KSZ8081RNAIA [MICREL]

10Base-T/100Base-TX PHY with RMII Support;
KSZ8081RNAIA
型号: KSZ8081RNAIA
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

10Base-T/100Base-TX PHY with RMII Support

文件: 总51页 (文件大小:861K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KSZ8081RNA/KSZ8081RND  
10Base-T/100Base-TX PHY  
with RMII Support  
Revision 1.1  
General Description  
Features  
The KSZ8081RNA is a single-supply 10Base-T/100Base-  
TX Ethernet physical-layer transceiver for transmission  
and reception of data over standard CAT-5 unshielded  
twisted pair (UTP) cable.  
Single-chip 10Base-T/100Base-TX IEEE 802.3  
compliant Ethernet transceiver  
RMII v1.2 Interface support with a 50MHz reference  
clock output to MAC, and an option to input a 50MHz  
reference clock  
The KSZ8081RNA is a highly-integrated PHY solution. It  
reduces board cost and simplifies board layout by using on-  
chip termination resistors for the differential pairs and by  
integrating a low-noise regulator to supply the 1.2V core, and  
by offering 1.8/2.5/3.3V digital I/O interface support.  
RMII back-to-back mode support for a 100Mbps copper  
repeater  
MDC/MDIO management interface for PHY register  
configuration  
The KSZ8081RNA offers the Reduced Media Independent  
Interface (RMII) for direct connection to RMII-compliant  
MACs in Ethernet processors and switches.  
Programmable interrupt output  
LED outputs for link and activity status indication  
On-chip termination resistors for the differential pairs  
Baseline wander correction  
HP Auto MDI/MDI-X to reliably detect and correct  
straight-through and crossover cable connections with  
disable and enable option  
As the power-up default, the KSZ8081RNA uses a 25MHz  
crystal to generate all required clocks, including the  
50MHz RMII reference clock output for the MAC. The  
KSZ8081RND is the version that takes in the 50MHz RMII  
reference clock as the power-up default.  
To facilitate system bring-up and debugging in production  
testing and in product deployment, parametric NAND tree  
support enables fault detection between KSZ8081RNA  
I/Os and the board. Micrel’s LinkMD® TDR-based cable  
diagnostics identify faulty copper cabling.  
Auto-negotiation to automatically select the highest link-  
up speed (10/100Mbps) and duplex (half/full)  
Power-down and power-saving modes  
LinkMD TDR-based cable diagnostics to identify faulty  
copper cabling  
The KSZ8081RNA and KSZ8081RND are available in 24-  
pin, lead-free QFN packages (see “Ordering Information”).  
Parametric NAND Tree support for fault detection  
between chip I/Os and the board  
Data sheets and support documentation are available on  
Micrel’s web site at: www.micrel.com.  
Functional Diagram  
LinkMD is a registered trademark of Micrel, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
Revision 1.1  
February 6, 2014  
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Features (Continued)  
Applications  
Loopback modes for diagnostics  
Game console  
IP phone  
IP set-top box  
IP TV  
Single 3.3V power supply with VDD I/O options for  
1.8V, 2.5V, or 3.3V  
Built-in 1.2V regulator for core  
Available in 24-pin (4mm x 4mm) QFN package  
LOM  
Printer  
Ordering Information  
Temperature  
Lead  
Finish  
Wire  
Bonding  
Part Number  
Package  
Description  
Range  
RMII with 25MHz crystal/clock input and 50MHz  
RMII REF_CLK output (power-up default),  
Commercial Temperature, Gold Wire Bonding  
KSZ8081RNACA  
0°C to 70°C  
24-Pin QFN  
Pb-Free  
Gold  
RMII with 25MHz crystal/clock input and 50MHz  
RMII REF_CLK output (power-up default),  
Industrial Temperature, Gold Wire Bonding  
KSZ8081RNAIA(1)  
KSZ8081RNDCA  
24-Pin QFN  
24-Pin QFN  
Pb-Free  
Pb-Free  
Gold  
Gold  
40°C to 85°C  
RMII with 50MHz clock input (power-up default),  
Commercial Temperature, Gold Wire Bonding  
0°C to 70°C  
KSZ8081RNA Evaluation Board  
KSZ8081RNA-EVAL  
KSZ8081RND-EVAL  
0°C to 70°C  
0°C to 70°C  
24-Pin QFN  
24-Pin QFN  
Pb-Free  
Pb-Free  
(Mounted with KSZ8081RNA device in  
commercial temperature)  
KSZ8081RND Evaluation Board  
(Mounted with KSZ8081RND device in  
commercial temperature)  
Note:  
1. Contact factory for availability.  
February 6, 2014  
2
Revision 1.1  
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Revision History  
Date  
Summary of Changes  
Revision  
11/5/12  
Initial release of datasheet.  
1.0  
Removed copper wire bonding part numbers from Ordering Information.  
Added note for RXER (Pin 17) and Register 16h, Bit [15] regarding a Reserved Factory Mode.  
2/6/14  
1.1  
Added series resistance and load capacitance for the 25MHz crystal selection criteria.  
February 6, 2014  
3
Revision 1.1  
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Contents  
List of Figures.......................................................................................................................................................................... 6  
List of Tables........................................................................................................................................................................... 7  
Pin Configuration..................................................................................................................................................................... 8  
Pin Description ........................................................................................................................................................................ 9  
Strapping Options .................................................................................................................................................................11  
Functional Description: 10Base-T/100Base-TX Transceiver................................................................................................12  
100Base-TX Transmit..........................................................................................................................................................................12  
100Base-TX Receive...........................................................................................................................................................................12  
Scrambler/De-Scrambler (100Base-TX Only)......................................................................................................................................12  
10Base-T Transmit..............................................................................................................................................................................12  
10Base-T Receive...............................................................................................................................................................................13  
PLL Clock Synthesizer ........................................................................................................................................................................13  
Auto-Negotiation..................................................................................................................................................................................13  
RMII Interface........................................................................................................................................................................15  
RMII Signal Definition..........................................................................................................................................................................15  
RMII Signal Diagram – 25/50MHz Clock Mode ...................................................................................................................................16  
Back-to-Back Mode – 100Mbps Copper Repeater ...............................................................................................................18  
RMII Back-to-Back Mode.....................................................................................................................................................................18  
MII Management (MIIM) Interface.........................................................................................................................................19  
Interrupt (INTRP)...................................................................................................................................................................19  
HP Auto MDI/MDI-X..............................................................................................................................................................19  
Straight Cable......................................................................................................................................................................................20  
Crossover Cable..................................................................................................................................................................................20  
Loopback Mode.....................................................................................................................................................................21  
Local (Digital) Loopback......................................................................................................................................................................21  
Remote (Analog) Loopback.................................................................................................................................................................22  
LinkMD® Cable Diagnostic....................................................................................................................................................23  
NAND Tree Support..............................................................................................................................................................23  
NAND Tree I/O Testing .......................................................................................................................................................................24  
Power Management..............................................................................................................................................................24  
Power-Saving Mode ............................................................................................................................................................................24  
Energy-Detect Power-Down Mode ......................................................................................................................................................24  
Power-Down Mode..............................................................................................................................................................................24  
Slow-Oscillator Mode...........................................................................................................................................................................25  
Reference Circuit for Power and Ground Connections.........................................................................................................26  
Typical Current/Power Consumption ....................................................................................................................................27  
Transceiver (3.3V), Digital I/Os (3.3V).................................................................................................................................................27  
Transceiver (3.3V), Digital I/Os (2.5V).................................................................................................................................................27  
Transceiver (3.3V), Digital I/Os (1.8V).................................................................................................................................................28  
February 6, 2014  
4
Revision 1.1  
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Register Map.........................................................................................................................................................................29  
Register Description..............................................................................................................................................................30  
Absolute Maximum Ratings ..................................................................................................................................................39  
Operating Ratings .................................................................................................................................................................39  
Electrical Characteristics.......................................................................................................................................................39  
Timing Diagrams...................................................................................................................................................................41  
RMII Timing.........................................................................................................................................................................................41  
Auto-Negotiation Timing......................................................................................................................................................................42  
MDC/MDIO Timing ..............................................................................................................................................................................43  
Power-Up/Reset Timing ......................................................................................................................................................................44  
Reset Circuit..........................................................................................................................................................................45  
Reference Circuits – LED Strap-In Pins................................................................................................................................46  
Reference Clock – Connection and Selection ......................................................................................................................47  
Magnetic – Connection and Selection ..................................................................................................................................48  
Recommended Land Pattern ................................................................................................................................................50  
Package Information .............................................................................................................................................................51  
February 6, 2014  
5
Revision 1.1  
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
List of Figures  
Figure 1. Auto-Negotiation Flow Chart.................................................................................................................................14  
Figure 2. KSZ8081RNA/RND RMII Interface (RMII – 25MHz Clock Mode) ........................................................................17  
Figure 3. KSZ8081RNA/RND RMII Interface (RMII – 50MHz Clock Mode) ........................................................................17  
Figure 4. KSZ8081RNA/RND and KSZ8081RNA/RND RMII Back-to-Back Copper Repeater...........................................18  
Figure 5. Typical Straight Cable Connection .......................................................................................................................20  
Figure 6. Typical Crossover Cable Connection ...................................................................................................................21  
Figure 7. Local (Digital) Loopback .......................................................................................................................................21  
