MLX83100 [MELEXIS]

MLX83100 Automotive 2-Phase DC Pre-Driver;
MLX83100
型号: MLX83100
厂家: Melexis Microelectronic Systems    Melexis Microelectronic Systems
描述:

MLX83100 Automotive 2-Phase DC Pre-Driver

文件: 总41页 (文件大小:2100K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
1. Features and Benefits  
.
2-phase DC gate driver  
.
.
Integrated current sense amplifier  
Level shifting between MCU PWM  
outputs and 2 external half-bridges  
Compatible with 3.3V-5V microcontrollers  
Low offset and low offset drift  
Fast settling time < 1µs  
Programmable gain: 8x-48x  
.
Supported supply voltage range  
Extensive diagnostics  
Absolute maximum rating: 45V  
Operating range: 4.5V-28V  
12V-28V Battery systems  
Under/over voltage detection  
Over temperature warning  
Programmable VDS monitoring  
VGS monitoring  
Automotive qualified for 12V  
Sleep mode with current <30µA  
.
.
.
Serial, PWM diagnostics interface  
.
.
Two charge pump configuration modes for  
Configurable diagnostics  
Full diagnostic feedback  
Low voltage operation  
Reverse polarity N-FET protection  
Customer configurable EEPROM  
High-side gate drivers with bootstrap circuits  
Driver configuration  
Diagnostics configuration  
Integrated 12V voltage regulator  
Supports 6x 350nC N-FETs at 20kHz PWM  
Supports 100% PWM operation  
Small package  
28-pin TSSOP-EP, AEC-Q100 grade 0  
qualification (TJ=175˚C)  
2. Application Examples  
.
Automotive 12V DC applications  
.
Industrial DC motor drivers up to 28V  
Water pump / Oil pump / Fuel pump  
Engine Cooling fan  
HVAC blower / compressor  
Wiper  
Pumps  
Fans  
Blowers  
Compressors  
Sunroof  
EPS  
3. Ordering Information  
Product  
Temperature  
Package  
GO (TSSOP28-EP 4.4x9.8mm)  
Option Code Packing Form  
MLX83100  
L(-40°C to 150°C)  
DBA-000  
RE (Reel)  
Ordering Example: “MLX83100LGO-DBA-000-RE”.  
 
 
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
4. Functional Diagram  
VBAT  
VSUP  
CP  
VBOOST  
3.3V-5V  
Supply  
VREG  
Charge Pump  
12V Regulator  
CP1  
CP2  
CP3  
-
Driver Supply  
VDD  
Internal Supply  
VBATF  
MLX83100  
DC Pre-Driver  
VDD Supply  
GATET1  
GATET2  
HS  
MCU  
Gate Drivers  
Driver Logic  
FETT2-3  
FETB2-3  
PHASE1  
Shoot  
Dead  
M
PWM  
I/O  
Through  
Time  
PHASE2  
GATEB1  
Protection  
EN  
LS  
MISO  
ICOM  
Gate Drivers  
CustomInterface  
Error Output  
EEPROM  
GATEB2  
Diagnostics  
I/O  
VREF  
IBP  
Current Sense Amplifier  
ADC  
ISENSE  
IBM  
AGND  
DGND  
Figure 4-1 Typical application diagram  
VBAT  
VSUP  
CP  
VBOOST  
3.3V-5V  
Supply  
VREG  
Charge Pump  
12V Regulator  
CP1  
CP2  
CP3  
-
Driver Supply  
VDD  
Internal Supply  
VBATF  
MLX83100  
DC Pre-Driver  
VDD Supply  
GATET1  
GATET2  
HS  
MCU  
Gate Drivers  
Driver Logic  
FETT2-3  
FETB2-3  
PHASE1  
Shoot  
Dead  
M
PWM  
I/O  
Through  
Time  
PHASE2  
GATEB1  
Protection  
EN  
LS  
MISO  
ICOM  
Gate Drivers  
CustomInterface  
Error Output  
EEPROM  
GATEB2  
Diagnostics  
I/O  
VDD  
VREF  
IBP  
Current Sense Amplifier  
ADC  
ISENSE  
IBM  
AGND  
DGND  
Figure 4-2 Alternative application diagram with reverse polarity N-FET  
REVISION 5.1 DECEMBER 13, 2016  
Page 2 of 41  
 
 
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
5. General Description  
The MLX83100 is a two phase pre-driver (also called ‘bridge’ or ‘gate’ driver) IC with integrated current  
sense amplifier. This device is used to drive brushed DC motors in combination with a microcontroller and  
four discrete power N-FETs.  
The device is able to control four external N-FETs for full H-bridge control in the supply range from 4.5V to  
28V, by means of the integrated charge pump. The high side gate drivers are supplied via bootstrap circuits.  
The trickle charge pump allows 100% PWM operation despite the use of bootstrap capacitors. The bootstrap  
voltage regulator is optimized for gate charges up to 500nC per FET at 20 kHz PWM.  
The device comprises various monitoring and protection functions, including under voltage and over voltage  
detection at multiple internal voltage nodes, over temperature detection, drain-source and gate-source  
voltage monitoring of the external N-FETs. In case of fault detection, the ICOM diagnostics interface will  
inform the microcontroller with a PWM signal, where the duty cycle indicates the nature of the error.  
An integrated fast, high-bandwidth, low offset current sense amplifier allows for precise torque control, with  
programmable gain selection.  
The MLX83100 provides an EEPROM for configurability, avoiding the need for a high pin-count package. The  
configuration allows the customer to optimize the pre-driver’s operation for different applications.  
REVISION 5.1 DECEMBER 13, 2016  
Page 3 of 41  
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
6. Contents  
1. Features and Benefits............................................................................................................................ 1  
2. Application Examples............................................................................................................................. 1  
3. Ordering Information ............................................................................................................................ 1  
4. Functional Diagram ............................................................................................................................... 2  
5. General Description............................................................................................................................... 3  
6. Contents................................................................................................................................................ 4  
7. Pin Configuration & Definition............................................................................................................... 5  
7.1. Pin Configuration ................................................................................................................................5  
7.2. Pin Definition.......................................................................................................................................6  
8. Absolute Maximum Ratings................................................................................................................... 7  
9. Operating Range.................................................................................................................................... 7  
10. General Electrical Specifications.......................................................................................................... 8  
10.1. MLX83100 Typical Performance Graphs .......................................................................................15  
11. Block Diagram.................................................................................................................................... 16  
12. Functional Description....................................................................................................................... 17  
12.1. Supply System.................................................................................................................................17  
12.2. Gate Drivers ....................................................................................................................................22  
12.3. Integrated Current Sense Amplifier...............................................................................................23  
12.4. Protection and Diagnostic Functions.............................................................................................24  
12.5. EEPROM Configuration...................................................................................................................29  
13. ESD Protection................................................................................................................................... 36  
14. Package Information.......................................................................................................................... 37  
14.1. Package Marking.............................................................................................................................37  
14.2. Package Data...................................................................................................................................38  
15. Standard information regarding manufacturability of Melexis products with different soldering  
processes............................................................................................................................................ 39  
16. ESD Precautions................................................................................................................................. 39  
17. Revision History................................................................................................................................. 40  
18. Disclaimer.......................................................................................................................................... 41  
REVISION 5.1 DECEMBER 13, 2016  
Page 4 of 41  
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
7. Pin Configuration & Definition  
7.1. Pin Configuration  
Figure 7-1 Pin configuration  
REVISION 5.1 DECEMBER 13, 2016  
Page 5 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
7.2. Pin Definition  
Pin #  
Name  
FETT2  
FETT3  
VDD  
Description  
1
2
3
4
5
6
7
8
High-side FET2 PWM control input (active high)  
High-side FET3 PWM control input (active high)  
Digital supply for IO’s and current sense amplifier  
Current sense amplifier reference input  
Current sense amplifier negative input  
Current sense amplifier positive input  
Current sense amplifier output  
VREF  
IBM  
IBP  
ISENSE  
MISO  
MISO output for SPI  
Low-side FET2 PWM control input (active low)  
CLK input for SPI  
9
FETB2  
FETB3  
ICOM  
Low-side FET3 PWM control input (active low)  
MOSI input for SPI  
10  
11  
Bidirectional, serial diagnostics interface  
CSB input for SPI  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
EN  
Enable input for gate driver outputs (active high)  
Motor phase 2  
PHASE2  
GATET2  
CP2  
High-side FET2 gate driver output  
High-side FET2 bootstrap capacitor  
Motor phase 3  
PHASE3  
GATET3  
