NR3012 [MAXIM]

PMIC with Integrated Charger and Smart Power Selector for Handheld Devices; PMIC集成充电器和智能电源选择器的手持设备
NR3012
型号: NR3012
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

PMIC with Integrated Charger and Smart Power Selector for Handheld Devices
PMIC集成充电器和智能电源选择器的手持设备

集成电源管理电路 手持设备
文件: 总44页 (文件大小:829K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0885; Rev 0; 8/07  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
General Description  
Features  
The MAX8671X integrated power-management IC  
(PMIC) is ideal for use in portable media players and  
other handheld devices. In addition to five regulated  
output voltages, the MAX8671X integrates a 1-cell lithi-  
um ion (Li+) or lithium polymer (Li-Poly) charger and  
Smart Power Selector™ with dual (AC-to-DC adapter  
and USB) power inputs. The dual-input Smart Power  
Selector supports end products with dual or single  
power connectors. All power switches for charging and  
switching the system load between battery and external  
power are included on-chip. No external MOSFETs are  
required.  
16V-Tolerant USB and DC Inputs  
Automatically Powers from External Power or  
Battery  
Operates with No Battery Present  
Single-Cell Li+/Li-Poly Charger  
Three 2MHz Step-Down Regulators  
Up to 96% Efficiency  
Two Low I Linear Regulators  
Q
Output Power-Up Sequencing  
Thermal-Overload Protection  
Maxim’s Smart Power Selector makes the best use of  
limited USB or AC-to-DC adapter power. Battery  
charge current and input current limit are independent-  
ly set. Input power not used by the system charges the  
battery. Charge current and DC current limit are pro-  
grammable up to 1A while USB input current can be set  
to 100mA or 500mA. Automatic input selection switches  
the system load from battery to external power. Other  
features include overvoltage protection, charge status  
and fault outputs, power-OK monitors, charge timer,  
and battery thermistor monitor. In addition, on-chip  
thermal limiting reduces battery charge rate to prevent  
charger overheating.  
Ordering Information  
PKG  
CODE  
PART  
TEMP RANGE PIN-PACKAGE  
40 Thin QFN-EP*  
5mm x 5mm  
MAX8671XETL+ -40°C to +85°C  
T4055-1  
+Denotes a lead-free package.  
*EP = Exposed paddle.  
Simplified Applications Circuit  
The MAX8671X offers adjustable voltages for all out-  
puts. Similar parts with factory-preset output voltages  
are also available (contact factory for availability).  
MAX8671X  
DC  
SYS  
AC-TO-DC  
ADAPTER  
Applications  
Portable Audio Players  
GPS Portable Navigators  
USB  
USB  
+
Li+/LiPo  
BATTERY  
ON  
EN  
OFF  
OUT1  
1V TO V  
425mA  
OUT1  
OUT2  
OUT3  
SYS  
SYS  
SYS  
PWM  
OUT2  
1V TO V  
425mA  
PEN1  
PEN2  
USUS  
CEN  
OUT3  
1V TO V  
425mA  
μP  
OUT4  
0.6V TO V  
180mA  
CST1  
CST2  
DOK  
OUT4  
OUT5  
SYS  
UOK  
OUT5  
0.6V TO V  
SYS  
180mA  
Smart Power Selector is a trademark of Maxim Integrated  
Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim's website at www.maxim-ic.com.  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
Table of Contents  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Simplified Applications Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Detailed Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Smart Power Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
System Load Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
USB Power Input (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
USB Power-OK Output (UOK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
USB Suspend (USUS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DC Power Input (DC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
DC Power-OK Output (DOK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Battery Charger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Battery Regulation Voltage (BVSET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Charge Enable Input (CEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Charge Status Outputs (CST1, CST2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Charge Timer (CT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Setting The Charger Currents (CISET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Step-Down Converters (REG1, REG2, REG3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Step-Down Dropout and Minimum Duty Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Step-Down Input Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Step-Down Output Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Step-Down Inductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Step-Down Converter Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Linear Regulators (REG4, REG5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
VL Linear Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Enable/Disable (EN) and Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Soft-Start/Inrush Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Active Discharge in Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Undervoltage and Overvoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
USB/DC UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
USB/DC OVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
SYS UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
REG4/REG5 UVLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Thermal Limiting and Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Smart Power Selector Thermal-Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Regulator Thermal-Overload Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Battery Charger Thermistor Input (THM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
PCB Layout and Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Chip Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
MA8671X  
2
_______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
Table of Contents (continued)  
Tables  
Table 1. Input Limiter Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Table 2. DC Current Limit for Standard Values of R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DISET  
Table 3. Charge Status Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Table 4. Charge Times vs. C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
CT  
Table 5. Ideal Charge Currents vs. Charge Setting Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Table 6. Suggested Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 7. 5mm x 5mm x 0.8mm Thin QFN Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 8. Trip Temperatures for Different Thermistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figures  
Figure 1. MAX8671X Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 2. Functional Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 3. USB Power-OK Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 4. Programming DC Current Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 5. DC Power-OK Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 6. Li+/Li-Poly Charge Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 7. Charger State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 8. Programming Charge Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 9. Monitoring the Battery Charge Current with the Voltage from CISET to AGND . . . . . . . . . . . . . . . . . . 32  
Figure 10. Step-Down Converter Maximum Output Current Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 11. Enable/Disable Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 12. Enable and Disable Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 13. REG5 Disable Detail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 14. Thermistor Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 15. Package Marking Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
_______________________________________________________________________________________  
3
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
ABSOLUTE MAXIMUM RATINGS  
USB, DC, PEN1 to AGND.......................................-0.3V to +16V  
SYS, BAT, PV1, PV2, PV3 to AGND..........................-0.3V to +6V  
PG1, PG2, PG3, AGND .........................................-0.3V to +0.3V  
PV1, PV2, PV3 to SYS............................................-0.3V to +0.3V  
VL to AGND...........................................................-0.3V to +4.0V  
OUT5, FB5 to AGND .................................-0.3V to (V  
+ 0.3V)  
PV5  
LX1, LX2, LX3 Continuous RMS Current (Note 1).................1.5A  
BAT Continuous Current .......................................................1.5A  
SYS Continuous Current .......................................................1.5A  
Continuous Power Dissipation (T = +70°C)  
A
CISET, DISET, BVSET, CT, THM to AGND..-0.3V to (V + 0.3V)  
40-Pin, 5mm x 5mm, Thin QFN (derate 35.7mW/°C  
VL  
PV4, PV5, BP, FB1, FB2, FB3 to AGND ....-0.3V to (V  
+ 0.3V)  
above +70°C)..............................................................2857mW  
Operating Junction Temperature.....................................+150°C  
Storage Junction Temperature Range ..............-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
SYS  
PEN2, USUS, CEN, EN, PWM to AGND ..................-0.3V to +6V  
CST1, CST2, DOK, UOK to AGND...........................-0.3V to +6V  
OUT4, FB4 to AGND .................................-0.3V to (V  
+ 0.3V)  
PV4  
MA8671X  
Note 1: LX_ has internal clamp diodes to PG_ and PV_. Applications that forward bias these diodes must take care not to exceed  
the package power dissipation limits.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(DC, USB, BVSET, UOK, DOK, LX_ unconnected; V  
= V /2, V  
= V  
= 0V, V  
= 4V, CEN = low, USUS = low, EN = high,  
BAT  
THM  
L
PG_  
AGND  
V
R
= V  
= 3.3V, V  
VL  
= 0V, C  
CT  
= 1µF, C  
BP  
= 1µF, C  
= 10µF, PV1 = PV2 = PV3 = PV4 = PV5 = SYS, R  
= 3kΩ,  
PEN1  
CISET  
PEN2  
PWM  
OUT4  
OUT5  
SYS  
DISET  
= 3kΩ, C = 0.1µF, C = 0.15µF, C = 0.01µF, V  
= 1.1V, V  
= 1.1V, V  
= 1.1V, T = -40°C to +85°C, unless other-  
FB3 A  
FB1  
FB2  
wise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC POWER INPUT (V  
= 5.0V, EN = low)  
DC  
Operating voltage  
Withstand voltage  
4.1  
0
6.6  
14  
DC Voltage Range  
V
V
V
DC  
V
= 6V, USUS = low, CEN = high, system  
DC  
SYS Regulation Voltage  
V
5.2  
5.3  
5.4  
SYS_REG  
current is less than the input current limit  
DC Undervoltage Threshold  
DC Overvoltage Threshold  
V
V
V
rising, 500mV typical hysteresis  
rising, 400mV typical hysteresis  
PEN1 = low,  
3.95  
6.8  
4.00  
6.9  
4.05  
7.0  
V
V
DCL  
DC  
DC  
V
DCH  
90  
95  
100  
500  
PEN2 = low,  
USUS = low  
PEN1 = low,  
PEN2 = high,  
USUS = low  
PEN1 = high,  
V
= 6V, V  
= 5V  
SYS  
DC  
USB unconnected,  
CEN = low,  
DC Current Limit  
I
mA  
DCLIM  
T
= +25°C,  
450  
475  
A
VL = no load  
(Note 3)  
950  
3
1000  
1050  
6
R
= 3kΩ  
DISET  
R
Resistance Range  
kΩ  
DISET  
PEN1 = low, USUS = high  
0.11  
1.1  
USUS = low, CEN = low;  
I
= 0mA, I  
= 0mA, EN = low;  
BAT  
SYS  
DC Quiescent Current  
I
mA  
DCIQ  
VL no load  
USUS = low, CEN = high;  
0.7  
15  
I
= 0mA, V = 0V, VL no load  
EN  
SYS  
Minimum DC-to-BAT Voltage  
Headroom  
V
falling, 200mV hysteresis  
0
0
30  
mV  
DC  
Minimum DC-to-SYS Voltage  
Headroom  
V
V
falling, 200mV hysteresis  
15  
30  
mV  
DC  
DC  
DC-to-SYS Dropout Resistance  
R
DS  
= 5V, I  
= 400mA, USUS = low  
0.325  
0.600  
Ω
SYS  
4
_______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
ELECTRICAL CHARACTERISTICS (continued)  
(DC, USB, BVSET, UOK, DOK, LX_ unconnected; V  
= V /2, V  
= V  
= 0V, V  
= 4V, CEN = low, USUS = low, EN = high,  
BAT  
THM  
L
PG_  
AGND  
V
R
= V  
= 3.3V, V  
VL  
= 0V, C  
CT  
= 1µF, C  
BP  
= 1µF, C  
= 10µF, PV1 = PV2 = PV3 = PV4 = PV5 = SYS, R  
= 3kΩ,  
PEN1  
CISET  
PEN2  
