MIC2171WUTR [MICREL]

暂无描述;
MIC2171WUTR
型号: MIC2171WUTR
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

暂无描述

稳压器 开关
文件: 总10页 (文件大小:84K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2171  
100kHz 2.5A Switching Regulator  
Preliminary Information  
General Description  
Features  
The MIC2171 is a complete 100kHz SMPS current-mode  
controller with an internal 65V 2.5A power switch.  
• 2.5A, 65V internal switch rating  
• 3V to 40V input voltage range  
• Current-mode operation, 2.5A peak  
• Internal cycle-by-cycle current limit  
• Thermal shutdown  
• Twice the frequency of the LM2577  
• Low external parts count  
Although primarily intended for voltage step-up applications,  
the floating switch architecture of the MIC2171 makes it  
practical for step-down, inverting, and Cuk configurations as  
well as isolated topologies.  
Operating from 3V to 40V, the MIC2171 draws only 7mA of  
quiescent current, making it attractive for battery operated  
supplies.  
• Operates in most switching topologies  
• 7mA quiescent current (operating)  
• Fits LT1171/LM2577 TO-220 and TO-263 sockets  
Applications  
• Laptop/palmtop computers  
• Battery operated equipment  
• Hand-held instruments  
The MIC2171 is available in a 5-pin TO-220 or TO-263 for  
–40°C to +85°C operation.  
• Off-line converter up to 50W  
(requires external power switch)  
• Predriver for higher power capability  
4
Typical Applications  
+5V  
VOUT  
5V, 0.5A  
VIN  
4V to 6V  
(4.75V min.)  
C1*  
L1  
T1  
47µF  
15µH  
D2  
1N5818  
C1  
R4*  
C3*  
D1*  
47µF  
VOUT  
+12V, 0.25A  
R1  
D1  
IN  
C4  
470µF  
3.74k  
1%  
SW  
FB  
IN  
R1  
10.7k  
1%  
1N5822  
MIC2171  
SW  
1:1.25  
PRI = 12µH  
L
MIC2171  
COMP  
R2  
R3  
1k  
C2  
470µF  
GND  
1.24k  
COMP  
FB  
1%  
R2  
C3  
1µF  
R3  
1k  
GND  
1.24k  
1%  
C2  
1µF  
* Locate near MIC2171 when supply leads > 2"  
* Optional voltage clipper (may be req’d if T1 leakage inductance too high)  
Figure 1.  
Figure 2.  
MIC2171 5V to 12V Boost Converter  
MIC2171 5V Flyback Converter  
1997  
4-3  
MIC2171  
Micrel  
Ordering Information  
Part Number  
MIC2171BT  
MIC2171BU  
Temperature Range  
Package  
–40°C to +85°C  
–40°C to +85°C  
5-lead TO-220  
5-lead TO-263  
Pin Configuration  
5 IN  
5 IN  
4 SW  
3 GND  
2 FB  
4 SW  
3 GND  
2 FB  
1 COMP  
1 COMP  
Tab GND  
Tab GND  
5-lead TO-220 (BT)  
5-lead TO-263 (BU)  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
COMP  
Frequency Compensation: Output of transconductance-type error amplifier.  
Primary function is for loop stabilization. Can also be used for output voltage  
soft-start and current limit tailoring.  
2
3
4
5
FB  
GND  
SW  
IN  
Feedback: Inverting input of error amplifier. Connect to external resistive  
divider to set power supply output voltage.  
Ground: Connect directly to the input filter capacitor for proper operation  
(see applications info).  
Power Switch Collector: Collector of NPN switch. Connect to external  
inductor or input voltage depending on circuit topology.  
Supply Voltage: 3.0V to 40V  
4-4  
1997  
MIC2171  
Micrel  
Junction Temperature ................................ –55°C to 150°C  
Thermal Resistance  
Absolute Maximum Ratings  
Input Voltage (V ) ........................................................40V  
IN  
θ
θ
5-lead TO-220, Note 1.................................45°C/W  
5-lead TO-263, Note 2.................................45°C/W  
JA  
JA  
Switch Voltage (V ) ....................................................65V  
SW  
Feedback Voltage (transient, 1ms) (V )................... ±15V  
FB  
Storage Temperature ............................... –65°C to +150°C  
Soldering (10 sec.) .................................................. +300°C  
Operating Temperature Range ...................... –40 to +85°C  
Electrical Characteristics  
VIN = 5V; TA = 25°C, bold values indicate –40°C TA +85°C; unless noted.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Reference Section  
Feedback Voltage (VFB  
)
VCOMP = 1.24V  
1.220 1.240 1.264  
V
V
1.214  
1.274  
Feedback Voltage  
Line Regulation  
3V VIN 40V  
VCOMP = 1.24V  
.06  
%/V  
Feedback Bias Current (IFB  
)
VFB = 1.24V  
310  
750  
1100  
nA  
nA  
Error Amplifier Section  
Transconductance (gm)  
ICOMP = ±25µA  
3.0  
2.4  
3.9  
6.0  
7.0  
µA/mV  
µA/mV  
Voltage Gain (AV)  
Output Current  
0.9V VCOMP 1.4V  
400  
800  
175  
2000  
V/V  
4
VCOMP = 1.5V  
125  
100  
350  
400  
µA  
µA  
Output Swing  
High Clamp, VFB = 1V  
Low Clamp, VFB = 1.5V  
1.8  
0.25  
2.1  
0.35  
2.3  
0.52  
V
V
Compensation Pin  
Threshold  
Duty Cycle = 0  
0.8  
0.6  
0.9  
1.08  
1.25  
V
V
Output Switch Section  
ON Resistance  
I
SW = 2A, VFB = 0.8V  
0.37  
0.50  
0.55  
Current Limit  
Duty Cycle = 50%, TJ 25°C  
Duty Cycle = 50%, TJ < 25°C  
Duty Cycle = 80%, Note 3  
2.5  
2.5  
2.0  
3.6  
4.0  
3.0  
5
5.5  
5
A
A
A
Breakdown Voltage (BV)  
3V VIN 40V  
65  
75  
V
ISW = 5mA  
Oscillator Section  
Frequency (fO)  
88  
85  
100  
90  
112  
115  
kHz  
kHz  
Duty Cycle [δ(max)]  
80  
95  
%
Input Supply Voltage Section  
Minimum Operating Voltage  
Quiescent Current (IQ)  
2.7  
7
3.0  
9
V
3V VIN 40V, VCOMP = 0.6V, ISW = 0  
mA  
mA  
Supply Current Increase (IIN)  
ISW = 2A, VCOMP = 1.5V, during swich on-time  
9
20  
General Note Devices are ESD sensitive. Handling precautions required.  
Note 1 Mounted vertically, no external heat sink, 1/4 inch leads soldered to PC board containing approximently 4 inch squared copper area  
surrounding leads.  
Note 2 All ground leads soldered to approximently 2 inches squared of horizontal PC board copper area.  
Note 3 For duty cycles (δ) between 50% and 95%, minimum guaranteed switch current is I = 1.66 (2-δ) Amp (Pk).  
CL  
1997  
4-5  
MIC2171  
Micrel  
Typical Performance Characteristics  
Feedback Voltage  
Line Regulation  
Minimum  
Operating Voltage  
Feedback Bias Current  
5
4
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= 125°C  
3
J
2
1
0
T
= 25°C  
J
Switch Current = 2A  
-1  
-2  
-3  
-4  
-5  
T
= -40°C  
J
0
10  
V
20  
30  
40  
-100 -50  
0
50  
100 150  
-100 -50  
0
50  
100 150  
Operating (V)  
Temperature (°C)  
Temperature (°C)  
IN  
Supply Current  
Supply Current  
Supply Current  
15  
14  
13  
12  
11  
10  
9
10  
9
8
7
6
5
4
3
2
1
0
50  
40  
30  
20  
10  
0
I
= 0  
VCOMP = 0.6V  
SW  
D.C. = 90%  
δ = 90%  
D.C. = 50%  
D.C. = 0%  
8
δ = 50%  
7
6
5
0
10  
20  
30  
40  
-100 -50  
0
50  
100 150  
0
1
2
3
4
Temperature (°C)  
V
Operating Voltage (V)  
Switch Current (A)  
IN  
Oscillator Frequency  
Current Limit  
Switch On-Voltage  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
120  
110  
100  
90  
8
6
T
= 25°C  
J
T
= –40°C  
J
25°C  
–40°C  
4
2
0
80  
125°C  
T
= 125°C  
J
70  
60  
0
1
2
3
-50  
0
50  
100  
150  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Switch Current (A)  
Duty Cycle (%)  
Error Amplifier Gain  
Error Amplifier Gain  
Error Amplifier Phase  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
-30  
0
30  
60  
90  
120  
150  
180  
210  
-100 -50  
0
50  
100 150  
1
10  
100  
1000 10000  
1
10  
100  
1000 10000  
Temperature (°C)  
Frequency (kHz)  
Frequency (kHz)  
4-6  
1997  
MIC2171  
Micrel  
Block Diagram MIC2171  
D1  
IN  
2.3V  
SW  
Reg.  
Anti-Sat.  
Driver  
100kHz  
Osc.  
Logic  
Q1  
Com-  
parator  
FB  
Current  
Amp.  
Error  
Amp.  
1.24V  
Ref.  
COMP  
GND  
4
response. Inherent cycle-by-cycle current limiting greatly  
improves the power switch reliability and provides automatic  
output current limiting. Finally, current-mode operation pro-  
vides automatic input voltage feed forward which prevents  
instantaneous input voltage changes from disturbing the  
output voltage setting.  
Functional Description  
Refer to “Block Diagram MIC2171”.  
Internal Power  
The MIC2171 operates when V is 2.6V. An internal 2.3V  
IN  
regulator supplies biasing to all internal circuitry including a  
precision 1.24V band gap reference.  
Anti-Saturation  
The anti-saturation diode (D1) increases the usable duty  
cycle range of the MIC2171 by eliminating the base to  
collector stored charge which would delay Q1’s turnoff.  
PWM Operation  
The 100kHz oscillator generates a signal with a duty cycle of  
approximately 90%. The current-mode comparator output is  
used to reduce the duty cycle when the current amplifier  
output voltage exceeds the error amplifier output voltage.  
The resulting PWM signal controls a driver which supplies  
base current to output transistor Q1.  
Compensation  
Loop stability compensation of the MIC2171 can be accom-  
plished by connecting an appropriate network from either  
COMP to circuit ground (see typical Applications) or COMP  
to FB.  
Current-Mode Advantages  
The error amplifier output (COMP) is also useful for soft start  
and current limiting. Because the error amplifier output is a  
transconductance type, the output impedance is relatively  
high which means the output voltage can be easily clamped  
or adjusted externally.  
The MIC2171 operates in current mode rather than voltage  
mode. There are three distinct advantages to this technique.  
Feedback loop compensation is greatly simplified because  
inductor current sensing removes a pole from the closed loop  
1997  
4-7  
MIC2171  
Micrel  
The device operating losses are the dc losses associated  
with biasing all of the internal functions plus the losses of the  
power switch driver circuitry. The dc losses are calculated  
from the supply voltage (V ) and device supply current (I ).  
The MIC2171 supply current is almost constant regardless of  
the supply voltage (see “Electrical Characteristics”). The  
driver section losses (not including the switch) are a function  
of supply voltage, power switch current, and duty cycle.  
Applications Information  
Soft Start  
A diode-coupled capacitor from COMP to circuit ground  
slows the output voltage rise at turn on (Figure 3).  
IN  
Q
VIN  
IN  
P
= V  
I
+ V  
(
× I  
× ∆I  
(
)
)
(bias+driver)  
IN Q  
IN(min)  
SW  
IN  
MIC2171  
where:  
P
V
= device operating losses  
COMP  
(bias+driver)  
= supply voltage = V – V  
SW  
IN(min)  
IN  
D1  
D2  
C1  
I = typical quiescent supply current  
Q
R1  
C2  
I
= power switch current limit  
CL  
I = typical supply current increase  
IN  
As a practical example refer to Figure 1.  
Figure 3. Soft Start  
V
= 5.0V  
IN  
Theadditionaltimeittakesfortheerroramplifiertochargethe  
capacitor corresponds to the time it takes the output to reach  
regulation. Diode D1 discharges C1 when V is removed.  
I = 0.007A  
Q
I
= 2.21A  
CL  
IN  
δ = 66.2% (0.662)  
Current Limit  
Then:  
V
= 5 – (2.21 × 0.37) = 4.18V  
VIN  
IN(min)  
IN  
P
= (5 × 0.007) + (4.18 × 2.21 × .009)  
SW  
(bias + driver)  
P
= 0.1W  
MIC2171  
(bias+driver)  
Power switch dissipation calculations are greatly simplified  
bymakingtwoassumptionswhichareusuallyfairlyaccurate.  
First, the majority of losses in the power switch are due to  
on-losses. To find these losses, assign a resistance value to  
the collector/emitter terminals of the device using the satura-  
tion voltage versus collector current curves (see Typical  
Performance Characteristics). Power switch losses are  
calculatedbymodelingtheswitchasaresistorwiththeswitch  
duty cycle modifying the average power dissipation.  
VOUT  
FB  
COMP  
GND  
R1  
C1  
R2  
ICL 0.6V/R2  
R3  
C2  
Q1  
Note: Input and output  
returns not common.  
2
P
= (I ) R  
δ
SW  
SW  
SW  
Figure 4. Current Limit  
where:  
δ = duty cycle  
ThemaximumcurrentlimitoftheMIC2171canbereducedby  
adding a voltage clamp to the COMP output (Figure 4). This  
feature can be useful in applications requiring either a com-  
plete shutdown of Q1’s switching action or a form of current  
fold-back limiting. This use of the COMP output does not  
disable the oscillator, amplifiers or other circuitry, therefore  
the supply current is never less than approximately 5mA.  
VOUT + VF – V  
IN(min)  
δ =  
VOUT + VF  
= I (R  
V
V
)
CL SW  
SW  
= output voltage  
OUT  
Thermal Management  
V = D1 forward voltage drop at I  
F
OUT  
Although the MIC2171 family contains thermal protection  
circuitry, for best reliability, avoid prolonged operation with  
junction temperatures near the rated maximum.  
From the Typical performance Characteristics:  
R
= 0.37Ω  
SW  
Then:  
The junction temperature is determined by first calculating  
the power dissipation of the device. For the MIC2171, the  
total power dissipation is the sum of the device operating  
losses and power switch losses.  
2
P
= (2.21) × 0.37 × 0.662  
= 1.2W  
SW  
P
P
P
SW)  
= 1.2 + 0.1  
(total)  
(total)  
= 1.3W  
4-8  
1997  
MIC2171  
Micrel  
Thejunctiontemperatureforanysemiconductoriscalculated  
using the following:  
mode is preferred because the feedback control of the  
converter is simpler.  
T = T + P θ  
(total) JA  
WhenL1dischargesitscurrentcompletelyduringtheMIC2171  
off-time, it is operating in discontinuous mode.  
J
A
Where:  
L1 is operating in continuous mode if it does not discharge  
completely before the MIC2171 power switch is turned on  
again.  
T = junction temperature  
J
T = ambient temperature (maximum)  
A
P
= total power dissipation  
(total)  
Discontinuous Mode Design  
θ
= junction to ambient thermal resistance  
JA  
Given the maximum output current, solve equation (1) to  
determine whether the device can operate in discontinuous  
mode without initiating the internal device current limit.  
For the practical example:  
T = 70°C  
A
θ
= 45°C/W (TO-220)  
JA  
ICL  
Then:  
V
δ
IN(min)  
2
T = 70 + (1.24 × 45)  
J
(1)  
IOUT ≤  
VOUT  
T = 126°C  
J
This junction temperature is below the rated maximum of  
150°C.  
VOUT + VF – V  
IN(min)  
(1a) δ =  
VOUT + VF  
Grounding  
Where:  
Refer to Figure 5. Heavy lines indicate high current paths.  
I
= internal switch current limit  
CL  
VIN  
I
I
= 2.5A when δ < 50%  
= 1.67 (2 – δ) when δ ≥ 50%  
CL  
4
IN  
CL  
(Refer to Electrical Characteristics.)  
SW  
I
= maximum output current  
OUT  
MIC2171  
V
= minimum input voltage = V – V  
SW  
IN(min)  
IN  
FB  
COMP  
δ = duty cycle  
GND  
V
= required output voltage  
OUT  
V = D1 forward voltage drop  
F
For the example in Figure 1.  
I
I
= 0.25A  
OUT  
Single point ground  
= 1.67 (2–0.662) = 2.24A  
= 4.18V  
CL  
V
IN(min)  
Figure 5. Single Point Ground  
δ = 0.662  
= 12.0V  
A single point ground is strongly recommended for proper  
operation.  
V
OUT  
V = 0.36V (@ .26A, 70°C)  
F
The signal ground, compensation network ground, and feed-  
back network connections are sensitive to minor voltage  
variations. The input and output capacitor grounds and  
power ground conductors will exhibit voltage drop when  
carrying large currents. Keep the sensitive circuit ground  
traces separate from the power ground traces. Small voltage  
variations applied to the sensitive circuits can prevent the  
MIC2171 or any switching regulator from functioning prop-  
erly.  
Then:  
2.235  
× 4.178 × 0.662  
12  
2
I
OUT  
I
0.258A  
OUT  
This value is greater than the 0.25A output current require-  
ment, so we can proceed to find the minimum inductance  
value of L1 for discontinuous operation at P  
.
OUT  
Boost Conversion  
2
Refer to Figure 1 for a typical boost conversion application  
where a +5V logic supply is available but +12V at 0.25A is  
required.  
V
δ
(
)
IN  
(2)  
L1 ≥  
2 P  
f
OUT SW  
Where:  
The first step in designing a boost converter is determining  
whether inductor L1 will cause the converter to operate in  
either continuous or discontinuous mode. Discontinuous  
P
= 12 × 0.25 = 3W  
OUT  
5
f
= 1×10 Hz (100kHz)  
SW  
1997  
4-9  
MIC2171  
Micrel  
down (failure) of the MIC2171’s internal power switch.  
For our practical example:  
Discontinuous Mode Design  
2
4.178 × 0.662  
(
)
L1 ≥  
When designing a discontinuous flyback converter, first de-  
termine whether the device can safely handle the peak  
primary current demand placed on it by the output power.  
Equation (8) finds the maximum duty cycle required for a  
given input voltage and output power. If the duty cycle is  
greater than 0.8, discontinuous operation cannot be used.  
5
2 × 3.0 × 1×10  
L1 12.4µH (use 15µH)  
Equation (3) solves for L1’s maximum current value.  
V
T
IN ON  
I
=
(3)  
L1(peak)  
L1  
2 POUT  
Where:  
(8)  
δ ≥  
-6  
ICL  
V
– VSW  
T
= δ / f  
= 6.62×10 sec  
SW  
(
)
IN(min)  
ON  
-6  
For a practical example let: (see Figure 2)  
4.178 × 6.62 ×10  
I
=
L1(peak)  
-6  
15 ×10  
P
= 5.0V × 0.5A = 2.5W  
OUT  
I
= 1.84A  
V
I
= 4.0V to 6.0V  
= 2.5A when δ < 50%  
1.67 (2 – δ) when δ ≥ 50%  
L1(peak)  
IN  
Use a 15µH inductor with a peak current rating of at least 2A.  
CL  
Flyback Conversion  
Then:  
Flyback converter topology may be used in low power appli-  
cations where voltage isolation is required or whenever the  
input voltage can be less than or greater than the output  
voltage. As with the step-up converter the inductor (trans-  
former primary) current can be continuous or discontinuous.  
Discontinuous operation is recommended.  
V
= V – I  
× R  
(
)
IN  
CL SW  
IN min  
(
)
V
V
= 4 – 0.78V  
IN(min)  
= 3.22V  
IN(min)  
δ ≥ 0.74 (74%), less than 0.8 so discontinous is  
permitted.  
Figure 2 shows a practical flyback converter design using the  
MIC2171.  
A few iterations of equation (8) may be required if the duty  
cycle is found to be greater than 50%.  
Switch Operation  
Calculate the maximum transformer turns ratio a, or  
During Q1’s on time (Q1 is the internal NPN transistor—see  
block diagrams), energy is stored in T1’s primary inductance.  
DuringQ1’sofftime,storedenergyispartiallydischargedinto  
C4 (output filter capacitor). Careful selection of a low ESR  
capacitor for C4 may provide satisfactory output ripple volt-  
age making additional filter stages unnecessary.  
N
/N  
, thatwillguaranteesafeoperationoftheMIC2171  
PRI SEC  
power switch.  
V
F
– V  
CE CE  
IN(max)  
(9)  
a  
V
SEC  
Where:  
C1 (input capacitor) may be reduced or eliminated if the  
MIC2171 is located near a low impedance voltage source.  
a = transformer maximum turns ratio  
V
= power switch collector to emitter  
maximum voltage  
CE  
Output Diode  
The output diode allows T1 to store energy in its primary  
inductance (D2 nonconducting) and release energy into C4  
(D2 conducting). The low forward voltage drop of a Schottky  
diode minimizes power loss in D2.  
F
= safety derating factor (0.8 for most  
commercial and industrial applications)  
CE  
V
= maximum input voltage  
IN(max)  
V
= transformer secondary voltage (V  
+ V )  
OUT F  
SEC  
Frequency Compensation  
For the practical example:  
A simple frequency compensation network consisting of R3  
and C2 prevents output oscillations.  
V
F
= 65V max. for the MIC2171  
CE  
= 0.8  
CE  
High impedance output stages (transconductance type) in  
theMIC2171oftenpermitsimplifiedloop-stabilitysolutionsto  
beconnectedtocircuitground, althoughamoreconventional  
technique of connecting the components from the error  
amplifier output to its inverting input is also possible.  
V
= 5.6V  
SEC  
Then:  
65 × 0.8 – 6.0  
a ≤  
5.6  
Voltage Clipper  
a 8.2 (N /N  
)
PRI SEC  
Care must be taken to minimize T1’s leakage inductance,  
otherwise it may be necessary to incorporate the voltage  
clipper consisting of D1, R4, and C3 to avoid second break-  
Next, calculate the maximum primary inductance required to  
store the needed output energy with a power switch duty  
cycle of 55%.  
4-10  
1997  
MIC2171  
Micrel  
2
2
L
0.5 f  
V
T
PRI  
SW IN(min)  
ON  
a  
a ≤  
(12)  
(10)  
L
PRI  
L
P
SEC  
OUT  
Where:  
Then:  
L
= maximum primary inductance  
PRI  
11.4  
7.9  
= 1.20  
f
= device switching frequency (100kHz)  
= minimum input voltage  
SW  
V
T
IN(min)  
This ratio is less than the ratio calculated in equation (9).  
When specifying the transformer it is necessary to know the  
primary peak current which must be withstood without satu-  
rating the transformer core.  
= power switch on time  
ON  
Then:  
2
2
5
-6  
0.5 × 1×10 × 3.22 × 7.4 ×10  
(
)
(
)
L
V
T
PRI  
IN(min) ON  
2.5  
I
=
(13)  
So:  
PEAK(pri)  
L
PRI  
L
11.4µH  
PRI  
Use an 12µH primary inductance to overcome circuit ineffi-  
ciencies.  
3.22 × 7.6 ×10-6  
12µH  
IPEAK(pri)  
=
To complete the design the inductance value of the second-  
ary is found which will guarantee that the energy stored in the  
transformer during the power switch on time will be com-  
pleted discharged into the output during the off-time. This is  
necessary when operating in discontinuous-mode.  
I
= 2.1A  
PEAK(pri)  
Now find the minimum reverse voltage requirement for the  
output rectifier. This rectifier must have an average current  
rating greater than the maximum output current of 0.5A.  
4
2
2
0.5 fSW VSEC TOFF  
VIN(max) + V  
a
(
)
OUT  
LSEC  
Where:  
(11)  
VBR  
Where:  
(14)  
POUT  
FBR  
a
L
= maximum secondary inductance  
= power switch off time  
V
= output rectifier maximum peak  
reverse voltage rating  
SEC  
BR  
T
OFF  
Then:  
a = transformer turns ratio (1.2)  
F
= reverse voltage safety derating factor (0.8)  
BR  
2
2
5
-6  
0.5 × 1×10 × 5.41 × 2.6 ×10  
(
)
(
)
Then:  
L
SEC  
2.5  
6.0 + 5.0 × 1.2  
(
)
L
7.9µH  
V
SEC  
BR  
0.8 × 1.2  
Finally, recalculate the transformer turns ratio to insure that  
it is less than the value earlier found in equation (9).  
V
12.5V  
BR  
A 1N5817 will safely handle voltage and current require-  
ments in this example.  
1997  
4-11  
MIC2171  
Micrel  
Forward Converters  
core is reset by the tertiary winding discharging T1’s peak  
magnetizing current through D2.  
Micrel’s MIC2171 can be used in several circuit configura-  
tionstogenerateanoutputvoltagewhichislessthantheinput  
voltage (buck or step-down topology). Figure 7 shows the  
MIC2171 in a voltage step-down application. Because of the  
internal architecture of these devices, more external compo-  
nents are required to implement a step-down regulator than  
with other devices offered by Micrel (refer to the LM257x or  
MIC457x family of buck switchers). However, for step-down  
conversion requiring a transformer (forward), the MIC2171 is  
a good choice.  
For most forward converters the duty cycle is limited to 50%,  
allowing the transformer flux to reset with only two times the  
input voltage appearing across the power switch. Although  
during normal operation this circuit’s duty cycle is well below  
50%, the MIC2172 has a maximum duty cycle capability of  
90%. If90%wasrequiredduringoperation(start-upandhigh  
load currents), a complete reset of the transformer during the  
off-time would require the voltage across the power switch to  
be ten times the input voltage. This would limit the input  
voltage to 6V or less for forward converter applications.  
A 12V to 5V step-down converter using transformer isolation  
(forward) is shown in Figure 7. Unlike the isolated flyback  
converter which stores energy in the primary inductance  
during the controller’s on-time and releases it to the load  
during the off-time, the forward converter transfers energy to  
the output during the on-time, using the off-time to reset the  
transformer core. In the application shown, the transformer  
To prevent core saturation, the application given here uses a  
duty cycle limiter consisting of Q1, C4 and R3. Whenever the  
MIC2171 exceeds a duty cycle of 50%, T1’s reset winding  
current turns Q1 on. This action reduces the duty cycle of the  
MIC2171 until T1 is able to reset during each cycle.  
T1  
1:1:1  
D3  
1N5819  
L1 100µH  
VOUT  
VIN  
12V  
5V, 1A  
R4  
D4  
1N5819  
C5  
470µF  
3.74k  
1%  
R1*  
C2*  
D1*  
IN  
SW  
FB  
MIC2171  
C1  
22µF  
D2  
1N5819  
COMP  
GND  
R5  
1.24k  
1%  
R2  
1k  
Q1†  
R3†  
C3  
1µF  
C4†  
* Voltage clipper  
Duty cycle limiter  
Figure 7. MIC2171 Forward Converter  
4-12  
1997  

相关型号:

MIC2171_07

100kHz 2.5A Switching Regulator
MICREL

MIC2172

100kHz 1.25A Switching Regulators Preliminary Information
MICREL

MIC2172BM

100kHz 1.25A Switching Regulators Preliminary Information
MICREL

MIC2172BM

Switching Regulator, Current-mode, 3.5A, 115kHz Switching Freq-Max, BIPolar, PDSO8, SOIC-8
MICROCHIP

MIC2172BMT&R

Switching Regulator, Current-mode, 3.5A, 115kHz Switching Freq-Max, PDSO8, SOIC-8
MICREL

MIC2172BN

100kHz 1.25A Switching Regulators Preliminary Information
MICREL

MIC2172YM

100kHz 1.25A Switching Regulators
MICREL

MIC2172YM

3.5A SWITCHING REGULATOR, 115kHz SWITCHING FREQ-MAX, PDSO8
MICROCHIP

MIC2172YM-TR

3.5A SWITCHING REGULATOR, 115kHz SWITCHING FREQ-MAX, PDSO8
MICROCHIP

MIC2172YMTR

暂无描述
MICREL

MIC2172YN

100kHz 1.25A Switching Regulators
MICREL

MIC2172YN

3.5A SWITCHING REGULATOR, 115kHz SWITCHING FREQ-MAX, PDIP8
MICROCHIP