MLX81100 [MELEXIS]

LIN Slave for FET Control; LIN从属的​​FET控制
MLX81100
型号: MLX81100
厂家: Melexis Microelectronic Systems    Melexis Microelectronic Systems
描述:

LIN Slave for FET Control
LIN从属的​​FET控制

文件: 总15页 (文件大小:400K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MLX81100  
LIN Slave for FET Control  
Features  
CPU  
o
MelexCM CPU  
o Dual RISC CPU MLX4/16 – 5MIPS  
o 4-bit LIN protocol controller  
o 16-bit application CPU  
o
Internal RC-Oscillator  
Memories  
o
o
2kbyte RAM, 32kbyte Flash, 128 byte EEPROM  
Flash for series production  
Periphery  
o
o
o
o
Three 16-bit timer with capture and compare  
Full duplex SPI interface  
100-kBaud UART  
2 high and 2 low side FET driver with protection  
o Over temperature control  
o Short circuit protection  
o Current control  
o
o
o
o
o
8-bit PWM control with programmable base frequency of 100Hz to 100kHz  
8 high voltage I/Os  
16-channel 10-bit ADC with high voltage option  
Independent analog watchdog  
Temperature sensor  
Voltage Regulator  
o
o
o
o
o
Direct powered from 12V boardnet with low voltage detection  
Operating voltage VS = 7V to 18V  
Internal voltage regulator with external load capability of 20mA  
External Load transistor for higher 5V loads possible  
Very low standby current, < 50µA in sleep mode  
Bus Interface  
o
o
o
o
LIN transceiver  
Supporting of LIN 2.x and SAE J2602  
LIN protocol software provided by Melexis  
Wake up by LIN traffic or local sources  
Additional Features  
o
o
On-chip CPU debugger  
Jump start and 40V load dump protected  
Applications  
LIN slaves for all kind of high current DC Motor control like  
o
o
Seat heating control  
Seat climatisation  
o
o
Wiper control  
Valve control  
o
o
Seat movement  
I-Drive  
MLX81100 – Product Abstract  
Page 1 of 15  
July 2007  
Rev 015  
MLX81100  
LIN Slave for FET Control  
Contents  
1.  
2.  
FUNCTIONAL DIAGRAM ........................................................................................................................ 3  
ELECTRICAL CHARACTERISTICS........................................................................................................ 4  
2.1  
2.2  
OPERATING CONDITIONS .................................................................................................................... 4  
ABSOLUTE MAXIMUM RATINGS ............................................................................................................ 4  
3.  
APPLICATION CIRCUITRY..................................................................................................................... 5  
3.1  
SINGLE DC-MOTOR DRIVE.................................................................................................................. 5  
HIGHER VCC LOADS AND HIGHER AMBIENT TEMPERATURES ................................................................ 6  
HIGH SIDE REVERSE POLARITY PROTECTION....................................................................................... 6  
CONNECTION TO EXTERNAL CAN CONTROLLER................................................................................... 7  
DUAL DC-MOTOR DRIVE .................................................................................................................... 8  
HUMAN INTERFACE DEVICE WITH DC-MOTOR ...................................................................................... 9  
SEAT HEATING AND CLIMATISATION................................................................................................... 10  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
4.  
5.  
PIN DESCRIPTION ................................................................................................................................ 11  
MECHANICAL SPECIFICATION........................................................................................................... 13  
5.1  
MLF 6X6 40 LEADS .......................................................................................................................... 13  
ASSEMBLY INFORMATION.................................................................................................................. 14  
DISCLAIMER.......................................................................................................................................... 15  
6.  
7.  
MLX81100 – Product Abstract  
Page 2 of 15  
July 2007  
Rev 015  
MLX81100  
LIN Slave for FET Control  
1. Functional Diagram  
CLKO  
RTG  
PS  
VDD5V  
POR  
VS  
RC-OSC.  
GND  
CWD  
VDRV  
5V/1.8V  
Supply  
300kHz  
Voltage  
Monitor  
V1V8  
fRC  
Aux. Supply  
Analog  
Watchdog  
Temp  
SW2  
Diff.  
Amp  
Reset  
SHNT_L  
SW0  
BRMID1  
Diff.  
Amp  
Ref. Mux  
VS/2  
BRMID1  
SW1  
BRMID2  
Diff.  
Amp  
12V Ref  
10 bit ADC  
VS/2  
BRMID2  
GND  
GND  
MUX  
VS/2  
SW6  
SW0 … SW7  
VS/2  
SW7  
I/O Register  
Pre-driver  
Control  
CP  
SW0  
Internal Communication Interface  
Pre-  
driver  
High  
HSBC1  
HS1  
Internal Communication Interface  
PWM Control  
50Hz...100kHz  
Side 1  
BRMID1  
SW1  
SW2  
SW3  
SW4  
SW5  
SW6  
MelexCM  
Dual Compare  
CP  
fPLL  
PWMO  
Prescaler  
Compare on/off  
Pre-  
driver  
High  
HSBC2  
HS2  
16 bit TIMER  
fOSC, fOSC/16,  
fOSC/256  
OSC2
fOSC/256  
8 bit Counter  
withPeriod register  
Side 2  
Dual Capture  
Watchdog  
BRMID2  
Pre-  
driver  
Low  
Clock  
fPLL  
Interrrupt  
Controller  
devider  
LS1  
LS2  
Side 1  
RAM  
Pre-  
driver  
Low  
2kbyte  
Appl. CPU  
MLX16  
UART  
SPI  
Side 2  
M
M
U
SW7  
Flash  
32kbyte  
with ECC  
Comm. CPU  
MLX4  
EEPROM  
128byte  
fOSC  
fRC  
Test  
controller  
PLL  
LIN-SBI  
(1.3 and 2.0)  
fPLL  
LIN-  
PHY  
30MHz  
LIN  
Multi-  
CPU  
debugger  
GND  
GND  
External Communication Interface  
IO0 IO1 IO2 IO3 IO4 IO5  
TI0 TI1 TO  
Figure 1- Block diagram  
MLX81100 – Product Abstract  
Page 3 of 15  
July 2007  
Rev 015  
MLX81100  
LIN Slave for FET Control  
2. Electrical Characteristics  
All voltages are referenced to ground (GND). Positive currents flow into the IC. The absolute maximum  
ratings given in the table below are limiting values that do not lead to a permanent damage of the device but  
exceeding any of these limits may do so. Long term exposure to limiting values may affect the reliability of  
the device. Reliable operation of the MLX81100 is only specified within the limits shown in ”Operating  
conditions”.  
2.1 Operating Conditions  
Parameter  
Symbol  
Min  
Max  
Unit  
Battery supply voltage  
Operation Current  
VS  
IVS  
7.3  
18  
V
30  
50  
mA  
µA  
°C  
Standby current  
ISBY  
Tamb  
Operating ambient temperature  
-40  
+125 (150) [1]  
Table 1 - Operating Conditions  
2.2 Absolute Maximum Ratings  
Parameter  
Symbol  
Condition  
Min  
Max  
Unit  
t < 60s  
-1.0  
-0.5  
-20  
26  
40  
Battery supply voltage  
VS  
V
t < 500 ms  
t < 500 ms  
BUS voltage  
VBUS  
VS.tr1  
VBAT  
V
V
V
V
V
V
V
V
Transient supply voltage  
Transient supply voltage  
Transient supply voltage  
Transient bus voltage  
Transient bus voltage  
Transient bus voltage  
DC voltage on CMOS I/O pins  
ISO 7637/1 pulse 1 [2]  
ISO 7637/1 pulses 2 [2]  
ISO 7637/1 pulses 3A, 3B  
ISO 7637/1 pulse 1 [3]  
ISO 7637/1 pulses 2 [3]  
-150  
VS.tr2  
+100  
+150  
VS.tr3  
-150  
-150  
VBUS.tr1  
VBUS.tr2  
VBUS.tr3  
VDC  
+100  
+150  
+7  
ISO 7637/1 pulses 3A, 3B [3]  
-150  
-0.3  
Human body model, equivalent to  
discharge 100pF with 1.5k,  
ESD capability of pin LIN  
ESDBUSHB  
ESDHB  
-4  
-2  
+4  
+2  
kV  
kV  
Human body model, equivalent to  
discharge 100pF with 1.5k,  
ESD capability of any other pins  
Thermal Resistance  
Storage temperature  
Rth  
in free air  
40.  
K/W  
°C  
Tstg  
-55  
-40  
+150  
+150  
(155)[1]  
Junction temperature  
Tvj  
°C  
Table 2 - Absolute Maximum Ratings  
[1]  
Target temperature after qualification. With temperature applications at TA>125°C a reduction of chip internal power dissipation with  
external supply transistor is obligatory. The extended temperature range is only allowed for a limited period of time, customers mission  
profile has to be agreed by Melexis as an obligatory part of the Part Submission Warrant. Some analogue parameters will drift out of  
limits, but chip function can be guarateed.  
[2] ISO 7637 test pulses are applied to VS via a reverse polarity diode and >1µF blocking capacitor .  
[3] ISO 7637 test pulses are applied to BUS via a coupling capacitance of 1nF.  
MLX81100 – Product Abstract  
Page 4 of 15  
July 2007  
Rev 015  
MLX81100  
LIN Slave for FET Control  
3. Application Circuitry  
3.1 Single DC-Motor Drive  
In this sample application the IC can realize the driving of a DC-motor via an external power N-FET bridge.  
The high side N-FET driving is done with a bootstrap output stage. The current control of the motor is done  
via shunt measurement and the reverse polarity protection of the bridge must be realized with an external  
power FET connected to the ground line. Short circuits of the bridge will be detected from fast comparators  
and in this case the bridge will be switched off. Weak short circuits are monitored with an external  
temperature sensor. The actual position can be read with hall sensors, which are connected to the timer  
capture inputs. The hall sensors are switched off during standby mode via a switchable battery voltage  
output. Optional it is possible to connect an external serial EEPROM via a SPI interface, if it isn’t allowed to  
use the integrated EEPROM because of security reasons.  
100nF  
VBAT  
VS  
VDRV  
CLKO  
100nF  
RTG  
4.7…10uF  
VDD5V  
HSBC2  
HS2  
100nF  
47uF  
1uF  
100n  
V1V8  
BRMID2  
VBAT  
100n  
PS  
VCC  
HSBC1  
HS1  
IO4  
IO5  
VCC  
Hall  
sensor  
100nF  
BRMID1  
LS1  
M
VCC  
SW0  
SW1  
SW3  
SW4  
Temperature  
sensor  
LS2  
SW2  
GND  
SW5  
SW6  
SW7  
Shunt  
VBAT  
SPI Interface  
IO0  
IO1  
IO2  
IO3  
Reverse  
Polarity  
Protection  
MLX  
90316  
SHNT_L  
CWD  
CWD  
10  
TI0  
TI1  
TO  
LIN  
LIN  
180p  
GND  
GND  
GND  
GND  
Figure 2 - Application circuitry for single DC-motor control  
MLX81100 – Product Abstract  
Page 5 of 15  
July 2007  
Rev 015  
MLX81100  
LIN Slave for FET Control  
3.2 Higher VCC Loads and higher Ambient Temperatures  
If it is necessary to supply higher currents to external 5V loads it is possible to connect to the RTG pin an  
external load transistor. This external load transistor decreases also the internal power dissipation which  
makes it possible to use this IC also for higher ambient temperatures.  
VBAT  
100nF  
VS  
100nF  
RTG  
4.7...10uF  
VDD5V  
47uF  
100n  
V1V8  
1uF  
100n  
Figure 3 - Application for higher VCC loads and higher ambient temperatures  
3.3 High Side Reverse Polarity Protection  
With this IC it is also possible to realise a high side reverse polarity protection for the bridge Power-FET with  
a normal power N-FET.  
VBAT  
CLKO  
MLX81100  
Figure 4 - High side N-FET reverse polarity protection  
MLX81100 – Product Abstract  
Page 6 of 15  
July 2007  
Rev 015  
MLX81100  
LIN Slave for FET Control  
3.4 Connection to External CAN Controller  
If the application requires a connection to the CAN network it can be realized with the help of an external  
CAN communication CPU. The following circuitry shows a sample how to implement this together with our  
MLX81100.  
The communication between MLX8100 and external CAN controller is done via the SPI interface of the  
MelexCM.  
A bus wake-up will be signalised at the INH pin of the CAN transceiver. This signal will be used from a  
normal HV-IO pin to wake-up the MLX81100.  
VCC  
LIN  
INH  
SW7  
CAN  
SW4  
VCC  
Transceiver  
(TJA1050)  
TxD  
RxD  
IO0  
IO1  
CANH  
CANL  
CS_1  
SO  
CAN  
Controller  
(MCP2515)  
IO2  
IO3  
IO4  
IO5  
SI  
CLK  
INT_1  
Figure 5 - Connection to external CAN controller  
MLX81100 – Product Abstract  
Page 7 of 15  
July 2007  
Rev 015  
MLX81100  
LIN Slave for FET Control  
3.5 Dual DC-Motor Drive  
In this sample application the IC can realize the driving of two DC-motors via an external power N-FET  
bridge. The high side N-FET driving is done with a bootstrap output stage. The current control of the motor is  
done via shunt measurement and the reverse polarity protection of the bridge must be realized with an  
external power FET connected to the ground line. Short circuits of the bridge will be detected from fast  
comparators and in this case the bridge will be switched off. Weak short circuits are monitored with an  
external temperature sensor. The actual position can be read with hall sensors, which are connected to the  
timer capture inputs. The hall sensors are switched off during standby mode via a switchable battery voltage  
output. If it is necessary to synchronize the motor movement via longer distances it can be done via the  
UART interface connected to an external high speed can transceiver. Via this interface together with a  
proprietary protocol it is possible that both motor-driver exchange real-time position information. Optional it is  
possible to connect an external serial EEPROM via a SPI interface, if it isn’t allowed to use the integrated  
EEPROM because of security reasons.  
100nF  
100nF  
VDRV  
CLKO  
VS  
VBAT  
VBAT  
VS  
VDRV  
CLKO  
100nF  
100nF  
4.7 ..10uF  
47uF  
4.7 ..10uF  
RTG  
RTG  
VDD5V  
VDD5V  
HSBC2  
HS2  
HSBC2  
HS2  
47uF  
1uF  
100nF  
100nF  
100nF  
100nF  
V1V8  
V1V8  
BRMID2  
BRMID2  
1uF  
VBAT  
VBAT  
100nF  
100nF  
PS  
PS  
VCC  
VCC  
VCC  
VCC  
Hall  
sensor  
HSBC1  
HS1  
HSBC1  
HS1  
IO4  
IO4  
VCC  
VCC  
Hall  
sensor  
100nF  
Temperature  
sensor  
100nF  
IO5  
Temperature  
sensor  
IO5  
BRMID1  
LS1  
BRMID1  
LS1  
M
M
SW3  
SW3  
SW4  
SW5  
SW4  
SW5  
SW6  
VBAT VCC  
VCC VBAT  
High speed  
comunication Interface  
with propietary protocol  
INH  
STB  
TxD  
RxD  
SW6  
SW7  
CANH  
CANL  
CANH  
CANL  
STB  
RxD  
TxD  
HS-CAN  
Transceiver  
(TJA1041)  
LS2  
SW7  
LS2  
SW2  
GND  
HS-CAN  
Transceiver  
(TJA1041)  
SW2  
GND  
SW0  
SW1  
SW0  
SW1  
EN  
Shunt  
Shunt  
VBAT  
VBAT  
VCC  
CS  
VCC  
IO0  
IO1  
IO2  
IO3  
Optional  
serial EEPROM  
if needed for  
SCLK  
SDOUT  
SDIN  
SHNT_L  
CWD  
SHNT_L  
CWD  
Reverse  
Polarity  
Protection  
Reverse  
Polarity  
Protection  
IO0  
IO1  
IO2  
IO3  
Serial  
EEPROM  
security reason  
CWD  
CWD  
TI0  
TI1  
TO  
TI0  
TI1  
TO  
LIN  
10  
LIN  
LIN  
180p  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Application example for Dual DC motor driver  
Figure 6 - Application circuitry for a dual DC-motor system  
MLX81100 – Product Abstract  
Page 8 of 15  
July 2007  
Rev 015  
MLX81100  
LIN Slave for FET Control  
3.6 Human Interface Device with DC-Motor  
In this sample application the IC can realize the driving of a feedback DC-motor via an external power N-FET  
bridge. The high side N-FET driving is done with a bootstrap output stage. The current control of the motor is  
done via shunt measurement and the reverse polarity protection of the bridge must be realized with an  
external power FET connected to the ground line. Short circuits of the bridge will be detected from fast  
comparators and in this case the bridge will be switched off. Weak short circuits are monitored with an  
external temperature sensor. The reading of the direction and positions of a rotating encoder can be easy  
done via the timer capture inputs. With SW0 to SW5 and IO0 to IO3 it is possible to implement a switch  
matrix or to connect single switches.  
100nF  
VBAT  
VS  
VDRV  
CLKO  
4.7 ..10uF  
100nF  
RTG  
VDD5V  
V1V8  
HSBC2  
HS2  
100nF  
47uF  
1uF  
100nF  
100nF  
BRMID2  
VBAT  
PS  
SW0  
SW1  
SW3  
HSBC1  
HS1  
SW4  
SW5  
100nF  
BRMID1  
LS1  
M
SW6  
SW7  
VCC  
LS2  
SW2  
GND  
Temperature  
sensor  
IO0  
IO1  
IO2  
IO3  
VCC  
Shunt  
VBAT  
VCC  
SHNT_L  
CWD  
Reverse  
Polarity  
Protection  
Rotation-  
encoder  
IO4  
IO5  
CWD  
TI0  
TI1  
TO  
10  
LIN  
LIN  
180p  
GND  
GND  
GND  
GND  
Figure 7 - Application circuitry for human interface device with DC-motor  
MLX81100 – Product Abstract  
Page 9 of 15  
July 2007  
Rev 015  
MLX81100  
LIN Slave for FET Control  
3.7 Seat Heating and Climatisation  
In this sample application is implemented the driving of two heat elements via the high side and two DC-  
motors via the low side N-FET drivers. The high side N-FET driving is done with a bootstrap output stage.  
The current control of the high side FETs will be done via shunt measurement and the shunt voltage is  
amplified with a differential amplifier connected to the ADC. The reverse polarity protection of the low side  
FETs is implemented with an external power FET connected to the ground line. Short circuits of the single  
FETs will be detected from fast comparators and in this case the FETs will be switched off. Weak short  
circuits are monitored with an external temperature sensor.  
100nF  
100nF  
VBAT  
VS  
VDRV  
CLKO  
VBAT  
4.7 ..10uF  
RTG  
HSBC2  
VDD5V  
47uF  
VBAT  
Fan 1  
100nF  
100nF  
100nF  
HS2  
BRMID2  
V1V8  
1uF  
Shunt  
M
PS  
SW6  
SW1  
Heater 2  
VBAT  
Fan 2  
LS1  
SW2  
SW3  
VBAT  
M
HSBC1  
100nF  
SW7  
LS2  
HS1  
BRMID1  
Shunt  
SW4  
SW5  
VCC  
SW0  
VBAT  
IO4  
IO5  
Heater 1  
GND  
IO0  
IO1  
IO2  
IO3  
SHNT_L  
CWD  
CWD  
10  
TI0  
TI1  
TO  
LIN  
LIN  
180p  
GND  
GND  
GND  
GND  
Figure 8 - Application circuitry for seat heating and seat climatisation  
MLX81100 – Product Abstract  
Page 10 of 15  
July 2007  
Rev 015  
MLX81100  
LIN Slave for FET Control  
4. Pin Description  
Table 3 – Pin Description MLX81100 MLF 6x6 40  
Name  
VS  
Function  
I/O Type  
HV supply, battery voltage  
Internal regulated voltage supply, 5V supply output  
Internal regulated voltage supply, 1.8V supply output  
Ground  
P
P
VDD5V  
V1V8  
GND  
PS  
P
P
Switchable battery supply  
Ground  
P
GND  
SHNT_L  
GND  
SW1  
P
Low shunt input for differential ADC measurement  
Ground  
I
GND  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
GND  
IO  
P
HV in- or output, ADC-input  
HV in- or output, ADC-input  
HV in- or output, ADC-input  
HV in- or output, ADC-input  
HV in- or output, ADC-input  
HV in- or output, ADC-input  
HV in- or output, ADC-input  
HV in- or output, ADC-input  
Connection to LIN bus  
SW2  
SW3  
SW4  
SW5  
SW6  
SW7  
SW8  
LIN  
GND  
CWD  
VDRV  
HSBC1  
HS1  
Ground  
Watchdog capacitor  
Clamped 12V reference voltage for bootstrap  
High side bootstrap capacitor driver 1  
N-FET high side gate driver 1  
Source connection of HS1  
High side bootstrap capacitor driver 2  
N-FET high side gate driver 2  
Source connection of HS2  
N-FET low side gate driver 1  
N-FET low side gate driver 2  
Ground  
O
O
BRMID1  
HSBC2  
HS2  
I
O
O
BRMID2  
LS1  
I
O
LS2  
O
GND  
GND  
MLX81100 – Product Abstract  
Page 11 of 15  
July 2007  
Rev 015  
MLX81100  
LIN Slave for FET Control  
Name  
IO0  
Function  
General purpose in- or output, SPI, UART  
General purpose in- or output, SPI, UART  
General purpose in- or output, SPI, UART  
General purpose in- or output, SPI, UART  
Timer capture input 1, general purpose in- or output  
Timer capture input 2, general purpose in- or output  
Test input, debug interface  
I/O Type  
IO  
IO  
IO  
IO  
IO  
IO  
I
IO1  
IO2  
IO3  
IO4  
IO5  
TI0  
TI1  
Test input, debug interface  
I
TO  
Test output, debug interface  
O
O
O
RTG  
CLKO  
Output for external voltage regulation transistor  
Clock Output  
MLX81100 – Product Abstract  
Page 12 of 15  
July 2007  
Rev 015  
MLX81100  
LIN Slave for FET Control  
5. Mechanical Specification  
5.1 MLF 6x6 40 leads  
D
A
D/2  
A2  
A1  
A3  
4x P  
b
D1  
D2  
D1/2  
PIN1 ID  
0.20 R  
D2/2  
1
2
3
1
2
3
+
B
e
0.25min  
(Nd-1)xe ref.  
Top View  
Bottom View  
Side View  
Figure 9 – MLF 6x6 40 Drawing  
Table 4 – MLF40 Package Dimensions  
Symbol  
A
-
A1  
0
A2  
-
A3  
B [4]  
D
D1  
D2  
E
E1  
E2  
e
L
[1]  
3.95  
4.10  
4.25  
3.95  
4.10  
4.25  
0.30  
min  
[2]  
MLF40 nom  
0.20  
6.00  
5.75  
6.00  
5.75  
0.50  
0.85  
0.90  
0.01  
0.05  
0.65  
0.70  
0.40  
max  
12°  
0.50  
Symbol  
P
N [3] Nd [5] Ne [5]  
[1]  
[2]  
0.24  
0.42  
0.60  
min  
MLF40 nom  
max  
40  
10  
10  
[1] Dimensions and tolerances conform to ASME Y14.5M-1994  
[2] All dimensions are in millimeters. All angels are in degrees  
[3] N is the number of terminals  
[4] Dimension b applies to metallized terminal and is measured between 0.25 and 0.30mm from terminal tip  
[5] Nd and Ne refer to the number of terminals on each D and E side respectively  
MLX81100 – Product Abstract  
Page 13 of 15  
July 2007  
Rev 015  
MLX81100  
LIN Slave for FET Control  
6. Assembly Information  
Our products are classified and qualified regarding soldering technology, solderability and moisture  
sensitivity level according to following test methods:  
Reflow Soldering SMD’s (Surface Mount Devices)  
IPC/JEDEC J-STD-020  
Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices  
(classification reflow profiles according to table 5-2)  
EIA/JEDEC JESD22-A113  
Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability Testing  
(reflow profiles according to table 2)  
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  
EN60749-20  
Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering heat  
EIA/JEDEC JESD22-B106 and EN60749-15  
Resistance to soldering temperature for through-hole mounted devices  
Iron Soldering THD’s (Through Hole Devices)  
EN60749-15  
Resistance to soldering temperature for through-hole mounted devices  
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  
EIA/JEDEC JESD22-B102 and EN60749-21  
Solderability  
For all soldering technologies deviating from above mentioned standard conditions (regarding peak  
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests  
have to be agreed upon with Melexis.  
The application of Wave Soldering for SMD’s is allowed only after consulting Melexis regarding assurance of  
adhesive strength between device and board.  
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more  
information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of  
the use of certain Hazardous Substances) please visit the quality page on our website:  
http://www.melexis.com/quality.asp  
MLX81100 – Product Abstract  
Page 14 of 15  
July 2007  
Rev 015  
MLX81100  
LIN Slave for FET Control  
7. Disclaimer  
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its  
Term of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the  
information set forth herein or regarding the freedom of the described devices from patent infringement.  
Melexis reserves the right to change specifications and prices at any time and without notice. Therefore,  
prior to designing this product into a system, it is necessary to check with Melexis for current information.  
This product is intended for use in normal commercial applications. Applications requiring extended  
temperature range, unusual environmental requirements, or high reliability applications, such as military,  
medical life-support or life-sustaining equipment are specifically not recommended without additional  
processing by Melexis for each application.  
The information furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be  
liable to recipient or any third party for any damages, including but not limited to personal injury, property  
damage, loss of profits, loss of use, interrupt of business or indirect, special incidental or consequential  
damages, of any kind, in connection with or arising out of the furnishing, performance or use of the technical  
data herein. No obligation or liability to recipient or any third party shall arise or flow out of Melexis’ rendering  
of technical or other services.  
© 2005 Melexis NV. All rights reserved.  
For the latest version of this document. Go to our website at  
www.melexis.com  
Or for additional information contact Melexis direct:  
Europe and Japan:  
Phone: +32 1367 0495  
E-mail: sales_europe@melexis.com  
All other locations:  
Phone: +1 603 223 2362  
E-mail: sales_usa@melexis.com  
ISO/TS16949 and ISO14001 Certified  
MLX81100 – Product Abstract  
Page 15 of 15  
July 2007  
Rev 015  

相关型号:

MLX81100KLQBAA000RE

DC-Motor Controller
MELEXIS

MLX81100KLQBAA000TU

DC-Motor Controller
MELEXIS

MLX81100KPFBAA000RE

DC-Motor Controller
MELEXIS

MLX81100KPFBAA000TR

DC-Motor Controller
MELEXIS

MLX81100_14

DC-Motor Controller
MELEXIS

MLX81106KDC-CAA-000-RE

IC LIN SWITCH IO CTRL 8SOIC
MELEXIS

MLX81106KDC-CAA-000-SP

IC LIN SWITCH IO CTRL 8SOIC
MELEXIS

MLX81106KDC-CAA-000-TU

IC LIN SWITCH IO CTRL 8SOIC
MELEXIS

MLX81107KLW-CAA-000-TU

IC MINI LIN 24KB FLASH 20QFN
MELEXIS

MLX81107KLW-CAE-000-RE

IC MINI LIN 24KB FLASH 20QFN
MELEXIS

MLX81107KLW-CAE-000-SP

IC MINI LIN 24KB FLASH 20QFN
MELEXIS

MLX81108KDC-CAA-000-TU

IC LIN SWITCH IO CTRL 8SOIC
MELEXIS