PWM  
OUT4  
OUT5  
SYS  
DISET  
= 3kΩ, C = 0.1µF, C = 0.15µF, C = 0.01µF, V  
= 1.1V, V  
= 1.1V, V  
= 1.1V, T = -40°C to +85°C, unless other-  
FB3 A  
FB1  
FB2  
wise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
1.0  
35  
MAX  
UNITS  
ms  
Starting DC when no USB present  
Starting DC with USB present  
DC-to-SYS Soft-Start Time  
t
SS-D-S  
µs  
Die temperature at which current limit is  
reduced  
DC Thermal-Limit Temperature  
DC Thermal-Limit Gain  
+100  
5
°C  
Amount of input current reduction above  
thermal-limit temperature  
%/°C  
USB POWER INPUT (V  
= 5.0V, EN = low)  
USB  
Operating voltage  
Withstand voltage  
4.1  
0
6.6  
14  
USB Voltage Range  
V
V
V
USB  
V
= 6V, USUS = low, CEN = high,  
USB  
SYS Regulation Voltage  
V
system current is less than the input current  
limit  
5.2  
5.3  
5.4  
SYS_REG  
USB Undervoltage Threshold  
USB Overvoltage Threshold  
V
V
V
rising, 500mV hysteresis  
rising, 400mV hysteresis  
3.95  
6.8  
4.0  
6.9  
4.05  
7.0  
V
V
USBL  
USB  
USB  
V
USBH  
PEN2 = low,  
USUS = low  
V
= 6V, V  
= 5V, DC  
SYS  
USB  
90  
95  
100  
500  
unconnected, CEN = low,  
USB Current Limit  
I
mA  
USBLIM  
T
A
= +25°C,  
= 0A (Note 3)  
PEN2 = high,  
USUS = low  
450  
475  
0.11  
1.1  
I
VL  
USUS = high  
USUS = low, CEN = low;  
2.0  
1.3  
30  
I
= 0mA, I  
= 0mA, VL no load  
BAT  
USB Quiescent Current  
I
SYS  
mA  
USBIQ  
USUS = low, CEN = high;  
= 0mA, VL no load  
0.7  
15  
15  
I
SYS  
Minimum USB-to-BAT Voltage  
Headroom  
V
falling, 200mV hysteresis  
falling, 200mV hysteresis  
0
0
mV  
mV  
USB  
Minimum USB-to-SYS Voltage  
Headroom  
V
V
30  
USB  
USB  
USB-to-SYS Dropout Resistance  
USB-to-SYS Soft-Start Time  
R
US  
= 5V, I  
= 400mA, USUS = low  
0.325  
1.0  
0.600  
Ω
SYS  
t
ms  
SS-U-S  
Die temperature at which current limit is  
reduced  
USB Thermal-Limit Temperature  
USB Thermal-Limit Gain  
100  
5
°C  
Amount of input current reduction above  
thermal-limit temperature  
%/°C  
SYSTEM (V  
= 5.0V, EN = low)  
DC  
System Operating Voltage Range  
System Undervoltage Threshold  
V
2.6  
5.5  
V
V
SYS  
V
SYS falling, 100mV hysteresis  
2.45  
2.50  
2.55  
UVLO_SYS  
_______________________________________________________________________________________  
5
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
ELECTRICAL CHARACTERISTICS (continued)  
(DC, USB, BVSET, UOK, DOK, LX_ unconnected; V  
= V /2, V  
= V  
= 0V, V  
= 4V, CEN = low, USUS = low, EN = high,  
BAT  
THM  
L
PG_  
AGND  
V
R
= V  
= 3.3V, V  
VL  
= 0V, C  
CT  
= 1µF, C  
BP  
= 1µF, C  
= 10µF, PV1 = PV2 = PV3 = PV4 = PV5 = SYS, R  
= 3kΩ,  
PEN1  
CISET  
PEN2  
PWM  
OUT4  
OUT5  
SYS  
DISET  
= 3kΩ, C = 0.1µF, C = 0.15µF, C = 0.01µF, V  
= 1.1V, V  
= 1.1V, V  
= 1.1V, T = -40°C to +85°C, unless other-  
FB3 A  
FB1  
FB2  
wise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
BAT is sourcing  
105mA  
MIN  
TYP  
MAX  
UNITS  
65  
82  
115  
BAT-to-SYS Reverse Regulation  
Voltage  
DC or USB and BAT  
are sourcing current  
V
mV  
BSREG  
BAT is sourcing  
905mA  
130  
0
MA8671X  
DC and USB unconnected, EN = low,  
10  
10  
V
= 4V  
BAT  
V
= V  
= 5V, USUS = high,  
USB  
DC  
0
PEN1 = low, EN = low, V  
= 4V  
BAT  
DC and USB unconnected, EN = high,  
= 4V (step-down converters are not in  
dropout), PWM = low (Note 4)  
I
I
I
I
I
+
+
+
+
+
PV1  
PV2  
PV3  
PV4  
PV5  
I
155  
425  
285  
V
BAT  
µA  
Quiescent Current  
DC and USB unconnected, EN = high,  
V
= 2.8V (at least one step-down  
550  
320  
BAT  
converter is in dropout), PWM = low (Note 4)  
SYS  
V
V
= V  
= 5V, USUS = high, EN = high,  
USB  
DC  
180  
9
= 4V, PWM = low (Note 4)  
BAT  
DC and USB unconnected, EN = high,  
mA  
V
= 4.0V, PWM = high  
BAT  
BATTERY CHARGER (V  
= 5.0V, EN = low)  
DC  
BAT-to-SYS On-Resistance  
R
V
= 0V, V  
= 4.2V, I = 1A  
SYS  
0.08  
4.200  
4.200  
4.100  
4.100  
4.350  
4.350  
-120  
0.16  
4.221  
4.242  
4.121  
4.141  
4.376  
4.398  
-70  
Ω
BS  
USB  
BAT  
T
A
= +25°C  
4.174  
4.145  
4.073  
4.047  
4.325  
4.297  
-170  
BVSET = VL or  
BVSET unconnected  
T
T
T
T
T
= -40°C to +85°C  
= +25°C  
A
A
A
A
A
BAT Regulation Voltage  
(Figure 6)  
BVSET = AGND  
V
V
BATREG  
= -40°C to +85°C  
= +25°C  
R
= 49.9kΩ to  
BVSET  
AGND  
= -40°C to +85°C  
BAT Recharge Threshold  
V
(Note 5)  
mV  
V
BATRCHG  
BAT Prequalification Threshold  
V
V
rising, 180mV hysteresis, Figure 6  
BAT  
2.9  
3.0  
3.1  
BATPRQ  
Guaranteed by BAT fast-charge current  
limit  
R
Resistance Range  
3
15  
kΩ  
CISET  
CISET Voltage  
V
R
= 7.5kΩ, I = 267mA, Figure 9  
BAT  
0.9  
1.0  
1.1  
V
CISET  
CISET  
6
_______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
ELECTRICAL CHARACTERISTICS (continued)  
(DC, USB, BVSET, UOK, DOK, LX_ unconnected; V  
= V /2, V  
= V  
= 0V, V  
= 4V, CEN = low, USUS = low, EN = high,  
BAT  
THM  
L
PG_  
AGND  
V
R
= V  
= 3.3V, V  
VL  
= 0V, C  
CT  
= 1µF, C  
BP  
= 1µF, C  
= 10µF, PV1 = PV2 = PV3 = PV4 = PV5 = SYS, R  
= 3kΩ,  
PEN1  
CISET  
PEN2  
PWM  
OUT4  
OUT5  
SYS  
DISET  
= 3kΩ, C = 0.1µF, C = 0.15µF, C = 0.01µF, V  
= 1.1V, V  
= 1.1V, V  
= 1.1V, T = -40°C to +85°C, unless other-  
FB3 A  
FB1  
FB2  
wise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
Low-power USB charging from the USB  
MIN  
TYP  
MAX  
UNITS  
87  
92  
100  
input, DC unconnected, R  
PEN2 = low, USUS = low  
= 3kΩ,  
CISET  
Low-power USB charging from the DC  
input, R = 3kΩ, PEN1 = low,  
PEN2 = low, USUS = low  
87  
92  
100  
500  
500  
230  
425  
850  
CISET  
High-power USB charging from the USB  
input, DC unconnected, R  
PEN2 = high, USUS = low  
= 3kΩ,  
450  
450  
170  
375  
750  
472  
472  
200  
400  
802  
CISET  
High-power USB charging from the DC  
input, R = 3kΩ, PEN2 = high,  
BAT Fast-Charge Current Limit  
mA  
CISET  
USUS = low  
AC-to-DC adapter charging from the DC  
input, R = 3kΩ, R = 15kΩ,  
DISET  
CISET  
PEN1 = high  
AC-to-DC adapter charging from the DC  
input, R = 3kΩ, R = 7.5kΩ,  
DISET  
CISET  
PEN1 = high  
AC-to-DC adapter charging from the DC  
input, R = 3kΩ, R = 3.74kΩ,  
DISET  
CISET  
PEN1 = high  
BAT Prequalification Current  
Top-Off Threshold  
V
= 2.5V, R  
= 3.74kΩ  
65  
20  
82  
30  
100  
40  
mA  
mA  
BAT  
CISET  
CISET  
T
A
= +25°C, R  
= 3.74kΩ (Note 6)  
No DC or USB power  
connected  
0
1
+5  
+5  
EN = low,  
= +25°C  
BAT Leakage Current  
Charger Soft-Start Time  
µA  
T
A
DC and/or USB power  
connected, CEN = high  
-5  
Slew rate  
450  
1.10  
0.22  
0.88  
mA/ms  
ms  
Time from 0mA to 500mA  
Time from 0mA to 100mA  
Time from 100mA to 500mA  
t
SS_CHG  
Timer Accuracy  
C
= 0.15µF  
-20  
+20  
350  
%
CT  
CISET voltage when the fast-charge timer  
suspends; 300mV translates to 20% of the  
maximum fast-charge current limit  
Timer Suspend Threshold  
250  
300  
750  
mV  
CISET voltage when the fast-charge timer  
suspends; 750mV translates to 50% of the  
maximum fast-charge current limit  
Timer Extend Threshold  
700  
800  
mV  
_______________________________________________________________________________________  
7
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
ELECTRICAL CHARACTERISTICS (continued)  
(DC, USB, BVSET, UOK, DOK, LX_ unconnected; V  
= V /2, V  
= V  
= 0V, V  
= 4V, CEN = low, USUS = low, EN = high,  
BAT  
THM  
L
PG_  
AGND  
V
R
= V  
= 3.3V, V  
VL  
= 0V, C  
CT  
= 1µF, C  
BP  
= 1µF, C  
= 10µF, PV1 = PV2 = PV3 = PV4 = PV5 = SYS, R  
= 3kΩ,  
PEN1  
CISET  
PEN2  
PWM  
OUT4  
OUT5  
SYS  
DISET  
= 3kΩ, C = 0.1µF, C = 0.15µF, C = 0.01µF, V  
= 1.1V, V  
= 1.1V, V  
= 1.1V, T = -40°C to +85°C, unless other-  
FB3 A  
FB1  
FB2  
wise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
33  
MAX  
UNITS  
min  
min  
s
Prequalification Time  
Fast-Charge Time  
Top-Off Time  
t
C
C
= 0.15µF  
= 0.15µF  
PQ  
CT  
CT  
t
t
660  
15  
FC  
TO  
MA8671X  
THERMISTOR INPUT (THM) (V  
= 5.0V, EN = low)  
DC  
% of  
THM Threshold, Cold  
V
V
V
V
rising, 65mV hysteresis  
falling, 65mV hysteresis  
73.0  
74.0  
28.4  
75.5  
30.0  
THMC  
THMH  
THM  
THM  
V
VL  
% of  
THM Threshold, Hot  
27.0  
V
VL  
THM = AGND or VL, T = +25°C  
-0.100  
0.001 +0.200  
0.01  
A
THM Input Leakage Current  
I
µA  
THM  
THM = AGND or VL, T = +85°C  
A
POWER SEQUENCING (Figures 11 and 12)  
EN to REG3 Enable Delay  
REG1 Soft-Start Time  
t
120  
2.6  
0.4  
2.6  
2.6  
0.3  
3.0  
3.0  
µs  
D1  
t
ms  
ms  
ms  
ms  
ms  
ms  
ms  
SS1  
REG3 to REG1/2 Delay  
t
D2  
REG2 Soft-Start Time  
t
t
SS2  
SS3  
REG3 Soft-Start Time  
REG1/2 to REG4 Delay  
t
D3  
REG4 Soft-Start Time  
t
SS4  
SS5  
REG5 Soft-Start Time  
t
REGULATOR THERMAL SHUTDOWN  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
T rising  
J
+165  
15  
°C  
°C  
REG1—SYNCHRONOUS STEP-DOWN CONVERTER  
Input Voltage  
PV1 supplied from SYS  
V
V
mA  
V
SYS  
Maximum Output Current  
FB1 Voltage  
L = 4.7µH, R = 0.13Ω (Note 7)  
425  
0.997  
1
L
(Note 8)  
1.012  
1.028  
Adjustable Output Voltage Range  
V
V
SYS  
T
T
= +25°C  
= +85°C  
-50  
-5  
-5  
+50  
A
A
FB1 Leakage Current  
V
= 1.012V  
nA  
FB1  
Load Regulation  
PWM mode  
4.4  
1
%/A  
%/D  
mΩ  
mΩ  
Line Regulation  
PWM mode (Note 9)  
p-Channel On-Resistance  
n-Channel On-Resistance  
V
V
= 4V, I  
= 4V, I  
= 180mA  
165  
200  
330  
400  
PV1  
PV1  
LX1  
LX1  
= 180mA  
p-Channel Current-Limit  
Threshold  
0.555  
0.615  
0.675  
A
8
_______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
ELECTRICAL CHARACTERISTICS (continued)  
(DC, USB, BVSET, UOK, DOK, LX_ unconnected; V  
= V /2, V  
= V  
= 0V, V  
= 4V, CEN = low, USUS = low, EN = high,  
BAT  
THM  
L
PG_  
AGND  
V
R
= V  
= 3.3V, V  
VL  
= 0V, C  
CT  
= 1µF, C  
BP  
= 1µF, C  
= 10µF, PV1 = PV2 = PV3 = PV4 = PV5 = SYS, R  
= 3kΩ,  
PEN1  
CISET  
PEN2  
PWM  
OUT4  
OUT5  
SYS  
DISET  
= 3kΩ, C = 0.1µF, C = 0.15µF, C = 0.01µF, V  
= 1.1V, V  
= 1.1V, V  
= 1.1V, T = -40°C to +85°C, unless other-  
FB3 A  
FB1  
FB2  
wise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Skip Mode Transition Current  
(Note 10)  
60  
mA  
n-Channel Zero-Crossing  
Threshold  
10  
mA  
Maximum Duty Cycle  
100  
12.5  
2.0  
%
%
Minimum Duty Cycle  
PWM mode  
Internal Oscillator Frequency  
1.8  
0.5  
2.2  
2.0  
MHz  
Internal Discharge Resistance in  
Shutdown  
EN = low, resistance from LX1 to PG1  
1.0  
kΩ  
REG2—SYNCHRONOUS STEP-DOWN CONVERTER  
Input Voltage  
PV2 supplied from SYS  
V
V
mA  
V
SYS  
Maximum Output Current  
FB2 Voltage  
L = 4.7µH, R = 0.13Ω (Note 7)  
425  
0.997  
1
L
(Note 8)  
1.012  
1.028  
Adjustable Output Voltage Range  
V
V
SYS  
T
T
= +25°C  
= +85°C  
-50  
-5  
-50  
4.4  
1
+50  
A
A
FB2 Leakage Current  
V
= 1.012V  
nA  
FB2  
Load Regulation  
PWM mode  
%/A  
%/D  
mΩ  
mΩ  
Line Regulation  
PWM mode (Note 9)  
p-Channel On-Resistance  
n-Channel On-Resistance  
V
V
= 4V, I  
= 180mA  
200  
150  
400  
265  
PV2  
PV2  
LX2  
LX2  
= 4V, I  
= 180mA  
p-Channel Current-Limit  
Threshold  
0.555  
0.615  
60  
0.675  
A
Skip Mode Transition Current  
(Note 10)  
mA  
mA  
n-Channel Zero-Crossing  
Threshold  
10  
Maximum Duty Cycle  
100  
12.5  
2.0  
%
%
Minimum Duty Cycle  
PWM mode  
Internal Oscillator Frequency  
1.8  
0.5  
2.2  
2.0  
MHz  
Internal Discharge Resistance in  
Shutdown  
EN = low, resistance from LX2 to PG2  
1.0  
kΩ  
REG3—SYNCHRONOUS STEP-DOWN CONVERTER  
Input Voltage  
PV3 supplied from SYS  
V
V
mA  
V
SYS  
Maximum Output Current  
FB3 Voltage  
L = 4.7µH, R = 0.13Ω (Note 7)  
425  
0.997  
1
L
(Note 8)  
1.012  
1.028  
Adjustable Output Voltage Range  
V
V
SYS  
T
T
= +25°C  
= +85°C  
-50  
-5  
+50  
A
A
FB3 Leakage Current  
Load Regulation  
V
= 1.012V  
nA  
FB2  
-50  
4.4  
PWM mode  
%/A  
_______________________________________________________________________________________  
9