Figure 8. Remote (Analog) Loopback ..................................................................................................................................22  
Figure 9. KSZ8081RNA/RND Power and Ground Connections..........................................................................................26  
Figure 10. RMII Timing – Data Received from RMII............................................................................................................41  
Figure 11. RMII Timing – Data Input to RMII .......................................................................................................................41  
Figure 12. Auto-Negotiation Fast Link Pulse (FLP) Timing .................................................................................................42  
Figure 13. MDC/MDIO Timing..............................................................................................................................................43  
Figure 14. Power-Up/Reset Timing......................................................................................................................................44  
Figure 15. Recommended Reset Circuit..............................................................................................................................45  
Figure 16. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output .....................................................45  
Figure 17. Reference Circuits for LED Strapping Pins.........................................................................................................46  
Figure 18. 25MHz Crystal/Oscillator Reference Clock Connection .....................................................................................47  
Figure 19. 50MHz Oscillator Reference Clock Connection .................................................................................................47  
Figure 20. Typical Magnetic Interface Circuit.......................................................................................................................48  
Figure 21. Recommended Land Pattern, 24-Pin (4mm × 4mm) QFN.................................................................................50  
February 6, 2014  
6
Revision 1.1  
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
List of Tables  
Table 1. RMII Signal Definition.............................................................................................................................................15  
Table 2. RMII Signal Connection for RMII Back-to-Back Mode (100Base-TX Copper Repeater) ......................................18  
Table 3. MII Management Frame Format for the KSZ8081RNA/RND ................................................................................19  
Table 4. MDI/MDI-X Pin Definition .......................................................................................................................................20  
Table 5. NAND Tree Test Pin Order for KSZ8081RNA/RND ..............................................................................................23  
Table 6. KSZ8081RNA/RND Power Pin Description ...........................................................................................................26  
Table 7. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 3.3V)............................................................27  
Table 8. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 2.5V)............................................................27  
Table 9. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 1.8V)............................................................28  
Table 10. RMII Timing Parameters – KSZ8081RNA/RND (25MHz input to XI pin, 50MHz output from REF_CLK pin) ....41  
Table 11. RMII Timing Parameters – KSZ8081RNA/RND (50MHz input to XI pin) ............................................................41  
Table 12. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters...............................................................................42  
Table 13. MDC/MDIO Timing Parameters...........................................................................................................................43  
Table 14. Power-Up/Reset Timing Parameters ...................................................................................................................44  
Table 15. 25MHz Crystal / Reference Clock Selection Criteria ...........................................................................................47  
Table 16. 50MHz Oscillator / Reference Clock Selection Criteria .......................................................................................47  
Table 17. Magnetics Selection Criteria ................................................................................................................................49  
Table 18. Compatible Single-Port 10/100 Magnetics...........................................................................................................49  
February 6, 2014  
7
Revision 1.1  
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Pin Configuration  
24-Pin (4mm × 4mm) QFN  
February 6, 2014  
8
Revision 1.1  
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Pin Description  
Pin Number  
Pin Name  
Type(1)  
Pin Function  
1.2V core VDD (power supplied by KSZ8081RNA/KSZ8081RND)  
Decouple with 2.2µF and 0.1µF capacitors to ground.  
3.3V analog VDD  
1
VDD_1.2  
P
2
3
4
5
6
VDDA_3.3  
RXM  
P
I/O  
I/O  
I/O  
I/O  
Physical receive or transmit signal (differential)  
Physical receive or transmit signal (+ differential)  
Physical transmit or receive signal (differential)  
Physical transmit or receive signal (+ differential)  
Crystal feedback for 25MHz crystal  
RXP  
TXM  
TXP  
7
XO  
XI  
O
This pin is a no connect if an oscillator or external clock source is used.  
RMII – 25MHz Mode:  
RMII – 50MHz Mode:  
25MHz ±50ppm Crystal / Oscillator / External Clock Input  
50MHz ±50ppm Oscillator / External Clock Input  
For unmanaged mode (power-up default setting),  
KSZ8081RNA takes in the 25MHz crystal/clock on this pin.  
KSZ8081RND takes in the 50MHz clock/on this pin.  
8
I
After power-up, both the KSZ8081RNA and KSZ8081RND can be programmed to  
either the 25MHz mode or 50MHz mode using PHY register 1Fh bit [7].  
See also REF_CLK (pin 16).  
Set PHY transmit output current  
9
REXT  
MDIO  
MDC  
I
Connect a 6.49kΩ resistor to ground on this pin.  
Management Interface (MII) Data I/O  
10  
11  
Ipu/Opu  
Ipu  
This pin has a weak pull-up, is open-drain, and requires an external 1.0kΩ  
pull-up resistor.  
Management Interface (MII) Clock input  
This clock pin is synchronous to the MDIO data pin.  
RMII Receive Data Output[1](2)  
12  
13  
14  
RXD1  
RXD0  
VDDIO  
Ipd/O  
Ipu/O  
P
RMII Receive Data Output[0](2)  
3.3V, 2.5V, or 1.8V digital VDD  
RMII Mode:  
Carrier Sense/Receive Data Valid output /  
CRS_DV /  
Config Mode:  
The pull-up/pull-down value is latched as PHYAD[1:0] at the  
de-assertion of reset.  
15  
Ipd/O  
PHYAD[1:0]  
See the Strapping Optionssection for details.  
Note:  
1. P = Power supply.  
Gnd = Ground.  
I = Input.  
O = Output.  
I/O = Bi-directional.  
Ipu = Input with internal pull-up (see “Electrical Characteristicsfor value).  
Ipu/O = Input with internal pull-up (see “Electrical Characteristicsfor value) during power-up/reset; output pin otherwise.  
Ipd/O = Input with internal pull-down (see Electrical Characteristicsfor value) during power-up/reset; output pin otherwise.  
Ipu/Opu = Input with internal pull-up (see “Electrical Characteristicsfor value) and output with internal pull-up (see “Electrical Characteristicsfor  
value).  
February 6, 2014  
9
Revision 1.1  
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Pin Description (Continued)  
Pin Number  
Pin Name  
Type(1)  
Pin Function  
RMII – 25MHz Mode:  
This pin provides the 50MHz RMII reference clock  
output to the MAC.  
RMII – 50MHz Mode:  
This pin is a no connect.  
For unmanaged mode (power-up default setting),  
KSZ8081RNA is in RMII – 25MHz mode and outputs the 50MHz RMII  
reference clock on this pin.  
16  
REF_CLK  
Ipd/O  
KSZ8081RND is in RMII – 50MHz mode and does not use this pin.  
After power-up, both KSZ8081RNA and KSZ8081RND can be programmed to either  
25MHz mode or 50MHz mode using PHY register 1Fh bit [7].  
See also XI (pin 8).  
RMII Receive Error output  
17  
18  
RXER  
INTRP  
Ipd/O  
At the de-assertion of reset, this pin needs to latch in a pull-down value for normal  
operation. If MAC side pulls this pin high, see Register 16h, Bit [15] for solution.  
Interrupt output: Programmable interrupt output  
Ipu/Opu  
This pin has a weak pull-up, is open drain, and requires an external 1.0kΩ pull-up  
resistor.  
19  
20  
TXEN  
TXD0  
I
I
RMII Transmit Enable input  
RMII Transmit Data Input[0](3)  
RMII Transmit Data Input[1](3)  
21  
22  
TXD1  
GND  
I/O  
NAND Tree mode:  
Ground  
NAND Tree output pin  
Gnd  
LED output:  
Programmable LED0 output  
Config mode:  
Latched as auto-negotiation enable (register 0h, bit [12]) and  
Speed (register 0h, bit [13]) at the de-assertion of reset.  
See the Strapping Optionssection for details.  
The LED0 pin is programmable using register 1Fh bits  
[5:4], and is defined as follows.LED mode = [00]  
Link/Activity  
No link  
Pin State  
High  
LED Definition  
OFF  
LED0 /  
Link  
Low  
ON  
23  
Ipu/O  
ANEN_SPEED  
Activity  
Toggle  
Blinking  
LED mode = [01]  
Link  
Pin State  
High  
LED Definition  
No link  
Link  
OFF  
ON  
Low  
LED mode = [10], [11]  
Chip reset (active low)  
Ground  
Reserved  
24  
RST#  
GND  
Ipu  
PADDLE  
Gnd  
Notes:  
2. RMII RX Mode: The RXD[1:0] bits are synchronous with the 50MHz RMII Reference Clock. For each clock period in which CRS_DV is asserted,  
two bits of recovered data are sent by the PHY to the MAC.  
3. RMII TX Mode: The TXD[1:0] bits are synchronous with the 50MHz RMII Reference Clock. For each clock period in which TXEN is asserted, two  
bits of data are received by the PHY from the MAC.  
February 6, 2014  
10  
Revision 1.1  
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Strapping Options  
Type(1)  
Pin Number  
Pin Name  
Pin Function  
The PHY Address is latched at the de-assertion of reset and is configurable to either  
one of the following two values:  
Pull-up = PHY Address is set to 00011b (0x3h)  
Pull-down (default) = PHY Address is set to 00000b (0x0h)  
PHY Address bits [4:2] are set to 000 by default.  
15  
PHYAD[1:0]  
Ipd/O  
Auto-Negotiation Enable and SPEED mode  
Pull-up (default) = Enable Auto-Negotiation and set 100Mbps Speed  
Pull-down = Disable Auto-Negotiation and set 10Mbps Speed  
23  
ANEN_SPEED  
Ipu/O  
At the de-assertion of reset, this pin value is latched into register 0h bit [12] for Auto-  
negotiation enable/disable, register 0h bit [13] for the Speed select, and register 4h  
(Auto-Negotiation Advertisement) for the Speed capability support.  
Note:  
1. Ipu/O = Input with internal pull-up (see Electrical Characteristicsfor value) during power-up/reset; output pin otherwise.  
Ipd/O = Input with internal pull-down (see Electrical Characteristicsfor value) during power-up/reset; output pin otherwise.  
The PHYAD[1:0] strap-in pin is latched at the de-assertion of reset. In some systems, the RMII MAC receive input pins  
may drive high/low during power-up or reset, and consequently cause the PHYAD[1:0] strap-in pin, a shared pin with the  
RMII CRS_DV signal, to be latched to the unintended high/low state. In this case an external pull-up (4.7kΩ) or pull-down  
(1.0kΩ) should be added on the PHYAD[1:0] strap-in pin to ensure that the intended value is strapped-in correctly.  
February 6, 2014  
11  
Revision 1.1  
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Functional Description: 10Base-T/100Base-TX Transceiver  
The KSZ8081RNA is an integrated single 3.3V supply Fast Ethernet transceiver. It is fully compliant with the IEEE 802.3  
Specification, and reduces board cost and simplifies board layout by using on-chip termination resistors for the two  
differential pairs and by integrating the regulator to supply the 1.2V core.  
On the copper media side, the KSZ8081RNA supports 10Base-T and 100Base-TX for transmission and reception of data  
over a standard CAT-5 unshielded twisted pair (UTP) cable, and HP Auto MDI/MDI-X for reliable detection of and  
correction for straight-through and crossover cables.  
On the MAC processor side, the KSZ8081RNA offers the Reduced Media Independent Interface (RMII) for direct  
connection with RMII-compliant Ethernet MAC processors and switches  
The MII management bus option gives the MAC processor complete access to the KSZ8081RNA control and status  
registers. Additionally, an interrupt pin eliminates the need for the processor to poll for PHY status change.  
As the power-up default, the KSZ8081RNA uses a 25MHz crystal to generate all required clocks, including the 50MHz  
RMII reference clock output for the MAC. The KSZ8081RND version uses the 50MHz RMII reference clock as the power-  
up default.  
The KSZ8081RNA/RND is used to refer to both KSZ8081RNA and KSZ8081RND versions in this data sheet.  
100Base-TX Transmit  
The 100Base-TX transmit function performs parallel-to-serial conversion, 4B/5B encoding, scrambling, NRZ-to-NRZI  
conversion, and MLT3 encoding and transmission.  
The circuitry starts with a parallel-to-serial conversion, which converts the MII data from the MAC into a 125MHz serial bit  
stream. The data and control stream is then converted into 4B/5B coding and followed by a scrambler. The serialized data  
is further converted from NRZ-to-NRZI format, and then transmitted in MLT3 current output. The output current is set by  
an external 6.49kΩ 1% resistor for the 1:1 transformer ratio.  
The output signal has a typical rise/fall time of 4ns and complies with the ANSI TP-PMD standard regarding amplitude  
balance, overshoot, and timing jitter. The wave-shaped 10Base-T output is also incorporated into the 100Base-TX  
transmitter.  
100Base-TX Receive  
The 100Base-TX receiver function performs adaptive equalization, DC restoration, MLT3-to-NRZI conversion, data and  
clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion.  
The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted pair  
cable. Because the amplitude loss and phase distortion is a function of the cable length, the equalizer must adjust its  
characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on  
comparisons of incoming signal strength against some known cable characteristics, then tunes itself for optimization. This  
is an ongoing process and self-adjusts against environmental changes such as temperature variations.  
Next, the equalized signal goes through a DC-restoration and data-conversion block. The DC-restoration circuit  
compensates for the effect of baseline wander and improves the dynamic range. The differential data-conversion circuit  
converts MLT3 format back to NRZI. The slicing threshold is also adaptive.  
The clock-recovery circuit extracts the 125MHz clock from the edges of the NRZI signal. This recovered clock is then used  
to convert the NRZI signal to NRZ format. This signal is sent through the de-scrambler, then the 4B/5B decoder. Finally,  
the NRZ serial data is converted to MII format and provided as the input data to the MAC.  
Scrambler/De-Scrambler (100Base-TX Only)  
The scrambler spreads the power spectrum of the transmitted signal to reduce electromagnetic interference (EMI) and  
baseline wander. The de-scrambler recovers the scrambled signal.  
10Base-T Transmit  
The 10Base-T drivers are incorporated with the 100Base-TX drivers to allow for transmission using the same magnetic.  
The drivers perform internal wave-shaping and pre-emphasis, and output 10Base-T signals with a typical amplitude of  
2.5V peak. The 10Base-T signals have harmonic contents that are at least 27dB below the fundamental frequency when  
driven by an all-ones Manchester-encoded signal.  
February 6, 2014  
12  
Revision 1.1  
 