CP3  
High-side FET3 gate driver output  
High-side FET3 bootstrap capacitor  
Charge pump boosted supply output  
Driver supply output for bootstrap capacitors  
Low-side FET2 gate driver output  
Low-side FET3 gate driver output  
Driver ground  
VBOOST  
VREG  
GATEB2  
GATEB3  
DGND  
CP  
Charge pump floating capacitor  
Power supply input (Battery input)  
Battery voltage connection for VDS-monitoring  
Not connected  
VSUP  
VBATF  
n.c.  
AGND  
PAD  
Analog ground  
Exposed pad  
Table 7-1 Pin definition  
REVISION 5.1 DECEMBER 13, 2016  
Page 6 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
8. Absolute Maximum Ratings  
Parameter  
Symbol  
VVSUP, VBATF  
VVSUP, VBATF  
IVSUP  
Min  
-0.3  
-0.3  
-15  
Typ  
Max  
45  
28  
-
Unit  
V
Condition  
Power supply voltage  
Power supply voltage  
Negative input current  
-
-
-
t < 500ms (during load dump)  
Permanent (functional)  
V
mA  
Defines with max. reverse  
polarity voltage the RVBATF  
Negative input current  
IVBATF  
VVDD  
-10  
-
-
mA  
Digital supply voltage  
Analog input voltage  
Analog output voltage  
-0.3  
-
-
-
5.5  
V
V
V
VVREF, VIBM,VIBP -0.3  
VDD+0.3  
VDD+0.3  
VISENSE  
-0.3  
VFETBx, VFETTx  
VEN  
,
Digital input voltage  
-0.3  
-
VDD+0.3  
V
Digital input current  
Digital output voltage  
Output voltage  
-10  
-0.3  
-0.3  
-0.3  
-0.3  
-0.7  
-
-
-
-
-
-
10  
VDD+0.3  
17  
mA  
V
VICOM  
VGATEBx, VREG  
VGATETx  
VCPx  
V
Output voltage  
VREG+35  
VREG+35  
45  
V
Input voltage on CPx pins  
V
Input voltage on PHASEx pins VPHASEx  
V
Maximum latch-up free  
current at any pin  
According to JEDEC JESD78,  
AEC-Q100-004  
ILATCH  
-100  
-
100  
mA  
ESD capability  
ESD  
Tstg  
TJ  
-2  
-
-
-
+2  
kV  
˚C  
˚C  
Human Body Model  
Storage temperature  
Junction temperature  
-55  
-40  
150  
175  
In free air on multilayer PCB  
(JEDEC 1s2p)  
Thermal resistance SOIC-16 Rth-JA  
Thermal resistance SOIC-16 Rth-JC  
-
-
37  
10  
-
-
K/W  
K/W Referring center of exposed pad  
Table 8-1 Absolute maximum ratings  
Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum-  
rated conditions for extended periods may affect device reliability.  
9. Operating Range  
Parameter  
Symbol  
Min  
4.5  
3
Typ  
Max Unit  
Condition  
Power supply voltage range VVSUP  
Digital supply voltage range VVDD  
-
-
-
-
28  
5.5  
150  
175  
V
V
Full functionality  
CP discharged, power FETs off  
Ambient temperature  
Junction temperature  
TA  
TJ  
-40  
-40  
˚C  
˚C  
Table 9-1 Operating range  
REVISION 5.1 DECEMBER 13, 2016  
Page 7 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
10. General Electrical Specifications  
Parameter  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Power Supply VSUP  
Supply voltage range  
No.1  
No.2  
. Functional  
VSUP  
7
-
-
18  
7
V
V
. Functional w. decreased  
gate drive voltage  
Supply voltage  
extended range low  
VSUP_ERL  
4.5  
Supply voltage  
extended range high  
No.3  
No.4  
VSUP_ERH  
18  
-
-
-
28  
30  
V
. VDD = Low  
Quiescent current from VSUP ISUP_SLEEP  
Operating current from VSUP ISUP_INT  
µA  
. Pre-driver operation  
25kHz PWM, no load  
No.5  
-
-
5
mA  
No.6  
No.7  
. Warning on ICOM  
. ICOM released  
Supply over voltage high  
Supply over voltage low  
VSUP_OVH  
VSUP_OVL  
-
-
-
35  
-
V
V
30  
Supply over voltage  
hysteresis  
No.8  
No.9  
VSUP_OVHY  
0.4  
-
-
-
1
2
V
Supply over voltage  
debounce time  
VSUP_OV_DEB  
µs  
No.10  
No.11  
. ICOM released  
Supply under voltage high  
Supply under voltage low  
VSUP_UVH  
VSUP_UVL  
-
-
-
6
-
V
V
. Warning on ICOM  
5
Supply under voltage  
hysteresis  
No.12  
No.13  
VSUP_UVHY  
0.2  
-
-
-
0.5  
10  
V
Supply under voltage  
debounce time  
VSUP_UV_DEB  
µs  
. Reset released on rising  
edge VSUP when VDD=high  
No.14  
Power on reset level  
VPOR  
2.6  
-
4.5  
V
VVBATF  
No.15  
. Pre-driver not in sleep  
Leakage from VBATF to GND  
Temperature Warning  
RVBATF_LEAK  
-
-
30  
µA  
No.16  
No.17  
. Warning on ICOM  
. ICOM released  
Over temperature high  
Over temperature low  
OVTH  
OVTL  
-
-
185  
168  
-
-
C  
C  
On-Chip Oscillator  
No.18  
. Internal Oscillator  
Oscillator frequency  
fOSC  
6.8  
8
9.2  
MHz  
REVISION 5.1 DECEMBER 13, 2016  
Page 8 of 41  
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
Charge Pump CP, VBOOST  
No.19  
No.20  
Output slew rate  
VCP  
fCP  
-
100  
200  
-
V/µs  
kHz  
Charge pump frequency  
170  
230  
. CP Mode 1  
. VSUP > 7V  
. IREG < 20mA  
Reverse polarity N-FET gate-  
No.21  
No.22  
No.23  
No.24  
VGS_RPFET  
5
6
12  
8
-
13  
-
V
MOhm  
V
source voltage (VBOOST-VSUP  
)
. RTyp at room temperature  
. RMin at 150C TJ  
. (excl. RVREG_LEAK  
Resistive load from VBOOST to  
GND  
RBOOST_LEAK  
VBOOST_UVH  
VBOOST_UVL  
)
ICOM released  
. CP Mode 0 (VBOOST)  
. CP Mode 1 (VBOOST-VSUP  
VBOOST under voltage high  
VBOOST under voltage low  
6.1  
5.6  
7.2  
6.7  
)
Warning on ICOM  
. CP Mode 0 (VBOOST)  
. CP Mode 1 (VBOOST-VSUP  
-
V
)
)
. CP Mode 1 (VBOOST-VSUP  
. Discharge activated by  
VSUP_OV and topped by  
VBOOST_DIS_STOP  
VBOOST_DISST  
OP  
No.25  
No.26  
VBOOST discharge stop  
V -0.2  
SUP  
-
-
V +0.8  
SUP  
V
. CP Mode 1 (VBOOST-VSUP  
. From VBOOST to DGND  
)
VBOOST discharge current  
IBOOST_DIS  
25  
90  
mA  
REVISION 5.1 DECEMBER 13, 2016  
Page 9 of 41  
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
Driver Supply VREG  
. VREG > 11V  
. CP Mode 0, EN_CP = 1  
IREG_CPMODE0  
-
-
-
-
40  
20  
mA  
mA  
No.27  
Load current on VREG  
. VREG > 11V  
. CP Mode 1, EN_CP = 1  
IREG_CPMODE1  
. CP Mode 0, EN_CP = 1  
. VSUP > 8V  
. IREG < 40mA  
11  
10  
12  
-
13  
13  
V
V
. CP Mode 0, EN_CP = 1  
. 7V< VSUP < 8V  
No.28  
No.29  
Output voltage VREG  
VREG  
. IREG < 40mA  
. CP Mode 1, EN_CP = 1  
. VSUP > 8V  
. IREG < 20mA  
11  
12  
13  
-
V
. RTyp at room temperature  
. RMin at 150C TJ  
Internal resistive load from  
VREG to GND  
RVREG_LEAK  
0.3  
0.4  
MOhm  
No.30  
No.31  
No.32  
No.33  
No.34  
No.35  
. Warning on ICOM  
. ICOM released  
VREG over voltage high  
VREG over voltage low  
VREG_OVH  
VREG_OVL  
14.2  
13.5  
0.65  
7.2  
-
-
-
-
-
-
16.5  
15.8  
1.5  
V
V
V
V
V
V
VREG over voltage hysteresis VREG_OVHY  
. ICOM released  
VREG under voltage high  
VREG under voltage low  
VREG_UVH  
VREG_UVL  
8.1  
. Warning on ICOM  
6.9  
7.8  
VREG under voltage hysteresis VREG_UVHY  
0.3  
0.7  
Digital Supply VDD  
. Incl. ICOM current  
sourcing  
No.36  
VDD operating current  
IDD  
4
-
7
mA  
No.37  
No.38  
No.39  
No.40  
No.41  
No.42  
No.43  
No.44  
VDD pull down resistance  
VDD input voltage  
VDD_RPD  
VDD  
VDD_UVH  
VDD_UVL  
200  
3
300  
370  
5.5  
kOhm  
V
. VDD = 3.3V or 5V  
. ICOM released  
. Warning on ICOM  
-
VDD under voltage high  
VDD under voltage low  
2.55  
2.45  
0.08  
2.1  
-
2.95  
2.85  
0.14  
2.7  
V
-
0.10  
-
V
VDD under voltage hysteresis VDD_UVHY  
V
. Out of sleep  
. Go to sleep  
VDD sleep voltage high  
VDD sleep voltage low  
VDD_SLEEPH  
VDD_SLEEPL  
V
1.6  
-
2.1  
V
VDD sleep voltage hysteresis VDD_SLEEPHY  
0.45  
0.58  
0.80  
V
REVISION 5.1 DECEMBER 13, 2016  
Page 10 of 41  
 
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
Gate Drivers  
No.45 Rise time  
No.46 Fall time  
tr  
tf  
. CLOAD = 1nF, 20% to 80%  
. CLOAD = 1nF, 80% to 20%  
. VSUP > 7V  
6
4
7
7
15  
15  
ns  
ns  
Pull-up ON resistance  
10  
15  
10  
15  
-
-
-
-
-
-
30  
30  
30  
30  
Ohm  
Ohm  
Ohm  
Ohm  
A
low-side pre-driver  
. -10mA, TJ = -40C  
. -10mA, TJ = 175C  
No.47  
RON_UP  
Pull-up ON resistance  
high-side pre-driver  
Pull-down ON resistance  
low-side pre-driver  
. VSUP > 7V  
. 10mA, TJ = -40C  
. 10mA, TJ = 175C  
No.48  
RON_DN  
Pull-down ON resistance  
high-side pre-driver  
. VGS = 0V, VSUP > 7V  
. VGS = 12V, VSUP > 7V  
Turn-on gate drive  
peak current (sourcing)  
-1.4  
(-0.45)  
No.49  
No.50  
IGON  
Turn-off gate drive  
peak current (sinking)  
1.6  
(0.45)  
IGOFF  
A
. From logic input  
threshold to 2V VGS drive  
output at no load  
No.51  
No.52  
Propagation delay  
tPDDRV  
20  
-
-
1201  
20  
ns  
ns  
. Transitions at the  
different phases at no  
load condition  
Propagation delay matching tPDDRVM  
-20  
. DEAD_TIME [ 2:0] = 000  
0.00  
0.51  
0.80  
1.10  
1.67  
2.30  
3.40  
6.90  
001  
010  
011  
100  
101  
110  
111  
Programmable dead time :  
asynchronous internal delay  
between high-side and low- tDEAD  
side pre-driver of one half  
bridge  
No.53  
No.54  
-25%  
-15  
+25%  
15  
µs  
%
Dead time matching  
tDEAD_TOL  
-
between different channels  
1 For bare it is specified to 200ns max due measurement accuracy at wafer level  
REVISION 5.1 DECEMBER 13, 2016  
Page 11 of 41  
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
. VDSMON[2:0] =  
000  
Disabled  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
0.40  
0.60  
0.85  
1.05  
1.25  
1.50  
1.70  
0.60  
0.90  
1.15  
1.45  
1.75  
2.00  
2.30  
001  
010  
011  
100  
101  
110  
111  
Programmable drain-source  
voltage for monitoring of  
external N-FETs  
No.55  
VVDS_MON  
V
Programmable drain-source  
monitor blanking time: Delay  
between gate high and  
enabling corresponding VDS  
monitor  
VDS_BLANK_TIME[1:0] = 00  
0.60  
1.28  
2.55  
5.10  
0.80  
1.70  
3.40  
6.80  
1.00  
2.13  
4.25  
8.50  
01  
10  
11  
No.56  
No.57  
tVDS_BL  
µs  
. Internal resistance  
between FET gate-source  
pins to switch-off FET.  
VDD = 0V (sleep mode)  
. VGS = 0.5V  
Sleep gate discharge resistor Rsgd  
-
-
1
kOhm  
. VSUP > 12V  
. PHASEx = VSUP  
. CPx = PHASEx + 6.5V  
. ITCP,max @150C TJ  
. ITCP,min @-40C TJ  
Trickle charge pump current  
capability  
No.58  
No.59  
ITCP  
-160  
42  
-
-
-25  
70  
µA  
VGS under voltage threshold  
high  
. ICOM released  
VGS_UVH  
VGS_UVL  
fDR_PWM  
%V  
REG  
VGS under voltage threshold  
low  
No.60  
No.61  
. Warning on ICOM  
36  
-
-
63  
%V  
REG  
PWM frequency  
20  
100  
kHz  
. RTyp at room temperature  
. RMin at 150C TJ  
No.62  
Leakage from CPx - PHASEx  
RCP_LEAK  
0.5  
1
-
MOhm  
. Activated by VSUP_OVH  
event  
No.63  
VCPx discharge current  
IBOOST_DIS  
8
-
40  
mA  
. From VCPx to VPHASEx  
Logic IO’s - FET inputs, MISO  
No.64  
No.65  
No.66  
No.67  
. Min. voltage logical high  
. Max. voltage logical low  
. FETBx  
Digital input high voltage  
Digital input low voltage  
Input pull-up resistance  
Input pull-down resistance  
VIN_DIG_H  
VIN_DIG_L  
RIN_DIG_PU  
RIN_DIG_PD  
80  
-
-
-
-
-
-
%V  
DD  
20  
%V  
DD  
90  
90  
410  
410  
kOhm  
kOhm  
. FETTx  
REVISION 5.1 DECEMBER 13, 2016  
Page 12 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
Logic IO’s - EN input  
No.68  
No.69  
. EN  
Input pull-down resistance  
R_EN_PD  
90  
-
-
-
410  
1
kOhm  
µs  
. From bridge disable  
EN<0.2VDD to VGS < 0.5V,  
CLOAD = 1nF  
Bridge disable propagation  
delay  
ENPR_DEL  
Logic IO’s - ICOM  
No.70  
No.71  
No.72  
No.73  
. VICOM = 0V  
. VICOM = VDD  
Pull-up current  
ICOMPU  
ICOMPD  
fICOMF  
-2.2  
5.0  
-
-5.0  
2.6  
mA  
mA  
kHz  
kHz  
Pull-down current  
-
ICOM PWM frequency fast  
ICOM PWM frequency slow  
85  
100  
12.5  
115  
14.4  
fICOMS  
10.6  
. EN = Low  
. FETTx = Low, FETBx =  
High  
SPI start-up pulse duration  
on ICOM to enter SPI mode  
2048/  
fOSC  
4096/  
fOSC  
No.74  
tSPI_SU  
-
s
SPI Timing  
No.75  
No.76  
No.77  
No.78  
No.79  
No.80  
No.81  
No.82  
No.83  
No.84  
No.85  
No.86  
SPI initial setup time  
SPI clock frequency  
Rise/fall times  
tSPI_ISU  
fSPI  
2
-
-
-
µs  
kHz  
ns  
-
500  
. CLK, CSB, MISO, MOSI  
tSPI_RF  
tCSB_SU  
tCSB_H  
tCLK_H  
tCLK_L  
tDI_SU  
tDI_H  
-
-
200  
CSB setup time  
1
-
-
-
-
-
-
µs  
µs  
µs  
µs  
µs  
ns  
CSB high time  
2
-
Clock high time  
1
-
Clock low time  
1
-
Data in setup time  
Data in hold time  
Data out ready delay  
EEPROM read delay  
EEPROM write delay  
1
-
500  
-
-
500  
-
. CLOAD at FETB1 < 50pF  
. EE_RD = 1  
tDO_R  
tEE_RD  
tEE_WR  
-
ns  
6
µs  
ms  
. EE_WR = 1  
12  
-
-
Temperature for EEPROM  
read  
No.87  
No.88  
. Junction temperature  
. Junction temperature  
TJ_EE_RD  
-40  
-40  
-
-
150  
C  
C  
Temperature for EEPROM  
write  
T J_EE_WR  
150  
REVISION 5.1 DECEMBER 13, 2016  
Page 13 of 41  
 
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
Current Sense Amplifier  
No.89  
No.90  
Input offset voltage  
VIS_IO  
-7.6  
-10  
-
-
7.6  
10  
mV  
Input offset voltage  
thermal drift  
VIS_IO_TDRIFT  
µV/C  
Input common mode  
rejection ratio DC  
. Input differential voltage  
within ±100mV  
Common mode [-0.5, 1.0]  
V
No.91  
No.92  
No.93  
No.94  
ISCMRR_DC  
ISCMRR_AC  
ISPSRR_DC  
ISPSRR_AC  
60  
40  
60  
40  
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
Input common mode  
rejection ratio 1MHz  
Input power supply rejection  
ratio DC for VDD supply  
Input power supply rejection  
ratio 1MHz for VDD supply  
. Current sense gain = 000  
8.0  
10.3  
13.3  
17.2  
22.2  
28.7  
37.0  
47.8  
001  
010  
011  
100  
101  
110  
111  
No.95  
Closed loop gain  
ISGAIN  
-3%  
+3%  
. Amplified output to 99%  
of final value after input  
change  
No.96  
Output settling time  
ISSET  
VISENSE_MAX  
VISENSE_MIN  
-
-
1.0  
VDD  
µs  
No.97  
No.98  
. ISENSE output max level  
. ISENSE output min level  
Output voltage range high  
Output voltage range low  
VDD-0.02  
GND  
-
-
V
V
GND+0.0  
2
. Output current saturation  
level  
Output short circuit current  
to ground  
No.99  
IISENSE_SC  
-
1.4  
-
mA  
No.10
Gain bandwidth (GBW)  
ISGBW  
ISSR  
6
--  
-
-
-
MHz  
V/µs  
No.10
Output slew rate  
8
. CM spike = ±1.5V,  
t=250ns  
No.10
CM spike recovery  
ISCM_REC  
-
-
-
730  
50  
ns  
No.10
VREF voltage input  
VREF  
Table 10-1 General Electrical Specifications  
0
%V  
DD  
REVISION 5.1 DECEMBER 13, 2016  
Page 14 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
10.1. MLX83100 Typical Performance Graphs  
Figure 10-1 MLX83100 Regulated output voltage vs.  
supply voltage  
Figure 10-2 MLX83100 Regulated output voltage vs.  
supply voltage  
Figure 10-3 MLX83100 High-side driver FET RON  
resistance vs. supply voltage  
Figure 10-4 MLX83100 High-side driver FET ROFF  
resistance vs. supply voltage  
Figure 10-5 MLX83100 Low-side driver FET RON  
resistance vs. supply voltage  
Figure 10-6 MLX83100 Low-side driver FET ROFF  
resistance vs. supply voltage  
REVISION 5.1 DECEMBER 13, 2016  
Page 15 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
11. Block Diagram  
VBAT  
VSUP  
CP  
VBOOST  
ChargePump  
SupplyMonitor  
VSUP_OV  
VSUP  
Charge  
Pump  
Control  
VREG  
VSUP  
VSUP_UV  
VSUP  
12VRegulator  
Charge  
COMP  
Pump  
Mode  
VBOOST_UV  
VBOOST  
VBATF  
CPx  
VREG_OV  
VREG  
DriverStage  
VDD  
3.3V  
RCO  
VREG_UV  
VREG  
Trickle  
VDD_UV  
VDD  
ChargePump  
POR  
Bandgap  
GateDriverLogic  
ExternalFET  
Monitoring  
2
2
FETTx  
GATETx  
PHASEx  
Top  
Driver  
DeadTime  
VBATF  
2xHSVDS_OV  
2xHSVGS_UV  
2xLSVDS_OV  
PHASEx  
GATETX  
EN  
PHASEx  
PHASEx  
VDD  
IBP  
FETBx  
GATEBx  
Bottom  
Driver  
DeadTime  
2x  
Custom  
SPIInterface  
EEPROM  
ERR  
MISO  
EEPROM  
2x  
Bi-directional,SerialDiagnosticsInterface  
CurrentSenseAmplifier  
Temperature  
OVT  
Warning  
VDD  
1
ICOM_OUT  
IBP  
ICOM  
VDD  
Error  
Controller  
Gain  
IBM  
ICOM_IN  
AGND DGND  
VREF  
ISENSE  
Figure 11-1 Block diagram  
REVISION 5.1 DECEMBER 13, 2016  
Page 16 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
12. Functional Description  
12.1. Supply System  
The MLX83100 is supplied via pins VSUP and VDD. The power supply VSUP supplies the internal operation of  
the pre-driver, the charge pump and the voltage regulator used for the bootstrap based architecture. The  
digital supply VDD supplies the IO’s and the current sense amplifier.  
Inputs  
Outputs  
Internal  
VSUP  
POR  
VBOOST  
VREG  
VDD  
CSA  
3.3V  
VBG  
CP  
IO’s  
EEPROM  
RCO  
Diagnostics  
Drivers  
Figure 12-1 Principle organization of the supply system  
12.1.1. Power Supply - VSUP  
The internal operation of the pre-driver is supplied from the power supply input pin VSUP. It supplies the  
bandgap reference, power-on-reset system and internal 3.3V regulator. This 3.3V regulator in turn supplies  
the EEPROM, RC-oscillator and diagnostics. For safety reasons the pre-driver provides integrated under  
voltage and over voltage detection on VSUP.  
12.1.2. Charge Pump - VBOOST  
The IC comprises a charge pump, supplied from VSUP, which allows full device operation down to 4.5V. The  
charge pump boosted output voltage is available on VBOOST. This boosted voltage powers the voltage  
regulator VREG used to supply the low-side drivers directly, and high-side drivers via the bootstrap  
architecture. See Figure 4-1 for the standard charge pump configuration where VBOOST is regulated relative  
to ground. The charge pump will not be switching when VSUP > VREG + 2xVf, diode  
.
An alternative mode of operation for the charge pump supports the use of an external low drop N-FET for  
reverse polarity protection. In this mode the charge pump boosts the output voltage relative to the supply  
voltage instead of relative to ground, see application diagram in Figure 4-2. The disadvantage is an  
additional amount of dissipation inside the driver to regulate VREG.  
The charge pump architecture is a supply voltage doubler with feedback loop for stable output voltage  
generation, as shown in Figure 12-2. It can be configured in EEPROM to either regulate the boosted output  
voltage VBOOST relative to ground or relative to the supply voltage, see Figure 12-3 for the typical output  
voltage. Furthermore the EEPROM configuration allows disabling the charge pump for applications not  
requiring the low voltage operation, in order to reduce the overall power consumption.  
REVISION 5.1 DECEMBER 13, 2016  
Page 17 of 41  
 
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
For safety reasons the pre-driver provides integrated under voltage detection on VBOOST. In addition the  
charge pump comprises a discharge switch in order to keep VBOOST output voltage in a safe operating area  
in case of over voltage on the supply input pin. The discharge switch is activated as soon as the supply  
voltage VSUP exceeds the VSUP_OVH threshold level and is deactivated when it drops below the VSUP_OVL  
threshold. At the same time the charge pump is deactivated.  
EN_CP  
CPMODE  
Charge pump configuration  
0
x
Charge pump disabled  
Charge pump configured to regulate VBOOST relative to ground, to support  
low voltage operation  
1
1
0
1
Charge pump configured to regulate VBOOST relative to the supply, to  
support the use of a reverse polarity N-FET  
Table 12-1 Charge pump configuration options  
CPMODE  
VSUP  
CP  
VBOOST  
EN_CP  
Level shift  
with  
dead time  
&
VSUP  
fCP  
Control  
CP_FB  
CP_DSCHG  
CPMODE  
VSUP  
slope  
COMP  
OPA  
VBOOST_UV  
COMP  
Figure 12-2 Charge pump principle schematic  
Charge Pump and Voltage Regulator Output vs Power Supply Input  
25 V  
23 V  
20 V  
18 V  
15 V  
13 V  
10 V  
8 V  
CP Mode 0 - VBOOST  
CP Mode 1 - VBOOST  
VREG  
5 V  
3 V  
CPx-GATETx  
0 V  
4.0 V  
6.0 V  
8.0 V  
10.0 V  
12.0 V  
VSUP [V]  
Figure 12-3 Charge pump output and driver supply  
REVISION 5.1 DECEMBER 13, 2016  
Page 18 of 41  
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
12.1.3. Voltage Regulator - VREG  
The voltage regulator regulates the power supply down to 12V, in order to supply the low-side gate drivers  
and switch the external low-side N-FETs without gate-source over voltage at high battery voltages. The  
regulated output voltage VREG further provides the bootstrap voltage for driving the high-side N-FETs.  
For safety reasons the pre-driver provides integrated under voltage and over voltage detection on VREG.  
12V  
regulator  
VREG  
VBATF  
CPx  
Trickle  
ChargePump  
2
2
2
2
Ccpx  
GATETx  
PHASEx  
GATEBx  
Top Driver  
Bottom  
Driver  
Rshunt  
Figure 12-4 Voltage regulator for driver supply VREG  
12.1.4. Digital Supply - VDD  
The MLX83100 comprises a current sense amplifier. The current sense amplifier and IO’s are supplied from  
the digital supply VDD.  
For safety reasons the pre-driver provides integrated under voltage detection on VDD.  
Note:  
When supplying VDD with a limited output impedance (e.g. from a microcontroller IO) the performance of  
the amplifier may be affected.  
12.1.5. Sleep Mode  
Sleep mode is activated when the digital supply input VDD is pulled below VVDD sleep voltage  
threshold low. In sleep mode the charge pump is disabled and the current consumption on VSUP is  
reduced. All gate drivers are switched off via sleep gate discharge resistors RSGD. The pre-driver will wake-up  
as soon as the voltage level on VDD rises above VVDD sleep voltage threshold high”.  
REVISION 5.1 DECEMBER 13, 2016  
Page 19 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
REVISION 5.1 DECEMBER 13, 2016  
Page 20 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
Pin Name  
State in sleep mode  
CP  
The charge pump is disabled.  
Since the charge pump is disabled VBOOST is pulled to the supply voltage via the external  
charge pump diodes.  
VBOOST  
GATEBx  
GATETx  
In sleep mode, gate-discharge resistors (RSGD) between GATEBx and DGND are activated,  
ensuring all low-side gate drivers are switched off  
In sleep mode, gate-discharge resistors (RSGD) between GATETx and PHASEx are activated,  
ensuring all high-side gate drivers are switched off  
PHASEx  
VREG  
CPx  
Phases are kept low with GATETx through the internal body diode of the pre-driver  
Voltage regulator is disabled  
Any charge that remains after VREG is disabled will leak to ground  
Current sense amplifier is supplied from VDD, and thus not active  
ISENSE  
FETBx, FETTx  
EN, ICOM, MISO  
All IO’s are supplied from VDD, and thus not active  
Table 12-2 Drivers in Sleep Mode  
Notes:  
1. In case any of the digital input pins are externally pulled high while VDD is low, current will flow into  
VDD via internal ESD protection diodes. This condition is not allowed.  
2. When VDD is pulled low, also ICOM will go low. This should not be interpreted as a diagnostic  
interrupt.  
CPx  
GATETx  
RSGD  
PHASEx  
VREG  
GATEBx  
RSGD  
Figure 13-1-5 Drivers in Sleep Mode  
REVISION 5.1 DECEMBER 13, 2016  
Page 21 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
12.2. Gate Drivers  
12.2.1. PWM Input Control Logic – FETBx & FETTx  
Each of the 4 external N-FETs can be controlled independently via the 4 digital PWM input pins: FETBx and  
FETTx. However, the digital logic provides the option to control the 2 external half bridges with only 2  
control signals, by shorting high-side and low-side PWM input pins for each half bridge.  
The IC provides internal shoot through protection since the digital logic prevents simultaneous activation of  
both high-side and low-side driver of one half bridge. A configurable dead time ensures the high-side (low-  
side) N-FET is fully switched off, before switching on the complementary low-side (high-side) N-FET.  
For safety reasons the pre-driver provides integrated drain-source and gate-source monitoring for each of  
the 4 external N-FETs.  
FETTx  
GATETx  
DeadTime  
PHASEx  
EN  
FETBx  
GATEBx  
DeadTime  
Figure 12-5 Input control logic of the driver stage  
12.2.2. Enable Input EN  
The enable input pin EN enables the gate driver outputs when set high. When reset, all gate driver outputs  
are switched to the low state, switching off all external N-FETs. This is performed by pulling all gate drivers  
to ground via the pull-down on-resistances. The enable pin can be used by the microcontroller to disable all  
drivers in case of any fault detection.  
While EN is low, the programming of the EEPROM via SPI can be initiated by pulling ICOM low for the SPI  
start-up time specified by tSPI_SU  
.
12.2.3. Gate Driver Supply and Bootstrap Architecture – VREG & CPx  
The voltage regulator regulates the power supply voltage down to 12V. The regulated voltage is used to  
directly supply the low-side drivers. To provide sufficient supply voltage for the high-side drivers a bootstrap  
architecture is used. When the low-side N-FET is switched on, the phase voltage will be pulled low and the  
bootstrap capacitor is charged from the VREG buffer capacitor through the bootstrap diode. Afterwards, if  
the low-side N-FET is switched off and the high-side N-FET is switched on, the charge of the bootstrap  
capacitor is used to supply sufficient gate drive voltage to the high-side N-FET. The integrated trickle charge  
pump assures the bootstrap capacitor will not be discharged, and allows 100% PWM operation.  
REVISION 5.1 DECEMBER 13, 2016  
Page 22 of 41  
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
12.3. Integrated Current Sense Amplifier  
The IC comprises an integrated fast, high-bandwidth, low offset current sense amplifier.  
The current sense amplifier is supplied from the digital supply. It senses the voltage over the low-side shunt,  
amplifies it with the gain programmed in EEPROM and adds the offset provided on VREF. The output of the  
amplifier is available on ISENSE.  
 ꢀꢁꢂꢀꢁ  ꢄꢅꢆꢆꢇꢈꢉ  ꢀꢋꢅꢈꢉꢌ  ꢍꢎꢏꢈꢐꢐꢑꢒꢓꢔ  ꢗꢒꢐꢘ  
VDD  
1
VREF  
IBP  
OPA  
OPA  
ISENSE  
IBM  
Figure 12-6 Current Sense Amplifier  
REVISION 5.1 DECEMBER 13, 2016  
Page 23 of 41  
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
12.4. Protection and Diagnostic Functions  
12.4.1. Power Supply Over Voltage Shutdown (VSUP_OV)  
The pre-driver has an integrated VSUP over voltage shut down to prevent destruction of the IC at high  
supply voltages.  
12.4.2. Power Supply Under Voltage Warning (VSUP_UV)  
The pre-driver has an integrated VSUP under voltage detection. The diagnostics interface will give a warning  
to the microcontroller. It is the responsibility of the microcontroller to take action in order to ensure reliable  
operation.  
12.4.3. Digital Supply Under Voltage Warning (VDD_UV)  
The pre-driver has an integrated VDD under voltage detection. The diagnostics interface will give a warning  
to the microcontroller. It is the responsibility of the microcontroller to take action in order to ensure reliable  
communication between microcontroller and pre-driver.  
12.4.4. VBOOST Under Voltage Warning (VBOOST_UV)  
The integrated charge pump boosts the supply voltage in low voltage operation on the VBOOST output.  
There is an under voltage detection on VBOOST to warn the microcontroller the charge pump is not ready. It  
is the responsibility of the microcontroller to take action in order to ensure reliable motor operation.  
12.4.5. Gate Driver Supply Over Voltage Warning/Shutdown (VREG_OV)  
The MLX83100 comprises an integrated VREG over voltage detection. The reaction of the pre-driver on this  
VREG_OV event depends on the status of the Bridge Feedback bit in EEPROM. If this VREG_OV_BF_EN bit is  
set the pre-driver will disable all gate drivers, switching off all external N-FETs. If the bit is reset it will just  
give a warning to the microcontroller.  
VREG_OV_BF_EN  
Pre-driver reaction VREG_OV event  
0
1
VREG_OV is reported on ICOM, but the drivers remain active  
VREG_OV is reported on ICOM and the drivers are disabled  
Table 12-3 EEPROM Configuration for VREG over voltage detection  
12.4.6. Gate Driver Supply Under Voltage Warning (VREG_UV)  
The pre-driver detects when the regulated voltage drops below the under voltage threshold. The diagnostics  
interface will give a warning to the microcontroller. It is the responsibility of the microcontroller to take  
action in order to ensure reliable switching of the external N-FETs, since the VREG voltage directly supplies  
the low-side gate drivers.  
REVISION 5.1 DECEMBER 13, 2016  
Page 24 of 41  
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
12.4.7. Gate Source Voltage Monitoring Warning (VGS_UV)  
In order to ensure reliable switching of the high-side N-FETs, the MLX83100 comprises gate-source monitors  
for each of the high-side N-FETs. In case of an under voltage, the diagnostics interface will give a warning to  
the microcontroller, if the gate-source comparators are enabled in EEPROM. It is the responsibility of the  
microcontroller to take action in order to ensure reliable switching of the high-side gate drivers.  
12.4.8. Over Temperature Warning (OVT)  
If the junction temperature exceeds the specified threshold, a warning will be communicated to the  
microcontroller. The pre-driver will continue in normal operation. It is the responsibility of the  
microcontroller to protect the IC against over temperature destruction.  
12.4.9. Shoot Through Protection and Dead Time  
The pre-drivers’ internal implementation guarantees that low-side and high-side N-FET of the same external  
half bridge cannot be conducting at the same time, preventing a short between the supply and ground. In  
addition the pre-driver provides a programmable dead time in EEPROM. The dead time sets the delay  
between the moment when the high-side (low-side) N-FET is switched off, and the moment when the  
complementary low-side (high-side) N-FET can be switched on.  
12.4.10. Drain-Source Voltage Monitoring Warning/Shutdown (VDS_ERR)  
The MLX83100 provides a drain-source voltage monitoring feature for each external N-FET to protect against  
short circuits to ground or supply. For the high-sides the drain-source voltage are sensed via the VBATF and  
PHASEx-pins. For the low-sides the PHASEx and IBP-pins are used. The drain-source voltage comparator can  
be enabled or disabled in EEPROM.  
The drain-source voltage monitor for a certain external N-FET is activated when the corresponding input is  
switched on and the dead time has passed. An additional blanking time can be programmed in EEPROM. If  
the drain-source voltage remains higher than the VDS monitor threshold voltage, the VDS error is raised. The  
threshold voltage is configurable in EEPROM.  
The reaction of the pre-driver on a VDS error can be configured in EEPROM with the Bridge Feedback bit. If  
this bit is set the pre-driver automatically disables the drivers when a VDS error is detected. If the bit is  
reset, the drivers remain active. In both cases the VDS error will be reported to the microcontroller.  
VDS_COMP_EN  
VDS_BF_EN  
Pre-driver reaction on VDS-error event  
0
1
1
x
0
1
Any VDS error is ignored and no error is reported on ICOM  
VDS_ERR is reported on ICOM, but the drivers remain active  
VDS_ERR is reported on ICOM and the drivers are disabled  
Table 12-4 EEPROM Configuration for drain-source error detection  
REVISION 5.1 DECEMBER 13, 2016  
Page 25 of 41  
 
 
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
12.4.11. EEPROM Error Warning (EEP_ERR)  
To ensure reliable communication with EEPROM the pre-driver provides an automatic single bit error  
correction and double error detection. If two bits in the addressed word are bad the EEPROM gives the  
EEP_ERR warning, indicating a double error was detected.  
12.4.12. Diagnostics Interface – ICOM  
All diagnostic events described above are reported to the microcontroller via a single pin, ICOM. In normal  
operation, when no error is detected, ICOM is default high.  
The ICOM interface acts as a serial interface that feeds back detailed diagnostics information. If an error is  
detected, ICOM goes from default high to communicating a PWM-signal. The speed of this PWM signal  
depends on the EEPROM configuration of bit PWM_SPEED. Each error corresponds to a duty cycle with a 5-  
bit resolution. Thus the microcontroller can distinguish different errors by reading the duty cycle, see Table  
12-7.  
PWM_SPEED  
Description  
0
1
Slow mode: for slow microcontrollers  
Fast mode : for fastest response of microcontroller  
Table 12-5 EEPROM Configuration for diagnostics communication speed  
The duty cycle is transmitted until the microcontroller sends the acknowledgement. This is done by pulling  
ICOM low for more than a PWM-period, tAck > tICOM. At each ICOM falling edge the pre-driver checks the  
actual voltage on ICOM in order to detect an acknowledgement. After acknowledgement the duty cycle of  
the next error is transmitted, if multiple errors were detected. All errors have been reported when the end-  
of-frame duty cycle is send. When all errors are physically removed, and the end-of-frame message is  
acknowledged by the microcontroller, ICOM returns to its default high state.  
Physical  
Error  
ICOM  
Default high  
Error Information  
End-of-Frame  
Default high  
MCU  
Acknowledge  
Figure 12-7 ICOM Diagnostics Communication  
REVISION 5.1 DECEMBER 13, 2016  
Page 26 of 41  
 
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
Notes:  
1. When VDD is pulled low to put the pre-driver in sleep mode, ICOM will go low as well. This should  
not be interpreted as a diagnostic interrupt. As soon as VDD goes high, the pre-driver wakes-up and  
ICOM will return to its default high state.  
2. At POR it is possible that the voltages on VSUP and VREG were not above the under voltage  
thresholds (e.g. due to charging of external capacitors). It is possible that ICOM reports these under  
voltage errors after POR. This implies that the microcontroller has to acknowledge these errors  
before ICOM will be in its default high state and the pre-driver is ready for normal operation.  
The drivers are disabled when  
The drivers are enabled again as soon as  
An error condition is detected for which the hardware  
protection is activated  
VSUP_OV  
The microcontroller acknowledges the error  
VREG_OV  
VDS_ERR  
VDD = Low (sleep mode)  
EN = Low  
VDD = High (wake-up)  
EN = High  
Table 12-6 Pre-Driver Output State Summary  
VDD  
VDD  
Microcontroller  
Pre-Driver  
ICOM_OUT  
<5mA  
<5mA  
Interrupt / Read duty cycle  
Acknowledge  
ICOM  
Cload  
<100pF  
ICOM_IN  
Figure 12-8 ICOM Diagnostics Interface  
In case multiple errors occur at the same time, the priority is as defined in Table 12-7. The highest priority is  
0 and 16 is the lowest priority.  
REVISION 5.1 DECEMBER 13, 2016  
Page 27 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
Priority  
Error Event  
% Duty Cycle  
Debounce Time Description  
11  
ICOM_EOF  
93.5  
n/a  
End of frame  
VDS Error = VDS_T1 | VDS_T2 | VDS_T3 |  
VDS_B1 | VDS_B2 | VDS_B3  
This event can be masked by setting  
VDS_COMP_EN = 0  
10  
VDS_ERR  
82.5  
2 µs  
To avoid erroneous triggering due to  
switching there is a programmable  
blanking time on top of the debounce  
time: VDS_BLANK_TIME[1:0].  
9
8
7
6
5
4
EEP_ERR  
VDD_UV  
VSUP_OV  
VSUP_UV  
OVT  
55.0  
49.5  
44.0  
38.5  
33.0  
27.5  
n/a  
8 µs  
2 µs  
8 µs  
2 µs  
16 µs  
EEPROM dual error detected  
VDD under voltage  
VSUP over voltage  
VSUP under voltage  
OVT over temperature  
VREG under voltage  
VGS under voltage  
VREG_UV  
3
2
1
VGS_UV  
VBOOST_UV  
VREG_OV  
22.0  
16.5  
11.0  
2 µs  
16 µs  
2 µs  
This event can be masked by setting  
VGS_UV_COMP_EN = 0  
VBOOST under voltage  
VREG over voltage  
This event can be masked by setting  
VGS_UV_COMP_EN = 0  
Table 12-7 Overview Diagnostics over ICOM with Priority Definitions  
REVISION 5.1 DECEMBER 13, 2016  
Page 28 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
12.5. EEPROM Configuration  
The MLX83100 provides an EEPROM for configuration of the IC, the current sense amplifier and over current  
comparator, protection and diagnostic functions. This allows to optimize the pre-drivers’ operation for the  
application requirements. The configuration can be done at customer production testing by using the PTC-  
04, or by the microcontroller via a custom program interface.  
The EEPROM features single error correction and double error detection.  
12.5.1. Memory Map  
The MLX83100 comprises 6 bytes of EEPROM for user configurability. The first two bytes are not used for  
the internal configuration of the pre-driver, and can thus be used by the customer for traceability purposes.  
The other 4 bytes are used for configuration of the current sense amplifier and configuration of the  
diagnostics.  
The pre-driver is programmed with default settings per table below.  
Address  
0
ED7  
ED6  
ED5  
ED4  
ED3  
ED2  
ED1  
ED0  
Res.  
0
-
0
-
-
-
0
-
-
0
-
-
-
0
-
-
0x00  
1
0
0
0
-
-
-
Res.  
0
0x00  
2
0
0
0
0
0
VDSMON[2:0]  
111  
0
0
CPMODE  
0
DEAD_TIME[2:0]  
011  
Res.  
0
0x7C  
3
VDS_BLANK_TIME[1:0] PWM_SPEED  
-
0
CUR_GAIN[2:0]  
011  
Res.  
0
0x86  
10  
0
VREG_OV  
_BF_EN  
VDS  
_BF_EN  
VDS  
VGS_UV  
4
EN_TCP  
EN_CP  
-
Res.  
_COMP_EN _COMP_EN  
0xF4  
5(-6-7)  
0xC0  
1
SPI_EN  
1
1
Res.  
1
1
-
1
-
0
-
1
-
0
-
0
Res.  
0
0
0
0
0
0
Table 12-8 EEPROM Memory Map and Default Configuration  
REVISION 5.1 DECEMBER 13, 2016  
Page 29 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
Bit Name  
Description  
Default  
Configuration of the IC  
CPMODE  
Defines the mode of operation of the internal charge pump  
1: VBOOST voltage is regulated relative to VSUP  
for reverse polarity N-FET protection  
0
0: VBOOST voltage is regulated relative to GND  
for low voltage operation with minimal power consumption  
EN_CP  
EN_TCP  
SPI_EN  
Defines the status of the pre-drivers’ internal charge pump  
1: Charge pump active  
0: Charge pump not active  
1
0
1
Defines the status of the pre-drivers’ trickle charge pump  
1: Trickle charge pump active  
0: Trickle charge pump not active  
Defines the accessibility of EEPROM through the custom SPI interface  
1: EEPROM accessible via the custom SPI interface  
0: EEPROM not accessible via the custom SPI interface  
Configuration of the Current Sense Amplifier and Over Current Comparator  
CUR_GAIN[2:0] Defines the gain of the current sense amplifier  
Configuration of the Protection and Diagnostic Functions  
011  
0
PWM_SPEED  
Defines the diagnostics communication speed on ICOM  
1: Fast mode for fastest response of microcontroller  
0: Slow mode for low-end microcontrollers  
VREG_OV_BF_EN  
Defines the pre-drivers’ reaction on a regulated supply over voltage:  
1: Report VREG_OV on ICOM and disable gate drivers  
1
0: Report VREG_OV on ICOM without effect on gate drivers  
DEAD_TIME[2:0]  
VDSMON[2:0]  
Defines the dead time between switching off high-side (low-side) N-FET 011  
and switching on complementary low-side (high-side) N-FET  
Defines the threshold level for the VDS monitoring of the external N-  
FETs  
111  
VDS_BLANK_TIME[1:0] Defines the duration of the VDS blanking time after switching on the N- 10  
FET  
VDS_COMP_EN  
Defines the status of the pre-drivers’ drain-source monitoring  
1: Drain-source comparators active  
0: Drain-source comparators not active  
1
1
1
VDS_BF_EN  
Defines the pre-drivers’ reaction on a drain-source fault:  
1: Report VDS_ERR on ICOM and disable gate drivers  
0: Report VDS_ERR on ICOM without effect on gate drivers  
VGS_UV_COMP_EN  
Defines the status of the pre-drivers’ gate-source monitoring  
1: Drain-source comparators active  
0: Drain-source comparators not active  
Table 12-9 EEPROM Bit Description  
REVISION 5.1 DECEMBER 13, 2016  
Page 30 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
12.5.2. “SPI Program Mode”  
The EEPROM memory can be accessed through a custom SPI interface. It allows the user to read/program  
the EEPROM by the microcontroller in the application. This custom interface re-uses the low-side driver pins  
for SPI communication.  
Since the same pins are used for both reading/writing the EEPROM and for controlling the motor, the  
EEPROM is only accessible when the motor is not running. Furthermore it is necessary to apply a certain  
sequence of conditions before the pre-driver will enter the “SPI Program Mode”. Once in this mode, the  
EEPROM can be accessed for reading and writing, until the IC enters “Normal Mode” again and motor  
operation is possible.  
EN  
FETTx  
DriverLogic  
FETBx  
MISO  
Custom  
EEPROM  
ICOM  
SPI  
Diagnostics  
Figure 12-9 Custom SPI interface  
Pin Name  
SPI Signal  
Description  
ICOM  
CSB  
SPI-frames are defined by CSB low  
The MOSI (Master Out Slave In) shift register is reading in  
data on the rising edge of CLK  
FETB3  
FETB2  
MISO  
MOSI  
CLK  
Clock input, each SPI-frame has to consist of 16 clock periods  
The MISO (Master In Slave Out) output is guaranteed to be  
stable while the CLK is low  
MISO  
Table 12-10 SPI Signals  
12.5.2.1. Entering “SPI Program Mode”  
The MLX83100 enters SPI Program Modewhen all below conditions are satisfied:  
.
.
.
.
EN = 0  
FETTx = Low (High-side FET inputs off)  
FETBx = High (Low-side FET inputs off)  
ICOM  
.
.
Any pending errors have been removed and acknowledged, so ICOM is in default high state  
A low level pulse is applied on ICOM for a time tSPI_SU  
.
REVISION 5.1 DECEMBER 13, 2016  
Page 31 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
12.5.2.2. Exiting “SPI Program Mode”  
The MLX83100 will exit the “SPI Program Mode” when the enable input EN is pulled high. Similar to when  
the MLX83100 comes out of POR, after leaving the “SPI Program Mode” the pre-driver is blocked until the  
data have been copied to the registers. Meaning that before entering “Normal Mode” the EEPROM write will  
be completed and the EEPROM state machine will copy all EEPROM contents into registers. During this time  
ICOM is kept low. When it returns to its default high state the pre-driver is ready for normal operation.  
12.5.2.3. Protocol  
Once the IC is in “SPI Program Mode” the microcontroller can read/write the EEPROM, following the  
protocol depicted below.  
EE_READY=1  
Data in  
DATA latch  
EE_READY=1  
Data in  
DATA LATCH register  
READ INSTRUCTION  
WRITE INSTRUCTION  
Copy latched DATA  
(not read from EEPROM!)  
into MISO [10:4]  
If COMM_ERR = 0  
Start EE_RD  
Copy latched DATA into  
MISO [10:4]  
If comm_err = 0  
Start EE_WR  
Latch data into  
MOSI register on  
CLK Rising edge  
>tEE_RD  
> tEE_WR  
CSB  
CLK  
n[0]  
n+1[0]  
n+1[15]  
n+2[0]  
n[1]  
n[2]  
n[15]  
n[1]  
n+1[1] n+1[2]  
n[1]  
n+2[1]  
MOSI  
MISO  
n+1[0]  
n+1[15]  
n[0]  
n[1]  
n[15]  
n+1[1]  
n+2[0]  
n+2[1]  
Data on MISO stable  
(valid) while CLK is  
LOW  
MISO[10:4] contains DATA  
requested in previous Read  
instruction  
MISO[10:4] contains previous  
MOSI[10:4] DATA  
Figure 12-10 SPI Protocol (LSB first)  
12.5.2.4. Registers Description  
MOSI [15:0]  
Bit [15]  
MOSI_PAR  
Bit [7]  
Bit [14]  
x
Bit [13]  
x
Bit [12]  
Bit [11]  
Bit [10]  
Bit [2]  
Bit [9]  
Bit [8]  
Bit [0]  
CMD [1:0]  
MOSI_DATA [7:5]  
Bit [1]  
Bit [6]  
Bit [5]  
Bit [4]  
Bit [3]  
x
MOSI_DATA [4:1]  
ADDRESS [2:0]  
Table 12-11 MOSI frame description  
MISO[15:0]  
Bit [15]  
Bit [14]  
Bit [13]  
Bit [12]  
Bit [11]  
Bit [10]  
Bit [2]  
Bit [9]  
MISO_DATA [7:5]  
Bit [1]  
Bit [8]  
Bit [0]  
MISO_PAR COMM_ERR EE_READY  
Bit [7] Bit [6] Bit [5]  
MISO_DATA [4:1]  
CMD [1:0]  
Bit [4]  
Bit [3]  
x
ADDRESS [2:0]  
Table 12-12 MISO frame description  
REVISION 5.1 DECEMBER 13, 2016  
Page 32 of 41  
 
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
Bit  
Description  
ADDRESS  
Address of the byte in EEPROM that needs to be read/written to.  
In case of write command, the data that needs to be written. Don’t care for any read  
command.  
MOSI_DATA[7:1]  
MISO_DATA[7:1]  
In case previous command was write instruction, it returns the data that was written. In  
case of a read instruction, it returns the data read from EEPROM.  
Read/Write command  
00: EE_RD: Read command  
01: EE_WR: Write command  
10: EE_RDAW1  
CMD [1:0]  
11: EE_RDAW2  
Reading/writing the EEPROM takes a certain time, specified by tEE_RD and tEE_WR  
respectively. These times define the minimum time CSB (ICOM) has to remain high  
between two SPI-frames in order to finish the read/ write action.  
As soon as the read/write action starts, the EE_READY bit is reset. After completion of  
the read/write action the bit is set.  
EE_READY  
If the read/write delay between SPI-frames was long enough to execute the read/write  
action, the EE_READY bit will thus be set, signaling the read/write action was finished. If  
the time was too short, the bit will still be 0.  
This bit indicates if the previous MOSI-frame was received correctly. If no  
communication error occurred the bit will be reset, and the read/write action was  
started as soon as CSB was pulled high.  
COMM_ERR  
If a communication error occurred in the previous MOSI-frame the read/write command  
was not executed. Possible communication errors are:  
Odd parity bit was set incorrect  
Number of clock periods was not equal to 16  
MOSI_PAR,  
MISO_PAR  
Odd parity bit of the current MOSI/MISO frame.  
Table 12-13 MOSI/MISO frames bit description  
REVISION 5.1 DECEMBER 13, 2016  
Page 33 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
15  
14  
X
13  
X
[11:12]  
[10:4]  
3
[2:0]  
MOSI_  
PAR  
CMD[1:0]  
MOSI_DATA[6:0]  
X
ADDRESS[2:0]  
MOSI  
CLK COUNTER=16  
COMM  
_ERR  
EEPROM  
EE_  
READY  
Latches  
DATA[6:0]  
MISO_ COMM  
EE_  
READY  
CMD[1:0]  
MISO_DATA[6:0]  
X
ADDRESS[2:0]  
MISO  
PAR  
_ERR  
Figure 12-11 MOSI/MISO registers and relation to internal data latches  
12.5.2.5. Read Instruction  
In order to read one of the EEPROM bytes, the microcontroller should compose the MOSI(N) frame  
according to Table 12-11 with the address it wants to read, the read command and set the odd parity bit in a  
correct way.  
After transmission of this MOSI(N)-frame and when the CSB signal is pulled high, the pre-driver will start to  
read the data at the specific address. If CSB is kept high long enough for the pre-driver to execute the read  
action, it will transmit the read data on the next MISO(N+1)-frame.  
The data in this MISO(N+1)-frame is valid only if  
.
.
.
COMM_ERR = 0 :  
EE_READY = 1 :  
no communication error was detected on the previous MOSI(N)-frame  
the read delay was long enough to finish the read  
MISO_PAR = correct : the MISO(N+1)-frame has a correct odd parity bit  
REVISION 5.1 DECEMBER 13, 2016  
Page 34 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
12.5.2.6. Write Instruction  
The MLX83100 provides different configuration options through the EEPROM programming. In order to  
program one of the EEPROM bytes, the microcontroller should compose the MOSI(N) frame according to  
Table 12-11 with the address and data it wants to write, the write command and set the odd parity bit in a  
correct way.  
After transmission of this MOSI(N)-frame and when the CSB signal is pulled high, the pre-driver will start to  
write the data at the specific address. If CSB is kept high long enough the pre-driver will be able to complete  
the write instruction.  
In total three verification steps are possible in order to ensure successful writing of the EEPROM. On the first  
MISO-frame after the write command, it can be checked if the write command is received correctly and the  
correct address and data are used. In the next two MISO-frames the data written in EEPROM can be read in  
order to guarantee the desired data has been written in EEPROM  
.
.
.
Verification Step 1: Correct receive of the write instruction using the MISO(N+1)-frame  
.
.
.
.
COMM_ERR = 0 :  
EE_READY = 1 :  
no communication error detected on MOSI(N)-write command  
the write delay was long enough to finish the write instruction  
MISO_PAR = correct : the MISO(N+1)-frame has a correct odd parity bit  
MISO_DATA(N+1) = MOSI_DATA(N) : the correct data was used for the write instruction  
Verification Step2: EE_RDAW1 using the MISO(N+2)-frame  
.
.
.
.
COMM_ERR = 0 :  
EE_READY = 1 :  
no communication error detected on MOSI(N+2)-RDAW1 command  
the read delay was long enough to finish the read instruction  
MISO_PAR = correct : the MISO(N+2)-frame has a correct odd parity bit  
MISO_DATA(N+2) = MOSI_DATA(N) : the correct data is written  
Verification Step3: EE_RDAW2 using the MISO(N+3)-frame  
.
.
.
.
COMM_ERR = 0 :  
EE_READY = 1 :  
no communication error detected on MOSI(N+3)-RDAW2 command  
the read delay was long enough to finish the read instruction  
MISO_PAR = correct : the MISO(N+3)-frame has a correct odd parity bit  
MISO_DATA(N+3) = MOSI_DATA(N) : the correct data is written  
REVISION 5.1 DECEMBER 13, 2016  
Page 35 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
13. ESD Protection  
VBATF  
VSUP  
CP  
VBOOST  
VREG  
VDD  
Supply ESD Connections  
55V  
18.5V  
8V  
AGND  
55V  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
Gate Driver ESD Connections  
Digital IO ESD Connections  
CPx  
VREG  
VDD  
VDD  
VDD  
55V  
18.5V  
GATETx  
GATEBx  
FETBx  
FETTx  
ICOM  
EN  
PHASEx  
18.5V  
10V  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
DGND  
VDD  
VDD  
Current Sense Amplifier ESD Connections  
VDD  
IBP  
ISENSE  
OPA  
IBM  
OCIN  
VREF  
9V  
DGND  
DGND  
DGND  
DGND  
Figure 13-1 Principle Schematic highlighting ESD Connections  
Note:  
All pins are referenced to the driver ground DGND as depicted in the picture above, but only for the ESD  
protection.  
REVISION 5.1 DECEMBER 13, 2016  
Page 36 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
14. Package Information  
14.1. Package Marking  
Product name: MLX83100  
Lot number: ZZZZZZZZ  
Date code: YYWW  
format free  
year and week  
MLX83100  
ZZZZZZZZ  
YYWW  
Figure 14-1 Package marking  
REVISION 5.1 DECEMBER 13, 2016  
Page 37 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
14.2. Package Data  
A
A1  
A2  
D
E
H
e
L
b
c
α
P
P1  
2.9  
3.0  
3.1  
Min  
0.05  
0.85  
0.90  
0.95  
9.70 4.30  
9.80 4.40  
9.90 4.50  
0.50 0.19 0.09  
0°  
5.4  
5.5  
5.6  
6.4  
0.65  
Nom.  
B.S.C. B.S.C.  
Max. 1.10  
0.15  
0.75 0.30 0.20  
8°  
Table 14-1 Mechanical dimensions  
Figure 14-2 Package drawing  
REVISION 5.1 DECEMBER 13, 2016  
Page 38 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
15. Standard information regarding manufacturability  
of Melexis products with different soldering processes  
Our products are classified and qualified regarding soldering technology, solderability and moisture  
sensitivity level according to following test methods:  
Reflow Soldering SMD’s (Surface Mount Devices)  
IPC/JEDEC J-STD-020: Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface  
Mount Devices (classification reflow profiles according to table 5-2)  
EIA/JEDEC JESD22-A113: Preconditioning of Nonhermetic Surface Mount Devices Prior to Reliability  
Testing (reflow profiles according to table 2)  
Wave Soldering SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  
EN60749-20: Resistance of plastic- encapsulated SMD’s to combined effect of moisture and soldering  
heat  
EIA/JEDEC JESD22-B106 and EN60749-15: Resistance to soldering temperature for through-hole  
mounted devices  
Iron Soldering THD’s (Through Hole Devices)  
EN60749-15: Resistance to soldering temperature for through-hole mounted devices  
Solderability SMD’s (Surface Mount Devices) and THD’s (Through Hole Devices)  
EIA/JEDEC JESD22-B102 and EN60749-21: Solderability  
For all soldering technologies deviating from above mentioned standard conditions (regarding peak  
temperature, temperature gradient, temperature profile etc) additional classification and qualification tests  
have to be agreed upon with Melexis. The application of Wave Soldering for SMD’s is allowed only after  
consulting Melexis regarding assurance of adhesive strength between device and board.  
Melexis recommends reviewing on our web site the General Guidelines soldering recommendation  
(http://www.melexis.com/Quality_soldering.aspx)  
as  
well  
as  
trim&form  
recommendations  
(http://www.melexis.com/Assets/Trim-and-form-recommendations-5565.aspx).  
Melexis is contributing to global environmental conservation by promoting lead free solutions. For more  
information on qualifications of RoHS compliant products (RoHS = European directive on the Restriction Of  
the use of certain Hazardous Substances) please visit the quality page on our website:  
http://www.melexis.com/quality.aspx  
16. ESD Precautions  
Electronic semiconductor products are sensitive to Electro Static Discharge (ESD). Always observe Electro  
Static Discharge control procedures whenever handling semiconductor products.  
REVISION 5.1 DECEMBER 13, 2016  
Page 39 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
17. Revision History  
Revision  
Date  
Description  
1.0  
01-02-12 . Initial Draft version  
. First draft  
1.0  
1.1  
21-12-12  
21-12-12  
. Driver related parameters updated  
. Protection and diagnostic functions updated  
. Trickle Charge Pump included  
1.2  
15-01-13  
. First Release  
2.0  
2.1  
2.2  
26-02-13  
06-05-13  
04-12-13  
. Max voltage on phase pins updated  
. Entering SPI mode by disabling all 6x FET input signals  
. Abs. max. rating updated  
. Block diagram and application diagrams updated  
. Exposed pad size confirmed  
2.3  
01-03-14  
. Qualification for TA = 150°C  
. Changed ICOM duty cycle for VDS_ERR from 5.5% to 82.5%  
. General update according to new template  
3.0  
3.1  
4.0  
09-05-14  
24-07-14  
31-07-14  
. Drain-source monitor blanking  
. Trickle charge pump current capability  
. Largest dead time value  
. ICOM pull-up current  
. Performance graphs added  
. Electrical specifications updated  
. Operating current from VSUP (with PWM operation)  
. VSUP under and over voltage hysteresis  
. Internal leakage from VBATF to GND  
4.2  
20-11-15  
. VDD operating current  
. Drivers resistance for MLX83202  
. Discharge currents for VBOOST and VCPx specified in case of VSUP_OVH  
. “Data in hold time” and “Data out ready delay” units corrected to ns  
4.3  
4.4  
17-03-16  
31-08-16  
. Default EEPROM configuration corrected for PWM_SPEED & EN_TCP  
. Minimum specification on input PWM frequency removed  
. Drain-source voltage monitoring description updated with pin-description  
. New Melexis template  
5.0  
5.1  
01-09-16  
13-12-16  
. MLX83100 Qualified for TJ = 175˚C  
Table 17-1 Revision history  
REVISION 5.1 DECEMBER 13, 2016  
Page 40 of 41  
MLX83100 Automotive 2-Phase DC Pre-Driver  
Datasheet  
18. Disclaimer  
Devices sold by Melexis are covered by the warranty and patent indemnification provisions appearing in its Term  
of Sale. Melexis makes no warranty, express, statutory, implied, or by description regarding the information set  
forth herein or regarding the freedom of the described devices from patent infringement. Melexis reserves the  
right to change specifications and prices at any time and without notice. Therefore, prior to designing this product  
into a system, it is necessary to check with Melexis for current information. This product is intended for use in  
normal commercial applications. Applications requiring extended temperature range, unusual environmental  
requirements, or high reliability applications, such as military, medical life-support or life-sustaining equipment  
are specifically not recommended without additional processing by Melexis for each application. The information  
furnished by Melexis is believed to be correct and accurate. However, Melexis shall not be liable to recipient or  
any third party for any damages, including but not limited to personal injury, property damage, loss of profits, loss  
of use, interrupt of business or indirect, special incidental or consequential damages, of any kind, in connection  
with or arising out of the furnishing, performance or use of the technical data herein. No obligation or liability to  
recipient or any third party shall arise or flow out of Melexis’ rendering of technical or other services.  
© 2016 Melexis NV. All rights reserved.  
www.melexis.com  
REVISION 5.1 DECEMBER 13, 2016  
Page 41 of 41  

相关型号:

MLX83100LGODBA-000RE

MLX83100 Automotive 2-Phase DC Pre-Driver
MELEXIS

MLX83202

Automotive NFET pre-drivers
MELEXIS

MLX83202KLWDBA-000RE

MLX83203-MLX83202 Automotive 3-Phase BLDC Pre-Driver
MELEXIS

MLX83203

Automotive NFET pre-drivers
MELEXIS

MLX83203KLWDBA-000RE

MLX83203-MLX83202 Automotive 3-Phase BLDC Pre-Driver
MELEXIS

MLX83203_16

MLX83203-MLX83202 Automotive 3-Phase BLDC Pre-Driver
MELEXIS

MLX90109

125kHz RFID Transceiver
MELEXIS

MLX90109CDCAAA-000RE

125kHz RFID Transceiver
MELEXIS

MLX90109CDCAAA-000TU

125kHz RFID Transceiver
MELEXIS

MLX90109EDCAAA-000RE

125kHz RFID Transceiver
MELEXIS

MLX90109EDCAAA-000TU

125kHz RFID Transceiver
MELEXIS

MLX90109_06

125kHz RFID Transceiver
MELEXIS