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
ELECTRICAL CHARACTERISTICS (continued)  
(DC, USB, BVSET, UOK, DOK, LX_ unconnected; V  
= V /2, V  
= V  
= 0V, V  
= 4V, CEN = low, USUS = low, EN = high,  
BAT  
THM  
L
PG_  
AGND  
V
R
= V  
= 3.3V, V  
VL  
= 0V, C  
CT  
= 1µF, C  
BP  
= 1µF, C  
= 10µF, PV1 = PV2 = PV3 = PV4 = PV5 = SYS, R  
= 3kΩ,  
PEN1  
CISET  
PEN2  
PWM  
OUT4  
OUT5  
SYS  
DISET  
= 3kΩ, C = 0.1µF, C = 0.15µF, C = 0.01µF, V  
= 1.1V, V  
= 1.1V, V  
= 1.1V, T = -40°C to +85°C, unless other-  
FB3 A  
FB1  
FB2  
wise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Line Regulation  
PWM mode (Note 9)  
(Note 10)  
1
%/D  
p-Channel Current-Limit  
Threshold  
0.555  
0.615  
60  
0.675  
A
MA8671X  
Skip Mode Transition Current  
mA  
mA  
n-Channel Zero-Crossing  
Threshold  
10  
p-Channel On-Resistance  
n-Channel On-Resistance  
Maximum Duty Cycle  
V
V
= 4V, I  
= 4V, I  
= 180mA  
= 180mA  
230  
120  
100  
12.5  
2.0  
460  
210  
mΩ  
mΩ  
%
PV3  
PV3  
LX3  
LX3  
Minimum Duty Cycle  
PWM mode  
%
Internal Oscillator Frequency  
1.8  
0.5  
2.2  
2.0  
MHz  
Internal Discharge Resistance in  
Shutdown  
EN = low, resistance from LX3 to PG3  
1.0  
kΩ  
REG4—LINEAR REGULATOR  
PV4 Operating Range  
V
1.7  
V
V
V
PV4  
SYS  
PV4 Undervoltage Lockout  
Threshold  
V
rising, 100mV hysteresis  
1.55  
1.60  
1.65  
PV4  
FB4 Voltage  
No load  
= 0.6V  
0.582  
-50  
0.600  
-5  
0.618  
+50  
V
T
T
= +25°C  
= +85°C  
A
A
FB4 Leakage Current  
V
nA  
FB4  
-5  
PV4 to OUT4, V  
PV4 to OUT4, V  
= 3.3V  
= 2.0V  
0.45  
0.75  
230  
235  
PV4  
Drop-Out Resistance  
Current Limit  
Ω
1.8  
PV4  
V
V
= 0.54V  
= 0V  
200  
265  
FB4  
FB4  
mA  
10Hz to 100kHz;  
Output Noise  
PSRR  
120  
µV  
C
V
= 3.3µF, I  
set for 1.8V  
= 10mA, V  
= 2V,  
RMS  
OUT4  
OUT4  
OUT4  
PV4  
f = 1kHz, I  
= 10mA, V  
= 2V,  
PV4  
OUT4  
67  
50  
V
set for 1.8V  
OUT4  
dB  
f = 10kHz, I  
= 10mA, V  
= 2V,  
OUT4  
set for 1.8V  
PV4  
V
OUT4  
Internal Discharge Resistance in  
Shutdown  
EN = low, resistance from OUT4 to AGND  
0.5  
1.0  
2.0  
kΩ  
10 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
ELECTRICAL CHARACTERISTICS (continued)  
(DC, USB, BVSET, UOK, DOK, LX_ unconnected; V  
= V /2, V  
= V  
= 0V, V  
= 4V, CEN = low, USUS = low, EN = high,  
BAT  
THM  
L
PG_  
AGND  
V
R
= V  
= 3.3V, V  
VL  
= 0V, C  
CT  
= 1µF, C  
BP  
= 1µF, C  
= 10µF, PV1 = PV2 = PV3 = PV4 = PV5 = SYS, R  
= 3kΩ,  
PEN1  
CISET  
PEN2  
PWM  
OUT4  
OUT5  
SYS  
DISET  
= 3kΩ, C = 0.1µF, C = 0.15µF, C = 0.01µF, V  
= 1.1V, V  
= 1.1V, V  
= 1.1V, T = -40°C to +85°C, unless other-  
FB3 A  
FB1  
FB2  
wise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
REG5—LINEAR REGULATOR  
PV5 Operating Range  
V
1.7  
V
V
V
PV5  
SYS  
PV5 Undervoltage Lockout  
Threshold  
V
rising, 100mV hysteresis  
1.55  
1.60  
1.65  
PV5  
FB5 Voltage  
No load  
0.582  
-50  
0.600  
-5  
0.618  
+50  
V
T
T
= +25°C  
= +85°C  
A
A
FB5 Leakage Current  
V
= 0.6V  
nA  
FB5  
-5  
V
V
V
V
to OUT5, V  
to OUT5, V  
= 0.54V  
= 3.3V  
= 2.0V  
0.45  
0.75  
230  
235  
PV5  
PV5  
FB5  
FB5  
PV5  
PV5  
Drop-Out Resistance  
Current Limit  
Ω
1.8  
200  
265  
mA  
= 0V  
10Hz to 100kHz,  
Output Noise  
PSRR  
C
V
= 2.2µF, I  
set for 3.3V  
= 10mA, V  
= 3.5V,  
180  
µV  
RMS  
OUT5  
OUT5  
OUT5  
PV5  
f = 1kHz, I  
= 10mA, V  
= 3.5V,  
PV5  
OUT5  
62  
44  
V
set for 3.3V  
OUT5  
dB  
f = 10kHz, I  
= 10mA, V  
= 3.5V,  
OUT5  
set for 3.3V  
PV5  
V
OUT5  
Internal Discharge Resistance in  
Shutdown  
EN = low, resistance from OUT5 to AGND  
0.5  
3.0  
1.0  
2.0  
3.6  
0.6  
kΩ  
VL—LINEAR REGULATOR  
VL Voltage  
V
I
= 0mA to 3mA  
VL  
3.3  
V
VL  
LOGIC (UOK, DOK, PEN1, PEN2, USUS, CEN, CST1, CST2, EN, PWM)  
V
5.5V  
or V  
= 4.1V to 6.6V, V  
= 2.6V to  
= 2.6V to  
USB  
DC  
SYS  
SYS  
Logic Input-Voltage Low  
Logic Input-Voltage High  
V
V
V
or V  
= 4.1V to 6.6V, V  
USB  
DC  
1.3  
5.5V  
T
T
= +25°C  
= +85°C  
0.001  
0.01  
10  
1
A
Logic Input Leakage Current  
Logic Output-Voltage Low  
V
= 0V to 5.5V  
= 5.5V  
µA  
mV  
µA  
LOGIC  
A
I
= 1mA  
30  
1
SINK  
T
T
= +25°C  
= +85°C  
0.001  
0.01  
A
Logic Output-High Leakage  
Current  
V
LOGIC  
A
TRI-STATE INPUT (BVSET)  
BVSET Input-Voltage Low  
V
V
or V  
= 4.1V to 6.6V  
= 4.1V to 6.6V  
0.3  
V
V
USB  
USB  
DC  
DC  
V
-
VL  
BVSET Input-Voltage Mid  
or V  
1.2  
1.2  
______________________________________________________________________________________ 11  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
ELECTRICAL CHARACTERISTICS (continued)  
(DC, USB, BVSET, UOK, DOK, LX_ unconnected; V  
= V /2, V  
= V  
= 0V, V  
= 4V, CEN = low, USUS = low, EN = high,  
BAT  
THM  
L
PG_  
AGND  
V
R
= V  
= 3.3V, V  
VL  
= 0V, C  
CT  
= 1µF, C  
BP  
= 1µF, C  
= 10µF, PV1 = PV2 = PV3 = PV4 = PV5 = SYS, R  
= 3kΩ,  
PEN1  
CISET  
PEN2  
PWM  
OUT4  
OUT5  
SYS  
DISET  
= 3kΩ, C = 0.1µF, C = 0.15µF, C = 0.01µF, V  
= 1.1V, V  
= 1.1V, V  
= 1.1V, T = -40°C to +85°C, unless other-  
FB3 A  
FB1  
FB2  
wise noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
= 4.1V to 6.6V  
MIN  
TYP  
MAX  
UNITS  
V
V
-
V
+
VL  
VL  
BVSET Input-Voltage High  
V
or V  
USB DC  
0.3  
0.3  
Internal BVSET Pullup Resistance  
52.5  
50  
kΩ  
MA8671X  
External BVSET Pulldown  
Resistance for Midrange Voltage  
R
45  
55  
kΩ  
BVSET  
Note 2: Limits are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed through cor-  
A
relation using statistical quality control (SQC) methods.  
Note 3: The USB/DC current limit does not include the VL output current. See the VL Linear Regulator section for more information.  
Note 4: Quiescent current excludes the energy needed for the REG1–REG5 external resistor-dividers. All typical operating charac-  
teristics include the energy for the REG1–REG5 external resistor-dividers. For the circuit of Figure 1, the typical quiescent  
current with DC and USB unconnected, EN = high, V  
= 4V, and PWM = low is 175µA.  
BAT  
Note 5: The charger transitions from done to fast-charge mode at this BAT recharge threshold (Figure 7).  
Note 6: The charger transitions from fast-charge to top-off mode at this top-off threshold (Figure 7).  
Note 7: The maximum output current is guaranteed by correlation to the p-channel current-limit threshold, p-channel on-resistance,  
n-channel on-resistance, oscillator frequency, input voltage range, and output voltage range. The parameter is stated for a  
4.7µH inductor with 0.13Ω series resistance. See the Step-Down Converter Output Current section for more information.  
Note 8: The step-down output voltages are 1% high with no load due to the load-line architecture. When calculating the external  
resistor-dividers, use an FB_ voltage of 1.000V.  
Note 9: Line regulation for the step-down converters is measured as ΔV  
/ΔD, where D is the duty cycle (approximately  
OUT  
V
/V ).  
OUT IN  
Note 10:The skip mode current threshold is the transition point between fixed-frequency PWM operation and skip mode operation.  
The specification is given in terms of output load current for inductor values shown in the typical application circuits.  
12 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
Typical Operating Characteristics  
(Circuit of Figure 1, I = 0mA, T = +25°C, unless otherwise noted.)  
VL  
A
QUIESCENT CURRENT  
vs. DC OR USB SUPPLY VOLTAGE  
QUIESCENT CURRENT  
vs. DC OR USB SUPPLY VOLTAGE  
USB QUIESCENT CURRENT  
vs. USB SUPPLY VOLTAGE, USB SUSPEND  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
CHARGER ENABLED  
NO BATTERY INPUT  
VOLTAGE AT DC OR  
USB WITH THE  
OTHER INPUT LEFT  
UNCONNECTED  
CHARGER ENABLED  
NO BATTERY INPUT  
VOLTAGE AT DC OR  
USB WITH THE  
OTHER INPUT LEFT  
UNCONNECTED  
FALLING  
FALLING  
RISING  
RISING  
USB VOLTAGE RISING  
0
2
4
6
8
10 12 14 16  
0
2
4
6
8
10 12 14 16  
0
2
4
6
8
10 12 14 16  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
USB VOLTAGE (V)  
BATTERY LEAKAGE CURRENT  
vs. BATTERY VOLTAGE WHEN  
REGULATORS ARE POWERED FROM USB  
BATTERY LEAKAGE CURRENT  
vs. BATTERY VOLTAGE  
0.8  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
NO EXTERNAL POWER  
0.7 EN = LOW  
CEN = HIGH  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
= 5V  
= 0V  
USB  
DC  
PEN1 = PEN2 = 1  
EN = 1  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
BATTERY VOLTAGE (V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
BATTERY VOLTAGE (V)  
______________________________________________________________________________________ 13  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, I = 0mA, T = +25°C, unless otherwise noted.)  
VL  
A
CHARGE CURRENT vs. BATTERY  
VOLTAGE WITH USB INPUT  
CHARGE CURRENT  
vs. BATTERY VOLTAGE  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
V
= 5.0V  
V
V
= 5.0V  
USB  
USB  
= 0V  
PEN1 = 1  
PEN2 = 1  
= 0V  
DC  
DC  
PEN1 = 1, PEN2 = 1  
R
CISET  
= 10kΩ  
MA8671X  
R
CISET  
= 6.04kΩ  
PEN2 = 0  
3.5  
0
0
2.0  
2.5  
3.0  
4.0  
4.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
BATTERY VOLTAGE (V)  
BATTERY VOLTAGE (V)  
CHARGE CURRENT vs. AMBIENT  
TEMPERATURE, LOW POWER DISSIPATION  
CHARGE CURRENT vs. AMBIENT  
TEMPERATURE, HIGH IC POWER DISSIPATION  
BATTERY REGULATION VOLTAGE  
vs. TEMPERATURE  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
4.50  
4.45  
4.40  
4.35  
4.30  
4.25  
4.20  
4.15  
4.10  
4.05  
4.00  
V
V
= 5V  
= 0V  
USB  
DC  
450  
400  
350  
300  
250  
200  
150  
100  
50  
PEN2 = 1  
PEN2 = 1  
PEN1 = 1  
PEN2 = 0  
BVSET = VL  
NO LOAD  
V
V
V
= 6.5V  
= 0V  
= 3.1V  
USB  
DC  
BAT  
V
V
V
= 5.0V  
= 0V  
= 4.0V  
USB  
DC  
BAT  
PEN1 = 1  
PEN1 = 1  
PEN2 = 0  
10  
PEN2 = 0  
10  
0
0
-40  
-15  
35  
60  
85  
-40  
-15  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
V
SYS  
vs. SYS CURRENT  
V
SYS  
vs. SYS CURRENT  
V
SYS  
vs. SYS CURRENT  
4.10  
4.05  
4.00  
3.95  
3.90  
3.85  
3.80  
5.50  
5.00  
4.50  
4.00  
3.50  
3.00  
5.50  
5.00  
4.50  
4.00  
3.50  
3.00  
DC OPEN, USB OPEN, V = 4.0V  
BAT  
THE SLOPE SHOWS THE SYSTEM LOAD  
SWITCH HAS AN ON-RESISTANCE OF 81mΩ.  
DC OPEN, V  
PEN1 = 1, PEN2 = 0, CHARGER DISABLED  
= 5.1V, V = 4.0V  
BAT  
DC OPEN, V  
PEN1 = 1, PEN2 = 0, CHARGER DISABLED  
= 5.1V, V = 4.0V  
USB  
USB  
BAT  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
SYS CURRENT (mA)  
SYS CURRENT (mA)  
SYS CURRENT (mA)  
14 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, I = 0mA, T = +25°C, unless otherwise noted.)  
VL  
A
USB CONNECT (50mA SYS LOAD)  
USB DISCONNECT (50mA SYS LOAD)  
USB CONNECT (NO SYS LOAD)  
MAX8671X toc15  
MAX8671X toc16  
MAX8671X toc14  
5V/div  
500mA/div  
V
5V/div  
V
USB  
5V/div  
500mA/div  
V
USB  
USB  
I
USB  
I
USB  
I
USB  
500mA/div  
2V/div  
4.14V  
4.14V  
4.0V  
4.14V  
4.0V  
2V/div  
5V/div  
4.0V  
0mA  
V
V
2V/div  
5V/div  
SYS  
V
SYS  
SYS  
5V/div  
V
UOK  
V
UOK  
V
UOK  
+50mA  
I
I
BAT  
BAT  
I
500mA/div  
-425mA CHARGING  
2ms/div  
BAT  
500mA/div  
+50mA  
-425mA CHARGING  
2ms/div  
-475mA CHARGING  
2ms/div  
500mA/div  
50mA LOAD ON SYS, 4.0V BATTERY, 5.0V USB INPUT  
50mA LOAD ON SYS, 4.0V BATTERY, 5.0V USB INPUT  
0mA LOAD ON SYS, 4.0V BATTERY, 5.0V USB INPUT  
USB RESUME  
USB SUSPEND  
MAX8671X toc18  
MAX8671X toc17  
V
V
I
USUS  
USB  
5V/div  
5V/div  
500mA/div  
500mA/div  
2V/div  
I
USB  
USB  
4.14V  
4.14V  
4.0V  
4.0V  
2V/div  
V
SYS  
V
SYS  
CST1  
CST2  
5V/div  
5V/div  
V
V
V
V
5V/div  
5V/div  
CST1  
CST2  
+50mA  
+50mA  
I
BAT  
500mA/div  
-425mA  
I
BAT  
-425mA  
500mA/div  
400μs/div  
50mA LOAD ON SYS, 4.0V BATTERY, 5.0V USB INPUT  
400μs/div  
50mA LOAD ON SYS, 4.0V BATTERY, 5.0V USB INPUT  
______________________________________________________________________________________ 15  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, I = 0mA, T = +25°C, unless otherwise noted.)  
VL  
A
AC-TO-DC ADAPTER CONNECT  
WITH NO USB  
AC-TO-DC ADAPTER DISCONNECT  
WITH USB  
AC-TO-DC ADAPTER CONNECT WITH USB  
MAX8671X toc20  
MAX8671X toc21  
MAX8671X toc19  
4.14V  
4V  
4.14V  
1A  
V
V
SYS  
SYS  
V
4.14V  
4.0V  
4V  
SYS  
2V/div  
2V/div  
5V/div  
500mA/div  
1A  
1A  
500mA/div  
500mA/div  
I
I
DC  
DC  
I
DC  
MA8671X  
I
500mA/div  
500mA/div  
USB  
I
USB  
500mA/div  
500mA/div  
I
BAT  
+160mA  
I
BAT  
500mA/div  
-840mA  
-330mA  
-330mA  
+160mA  
I
BAT  
-840mA  
-840mA  
400μs/div  
20ms/div  
400μs/div  
25Ω LOAD ON SYS, PEN1 = PEN2 = HIGH 1A DC  
25Ω LOAD ON SYS, PEN1 = PEN2 = HIGH 1A DC LIMIT  
25Ω LOAD ON SYS, PEN1 = PEN2 = HIGH 1A DC  
LIMIT  
LIMIT, R  
= 3.01kΩ  
DISET  
POWER-UP SEQUENCING  
MAX8671X toc22  
5V/div  
V
EN  
5V/div  
5V/div  
V
OUT1  
V
V
OUT2  
2V/div  
OUT3  
5V/div  
5V/div  
5V/div  
V
V
OUT4  
OUT5  
V
VL  
I
USB  
50mA/div  
4ms/div  
16 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, I = 0mA, T = +25°C, unless otherwise noted.)  
VL  
A
REG1 DROPOUT VOLTAGE  
vs. LOAD CURRENT  
REG1 EFFICIENCY vs. LOAD CURRENT  
REG1 LOAD REGULATION  
2.900  
2.880  
2.860  
2.840  
2.820  
2.800  
2.780  
2.760  
2.740  
2.720  
2.700  
200  
180  
160  
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
THE NOMINAL INDUCTOR DC RESISTANCE  
IS 140mΩ. THE NOMINAL p-CHANNEL  
RESISTANCE OF THE REGULATOR IS  
200mΩ AT 2.8V AND 185mΩ AT 3.3V.  
THE SLOPE OF THE LINE SHOWS  
THAT THE TOTAL DROPOUT  
R
FBH  
R
FBL  
= 182kΩ  
= 100kΩ  
PWM = 0  
V
OUT1  
= 2.8V  
RESISTANCE OF AN AVERAGE  
PART, BOARD, INDUCTOR  
COMBINATION IS  
330mΩ AT 3.3V  
AND 354mΩ  
AT 2.8V.  
V
= 3.3V  
OUT1  
60  
V
= 2.8V  
OUT1  
PWM = 1  
= 2.8V  
V
OUT1  
40  
SYS IS 100mV BELOW THE  
REG1 NOMINAL REGULATION  
VOLTAGE.  
20  
V
= 4V  
BATT  
0
1
10  
100  
1000  
0
50  
100  
150  
200  
250  
0
100  
200  
300  
400  
500  
LOAD CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
REG1 LIGHT-LOAD SWITCHING  
WAVEFORMS (PWM = 1)  
REG1 HEAVY-LOAD SWITCHING  
WAVEFORMS  
REG1 LIGHT-LOAD SWITCHING  
WAVEFORMS (PWM = 0)  
MAX8671X toc27  
MAX8671X toc28  
MAX8671X toc26  
20mV/div  
(AC-COUPLED)  
V
V
OUT1  
V
OUT1  
OUT1  
10mV/div  
10mV/div  
(AC-COUPLED)  
V
2V/div  
V
2V/div  
V
LX1  
2V/div  
LX1  
LX1  
0
0
0
100mA/div  
100mA/div  
200mA/div  
I
I
LI  
I
LI  
LI  
0
0
0
20mA LOAD  
20mA LOAD  
20mA LOAD  
200ns/div  
400ns/div  
4μs/div  
REG1 LINE TRANSIENT  
REG1 LOAD TRANSIENT  
MAX8671X toc30  
MAX8671X toc29  
5.3V  
2V/div  
50mV/div  
(AC-COUPLED)  
3.3V  
3.3V  
V
OUT1  
V
SYS  
250mA  
25mA  
V
I
25mA  
20mV/div  
OUT1  
OUT1  
100mA/div  
25mA LOAD  
100μs/div  
20μs/div  
______________________________________________________________________________________ 17  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, I = 0mA, T = +25°C, unless otherwise noted.)  
VL  
A
REG2 LOAD REGULATION  
REG2 EFFICIENCY vs. LOAD CURRENT  
100  
1.60  
1.55  
1.50  
1.45  
1.40  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PWM = 0  
V
OUT2  
= 1.5V  
PWM = 1  
= 1.5V  
MA8671X  
V
OUT2  
V
BATT  
= 4.0V  
0
50  
100  
150  
200  
250  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
LOAD CURRENT (mA)  
REG3 EFFICIENCY vs. LOAD CURRENT  
REG3 LOAD REGULATION  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
R
FBH  
R
FBL  
= 20kΩ  
= 100kΩ  
PWM = 0  
V
OUT2  
= 1.2V  
PWM = 1  
V
OUT2  
= 1.2V  
V
= 4.0V  
BATT  
1
10  
100  
1000  
0
50  
100  
150  
200  
250  
LOAD CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUT3 LIGHT-LOAD SWITCHING  
WAVEFORMS (PWM = 0)  
OUT3 HEAVY-LOAD SWITCHING  
WAVEFORMS  
OUT3 LOAD TRANSIENT  
MAX8671X toc37  
MAX8671X toc35  
MAX8671X toc36  
PWM = 0  
20mV/div  
10mV/div  
V
OUT1  
V
OUT1  
V
OUT1  
100mV/div  
2V/div  
0
2V/div  
0
V
LX1  
V
LX1  
250mA  
10mA LOAD  
25mA  
25mA  
I
OUT1  
100mA/div  
I
L1  
I
L1  
200mA/div  
200mA/div  
250mA LOAD  
10μs/div  
400ns/div  
40μs/div  
18 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
Typical Operating Characteristics (continued)  
(Circuit of Figure 1, I = 0mA, T = +25°C, unless otherwise noted.)  
VL  
A
REG4 LOAD REGULATION  
REG4 LOAD TRANSIENT  
REG4 LINE TRANSIENT  
MAX8671X toc40  
MAX8671X toc39  
2.554  
R
R
= 316kΩ  
FBH  
FBL  
2.552  
2.550  
2.548  
2.546  
2.544  
2.542  
2.540  
2.538  
2.536  
2.534  
5.3V  
= 100kΩ  
2V/div  
V
50mV/div  
PV4  
3.3V  
3.3V  
V
OUT4  
150mA  
100mV/div  
50mA  
50mA  
10mV/div  
V
OUT4  
I
OUT4  
V
V
= V = 4V  
SYS  
PV4  
PV = SYS  
13.4Ω LOAD  
= 2.5V  
V
= 4V  
OUT4  
SYS  
100  
50  
OUTPUT CURRENT (mA)  
0
150  
40μs/div  
100μs/div  
REG5 LOAD REGULATION  
REG5 LOAD TRANSIENT  
MAX8671X toc42  
3.260  
3.258  
3.256  
3.254  
3.252  
3.250  
3.248  
3.246  
3.244  
3.242  
50mV/div  
V
OUT5  
150mA  
100mV/div  
50mA  
50mA  
I
OUT5  
V
V
= 5V,  
= 3.3V  
USB  
OUT5  
V
= 5V  
USB  
3.240  
0
100  
OUTPUT CURRENT (mA)  
50  
150  
40μs/div  
______________________________________________________________________________________ 19  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
Pin Description  
PIN  
NAME  
FUNCTION  
USB Suspend Digital Input. As shown in Table 1, driving USUS high suspends the DC or USB inputs  
if they are configured as a USB power input.  
1
USUS  
DC Power Input. DC is capable of delivering 1A to SYS. DC supports both AC adaptors and USB  
2
3
4
5
DC  
USB  
FB5  
PV5  
inputs. As shown in Table 1, the DC current limit is controlled by PEN1, PEN2, USUS, and R  
.
DISET  
USB Power Input. USB is capable of delivering 0.5A to SYS. As shown in Table 1, the USB current  
limit is controlled by PEN1, PEN2, and USUS.  
MA8671X  
Feedback Input for REG5. Connect FB5 to the center of a resistor voltage-divider from OUT5 to  
AGND to set the REG5 output voltage from 0.6V to V  
.
PV5  
Power Input for REG5. Connect PV5 to SYS, or a supply between 1.7V and V . Bypass PV5 to  
SYS  
power ground with a 1µF ceramic capacitor.  
6
7
8
OUT5  
PG2  
LX2  
Linear Regulator Power Output. OUT5 is internally pulled to AGND by 1kΩ in shutdown.  
Power Ground for the REG2 Step-Down Regulator  
Inductor Switching Node for REG2. LX2 is internally pulled to PG2 by 1kΩ in shutdown.  
Power Input for the REG2 Step-Down Regulator. Connect PV2 to SYS. Bypass PV2 to PG2 with a  
4.7µF ceramic capacitor.  
9
PV2  
CEN  
FB2  
DOK  
FB4  
Active-Low Charger Enable Input. Pull CEN low to enable the charger, or drive CEN high to disable  
charging. The battery charger is also disabled when USUS is high.  
10  
11  
12  
13  
Feedback Input for REG2. Connect FB2 to the center of a resistor voltage-divider from the REG2  
output capacitors to AGND to set the output voltage from 1V to V  
.
SYS  
Active-Low, Open-Drain DC Power-OK Output. DOK is low when V is within its valid operating  
DC  
range.  
Feedback Input for REG4. Connect FB4 to the center of a resistor voltage-divider from the REG4  
output capacitors to AGND to set the output voltage from 0.6V to V  
.
PV4  
Reference Noise Bypass. Bypass BP with a low-leakage 0.01µF ceramic capacitor for reduced noise  
on the LDO outputs.  
14  
15  
16  
BP  
OUT4  
PV4  
Linear Regulator Power Output. OUT4 is internally pulled to AGND in shutdown.  
Power Input for REG4. Connect PV4 to SYS, or a supply between 1.7V and V . Bypass PV4 to  
SYS  
power ground with a 1µF ceramic capacitor.  
Battery Regulation Voltage Set Node. Drive BVSET low to set the regulation voltage to 4.1V. Connect  
BVSET to VL or leave unconnected to set the regulation voltage to 4.2V. Connect BVSET to AGND  
through a 50kΩ resistor to set the regulation voltage to 4.350V.  
17  
BVSET  
18  
19  
AGND  
FB1  
Ground. AGND is the low-noise ground connection for the internal circuitry.  
Feedback Input for REG1. Connect FB1 to the center of a resistor voltage-divider from the REG1  
output capacitors to AGND to set the output voltage from 1V to V  
.
SYS  
Regulator Enable Input. Drive EN high to enable all regulator outputs. The sequencing is shown in  
Figure 11. Drive EN low to disable the regulators.  
20  
21  
22  
EN  
PWM  
PV1  
Forced-PWM Input. Connect PWM high for forced-PWM operation on REG1, REG2, and REG3.  
Connect PWM low for auto PWM operation. Do not change PWM on-the-fly. See the PWM section  
for more information.  
Power Input for the REG1 Step-Down Regulator. Connect PV1 to SYS. Bypass PV1 to PG1 with a  
4.7µF ceramic capacitor.  
20 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
Pin Description (continued)  
PIN  
23  
NAME  
LX1  
FUNCTION  
Inductor Switching Node for REG1. LX1 is internally pulled to PG1 by 1kΩ in shutdown.  
Power Ground for the REG1 Step-Down Regulator  
24  
PG1  
PG3  
LX3  
25  
Power Ground for the REG3 Step-Down Regulator  
26  
Inductor Switching Node for REG3. LX3 is internally pulled to PG3 by 1kΩ in shutdown.  
Power Input for the REG3 Step-Down Regulator. Connect PV3 to SYS. Bypass PV3 to PG3 with a  
4.7µF ceramic capacitor.  
27  
PV3  
IC Supply Output. VL is an LDO output that powers the MAX8671X internal battery-charger circuitry.  
VL provides 3.3V at 3mA to power external circuitry when DC or USB is present. Connect a 0.1µF  
capacitor from VL to AGND.  
28  
VL  
Feedback Input for REG3. Connect FB3 to the center of a resistor voltage-divider from the REG3  
29  
30  
31  
FB3  
output capacitors to AGND to set the output voltage from 1V to V  
.
SYS  
DC Input Current-Limit Select Input. Connect a resistor from DISET to AGND (R  
current limit. See Table 2 for more information.  
) to set the DC  
DISET  
DISET  
CISET  
Charge Rate Select Input. Connect a resistor from CISET to AGND (R  
) to set the fast-charge  
CISET  
current limit, prequalification-charge current limit, and top-off threshold.  
Charge Timer Programming Node. Connect a capacitor from CT to AGND (C ) to set the time  
CT  
required for a fault to occur in fast-charge or prequalification modes. Connect CT to AGND to disable  
the fast-charge and prequalification timers.  
32  
CT  
Thermistor Input. Connect a negative temperature coefficient (NTC) thermistor that has a good  
thermal contact with the battery from THM to AGND. Connect a resistor equal to the thermistor  
resistance at +25°C from THM to VL. Charging is suspended when the battery is outside the hot or  
cold limits.  