 
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
10Base-T Receive  
On the receive side, input buffer and level detecting squelch circuits are used. A differential input receiver circuit and a  
phase-locked loop (PLL) performs the decoding function. The Manchester-encoded data stream is separated into clock  
signal and NRZ data. A squelch circuit rejects signals with levels less than 400mV, or with short pulse widths, to prevent  
noise at the RXP and RXM inputs from falsely triggering the decoder. When the input exceeds the squelch limit, the PLL  
locks onto the incoming signal and the KSZ8081RNA/RND decodes a data frame. The receive clock is kept active during  
idle periods between data receptions.  
PLL Clock Synthesizer  
The KSZ8081RNA/RND in RMII – 25MHz Clock mode generates all internal clocks and all external clocks for system  
timing from an external 25MHz crystal, oscillator, or reference clock. For the KSZ8081RNA/RND in RMII – 50MHz clock  
mode, these clocks are generated from an external 50MHz oscillator or system clock.  
Auto-Negotiation  
The KSZ8081RNA/RND conforms to the auto-negotiation protocol, defined in Clause 28 of the IEEE 802.3 Specification.  
Auto-negotiation allows unshielded twisted pair (UTP) link partners to select the highest common mode of operation.  
During auto-negotiation, link partners advertise capabilities across the UTP link to each other and then compare their own  
capabilities with those they received from their link partners. The highest speed and duplex setting that is common to the  
two link partners is selected as the mode of operation.  
The following list shows the speed and duplex operation mode from highest to lowest priority.  
Priority 1: 100Base-TX, full-duplex  
Priority 2: 100Base-TX, half-duplex  
Priority 3: 10Base-T, full-duplex  
Priority 4: 10Base-T, half-duplex  
If auto-negotiation is not supported or the KSZ8081RNA/RND link partner is forced to bypass auto-negotiation, then the  
KSZ8081RNA/RND sets its operating mode by observing the signal at its receiver. This is known as parallel detection,  
which allows the KSZ8081RNA/RND to establish a link by listening for a fixed signal protocol in the absence of the auto-  
negotiation advertisement protocol.  
Auto-negotiation is enabled by either hardware pin strapping (ANEN_SPEED, pin 23) or software (register 0h, bit [12]).  
By default, auto-negotiation is enabled after power-up or hardware reset. After that, auto-negotiation can be enabled or  
disabled by register 0h, bit [12]. If auto-negotiation is disabled, the speed is set by register 0h, bit [13], and the duplex is  
set by register 0h, bit [8].  
The auto-negotiation link-up process is shown in Figure 1.  
February 6, 2014  
13  
Revision 1.1  
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Figure 1. Auto-Negotiation Flow Chart  
February 6, 2014  
14  
Revision 1.1  
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
RMII Interface  
The Reduced Media Independent Interface (RMII) specifies a low pin count Media Independent Interface (MII). It provides  
a common interface between physical layer and MAC layer devices, and has the following key characteristics:  
Pin count is 8 pins (3 pins for data transmission, 4 pins for data reception, and 1 pin for the 50MHz reference clock).  
10Mbps and 100Mbps data rates are supported at both half- and full-duplex.  
Data transmission and reception are independent and belong to separate signal groups.  
Transmit data and receive data are each 2 bits wide, a dibit.  
RMII Signal Definition  
Table 1 describes the RMII signals. Refer to RMII Specification v1.2 for detailed information.  
RMII  
Signal  
Name  
Direction  
(with respect to PHY,  
KSZ8081RNA/RND signal)  
Direction  
(with respect to MAC)  
Description  
REF_CLK  
Output (25MHz clock mode) /  
Input/  
Synchronous 50MHz reference clock for receive,  
transmit, and control interface  
<no connect> (50MHz clock  
mode)  
Input or <no connect>  
TXEN  
Input  
Output  
Transmit Enable  
TXD[1:0]  
CRS_DV  
RXD[1:0]  
RXER  
Input  
Output  
Transmit Data[1:0]  
Carrier Sense/Receive Data Valid  
Receive Data[1:0]  
Output  
Output  
Output  
Input  
Input  
Input, or (not required)  
Receive Error  
Table 1. RMII Signal Definition  
Reference Clock (REF_CLK)  
REF_CLK is a continuous 50MHz clock that provides the timing reference for TXEN, TXD[1:0], CRS_DV, RXD[1:0], and  
RX_ER.  
For RMII – 25MHz Clock Mode, the KSZ8081RNA/RND generates and outputs the 50MHz RMII REF_CLK to the MAC at  
REF_CLK (pin 16).  
For RMII – 50MHz Clock Mode, the KSZ8081RNA/RND takes in the 50MHz RMII REF_CLK from the MAC or system  
board at XI (pin 8) and leaves the REF_CLK (pin 16) as no connect.  
Transmit Enable (TXEN)  
TXEN indicates that the MAC is presenting dibits on TXD[1:0] for transmission. It is asserted synchronously with the first  
dibit of the preamble and remains asserted while all dibits to be transmitted are presented on the RMII. It is negated  
before the first REF_CLK following the final dibit of a frame.  
TXEN transitions synchronously with respect to REF_CLK.  
Transmit Data[1:0] (TXD[1:0])  
TXD[1:0] transitions synchronously with respect to REF_CLK. When TXEN is asserted, the PHY accepts TXD[1:0] for  
transmission.  
TXD[1:0] is 00 to indicate idle when TXEN is de-asserted. The PHY ignores values other than 00 on TXD[1:0] while TXEN  
is de-asserted.  
Carrier Sense / Receive Data Valid (CRS_DV)  
The PHY asserts CRS_DV when the receive medium is non-idle. It is asserted asynchronously when a carrier is detected.  
This happens when squelch is passed in 10Mbps mode, and when two non-contiguous 0s in 10 bits are detected in  
100Mbps mode. Loss of carrier results in the de-assertion of CRS_DV.  
February 6, 2014  
15  
Revision 1.1  
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
While carrier detection criteria are met, CRS_DV remains asserted continuously from the first recovered dibit of the frame  
through the final recovered dibit. It is negated before the first REF_CLK that follows the final dibit. The data on RXD[1:0] is  
considered valid after CRS_DV is asserted. However, because the assertion of CRS_DV is asynchronous relative to  
REF_CLK, the data on RXD[1:0] is 00 until receive signals are properly decoded.  
Receive Data[1:0] (RXD[1:0])  
RXD[1:0] transitions synchronously with respect to REF_CLK. For each clock period in which CRS_DV is asserted,  
RXD[1:0] transfers two bits of recovered data from the PHY.  
RXD[1:0] is 00 to indicate idle when CRS_DV is de-asserted. The MAC ignores values other than 00 on RXD[1:0] while  
CRS_DV is de-asserted.  
Receive Error (RXER)  
RXER is asserted for one or more REF_CLK periods to indicate that a symbol error (for example, a coding error that a  
PHY can detect that may otherwise be undetectable by the MAC sub-layer) was detected somewhere in the frame being  
transferred from the PHY.  
RXER transitions synchronously with respect to REF_CLK. While CRS_DV is de-asserted, RXER has no effect on the  
MAC.  
Collision Detection (COL)  
The MAC regenerates the COL signal of the MII from TXEN and CRS_DV.  
RMII Signal Diagram – 25/50MHz Clock Mode  
The KSZ8081RNA/RND RMII pin connections to the MAC for 25MHz clock mode are shown in Figure 2. The connections  
for 50MHz clock mode are shown in Figure 3 .  
RMII – 25MHz Clock Mode  
The KSZ8081RNA is configured to RMII – 25MHz clock mode after it is powered up or hardware reset with the following:  
A 25MHz crystal connected to XI, XO (pins 8, 7), or an external 25MHz clock source (oscillator) connected to XI  
The KSZ8081RND can optionally be configured to RMII – 25MHz clock mode after it is powered up or hardware reset and  
software programmed with the following:  
A 25MHz crystal connected to XI, XO (pins 8, 7), or an external 25MHz clock source (oscillator) connected to XI  
Register 1Fh, bit [7] programmed to ‘1’ to select RMII – 25MHz clock mode  
February 6, 2014  
16  
Revision 1.1  
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Figure 2. KSZ8081RNA/RND RMII Interface (RMII – 25MHz Clock Mode)  
RMII – 50MHz Clock Mode  
The KSZ8081RND is configured to RMII – 50MHz clock mode after it is powered up or hardware reset with the following:  
An external 50MHz clock source (oscillator) connected to XI (pin 8)  
The KSZ8081RNA can optionally be configured to RMII – 50MHz clock mode after it is powered up or hardware reset and  
software programmed with the following:  
An external 50MHz clock source (oscillator) connected to XI (pin 8)  
Register 1Fh, bit [7] programmed to ‘1’ to select RMII – 50MHz clock mode  
Figure 3. KSZ8081RNA/RND RMII Interface (RMII – 50MHz Clock Mode)  
February 6, 2014  
17  
Revision 1.1  
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Back-to-Back Mode – 100Mbps Copper Repeater  
Two KSZ8081RNA/RND devices can be connected back-to-back to form a managed 100Base-TX copper repeater.  
Figure 4. KSZ8081RNA/RND and KSZ8081RNA/RND RMII Back-to-Back Copper Repeater  
RMII Back-to-Back Mode  
In RMII back-to-back mode, a KSZ8081RNA/RND interfaces with another KSZ8081RNA/RND to provide a 100Mbps  
copper repeater solution.  
The KSZ8081RNA/RND devices are configured to RMII back-to-back mode after power-up or reset, and software  
programming, with the following:  
A common 50MHz reference clock connected to XI (pin 8)  
Register 1Fh, bit [7] programmed to ‘1’ to select RMII – 50MHz clock mode for KSZ8081RNA  
(KSZ8081RND is set to RMII – 50MHz clock mode as the default after power up or hardware reset)  
Register 16h, bits [6] and [1] programmed to ‘1’ and ‘1’, respectively, to enable RMII back-to-back mode.  
RMII signals connected as shown in Table 2  
KSZ8081RNA/RND (100Base-TX copper)  
[Device 1]  
KSZ8081RNA/RND (100Base-TX copper)  
[Device 2]  
Pin Name  
CRS_DV  
RXD1  
Pin Number  
Pin Type  
Output  
Output  
Output  
Input  
Pin Name  
TXEN  
Pin Number  
Pin Type  
Input  
15  
12  
13  
19  
21  
20  
19  
21  
20  
15  
12  
13  
TXD1  
Input  
RXD0  
TXD0  
Input  
TXEN  
CRS_DV  
RXD1  
Output  
Output  
Output  
TXD1  
Input  
TXD0  
Input  
RXD0  
Table 2. RMII Signal Connection for RMII Back-to-Back Mode (100Base-TX Copper Repeater)  
February 6, 2014  
18  
Revision 1.1  
 
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
MII Management (MIIM) Interface  
The KSZ8081RNA/RND supports the IEEE 802.3 MII management interface, also known as the Management Data  
Input/Output (MDIO) interface. This interface allows an upper-layer device, such as a MAC processor, to monitor and  
control the state of the KSZ8081RNA/RND. An external device with MIIM capability is used to read the PHY status and/or  
configure the PHY settings. More details about the MIIM interface can be found in Clause 22.2.4 of the IEEE 802.3  
Specification.  
The MIIM interface consists of the following:  
A physical connection that incorporates the clock line (MDC) and the data line (MDIO).  
A specific protocol that operates across the physical connection mentioned earlier, which allows the external  
controller to communicate with one or more PHY devices.  
A set of 16-bit MDIO registers. Registers [0:8] are standard registers, and their functions are defined in the IEEE  
802.3 Specification. The additional registers are provided for expanded functionality. See the Register Mapsection  
for details.  
The KSZ8081RNA/RND supports only two unique PHY addresses. The PHYAD[1:0] strapping pin is used to select either  
0h or 3h as the unique PHY address for the KSZ8081RNA/RND device.  
PHY address 0h is defined as the broadcast PHY address according to the IEEE 802.3 Specification, and can be used to  
read/write to a single PHY device, or write to multiple PHY devices simultaneously. For the KSZ8081RNA/RND, PHY  
address 0h defaults to the broadcast PHY address after power-up, but PHY address 0h can be disabled as the broadcast  
PHY address using software to assign it as a unique PHY address.  
For applications that require two KSZ8081RNA/RND PHYs to share the same MDIO interface with one PHY set to  
address 0h and the other PHY set to address 3h, use PHY address 0h (defaults to broadcast after power-up) to set both  
PHYs’ register 16h, bit [9] to ‘1’ to assign PHY address 0h as a unique (non-broadcast) PHY address.  
Table 3 shows the MII management frame format for the KSZ8081RNA/RND.  
Start of Read/Write PHY Address  
REG Address  
Bits [4:0]  
Data  
Bits [15:0]  
Preamble  
TA  
Idle  
Frame  
OP Code  
Bits [4:0]  
Read  
Write  
32 1’s  
32 1’s  
01  
10  
01  
000AA  
RRRRR  
RRRRR  
Z0  
10  
DDDDDDDD_DDDDDDDD  
DDDDDDDD_DDDDDDDD  
Z
Z
01  
000AA  
Table 3. MII Management Frame Format for the KSZ8081RNA/RND  
Interrupt (INTRP)  
INTRP (pin 18) is an optional interrupt signal that is used to inform the external controller that there has been a status  
update to the KSZ8081RNA/RND PHY register. Bits [15:8] of register 1Bh are the interrupt control bits to enable and  
disable the conditions for asserting the INTRP signal. Bits [7:0] of register 1Bh are the interrupt status bits to indicate  
which interrupt conditions have occurred. The interrupt status bits are cleared after reading register 1Bh.  
Bit [9] of register 1Fh sets the interrupt level to active high or active low. The default is active low.  
The MII management bus option gives the MAC processor complete access to the KSZ8081RNA/RND control and status  
registers. Additionally, an interrupt pin eliminates the need for the processor to poll the PHY for status change.  
HP Auto MDI/MDI-X  
HP Auto MDI/MDI-X configuration eliminates the need to decide whether to use a straight cable or a crossover cable  
between the KSZ8081RNA/RND and its link partner. This feature allows the KSZ8081RNA/RND to use either type of  
cable to connect with a link partner that is in either MDI or MDI-X mode. The auto-sense function detects transmit and  
receive pairs from the link partner and assigns transmit and receive pairs to the KSZ8081RNA/RND accordingly.  
HP Auto MDI/MDI-X is enabled by default. It is disabled by writing a ‘1’ to register 1Fh, bit [13]. MDI and MDI-X mode is  
selected by register 1Fh, bit [14] if HP Auto MDI/MDI-X is disabled.  
An isolation transformer with symmetrical transmit and receive data paths is recommended to support Auto MDI/MDI-X.  
February 6, 2014  
19  
Revision 1.1  
 
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Table 4 shows how the IEEE 802.3 Standard defines MDI and MDI-X.  
MDI  
MDI-X  
RJ-45 Pin  
Signal  
TX+  
RJ-45 Pin  
Signal  
RX+  
RX−  
TX+  
1
2
3
6
1
2
3
6
TX−  
RX+  
RX−  
TX−  
Table 4. MDI/MDI-X Pin Definition  
Straight Cable  
A straight cable connects an MDI device to an MDI-X device, or an MDI-X device to an MDI device. Figure 5 shows a  
typical straight cable connection between a NIC card (MDI device) and a switch or hub (MDI-X device).  
Figure 5. Typical Straight Cable Connection  
Crossover Cable  
A crossover cable connects an MDI device to another MDI device, or an MDI-X device to another MDI-X device. Figure 6  
shows a typical crossover cable connection between two switches or hubs (two MDI-X devices).  
February 6, 2014  
20  
Revision 1.1  
 
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Figure 6. Typical Crossover Cable Connection  
Loopback Mode  
The KSZ8081RNA/RND supports the following loopback operations to verify analog and/or digital data paths.  
Local (digital) loopback  
Remote (analog) loopback  
Local (Digital) Loopback  
This loopback mode checks the RMII transmit and receive data paths between the KSZ8081RNA/RND and the external  
MAC, and is supported for both speeds (10/100Mbps) at full-duplex.  
The loopback data path is shown in Figure 7.  
1. The RMII MAC transmits frames to the KSZ8081RNA/RND.  
2. Frames are wrapped around inside the KSZ8081RNA/RND.  
3. The KSZ8081RNA/RND transmits frames back to the RMII MAC.  
Figure 7. Local (Digital) Loopback  
February 6, 2014  
21  
Revision 1.1  
 
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
The following programming action and register settings are used for local loopback mode.  
For 10/100Mbps loopback,  
Set register 0h,  
Bit [14] = 1  
Bit [13] = 0/1  
Bit [12] = 0  
Bit [8] = 1  
// Enable local loopback mode  
// Select 10Mbps/100Mbps speed  
// Disable auto-negotiation  
// Select full-duplex mode  
Remote (Analog) Loopback  
This loopback mode checks the line (differential pairs, transformer, RJ-45 connector, Ethernet cable) transmit and receive  
data paths between the KSZ8081RNA/RND and its link partner, and is supported for 100Base-TX full-duplex mode only.  
The loopback data path is shown in Figure 8.  
1. The Fast Ethernet (100Base-TX) PHY link partner transmits frames to the KSZ8081RNA/RND.  
2. Frames are wrapped around inside the KSZ8081RNA/RND.  
3. The KSZ8081RNA/RND transmits frames back to the Fast Ethernet (100Base-TX) PHY link partner.  
Figure 8. Remote (Analog) Loopback  
The following programming steps and register settings are used for remote loopback mode.  
1. Set Register 0h,  
Bits [13] = 1  
Bit [12] = 0  
Bit [8] = 1  
// Select 100Mbps speed  
// Disable auto-negotiation  
// Select full-duplex mode  
Or just auto-negotiate and link up at 100Base-TX full-duplex mode with the link partner.  
2. Set Register 1Fh,  
Bit [2] = 1  
// Enable remote loopback mode  
February 6, 2014  
22  
Revision 1.1  
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
LinkMD® Cable Diagnostic  
The LinkMD function uses time-domain reflectometry (TDR) to analyze the cabling plant for common cabling problems.  
These include open circuits, short circuits, and impedance mismatches.  
LinkMD works by sending a pulse of known amplitude and duration down the MDI or MDI-X pair, then analyzing the shape  
of the reflected signal to determine the type of fault. The time duration for the reflected signal to return provides the  
approximate distance to the cabling fault. The LinkMD function processes this TDR information and presents it as a  
numerical value that can be translated to a cable distance.  
LinkMD is initiated by accessing register 1Dh, the LinkMD Control/Status register, in conjunction with register 1Fh, the  
PHY Control 2 register. The latter register is used to disable Auto MDI/MDI-X and to select either MDI or MDI-X as the  
cable differential pair for testing.  
NAND Tree Support  
The KSZ8081RNA/RND provides parametric NAND tree support for fault detection between chip I/Os and board. The  
NAND tree is a chain of nested NAND gates in which each KSZ8081RNA/RND digital I/O (NAND tree input) pin is an  
input to one NAND gate along the chain. At the end of the chain, the TXD1 pin provides the output for the nested NAND  
gates.  
The NAND tree test process includes:  
Enabling NAND tree mode  
Pulling all NAND tree input pins high  
Driving each NAND tree input pin low, sequentially, according to the NAND tree pin order  
Checking the NAND tree output to make sure there is a toggle high-to-low or low-to-high for each NAND tree input  
driven low  
Table 5 lists the NAND tree pin order.  
Pin Number  
Pin Name  
MDIO  
NAND Tree Description  
10  
11  
12  
13  
15  
16  
18  
19  
23  
20  
21  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
MDC  
RXD1  
RXD0  
CRS_DV  
REF_CLK  
INTRP  
TXEN  
LED0  
TXD0  
TXD1  
Table 5. NAND Tree Test Pin Order for KSZ8081RNA/RND  
February 6, 2014  
23  
Revision 1.1  
 
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
NAND Tree I/O Testing  
Use the following procedure to check for faults on the KSZ8081RNA/RND digital I/O pin connections to the board:  
1. Enable NAND tree mode by setting register 16h, bit [5] to ‘1’.  
2. Use board logic to drive all KSZ8081RNA/RND NAND tree input pins high.  
3. Use board logic to drive each NAND tree input pin, in KSZ8081RNA/RND tree pin order, as follows:  
a. Toggle the first pin (MDIO) from high to low, and verify that the TDX1 pin switches from high to low to  
indicate that the first pin is connected properly.  
b. Leave the first pin (MDIO) low.  
c. Toggle the second pin (MDC) from high to low, and verify that the TXD1 pin switches from low to high to  
indicate that the second pin is connected properly.  
d. Leave the first pin (MDIO) and the second pin (MDC) low.  
e. Toggle the third pin from high to low, and verify that the TXD1 pin switches from high to low to indicate  
that the third pin is connected properly.  
f. Continue with this sequence until all KSZ8081RNA/RND NAND tree input pins have been toggled.  
Each KSZ8081RNA/RND NAND tree input pin must cause the TXD1 output pin to toggle high-to-low or low-to-high to  
indicate a good connection. If the TXD1 pin fails to toggle when the KSZ8081RNA/RND input pin toggles from high to low,  
the input pin has a fault.  
Power Management  
The KSZ8081RNA/RND incorporates a number of power-management modes and features that provide methods to  
consume less energy. These are discussed in the following sections.  
Power-Saving Mode  
Power-saving mode is used to reduce the transceiver power consumption when the cable is unplugged. It is enabled by  
writing a ‘1’ to register 1Fh, bit [10], and is in effect when auto-negotiation mode is enabled and the cable is disconnected  
(no link).  
In this mode, the KSZ8081RNA/RND shuts down all transceiver blocks except the transmitter, energy detect, and PLL  
circuits.  
By default, power-saving mode is disabled after power-up.  
Energy-Detect Power-Down Mode  
Energy-detect power-down (EDPD) mode is used to further reduce transceiver power consumption when the cable is  
unplugged. It is enabled by writing a ‘0’ to register 18h, bit [11], and is in effect when auto-negotiation mode is enabled  
and the cable is disconnected (no link).  
EDPD mode works with the PLL off (set by writing a ‘1’ to register 10h, bit [4] to automatically turn the PLL off in EDPD  
mode) to turn off all KSZ8081RNA/RND transceiver blocks except the transmitter and energy-detect circuits.  
Power can be reduced further by extending the time interval between transmissions of link pulses to check for the  
presence of a link partner. The periodic transmission of link pulses is needed to ensure two link partners in the same low  
power state and with auto MDI/MDI-X disabled can wake up when the cable is connected between them.  
By default, energy-detect power-down mode is disabled after power-up.  
Power-Down Mode  
Power-down mode is used to power down the KSZ8081RNA/RND device when it is not in use after power-up. It is  
enabled by writing a ‘1’ to register 0h, bit [11].  
In this mode, the KSZ8081RNA/RND disables all internal functions except the MII management interface. The  
KSZ8081RNA/RND exits (disables) power-down mode after register 0h, bit [11] is set back to ‘0’.  
February 6, 2014  
24  
Revision 1.1  
 
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Slow-Oscillator Mode  
Slow-oscillator mode is used to disconnect the input reference crystal/clock on XI (pin 8) and select the on-chip slow  
oscillator when the KSZ8081RNA/RND device is not in use after power-up. It is enabled by writing a ‘1’ to register 11h,  
bit [5].  
Slow-oscillator mode works in conjunction with power-down mode to put the KSZ8081RNA/RND device in the lowest  
power state, with all internal functions disabled except the MII management interface. To properly exit this mode and  
return to normal PHY operation, use the following programming sequence:  
1. Disable slow-oscillator mode by writing a ‘0’ to register 11h, bit [5].  
2. Disable power-down mode by writing a ‘0’ to register 0h, bit [11].  
3. Initiate software reset by writing a ‘1’ to register 0h, bit [15].  
February 6, 2014  
25  
Revision 1.1  
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Reference Circuit for Power and Ground Connections  
The KSZ8081RNA/RND is a single 3.3V supply device with a built-in regulator to supply the 1.2V core. The power and  
ground connections are shown in Figure 9 and Table 6 for 3.3V VDDIO.  
Figure 9. KSZ8081RNA/RND Power and Ground Connections  
Power Pin  
Pin Number Description  
VDD_1.2  
1
Decouple with 2.2µF and 0.1µF capacitors to ground.  
Connect to board’s 3.3V supply through a ferrite bead.  
Decouple with 22µF and 0.1µF capacitors to ground.  
Connect to board’s 3.3V supply for 3.3V VDDIO.  
Decouple with 22µF and 0.1µF capacitors to ground.  
VDDA_3.3  
VDDIO  
2
14  
Table 6. KSZ8081RNA/RND Power Pin Description  
February 6, 2014  
26  
Revision 1.1  
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Typical Current/Power Consumption  
Table 7 through Table 9 show typical values for current consumption by the transceiver (VDDA_3.3) and digital I/O  
(VDDIO) power pins and typical values for power consumption by the KSZ8081RNA/RND device for the indicated nominal  
operating voltage combinations. These current and power consumption values include the transmit driver current and on-  
chip regulator current for the 1.2V core.  
Transceiver (3.3V), Digital I/Os (3.3V)  
3.3V Transceiver 3.3V Digital I/Os  
Total Chip Power  
(VDDA_3.3)  
(VDDIO)  
mA  
12  
Condition  
mA  
34  
34  
14  
30  
14  
10  
mW  
152  
155  
82.5  
135  
79.2  
66.0  
100Base-TX Link-up (no traffic)  
100Base-TX Full-duplex @ 100% utilization  
10Base-T Link-up (no traffic)  
13  
11  
10Base-T Full-duplex @ 100% utilization  
Power-saving mode (Reg. 1Fh, bit [10] = 1)  
EDPD mode (Reg. 18h, bit [11] = 0)  
11  
10  
10  
EDPD mode (Reg. 18h, bit [11] = 0) and  
PLL off (Reg. 10h, bit [4] = 1)  
3.77  
2.59  
1.36  
1.54  
1.51  
0.45  
17.5  
13.5  
5.97  
Software power-down mode (Reg. 0h, bit [11] =1)  
Software power-down mode (Reg. 0h, bit [11] =1)  
and slow-oscillator mode (Reg. 11h, bit [5] =1)  
Table 7. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 3.3V)  
Transceiver (3.3V), Digital I/Os (2.5V)  
3.3V Transceiver 2.5V Digital I/Os  
Total Chip Power  
(VDDA_3.3)  
(VDDIO)  
mA  
12  
Condition  
mA  
34  
34  
15  
27  
15  
11  
mW  
142  
145  
77.0  
117  
74.5  
61.3  
100Base-TX Link-up (no traffic)  
100Base-TX Full-duplex @ 100% utilization  
10Base-T Link-up (no traffic)  
13  
11  
10Base-T Full-duplex @ 100% utilization  
Power-saving mode (Reg. 1Fh, bit [10] = 1)  
EDPD mode (Reg. 18h, bit [11] = 0)  
11  
10  
10  
EDPD mode (Reg. 18h, bit [11] = 0) and  
PLL off (Reg. 10h, bit [4] = 1)  
3.55  
2.29  
1.15  
1.35  
1.34  
0.29  
15.1  
10.9  
4.52  
Software power-down mode (Reg. 0h, bit [11] =1)  
Software power-down mode (Reg. 0h, bit [11] =1)  
and slow-oscillator mode (Reg. 11h, bit [5] =1)  
Table 8. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 2.5V)  
February 6, 2014  
27  
Revision 1.1  
 
 
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Transceiver (3.3V), Digital I/Os (1.8V)  
3.3V Transceiver 1.8V Digital I/Os  
Total Chip Power  
(VDDA_3.3)  
(VDDIO)  
mA  
11  
Condition  
mA  
34  
34  
15  
27  
15  
11  
mW  
132  
134  
67.5  
107  
65.7  
52.5  
100Base-TX Link-up (no traffic)  
100Base-TX Full-duplex @ 100% utilization  
10Base-T Link-up (no traffic)  
12  
10  
10Base-T Full-duplex @ 100% utilization  
Power-saving mode (Reg. 1Fh, bit [10] = 1)  
EDPD mode (Reg. 18h, bit [11] = 0)  
10  
9.0  
9.0  
EDPD mode (Reg. 18h, bit [11] = 0) and  
PLL off (Reg. 10h, bit [4] = 1)  
4.05  
2.79  
1.65  
1.21  
1.21  
0.19  
15.5  
11.4  
5.79  
Software power-down mode (Reg. 0h, bit [11] =1)  
Software power-down mode (Reg. 0h, bit [11] =1)  
and slow-oscillator mode (Reg. 11h, bit [5] =1)  
Table 9. Typical Current/Power Consumption (VDDA_3.3 = 3.3V, VDDIO = 1.8V)  
February 6, 2014  
28  
Revision 1.1  
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Register Map  
Register Number (Hex)  
Description  
0h  
1h  
Basic Control  
Basic Status  
2h  
PHY Identifier 1  
3h  
PHY Identifier 2  
4h  
Auto-Negotiation Advertisement  
Auto-Negotiation Link Partner Ability  
Auto-Negotiation Expansion  
Auto-Negotiation Next Page  
Link Partner Next Page Ability  
Reserved  
5h  
6h  
7h  
8h  
9h  
10h  
11h  
12h – 14h  
15h  
16h  
17h  
18h  
19h – 1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
Digital Reserved Control  
AFE Control 1  
Reserved  
RXER Counter  
Operation Mode Strap Override  
Operation Mode Strap Status  
Expanded Control  
Reserved  
Interrupt Control/Status  
Reserved  
LinkMD Control/Status  
PHY Control 1  
PHY Control 2  
February 6, 2014  
29  
Revision 1.1  
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Register Description  
Mode(1)  
Address  
Name  
Description  
Default  
Register 0h – Basic Control  
1 = Software reset  
0.15  
0.14  
Reset  
0 = Normal operation  
This bit is self-cleared after a ‘1’ is written to it.  
1 = Loopback mode  
0 = Normal operation  
1 = 100Mbps  
RW/SC  
RW  
0
0
Loopback  
Set by the ANEN_SPEED  
strapping pin.  
0 = 10Mbps  
0.13  
0.12  
Speed Select  
RW  
RW  
See the Strapping Options”  
section for details.  
This bit is ignored if auto-negotiation is enabled  
(register 0.12 = 1).  
1 = Enable auto-negotiation process  
0 = Disable auto-negotiation process  
Set by the ANEN_SPEED  
strapping pin.  
Auto-  
Negotiation  
Enable  
See the Strapping Options”  
section for details.  
If enabled, the auto-negotiation result overrides  
the settings in registers 0.13 and 0.8.  
1 = Power-down mode  
0 = Normal operation  
If software reset (register 0.15) is used to exit  
power-down mode (register 0.11 = 1), two  
software reset writes (register 0.15 = 1) are  
required. The first write clears power-down  
mode; the second write resets the chip and re-  
latches the pin strapping pin values.  
0.11  
Power-Down  
Isolate  
RW  
0
1 = Electrical isolation of PHY from MII  
0 = Normal operation  
0.10  
0.9  
RW  
RW/SC  
RW  
0
0
1
1 = Restart auto-negotiation process  
0 = Normal operation.  
Restart Auto-  
Negotiation  
This bit is self-cleared after a ‘1’ is written to it.  
1 = Full-duplex  
0.8  
Duplex Mode  
0 = Half-duplex  
1 = Enable COL test  
0.7  
Collision Test  
Reserved  
RW  
RO  
0
0 = Disable COL test  
0.6:0  
Reserved  
000_0000  
Register 1h – Basic Status  
1 = T4 capable  
1.15  
1.14  
1.13  
100Base-T4  
RO  
RO  
RO  
0
1
1
0 = Not T4 capable  
1 = Capable of 100Mbps full-duplex  
0 = Not capable of 100Mbps full-duplex  
1 = Capable of 100Mbps half-duplex  
0 = Not capable of 100Mbps half-duplex  
100Base-TX  
Full-Duplex  
100Base-TX  
Half-Duplex  
Note:  
1. RW = Read/Write.  
RO = Read only.  
SC = Self-cleared.  
LH = Latch high.LL = Latch low.  
February 6, 2014  
30  
Revision 1.1  
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Register Description (Continued)  
Mode(1)  
Address  
Name  
Description  
Default  
Register 1h – Basic Status  
1 = Capable of 10Mbps full-duplex  
0 = Not capable of 10Mbps full-duplex  
1 = Capable of 10Mbps half-duplex  
0 = Not capable of 10Mbps half-duplex  
Reserved  
10Base-T  
1.12  
RO  
1
Full-Duplex  
10Base-T  
1.11  
RO  
RO  
RO  
1
Half-Duplex  
1.10:7  
1.6  
Reserved  
000_0  
1
1 = Preamble suppression  
No Preamble  
0 = Normal preamble  
Auto-  
Negotiation  
Complete  
1 = Auto-negotiation process completed  
0 = Auto-negotiation process not completed  
1.5  
1.4  
1.3  
1.2  
RO  
RO/LH  
RO  
0
0
1
0
1 = Remote fault  
Remote Fault  
0 = No remote fault  
Auto-  
Negotiation  
Ability  
1 = Can perform auto-negotiation  
0 = Cannot perform auto-negotiation  
1 = Link is up  
Link Status  
RO/LL  
0 = Link is down  
1 = Jabber detected  
1.1  
1.0  
Jabber Detect  
RO/LH  
RO  
0
1
0 = Jabber not detected (default is low)  
Extended  
Capability  
1 = Supports extended capability registers  
Register 2h – PHY Identifier 1  
Assigned to the 3rd through 18th bits of the  
Organizationally Unique Identifier (OUI).  
KENDIN Communication’s OUI is 0010A1  
(hex).  
PHY ID  
2.15:0  
RO  
0022h  
Number  
Register 3h – PHY Identifier 2  
Assigned to the 19th through 24th bits of the  
Organizationally Unique Identifier (OUI).  
KENDIN Communication’s OUI is 0010A1  
(hex).  
PHY ID  
3.15:10  
RO  
0001_01  
Number  
3.9:4  
3.3:0  
Model Number Six-bit manufacturer’s model number  
RO  
RO  
01_0110  
Revision  
Four-bit manufacturer’s revision number  
Number  
Indicates silicon revision  
Register 4h – Auto-Negotiation Advertisement  
1 = Next page capable  
0 = No next page capability  
Reserved  
4.15  
4.14  
4.13  
4.12  
Next Page  
Reserved  
RW  
RO  
RW  
RO  
0
0
0
0
1 = Remote fault supported  
0 = No remote fault  
Reserved  
Remote Fault  
Reserved  
February 6, 2014  
31  
Revision 1.1  
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Register Description (Continued)  
Mode(1)  
Address  
Name  
Description  
Default  
Register 4h – Auto-Negotiation Advertisement  
[00] = No pause  
[10] = Asymmetric pause  
[01] = Symmetric pause  
[11] = Asymmetric and symmetric pause  
1 = T4 capable  
4.11:10  
Pause  
RW  
00  
0
4.9  
4.8  
100Base-T4  
RO  
RW  
0 = No T4 capability  
Set by the ANEN_SPEED  
strapping pin.  
1 = 100Mbps full-duplex capable  
100Base-TX  
Full-Duplex  
0 = No 100Mbps full-duplex capability  
See the Strapping Options”  
section for details.  
Set by the ANEN_SPEED  
strapping pin.  
1 = 100Mbps half-duplex capable  
100Base-TX  
Half-Duplex  
4.7  
4.6  
RW  
RW  
0 = No 100Mbps half-duplex capability  
See the Strapping Options”  
section for details.  
1 = 10Mbps full-duplex capable  
0 = No 10Mbps full-duplex capability  
1 = 10Mbps half-duplex capable  
0 = No 10Mbps half-duplex capability  
[00001] = IEEE 802.3  
10Base-T  
Full-Duplex  
1
10Base-T  
Half-Duplex  
4.5  
RW  
RW  
1
4.4:0  
Selector Field  
0_0001  
Register 5h – Auto-Negotiation Link Partner Ability  
1 = Next page capable  
5.15  
5.14  
Next Page  
RO  
RO  
0
0
0 = No next page capability  
1 = Link code word received from partner  
0 = Link code word not yet received  
1 = Remote fault detected  
Acknowledge  
5.13  
5.12  
Remote Fault  
Reserved  
RO  
RO  
0
0
0 = No remote fault  
Reserved  
[00] = No pause  
[10] = Asymmetric pause  
5.11:10  
Pause  
RO  
00  
[01] = Symmetric pause  
[11] = Asymmetric and symmetric pause  
1 = T4 capable  
5.9  
5.8  
5.7  
5.6  
100Base-T4  
RO  
RO  
RO  
RO  
0
0
0
0
0 = No T4 capability  
1 = 100Mbps full-duplex capable  
0 = No 100Mbps full-duplex capability  
1 = 100Mbps half-duplex capable  
0 = No 100Mbps half-duplex capability  
1 = 10Mbps full-duplex capable  
0 = No 10Mbps full-duplex capability  
1 = 10Mbps half-duplex capable  
0 = No 10Mbps half-duplex capability  
[00001] = IEEE 802.3  
100Base-TX  
Full-Duplex  
100Base-TX  
Half-Duplex  
10Base-T  
Full-Duplex  
10Base-T  
Half-Duplex  
5.5  
RO  
RO  
0
5.4:0  
Selector Field  
0_0001  
February 6, 2014  
32  
Revision 1.1  
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Register Description (Continued)  
Mode(1)  
Address  
Name  
Description  
Default  
Register 6h – Auto-Negotiation Expansion  
6.15:5  
6.4  
Reserved  
Reserved  
RO  
0000_0000_000  
0
1 = Fault detected by parallel detection  
0 = No fault detected by parallel detection  
1 = Link partner has next page capability  
Parallel  
Detection Fault  
RO/LH  
RO  
Link Partner  
Next Page  
Able  
6.3  
0
0 = Link partner does not have next page  
capability  
1 = Local device has next page capability  
Next Page  
Able  
6.2  
6.1  
RO  
1
0
0 = Local device does not have next page  
capability  
1 = New page received  
Page Received  
RO/LH  
0 = New page not received yet  
Link Partner  
Auto-  
Negotiation  
Able  
1 = Link partner has auto-negotiation capability  
6.0  
RO  
0
0 = Link partner does not have auto-negotiation  
capability  
Register 7h – Auto-Negotiation Next Page  
1 = Additional next pages will follow  
0 = Last page  
7.15  
7.14  
7.13  
Next Page  
RW  
RO  
RW  
0
0
1
Reserved  
Reserved  
1 = Message page  
Message Page  
0 = Unformatted page  
1 = Will comply with message  
0 = Cannot comply with message  
7.12  
Acknowledge2  
Toggle  
RW  
0
1 = Previous value of the transmitted link code  
word equaled logic 1  
7.11  
RO  
RW  
0
0 = Logic 0  
7.10:0  
Message Field 11-bit wide field to encode 2048 messages  
000_0000_0001  
Register 8h – Link Partner Next Page Ability  
1 = Additional next pages will follow  
0 = Last page  
8.15  
8.14  
8.13  
8.12  
Next Page  
RO  
RO  
RO  
RO  
0
0
0
0
1 = Successful receipt of link word  
0 = No successful receipt of link word  
1 = Message page  
Acknowledge  
Message Page  
Acknowledge2  
0 = Unformatted page  
1 = Can act on the information  
0 = Cannot act on the information  
1 = Previous value of transmitted link code  
word equal to logic 0  
8.11  
Toggle  
RO  
RO  
0
0 = Previous value of transmitted link code  
word equal to logic 1  
8.10:0  
Message Field 11-bit wide field to encode 2048 messages  
000_0000_0000  
February 6, 2014  
33  
Revision 1.1  
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Register Description (Continued)  
Mode(1)  
Address  
Name  
Description  
Default  
Register 10h – Digital Reserved Control  
10.15:5  
10.4  
Reserved  
PLL Off  
Reserved  
RW  
RW  
RW  
0000_0000_000  
1 = Turn PLL off automatically in EDPD mode  
0 = Keep PLL on in EDPD mode.  
See also register 18h, bit [11] for EDPD mode  
Reserved  
0
10.3:0  
Reserved  
0000  
Register 11h – AFE Control 1  
11.15:6  
Reserved  
Reserved  
RW  
0000_0000_00  
Slow-oscillator mode is used to disconnect the  
input reference crystal/clock on the XI pin and  
select the on-chip slow oscillator when the  
KSZ8081RNA/RND device is not in use after  
power-up.  
Slow-Oscillator  
Mode Enable  
11.5  
RW  
0
1 = Enable  
0 = Disable  
This bit automatically sets software power-down  
to the analog side when enabled.  
11.4:0  
Reserved  
Reserved  
RW  
0_0000  
0000h  
Register 15h – RXER Counter  
15.15:0 RXER Counter Receive error counter for symbol error frames  
Register 16h – Operation Mode Strap Override  
RO/SC  
If RXER (Pin 17) latches in a pull-up value at  
the de-assertion of reset, write a ‘0’ to this bit to  
clear Reserved Factory Mode.  
Reserved  
Factory Mode  
Set by the pull-up / pull-down  
value of RXER (Pin 17).  
16.15  
RW  
16.14:11  
16.10  
Reserved  
Reserved  
Reserved  
RW  
RO  
000_0  
0
Reserved  
1 = Override strap-in for B-CAST_OFF  
If bit is ‘1’, PHY Address 0 is non-broadcast.  
Reserved  
B-CAST_OFF  
Override  
16.9  
RW  
0
16.8:7  
16.6  
Reserved  
RW  
RW  
0_0  
0
RMII B-to-B  
Override  
1 = Override strap-in for RMII back-to-back  
mode (also set bit 1 of this register to ‘1’)  
NAND Tree  
Override  
16.5  
1 = Override strap-in for NAND tree mode  
Reserved  
RW  
0
16.4:2  
16.1  
Reserved  
RW  
RW  
RW  
0_00  
RMII Override 1 = Override strap-in for RMII mode  
Reserved Reserved  
1
0
16.0  
Register 17h – Operation Mode Strap Status  
[000] = Strap to PHY Address 0  
PHYAD[2:0]  
Strap-In Status  
[011] = Strap to PHY Address 3  
17.15:13  
RO  
The KSZ8081RNA/RND supports only PHY  
addresses 0h and 3h.  
17.12:2  
17.1  
Reserved  
Reserved  
RO  
RO  
RMII Strap-In  
Status  
1 = Strap to RMII mode  
February 6, 2014  
34  
Revision 1.1  
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Register Description (Continued)  
Mode(1)  
RO  
Address  
Register 17h – Operation Mode Strap Status  
17.0 Reserved Reserved  
Register 18h – Expanded Control  
Name  
Description  
Default  
18.15:12  
Reserved  
Reserved  
RW  
0000  
Energy-detect power-down mode  
1 = Disable  
EDPD  
Disabled  
18.11  
RW  
RW  
1
0 = Enable  
See also register 10h, bit [4] for PLL off.  
Reserved  
18.10:0  
Reserved  
000_0000_0000  
Register 1Bh – Interrupt Control/Status  
Jabber  
Interrupt  
Enable  
1 = Enable jabber interrupt  
0 = Disable jabber interrupt  
1B.15  
1B.14  
1B.13  
1B.12  
RW  
RW  
RW  
RW  
0
0
0
0
Receive Error  
Interrupt  
1 = Enable receive error interrupt  
0 = Disable receive error interrupt  
Enable  
Page Received  
Interrupt  
1 = Enable page received interrupt  
0 = Disable page received interrupt  
Enable  
Parallel Detect  
Fault Interrupt  
Enable  
1 = Enable parallel detect fault interrupt  
0 = Disable parallel detect fault interrupt  
Link Partner  
Acknowledge  
Interrupt  
1 = Enable link partner acknowledge interrupt  
1B.11  
RW  
0
0 = Disable link partner acknowledge  
interrupt  
Enable  
Link-Down  
Interrupt  
Enable  
1= Enable link-down interrupt  
0 = Disable link-down interrupt  
1B.10  
1B.9  
1B.8  
RW  
RW  
RW  
0
0
0
Remote Fault  
Interrupt  
1 = Enable remote fault interrupt  
0 = Disable remote fault interrupt  
Enable  
Link-Up  
Interrupt  
Enable  
1 = Enable link-up interrupt  
0 = Disable link-up interrupt  
1 = Jabber occurred  
Jabber  
Interrupt  
1B.7  
1B.6  
1B.5  
1B.4  
RO/SC  
RO/SC  
RO/SC  
RO/SC  
0
0
0
0
0 = Jabber did not occur  
1 = Receive error occurred  
0 = Receive error did not occur  
1 = Page receive occurred  
0 = Page receive did not occur  
1 = Parallel detect fault occurred  
0 = Parallel detect fault did not occur  
Receive Error  
Interrupt  
Page Receive  
Interrupt  
Parallel Detect  
Fault Interrupt  
Link Partner  
Acknowledge  
Interrupt  
1 = Link partner acknowledge occurred  
1B.3  
RO/SC  
0
0 = Link partner acknowledge did not occur  
February 6, 2014  
35  
Revision 1.1  
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Register Description (Continued)  
Mode(1)  
Address  
Name  
Description  
Default  
Register 1Bh – Interrupt Control/Status  
1 = Link-down occurred  
Link-Down  
Interrupt  
1B.2  
1B.1  
1B.0  
RO/SC  
RO/SC  
RO/SC  
0
0
0
0 = Link-down did not occur  
1 = Remote fault occurred  
0 = Remote fault did not occur  
1 = Link-up occurred  
Remote Fault  
Interrupt  
Link-Up  
Interrupt  
0 = Link-up did not occur  
Register 1Dh – LinkMD Control/Status  
1 = Enable cable diagnostic test. After test  
has completed, this bit is self-cleared.  
Cable  
1D.15  
Diagnostic  
Test Enable  
RW/SC  
0
0 = Indicates cable diagnostic test (if enabled)  
has completed and the status information  
is valid for read.  
[00] = Normal condition  
[01] = Open condition has been detected in  
cable  
Cable  
Diagnostic  
Test Result  
1D.14:13  
RO  
00  
[10] = Short condition has been detected in  
cable  
[11] = Cable diagnostic test has failed  
Short Cable  
Indicator  
1 = Short cable (<10 meter) has been detected  
by LinkMD  
1D.12  
1D.11:9  
1D.8:0  
RO  
RW  
RO  
0
Reserved  
Reserved  
000  
Cable Fault  
Counter  
Distance to fault  
0_0000_0000  
Register 1Eh – PHY Control 1  
1E.15:10  
Reserved  
Reserved  
RO  
RO  
0000_00  
0
1 = Flow control capable  
0 = No flow control capability  
1 = Link is up  
Enable Pause  
(Flow Control)  
1E.9  
1E.8  
Link Status  
RO  
0
0 = Link is down  
1 = Polarity is reversed  
0 = Polarity is not reversed  
Reserved  
1E.7  
1E.6  
1E.5  
Polarity Status  
Reserved  
RO  
RO  
RO  
0
1 = MDI-X  
MDI/MDI-X  
State  
0 = MDI  
1 = Signal present on receive differential  
pair  
1E.4  
1E.3  
Energy Detect  
PHY Isolate  
RO  
RW  
0
0
0 = No signal detected on receive differential  
pair  
1 = PHY in isolate mode  
0 = PHY in normal operation  
February 6, 2014  
36  
Revision 1.1  
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Register Description (Continued)  
Mode(1)  
Address  
Name  
Description  
Default  
Register 1Eh – PHY Control 1  
[000] = Still in auto-negotiation  
[001] = 10Base-T half-duplex  
[010] = 100Base-TX half-duplex  
[011] = Reserved  
Operation  
Mode  
Indication  
1E.2:0  
RO  
000  
[100] = Reserved  
[101] = 10Base-T full-duplex  
[110] = 100Base-TX full-duplex  
[111] = Reserved  
Register 1Fh – PHY Control 2  
1 = HP Auto MDI/MDI-X mode  
0 = Micrel Auto MDI/MDI-X mode  
When Auto MDI/MDI-X is disabled,  
1 = MDI-X mode  
1F.15  
HP_MDIX  
RW  
RW  
1
0
Transmit on RXP,RXM (pins 4, 3) and  
Receive on TXP,TXM (pins 6, 5)  
MDI/MDI-X  
Select  
1F.14  
0 = MDI mode  
Transmit on TXP,TXM (pins 6, 5) and  
Receive on RXP,RXM (pins 4, 3)  
1 = Disable Auto MDI/MDI-X  
0 = Enable Auto MDI/MDI-X  
Pair Swap  
Disable  
1F.13  
1F.12  
RW  
RW  
0
0
Reserved  
Reserved  
1 = Force link pass  
0 = Normal link operation  
1F.11  
Force Link  
RW  
0
This bit bypasses the control logic and allows  
the transmitter to send a pattern even if there is  
no link.  
1 = Enable power saving  
0 = Disable power saving  
1 = Interrupt pin active high  
0 = Interrupt pin active low  
1 = Enable jabber counter  
0 = Disable jabber counter  
1F.10  
1F.9  
1F.8  
Power Saving  
Interrupt Level  
Enable Jabber  
RW  
RW  
RW  
0
0
1
1 = For KSZ8081RNA, clock input to XI (pin 8)  
is 50MHz for RMII – 50MHz clock mode.  
For KSZ8081RND, clock input to XI (pin 8)  
is 25MHz for RMII – 25MHz clock code.  
RMII  
Reference  
Clock Select  
1F.7  
RW  
0
0 = For KSZ8081RNA, clock input to XI (pin 8)  
is 25MHz for RMII – 25MHz clock code.  
For KSZ8081RND, clock input to XI (pin 8)  
is 50MHz for RMII – 50MHz clock mode.  
February 6, 2014  
37  
Revision 1.1  
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Register Description (Continued)  
Mode(1)  
Address  
Name  
Description  
Default  
Register 1Fh – PHY Control 2  
1F.6  
Reserved  
LED Mode  
Reserved  
RW  
RW  
0
[00] =  
[01] =  
LED0: Link/Activity  
LED0: Link  
1F.5:4  
00  
[10], [11] = Reserved  
1 = Disable transmitter  
0 = Enable transmitter  
Disable  
Transmitter  
1F.3  
RW  
0
1 = Remote (analog) loopback is enabled  
0 = Normal mode  
Remote  
Loopback  
1F.2  
1F.1  
1F.0  
RW  
RW  
RW  
0
0
0
Reserved  
Reserved  
1 = Disable scrambler  
0 = Enable scrambler  
Disable Data  
Scrambling  
February 6, 2014  
38  
Revision 1.1  
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage (VIN)  
Supply Voltage  
(VDDIO_3.3, VDDA_3.3) .......................... +3.135V to +3.465V  
(VDDIO_2.5)........................................ +2.375V to +2.625V  
(VDDIO_1.8)........................................ +1.710V to +1.890V  
Ambient Temperature  
(TA, Commercial) ......................................0°C to +70°C  
(TA, Industrial).......................................40°C to +85°C  
Maximum Junction Temperature (TJ max.)................ 125°C  
Thermal Resistance (θJA) ....................................49.22°C/W  
Thermal Resistance (θJC)....................................25.65°C/W  
(VDD_1.2) .................................................. 0.5V to +1.8V  
(VDDIO, VDDA_3.3)....................................... 0.5V to +5.0V  
Input Voltage (all inputs) .............................. 0.5V to +5.0V  
Output Voltage (all outputs) ......................... 0.5V to +5.0V  
Lead Temperature (soldering, 10sec.)....................... 260°C  
Storage Temperature (Ts) .........................55°C to +150°C  
Electrical Characteristics(3)  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Supply Current (VDDIO, VDDA_3.3 = 3.3V)(4)  
IDD1_3.3V  
IDD2_3.3V  
IDD3_3.3V  
IDD4_3.3V  
10Base-T  
Full-duplex traffic @ 100% utilization  
Full-duplex traffic @ 100% utilization  
Ethernet cable disconnected (reg. 18h.11 = 0)  
Software power-down (reg. 0h.11 = 1)  
41  
47  
20  
4
mA  
mA  
mA  
mA  
100Base-TX  
EDPD Mode  
Power-Down Mode  
CMOS Level Inputs  
VDDIO = 3.3V  
VDDIO = 2.5V  
VDDIO = 1.8V  
VDDIO = 3.3V  
VDDIO = 2.5V  
VDDIO = 1.8V  
VIN = GND ~ VDDIO  
2.0  
1.8  
1.3  
V
V
VIH  
Input High Voltage  
V
0.8  
0.7  
0.5  
10  
V
VIL  
Input Low Voltage  
Input Current  
V
V
|IIN|  
µA  
CMOS Level Outputs  
VDDIO = 3.3V  
VDDIO = 2.5V  
VDDIO = 1.8V  
VDDIO = 3.3V  
VDDIO = 2.5V  
VDDIO = 1.8V  
2.4  
2.0  
1.5  
V
V
VOH  
Output High Voltage  
V
0.4  
0.4  
0.3  
10  
V
VOL  
|Ioz|  
Output Low Voltage  
V
V
Output Tri-State Leakage  
µA  
LED Output  
ILED  
Output Drive Current  
LED0 pin  
8
mA  
Notes:  
1. Exceeding the absolute maximum rating can damage the device. Stresses greater than the absolute maximum rating can cause permanent  
damage to the device. Operation of the device at these or any other conditions above those specified in the operating sections of this specification  
is not implied. Maximum conditions for extended periods may affect reliability.  
2. The device is not guaranteed to function outside its operating rating.  
3. TA = 25°C. Specification is for packaged product only.  
4. Current consumption is for the single 3.3V supply KSZ8081RNA/RND device only, and includes the transmit driver current and the 1.2V supply  
voltage (VDD_1.2) that are supplied by the KSZ8081RNA/RND.  
February 6, 2014  
39  
Revision 1.1  
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Electrical Characteristics(3)  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
All Pull-Up/Pull-Down Pins (including Strapping Pins)  
VDDIO = 3.3V  
30  
39  
48  
26  
34  
53  
45  
61  
99  
43  
59  
99  
73  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
pu  
pd  
Internal Pull-Up Resistance  
VDDIO = 2.5V  
VDDIO = 1.8V  
VDDIO = 3.3V  
VDDIO = 2.5V  
VDDIO = 1.8V  
102  
178  
79  
Internal Pull-Down Resistance  
113  
200  
100Base-TX Transmit (measured differentially after 1:1 transformer)  
VO  
Peak Differential Output Voltage 100Ω termination across differential output  
0.95  
1.05  
2
V
VIMB  
tr, tf  
Output Voltage Imbalance  
Rise/Fall Time  
100Ω termination across differential output  
%
3
0
5
ns  
ns  
ns  
%
Rise/Fall Time Imbalance  
Duty Cycle Distortion  
Overshoot  
0.5  
±0.25  
5
Output Jitter  
Peak-to-peak  
0.7  
ns  
10Base-T Transmit (measured differentially after 1:1 transformer)  
VP  
Peak Differential Output Voltage 100Ω termination across differential output  
2.2  
2.8  
3.5  
V
Jitter Added  
Peak-to-peak  
ns  
ns  
tr, tf  
Rise/Fall Time  
25  
10Base-T Receive  
VSQ  
Squelch Threshold  
5MHz square wave  
400  
0.65  
mV  
V
Transmitter – Drive Setting  
VSET  
Reference Voltage of ISET  
R(ISET) = 6.49kΩ  
REF_CLK Output  
Peak-to-peak  
50MHz RMII Clock Output Jitter  
300  
ps  
(Applies only to RMII – 25MHz clock mode)  
100Mbps Mode – Industrial Applications Parameters  
Link loss detected at receive differential inputs  
to PHY signal indication time for each of the  
following:  
Link Loss Reaction (Indication)  
Time  
tllr  
1. For LED mode 01, Link LED output changes  
from low (link-up) to high (link-down).  
4.4  
µs  
2. INTRP pin asserts for link-down status  
change.  
February 6, 2014  
40  
Revision 1.1  
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Timing Diagrams  
RMII Timing  
Figure 10. RMII Timing – Data Received from RMII  
Figure 11. RMII Timing – Data Input to RMII  
Timing Parameter  
tCYC  
t1  
Description  
Clock cycle  
Setup time  
Hold time  
Min.  
Typ.  
Max.  
Unit  
ns  
20  
4
2
7
ns  
t2  
ns  
tOD  
Output delay  
10  
13  
ns  
Table 10. RMII Timing Parameters – KSZ8081RNA/RND (25MHz input to XI pin, 50MHz output from REF_CLK pin)  
Timing Parameter  
Description  
Clock cycle  
Setup time  
Hold time  
Min.  
Typ.  
Max.  
Unit  
ns  
tCYC  
t1  
20  
4
2
8
ns  
t2  
ns  
tOD  
Output delay  
11  
13  
ns  
Table 11. RMII Timing Parameters – KSZ8081RNA/RND (50MHz input to XI pin)  
February 6, 2014  
41  
Revision 1.1  
 
 
 
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Auto-Negotiation Timing  
Figure 12. Auto-Negotiation Fast Link Pulse (FLP) Timing  
Timing Parameter  
Description  
Min.  
Typ.  
16  
Max.  
Units  
ms  
ms  
ns  
tBTB  
tFLPW  
tPW  
FLP burst to FLP burst  
FLP burst width  
8
24  
2
Clock/Data pulse width  
Clock pulse to data pulse  
Clock pulse to clock pulse  
100  
64  
tCTD  
tCTC  
55.5  
111  
69.5  
139  
µs  
128  
µs  
Number of clock/data pulses per  
FLP burst  
17  
33  
Table 12. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters  
February 6, 2014  
42  
Revision 1.1  
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
MDC/MDIO Timing  
Figure 13. MDC/MDIO Timing  
Timing Parameter  
Description  
Min.  
Typ.  
Max.  
Unit  
ns  
tP  
MDC period  
400  
tMD1  
tMD2  
tMD3  
MDIO (PHY input) setup to rising edge of MDC  
MDIO (PHY input) hold from rising edge of MDC  
MDIO (PHY output) delay from rising edge of MDC  
10  
4
ns  
ns  
5
ns  
Table 13. MDC/MDIO Timing Parameters  
February 6, 2014  
43  
Revision 1.1  
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Power-Up/Reset Timing  
The KSZ8081RNA/RND reset timing requirement is summarized in Figure 14 and Table 14.  
Figure 14. Power-Up/Reset Timing  
Parameter  
Description  
Min.  
300  
10  
5
Max.  
Units  
µs  
tVR  
tSR  
tCS  
tCH  
tRC  
Supply voltage (VDDIO, VDDA_3.3) rise time  
Stable supply voltage (VDDIO, VDDA_3.3) to reset high  
Configuration setup time  
ms  
ns  
Configuration hold time  
5
ns  
Reset to strap-in pin output  
6
ns  
Table 14. Power-Up/Reset Timing Parameters  
The supply voltage (VDDIO and VDDA_3.3) power-up waveform should be monotonic. The 300µs minimum rise time is from  
10% to 90%.  
For warm reset, the reset (RST#) pin should be asserted low for a minimum of 500µs. The strap-in pin values are read  
and updated at the de-assertion of reset.  
After the de-assertion of reset, wait a minimum of 100µs before starting programming on the MIIM (MDC/MDIO) interface.  
February 6, 2014  
44  
Revision 1.1  
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Reset Circuit  
Figure 15 shows a reset circuit recommended for powering up the KSZ8081RNA/RND if reset is triggered by the power  
supply.  
Figure 15. Recommended Reset Circuit  
Figure 16 shows a reset circuit recommended for applications where reset is driven by another device (for example, the  
CPU or an FPGA). At power-on-reset, R, C, and D1 provide the necessary ramp rise time to reset the KSZ8081RNA/RND  
device. The RST_OUT_n from the CPU/FPGA provides the warm reset after power-up.  
Figure 16. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output  
February 6, 2014  
45  
Revision 1.1  
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Reference Circuits – LED Strap-In Pins  
The pull-up, float, and pull-down reference circuits for the LED0/ANEN_SPEED strapping pin are shown in Figure 17 for  
3.3V and 2.5V VDDIO.  
Figure 17. Reference Circuits for LED Strapping Pins  
For 1.8V VDDIO, LED indication support is not recommended due to the low voltage. Without the LED indicator, the  
ANEN_SPEED strapping pin is functional with a 4.7kΩ pull-up to 1.8V VDDIO or float for a value of ‘1’, and with a 1.0kΩ  
pull-down to ground for a value of ‘0’.  
February 6, 2014  
46  
Revision 1.1  
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Reference Clock – Connection and Selection  
A crystal or external clock source, such as an oscillator, is used to provide the reference clock for the KSZ8081RNA/RND.  
For the KSZ8081RNA/RND in RMII – 25MHz clock mode, the reference clock is 25 MHz. The reference clock connections  
to XI (pin 8) and XO (pin 7), and the reference clock selection criteria, are provided in Figure 18 and Table 15.  
Figure 18. 25MHz Crystal/Oscillator Reference Clock Connection  
Characteristics  
Value  
25  
Units  
MHz  
ppm  
Ω
Frequency  
Frequency tolerance (max.)  
Crystal series resistance (typ.)  
Crystal load capacitance (typ.)  
±50  
40  
16  
pF  
Table 15. 25MHz Crystal / Reference Clock Selection Criteria  
For the KSZ8081RNA/RND in RMII – 50MHz clock mode, the reference clock is 50MHz. The reference clock connection  
to XI (pin 8), and the reference clock selection criteria are provided in Figure 19 and Table 16.  
Figure 19. 50MHz Oscillator Reference Clock Connection  
Characteristics  
Value  
50  
Units  
MHz  
ppm  
Frequency  
Frequency tolerance (max)  
±50  
Table 16. 50MHz Oscillator / Reference Clock Selection Criteria  
February 6, 2014  
47  
Revision 1.1  
 
 
 
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Magnetic – Connection and Selection  
A 1:1 isolation transformer is required at the line interface. Use one with integrated common-mode chokes for designs  
exceeding FCC requirements.  
The KSZ8081RNA/RND design incorporates voltage-mode transmit drivers and on-chip terminations.  
With the voltage-mode implementation, the transmit drivers supply the common-mode voltages to the two differential  
pairs. Therefore, the two transformer center tap pins on the KSZ8081RNA/RND side should not be connected to any  
power supply source on the board; instead, the center tap pins should be separated from one another and connected  
through separate 0.1µF common-mode capacitors to ground. Separation is required because the common-mode voltage  
is different between transmitting and receiving differential pairs.  
Figure 20 shows the typical magnetic interface circuit for the KSZ8081RNA/RND.  
Figure 20. Typical Magnetic Interface Circuit  
February 6, 2014  
48  
Revision 1.1  
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Table 17 lists recommended magnetic characteristics.  
Parameter  
Value  
Test Condition  
Turns ratio  
1 CT : 1 CT  
350µH  
Open-circuit inductance (min.)  
Insertion loss (typ.)  
HIPOT (min.)  
100mV, 100kHz, 8mA  
100kHz to 100MHz  
–1.1dB  
1500Vrms  
Table 17. Magnetics Selection Criteria  
Table 18 is a list of compatible single-port magnetics with separated transformer center tap pins on the PHY chip side that  
can be used with the KSZ8081RNA/RND.  
Temperature  
Range  
Magnetic +  
RJ-45  
Manufacturer  
Part Number  
Bel Fuse  
Bel Fuse  
Bel Fuse  
Delta  
S558-5999-U7  
SI-46001-F  
SI-50170-F  
LF8505  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
No  
Yes  
Yes  
No  
HALO  
HFJ11-2450E  
TG110-E055N5  
LF-H41S-1  
H1102  
Yes  
HALO  
–40°C to 85°C No  
LANKom  
Pulse  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
No  
No  
No  
Pulse  
H1260  
Pulse  
HX1188  
–40°C to 85°C No  
Pulse  
J00-0014  
0°C to 70°C  
Yes  
Pulse  
JX0011D21NL  
TLA-6T718A  
HB726  
–40°C to 85°C Yes  
TDK  
0°C to 70°C  
0°C to 70°C  
Yes  
No  
Transpower  
Wurth/Midcom  
000-7090-37R-LF1  
–40°C to 85°C No  
Table 18. Compatible Single-Port 10/100 Magnetics  
February 6, 2014  
49  
Revision 1.1  
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Recommended Land Pattern  
Figure 21. Recommended Land Pattern, 24-Pin (4mm × 4mm) QFN  
Red circles indicate thermal vias. They should be 0.350mm in diameter and be connected to the GND plane for maximum  
thermal performance.  
Green rectangles (with shaded area) indicate solder stencil openings on the exposed pad area. They should be 1.00 x  
1.00mm in size, 1.20mm pitch.  
February 6, 2014  
50  
Revision 1.1  
 
 
Micrel, Inc.  
KSZ8081RNA/KSZ8081RND  
Package Information(1)  
24-Pin (4mm × 4mm) QFN  
Note:  
1. Package information is correct as of the publication date. For updates and most current information, go to www.micrel.com. (Micrel note body)  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com  
Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This  
information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry,  
specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Micrel’s terms and conditions of sale for such products, Micrel assumes no liability  
whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties  
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant  
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2012 Micrel, Incorporated.  
February 6, 2014  
51  
Revision 1.1  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY