MIC2288BD5 [MICREL]

1A 1.2 MHZ PWM BOOST CONVERTER IN THIN SOT 23 AND 2 X MLF; 1A 1.2 MHZ PWM升压转换器,薄型SOT 23和2× MLF
MIC2288BD5
型号: MIC2288BD5
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

1A 1.2 MHZ PWM BOOST CONVERTER IN THIN SOT 23 AND 2 X MLF
1A 1.2 MHZ PWM升压转换器,薄型SOT 23和2× MLF

转换器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管 输出元件 升压转换器
文件: 总12页 (文件大小:118K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2288  
1A 1.2MHz PWM Boost Converter in  
Thin SOT-23 and 2×2 MLF™  
General Description  
Features  
The MIC2288 is a 1.2MHz PWM, DC/DC boost switching  
regulator available in low-profile Thin SOT-23 and  
2mm × 2mm MLF™ package options. High power density is  
achieved with the MIC2288’s internal 34V/1A switch, allow-  
ing it to power large loads in a tiny footprint.  
2.5V to 10V input voltage range  
Output voltage adjustable to 34V  
Over 1A switch current  
1.2MHz PWM operation  
Stable with ceramic capacitors  
High-efficiency  
<1% line and load regulation  
Low input and output ripple  
<1µA shutdown current  
The MIC2288 implements a constant frequency, 1.2MHz  
PWM, current mode control scheme with internal compensa-  
tion that offers excellent transient response and output regu-  
lation performance. The high frequency operation saves  
board space by allowing small, low-profile, external compo-  
nents. The fixed frequency PWM topology also reduces  
spuriousswitchingnoiseandrippletotheinputpowersource.  
UVLO  
Output overvoltage protection (MIC2288BML)  
Over temperature shutdown  
Thin SOT-23-5 package option  
2mm × 2mm leadless MLF-8 package option  
• –40°C to +125°C junction temperature range  
The MIC2288 is available in a low-profile Thin SOT-23-5  
package and a 2mm × 2mm MLF™-8 leadless package. The  
2mm × 2mm MLF™-8 package option has an output over-  
voltage protection feature.  
Applications  
Organic EL power supply  
TFT-LCD bias supply  
12V supply for DSL applications  
Multi-output DC/DC converters  
Positive and negative output regulators  
SEPIC converters  
The MIC2288 has a junction temperature range of –40°C to  
+125°C.  
All support documentation can be found on Micrel’s web  
site at www.micrel.com.  
Typical Application  
L1  
10µH  
VOUT  
15V  
15V  
Efficiency  
VIN  
OUT  
90  
85  
80  
75  
70  
65  
60  
VIN = 4.2V  
MIC2288BD5  
5
4
1
3
VIN  
SW  
R1  
R2  
VIN = 3.2V  
FB  
EN  
1-Cell  
Li Ion  
VIN = 3.6V  
C1  
2.2µF  
C2  
10µF  
GND  
2
0
0.05  
0.1  
LOAD (A)  
0.15  
0.2  
2mm × 2mm MLFBoost Regulator  
MLF and MicroLeadFrame are trademarks of Amkor Technology, Inc.  
Micrel, Inc. 1849 Fortune Drive San Jose, CA 95131 USA tel + 1 (408) 944-0800 fax + 1 (408) 944-0970 http://www.micrel.com  
M9999-021904  
February 2004  
1
MIC2288  
Micrel  
Ordering Information  
Marking  
Output  
Voltage  
Overvoltage  
Protection  
Junction  
Temp. Range  
Part Number  
MIC2288BD5  
MIC2288YD5  
MIC2288BML  
MIC2288YML  
Code  
SHAA  
SHAA  
SJA  
Package  
Lead Finish  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
40°C to 125°C  
Thin SOT-23-5  
Thin SOT-23-5  
2×2 MLF-8  
2×2 MLF-8  
Standard  
Lead Free  
Standard  
Lead Free  
34V  
34V  
SJA  
Pin Configuration  
FB GND SW  
1
3
2
OVP  
1
2
3
4
8
PGND  
SW  
VIN  
EN  
7
6
5
FB  
4
5
EP  
AGND  
NC  
EN  
VIN  
TSOT-23-5 (D5)  
8-Pin MLF(ML)  
(Top View)  
Pin Description  
Pin Number  
TSOT-23-5  
Pin Number  
2×2 MLF-8  
Pin Name  
Pin Function  
1
2
3
7
SW  
GND  
FB  
Switch Node (Input): Internal power Bipolar collector.  
Ground (Return): Ground.  
6
Feedback (Input): 1.24V output voltage sense node.  
R1  
1+  
VOUT = 1.24V  
R2  
4
5
3
2
1
EN  
VIN  
Enable (Input): Logic high enables regulator. Logic low shuts down regulator.  
Supply (Input): 2.5V to 10V input voltage.  
OVP  
Output Overvoltage Protection (Input): Tie this pin to VOUT to clamp the  
output voltage to 34V maximum in fault conditions. Tie this pin to ground if  
OVP function is not required.  
5
4
NC  
No Connect: No internal connection to die.  
Analog ground.  
AGND  
PGND  
GND  
8
Power ground.  
EP  
Exposed backside pad.  
M9999-021904  
2
February 2004  
MIC2288  
Micrel  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage (V ) .....................................................12V  
Supply Voltage (V ) ........................................ 2.5V to 10V  
IN  
IN  
Switch Voltage (V ) ..................................... 0.3V to 34V  
Junction Temperature Range (T ) ........... 40°C to +125°C  
SW  
J
Enable Pin Voltage (V )................................... 0.3 to V  
Package Thermal Impedance  
EN  
IN  
FB Voltage (V ) .............................................................6V  
2mm × 2mm MLF-8 (θ ) .................................93°C/W  
FB  
JA  
Switch Current (I ) .......................................................2A  
Thin SOT-23-5 (θ ) ..........................................256°C/W  
SW  
JA  
Storage Temperature (T ) ....................... 65°C to +150°C  
S
(3)  
ESD Rating ................................................................ 2kV  
Electrical Characteristics(4)  
TA = 25°C, VIN = VEN = 3.6V, VOUT = 15V, IOUT = 40mA, unless otherwise noted. Bold values indicate 40°C TJ ≤ ±125°C.  
Symbol  
VIN  
Parameter  
Condition  
Min  
2.5  
1.8  
Typ  
Max  
10  
2.4  
5
Units  
V
Supply Voltage Range  
Under Voltage Lockout  
Quiescent Current  
Shutdown Current  
Feedback Voltage  
VUVLO  
IVIN  
2.1  
2.8  
V
VFB = 2V, (not switching)  
VEN = 0V(5)  
mA  
µA  
ISD  
0.1  
1
VFB  
(±1%)  
(±2%) (Over Temp)  
1.227  
1.215  
1.24  
1.252  
1.265  
V
V
IFB  
Feedback Input Current  
Line Regulation  
VFB = 1.24V  
450  
0.1  
nA  
%
3V VIN 5V  
1
1
Load Regulation  
5mA IOUT 40mA  
0.2  
%
DMAX  
ISW  
VSW  
ISW  
Maximum Duty Cycle  
Switch Current Limit  
Switch Saturation Voltage  
Switch Leakage Current  
Enable Threshold  
85  
90  
%
1.2  
A
ISW = 1A  
550  
0.01  
mV  
µA  
VEN = 0V, VSW = 10V  
5
VEN  
Turn on  
Turn off  
1.5  
V
V
0.4  
40  
IEN  
Enable Pin Current  
VEN = 10V  
20  
1.2  
32  
µA  
MHz  
V
fSW  
VOVP  
TJ  
Oscillator Frequency  
1.05  
30  
1.35  
34  
Output Overvoltage Protection  
MIC2288 MLFpackage option only  
Overtemperature  
Threshold Shutdown  
150  
10  
°C  
°C  
Hysteresis  
Notes:  
1. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating  
the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum junction temperature, T (max),  
J
the junction-to-ambient thermal resistance, θ , and the ambient temperature, T . The maximum allowable power dissipation will result in excessive  
JA  
A
die temperature, and the regulator will go into thermal shutdown.  
2. This device is not guaranteed to operate beyond its specified operating rating.  
3. IC devices are inherently ESD sensitive. Handling precautions required. Human body model rating: 1.5K in series with 100pF.  