33  
34  
THM  
BAT  
Positive Battery Terminal Connection. Connect BAT to the positive terminal of a single-cell Li+/Li-Poly  
battery.  
System Supply Output. Bypass SYS to power ground with a 10µF ceramic capacitor.  
When a valid voltage is present at USB or DC and not suspended (USUS = low), SYS is limited to  
5.3V (V  
). When the system load (I  
allowing both the external power source and the battery service SYS.  
) exceeds the input current limit, SYS drops below V  
SYS-REG  
SYS BAT  
35  
SYS  
by V  
BSREG  
SYS is connected to BAT through an internal system load switch (R ) when a valid source is not  
BS  
present at USB or DC.  
36  
37  
PEN1  
CST2  
Input Current-Limit Control 1. See Table 1 for more information.  
Open-Drain Charger Status Output 2. CST1 and CST2 indicate four different charger states. See  
Table 3 for more information.  
Active-Low, Open-Drain USB Power-OK Output. UOK is low when V  
range.  
is within its valid operating  
USB  
38  
UOK  
Open-Drain Charger Status Output 1. CST1 and CST2 indicate four different charger states. See  
Table 3 for more information.  
39  
40  
CST1  
PEN2  
EP  
Input Current-Limit Control 2. See Table 1 for more information.  
Exposed Paddle. Connect the exposed paddle to AGND. Connecting the exposed paddle does not  
remove the requirement for proper ground connections to AGND, PG1, PG2, and PG3.  
______________________________________________________________________________________ 21  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
2
35  
SYS  
BAT  
DC  
AC-TO-DC ADAPTER  
SYS  
10μF  
4.7μF  
3
34  
USB  
VBUS  
BAT  
VL  
4.7μF  
0.1μF  
4.7μF  
3.3V  
3mA  
VL  
10kΩ  
28  
VL  
33  
THM  
MA8671X  
18  
15  
16  
10kΩ  
β = 3380K  
T
AGND  
+
Li+/Li-Poly  
1.8V  
MAX8671X  
180mA  
OUT4  
PV4  
OUT4  
4.7μH  
0.6A  
2.8V  
425mA  
OUT1  
121kΩ  
60.4kΩ  
23  
OUT2  
1.0μF  
2.2μF  
LX1  
182kΩ  
100kΩ  
13  
19  
22  
2x  
10μF  
FB4  
FB1  
PV1  
SYS  
3.3V  
180mA  
OUT5  
6
5
4.7μF  
OUT5  
PV5  
24  
8
SYS  
1.0μF  
2.0V  
425mA  
OUT2  
PG1  
LX2  
274kΩ  
60.4kΩ  
2.2μF  
4.7μH  
0.6A  
100kΩ  
100kΩ  
4
FB5  
11  
9
2x  
10μF  
FB2  
PV2  
SYS  
ON  
20  
21  
EN  
OFF  
4.7μF  
7
1.2V  
425mA  
OUT3  
PG2  
LX3  
PWM  
26  
4.7μH  
0.6A  
36  
20kΩ  
PEN1  
PEN2  
USUS  
CEN  
40  
1
29  
27  
FB3  
PV3  
2x  
10μF  
SYS  
10  
100kΩ  
4.7μF  
IO  
4x  
560kΩ  
5%  
μP  
25  
17  
14  
PG3  
BVSET  
39  
37  
12  
38  
CST1  
CST2  
DOK  
BP  
0.01μF  
3kΩ  
30  
31  
DISET  
UOK  
CISET  
CT  
3kΩ  
32  
0.15μF  
EP  
Figure 1. MAX8671X Typical Application Circuit  
22 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
SYS  
DC  
DOK  
DISET  
PEN1  
Li+/Li-Poly BATTERY  
SMART  
POWER  
CHARGER AND  
SYSTEM LOAD  
SWITCH  
PEN2  
USUS  
SELECTOR  
BAT  
BVSET  
UOK  
USB  
CST2  
CST1  
THM  
CEN  
HIGHEST  
VOLTAGE  
SELECTOR  
CT  
CISET  
IN  
SMART POWER  
SELECTOR AND  
CHARGER BIAS  
VL  
OUT  
3.3V  
LDO  
MAX8671X  
AGND  
PV4  
PV1  
LX1  
REG4  
LDO  
OUT4  
FB4  
REG1  
DC-DC  
PG1  
FB1  
BP  
PV2  
LX2  
REF  
REG2  
DC-DC  
PG2  
FB2  
PV5  
OUT5  
FB5  
EN  
REG5  
LDO  
PV3  
LX3  
REG3  
DC-DC  
PG3  
FB3  
PWM  
Figure 2. Functional Diagram  
______________________________________________________________________________________ 23  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
When the system load requirements exceed the  
Detailed Description  
input current limit, the battery supplies supple-  
The MAX8671X highly integrated PMIC is ideally suited  
mental current to the load through the internal sys-  
for use in portable audio player and handheld applica-  
tem load switch.  
tions. As shown in Figure 2, the MAX8671X integrates  
• When the battery is connected and there is no exter-  
nal power input, the system (SYS) is powered from  
the battery.  
USB power input, AC-to-DC adapter power input (DC),  
Li+/Li-Poly battery charger, three step-down regulators,  
two linear regulators, and various monitoring and status  
outputs. The MAX8671X offers adjustable output volt-  
ages for all outputs.  
• When an external power input is connected and  
there is no battery, the system (SYS) is powered  
from the external power input.  
MA8671X  
Smart Power Selector  
The MAX8671X Smart Power Selector seamlessly dis-  
tributes power between the two current-limited external  
inputs (USB and DC), the battery (BAT), and the sys-  
tem load (SYS). The basic functions performed are:  
The dual-input Smart Power Selector supports end  
products with dual and single external power inputs.  
For end products with dual external power inputs, con-  
nect these inputs directly to the DC and USB nodes of  
the MAX8671X. For end products with a single input,  
connect the single input to the DC node and connect  
USB to ground or leave it unconnected. In addition to  
AC-to-DC adapters current limits, the DC input also  
supports USB current limit to allow for end products  
• With both an external power supply (USB or DC)  
and battery (BAT) connected:  
When the system load requirements are less than  
the input current limit, the battery is charged with  
residual power from the input.  
Table 1. Input Limiter Control Logic  
DC INPUT  
CURRENT  
LIMIT  
USB INPUT  
CURRENT  
LIMIT  
MAXIMUM  
CHARGE  
CURRENT*  
POWER SOURCE  
DOK  
UOK  
PEN1  
PEN2  
USUS  
Lower of I  
CHGMAX  
AC-to-DC Adapter at  
DC Input  
and  
L
L
X
X
H
L
X
L
X
L
I
DCLIM  
I
DCLIM  
Lower of I  
CHGMAX  
USB input off,  
DC input has  
priority  
100mA  
and  
100mA  
USB Power at DC Input  
Lower of I  
CHGMAX  
and  
500mA  
L
L
X
X
L
L
L
X
H
X
L
L
H
L
500mA  
Suspend  
0
Lower of I  
CHGMAX  
and  
100mA  
H
100mA  
500mA  
USB Power at USB  
Input, DC Unconnected  
Lower of I  
CHGMAX  
No DC input  
H
L
X
H
L
and  
500mA  
H
H
L
X
X
X
X
H
X
Suspend  
0
0
DC and USB  
Unconnected  
H
No USB input  
*Charge current cannot exceed the input current limit. Charge can be less than the maximum charge current if the total SYS load  
exceeds the input current limit.  
X = Don’t care.  
24 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
with a single power input to operate from either an AC-  
to-DC adapter or USB host (see Table 1).  
USB voltage is below the battery voltage, it is consid-  
ered invalid. The USB power input is disconnected  
when the USB voltage is invalid. As shown in Table 1,  
when power is available at the DC input, it has priority  
over the USB input. Bypass USB to ground with at least  
a 4.7µF capacitor.  
A thermal-limiting circuit reduces the battery charger  
rate and external power-source current to prevent the  
MAX8671X from overheating.  
System Load Switch  
An internal 80mΩ (R ) MOSFET connects SYS to BAT  
when no voltage source is available at DC or USB.  
When an external source is detected at DC or USB, this  
switch is opened and SYS is powered from the valid  
input source through the Smart Power Selector.  
To support USB power sources at the USB input drive  
PEN2 and USUS to select between three internally set  
USB-related current limits as shown in Table 1. Choose  
100mA for low-power USB mode. Choose 500mA for  
high-power USB mode. Choose suspend to reduce the  
USB current to 0.11mA (typ) for both USB suspend  
mode and unconfigured OTG mode. To comply with  
the USB 2.0 specification, each device must be initially  
configured for low power. After USB enumeration, the  
device can switch from low power to high power if  
given permission from the USB host. The MAX8671X  
does not perform enumeration. It is expected that the  
system communicates with the USB host and com-  
mands the MAX8671X through its PEN1, PEN2, and  
USUS inputs. When the load exceeds the input current  
limit, SYS drops to 82mV below BAT and the battery  
supplies supplemental load current.  
BS  
When the system load requirements exceed the input  
current limit, the battery supplies supplemental current  
to the load through the internal system load switch. If  
the system load continuously exceeds the input current  
limit, the battery does not charge, even though external  
power is connected. This is not expected to occur in  
most cases because high loads usually occur only in  
short peaks. During these peaks, battery energy is  
used, but at all other times the battery charges.  
USB Power Input (USB)  
USB is a current-limited power input that supplies the  
system (SYS) up to 500mA. The USB to SYS switch is a  
linear regulator designed to operate in dropout. This lin-  
ear regulator prevents the SYS voltage from exceeding  
The MAX8671X reduces the USB current limit by 5%/°C  
when the die temperature exceeds +100°C. The sys-  
tem load (I  
) has priority over the charger current, so  
SYS  
input current is first reduced by lowering charge cur-  
rent. If the junction temperature still reaches +120°C in  
spite of charge current reduction, no input current is  
drawn from USB; the battery supplies the entire load  
5.3V. USB is typically connected to the V  
line of the  
BUS  
universal serial bus (USB) interface. As shown in Table  
1, USB supports three different current limits that are  
set with the PEN2 and USUS digital inputs. These cur-  
rent limits are ideally suited for use with USB power.  
and SYS is regulated below BAT by V . Note that  
BSREG  
this on-chip thermal-limiting circuit is not related to and  
operates independently from the thermistor input.  
The operating voltage range for USB is 4.1V to 6.6V,  
but it can tolerate up to 14V without damage. When the  
USB input voltage is below the undervoltage threshold  
, 4V typ) it is considered invalid. Similarly, if the  
USB voltage is above the overvoltage threshold  
(V , 6.9V typ) it is considered invalid. When the  
If the USB power input is not required, connect USB to  
ground or leave it unconnected. When both DC and  
USB inputs are powered, the DC input has priority.  
(V  
USBL  
USBH  
______________________________________________________________________________________ 25  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
must provide the 3.3V termination to the USB trans-  
ceivers’ pullup resistors. This 3.3V termination can  
come from the MAX8671X’s VL output or REG5. Both  
remain enabled in USB suspend.  
USB Power-OK Output (UOK)  
As shown Figure 3, the USB power-OK output (UOK) is  
an active-low open-drain output. The UOK output pulls  
low when the voltage from USB to AGND (V  
) is  
USB  
(typically  
between V  
4.0V).  
(typically 6.9V) and V  
USBH  
USBL  
DC Power Input (DC)  
DC is a current-limited power input that supplies the  
system (SYS) up to 1A. The DC-to-SYS switch is a lin-  
ear regulator designed to operate in dropout. This lin-  
ear regulator prevents the SYS voltage from exceeding  
5.3V. As shown in Table 1, DC supports four different  
current limits that are set with the PEN1, PEN2, and  
USUS digital inputs. These current limits are ideally  
suited for use with AC-to-DC wall adapters and USB  
power. The operating voltage range for DC is 4.1V to  
6.6V, but it can tolerate up to 14V without damage.  
When the DC input voltage is below the undervoltage  
The USB power-OK circuitry remains active in thermal  
overload and USB suspend. If the USB power-OK out-  
put feature is not required, connect UOK to ground or  
leave unconnected.  
MA8671X  
USB Suspend (USUS)  
As shown in Table 1, driving USUS high suspends the  
DC or USB inputs if they are configured as a USB  
power input. The suspend current is 110µA when USUS  
is driven high allowing the MAX8671X to comply with  
the USB 1.1/2.0 specification for USB suspend as well  
as the USB OTG specification for an unconfigured  
device. If an external input (USB or DC) is connected to  
the MAX8671X and suspended, the SYS node is sup-  
ported by the battery. The DOK, UOK, and VL circuits  
remain active in USB suspend mode.  
threshold (V  
, 4V typ), it is considered invalid.  
DCL  
Similarly, if the DC voltage is above the overvoltage  
threshold (V , 6.9V typ), it is considered invalid.  
DCH  
When the DC voltage is below the battery voltage, it is  
considered invalid. The DC power input is disconnect-  
ed when the DC voltage is invalid. As shown in Table 1,  
when power is available at the DC input, it has priority  
over the USB input. Bypass DC to ground with at least  
a 4.7µF capacitor.  
A common assumption is that REG5 is disabled in USB  
suspend. This is not true. REG5 is not affected by the  
USB suspend mode. While in suspend, a USB device  
USB  
MAX8671X  
V
USBL  
USB  
UNDERVOLTAGE  
4.0V RISING (typ)  
500mV HYST  
UOK  
USB  
OVERVOLTAGE  
V
USBH  
AGND  
6.9V RISING (typ)  
400mV HYST  
Figure 3. USB Power-OK Logic  
26 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
To support common 500mA to 1000mA wall adapters  
Table 2. DC Current Limit for Standard  
at the DC input, pull PEN1 high. With PEN1 pulled high,  
Values of R  
DISET  
the DC current limit is set by an external resistor from  
DISET to AGND (R  
current capability of the AC-to-DC adapter (I  
follows:  
). Choose R  
based on the  
DISET  
DISET  
R
(kΩ)  
I
(mA)  
R
(kΩ)  
I
(mA)  
DISET  
DCLIM  
DISET  
DCLIM  
) as  
ADPTR  
3.01  
997  
4.32  
694  
3.09  
3.16  
3.24  
3.32  
3.40  
3.48  
3.57  
3.65  
3.74  
3.83  
3.92  
4.02  
4.12  
4.22  
971  
949  
926  
904  
882  
862  
840  
822  
802  
783  
765  
746  
728  
711  
4.42  
4.53  
4.64  
4.75  
4.87  
4.99  
5.11  
5.23  
5.36  
5.49  
5.62  
5.76  
5.90  
6.04  
679  
662  
647  
632  
616  
601  
587  
574  
560  
546  
534  
521  
508  
497  
1.5V  
R
2000×  
DISET  
I
ADPTR  
For the selected value of R  
, calculate the DC cur-  
DISET  
rent limit (I  
) as follows (Table 2, Figure 4):  
DCLIM  
1.5V  
I
= 2000×  
DCLIM  
R
DISET  
To support USB power sources at the DC input, pull  
PEN1 low. With PEN1 low, drive PEN2 and USUS to  
select between three internally set USB-related current  
limits as shown in Table 1. Choose 100mA for low-  
power USB mode. Choose 500mA for high-power USB  
mode. Choose suspend to reduce the DC current to  
0.11mA (typ) for both USB suspend mode and uncon-  
figured OTG mode. To comply with the USB 2.0 specifi-  
cation, each device must be initially configured for low  
power. After USB enumeration, the device can switch  
from low power to high power if given permission from  
the USB host. When the load exceeds the current limit,  
DC INPUT CURRENT LIMIT vs.  
DC INPUT CURRENT-LIMIT RESISTOR  
1000  
900  
PEN1 = HIGH  
SYS drops below BAT by V  
plies supplemental load current.  
and the battery sup-  
BSREG  
If the DC power input is not required, connect DC to  
ground or leave it unconnected.  
800  
The MAX8671X reduces the USB and DC current limits  
by 5%/°C when the die temperature exceeds +100°C.  
700  
600  
500  
The system load (I  
) has priority over the charger cur-  
SYS  
rent, so input current is first reduced by lowering charge  
current. If the junction temperature still reaches +120°C  
in spite of charge-current reduction, no input current is  
drawn from USB and DC; the battery supplies the entire  
3.0  
3.5  
4.0  
4.5  
(kΩ)  
5.0  
5.5  
6.0  
R
load and SYS is regulated below BAT by V . Note  
BSREG  
DISET  
that this on-chip thermal-limiting circuit is not related to  
and operates independently from the thermistor input.  
Figure 4. Programming DC Current Limit  
DC Power-OK Output (DOK)  
As shown in Figure 5, the DC power-OK output (DOK)  
is an open-drain, active-low output. The DOK output  
The DC power-OK circuitry remains active in thermal  
overload and DC suspend. If the DC power-OK output  
feature is not required, connect DOK to ground or leave  
disconnected.  
pulls low when the voltage from DC to AGND (V ) is  
DC  
between V  
4.0V).  
(typically 6.9V) and V  
(typically  
DCH  
DCL  
______________________________________________________________________________________ 27  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
DC  
MAX8671X  
V
DCL  
USB  
UNDERVOLTAGE  
4.0V RISING (TYP)  
500mV HYST  
DOK  
USB  
OVERVOLTAGE  
MA8671X  
V
DCH  
AGND  
6.9V RISING (TYP)  
400mV HYST  
Figure 5. DC Power-OK Logic  
The MAX8671X automatically reduces charge current  
to prevent input overload. MAX8671X also reduces  
charge current when in thermal regulation (see the  
Thermal Limiting and Overload Protection section for  
more information).  
Battery Charger  
Figure 6 shows the typical Li+/Li-Poly charge profile for  
the MAX8671X, and Figure 7 shows the battery charger  
state diagram.  
With a valid DC and/or USB input, the battery charger  
initiates a charge cycle when the charger is enabled. It  
first detects the battery voltage. If the battery voltage is  
less than the prequalification threshold (3.0V), the  
charger enters prequalification mode in which the bat-  
tery charges at 10% of the maximum fast-charge cur-  
rent while deeply discharged. Once the battery voltage  
rises to 3.0V, the charger transitions to fast-charge  
mode and applies the maximum charge current. As  
charging continues, the battery voltage rises until it  
approaches the battery regulation voltage (selected  
with BVSET) where charge current starts tapering  
down. When charge current decreases to 4% of the  
maximum fast-charge current, the charger enters a  
brief 15s top-off state and then charging stops. If the  
battery voltage subsequently drops below the battery  
Battery Regulation Voltage (BVSET)  
BVSET allows the maximum battery charge voltage to  
be set to 4.1V, 4.2V, or 4.350V. Drive BVSET low to set  
the regulation voltage to 4.1V. Connect BVSET to VL or  
leave unconnected to set the regulation voltage to 4.2V.  
Connect BVSET to AGND through a 45kΩ to 55kΩ  
resistor (R  
BVSET  
resistor is acceptable.  
) to set the regulation voltage to  
BVSET  
4.350V. R  
accuracy is not critical. A 51kΩ 5%  
Charge Enable Input (CEN)  
CEN is a digital input. Driving CEN high disables the  
battery charger. CEN does not affect the USB or DC  
current limit. Driving USUS high also disables the bat-  
tery charger when charging from a USB source (PEN1  
= low).  
regulation voltage by V  
the timers reset.  
, charging restarts and  
BATRCHG  
In many systems, there is no need for the system  
controller (typically a microprocessor (µP)) to disable  
the charger because the MAX8671X independently  
manages the charger power path. In these situations,  
CEN can be connected to ground. Do not leave  
CEN unconnected.  
The battery charge rate is set by several factors:  
• Battery voltage  
• USB/DC input current limit  
• Charge setting resistor, R  
CISET  
• System load (I  
)
SYS  
• Die temperature  
28 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
FAST-CHARGE  
(CONSTANT CURRENT)  
TOP-OFF  
PREQUALIFICATION  
FAST-CHARGE  
(CONSTANT VOLTAGE)  
DONE  
V
BATREG  
V
BATPRQ  
I
CHGMAX  
I
PQ  
I
TO  
0
HIGH-Z  
LOW  
CST[1:2] = 11  
CST[1:2] = 00  
FOR SIMPLICITY, THIS FIGURE ASSUMES THAT I ~ 0mA  
SYS  
Figure 6. Li+/Li-Poly Charge Profile  
______________________________________________________________________________________ 29  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
NO INPUT POWER  
CST [1:2] = 11  
1.5V  
USB AND DC = INVALID  
I
=
x
2000  
CHGMAX  
R
CISET  
UOK = 0, DOK = 0  
I
= 0mA  
CHG  
USB AND/OR DC = INVALID  
ANY STATE  
CHARGER DISABLED  
CST[1:2] = 11  
UOK AND/OR DOK = 1  
CEN = 1  
OR  
USUS = 1  
MA8671X  
I
= 0mA  
CHG  
THERMISTOR SUSPEND  
= 0mA  
CST[1:2] = 01  
UOK AND/OR DOK = 1  
CEN = 0  
USUS = 0  
IC SETS TIMER = 0  
I
CHG  
THM OUT OF RANGE  
IC SUSPENDS TIMER  
t > t  
PREQUAL  
PREQUALIFICATION  
CST[1:2] = 00  
UOK AND/OR DOK = 1  
THM WITHIN RANGE  
IC RESUMES TIMER  
TIMER FAULT  
CST [1:2] = 10  
I
= I  
/10  
CHG CHGMAX  
I
= 0mA  
CHG  
UOK AND/OR DOK = 1  
V
< 2.82V  
V
> 3.0V  
BAT  
BAT  
IC SETS TIMER = 0  
IC SETS TIMER = 0  
THM OUT OF RANGE  
IC SUSPENDS TIMER  
THERMISTOR SUSPEND  
I
= 0mA  
CHG  
t > t  
FST-CHG  
CST[1:2] = 01  
UOK AND/OR DOK = 1  
FAST-CHARGE  
CST[1:2] = 00  
I
< I  
x 53%  
CHG CHGMAX  
OR V = V  
IC RESUMES TIMER  
BAT  
BATREG  
UOK AND/OR DOK = 1  
THM WITHIN RANGE  
IC RESUMES TIMER  
I
< I  
x 50%  
AND V < V  
BAT BATREG  
CHG CHGMAX  
I
< I  
x 4%  
CHG CHGMAX  
I
> I  
x 7%  
CHG CHGMAX  
IC EXTENDS TIMER BY 2x  
AND V = 4.2V  
BAT  
IC SETS TIMER = 0  
IC SETS TIMER = 0  
TIMER EXTEND  
TOP-OFF  
CST[1:2] = 11  
CST [1:2] = 00  
THM OUT OF RANGE  
(I x 20%) < I  
< (I  
x 50%)  
CHGMAX  
SET  
CHG  
UOK AND/OR DOK = 1  
V
<
BAT  
V
BAT  
= V  
BATREG  
(V  
+ V  
)
BATREG  
BATRCHG  
IC SETS TIMER = 0  
THERMISTOR SUSPEND  
I
= 0mA  
I
< I  
BAT  
x 20%  
BATREG  
CHG  
CHG CHGMAX  
AND V < V  
t > 15s  
I
< I  
x 23%  
BATREG  
CHG CHGMAX  
CST[1:2] = 01  
UOK AND/OR DOK = 1  
THM WITHIN RANGE  
AND V = V  
BAT  
IC SUSPENDS TIMER  
IC RESUMES TIMER  
DONE  
CST[1:2] = 11  
UOK AND/OR DOK = 1  
t > 15s  
(V  
+ V  
) < V V  
BATRCHG BAT BATREG  
BATREG  
TIMER SUSPEND  
CST [1:2] = 00  
I
= 0mA  
CHG  
I
< (I  
x 20%)  
CHGMAX  
CHG  
Figure 7. Charger State Diagram  
charge status to the µP. Alternatively, CST1 and CST2  
sink up to 20mA each for LED charge indicators.  
If the charge status output feature is not required, connect  
CST1 and CST2 to ground or leave them unconnected.  
Charge Status Outputs (CST1, CST2)  
CST1 and CST2 are open-drain charger status outputs.  
Their function is shown in Table 3 and Figure 7. When  
the MAX8671X is used with a µP, pull CST1 and CST2  
up to the system logic voltage with resistors to indicate  
30 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
Table 3. Charge Status Outputs  
Table 4. Charge Times vs. C  
CT  
t
(min)  
t
(min)  
FC  
CST1  
CST2  
CHARGING  
STATE  
FC  
C
(nF)  
t
(min)  
PQ  
CT  
100% to 50%  
50% to 20%  
Prequalification or  
fast charge  
0
0
Yes  
68  
15.0  
299  
440  
660  
968  
2068  
598  
880  
100  
150  
220  
470  
22.0  
33.0  
0
1
1
0
No  
No  
Thermistor suspend  
Timer fault  
1320  
1936  
4136  
48.4  
No input power or  
top-off or  
103.4  
1
1
No  
done  
Note: CST1 and CST2 are active-low, open-drain outputs. “0”  
indicates that the output device is pulling low. “1” indicates  
that the output is high impedance.  
CHARGE, PREQUALIFICATION,  
AND TOP-OFF CURRENT  
vs. CHARGE SETTING RESISTOR  
Charge Timer (CT)  
As shown in Figure 7, a fault timer prevents the battery  
from charging indefinitely. In prequalification and fast-  
charge modes, the timer is controlled by the capaci-  
1000  
100  
10  
I
CHGMAX  
tance at CT (C ). The MAX8671X supports values of  
CT  
C
CT  
from 0.01µF to 1µF. Calculate the prequalification  
and fast-charge times as follows (Table 4, Figure 8):  
I
PQ  
I
TO  
C
CT  
t
t
= 33min ×  
PQ  
FC  
0.15μF  
C
0.15μF  
CT  
= 660min ×  
1
0
5
10  
15  
R
CISET  
(kΩ)  
When the charger exits fast-charge mode, a fixed 15s  
top-off mode is entered:  
Figure 8. Programming Charge Current  
t
=15s  
TO  
While in the constant-current fast-charge mode (Figure  
6), if the MAX8671X reduces the battery charge current  
due to its internal die temperature or large system  
loads, it slows down the charge timer. This feature elim-  
inates nuisance charge timer faults. When the battery  
charge current is between 100% and 50% of its pro-  
grammed fast-charge level, the fast-charge timer runs  
at full speed. When the battery charge current is  
between 50% and 20% of the programmed fast-charge  
level, the fast-charge timer is slowed by 2x. Similarly,  
when the battery charge current is below 20% of the  
programmed fast-charge level, the fast-charge timer is  
paused. The fast-charge timer is not slowed or paused  
when the charger is in the constant voltage portion of  
its fast-charge mode (Figure 6) where charge current  
reduces normally.  
Connect CT to AGND to disable the prequalification  
and fast-charge timers. With the internal timers of the  
MAX8671X disabled, an external device, such as a µP,  
can control the charge time through the CEN input.  
Setting the Charger Currents (CISET)  
As shown in Table 5 and Figure 9, a resistor from  
CISET to ground (R  
) sets the maximum fast-  
CISET  
charge current (I  
), the charge current in pre-  
CHGMAX  
qualification mode (I ), and the top-off threshold (I ).  
PQ  
TO  
The MAX8671X supports values of I  
200mA to 1000mA. Select the R  
from  
CHGMAX  
as follows:  
CISET  
1.5V  
R
= 2000×  
CISET  
I
CHGMAX  
______________________________________________________________________________________ 31  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
Table 5. Ideal Charge Currents vs.  
Charge Setting Resistor  
MONITORING THE BATTERY CHARGE  
CURRENT WITH V  
CISET  
R
(kΩ)  
I
(mA)  
I
(mA)  
I
(mA)  
40  
30  
24  
20  
17  
15  
13  
12  
11  
10  
9
CISET  
CHGMAX  
1000  
746  
PQ  
TO  
R
CISET  
V
CISET  
=
x I  
BAT  
2000  
3.01  
4.02  
4.99  
6.04  
6.98  
8.06  
9.09  
10.0  
11.0  
12.1  
13.0  
14.0  
15.0  
100  
75  
60  
50  
43  
37  
33  
30  
27  
25  
23  
21  
20  
1.5  
601  
497  
430  
MA8671X  
372  
330  
300  
0
273  
248  
1.5V  
DISCHARGING  
0
x
2000  
231  
R
CISET  
BATTERY CHARGING CURRENT (A)  
214  
9
200  
8
Figure 9. Monitoring the Battery Charge Current with the  
Voltage from CISET to AGND  
Determine I  
by considering the characteristics  
CHGMAX  
directly to the CISET pin that exceeds 10pF. If filtering of  
the charge current monitor is necessary, include a resis-  
tor of 100kΩ or more between CISET and the filter  
capacitor to preserve charger stability.  
of the battery. It is not necessary to limit the charge cur-  
rent based on the capabilities of the expected AC-to-  
DC adapter or USB charging input, the system load, or  
thermal limitations of the PCB. The MAX8671X automat-  
ically lowers the charging current as necessary to  
accommodate these factors.  
Step-Down Converters  
(REG1, REG2, REG3)  
REG1, REG2, and REG3 are high-efficiency 2MHz cur-  
rent-mode, step-down converters with adjustable out-  
puts. Each REG1, REG2, and REG3 step-down  
converter delivers at least 425mA.  
For the selected value of R  
, calculate I  
,
CHGMAX  
CISET  
I , and I as follows:  
PQ TO  
1.5V  
I
= 2000×  
CHGMAX  
The step-down regulator power inputs (PV_) must be  
connected to SYS. The step-down regulators operate  
R
CISET  
I
=10%×I  
PQ  
CHGMAX  
= 4%×I  
CHGMAX  
with V  
from 2.6V to 5.5V. Undervoltage lockout  
SYS  
I
TO  
ensures that the step-down regulators do not operate  
with SYS below 2.6V (typ).  
In addition to setting the charge current, CISET also pro-  
vides a means to monitor battery charge current. The  
CISET output voltage tracks the charge current delivered  
to the battery, and can be used to monitor the charge  
rate, as shown in Figure 9. A 1.5V output indicates the  
battery is being charged at the maximum set fast-charge  
current, and 0V indicates no charging. This voltage is  
also used by the charger control circuitry to set and  
monitor the battery current. Avoid adding capacitance  
See the Enable/Disable (EN) and Sequencing section  
for how to enable and disable the step-down convert-  
ers. When enabled, the MAX8671X gradually ramps  
each output up during a soft-start time. Soft-start elimi-  
nates input current surges when regulators are  
enabled.  
See the PWM section for information about the step-  
down converters control scheme.  
32 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
The MAX8671X uses external resistor-dividers to set the  
step-down output voltages between 1V and V . Use at  
least 10µA of bias current in these dividers to ensure no  
change in the stability of the closed-loop system. To set  
the output voltage, select a value for the resistor con-  
reduces switching noise in the controller. The imped-  
ance of the input capacitor at the switching frequency  
must be less than that of the source impedance of the  
supply so that high-frequency switching currents do not  
pass through the input source.  
SYS  
nected between FB_ and AGND (R  
). The recom-  
FBL  
The step-down regulator power inputs are critical dis-  
continuous current paths that require careful bypass-  
ing. In the PCB layout, place the step-down regulator  
input bypass capacitors as close as possible to each  
pair of switching regulator power input pins (PV_ to  
PG_) to minimize parasitic inductance. If making con-  
nections to these caps through vias, be sure to use  
multiple vias to ensure that the layout does not insert  
excess inductance or resistance between the bypass  
cap and the power pins.  
mended value is 100kΩ. Next, calculate the value of the  
resistor connected from FB_ to the output (R ):  
FBH  
V
1.0V  
OUT  
R
=R  
×
1  
FBH  
FBL  
REG1, REG2, and REG3 are optimized for high, medi-  
um, and low output voltages, respectively. The highest  
overall efficiency occurs with V1 set to the highest out-  
put voltage and V3 set to the lowest output voltage.  
The input capacitor must meet the input ripple current  
requirement imposed by the step-down converter.  
Ceramic capacitors are preferred due to their low ESR  
and resilience to power-up surge currents. Choose the  
input capacitor so that its temperature rise due to input  
ripple current does not exceed about +10°C. For a  
step-down DC-DC converter, the maximum input ripple  
current is half of the output current. This maximum input  
ripple current occurs when the step-down converter  
PWM  
The MAX8671X operates in either auto-PWM or forced-  
PWM modes. At light load, auto PWM switches only as  
needed to supply the load to improve light-load effi-  
ciency of the step-down converter. At higher load cur-  
rents (~100mA), the step-down converter transitions to  
fixed 2MHz switching. Forced PWM always operates  
with a constant 2MHz switching frequency regardless  
of the load. This is useful in low-noise applications.  
Permanently connect PWM high for forced-PWM appli-  
cations or low for auto-PWM applications. Do not  
change PWM on-the-fly.  
operates at 50% duty factor (V = 2 x V  
).  
IN  
OUT  
Bypass each step-down regulator input with a 4.7µF  
ceramic capacitor from PV_ to PG_. Use capacitors  
that maintain their capacitance over temperature and  
DC bias. Ceramic capacitors with an X7R or X5R tem-  
perature characteristic generally perform well. The  
capacitor voltage rating should be 6.3V or greater.  
Step-Down Dropout and Minimum Duty Cycle  
All the step-down regulators are capable of operating  
in 100% duty-cycle dropout; however, REG1 has been  
optimized for this mode of operation. During 100%  
duty-cycle operation, the high-side p-channel MOSFET  
turns on constantly, connecting the input to the output  
Step-Down Output Capacitors  
The output capacitance keeps output ripple small and  
ensures control loop stability. The output capacitor  
must have low impedance at the switching frequency.  
Ceramic, polymer, and tantalum capacitors are suit-  
able, with ceramic exhibiting the lowest ESR and lowest  
high-frequency impedance. The MAX8671X requires at  
least 20µF of output capacitance, which is best  
achieved with two 10µF ceramic capacitors in parallel.  
through the inductor. The dropout voltage (V ) is cal-  
DO  
culated as follows:  
V
DO  
= I (R + R )  
LOAD P L  
where:  
RP = p-channel power switch RDS(ON)  
RL = external inductor ESR  
As the case sizes of ceramic surface-mount capacitors  
decrease, their capacitance vs. DC bias voltage char-  
acteristic becomes poor. Due to this characteristic, it is  
possible for 0805 capacitors to perform well while 0603  
capacitors of the same value might not. The MAX8671X  
requires a nominal output capacitance of 20µF; howev-  
er, after their DC bias voltage derating, the output  
capacitance must be at least 15µF.  
The minimum duty cycle for all step-down regulators is  
12.5% (typ), allowing a regulation voltage as low as 1V  
over the full SYS operating range. REG3 is optimized  
for low duty-cycle operation.  
Step-Down Input Capacitors  
The input capacitor in a step-down converter reduces  
current peaks drawn from the power source and  
______________________________________________________________________________________ 33  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
Step-Down Inductor  
Choose the step-down regulator inductance to be  
4.7µH. The minimum recommended saturation current  
requirement is 600mA. In PWM mode, the peak induc-  
tor currents are equal to the load current plus one half  
of the inductor ripple current. The MAX8671X works  
well with physically small inductors. See Table 6 for  
suggested inductors.  
where:  
V
OUT  
= output voltage  
I
= target (desired) output current—cannot  
OUTTAR  
be more than the minimum p-channel current-limit  
threshold  
R
= n-channel on-resistance  
N
R = p-channel on-resistance  
P
The peak-to-peak inductor ripple current during PWM  
operation is calculated as follows:  
R = external inductor’s ESR  
L
V
IN  
= input voltage—MAXIMUM  
MA8671X  
V
(V  
V  
)
2) Use the following equation to calculate the maximum  
OUT SYS  
OUT  
I
=
PP  
output current (I  
):  
OUTMAX  
V
× f ×L  
SYS  
S
V
(1D)  
OUT  
I
where fS is the 2MHz switching frequency.  
LIM  
2× f ×L  
I
=
OUTMAX  
The peak inductor current during PWM operation is cal-  
culated as follows:  
1D  
1+(R +R )  
N
L
2× f ×L  
I
PP  
2
I
=I  
+
L_PEAK LOAD  
where:  
LIM  
I
= p-channel current-limit threshold—MINIMUM  
V
= output voltage  
Step-Down Converter Output Current  
The three MAX8671X step-down regulators each pro-  
vide at least 425mA of output current when using a rec-  
ommended inductor (Table 6). To calculate the  
maximum output current for a particular application and  
inductor use the following two-step process (as shown  
in Figure 10):  
OUT  
D = approximate duty cycle derived from step 1  
f = oscillator frequency—MINIMUM  
L = external inductor’s inductance—MINIMUM  
R
= n-channel on-resistance  
N
R = external inductor’s ESR  
L
1) Use the following equation to calculate the approxi-  
mate duty cycle (D):  
V
V
+I  
(R +R )  
(R R )  
OUT OUTTAR N L  
D =  
+I  
IN OUTTAR N P  
Table 6. Suggested Inductors  
INDUCTANCE  
(µH)  
CURRENT RATING  
MANUFACTURER  
SERIES  
ESR (Ω)  
DIMENSIONS (mm)  
(mA)  
CDRH2D11HP  
CDH2D09  
NR3012  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
190  
218  
130  
190  
160  
240  
130  
180  
750  
700  
770  
750  
740  
700  
880  
640  
3.0 x 3.0 x 1.2 = 10.8mm3  
3.0 x 3.0 x 1.0 = 9.0mm3  
3.0 x 3.0 x 1.2 = 10.8mm3  
3.0 x 3.0 x 1.0 = 9.0mm3  
2.8 x 2.6 x 1.2 = 8.7mm3  
2.8 x 2.6 x 1.0 = 7.3mm3  
3.0 x 2.8 x 1.2 = 10.8mm3  
3.0 x 2.8 x 1.0 = 8.4mm3  
Sumida  
Taiyo Yuden  
TDK  
NR3010  
VLF3012  
VLF3010  
DE2812C  
DE2810C  
TOKO  
34 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
TO FIND THE MAXIMUM OUTPUT CURRENT FOR REG3 WITH V = 3.2V TO 5.3V, V  
=1.2V, L = 4.7μH  
IN  
OUT  
20%, AND R =130mΩ:  
L
V
V
+I  
(R +R ) 1.2V + 0.425A(0.12Ω + 0.13Ω)  
OUT OUTTAR N L  
D =  
=
= 0.249  
+I  
(R R )  
5.3V + 0.425A(0.12Ω − 0.23Ω)  
1.2V(10.249)  
IN OUTTAR  
N
P
V
(1D)  
0.555A −  
OUT  
I
6  
6
LIM  
2×(1.8×10 Hz)×(4.7×10 H× 0.8)  
10.249  
2× f ×L  
I
=
=
= 0.482A  
OUTMAX  
1D  
1+(R +R )  
1+(0.12Ω + 0.13Ω)  
N
L
6
6  
2× f ×L  
2×(1.8×10 Hz)×(4.7×10 H× 0.8)  
Figure 10. Step-Down Converter Maximum Output Current Example  
mended value is 60.4kΩ. Next, calculate the value of  
the resistor connected from FB_ to the output (R ):  
Linear Regulators (REG4, REG5)  
The REG4 and REG5 linear regulators have low quies-  
cent current, and low output noise. Each regulator sup-  
plies up to 180mA to its load. Bypass each LDO output  
with a 2.2µF or greater capacitor to ground. If V4 or V5  
is set to less than 1.5V, bypass the output with 3.3µF or  
greater.  
FBH  
V  
OUT  
R
=R  
×
1  
FBH  
FBL  
0.6V  
For REG4, an external 0.01µF bypass capacitor from  
BP to AGND in conjunction with a 150kΩ internal resis-  
tor creates a 110Hz lowpass filter for noise reduction.  
BP is a high-impedance node and requires a low-leak-  
age capacitor. For example, a leakage of 40nA results  
in a 1% error.  
Each linear regulator has an independent power input  
(PV4 and PV5) with an input voltage range from 1.7V to  
V
(V  
can be up to 5.5V). Voltages below the  
SYS  
SYS  
input undervoltage lockout threshold (1.6V) are invalid.  
The regulator inputs can be driven from an efficient  
low-voltage source, such as a DC-DC output, to opti-  
mize efficiency (see the following equation). Bypass  
each LDO input with a 1µF or greater capacitor to  
ground:  
VL Linear Regulator  
VL is the output of a 3.3V linear regulator that powers  
MAX8671X internal circuitry. VL is internally powered  
from the higher of USB or DC and automatically powers  
up when either of these power inputs exceeds approxi-  
mately 1.5V. When the higher of the DC and USB sup-  
ply is between 1.5V and 3.3V, VL operates in dropout.  
VL automatically powers down when both the USB and  
DC power inputs are removed. Bypass VL to AGND  
with a 0.1µF capacitor.  
V
V
OUT  
Efficiency  
LDO  
IN  
REG5 is intended to power the system USB transceiver  
circuitry and is only active when USB power is avail-  
able. REG4 is powered from the battery when power is  
not available at DC or USB.  
VL remains on even when USB and/or DC are in over-  
voltage or undervoltage lockout, when SYS is in under-  
voltage lockout, and also during thermal faults.  
See the Enable/Disable (EN) and Sequencing section  
for how to enable and disable the linear regulators.  
When enabled, the linear regulators soft-start by ramp-  
ing their outputs up to their target voltage in 3ms. Soft-  
start limits the inrush current when the regulators are  
enabled.  
VL sources up to 3mA for external loads. If VL is not  
used for external loads, the MAX8671X’s USB/DC cur-  
rent limit guarantees compliance with the USB 2.0 input  
current specifications. If VL is used for external loads,  
USB/DC currents increase and might exceed the limits  
outlined in the USB 2.0 specification. For example, if the  
USB to SYS current is limited to 95mA and VL is sourc-  
The MAX8671X uses external resistor-dividers to set  
the LDO output voltages between 0.6V and V  
. Use  
PV_  
at least 10µA of bias current in these dividers to ensure  
no change in the stability of the closed-loop system. To  
set the output voltage, select a value for the resistor  
ing 3mA, I  
is 98mA. Similarly, if the USB input is sus-  
USB  
pended and VL is sourcing 3mA, I  
is 3mA.  
USB  
connected between FB_ and AGND (R  
). The recom-  
FBL  
______________________________________________________________________________________ 35  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
SYS  
SYSOK  
2.5V FALLING  
100mV HYST  
PV4  
DIE TEMP  
MAX8671X  
PV4OK  
PV5OK  
DT165  
1.6V RISING  
100mV HYST  
+165°C  
PV5  
USB  
MA8671X  
SOFT-START  
REG3  
1.6V RISING  
100mV HYST  
USBOVLO  
USBUVLO  
REGON  
OK  
REG3OK  
REG1OK  
EN  
6.9V RISING  
400mV HYST  
USBPOK  
SOFT-START  
REG1  
4.0V RISING  
500mV HYST  
REGON  
REG3OK  
OK  
EN  
DC  
DCOVLO  
DCUVLO  
SOFT-START  
REG2  
6.9V RISING  
400mV HYST  
DCPOK  
OK  
REG2OK  
EN  
4.0V RISING  
500mV HYST  
SOFT-START  
REG4  
REGON  
REG3OK  
REG1OK  
REG2OK  
PV4OK  
EN  
2MHz  
OSC  
REG4OK  
OK  
EN  
BIAS  
&
REF  
DT165  
SYSOK  
SOFT-START  
REG5  
64 CYCLE  
DELAY  
(32ms)  
REGON  
REGON  
REG3OK  
REG1OK  
REG2OK  
REG4OK  
PV5OK  
REG5OK  
OK  
EN  
Figure 11. Enable/Disable Logic  
REG1–REG5. REG5 is intended to power the system  
USB transceiver circuitry, which is only active when  
USB power is available. Therefore, a valid source must  
be on either the USB or DC input for REG5 to enable.  
