Fault  
ꢀetect  
RE = source current,  
I
100  
2.85  
2.95  
2.69  
2.80  
140  
3.02  
3.13  
2.85  
2.97  
OH  
RE = +V  
- 0.5V, fault asserted  
CC1  
V
Undervoltage-Lockout  
CC2  
V
2.68  
2.77  
2.53  
2.63  
UVL2  
Falling Trip  
V
Undervoltage-Lockout  
CC2  
V
V
UVH2  
Rising Trip  
V
Undervoltage-Lockout  
CC1  
V
V
UVL1  
Falling Trip  
V
Undervoltage-Lockout  
CC1  
V
V
UVH1  
Rising Trip  
60s  
1s  
2500  
3000  
Isolation Voltage (Note 2)  
SLO Pullup Resistor  
V
V
RMS  
ISO  
R
SLO  
V
= +3V  
SLO  
100  
kΩ  
8
_______________________________________________________________________________________  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
SWITCHING ELECTRICAL CHARACTERISTICS (MXL1535E)  
(V  
are at V  
= +4.5V to +5.5V, V  
= +4.5V to +7.5V, R = 27, C = 50pF, T = -40°C to +85°C, unless otherwise noted. Typical values  
CC1  
CC2  
L
L
A
= +5V, V = +5V, T = +25°C.)  
CC2 A  
CC1  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
220  
450  
430  
850  
45  
MAX  
UNITS  
ns  
ꢀata Sample Jitter  
Max Baud Rate  
t
Figure 6  
285  
J
f
SLO = high, Figure 5, (Note 6)  
SLO = high, Figures 2, 6  
SLO = low, Figures 2, 6  
250  
kBd  
MAX  
855  
1560  
100  
ꢀriver-ꢀifferential Output ꢀelay  
Time  
t
ns  
ns  
ns  
ns  
ns  
ꢀꢀ  
SLO = high, V  
= +4.5V  
CC2  
ꢀriver-ꢀifferential Output  
Transition Time  
t
Tꢀ  
SLO = low, V  
= +4.5V  
150  
260  
1000  
CC2  
SLO = high, ꢀI = high or low,  
ꢀriver-Output Enable Time  
ꢀriver-Output ꢀisable Time  
t
t
, t  
730  
720  
440  
1400  
1300  
855  
PZL PZH  
Figure 3, 7  
SLO = high, ꢀI = high or low,  
, t  
PHZ PLZ  
Figures 3, 7  
Receiver-Propagation ꢀelay Time  
to RO1  
t ,  
PLH1  
Figures 4, 8  
t
PHL1  
Receiver-Propagation ꢀelay Time  
to RO2  
t
t
,
PLH2  
Figures 4, 8  
Figures 4, 8  
Figures 4, 9  
40  
40  
30  
ns  
ns  
ns  
PHL2  
RO1, RO2 Rise or Fall Time  
t , t  
R F  
Receiver-Output Enable Time  
RO1  
t
, t  
ZL ZH  
Receiver-Output ꢀisable Time  
RO1  
t
,t  
Figures 4, 9  
(Note 5)  
30  
ns  
ns  
ns  
LZ HZ  
Initial Startup Time (from Internal  
Communication Fault)  
1200  
1200  
Internal Communication Timeout  
Fault Time  
(Note 5)  
0°C to +70°C  
56  
57  
ST1, ST2 ꢀuty Cycle  
ESꢀ Protection  
%
-40°C to +85°C  
Human Body Model (A, B, Y, Z)  
15  
kV  
Note 1: Receiver inputs are 96kminimum resistance, which is 1/8 unit load.  
Note 2: 60s test result is guaranteed by correlation from 1s result.  
Note 3:  
V
is the voltage difference between GNꢀ1 and GNꢀ2.  
ISO  
Note 4: The maximum data rate is specified using the maximum jitter value according to the formula: data rate = 1 / (4t ). See the  
J
Skew section for more information.  
Note 5: Initial startup time is the time for communication to recover after a fault condition. Internal communication timeout fault time  
is the time before a fault is indicated on RE, after internal communication has stopped.  
Note 6: Bd = 2 bits.  
_______________________________________________________________________________________  
9
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
Typical Operating Characteristics  
(V  
= +5V, C = 50pF (Figure 1), unless otherwise noted.)  
L
CC1  
I
SUPPLY CURRENT  
vs. TEMPERATURE  
CC1  
I
SUPPLY CURRENT  
vs. TEMPERATURE  
I
SUPPLY CURRENT  
vs. TEMPERATURE  
CC1  
CC2  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
80  
70  
60  
50  
40  
30  
HALO  
TGM-250NS  
1:1:1 TRANSFORMER  
HALO  
TGM-240NS  
1:1.3:1.3 TRANSFORMER  
f
= 700kbps  
DATA  
V
= +3.3V  
CC1  
SLO = LOW  
R = 27Ω  
L
R = 27Ω  
L
R = 27Ω  
L
V
= +6V  
CC2  
R = 60Ω  
L
R = 60Ω  
L
V
= +3.9V  
CC2  
(MAX3535E)  
R = OPEN  
L
R = OPEN  
L
V
= +3.13V  
CC2  
FIGURE 1  
FIGURE 1  
-15  
FIGURE 1  
-15  
(MAX3535E)  
-40  
-15  
10  
35  
60  
85  
-40  
-40  
-40  
10  
35  
60  
85  
85  
85  
-40  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SELF-OSCILLATION FREQUENCY  
vs. TEMPERATURE  
V
SUPPLY VOLTAGE  
DRIVER DIFFERENTIAL OUTPUT  
TRANSITION TIME vs. TEMPERATURE  
CC2  
vs. TEMPERATURE  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
500  
450  
400  
350  
300  
250  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= V  
CC2  
CC1  
L
R = 27Ω  
L
SLO = HIGH  
R = OPEN, V  
L
= +5V  
R = 27Ω  
CC1  
SLO = V  
CC2  
R = 27, V  
L
= +5V  
CC1  
HALO  
TGM-240NS  
1:1.3:1.3 TRANSFORMER  
SLO = LOW  
V
= +5V  
CC2  
V
= +3.13V (MAX3535E)  
FIGURES 2, 6  
CC2  
R = 27, V  
= +3V  
L
CC1  
(MAX3535E)  
FIGURE 5  
-15  
FIGURE 1  
60  
-40  
-15  
10  
35  
85  
10  
35  
60  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SWITCHER FREQUENCY  
vs. SUPPLY VOLTAGE  
SWITCHER FREQUENCY  
vs. TEMPERATURE  
DRIVER DIFFERENTIAL OUTPUT  
TRANSITION TIME vs. TEMPERATURE  
600  
550  
500  
450  
400  
350  
300  
600  
550  
500  
450  
400  
350  
300  
800  
700  
600  
500  
400  
300  
200  
R = 27Ω  
SLO = GND2  
L
V
= +5V  
CC2  
V
= +3.13V (MAX3535E)  
CC2  
FIGURES 2, 6  
60 85  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
-15  
10  
35  
60  
-40  
-15  
10  
35  
V
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CC1  
10 ______________________________________________________________________________________  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
Typical Operating Characteristics (continued)  
(V  
= +5V, C = 50pF (Figure 1), unless otherwise noted.)  
CC1  
L
RECEIVER-OUTPUT (RO1) HIGH VOLTAGE  
vs. TEMPERATURE  
RECEIVER-OUTPUT (RO1) LOW VOLTAGE  
vs. TEMPERATURE  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE  
vs. DIFFERENTIAL OUTPUT CURRENT  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
= 4mA  
DE = HIGH  
SINK  
V
= +5V  
CC1  
V
= +3.9V  
(MAX3535E)  
CC2  
V
= +4.5V  
CC1  
V
= +3.13V  
CC2  
V
= +3V  
(MAX3535E)  
CC1  
(MAX3535E)  
V
= +4.5V  
CC1  
V
= +7.5V  
CC2  
V
= +3V  
CC1  
(MAX3535E)  
I
= 4mA  
SOURCE  
60  
V
= +5V  
CC1  
-40  
-15  
10  
35  
85  
-40  
-15  
10  
35  
60  
85  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DRIVER DIFFERENTIAL OUTPUT CURRENT (mA)  
DRIVER-OUTPUT HIGH VOLTAGE  
vs. DRIVER SOURCE CURRENT  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE  
vs. V SUPPLY VOLTAGE  
DRIVER-OUTPUT LOW VOLTAGE  
vs. DRIVER SINK CURRENT  
CC2  
5
4
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
12  
11  
10  
9
DE = HIGH  
DE = HIGH  
R = 27Ω  
L
3
2
V
= +7.5V  
CC2  
1
V
= +3.13V  
(MAX3535E)  
8
CC2  
0
7
V
= +3.9V  
CC2  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
6
(MAX3535E)  
5
4
V
= +7.5V  
V
= +3.13V  
CC2  
(MAX3535E)  
CC2  
3
2
V
= +3.9V  
CC2  
1
(MAX3535E)  
FIGURE 1  
0
0
20  
40  
60  
80  
100  
120  
3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5  
(V)  
0
20  
40  
60  
80  
100  
120  
DRIVER SOURCE CURRENT (mA)  
V
DRIVER SINK CURRENT (mA)  
CC2  
I
SUPPLY CURRENT  
SUPPLY VOLTAGE  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE  
vs. TEMPERATURE  
RECEIVER OUTPUT (RO1) VOLTAGE  
vs. LOAD CURRENT  
CC1  
CC1  
vs. V  
10  
9
8
7
6
5
4
3
2
1
0
5
4
3
2
1
0
5
4
3
2
1
0
R = OPEN  
TRANSFORMER IS NOT DRIVEN  
R = 27Ω  
SLO = GND2  
L
L
OUTPUT HIGH, SOURCING  
V
= +7.5V  
CC2  
V
= +6V  
CC2  
V
= +3.13V  
CC2  
(MAX3535E)  
OUTPUT LOW, SINKING  
5
FIGURE 1  
3.0  
3.5  
4.0  
SUPPLY VOLTAGE (V)  
CC1  
4.5  
5.0  
5.5  
0
10  
15  
-40  
-15  
10  
35  
60  
85  
V
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 11  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
Typical Operating Characteristics (continued)  
(V  
= +5V, C = 50pF (Figure 1), unless otherwise noted.)  
L
CC1  
RECEIVER (RO1) PROPAGATION DELAY  
(t  
DRIVER PROPAGATION DELAY  
(SLO = HIGH)  
DRIVER PROPAGATION DELAY  
(SLO = LOW)  
)
PLH1  
MAX3535E toc19  
MAX3535E toc21  
MAX3535E toc20  
A-B  
1V/div  
DI  
2V/div  
DI  
2V/div  
Y
Y
2V/div  
2V/div  
RO  
1V/div  
Z
Z
2V/div  
2V/div  
100ns/div  
400ns/div  
400ns/div  
DRIVER ENABLE  
TIME PLUS JITTER  
JITTER vs. TEMPERATURE  
MAX3535E toc23  
300  
280  
260  
240  
220  
200  
DE  
2V/div  
Y
2V/div  
V
V
= 3.13V  
= 5.5V  
CC1  
CC1  
-40  
-15  
10  
35  
60  
85  
200ns/div  
TEMPERATURE (°C)  
RECEIVER (RO1) PROPAGATION DELAY  
(t  
DRIVER DISABLE  
TIME PLUS JITTER  
)
PHL1  
MAX3535E toc25  
MAX3535E toc24  
A-B  
1V/div  
DE  
2V/div  
Y
RO  
1V/div  
2V/div  
100ns/div  
200ns/div  
12 ______________________________________________________________________________________  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
ꢁin Description  
PIN  
NAME  
ISOLATION SIDE  
FUNCTION  
Logic-Side/Transformer-ꢀriver Power Input. Bypass V  
capacitors.  
to GNꢀ1 with 10µF and 0.1µF  
CC1  
1
V
Logic  
CC1  
Transformer-ꢀriver Phase 1 Power Output. Connect ST1 to isolation-transformer  
primary to send power to isolation side of barrier.  
2
ST1  
Logic  
Transformer-ꢀriver Phase 2 Power Output. Connect ST2 to isolation-transformer  
primary to send power to isolation side of barrier.  
3
4
ST2  
GNꢀ1  
Logic  
Logic  
Logic-Side Ground. For isolated operation do not connect to GNꢀ2.  
5–10,  
19–24  
Removed from Package  
11  
GNꢀ2  
Z
Isolated  
Isolated  
Isolation-Side Ground. For isolated operation do not connect to GNꢀ1.  
RS-485/RS-422 Inverting ꢀriver Output. Output floats when ꢀE is low or in a barrier fault  
event. (See the Detailed Description section for more information.)  
12  
RS-485/RS-422 Noninverting ꢀriver Output. Output floats when ꢀE is low or in a barrier  
fault event. (See the Detailed Description section for more information.)  
13  
14  
Y
Isolated  
Isolated  
Isolated-Side Power Input. Connect V  
to the rectified output of transformer  
CC2  
V
CC2  
secondary. Bypass V  
to GNꢀ2 with 10µF and 0.1µF capacitors.  
CC2  
15  
16  
B
A
Isolated  
Isolated  
RS-485/RS-422 ꢀifferential-Receiver Inverting Input  
RS-485/RS-422 ꢀifferential-Receiver Noninverting Input  
Isolated-Side Receiver Output. RO2 is always enabled. RO2 goes high if A - B > -10mV.  
RO2 goes low if A - B < -200mV. Fail-safe circuitry causes RO2 to go high when A and B  
float or are shorted.  
17  
RO2  
Isolated  
ꢀriver Slew-Rate Control Logic Input. Connect SLO to GNꢀ2 for data rates up to  
18  
25  
SLO  
Isolated  
Logic  
400kbps. Connect SLO to V  
or leave floating for high data rates.  
CC2  
ꢀriver Input. Pull ꢀI low (high) to force driver output Y low (high) and driver output Z  
high (low).  
ꢀI  
ꢀriver-Enable Input. The driver outputs are enabled and follow the driver input (ꢀI)  
when ꢀE is high. When ꢀE is floated, the driver is disabled. ꢀE does not affect whether  
the receiver is on or off.  
26  
27  
28  
ꢀE  
RE  
Logic  
Logic  
Logic  
Receiver-Output Enable and Fault Current Output. The receiver output (RO1) is  
enabled and follows the differential-receiver inputs, A and B, when RE is low, otherwise  
RO1 floats. RE does not affect RO2 and does not disable the driver. The asserted fault  
output is a pullup current, otherwise RE shows a pulldown current.  
Receiver Output. RO1 is enabled when RE is low. RO1 goes high if A - B > -10mV. RO1  
goes low if A - B < -200mV. Fail-safe circuitry causes RO1 to go high when A and B  
float or are shorted.  
RO1  
______________________________________________________________________________________ 13  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
Test Circuits  
Y
V
CC2  
500  
500Ω  
R
R
L
L
Y/Z  
V
V
OC  
OD  
C
L
GND2  
Z
Figure 1. Driver DC Test Load  
Figure 3. Driver Timing Test Load  
HIGH  
V
/V  
CC1 CC2  
1kΩ  
1kΩ  
C
R
R
L
L
L
L
DE  
Y
RO1/RO2  
DI  
C
L
Z
GND2  
C
GND1/GND2  
GND  
Figure 4. Receiver Timing Test Load  
Figure 2. Driver Timing Test Circuit  
1/2  
BAT54C  
TGM-240  
CONTROL GROUND  
RS485 GROUND  
0.1µF  
10µF  
1/2  
BAT54C  
ST1  
ST2  
TRANSFORMER  
GND2  
V
CC2  
+3.0V TO +5.5V  
V
CC1  
DRIVER  
VOLTAGE  
REGULATOR  
0.1µF  
10µF  
A
RO1  
B
RECEIVER  
RO2  
RE  
DE  
DRIVER  
Y
Z
2R  
L
DI  
V
CC2  
C
C
L
L
MAX3535E  
GND1  
BARRIER  
TRANSCEIVER  
BARRIER  
TRANSCEIVER  
SLO  
ISOLATION BARRIER  
Figure 5. Self-Oscillating Configuration  
14 ______________________________________________________________________________________  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
Switching Waveforms  
t
< 10ns, t < 10ns  
F
R
t
< 10ns, t < 10ns  
F
R
DI  
1.5V  
1.5V  
V
- V  
B
0V  
0V  
A
INPUT  
t
t
DD  
t
PHL1  
DD  
t
PLH1  
t
PLH1  
Z
V
V
/2  
RO1H  
RO1H  
V
/2  
RO1H  
V
DOH  
RO1  
V
OUTPUT  
Y
t
t
RO1L  
J
J
1/2 V  
DOH  
RO2  
V
DOH  
0V  
80%  
80%  
80%  
V
= V - V  
OD Y Z  
80%  
20%  
20%  
20%  
20%  
-V  
DOH  
t
t
PLH2  
PLH2  
t
t
TD  
TD  
t
t
R
F
t
J
Figure 8. Receiver Propagation Delays  
Figure 6. Driver Propagation Delay  
t
R
< 10ns, t < 10ns  
F
1.5V  
1.5V  
PZL  
DE  
RE  
1.5V  
1.5V  
t
< 10ns, t < 10ns  
F
R
t
t
PLZ  
V
DOH  
Y, Z  
t
t
LZ  
ZL  
V
RO1H  
RO1  
V
/2  
V
+ 0.5V  
- 0.5V  
DOH  
DOL  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
V
+ 0.5V  
- 0.5V  
RO1L  
RO1H  
V
DOL  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
V
RO1L  
V
DOH  
Y, Z  
V
RO1H  
RO1  
0V  
V
V
/2  
DOH  
DOH  
V
0V  
t
t
PHZ  
PZH  
t
HZ  
t
ZH  
2 x t  
J
t
J
Figure 9. Receiver Enable and Disable Times  
Figure 7. Driver Enable and Disable Times  
______________________________________________________________________________________ 15  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
driver outputs are short-circuit protected for sourcing or  
Detailed Description  
sinking current and have overvoltage protection. Other  
features include hot-swap capability, which holds the  
driver off if the driver logic signals are floated after  
power is applied. The MAX3535E/MXL1535E have  
error-detection circuitry that alerts the processor when  
there is a fault and disables the driver until the fault is  
removed.  
The MAX3535E/MXL1535E isolated RS-485/RS-422 full-  
duplex transceivers provide 2500V  
of galvanic isola-  
RMS  
tion between the RS-485/RS-422 isolation side and the  
processor or logic side. These devices allow fast,  
1000kbps communication across an isolation barrier even  
when the common-mode voltages (i.e., the ground poten-  
tials) on either side of the barrier are subject to large dif-  
ferences. The isolation barrier consists of two parts. The  
first part is a capacitive isolation barrier (integrated high-  
voltage capacitors) that allows data transmission  
between the logic side and the RS-485/RS-422 isolation  
side. ꢀata is sampled and encoded before it is transmit-  
ted across the isolation barrier introducing sampling jitter  
and further delay into the communication system.  
Fail Safe  
The MAX3535E/MXL1535E guarantee a logic-high  
receiver output when the receiver inputs are shorted or  
open, or when connected to a terminated transmission  
line with all drivers disabled. The receiver threshold is  
fixed between -10mV and -200mV. If the differential  
receiver input voltage (A - B) is greater than or equal to  
-10mV, RO1 is logic-high (Table 2). In the case of a ter-  
minated bus with all transmitters disabled, the receiv-  
er’s differential input voltage is pulled to zero by the  
termination. ꢀue to the receiver thresholds of the  
MAX3535E/MXL1535E, this results in a logic-high at  
RO1 with a 10mV minimum noise margin.  
The second part of the isolation barrier consists of an  
external transformer with the required primary-to-sec-  
ondary isolation, allowing the transmission of operating  
power from the logic side across the isolation barrier to  
the isolation side. Connect the primary of the external  
transformer to the MAX3535E/MXL1535E’s 420kHz  
transformer driver outputs ST1 and ST2. Since the  
MXL1535E and the MAX3535E operate with different  
supply-voltage requirements at their respective isolated  
and logic sides, different isolation transformers must be  
used with each device (see the Transformer Selection  
section). The only external components needed to  
complete the system are the isolation transformer, two  
diodes, and two low-voltage, 10µF decoupling capaci-  
tors (see the Typical Application Circuit).  
Driver Output ꢁrotection  
Two mechanisms prevent excessive output current and  
power dissipation caused by faults or by bus con-  
tention. The first, a foldback current limit on the output  
stage, provides immediate protection against short cir-  
cuits over the entire common-mode voltage range. The  
second, a thermal-shutdown circuit, forces the driver  
outputs into a high-impedance state if the die tempera-  
ture exceeds +150°C.  
The MAX3535E/MXL1535E include one differential dri-  
ver, one receiver, and internal circuitry to send the RS-  
485 signals and logic signals across the isolation barrier  
(including the isolation capacitors). The MAX3535E/  
MXL1535E receivers are 1/8 unit load, allowing up to 256  
devices on a single bus.  
Monitoring Faults on RE  
RE functions as both an input and an output. As an  
input, RE controls the receiver output enable (RO1). As  
an output, RE is used to indicate when there are faults  
associated with the operation of the part. This dual  
functionality is made possible by using an output driver  
stage that can easily be overdriven by most logic  
gates. When an external gate is not actively driving RE,  
it is driven either high using a 100µA internal pullup  
current (fault present), or low using a 60µA internal pull-  
down current (no fault). When using RE to control the  
receiver-enable output function, be sure to drive it  
using a gate that has enough sink and source capabili-  
ty to overcome the internal drive.  
The MAX3535E/MXL1535E feature fail-safe circuitry  
ensuring the receiver output maintains a logic-high  
state when the receiver inputs are open or shorted, or  
when connected to a terminated transmission line with  
all drivers disabled (see the Fail-Safe section).  
The MAX3535E/MXL1535E feature driver slew-rate  
select that minimizes electromagnetic interference  
(EMI) and reduces reflections caused by improperly  
terminated cables at data rates below 400kbps. The  
16 ______________________________________________________________________________________  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
When not actively driving RE, it functions as the fault  
Read RE for fault conditions by using a bidirectional  
microcontroller I/O line or a tri-stated buffer as shown in  
Figure 10. When using a tri-stated buffer, enable the  
driver whenever the voltage on RE needs to be forced  
to a logic-high or logic-low. To read RE for a fault con-  
dition, disable the driver.  
indicator (Table 3). A low on RE indicates the part is  
functioning properly, while a high indicates a fault is  
present. The four causes of a fault indication are:  
1) The voltage on V  
is below its undervoltage-lock-  
CC1  
out threshold (2.69V nominal)  
2) The voltage on V  
is below its undervoltage-lock-  
Slew-Rate Control Logic  
The SLO input selects between a fast and a slow slew  
rate for the driver outputs. Connecting SLO to GNꢀ2  
selects the slow slew-rate option that minimizes EMI  
and reduces reflections caused by improperly terminat-  
ed cables at data rates up to 400kbps. This occurs  
because lowering the slew rate decreases the rise and  
fall times for the signal at the driver outputs, drastically  
reducing the high-frequency components and harmon-  
CC2  
out threshold (2.80V nominal)  
3) There is a problem that prevents the MAX3535E/  
MXL1535E from communicating across its isolation  
barrier  
4) The die temperature exceeds +150°C nominally,  
causing the part to go into thermal shutdown  
When a fault occurs, RO1 is switched to a logic-high  
state if RE is low (Table 3). Open-circuit or short-circuit  
conditions on the receiver inputs do not generate fault  
conditions; however, any such condition also puts RO1  
in a logic-high state (see the Fail Safe section).  
ics at the output. Floating SLO or connecting it to V  
CC2  
selects the fast slew rate, which allows high-speed  
operation.  
V
CC1  
TRI-STATED BUFFER/  
BIDIRECTIONAL MICROCONTROLLER I/O  
V
CC1  
RO1  
RE  
RE  
D
OE  
DRIVER OUTPUT BECOMES HIGH IMPEDANCE  
MAX3535E  
MXL1535E  
OE  
DE  
DI  
FAULT  
FAULT DETECTED  
FAULT  
R
GND1  
Figure 10. Reading a Fault Condition  
______________________________________________________________________________________ 17  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
Functional Tables  
Table 1. Transmitting Logic  
TRANSMITTING LOGIC  
INPUTS  
OUTPUTS  
DE  
1
DI  
1
Y
1
0
Z
0
1
0
1
0
X
High impedance  
High impedance  
Table 2. Receiving Logic  
RECEIVING LOGIC  
INPUTS  
OUTPUTS  
RE  
0
V
- V  
RO1  
RO2  
A
B
>-10mV  
1
1
0
1
1
0
1
0
<-200mV  
0
0
1
1
1
Inputs open/shorted  
>-10mV  
1
High impedance  
High impedance  
High impedance  
<-200mV  
Inputs open/shorted  
Table 3. Fault Mode  
NORMAL  
MODE  
FAULT MODES  
FUNCTION  
INTERNAL  
COMMUNICATION  
FAULT  
V
CC1  
V
CC2  
> V  
> V  
V
CC1  
V
CC2  
< V  
> V  
V
V
> V  
< V  
V
CC1  
V
CC2  
< V  
< V  
THERMAL  
SHUTDOWN  
UVH1  
UVH2  
UVL1  
UVH2  
CC1  
UVH1  
UVL1  
UVL2  
CC2  
UVL2  
Transformer  
driver  
On  
On  
On  
On  
Off  
On  
(ST1, ST2)  
RE = 0  
Active  
High  
High  
High  
impedance  
High  
High  
impedance  
High  
High  
High  
impedance  
High  
impedance  
High  
impedance  
RE = V  
High impedance  
CC1  
RO1  
High  
impedance  
High  
impedance  
High  
impedance  
High  
impedance  
RE = floating  
Active  
Active  
Active  
High impedance  
Active  
RO2  
Active  
Active  
Active  
Active  
High  
impedance  
High  
impedance  
High  
impedance  
High  
impedance  
ꢀriver outputs (Y, Z)  
High impedance  
Internal barrier  
communication  
Communication  
attempted  
Active  
ꢀisabled  
ꢀisabled  
ꢀisabled  
ꢀisabled  
Low  
(60µA pull-  
down)  
High  
High  
High  
High  
High  
(100µA pullup)  
(100µA pullup) (100µA pullup) (100µA pullup) (100µA pullup)  
Fault indicator on RE  
18 ______________________________________________________________________________________  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
multidrop-network applications circuit. Figure 12 shows  
the MAX3535E/MXL1535E functioning as line repeaters  
Applications Information  
Typical Applications  
The MAX3535E/MXL1535E transceivers facilitate bi-  
directional data communications on multipoint bus  
transmission lines. Figure 11 shows a typical RS-485  
with cable lengths longer than 4000ft. To minimize  
reflections, terminate the line at both ends in its charac-  
teristic impedance. Keep stub lengths off the main line  
as short as possible.  
B
DI  
D
120Ω  
A
DE  
A
B
A
B
RO  
R
R
R
RE  
RE  
RE  
D
D
RO DE  
DI  
RO DE  
DI  
1/2  
BAT54C  
TGM-240  
CONTROL GROUND  
RS-485 GROUND  
0.1µF  
10µF  
1/2  
BAT54C  
ST1  
ST2  
GND2  
V
CC2  
+3.3V  
V
CC1  
TRANSFORMER  
DRIVER  
VOLTAGE  
REGULATOR  
0.1µF  
10µF  
A
RO1  
R
B
RECEIVER  
RO2  
RE  
DE  
DRIVER  
Y
Z
120Ω  
D
V
DI  
CC2  
SLO  
MAX3535E  
GND1  
BARRIER  
BARRIER  
TRANSCEIVER  
TRANSCEIVER  
ISOLATION BARRIER  
Figure 11. Typical Half-Duplex Multidrop RS-485 Network  
______________________________________________________________________________________ 19  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
1/2  
BAT54C  
TGM-250  
CONTROL GROUND  
RS-422 GROUND  
0.1µF  
10µF  
1/2  
BAT54C  
+5V  
V
GND2  
ST2  
ST1  
CC2  
V
CC1  
TRANSFORMER  
DRIVER  
10µF  
0.1µF  
VOLTAGE  
REGULATOR  
A
MAX488  
Y
RO1  
120Ω  
D
R
D
B
DI  
Z
RECEIVER  
RE  
DE  
RO2  
A
R
RO  
DRIVER  
Y
Z
B
R
120Ω  
D
DI  
V
CC2  
GND1  
MAX3535E  
MXL1535E  
BARRIER  
TRANSCEIVER  
BARRIER  
TRANSCEIVER  
SLO  
ISOLATION BARRIER  
Figure 12. Using the MAX3535E/MXL1535E as an RS-422 Line Repeater  
Transformer Selection  
The MXL1535E is a pin-for-pin compatible upgrade of  
the LTC1535, making any transformer designed for that  
device suitable for the MXL1535E (see Table 4). These  
transformers all have a turns ratio of about 1:1.3CT.  
TRANSFORMER DRIVER OUTPUT STAGE  
V
CC1  
The MAX3535E can operate with any of the transformers  
listed in Table 4, in addition to smaller, thinner transform-  
ers designed for the MAX845 and MAX253. The 420kHz  
transformer driver operates with single primary and cen-  
ter-tapped secondary transformers. When selecting a  
transformer, do not exceed its ET product, the product of  
the maximum primary voltage and half the highest period  
of oscillation (lowest oscillating frequency). This ensures  
that the transformer does not enter saturation. Calculate  
the minimum ET product for the transformer primary as:  
R
R
OH  
OH  
ST1  
ST2  
TRANSFORMER  
PRIMARY  
R
OL  
R
OL  
ET = V  
/ (2 x f  
)
MAX  
MIN  
GND1  
where, V  
is the worst-case maximum supply voltage,  
is the minimum frequency at that supply voltage.  
Using +5.5V and 290kHz gives a required minimum ET  
MAX  
and f  
MIN  
Figure 13. Transformer Driver Output Stage  
20 ______________________________________________________________________________________  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
product of 9.5V-µs. The commercially available trans-  
less than 0.1in. To minimize power consumption, select  
the turns ratio of the transformer to produce the minimum  
formers for the MAX845 listed in Table 5 meet that  
requirement. In most cases, use half of the center-tapped  
primary winding with the MAX3535E and leave the other  
end of the primary floating. Most of the transformers in  
Table 5 are 1:1:1 or 1:1:1:1 turns ratio.  
ꢀC voltage required at V  
(+3.13V) under worst-case,  
CC2  
high-temperature, low-V  
, and full-load conditions. For  
CC1  
light loads on the isolated side, ensure that the voltage at  
does not exceed +7.5V. For example, the CTX01-  
V
CC2  
14659 transformer results in 85mA (typ) V  
supply cur-  
CC1  
For +3.3V operation (+3.6V maximum) the required pri-  
mary ET product is 6.2V-µs. All of the previously men-  
tioned transformers meet this requirement. Table 6 lists  
some other transformers with step-up turns ratios  
specifically tailored for +3.3V operation. Most of the  
transformers in Table 6 are 1:1:1.3:1.3.  
rent with full load on the RS-485 driver. Using a TGM250  
1:1:1 transformer lowers the V supply current to 65mA  
CC1  
(typ), while maintaining good margin on the V  
supply.  
CC2  
A slight step-down transformer can result in extra power  
savings in some situations. A custom wound sample  
transformer with 23 primary turns and 20:20 secondary  
turns on a Ferronics 11-050B core operates well with a  
By using a HALO TGM-010 or Midcom 95061 trans-  
former, it becomes possible to build a complete isolated  
RS-485/RS-422 transceiver with a maximum thickness  
V
CC1  
supply current of 51mA (typ).  
Table 4. Transformers for the MXL1535E/MAX3535E  
MANUFACTURER  
PART NUMBER  
CTX01-14659  
CTX01-14608  
ISOLATION VOLTAGE (1s)  
PHONE NUMBER  
561-241-7876  
Cooper Electronic Technologies, Inc.  
Cooper Electronic Technologies, Inc.  
500V  
3750V  
561-241-7876  
RMS  
EPCOS AG (Germany)  
(USA)  
0 89-626-2-80-00  
800-888-7724  
B78304-A1477-A3  
500V  
Midcom, Inc.  
31160R  
P1597  
1250V  
500V  
100V  
500V  
605-886-4385  
33-3-85-35-04-04  
03-3667-3320  
775-852-0145  
Pulse FEE (France)  
Sumida Corporation (Japan)  
Transpower Technologies, Inc.  
S-167-5779  
TTI7780-SM  
Table 5. Transformers for MAX3535E at +5V  
PART  
NUMBER  
ISOLATION  
VOLTAGE (1s)  
PHONE  
NUMBER  
MANUFACTURER  
WEBSITE  
TGM-010  
TGM-250  
TGM-350  
TGM-450  
500V  
RMS  
2000V  
3000V  
4500V  
RMS  
RMS  
RMS  
HALO Electronics, Inc.  
650-903-3800  
952-894-9590  
www.haloelectronics.com/6pin.html  
www.bhelectronics.com/PꢀFs/ꢀC-  
ꢀCConverterTransformers.pdf  
BH Electronics, Inc.  
Coilcraft, Inc.  
500-1749  
U6982-C  
3750V  
1500V  
RMS  
RMS  
800-322-2645  
44-1236-730595  
www.coilcraft.com/minitrans.cfm  
7825355  
7625335  
95061  
1500V  
Newport/C&ꢀ Technologies  
520-295-4300  
www.dc-dc.com/products/productline.asp?Eꢀ=9  
4000V  
1250V  
Midcom, Inc.  
605-886-4385  
818-894-5791  
714-898-0960  
949-452-0511  
www.midcom-inc.com  
PCA Electronics, Inc.  
Rhombus Industries, Inc.  
Premier Magnetics, Inc.  
EPC3115S-5  
T-1110  
700V ꢀC  
www.pca.com/ꢀatasheets/EPC3117S-X.pdf  
www.rhombus-ind.com/pt-cat/maxim.pdf  
www.premiermag.com/pdf/pmsm15.pdf  
1800V  
RMS  
RMS  
PM-SM15  
1500V  
______________________________________________________________________________________ 21  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
Table 6. Transformers for MAX3535E at +3.3V  
PART  
NUMBER  
ISOLATION  
VOLTAGE (1s)  
PHONE  
NUMBER  
MANUFACTURER  
WEBSITE  
TGM-040  
TGM-240  
TGM-340  
TGM-340  
500V  
RMS  
2000V  
3000V  
4500V  
RMS  
RMS  
RMS  
HALO Electronics, Inc.  
650-903-3800  
952-894-9590  
www.haloelectronics.com/6pin.html  
www.bhelectronics.com/PꢀFs/ꢀC-  
ꢀCConverterTransformers.pdf  
BH Electronics, Inc.  
Coilcraft, Inc.  
500-2582  
Q4470-C  
2000V  
1500V  
RMS  
RMS  
800-322-2645  
44-1236-730595  
www.coilcraft.com/minitrans.cfm  
www.dc-dc.com/products/productline.asp?Eꢀ=9  
www.midcom-inc.com  
78253335  
76253335  
95062  
1500V  
Newport/C&ꢀ Technologies  
Midcom, Inc.  
520-295-4300  
605-886-4385  
4000V  
1250V  
95063  
1250V  
PCA Electronics, Inc.  
EPC3115S-2  
T-1107  
700V ꢀC  
818-894-5791  
714-898-0960  
www.pca.com/ꢀatasheets/EPC3117S-X.pdf  
www.rhombus-ind.com/pt-cat/maxim.pdf  
Rhombus Industries, Inc.  
1800V  
RMS  
Premier Magnetics Inc.  
PM-SM16  
1500V  
949-452-0511  
www.premiermag.com/pdf/pmsm15.pdf  
RMS  
15ꢀV ESD ꢁrotection  
As with all Maxim devices, ESꢀ-protection structures  
are incorporated on all pins to protect against electro-  
static discharges encountered during handling and  
assembly. The driver outputs and receiver inputs have  
extra protection against static electricity. Maxim’s engi-  
neers have developed state-of-the-art structures to pro-  
tect these pins against ESꢀ of 15kV without damage.  
The ESꢀ structures withstand high ESꢀ in all states.  
After an ESꢀ event, the MAX3535E/MXL1535E keep  
working without latchup. ESꢀ protection can be tested  
in various ways. The transmitter outputs and receiver  
inputs of this product family are characterized for pro-  
tection to 15kV using the Human Body Model.  
R
1MΩ  
R 1500Ω  
D
C
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
STORAGE  
CAPACITOR  
s
100pF  
SOURCE  
ESD Test Conditions  
The 15kV ESꢀ test specifications apply only to the A,  
B, Y, and Z I/O pins. The test surge is referenced to  
GNꢀ2. All remaining pins are 2kV ESꢀ protected.  
Figure 14. Human Body ESD Test Model  
charged into low impedance. This model consists of a  
100pF capacitor charged to the ESꢀ voltage of interest,  
which is then discharged into the test device through a  
1.5kresistor.  
Human Body Model  
Figure 14 shows the Human Body Model, and Figure  
15 shows the current waveform it generates when dis-  
22 ______________________________________________________________________________________  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
DATA SKEW vs. DATA RATE  
50  
45  
I 100%  
P
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
r
40  
35  
30  
25  
20  
15  
10  
5
AMPERES  
36.8%  
10%  
0
TYP SKEW  
MAX SKEW  
TIME  
0
t
RL  
t
DL  
0
CURRENT WAVEFORM  
0
250 500 750 1000 1250 1500 1750 2000  
DATA RATE (kbps)  
Figure 15. Human Body Current Waveform  
Figure 16. Data Skew vs. Data Rate Graph  
Machine Model  
Higher rates are possible but with more distortion and  
jitter. The data rate should always be limited below  
1.75Mbps for both receiver and driver to avoid interfer-  
ence with the internal barrier communication.  
The Machine Model for ESꢀ tests all pins using a  
200pF storage capacitor and zero discharge resis-  
tance. Its objective is to simulate the stress caused by  
contact that occurs with handling and assembly during  
manufacturing. All pins require this protection during  
manufacturing, not just inputs and outputs. Therefore,  
after PC board assembly, the Machine Model is less  
relevant to I/O ports.  
Layout Considerations  
The MAX3535E/MXL1535E pin configurations enable  
optimal PC board layout by minimizing interconnection  
lengths and crossovers:  
• For maximum isolation, the isolation barrier should not  
be breached except by the MAX3535E/MXL1535E and  
the transformer. Connections and components from  
one side of the barrier should not be located near those  
of the other side of barrier.  
Sꢀew  
The self-oscillation circuit shown in Figure 5 is an excel-  
lent way to get an approximate measure of the speed  
of the MAX3535E/MXL1535E. An oscillation frequency  
of 250kHz in this configuration implies a data rate of at  
least 500kbps for the receiver and transmitter com-  
bined. In practice, data can usually be sent and  
received at a considerably higher data rate, normally  
limited by the allowable jitter and data skew. If the sys-  
tem can tolerate a 25% data skew, (the difference  
• A shield trace connected to the ground on each side of  
the barrier can help intercept capacitive currents that  
might otherwise couple into the ꢀI and SOL inputs. In a  
double-sided or multilayer board, these shield traces  
should be present on all conductor layers.  
between t  
and t  
), the 285ns maximum jitter  
PHL1  
• Try to maximize the width of the isolation barrier  
wherever possible. A clear space of at least 0.25in  
between GNꢀ1 and GNꢀ2 is recommended.  
PLH1  
specification implies a data rate of 877kbps. Lower  
data rates result in less distortion and jitter (Figure 16).  
______________________________________________________________________________________ 23  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
Typical Application Circuit  
TGM-240  
1/2  
BAT54C  
CONTROL GROUND  
RS-485 GROUND  
0.1µF  
10µF  
1/2  
BAT54C  
ST1  
ST2  
TRANSFORMER  
GND2  
V
CC2  
+3.3V  
V
CC1  
DRIVER  
VOLTAGE  
REGULATOR  
0.1µF  
10µF  
A
RO1  
B
µC  
RECEIVER  
RO2  
RE  
DE  
DRIVER  
Y
Z
DI  
V
CC2  
MAX3535E  
GND1  
BARRIER  
TRANSCEIVER  
BARRIER  
TRANSCEIVER  
SLO  
ISOLATION BARRIER  
Chip Information  
PROCESS: BiCMOS  
TRANSISTOR COUNT: 7379  
24 ______________________________________________________________________________________  
+3V to +5V, 2500V  
Isolated RS-485/RS-422  
RMS  
Transceivers with 15ꢀV ESD ꢁrotection  
ꢁacꢀage Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated ꢁroducts, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 25  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MXL1535ECWI+T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO28, SOIC-28
MAXIM

MXL1535ECWI-T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO28, SOIC-28
MAXIM

MXL1535EEWI

+3V to +5V, 2500VRMS Isolated RS-485/RS-422 Transceivers with 【15kV ESD Protection
MAXIM

MXL1535EEWI+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO28, SOIC-28
MAXIM

MXL1535EEWI-T

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO28, SOIC-28
MAXIM

MXL1543

+5V Multiprotocol, 3Tx/3Rx, Software-Selectable Clock/Data Transceivers
MAXIM

MXL1543B

+5V Multiprotocol, 3Tx/3Rx, Software- Selectable Clock/Data Transceivers
MAXIM

MXL1543BCAI

+5V Multiprotocol, 3Tx/3Rx, Software- Selectable Clock/Data Transceivers
MAXIM

MXL1543BCAI

TRIPLE LINE TRANSCEIVER, PDSO28, 5.30 MM, MO-150, SSOP-28
ROCHESTER

MXL1543BCAI+

Line Transceiver, 3 Func, 3 Driver, 3 Rcvr, BICMOS, PDSO28, 5.30 MM, MO-150, SSOP-28
MAXIM

MXL1543BCAI-G05

Line Transceiver
MAXIM

MXL1543BCAI-T

Line Transceiver, 3 Func, 3 Driver, 3 Rcvr, BICMOS, PDSO28, 5.30 MM, MO-150, SSOP-28
MAXIM