4. Specification for packaged product only.  
5.  
I
= I  
.
SD  
VIN  
February 2004  
3
M9999-021904  
MIC2288  
Micrel  
Typical Characteristics  
Feedback Voltage  
vs. Temperature  
Efficiency at V  
= 12V  
Load Regulation  
OUT  
91  
89  
87  
85  
83  
81  
79  
77  
75  
12.2  
12.15  
12.1  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
VIN = 4.2V  
12.05  
12  
VIN = 3.6V  
11.95  
11.9  
VIN = 3.3V  
VIN = 3.6V  
11.85  
11.8  
-40 -20  
0
20 40 60 80 100 120  
0
25 50 75 100 125 150  
OUTPUT CURRENT (mA)  
0
25 50 75 100 125 150  
LOAD (mA)  
TEMPERATURE (°C)  
Current Limit  
vs. Supply Current  
Switch Saturation  
vs. Supply Voltage  
Current Limit  
vs. Temperature  
1.8  
1.6  
1.4  
1.2  
1
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
300  
250  
200  
150  
100  
50  
0.8  
0.6  
0.4  
0.2  
0
ISW = 500mA  
8.5 10  
0
2.5  
4
5.5  
7
8.5  
10  
-40 -20  
0
20 40 60 80 100 120  
2.5  
4
5.5  
7
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Switch Saturation  
vs. Current  
Switch Saturation  
vs. Temperature  
Frequency  
vs. Temperature  
700  
700  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
VIN = 3.6V  
ISW = 500mA  
VIN = 3.6V  
0
200 400 600 800 1000  
SWITCH CURRENT (mA)  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Maximum Duty Cycle  
vs. Temperature  
Maximum Duty Cycle  
vs. Supply Voltage  
FB Pin Current  
vs. Temperature  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
99  
97  
95  
93  
91  
89  
87  
85  
700  
600  
500  
400  
300  
200  
100  
0
VIN = 3.6V  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
2.5  
4
5.5  
7
8.5  
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
M9999-021904  
4
February 2004  
MIC2288  
Micrel  
Function Characteristics  
Enable Characteristics  
Line Transient Response  
Output Voltage  
4.2V  
Enable Voltage  
3.2V  
3.6VIN  
12VOUT  
150mA Load  
12VOUT  
150mA Load  
Time (400µs/div)  
Time (400µs/div)  
Switching Waveforms  
Load Transient Response  
Output Voltage  
Inductor Current  
(10µH)  
150mA  
VSW  
3.6VIN  
12VOUT  
150mA  
10mA  
3.6VIN  
12VOUT  
COUT = 10µF  
Time (400ns/div)  
Time (400µs/div)  
February 2004  
5
M9999-021904  
MIC2288  
Micrel  
Functional Diagram  
VIN  
FB  
OVP*  
EN  
OVP*  
SW  
PWM  
Generator  
gm  
VREF  
1.24V  
Σ
CA  
1.2MHz  
Oscillator  
Ramp  
Generator  
GND  
*
OVP available on MLFTM package option only.  
Figure 1. MIC2288 Block Diagram  
Theg erroramplifiermeasuresthefeedbackvoltagethrough  
the external feedback resistors and amplifies the error be-  
tween the detected signal and the 1.24V reference voltage.  
Functional Description  
The MIC2288 is a constant frequency, PWM current mode  
boost regulator. The block diagram is shown in Figure 1. The  
MIC2288 is composed of an oscillator, slope compensation  
m
The output of the g error amplifier provides the voltage-loop  
m
signal that is fed to the other input of the PWM generator.  
When the current-loop signal exceeds the voltage-loop sig-  
nal, thePWMgeneratorturnsoffthebipolaroutputtransistor.  
The next clock period initiates the next switching cycle,  
maintaining the constant frequency current-mode PWM con-  
trol.  
ramp generator, current amplifier, g error amplifier, PWM  
m
generator, and a 1A bipolar output transistor. The oscillator  
generates a 1.2MHz clock. The clocks two functions are to  
trigger the PWM generator that turns on the output transistor,  
and to reset the slope compensation ramp generator. The  
current amplifier is used to measure the switch current by  
amplifying the voltage signal from the internal sense resistor.  
The output of the current amplifier is summed with the output  
of the slope compensation ramp generator. This summed  
current-loop signal is fed to one of the inputs of the PWM  
generator.  
M9999-021904  
6
February 2004  
MIC2288  
Micrel  
Applications Information  
Component Selection  
DC-to-DC PWM Boost Conversion  
Inductor  
The MIC2288 is a constant-frequency boost converter. It  
operates by taking a DC input voltage and regulating a higher  
DC output voltage. Figure 2 shows a typical circuit. Boost  
regulation is achieved by turning on an internal switch, which  
draws current through the inductor (L1). When the switch  
turns off, the inductors magnetic field collapses, causing the  
current to be discharged into the output capacitor through an  
external Schottky diode (D1). Voltage regulation is achieved  
by modulating the pulse width or pulse-width modulation  
(PWM).  
Inductor selection is a balance between efficiency, stability,  
cost, size, and rated current. For most applications a 10µH is  
therecommendedinductorvalue. Itisusuallyagoodbalance  
between these considerations.  
Larger inductance values reduce the peak-to-peak ripple  
current, affecting efficiency. This has the effect of reducing  
both the DC losses and the transition losses. There is also a  
secondary effect of an inductors DC resistance (DCR). The  
DCR of an inductor will be higher for more inductance in the  
same package size. This is due to the longer windings  
required for an increase in inductance. Since the majority of  
inputcurrent(minustheMIC2288operatingcurrent)ispassed  
through the inductor, higher DCR inductors will reduce effi-  
ciency.  
L1  
10µH  
D1  
VIN  
VOUT  
MIC2288BML  
VIN  
SW  
OVP  
FB  
To maintain stability, increasing inductor size will have to be  
met with an increase in output capacitance. This is due to the  
unavoidable right half plane zeroeffect for the continuous  
current boost converter topology. The frequency at which the  
right half plane zero occurs can be calculated as follows:  
R1  
R2  
C1  
C2  
2.2µF  
10µF  
EN  
GND  
GND  
GND  
2
Figure 2. Typical Application Circuit  
Duty Cycle Considerations  
V
IN  
F
=
rhpz  
V
OUT ×L ×IOUT × 2π  
Duty cycle refers to the switch on-to-off time ratio and can be  
calculated as follows for a boost regulator:  
The right half plane zero has the undesirable effect of  
increasing gain, while decreasing phase. This requires that  
the loop gain is rolled off before this has significant effect on  
the total loop response. This can be accomplished by either  
reducing inductance (increasing RHPZ frequency) or in-  
creasing the output capacitor value (decreasing loop gain).  
V
IN  
D =1−  
VOUT  
Thedutycyclerequiredforvoltageconversionshouldbeless  
than the maximum duty cycle of 85%. Also, in light load  
conditions where the input voltage is close to the output  
voltage, the minimum duty cycle can cause pulse skipping.  
This is due to the energy stored in the inductor causing the  
outputtoovershootslightlyovertheregulatedoutputvoltage.  
Duringthenextcycle, theerroramplifierdetectstheoutputas  
being high and skips the following pulse. This effect can be  
reduced by increasing the minimum load or by increasing the  
inductor value. Increasing the inductor value reduces peak  
current, which in turn reduces energy transfer in each cycle.  
Output Capacitor  
Output capacitor selection is also a trade-off between perfor-  
mance, size, and cost. Increasing output capacitance will  
lead to an improved transient response, but also an increase  
insizeandcost. X5RorX7Rdielectricceramiccapacitorsare  
recommended for designs with the MIC2288. Y5V values  
may be used but to offset their tolerance over temperature,  
more capacitance is required. The following table shows the  
recommended ceramic (X5R) output capacitor value vs.  
output voltage.  
Overvoltage Protection  
Output Voltage  
<6V  
Recomended Output Capacitance  
For the MLFpackage option, there is an overvoltage  
protection function. If the feedback resistors are discon-  
nected from the circuit or the feedback pin is shorted to  
ground, the feedback pin will fall to ground potential. This will  
cause the MIC2288 to switch at full duty cycle in an attempt  
to maintain the feedback voltage. As a result, the output  
voltage will climb out of control. This may cause the switch  
node voltage to exceed its maximum voltage rating, possibly  
damagingtheICandtheexternalcomponents.Toensurethe  
highest level of protection, the MIC2288 OVP pin will shut the  
switch off when an overvoltage condition is detected, saving  
itself and other sensitive circuitry downstream.  
22µF  
10µF  
4.7µF  
<16V  
<34V  
Table 1. Output Capacitor Selection  
Diode Selection  
The MIC2288 requires an external diode for operation. A  
Schottky diode is recommended for most applications due to  
their lower forward voltage drop and reverse recovery time.  
Ensure the diode selected can deliver the peak inductor  
current and the maximum reverse voltage is rated greater  
than the output voltage.  
February 2004  
7
M9999-021904  
MIC2288  
Micrel  
Input capacitor  
Feedback Resistors  
A minimum 1µF ceramic capacitor is recommended for  
designing with the MIC2288. Increasing input capacitance  
will improve performance and greater noise immunity on the  
source. The input capacitor should be as close as possible to  
the inductor and the MIC2288, with short traces for good  
noise performance.  
The MIC2288 utilizes a feedback pin to compare the output  
to an internal reference. The output voltage is adjusted by  
selecting the appropriate feedback resistor values. The de-  
sired output voltage can be calculated as follows:  
R1  
VOUT = VREF  
×
+1  
R2  
where V  
is equal to 1.24V.  
REF  
M9999-021904  
8
February 2004  
MIC2288  
Micrel  
Application Circuits  
L1  
VIN  
3V to 4.2V  
VOUT  
5V @ 400mA  
4.7µH  
D1  
L1  
10µH  
VIN  
3V to 4.2V  
VOUT  
15V @ 100mA  
D1  
MIC2288BML  
R1  
5.62k  
VIN  
SW  
OVP  
FB  
C1  
4.7µF  
6.3V  
C2  
MIC2288BML  
22µF  
6.3V  
R1  
VIN  
SW  
OVP  
FB  
54.9k  
C1  
2.2µF  
10V  
C2  
EN  
10µF  
16V  
GND  
R2  
1.87k  
EN  
GND  
GND  
GND  
R2  
5k  
GND  
GND  
C1 2.2µF, 10V, 0805 X5R Ceramic Capacitor 08052D225KAT  
AVX  
C1 4.7µF, 6.3V, 0805 X5R Ceramic Capacitor 08056D475MAT  
C2 22µF, 6.3V, 0805 X5R Ceramic Capacitor 12066D226MAT  
AVX  
C2 10µF, 16V, 1206 X5R Ceramic Capacitor  
D1 1A, 40V Schotty Diode  
1206YD106MAT  
MBRM140T3  
AVX  
AVX  
ON Semi.  
D1 1A, 40V Schotty Diode  
L1 4.7µH, 650mA Inductor  
MBRM140T3  
ON Semi.  
L1 10µH, 650mA Inductor  
LQH43CN100K03 Murata  
LQH32CN4R7M11 Murata  
Figure 6. 3.3V 4.2V to 15V  
@ 100mA  
Figure 3. 3.3V to 5V  
@ 400mA  
OUT  
IN  
IN  
OUT  
IN  
L1  
10µH  
VIN  
3V to 4.2V  
VOUT  
24V @ 50mA  
L1  
10µH  
VIN  
3V to 4.2V  
VOUT  
9V @ 180mA  
D1  
D1  
MIC2288BML  
MIC2288BML  
R1  
VIN  
SW  
OVP  
FB  
R1  
VIN  
SW  
OVP  
FB  
18.2k  
C1  
2.2µF  
10V  
C2  
4.7µF  
25V  
31.6k  
C1  
2.2µF  
10V  
C2  
10µF  
16V  
EN  
EN  
GND  
R2  
1k  
GND  
R2  
5k  
GND  
GND  
GND  
GND  
C1 2.2µF, 10V, 0805 X5R Ceramic Capacitor 08052D225KAT  
C2 4.7µF, 25V, 1206 X5R Ceramic Capacitor 12063D475MAT  
AVX  
C1 2.2µF, 10V, 0805 X5R Ceramic Capacitor 08052D225KAT  
AVX  
AVX  
C2 10µF, 16V, 1206 X5R Ceramic Capacitor  
D1 1A, 40V Schotty Diode  
1206YD106MAT  
MBRM140T3  
AVX  
D1 1A, 40V Schotty Diode  
L1 10µH, 650mA Inductor  
MBRM140T3  
ON Semi.  
ON Semi.  
LQH43CN100K03 Murata  
L1 10µH, 650mA Inductor  
LQH43CN100K03 Murata  
Figure 7. 3.3V 4.2V to 24V @ 50mA  
OUT  
IN  
IN  
Figure 4. 3.3V 4.2V to 9V  
@ 180mA  
IN  
IN  
OUT  
L1  
10µH  
VIN  
5V  
VOUT  
9V @ 330mA  
D1  
L1  
10µH  
VIN  
3V to 4.2V  
VOUT  
12V @ 100mA  
D1  
MIC2288BML  
MIC2288BML  
R1  
VIN  
SW  
OVP  
FB  
31.6k  
R1  
C1  
2.2µF  
10V  
C2  
VIN  
SW  
OVP  
FB  
42.3k  
10µF  
16V  
C1  
2.2µF  
10V  
C2  
10µF  
16V  
EN  
EN  
GND  
R2  
5k  
GND  
R2  
5k  
GND  
GND  
GND  
GND  
C1 2.2µF, 10V, 0805 X5R Ceramic Capacitor 08052D225KAT  
AVX  
C1 2.2µF, 10V, 0805 X5R Ceramic Capacitor 08052D225KAT  
AVX  
C2 10µF, 16V, 1206 X5R Ceramic Capacitor  
D1 1A, 40V Schotty Diode  
1206YD106MAT  
MBRM140T3  
AVX  
C2 10µF, 16V, 1206 X5R Ceramic Capacitor  
D1 1A, 40V Schotty Diode  
1206YD106MAT  
MBRM140T3  
AVX  
ON Semi.  
ON Semi.  
L1 10µH, 650mA Inductor  
LQH43CN100K03 Murata  
L1 10µH, 650mA Inductor  
LQH43CN100K03 Murata  
Figure 8. 5V to 9V  
@ 330mA  
IN  
OUT  
Figure 5. 3.3V 4.2V to 12V @ 100mA  
OUT  
IN  
IN  
February 2004  
9
M9999-021904  
MIC2288  
Micrel  
L1  
10µH  
L1  
10µH  
VIN  
5V  
VOUT  
24V @ 80mA  
VIN  
5V  
VOUT  
12V @ 250mA  
D1  
D1  
MIC2288BML  
MIC2288BML  
R1  
18.2k  
R1  
43.2k  
VIN  
SW  
OVP  
FB  
VIN  
SW  
OVP  
FB  
C1  
C2  
4.7µF  
25V  
C1  
C2  
10µF  
16V  
2.2µF  
2.2µF  
10V  
10V  
EN  
EN  
GND  
R2  
1k  
GND  
R2  
5k  
GND  
GND  
GND  
GND  
C1 2.2µF, 10V, 0805 X5R Ceramic Capacitor 08052D225KAT  
C2 4.7µF, 25V, 1206 X5R Ceramic Capacitor 12066D475MAT  
AVX  
C1 2.2µF, 10V, 0805 X5R Ceramic Capacitor 08052D225KAT  
AVX  
AVX  
C2 10µF, 16V, 1206 X5R Ceramic Capacitor  
D1 1A, 40V Schotty Diode  
1206YD106MAT  
MBRM140T3  
AVX  
D1 1A, 40V Schotty Diode  
L1 10µH, 650mA Inductor  
MBRM140T3  
ON Semi.  
ON Semi.  
LQH32CN4R7M11 Murata  
L1 10µH, 650mA Inductor  
LQH43CN100K03 Murata  
Figure 10. 5V to 24V  
@ 80mA  
OUT  
Figure 9. 5V to 12V  
@ 250mA  
IN  
IN  
OUT  
M9999-021904  
10  
February 2004  
MIC2288  
Micrel  
Package Information  
All Dimensions are in millimeters  
5-Pin TSOT (D5)  
8-Pin MLF(ML)  
February 2004  
11  
M9999-021904  
MIC2288  
Micrel  
Grey Shaded area indicates Thermal Via. Size should be 0.300mm in diameter and it should  
be connected to GND for maximum thermal performance  
Recommended Land Pattern for (2mm × 2mm) 8-pin MLF™  
MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchasers  
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchasers own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2004 Micrel, Incorporated.  
M9999-021904  
12  
February 2004  

相关型号:

MIC2288BD5TR

Switching Regulator, Current-mode, 1350kHz Switching Freq-Max, PDSO5, TSOT-23, 5 PIN
MICREL

MIC2288BML

1A 1.2 MHZ PWM BOOST CONVERTER IN THIN SOT 23 AND 2 X MLF
MICREL

MIC2288YD5

1A 1.2 MHZ PWM BOOST CONVERTER IN THIN SOT 23 AND 2 X MLF
MICREL

MIC2288YD5TR

2A SWITCHING REGULATOR, 1350kHz SWITCHING FREQ-MAX, PDSO5, LEAD-FREE, TSOT-23, 5 PIN
MICROCHIP

MIC2288YML

1A 1.2 MHZ PWM BOOST CONVERTER IN THIN SOT 23 AND 2 X MLF
MICREL

MIC2288YMLTR

2A SWITCHING REGULATOR, 1350kHz SWITCHING FREQ-MAX, PDSO8, 2 X 2 MM, LEAD-FREE, MLF-8
MICROCHIP

MIC2288_05

1A 1.2MHz PWM Boost Converter in Thin SOT-23 and 2×2 MLF
MICREL

MIC2289

2mm 】 2mm White LED Driver with Internal Schottky Diode and OVP
MICREL

MIC2289-15BML

2mm 】 2mm White LED Driver with Internal Schottky Diode and OVP
MICREL

MIC2289-15BML

LED Driver, 3-Segment, 2 X 2 MM, MLF-8
MICROCHIP

MIC2289-15YML

2mm 】 2mm White LED Driver with Internal Schottky Diode and OVP
MICREL

MIC2289-15YML-TR

LED DISPLAY DRIVER, DSO8
MICROCHIP