Enable/Disable (EN) and Sequencing  
Figures 11, 12, and 13 show how the five MAX8671X  
regulators are enabled and disabled. With a valid SYS  
voltage and die temperature, asserting EN high  
enables REG1–REG4. Pulling EN low disables  
36 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
V
DC  
V
USB  
V
VL  
V
< V < (V  
SYS  
OR V )  
USB DC  
BAT  
V
SYS  
V
V
BAT  
BAT  
t
D1  
V
EN  
t
SS1  
V
OUT1  
t
SS2  
V
OUT2  
t
D2  
t
SS3  
V
OUT3  
t
D3  
t
SS4  
V
OUT4  
t
SS5  
V
OUT5  
INTERNAL  
DISCHARGE  
RESISTORS  
HIGH-Z  
HIGH-Z  
V
UOK  
HIGH-Z  
HIGH-Z  
V
DOK  
Figure 12. Enable and Disable Waveforms  
The VL regulator is not controlled by EN. It is powered  
from the higher of USB or DC and automatically powers  
up when either of the power inputs exceeds approxi-  
mately 1.5V. Similarly, VL automatically powers down  
when both the USB and DC power inputs are removed.  
ages, and to fully comply with the USB 2.0 specifica-  
tions. All USB, DC, and charging functions implement  
soft-start. The USB and DC nodes only require 4.7µF of  
input capacitance. Furthermore, all regulators imple-  
ment soft-start to avoid transient overload of power  
inputs (Figure 12).  
Soft-Start/Inrush Current  
The MAX8671X implements soft-start on many levels to  
control inrush current, to avoid collapsing supply volt-  
______________________________________________________________________________________ 37  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
ing range. When the USB voltage is less than the USB  
UVLO threshold (4.0V typ), the USB input is discon-  
nected from SYS, and UOK goes high impedance.  
When the DC voltage is less than the DC UVLO thresh-  
old (4.0V typ), the DC input is disconnected from SYS,  
and DOK goes high impedance. In addition, when both  
USB and DC are in UVLO, the battery charger is dis-  
abled, and BAT is connected to SYS through the inter-  
nal system load switch. REG1–REG4 are allowed to  
operate from the battery without power at USB or DC.  
REG5 is intended to power the system USB transceiver  
circuitry, which is only active when USB power is avail-  
able. Therefore, a valid source must be present on  
either the USB or DC input for REG5 to enable.  
Active Discharge in Shutdown  
Each MAX8671X regulator (REG1–REG5) has an inter-  
nal 1kΩ resistor that discharges the output capacitor  
when the regulator is off. The discharge resistors  
ensure that the load circuitry powers down completely.  
The internal discharge resistors are connected when a  
regulator is disabled and when the device is in UVLO  
with an input voltage greater than 1.0V. With an input  
voltage less than 1.0V, the internal discharge resistors  
are not activated.  
MA8671X  
Undervoltage and Overvoltage Lockout  
USB/DC UVLO  
Undervoltage lockout (UVLO) prevents an input supply  
from being used when its voltage is below the operat-  
UNPLUGGING USB WITH NOTHING TO DISCHARGE C (V = 3.3V). V5 SET FOR 3.3V  
USB BAT  
UNPLUG  
EVENT  
5V  
RAPID DISCHARGE UNTIL V  
DECAYS  
USB  
TO THE HIGHER OF 3.5V OR V + 5OmV  
BAT  
V
USB  
3.5V  
SLOW DISCHARGE AS THE MAX8671X  
DRAWS USB QUIESCENT CURRENT  
HIGH-Z  
V
UOK  
V5  
t
DDREG5 = 120μs (typ)  
IF V 3.4V, V WILL REGULATE TO 3.3V  
BAT  
PV5  
IF V 3.4V, V WILL BE SLIGHTLY LESS  
BAT  
PV5  
THAN V (DROPOUT)  
BAT  
Figure 13. REG5 Disable Detail  
38 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
USB/DC OVLO  
Overvoltage lockout (OVLO) prevents an input supply  
from being used when its voltage exceeds the operat-  
ing range. Both USB and DC withstand input voltages  
up to 14V. When the USB voltage is greater than the  
USB OVLO threshold (6.9V typ), the USB input is dis-  
connected from SYS, and UOK goes high impedance.  
When the DC voltage is greater than the DC OVLO  
threshold (6.9V typ), the DC input is disconnected from  
SYS, and DOK goes high impedance. In addition, when  
both DC and USB are in OVLO, the battery charger is  
disabled, and BAT is connected to SYS through the  
internal system load switch. REG1–REG4 are allowed to  
operate from the battery when USB and DC are in over-  
voltage lockout. The VL supply remains active in OVLO.  
REG5 is intended to power the system USB transceiver  
circuitry, which is only active when USB power is avail-  
able. A valid source must be present on either the USB  
or DC input for REG5 to enable.  
Smart Power Selector Thermal-Overload Protection  
The MAX8671X reduces the USB and DC current limits  
by 5%/°C when the die temperature exceeds +100°C.  
The system load (I  
) has priority over the charger  
SYS  
current, so input current is first reduced by lowering  
charge current. If the junction temperature still reaches  
+120°C in spite of charge-current reduction, no input  
current is drawn from USB and DC; the battery supplies  
the entire load and SYS is regulated 82mV (V  
)
BSREG  
below BAT. Note that this on-chip thermal-limiting cir-  
cuit is not related to and operates independently from  
the thermistor input.  
Regulator Thermal-Overload Shutdown  
The MAX8671X disables all regulator outputs (except  
VL) when the junction temperature rises above +165°C,  
allowing the device to cool. When the junction tempera-  
ture cools by approximately 15°C, the regulators  
resume the state indicated by the enable input (EN)  
by repeating their soft-start sequence. Note that this  
thermal-overload shutdown is a fail-safe mechanism;  
proper thermal design should ensure that the junction  
temperature of the MAX8671X never exceeds the  
absolute maximum rating of +150°C.  
SYS UVLO  
A UVLO circuit monitors the voltage from SYS to  
ground (V  
). When V  
falls below V  
(2.5V  
SYS  
SYS  
UVLO_SYS  
typ), REG1–REG5 are disabled. V  
has a  
UVLO_SYS  
100mV hysteresis. The VL supply remains active in SYS  
UVLO.  
Battery Charger Thermistor Input (THM)  
The THM input connects to an external negative tem-  
perature coefficient (NTC) thermistor to monitor battery  
or system temperature. Charging is suspended when  
the thermistor temperature is out of range. Additionally,  
the charge timers are suspended and charge status  
indicators report that the charger is in thermistor sus-  
pend (CST[1:2] = 01). When the thermistor comes back  
into range, charging resumes and the charge timer  
continues from where it left off. Table 8 shows THM  
temperature limits for various thermistor material con-  
stants. If the battery temperature monitor is not  
REG4/REG5 UVLO  
A UVLO circuit monitors the PV4 and PV5 LDO power  
inputs. When the PV_ voltage is below 1.6V, it is invalid  
and the LDO is disabled.  
Thermal Limiting and Overload Protection  
The MAX8671X is packaged in a 5mm x 5mm x 0.8mm  
40-pin thin QFN. Table 7 shows the thermal character-  
istics of this package. The MAX8671X has several  
mechanisms to control junction temperature in the  
event of a thermal overload.  
required, bias THM midway between V and AGND  
L
with a resistive divider—100kΩ 5% resistors are rec-  
ommended. Biasing THM midway between V and  
L
Table 7. 5mm x 5mm x 0.8mm Thin QFN  
Thermal Characteristics  
AGND bypasses this function.  
SINGLE-LAYER PCB MULTILAYER PCB  
1777.8mW  
2857.1mW  
Continuous  
Power  
Dissipation  
Derate 22.2mW/°C  
above +70°C  
45°C/W  
Derate 35.7mW/°C  
above +70°C  
28°C/W  
*θ  
JA  
θ
1.7°C/W  
1.7°C/W  
JC  
*θ is specified according to the JESD51 standard.  
JA  
______________________________________________________________________________________ 39  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
Table 8. Trip Temperatures for Different Thermistors  
THERMISTOR BETA (ß [K])  
3000  
10  
3250  
10  
3500  
10  
3750  
10  
4250  
10  
4250  
10  
R
R
R
(kΩ)  
(kΩ)  
(kΩ)  
TB  
TP  
TS  
Open  
Short  
10  
Open  
Short  
10  
Open  
Short  
10  
Open  
Short  
10  
Open  
Short  
10  
120  
Short  
10  
Resistance at +25°C [kΩ]  
Resistance at +50°C [kΩ]  
Resistance at 0°C [kΩ]  
4.59  
25.14  
4.30  
27.15  
4.03  
29.32  
3.78  
31.66  
3.32  
36.91  
3.32  
36.91  
MA8671X  
Nominal Hot Trip  
Temperature [°C]  
55  
-3  
53  
-1  
51  
0
49  
2
46  
5
45  
0
Nominal Cold Trip  
Temperature [°C]  
VL  
CEN  
R
TB  
0.74 x VL  
ALTERNATE THERMISTOR  
CONFIGURATION  
COLD  
HOT  
THM  
TEMPERATURE  
SUSPEND  
0.284 x VL  
R
TS  
T
R
TP  
ESD  
DIODE  
T
BOTH COMPARATORS  
HAVE 65mV HYSTERESIS  
MAX8671X  
AGND  
Figure 14. Thermistor Input  
Since the thermistor monitoring circuit employs an  
external bias resistor from THM to VL (R in Figure  
where:  
TB  
R
= The resistance in ohms of the thermistor at tem-  
T
14), any resistance thermistor can be used as long as  
perature T in Celsius  
the value of R is equivalent to the thermistor’s +25°C  
TB  
R
= The resistance in ohms of the thermistor at  
25  
+25°C  
resistance. For example, with a 10kΩ at +25°C thermis-  
tor, use 10kΩ at R , and with a 100kΩ at +25°C ther-  
TB  
mistor, use 100kΩ at R . The general relation of  
β = The material constant of the thermistor that typically  
ranges from 3000K to 5000K  
TB  
thermistor resistance to temperature is defined by the  
following equation:  
T = The temperature of the thermistor in °C that corre-  
sponds to R  
T
1
1
R =R × e β  
⎨ ⎜  
⎟⎬  
T
25  
T +273 298  
40 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
THM threshold adjustment can be accommodated by  
changing R , connecting a resistor in series and/or in  
TB  
TOP VIEW  
parallel with the thermistor, or using a thermistor with dif-  
ferent material constant (β). For example, a +45°C hot  
threshold and 0°C cold threshold can be realized by  
using a 10kΩ thermistor with a β of 4250K and connect-  
ing 120kΩ in parallel. Since the thermistor resistance  
near 0°C is much higher than it is near +50°C, a large  
parallel resistance lowers the cold threshold, while only  
slightly lowering the hot threshold. Conversely, a small  
series resistance raises the cold threshold, while only  
8671XE  
TLyww  
+ aaaa  
THIN QFN  
5mm x 5mm x 0.8mm  
slightly raising the hot threshold. Raising R  
lowers  
TB  
both the hot and cold thresholds, while lowering R  
raises both thresholds.  
TB  
Figure 15. Package Marking Example  
PCB Layout and Routing  
Good printed circuit board (PCB) layout is necessary to  
achieve optimal performance. Refer to the MAX8671  
evaluation kit for Maxim’s recommended layout.  
• The REG4 LDO is a high-performance LDO with  
high PSRR and low noise and care should be used  
in the layout to obtain the high performance.  
Generally, the REG4 LDO is powered from a step-  
down regulator output, and therefore, its input  
capacitor should be bypassed to the power ground  
plane. However, its output capacitor should be  
bypassed to the analog ground plane.  
Use the following guidelines for the best results:  
• Use short and wide traces for high-current and dis-  
continuous current paths.  
• The step-down regulator power inputs are critical  
discontinuous current paths that require careful  
bypassing. Place the step-down regulator input  
bypass capacitors as close as possible to each  
switching regulator power input pair (PV_ to PG_).  
• BP is a high impedance node and leakage current  
into or out of BP can affect the LDO output accuracy.  
Package Marking  
The top of the MAX8671X package is laser etched as  
shown in Figure 15:  
• Minimize the area of the loops formed by the step-  
down converters’ dynamic switching currents.  
• “8671XETL” is the product identification code. The  
full part number is MAX8671XETL; however, in this  
case, the “MAX” prefix is omitted due to space  
limitations.  
• The exposed paddle (EP) is the main path for heat  
to exit the IC. Connect EP to the ground plane with  
thermal vias to allow heat to dissipate from the  
device.  
• “yww” is a date code. “y” is the last number in the  
Gregorian calendar year. “ww” is the week number  
in the Gregorian calendar. For example:  
• The MAX8671X regulator feedback nodes are sensi-  
tive high-impedance nodes. Keep these nodes as  
short as possible and away from the inductors.  
“801” is the first week of 2008; the week of  
January 1st, 2008  
• The thermistor node is high impedance and should  
be routed with care.  
“052” is the fifty-second week of 2010; the  
week of December 27th, 2010.  
• Make power ground connections to a power ground  
plane. Make analog ground connections to an ana-  
log ground plane. Connect the ground planes at a  
single point.  
“aaaa” is an assembly code and lot code.  
“+” denotes lead-free packaging and marks  
the pin 1 location.  
Chip Information  
PROCESS: BiCMOS  
______________________________________________________________________________________ 41  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
Pin Configuration  
TOP VIEW  
30 29 28 27 26 25 24 23 22 21  
20  
31  
32  
33  
EN  
CISET  
CT  
19 FB1  
18 AGND  
THM  
17  
16  
BVSET  
PV4  
BAT 34  
MA8671X  
35  
36  
37  
38  
39  
40  
SYS  
PEN1  
CST2  
UOK  
MAX8671X  
15 OUT4  
14  
BP  
13 FB4  
12  
DOK  
11 FB2  
CST1  
PEN2  
EXPOSED PADDLE (EP)  
+
1
2
3
4
5
6
7
8
9
10  
THIN QFN  
5mm x 5mm x 0.8mm  
42 ______________________________________________________________________________________  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
MA8671X  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 43  
PMIC with Integrated Charger and  
Smart Power Selector for Handheld Devices  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
MA8671X  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
44 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products. Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY