MIC3003GFL [MICREL]

FOM Management IC with Internal Calibration; FOM管理IC,具有内部校准
MIC3003GFL
型号: MIC3003GFL
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

FOM Management IC with Internal Calibration
FOM管理IC,具有内部校准

文件: 总74页 (文件大小:747K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC3003GFL  
FOM Management IC  
with Internal Calibration  
General Description  
Features  
Packaged in a ultra small (3mm x 3mm) 24-pin MLF®  
The MIC3003GFL is a fiber optic module controller which  
enables the implementation of sophisticated, hot-pluggable  
fiber optic transceivers with intelligent laser control and an  
internally calibrated Digital Diagnostic Monitoring Interface  
per SFF-8472. It essentially integrates all non-data path  
functions of an SFP/SFP+ transceiver into a tiny (3mm x 3mm)  
MLF® package. It also works well as a microcontroller  
peripheral in transponders or 10Gbps transceivers. The  
MIC3003GFL uses the same die as the MIC3003 with all its  
functions, but in a smaller package and different pin out.  
package  
Extended temperature range  
Alarms and warnings interrupt and TXFAULT masks  
Capability to support up to four devices on one SMBus  
APC or constant-current laser bias  
Turbo mode for APC loop start-up and shorter laser turn  
on time  
Supports multiple laser types and bias circuit topologies  
Integrated digital temperature sensor  
A highly configurable automatic power control (APC) circuit  
controls laser bias. Bias and modulation are temperature  
compensated using dual DACs, an on-chip temperature  
sensor, and NVRAM look-up tables. A programmable  
internal feedback resistor provides a wide dynamic range for  
the APC. Controlled laser turn-on.  
Temperature compensation of modulation, bias, bias fault  
and alarm thresholds via NVRAM look-up tables  
NVRAM to support GBIC/SFP serial ID function  
User writable EEPROM scratchpad  
An analog-to-digital converter converts the measured  
temperature, voltage, bias current, transmit power, and  
received power from analog to digital. An EEPOT provides  
front-end adjustment of RX power. Each parameter is  
compared against user-programmed warning and alarm  
thresholds. Analog comparators and DACs provide fast  
monitoring of received power and critical laser operating  
parameters. Data can be reported as either internally  
calibrated or externally calibrated.  
Reset signal compatible with some new systems  
requirements  
Diagnostic monitoring interface per SFF-8472  
Monitors and reports critical parameters:  
temperature, bias current, TX and RX optical power,  
and supply voltage  
S/W control and monitoring of TXFAULT, RXLOS,  
RATESELECT, and TXDISABLE  
An interrupt output, power-on hour meter, and data-ready  
bits add user friendliness beyond SFF-8472. The interrupt  
output and data-ready bits reduce overhead in the host  
system. The power-on hour meter logs operating hours  
using an internal real-time clock and stores the result in  
NVRAM.  
Internal or external calibration  
EEPOT for adjusting RX power measurement  
Power-on hour meter  
Interrupt capability  
Extensive test and calibration features  
2-wire SMBus-compatible serial interface  
SFP/SFP+ MSA and SFF-8472 compliant  
3.0V to 3.6V power supply range  
5V-tolerant I/O  
In addition to the features listed above, the MIC3003  
features an extended temperature range, options to mask  
alarms and warnings interrupt and TXFAULT, a reset signal  
source, and the ability to support up to four chips with the  
same address on the serial interface. It also supports eight-  
byte SMBus block writes.  
Applications  
Communication with the MIC3003 is via an industry  
standard 2-wire SMBus serial interface. Nonvolatile  
memory is provided for serial ID, configuration, and  
separate OEM and user scratchpad spaces.  
SFP/SFP+ optical transceivers  
SONET/SDH transceivers and transponders  
Fibre Channel transceivers  
10Gbps transceivers  
Datasheets and support documentation can be found on  
Micrel’s web site at: www.micrel.com.  
Free space optical communications  
Proprietary optical links  
MLF and MicroLeadFrame are registered trademarks of Amkor Technology, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July, 2010  
Micrel, Inc.  
MIC3003GFL  
Typical Application  
Ordering Information  
Part Number  
Package Marking  
Junction Temp.  
Range  
Package Type  
Lead Finish  
MIC3003GFL  
GFL 3003  
with Pb-Free bar-line indicator  
–45°C to +105°C  
24-pin (3mm x 3mm) MLF®  
24-pin (3mm x 3mm) MLF®  
Pb-Free,  
NiPdAu  
MIC3003GFLTR(1)  
GFL 3003  
with Pb-Free bar-line indicator  
–45°C to +105°C  
Pb-Free,  
NiPdAu  
Note:  
1. Tape and Reel.  
2
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Contents  
General Description.......................................................................................................................................................... 1  
Features ............................................................................................................................................................................. 1  
Pin Configuration.............................................................................................................................................................. 8  
Pin Configuration.............................................................................................................................................................. 8  
Pin Description (MIC3003GFL only)................................................................................................................................ 8  
Absolute Maximum Ratings........................................................................................................................................... 10  
Operating Ratings........................................................................................................................................................... 10  
Electrical Characteristics ............................................................................................................................................... 10  
Electrical Characteristics ............................................................................................................................................... 12  
Electrical Characteristics ............................................................................................................................................... 13  
Serial Interface Timing Diagram.................................................................................................................................... 14  
Serial Interface Address Maps....................................................................................................................................... 15  
Block Diagram................................................................................................................................................................. 18  
Analog-to-Digital Converter/Signal Monitoring............................................................................................................ 18  
Alarms and Warnings Interrupt Source Masking..........................................................................................................19  
Alarms and Warnings as TXFAULT Source.................................................................................................................21  
Latching of Alarms and Warnings.................................................................................................................................21  
SMBus Multipart Support..............................................................................................................................................21  
QGOP Pin Function......................................................................................................................................................21  
Calibration Modes........................................................................................................................................................... 22  
A/ External Calibration..................................................................................................................................................22  
Voltage....................................................................................................................................................................22  
Temperature ...........................................................................................................................................................22  
Bias Current............................................................................................................................................................22  
TX Power................................................................................................................................................................22  
RX Power................................................................................................................................................................23  
B/ Internal Calibration ...................................................................................................................................................23  
Computing Internal Calibration Results..................................................................................................................23  
C/ Reading the ADC Result Registers..........................................................................................................................25  
RXPOT..........................................................................................................................................................................25  
Laser Diode Bias Control..............................................................................................................................................25  
Laser Modulation Control..............................................................................................................................................26  
Power On and Laser Start-Up ......................................................................................................................................27  
Fault Comparators........................................................................................................................................................28  
SHDN and TXFIN .........................................................................................................................................................29  
Temperature Measurement ..........................................................................................................................................30  
Diode Faults..................................................................................................................................................................30  
Temperature Compensation.........................................................................................................................................30  
Alarms and Warning Flags ...........................................................................................................................................32  
Control and Status I/O ..................................................................................................................................................32  
System Timing................................................................................................................................................................. 34  
Warm Resets................................................................................................................................................................36  
Power-On Hour Meter...................................................................................................................................................36  
Test and Calibration Features ......................................................................................................................................37  
Serial Port Operation ....................................................................................................................................................38  
Block Writes..................................................................................................................................................................38  
Acknowledge Polling.....................................................................................................................................................39  
Write Protection and Data Security ..............................................................................................................................39  
OEM Password.......................................................................................................................................................39  
OEM Mode and User Mode....................................................................................................................................39  
Detailed Register Descriptions...................................................................................................................................... 40  
Alarm Threshold Registers ............................................................................................................................................ 40  
Temperature High Alarm Threshold .............................................................................................................................40  
Temperature Low Alarm Threshold..............................................................................................................................40  
Voltage High Alarm Threshold......................................................................................................................................40  
D[7] read/write................................................................................................................................................................... 40  
3
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
D[6] read/write................................................................................................................................................................... 40  
Voltage Low Alarm Threshold.......................................................................................................................................41  
Bias Current High Alarm Threshold..............................................................................................................................41  
Bias Current Low Alarm Threshold...............................................................................................................................41  
TX Optical Power High Alarm Threshold......................................................................................................................41  
TX Optical Power Low Alarm Threshold.......................................................................................................................42  
RX Optical Power High Alarm Threshold .....................................................................................................................42  
RX Optical Power Low Alarm Threshold ......................................................................................................................42  
Warning Threshold Registers........................................................................................................................................ 43  
Temperature High Warning Threshold .........................................................................................................................43  
Temperature Low Warning Threshold..........................................................................................................................43  
Voltage High Warning Threshold..................................................................................................................................43  
Voltage Low Warning Threshold...................................................................................................................................44  
Bias Current High Warning Threshold..........................................................................................................................44  
Bias Current Low Warning Threshold...........................................................................................................................44  
TX Optical Power High Warning...................................................................................................................................44  
TX Optical Power Low Warning....................................................................................................................................45  
RX Optical Power High Warning Threshold .................................................................................................................45  
RX Optical Power Low Warning Threshold ..................................................................................................................45  
Checksum (CHKSUM) Checksum of bytes 0 - 94 at serial address A2h.....................................................................45  
ADC Result Registers..................................................................................................................................................... 46  
Temperature Result......................................................................................................................................................46  
Voltage..........................................................................................................................................................................46  
Laser Diode Bias Current .............................................................................................................................................46  
Transmitted Optical Power ...........................................................................................................................................47  
Received Optical Power ...............................................................................................................................................47  
Control and Status (CNTRL).........................................................................................................................................47  
Application Select Control Mode (ASCM).....................................................................................................................48  
Alarm Flags...................................................................................................................................................................... 50  
Alarm Status Register 0 (ALARM0)..............................................................................................................................50  
Alarm Status Register 1 (ALARM1)..............................................................................................................................50  
Warning Flags.................................................................................................................................................................. 51  
Warning Status Register 0 (WARN0) ...........................................................................................................................51  
Warning Status Register 1 (WARN1) ...........................................................................................................................51  
Extended Control and Status (ECNTRL)......................................................................................................................52  
OEM Password Entry (OEMPW)..................................................................................................................................52  
Power-On Hours (POHh and POHl).............................................................................................................................53  
Data Ready Flags (DATARDY) ....................................................................................................................................53  
User Control Register (USRCTL) .................................................................................................................................54  
RESETOUT ..................................................................................................................................................................54  
OEM Configuration Register 0 (OEMCFG0) ................................................................................................................55  
OEM Configuration Register 1 (OEMCFG1) ................................................................................................................56  
OEM Configuration Register 2 (OEMCFG2) ................................................................................................................57  
APC Setpoint 0, 1, and 2 (APCSET0, APCSET1, APCSET2) Automatic Power Control Setpoint..............................58  
Modulation Setpoint 0, 1, and 2 (MODSET0, MODSET1, and MODSET2) Nominal VMOD Setpoint ...........................58  
IBIAS Fault Threshold (IBFLT) Bias Current Fault Threshold.........................................................................................59  
Transmit Power Fault Threshold (TXFLT)....................................................................................................................59  
Loss-Of-Signal Threshold (LOSFLT)............................................................................................................................59  
Fault Suppression Timer (FLTTMR) Fault Suppression Interval in Increments of 0.5 ms...........................................60  
Fault Mask (FLTMSK)...................................................................................................................................................60  
OEM Password Setting (OEMPWSET)........................................................................................................................61  
OEM Calibration 0 (OEMCAL0)....................................................................................................................................61  
OEM Calibration 1 (OEMCAL1)....................................................................................................................................63  
LUT Index (LUTINDX) ..................................................................................................................................................64  
OEM Configuration 3 (OEMCFG3)...............................................................................................................................64  
BIAS DAC Setting (APCDAC) Current VBIAS Setting .................................................................................................65  
Modulation DAC Setting (MODDAC) Current VMOD Setting.......................................................................................66  
OEM Readback Register (OEMRD).............................................................................................................................66  
4
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Signal Detect Threshold (LOSFLTn) ............................................................................................................................67  
RX EEPOT Tap Selection (RXPOT).............................................................................................................................67  
OEM Configuration 4 (OEMCFG4)...............................................................................................................................67  
OEM Configuration 5 (OEMCFG5)...............................................................................................................................68  
OEM Configuration 6 (OEMCFG6)...............................................................................................................................69  
Power-On Hour Meter Data (POHDATA).....................................................................................................................70  
OEM Scratchpad Registers (SCRATCHn) ...................................................................................................................71  
RX Power Coefficient Look-up Table (RXLUTn) ..........................................................................................................71  
Calibration Constants (CALCOEFn).............................................................................................................................72  
Manufacturer ID Register (MFG_ID) Identifies Micrel as the manufacturer of the device. Always returns 2Ah ..........72  
Device ID Register (DEV_ID) .......................................................................................................................................73  
Package Information....................................................................................................................................................... 74  
5
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
List of Figures  
Figure 1. MIC3003 Block Diagram.................................................................................................................................... 18  
Figure 2. Analog-to-Digital Converter Block Diagram....................................................................................................... 18  
Figure 3. Internal Calibration RX Power Linear Approximation ........................................................................................ 25  
Figure 4. RXPOT Block Diagram ...................................................................................................................................... 25  
Figure 5. APC and Modulation Control Block Diagram.................................................................................................... 26  
Figure 6. Programmable Feedback Resistor .................................................................................................................... 26  
Figure 7. Transmitter Configurations Supported by MIC3003 ......................................................................................... 26  
Figure 8. VMOD Configured as Voltage Output with Gain ................................................................................................. 27  
Figure 9. MIC3003 Power-On Timing (OE = 1) ................................................................................................................ 28  
Figure 10. Fault Comparator Logic ................................................................................................................................... 28  
Figure 11. Saturation Detector.......................................................................................................................................... 29  
Figure 12. RXLOS Comparator Logic............................................................................................................................... 29  
Figure 14. Transmitter On-Off Timing.............................................................................................................................. 34  
Figure 15. Initialization Timing with TXDISABLE Asserted.............................................................................................. 34  
Figure 16. Initialization Timing with TXDISABLE Not Asserted...................................................................................... 34  
Figure 17. Loss-of-Signal (LOS) Timing .......................................................................................................................... 35  
Figure 19. Successfully Clearing a Fault Condition......................................................................................................... 36  
Figure 20. Unsuccessful Attempt to Clear a Fault ........................................................................................................... 36  
Figure 21. Write Byte Protocol ......................................................................................................................................... 38  
Figure 22. Read Byte Protocol......................................................................................................................................... 38  
Figure 23. Read_Word Protocol....................................................................................................................................... 38  
Figure 24. Eight-Byte Block Write Protocol...................................................................................................................... 39  
6
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
List of Tables  
Table 1. Serial Interface Address Map, Device Address = A0h ........................................................................................ 15  
Table 2. Serial Interface Address Map, Device Address = A2.......................................................................................... 15  
Table 3. Serial Interface Address Map (Temperature Compensation Tables), Device Address = A4h ............................ 16  
Table 4. Serial Interface Address Map (OEM Configuration Registers), Device Address = A6h...................................... 17  
Table 5. A/D Input Signal Ranges and Resolutions.......................................................................................................... 19  
Table 6. VAUX Input Signal Ranges and Resolutions ........................................................................................................ 19  
Table 7. Alarms Interrupt Sources Masking Bits............................................................................................................... 20  
Table 8. Warnings Interrupt Sources Masking Bits........................................................................................................... 20  
Table 9. RESETOUT Clear Delay..................................................................................................................................... 21  
Table 10. LSB Values of Offset Coefficients..................................................................................................................... 23  
Table 11. Internal Calibration Coefficient Memory Map – Part I....................................................................................... 24  
Table 12. Internal Calibration Coefficient Memory Map – Part II...................................................................................... 24  
Table 13. Shutdown State of SHDN vs. Configuration Bits ............................................................................................. 27  
Table 14. Shutdown State of VBIAS vs. Configuration Bits................................................................................................ 27  
Table 15. Shutdown State of VMOD vs. Configuration Bits................................................................................................ 27  
Table 16. Temperature Compensation Look-up Tables ................................................................................................... 30  
Table 17. APC Temperature Compensation Look-Up Table........................................................................................... 31  
Table 18. IMOD Temperature Compensation Look-Up Table............................................................................................ 31  
Table 19. IBIAS Comparator Temperature Compensation Look-Up Table......................................................................... 31  
Table 20. BIAS Current High Alarm Temperature Compensation Table.......................................................................... 31  
Table 21. MIC3003 Alarm and Warning Events................................................................................................................ 33  
Table 22. Test and Diagnostic Features.......................................................................................................................... 37  
7
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Pin Configuration  
24-Pin MLF® (ML)  
Pin Description (MIC3003GFL only)  
Pin Number  
Pin Name  
VDDD  
Pin Function  
Power supply input for digital functions.  
1
2
QGPO  
Open-drain output. Can be selected (via OEMCFG3 bit 7) to be an open-drain GPO or an active-  
low, open-drain, pulsed reset signal output controlled by the status of bits [0-2] of byte A2h: FFh.  
3
4
GNDD  
RS0  
Ground return for digital functions.  
Digital input. Receiver Rate Select input. OR’ed with soft rate select bit SRS0 to determine the  
state of the RRSOUT pin. The state of this pin is always reflected in the RS0S bit.  
5
VIN/INT  
If bit 4 (IE) in the USRCTL register is set to 0 (its default value), this pin is configured as an analog  
input. If IE bit is set to 1, this pin is configured as an open-drain output.  
Analog input: Multiplexed A/D input for monitoring supply voltage, with a 0V to 5.5V input range.  
Open-drain output: outputs the internally generated active-low interrupt signal /INT.  
6
7
8
CLK  
DATA  
Digital input. Serial clock input.  
Digital I/O, open-drain, bi-directional serial data input/output.  
TXDISABLE  
Digital input; Active high. The transmitter is disabled when this input is high or the STXDIS bit is  
set to 1. The state of this input is always reflected in the TXDIS bit.  
9
TXFAULT  
Digital Output; Open-Drain, with programmable polarity. If OEMCFG5 bit 4 is set to 0, a high level  
indicates a hardware fault impeding transmitter operation. If OEMCFG5 bit 4 is set to 1, a low level  
indicates a hardware fault impeding transmitter operation. The state of this pin is always reflected  
in the TXFLT bit.  
10  
11  
RS1  
VRX  
Digital Input; Transmitter Rate Select Input; OR’ed with soft rate select bit SRS1 to determine the  
state of the TRSOUT pin. The state of this pin is always reflected in the RS1S bit.  
Analog Input. Multiplexed A/D converter input for monitoring received optical power. The input  
range is 0 to VREF. A 5-bit programmable EEPOT on this pin provides coarse calibration and  
ranging of the RX power measurement.  
8
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Pin Number  
Pin Name  
Pin Function  
12  
SHDN/TXFIN  
Digital output/Input; programmable polarity. When used as shutdown output (SHDN), OEMCFG3  
bit 2 set to 0, SHDN is asserted at the detection of a fault condition if OEMCFG4 bit 7 is set to 0. If  
OEMCFG4 bit 7 is set to 1, a fault condition will not assert SHDN. When programmed as TXFIN, it  
is an input for external fault signals to be OR’ed with the internal fault sources to drive TXFAULT.  
13  
14  
VILD+  
VILD–  
Analog Input. Multiplexed A/D input for monitoring laser bias current via a sense resistor (signal  
input); accommodates inputs referenced to VDD or GND (see pin 14 description).  
Analog Input. Reference terminal for the multiplexed pseudo-differential A/D converter inputs for  
monitoring laser bias current via a sense resistor (VILD+ is the sensing input). Tie to VDD or GND  
to reference the voltage sensed on VILD+ to VDD or GND, respectively.  
15  
16  
17  
VDDA  
GNDA  
VMPD  
Power supply input for analog functions.  
Ground return for analog functions.  
Analog Input. Multiplexed A/D converter input for monitoring transmitted optical power via a  
monitor photodiode. In most applications, VMPD will be connected directly to FB. The input range  
is 0 - VREF or 0 - VREF/4 depending upon the setting of the APC configuration bits  
18  
19  
FB  
Analog Input. Feedback voltage for the APC loop op-amp. Polarity and scale are programmable  
via the APC configuration bits I OEMCFG1. Connect to VBIAS if APC is not used.  
VMOD  
Analog Output. Buffered DAC output to set the modulation current on the laser driver IC. Operates  
with either a 0– VREF or a (VDD–VREF) – VDD output swing so as to generate either a ground-  
referenced or a VDD referenced programmed voltage. A simple external circuit can be used to  
generate a programmable current for those drivers that require a current rather than a voltage  
input.  
20  
21  
VMOD–  
VBIAS  
Analog input. This pin is the inverting terminal of the VMOD buffer op-amp. Connect to VMOD  
(gain = 1) or a feedback resistor network to set a different gain value.  
Analog output. Buffered DAC output capable of sourcing or sinking up to 10mA under control of  
the APC function to drive an external transistor or the APCSET pin of a laser diode driver for laser  
diode DC bias. The output and feedback polarity are programmable to accommodate either an  
NPN or a PNP transistor to drive a common-anode or common-cathode laser diode.  
22  
23  
COMP  
Analog output. Compensation terminal for the APC loop. Connect a capacitor between this pin and  
GNDA or VDDA with the appropriate value to tune the APC loop time constant to a desirable value.  
RRSOUT/  
GPO  
Digital Output. Open-Drain or push-pull.  
If OEMCFG3 bit 4 is set to 0, RRSOUT is selected. It represents the receiver rate select as per  
SFF. This output is controlled by the SRS0 bit OR’ed with RS0 input and is open drain only.  
If OEMCFG3 bit 4 is set to 1, GPO is selected. General-purpose, non-volatile output, it is  
controlled by the GPO configuration bits in OEMCFG3.  
24  
RXLOS/  
Digital output. This programmable polarity, open-drain outputs has two purposes:  
TRSOUT  
If OEMCFG6 bit 2 = 0, indicates the loss of the received signal as indicated by a level of received  
optical power below the programmed RXLOS comparator threshold; may be wire-OR’ed with  
external signals. Normal operation is indicated by a low level when OEMCFG6 bit 3 is set to 0 and  
a high level when OEMCFG6 bit 3 is set to 1. RXLOS is de-asserted when VRX > LOSFLTn. The  
LOS bit reflects the state of RXLOS whether driven by the MIC3003 or an external circuit.  
If OEMCFG6 bit 2 = 1, TRSOUT is selected. This signal represents the transmitter rate select as  
per the SFF specification. This output is controlled by the SRS1 bit OR’ed with the RS1 input.  
9
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Power Supply Voltage, VDD .......................................+3.8V  
Voltage on CLK, DATA, TXFAULT, VIN, RXLOS,  
TXDISABLE, RS0, RS1 ......................... –0.3V to +6.0V  
Voltage On Any Other Pin.....................–0.3V to VDD+0.3V  
Power Dissipation, TA = 85°C ....................................1.5W  
Junction Temperature (TJ) ....................................... 150°C  
Storage Temperature (TS)....................... –65°C to +150°C  
Soldering (20 sec.)................................................... 260ºC  
ESD Ratings(3)  
Power Supply Voltage, VDDA/VDDD ...........+3.0V to +3.6V  
Ambient Temperature Range (TA) .......–40°C to +105°C  
Package Thermal Resistance  
MLF® (θJA).................................................60°C/W  
Human Body Model.................................................. 2kV  
Machine Model.......................................................300V  
Electrical Characteristics  
For typical values, TA = 25°C, VDDA = VDDD = +3.3V, unless otherwise noted. Bold values are guaranteed for +3.0V (VDDA = VDDD  
)
(8)  
3.6V, T(min) TA T(min)  
,
Symbol Parameter  
Condition  
Min  
Typ  
Max  
Units  
Power Supply  
IDD  
Supply Current  
CLK = DATA = VDDD = VDDA; TXDISABLE  
low; all DACs at full-scale; all A/D inputs  
at full-scale; all other pins open.  
2.3  
3.5  
mA  
mA  
V
CLK = DATA = VDDD = VDDA; TXDISABLE  
high; FLTDAC at full-scale; all A/D inputs  
at full-scale; all other pins open.  
2.3  
2.9  
3.5  
VPOR  
Power-on Reset Voltage  
All registers reset to default values;  
A/D conversions initiated.  
2.98  
VUVLO  
VHYST  
tPOR  
Under-Voltage Lockout Threshold  
Power-on Reset Hysteresis Voltage  
Power-on Reset Time  
Note 5  
2.5  
2.73  
170  
50  
V
mV  
µs  
VDD > VPOR, Note 4  
VREF  
Reference Voltage  
1.210  
1.225  
1.7  
1.240  
±3  
V
Voltage Reference Line Regulation  
mV/V  
ΔVREF  
ΔVDDA  
/
Temperature-to-Digital Converter Characteristics  
Local Temperature Measurement  
Error  
–40°C TA +105°C, Note 6  
±1  
±1  
°C  
tCONV  
Conversion Time  
Sample Period  
Note 4  
60  
ms  
ms  
tSAMPLE  
100  
Voltage-to-Digital Converter Characteristics (VRX, VAUX, VBIAS, VMPD, VILD±)  
Voltage Measurement Error  
Conversion Time  
–40°C TA +105°C, Note 6  
±2.0  
10  
%fs  
ms  
ms  
tCONV  
tSAMPLE  
Notes:  
Note 4  
Note 4  
Sample Period  
100  
1. Exceeding the absolute maximum rating may damage the device.  
2. The device is not guaranteed to function outside its operating rating.  
3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.  
4. Guaranteed by design and/or testing of related parameters. Not 100% tested in production.  
5. The MIC3003 will attempt to enter its shutdown state when VDD falls below VUVLO. This operation requires time to complete. If the supply voltage falls  
too rapidly, the operation may not be completed.  
6. Does not include quantization error.  
10  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Voltage Input, VIN (Pin 5 used as an ADC Input)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
VIN  
Input Voltage Range  
–0.3 V VDD 3.6V  
GNDA  
5.5  
V
ILEAK  
CIN  
Input Current  
VIN = VDD or GND; VAUX = VIN  
55  
10  
µA  
pF  
Input Capacitance  
Digital-to-Voltage Converter Characteristics (VMOD, VBIAS  
)
Accuracy  
–40°C TA +105°C, Note 7  
±1  
2.0  
20  
±1  
%fs  
ms  
tCONV  
DNL  
Conversion Time  
Differential Non-linearity Error  
Note 8  
Note 8  
±0.5  
LSB  
Bias Current Sense Inputs, VILD+, VILD  
VILD  
Differential Input Signal Range,  
0
VREF/4  
±1  
mV  
| VILD+ – VILD  
|
VILD+ input current  
VILDinput current  
| VILD+ – VILD| = 0.3V  
Input Capacitance  
IIN+  
IIN–  
µA  
µA  
µA  
pF  
VILDreferred to VDDA  
VILDreferred to GND  
+150  
-150  
10  
CIN  
APC Op Amp, FB, VBIAS, COMP  
GBW  
Gain Bandwidth Product  
CCOMP = 20pF; Gain = 1  
1
1
MHz  
TCVOS  
Input Offset Voltage Temperature  
Coefficient(4)  
µV/°C  
VOUT  
Output Voltage Swing  
IOUT = 10mA, SRCE bit = 1  
IOUT = -10mA, SRCE bit = 0  
GNDA  
1.25  
VDDA  
V
V
VDDA -1.25  
ISC  
Output Short-Circuit Current  
Short Circuit Withstand Time  
Power Supply Rejection Ratio  
55  
mA  
sec  
dB  
tSC  
TJ 150°C, Note 8  
PSRR  
CCOMP = 20pF; gain = 1, to GND  
55  
40  
CCOMP = 20pF; gain = 1, to VDD  
AMIN  
Minimum Stable Gain  
Slew Rate  
CCOMP = 20pF, note 8  
CCOMP = 20pF; gain = 1  
1
V/V  
V/µs  
%
3
ΔV/Δt  
ΔRFB  
Internal Feedback Resistor  
Tolerance  
±20  
Internal Feedback Resistor  
Temperature Coefficient  
25  
ppm/C  
ΔRFB/Δt  
ISTART  
Laser Start-up Current Magnitude  
START = 01h  
START = 02h  
START = 04h  
START = 08h  
0.375  
0.750  
1.500  
3.000  
10  
mA  
mA  
mA  
mA  
pF  
CIN  
Pin Capacitance  
Notes:  
7. Does not include quantization error.  
8. Guaranteed by design and/or testing of related parameters. Not 100% tested in production.  
11  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Electrical Characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
VMOD Buffer Op-Amp, VMOD, VMOD  
GBW  
Gain Bandwidth  
CCOMP = 20pF; gain = 1  
1
1
MHz  
TCVOS  
Input Offset Voltage Temperature  
Coefficient  
µV/°C  
IBIAS  
VOUT  
ISC  
VMOD– Input Current  
±0.1  
35  
±1  
µA  
mV  
mA  
sec  
dB  
Output Voltage Swing  
IOUT = ±1mA  
GNDA+75  
VDDA-75  
Output Short-Circuit Current  
Short Circuit Withstand Time  
Power Supply Rejection Ratio  
tSC  
TJ 150°C, Note 9  
PSRR  
CCOMP = 20pF; gain = 1, to GND  
65  
44  
CCOMP = 20pF; gain = 1, to VDD  
dB  
AMIN  
Minimum Stable Gain  
Slew Rate  
CCOMP = 20pF  
1
V/V  
V/µs  
pF  
CCOMP = 20pF; gain = 1  
1
ΔV/ΔT  
CIN  
Pin Capacitance  
10  
Control and Status I/O, TXDISABLE, TXFAULT, RS0, RRSOUT(GPO), SHDN(TXFIN), RXLOS(TRSOUT), /INT, RS1, QGPO  
VIL  
Low Input Voltage  
High Input Voltage  
Low Output Voltage  
0.8  
V
V
V
V
VIH  
VOL  
VOH  
2.0  
IOL 3mA  
IOH 3mA  
0.3  
High Output Voltage  
VDDD–0.3  
(applies to SHDN only)  
ILEAK  
CIN  
Input Current  
±1  
µA  
pF  
Input Capacitance  
10  
10  
Transmit Optical Power Input, VMPD  
VIN  
Input Voltage Range  
Input Signal Range  
Note 9  
GNDA  
VDDA  
VREF  
VDDA  
V
V
VRX  
BIASREF=0  
BIASREF=1  
Note 9  
V
DDA–VREF  
V
CIN  
Input Capacitance  
Input Current  
pF  
µA  
ILEAK  
±1  
Received Optical Power Input, VRX, RXPOT  
Input Voltage Range  
Note 9  
GNDA  
0
VDDA  
VREF  
V
V
VRX  
Valid Input Signal Range  
(ADC Input Range)  
RRXPOT(32)  
End-to-End Resistance  
RXPOT = 1Fh  
32  
KΩ  
Resistor Tolerance  
±20  
25  
%
ppm/ºC  
%
ΔRXPOT  
Resistor Temperature Coefficient  
Divider Ratio Accuracy  
ΔRXPOT/ΔT  
ΔVRX/VRXPOT  
00 RXPOT 1Fh  
RXPOT = 0 (disconnected)  
Note 9  
-5  
+5  
±1  
ILEAK  
CIN  
Input Current  
µA  
pF  
µA  
Input Capacitance  
Input Current  
10  
ILEAK  
±1  
Note:  
9. Guaranteed by design and/or testing of related parameters. Not 100% tested in production.  
12  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Electrical Characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Control and Status I/O Timing, TXFAULT, TXDISABLE, RS0, RRSOUT, and RXLOS  
t
t
t
TXDISABLE Assert Time  
TXDISABLE De-assert Time  
Initialization Time  
From input asserted to optical output  
at 10% of nominal, CCOMP = 10nF.  
10  
1
µs  
ms  
ms  
OFF  
From input de-asserted to optical output  
at 90% of nominal, CCOMP = 10nF.  
ON  
From power on or transmitter enabled to  
optical output at 90% of nominal and  
TX_FAULT de-asserted. Note 10.  
300  
INIT  
t
t
Power-on Initialization Time  
TXFAULT Assert Time  
From power on to APC loop-enabled.  
200  
ms  
µs  
INIT2  
From fault condition to TXFAULT  
assertion. Note 10.  
95  
FAULT  
t
Fault Reset Time  
Length of time TXDISABLE must be  
asserted to reset fault condition.  
10  
µs  
RESET  
t
t
RXLOS Assert Time  
From loss of signal to RXLOS asserted.  
95  
µs  
µs  
LOSS_ON  
RXLOS De-assert Time  
From signal acquisition to LOS  
de-asserted.  
100  
LOSS_OFF  
t
t
Analog Parameter Data Ready  
From power on to valid analog  
parameter data available. Note 10  
400  
1
ms  
µs  
DATA  
TXFAULT, TXDISABLE, RXLOS,  
RS0, RS1 Input Propagation Time  
Time from input change to  
corresponding internal register bit set or  
cleared. Note 10.  
PROP_IN  
t
TXFAULT, TRSOUT, TRRSOUT,  
/INT, QGPO Output Propagation  
Time  
From an internal register bit set or  
cleared to corresponding output change.  
Note 10.  
1
µs  
PROP_OUT  
Fault Comparators  
FLTTMR  
Fault Suppression Timer Clock  
Note 10.  
0.475  
0.5  
0.525  
ms  
Period  
Accuracy  
-3  
+3  
%/fs  
µs  
t
Glitch Rejection  
Maximum length pulse that will not  
4.5  
REJECT  
cause output to change state. Note 10.  
%VDDA  
%VDDA  
V
Saturation Detection Threshold  
High level  
Low level  
95  
5
SAT  
Power-On Hour Meter  
Timebase Accuracy  
0°C TA +70°, Note 10.  
–40°C TA +105°C  
Note 10.  
+5  
-5  
%
%
+10  
-10  
Resolution  
10  
hours  
Non-Volatile (FLASH) Memory  
tWR  
Write Cycle Time, Note 11  
Measured from the SMBus STOP  
condition of a one-byte to eight-byte  
write transaction. Note 10.  
13  
ms  
NVRAM Data Retention  
100  
years  
Endurance  
Maximum permitted number of write  
cycles to any single NVRAM location  
10,000  
cycles  
Notes:  
10. Guaranteed by design and/or testing of related parameters. Not 100% tested in production.  
11. The MIC3003 will not respond to serial bus transactions during an EEPROM write cycle. The host will receive a NACK response during tWR  
.
13  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Serial Data I/O Pin, Data  
Symbol  
Parameter  
Condition  
Min  
2.1  
Typ  
Max  
0.4  
Units  
V
VOL  
Low Output Voltage  
IOL = 3mA  
I
OL = 6mA  
0.6  
V
VIL  
Low Input Voltage  
High Input Voltage  
Input Current  
0.8  
V
VIH  
V
ILEAK  
CIN  
±1  
µA  
pF  
Input Capacitance  
Note 12  
10  
10  
Serial Clock Input, CLK  
VIL  
Low Input Voltage  
2.7V VDD 3.6V  
2.7V VDD 3.6V  
0.8  
±1  
V
V
VIH  
High Input Voltage  
Input Current  
2.1  
ILEAK  
CIN  
µA  
pF  
Input Capacitance  
Note 12  
Serial Interface Timing(4)  
t1  
CLK (clock) Period  
2.5  
100  
300  
100  
100  
µs  
ns  
ns  
ns  
ns  
ms  
t2  
Data In Setup Time to CLK High  
Data Out Stable After CLK Low  
Data Low Setup Time to CLK Low  
t3  
t4  
Start Condition  
t5  
Data High Hold Time After CLK High Stop Condition  
Data Ready Time  
From power on to completion of one set  
tDATA  
400  
of ADC conversions; analog data  
available via serial interface.  
QGPO Reset Pulse Timing  
t1  
QGPO reset pulse low duration  
OEMCFG3 bit 7 = 1  
A2h:255 (FFh) [2-0] switch to 111  
112.5  
20.25  
125  
137.5  
24.75  
µs  
t2  
QGPO reset de-assertion to the  
clearing of A2:FFh bits 2:0  
OEMCFG3 bit 7 = 1  
A2h:255 (FFh) [2-0] 111  
22.5  
ms  
Note:  
12. Guaranteed by design and/or testing of related parameters. Not 100% tested in production.  
Serial Interface Timing Diagram  
Serial Interface Timing  
14  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Serial Interface Address Maps  
Address  
Field Size Name  
Description  
(Decimal)  
(Bytes)  
0 –95  
96  
Serial ID defined by SFP MSA  
General-purpose NVRAM; R/W under valid OEM password.  
Vendor specific EEPROM  
96 – 127  
128 – 255  
32  
Vendor Specific  
Reserved  
128  
Reserved for future use. General-purpose NVRAM; R/W under  
valid OEM password.  
Table 1. Serial Interface Address Map, Device Address = A0h  
Address(s)  
Field Size  
(Bytes)  
Hex  
Dec  
Name  
Description  
00-27  
0-39  
40  
Alarm and Warning Thresholds  
High/low limits for warnings and alarms; writeable using the  
OEM password; read-only otherwise.  
28-37  
38-5B  
40-55  
56-91  
16  
36  
Reserved  
Reserved – do not write; reads undefined.  
Calibration Constants  
Numerical constants for external calibration; writeable using  
the OEM password; read-only otherwise.  
5C-5E  
5F  
92-94  
95  
3
1
Reserved  
Reserved – do not write; reads undefined.  
Checksum  
General-purpose NVRAM; writeable using the OEM password;  
read-only otherwise.  
60-69  
6A-6D  
6E  
96-105  
106-109  
110  
10  
4
Analog Data  
Real time analog parameter data.  
Reserved – do not write; reads undefined.  
Control and status bits.  
Reserved  
1
Control/Status Register  
Rate Select Control  
6F  
111  
1
Bits [7-6] control the use of the RS0 and RS1 inputs and the  
SRS0 and SRS1 register bits.  
70-71  
72-73  
74-75  
76  
112-113  
114-115  
116-117  
118  
2
2
2
1
Alarm Flags  
Reserved  
Alarm status bits; read-only.  
Reserved – do not write; reads undefined.  
Warning status bits; read-only.  
Additional control and status bits.  
Warning Flags  
Extended Control/Status  
Register  
77  
119  
1
7
Reserved  
OEMPW  
Reserved – do not write; reads undefined.  
78-7E  
120-126  
OEM password entry field. The four-byte OEM password  
location can be selected to be 78h-7Bh (120-123) by setting  
OEMCFG5 bit 2 to 0 (default) or 7Bh-7Eh (123-126) by setting  
OEMCFG5 bit 2 to a one.  
7F  
127  
1
Vendor-specific  
User Scratchpad  
Alarms Masks  
Vendor specific. Reserved – do not write; reads undefined.  
User-writeable EEPROM. General-purpose NVRAM.  
Bit = 0: Corresponding alarm not masked.  
Bit = 1: Corresponding alarm masked.  
80-F7  
F8-F9  
128-247 120  
248-249  
2
FA-FB  
250-251  
2
Warnings Masks  
Bit = 0: Corresponding warning not masked.  
Bit = 1: Corresponding warning masked.  
Reserved – do not write; reads undefined.  
End-user control and status bits.  
FC-FD 252-253  
2
1
1
Reserved  
USRCTL  
FE  
FF  
254  
255  
RESETOUT  
Bits [2:0] of this register control the QGPO reset output (pin 2)  
If OEMCFG3 bit 7 is set to 1.  
Table 2. Serial Interface Address Map, Device Address = A2  
15  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Address(s)  
Field Size  
(Bytes)  
Hex  
Dec  
Name  
Description  
00-3F  
0-63  
64  
64  
BIASLUT1  
First 64 entries of the bias current temperature compensation LUT (Look-  
up Table) The additional 12 entries are located in A6: 58h – 63h.  
40-7F  
80-BF  
64-127  
MODLUT1  
IFTLUT1  
First 64 entries of the modulation current temperature compensation  
LUT. The additional 12 entries are located in A6:.64h – 6Fh.  
128-191 64  
192-255 64  
First 64 entries of the bias current fault threshold temperature  
compensation LUT. The additional 12 entries are located in A6: 70h -  
7Bh.  
C0-FF  
HATLUT1  
First 64 entries of the bias current high alarm threshold temperature  
compensation LUT. The additional 12 entries are located in A6: 7C-87h.  
Table 3. Serial Interface Address Map (Temperature Compensation Tables), Device Address = A4h  
Address(s)  
Field Size  
(Bytes)  
Hex  
00  
01  
02  
03  
04  
05  
06  
07  
Dec  
0
Name  
Description  
1
1
1
1
1
1
1
1
OEMCFG0  
OEMCFG1  
OEMCFG2  
APCSET0  
APCSET1  
APCSET2  
MODSET0  
IBFLT  
OEM configuration register 0  
OEM configuration register 1  
OEM configuration register 2  
APC setpoint register 0  
APC setpoint register 1  
APC setpoint register 2  
Modulation setpoint register 0  
1
2
3
4
5
6
7
Bias current fault-comparator threshold. This register is temperature  
compensated.  
08  
8
1
1
1
1
4
1
1
1
1
1
1
1
1
1
1
1
1
2
1
TXPFLT  
TX power fault threshold  
09  
9
LOSFLT  
RX LOS fault-comparator threshold  
Fault comparator timer setting  
Fault source mask bits  
0A  
0B  
0C-0F  
10  
10  
11  
12-15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28-29  
30  
FLTTMR  
FLTMSK  
OEMPWSET  
OEMCAL0  
OEMCAL1  
LUTINDX  
OEMCFG3  
APCDAC  
MODDAC  
OEMREAD  
LOSFLTn  
RXPOT  
Password for access to OEM areas  
OEM calibration register 0  
11  
OEM calibration register 1  
12  
Look-up table index read-back  
OEM configuration register 3  
13  
14  
Reads back current APC DAC value (setpoint+offset)  
Reads back current modulation DAC value (setpoint+offset)  
Reads back OEM calibration data  
LOS de-assert threshold  
15  
16  
17  
18  
RXPOT tap selection  
19  
OEMCFG4  
OEMCFG5  
OEMCFG6  
SCRATCH  
MODSET 1  
OEM configuration register 4  
1A  
1B  
1C-1D  
1E  
OEM configuration register 5  
OEM configuration register 6  
Reserved – do not write; reads undefined.  
Modulation setpoint register 1  
16  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Address(s)  
Field Size  
(Bytes)  
HEX  
1F  
DEC  
31  
Name  
Description  
1
MODSET 2  
POHDATA  
RXLUT  
Modulation setpoint register 2  
Power-on hour meter scratchpad  
20-27  
28-47  
32-39  
40-71  
8
32  
RX power internal calibration coefficient table. Eight sets of slope and  
offset coefficients provide a piecewise-linear transform for the receive  
power ADC result.  
48-57  
58-63  
72-87  
88-99  
16  
12  
CALCOEF  
IFTLUT2  
Slope and offset coefficients used for temperature, voltage, bias current,  
and transmit power internal calibration  
Additional 12 entries of the bias current fault threshold temperature  
compensation LUT.  
64-6F  
70-7B  
100-111 12  
112-123 12  
BIASLUT2  
MODLUT2  
Additional 12 entries of the bias current temperature compensation LUT.  
Additional 12 entries of the modulation current temperature  
compensation LUT.  
7C-87  
124-135 12  
HATLUT2  
Additional 12 entries of the bias current high alarm threshold  
temperature compensation LUT.  
88-CF  
136-207 72  
SCRATCH  
OEM scratchpad area  
D0-DD 208-221 14  
RXLUTSEG/  
SCRATCH  
Receive power calibration segment delimiters. Each of the eight  
segments can have its own slope and offset coefficient. Used to refine  
the shape of the piecewise-linear function used for receive power in  
internal calibration mode.  
These bytes may also be part of the OEM scratch pad if the hard coded  
delimiters option is selected, see the description of OEMCFG6  
DE-FA 222-250 29  
SCRATCH  
POH  
OEM scratchpad area  
FB-FC  
FD  
251-252  
253  
2
1
1
1
Power on hour meter result; read-only  
Data ready bits for each measured parameter; read-only  
Manufacturer identification (Micrel’s manufacturer ID is 42, 2Ah)  
Device ID and die revision  
Data Ready Flags  
MFG_ID  
FE  
254  
FF  
255  
DEV_ID  
Table 4. Serial Interface Address Map (OEM Configuration Registers), Device Address = A6h  
17  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Block Diagram  
Figure 1. MIC3003 Block Diagram  
Analog-to-Digital Converter/Signal  
Monitoring  
A block diagram of the monitoring circuit is shown below.  
Each of the five analog parameters monitored by the  
MIC3003 is sampled in sequence. All five parameters are  
sampled and the results updated within the tCONV duration  
given in the “Electrical Characteristics” section. In OEM  
mode, the channel that is normally used to measure VIN  
may be assigned to measure the level of the VDDA pin or  
one of five other nodes. This provides a kind of analog  
loopback for debug and test purposes. The VAUX bits in  
OEMCFG0 control which voltage source is being  
sampled. The various VAUX channels are level-shifted  
differently depending on the signal source, resulting in  
different LSB values and signal ranges. See Table 5.  
Figure 2. Analog-to-Digital Converter Block Diagram  
18  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Channel  
ADC Resolution  
(bits)  
Conditions  
Input Range (V)  
LSB(1)  
TEMP  
VAUX  
VMPD  
8 or 9  
N/A  
1°C or 0.5°C  
4.77mV  
8
8
See Table 6  
GAIN = 0; BIASREF = 0  
GAIN = 0; BIASREF = 1  
GAIN = 1; BIASREF = 0  
GAIN = 1; BIASREF = 1  
VILD- = VDDA  
GNDA - VREF  
VDDA – (VDDA – VREF  
)
GNDA - VREF/4  
1.17mV  
VDDA – (VDDA – VREF/4)  
VILD  
VRX  
8
VDDA – (VDDA – VREF  
GNDA - VREF  
0 - VREF  
)
4.77mV  
VILD- = GNDA  
12  
RXPOT = 00  
0.298mV  
Table 5. A/D Input Signal Ranges and Resolutions  
Note:  
1. Assumes typical VREF value of 1.22V.  
Channel  
VIN  
VAUX [2:0]  
000 = 00h  
001 = 01h  
010 = 02h  
011 = 03h  
100 = 04h  
101 = 05h  
110 = 06h  
Input Range (V)  
0.5V to 5.5V  
0.5V to 5.5V  
0.5V to 5.5V  
0.5V to 5.5V  
0V to VREF  
LSB(1) (mV)  
25.6mV  
25.6mV  
25.6mV  
25.6mV  
4.77mV  
4.77mV  
4.77mV  
VDDA  
VBIAS  
VMOD  
APCDAC  
MODDAC  
FLTDAC  
0V to VREF  
0V to VREF  
Table 6. VAUX Input Signal Ranges and Resolutions  
Note:  
1. Assumes typical VREF value of 1.22V.  
Alarms and Warnings Interrupt Source Masking  
warning is masked, it will not set the interrupt. Table 8  
shows the locations of the masking bits. The warning or  
alarm is masked if the corresponding bit is set to 1.  
Alarm and warning violations set the flags in the Alarm  
and Warning Status Registers, and also assert the  
interrupt output if they are not masked. If an alarm or  
19  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Serial Address A2h  
Default Value  
Description  
Byte  
Bit  
7
0
Masking bit for Temperature High Alarm interrupt source  
Masking bit for Temperature Low Alarm interrupt source  
Masking bit for Voltage High Alarm interrupt source  
Masking bit for Voltage Low Alarm interrupt source  
Masking bit for Bias High Alarm interrupt source  
Masking bit for Bias Low Alarm interrupt source  
Masking bit for TX Power High Alarm interrupt source  
Masking bit for TX Power Low Alarm interrupt source  
Masking bit for RX Power High Alarm interrupt source  
Masking bit for RX Power Low Alarm interrupt source  
6
0
5
0
248  
4
0
3
0
2
0
1
0
0
0
7
0
249  
6
1
[5-0]  
Reserved  
Table 7. Alarms Interrupt Sources Masking Bits  
Serial Address A2h  
Default Value  
Description  
Byte  
Bit  
7
0
Masking bit for Temperature High Warning interrupt  
source  
6
0
Masking bit for Temperature Low Warning interrupt  
source  
250  
5
0
Masking bit for Voltage High Warning interrupt source  
Masking bit for Voltage Low Warning interrupt source  
Masking bit for Bias High Warning interrupt source  
Masking bit for Bias Low Warning interrupt source  
Masking bit for TX Power High Warning interrupt source  
Masking bit for TX Power Low Warning interrupt source  
Masking bit for RX Power High Warning interrupt source  
Masking bit for RX Power Low Warning interrupt source  
4
0
3
0
2
0
1
0
0
0
7
0
6
1
[5-0]  
Reserved  
251  
Table 8. Warnings Interrupt Sources Masking Bits  
20  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Alarms and Warnings as TXFAULT Source  
QGOP Pin Function  
Alarms and warnings are not sources for TXFAULT with  
the default setting. To set alarms as a TXFAULT source  
set OEMCFG4 bit 6 to 1. To set warnings as a  
TXFAULT, source set OEMCFG4 bit 7 to 1. The alarms  
and warnings TXFAULT sources can be masked  
individually in the same way shown in Tables 7 and 8.  
QGOP can be used in GOP mode as a general purpose  
output by setting OEMCFG3 bit 7 to 0, or as in RESET  
mode as a reset signal output by setting OEMCFG3 bit 7  
to 1.  
If RESET mode is selected, the reset signal state is  
controlled by RSETOUT (A2:FFh bits [2-0]). By default,  
these three bits are 000, and the QGPO output is  
undriven (state: High). When the three bits are written to  
111, QGPO’s open-drain output will be driven low for  
125 μs (typical), after which QGPO reenters the undriven  
state. The RESETOUT field is cleared from 111 to 000  
22.5 ms (typical) after the de-assertion edge of QGPO.  
Other values of this delay may be selected by setting  
TRSTCLR (OEMCFG2 bits [2-0]) to different values as  
shown on table.  
Latching of Alarms and Warnings  
Alarms and warnings are latched by default, i.e., once  
asserted the flags remain ON until the register is read or  
TXDSABLE is toggled. If OEMCFG4 bit 5 is set to 1, the  
warnings are not latched and will be set and reset with  
the warning condition. Reading the register or toggling  
TXDISABLE will clear the flag. If OEMCFG4 bit 4 is set  
to 1, the alarms are not latched and will be set and reset  
with the alarm condition. Reading the register or toggling  
TXDISABLE will clear the flag.  
If Reset mode in OEMCFG3 is not selected, these three  
bits have no function.  
SMBus Multipart Support  
TRSTCLR  
[2-0]  
Delay from QGPO  
Switching high to  
RESETOUT clear  
If more than one MIC3003GFL device shares the same  
serial interface and multipart mode is selected on them  
(OEMCFG5 bit 3 = 1), then pin 12 and pin 23 become  
SMBus address bits 3 and 4 respectively. Therefore, the  
parts should have a different setting on those pins to  
create four address combinations based upon the state  
of pin 12 and pin 23 state, (00, 01, 10, 11) where 0 is a  
pull down to GND and 1 is a pull up to VCC. The parts  
come from the factory with the same address (A0) and  
multipart mode off (OEMCFG5 bit 3 is 0). After power  
up, write 1 to OEMCFG5 bit 3 to turn ON multipart mode,  
which is done to all parts at the same time since they all  
respond to serial address A0 at this point. With multipart  
mode on, the parts have now different addresses based  
on the states of pins 12 and 23. Another option is to  
access each part individually, set their single mode  
address in OEMCFG2 bits [4-7] to different values and  
then turn off multipart mode to return to normal mode  
where the parts have new different addresses.  
000  
001  
010  
011  
100  
Zero delay  
17.5 ms typical  
22.5 ms typical (default)  
27 ms typical  
45 ms typical  
Table 9. RESETOUT Clear Delay  
21  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
IBIASh  
255  
RSENSE  
Calibration Modes  
(
)
0.3V  
The default mode of calibration in the MIC3003 is  
external calibration, for which the INTCAL bit (bit 0 in  
OEMCFG3 register) is set to 0. The internal calibration  
mode is selected by setting INTCAL to 1.  
IBIAS  
=
(1)  
The value of the least significant bit (LSB) of IBIASh is  
given by:  
0.3v  
300mV  
A/ External Calibration  
LSB(IBIASh) =  
mA =  
Amps =  
255 ×RSENSE  
255 ×RSENSE  
The voltage and temperature values returned by the  
MIC3003’s A/D converter are internally calibrated. The  
binary values of TEMPh:TEMPl and VOLTh:VOLTl are in  
the format called for by SFF-8472 under Internal  
Calibration.  
1176.9  
μA  
(2)  
RSENSE  
Per SFF-8472, the value of the bias current LSB is 2µA.  
The necessary conversion factor, “slope”, is therefore:  
SFF-8472 calls for a set of calibration constants to be  
stored by the transceiver OEM at specific non-volatile  
memory locations; refer to the SFF-8472 specifications  
for the memory map of the calibration coefficients. The  
MIC3003 provides the non-volatile memory required for  
the storage of these constants. The Digital Diagnostic  
Monitoring Interface specification should be consulted  
for full details. Slopes and offsets are stored for use with  
voltage, temperature, bias current, and transmitted  
power measurements. Coefficients for a fourth-order  
polynomial are provided for use with received power  
measurements. The host system can retrieve these  
constants and use them to process the measured data.  
1176.5μA  
Slope =  
= 2.298 +RSENSE  
512μA ×RSENSE  
The tolerance of the sense resistor directly impacts the  
accuracy of the bias current measurement. It is  
recommended that the sense resistor chosen be 1%  
accurate or better. The offset correction, if needed, can  
be determined by shutting down the laser, i.e., asserting  
TXDISABLE, and measuring the bias current. Any non-  
zero result gives the offset required. The offset will be  
equal and opposite to the result of the “zero current”  
measurement.  
TX Power  
Voltage  
Transmit power is sensed via a resistor carrying the  
monitor photodiode current. In most applications, the  
signal at VMPD will be feedback voltage on FB. The  
VMPD voltage may be measured relative to GND or  
VDDA depending on the setting of the BIASREF bit in  
OEMCFG1. The value returned by the A/D is therefore a  
voltage analogous to transmit power. The binary value in  
TXOPh (TXOPl is always zero) is related to transmit  
power by:  
The voltage values returned by the MIC3003’s A/D  
converter are internally calibrated. The binary values of  
VOLTh:VOLTl are in the format called for by SFF-8472  
under Internal Calibration. Since VINh:VINl requires no  
processing, the corresponding slope should be set to  
one and the offset to zero.  
Temperature  
The temperature values returned by the MIC3003’s A/D  
converter are internally calibrated. The binary values of  
TEMPh:TEMPl are in the format called for by SFF-8472  
under Internal Calibration.  
TXOPh  
255  
TXOPh  
255  
( )  
K × 1220mV  
K × VREF  
PTX(mW) =  
=
=
RSENSE  
RSENSE  
The temperature value may be offset by storing a value  
in A6:74(4Ah). The temperature offset is a six-bit signed  
quantity with .5 degrees C resolution.  
K × 4.7843 × TXOPh  
RSENSE  
mW  
(3)  
For a given implementation, the value of RSENSE is  
known. It is either the value of the external resistor or the  
selected internal value of RFB. The constant, K, will likely  
have to be determined through experimentation or  
closed-loop calibration, as it depends on the monitoring  
photodiode responsively and coupling efficiency.  
The temperature offset coefficient at A6:74(4Ah) is used  
in the same way in both internal and external calibration  
modes.  
Bias Current  
Bias current is sensed via an external sense resistor as  
a voltage appearing between VILD+ and VILD-. The  
value returned by the A/D is therefore a voltage  
analogous to bias current. Bias current, IBIAS, is simply  
It should be noted that the APC circuit acts to hold the  
transmitted power constant. The value of transmit power  
reported by the circuit should only vary by a small  
amount as long as the APC is functioning correctly.  
VVILD/RSENSE. The binary value in IBIASh (IBIASl is  
always zero) is related to bias current by:  
22  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
where m is a data bit in the most-significant byte and l is  
a data bit in the least significant byte  
RX Power  
Received power is sensed as a voltage appearing at  
VRX. It is assumed that this voltage is generated by a  
sense resistor carrying the receiver photodiode current  
or by the RSSI circuit of the receiver. The value returned  
by the A/D is therefore a voltage analogous to received  
power. The binary values in RXOPh and RXOPl are  
related to receive power by:  
Slopes are always positive. The decimal point is in  
between the two bytes, i.e., between bits 7 and 8. This  
provides a numerical range of 1/256 (0.00391) to  
255.997 in steps of 1/256. The most significant byte is  
always stored in memory at the lower numerical  
address.  
Offset coefficients  
(
)
(4)  
RX(mW) = K × VREF× 256 ×RXOPh +RXOPl/16 • 65536  
The offsets correct for constant errors in the measured  
data. Each offset, apart from temperature, is a signed,  
sixteen-bit, fixed-point binary number. The bit-weights of  
the offsets are the same as that of the final results. The  
sixteen-bit offsets provide a numerical range of –32768  
to +32767 for voltage, bias current, transmit power, and  
receive power.  
For a given implementation, the constant, K, will likely  
have to be determined through experimentation or  
closed-loop calibration, as it depends upon the gain and  
efficiencies  
of  
the  
receiver.  
In  
SFF-8472  
implementations, the external calibration constants can  
describe up to a fourth-order polynomial in case K is  
nonlinear.  
The numerical range for the six-bit temperature offset is  
–32 (–16 °C) to +31 (+15.5 °C) in increments of .5 °C.  
The two most significant bits of the temperature offset  
coefficient are ignored by the MIC3003.  
B/ Internal Calibration  
If the INTCAL bit in OEMCFG3 is set to 1 (internal  
calibration selected), the MIC3003 will process each  
piece of data coming out of the A/D converter before  
storing the result in result register. Linear slope/offset  
correction will be applied on a per-channel basis to the  
measured values for voltage, bias current, TX power,  
and RX power. Only offset is applied to temperature.  
Computing Internal Calibration Results  
Calibration of voltage, bias current, and TX power are  
performed using the following calculation:  
RESULTn = ADC _RESULTn × SLOPEn + OFFSETn  
(6)  
The user must store the appropriate slope/offset  
coefficients in memory at the time of transceiver  
calibration. In the case of RX power, a look-up table is  
provided that implements eight-segment piecewise-  
linear correction. This correction may be performed as a  
compensation of the receiver non-linearity over  
temperature or receive power level. If static slope/offset  
correction for RX power is desired, the eight coefficient  
sets can simply be made the same. The user has the  
option to select between using preset hard-coded  
delimiters values or programmable delimiters where  
delimiters corresponding to the best linear approximation  
intervals of a specific receiver can be entered. The latter  
option will use an additional fourteen (14) bytes from the  
OEM scratch pad A6h:208-221(DOh-DDh). OEMCFG6  
bits [6:5] are used to select between these options. The  
memory maps for the calibration coefficients are shown  
in Tables 11 and 12. If the programmable delimiters  
option is selected, the user must enter the seven  
delimiters of the intervals that best fit the receiver  
response. The diagram in Figure 3 shows the link  
between the delimiters and the sets of slopes and  
offsets.  
Calibration of RX power is performed using the following  
calculation:  
RESULT = ADC _RESULT × SLOPE(m) + OFFSET(m)  
(7)  
where m represents one of the eight linearization  
intervals corresponding to the RX power level.  
The results of these calculations are rounded to sixteen  
bits. If the seventeenth bit is a one, the result is rounded  
up to the next higher value. If the seventeenth bit is zero,  
the upper sixteen bits remain unchanged. The bit-  
weights of the offsets are the same as that of the final  
results. For SFF-8472 compatible applications, these bit-  
weights are given in Table 10.  
Parameter  
Voltage  
Magnitude of LSB  
100µV  
Bias Current  
TX Power  
RX Power  
2µA  
0.1µW  
0.1µW  
Table 10. LSB Values of Offset Coefficients  
Slopes Coefficients  
The slopes allow for the correction of gain errors. Each  
slope coefficient is an unsigned, sixteen-bit, fixed-point  
binary number in the format:  
[
]
mmmmmmmm.llllllll  
(5)  
23  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Address(s)  
Field  
Size  
HEX  
48-49  
4A-4B  
DEC  
72-73  
74-75  
Name  
Description  
2
2
RESERVED  
TOFFh:TOFFl  
Reserved. There is no slope for temperature. Do not write; reads undefined.  
Temperature offset; signed six-bit integer offset with an LSB resolution of .5  
degrees C per bit. The two most significant bits of TOFFh are ignored.  
TOFFl is not used.  
Note that TOFFh is also used in external calibration mode.  
4C-4D  
4E-4F  
50-51  
52-53  
54-55  
56-57  
76-77  
78-79  
80-81  
82-83  
84-85  
86-87  
2
2
2
2
2
2
VSLPh:VSLPl  
VOFFh:VOFFl  
ISLPh:ISLPl  
Voltage slope; unsigned fixed-point; MSB is at lower physical address.  
Voltage offset; signed integer; MSB is at lower physical address.  
Bias current slope; unsigned fixed-point; MSB is at lower physical address.  
Bias current offset; signed integer; MSB is at lower physical address.  
TX power slope; unsigned fixed-point; MSB is at lower physical address.  
TX power slope; unsigned fixed-point; MSB is at lower physical address.  
IOFFh:IOFFl  
TXSLPh: XSLPl  
TXOFFh: TXOFFl  
Table 11. Internal Calibration Coefficient Memory Map – Part I  
Address(s)  
Field  
Size  
HEX  
28-29  
2A-2B  
2C-2D  
2E-2F  
30-31  
32-33  
34-35  
36-37  
38-39  
3A-3B  
3C-3D  
3E-3F  
40-41  
42-43  
44-45  
46-47  
DEC  
40-41  
42-43  
44-45  
46-47  
48-49  
50-51  
52-53  
54-55  
56-57  
58-59  
60-61  
62-63  
64-65  
66-67  
68-69  
70-71  
Name  
Description  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
RXSLP0h: RXSLP0l  
RXOFF0h: RXOFF0l  
RXSLP1h: RXSLP1l  
RXOFF1h: RXOFF1l  
RXSLP2h: RXSLP2l  
RXOFF2h: RXOFF2l  
RXSLP3h: RXSLP3l  
RXOFF3h: RXOFF3l  
RXSLP4h: RXSLP4l  
RXOFF4h: RXOFF4l  
RXSLP5h: RXSLP5l  
RXOFF5h: RXOFF5l  
RXSLP6h: RXSLP6l  
RXOFF6h: RXOFF6l  
RXSLP7h: RXSLP7l  
RXOFF7h: RXOFF7l  
RX power slope 0; unsigned fixed-point; MSB is at lower physical address.  
RX power offset 0; signed integer; MSB is at lower physical address.  
RX power slope 1; unsigned fixed-point; MSB is at lower physical address.  
RX power offset 1; signed integer; MSB is at lower physical address.  
RX power slope 2; unsigned fixed-point; MSB is at lower physical address.  
RX power offset 2; signed integer; MSB is at lower physical address.  
RX power slope 3; unsigned fixed-point; MSB is at lower physical address.  
RX power offset 3; signed integer; MSB is at lower physical address.  
RX power slope 4; unsigned fixed-point; MSB is at lower physical address.  
RX power offset 4; signed integer; MSB is at lower physical address.  
RX power slope 5; unsigned fixed-point; MSB is at lower physical address.  
RX power offset 5; signed integer; MSB is at lower physical address.  
RX power slope 6; unsigned fixed-point; MSB is at lower physical address.  
RX power offset 6; signed integer; MSB is at lower physical address.  
RX power slope 7; signed integer; MSB is at lower physical address.  
RX power offset 7; signed fixed-point; MSB is at lower physical address.  
Table 12. Internal Calibration Coefficient Memory Map – Part II  
24  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Figure 3. Internal Calibration RX Power Linear Approximation  
C/ Reading the ADC Result Registers  
The ADC result registers should be read as 16-bit  
registers under internal calibration while under external  
calibration they should be read as 8-bit or 16-bit  
registers at the MSB address. For example, TX power  
should be read under internal calibration as 16 bits at  
address A2h: 66h–67h and under external calibration as  
8 bits at address A2h: 66h. 9-bit temperature results and  
12-bit receive power results should always be read as  
16-bit quantities.  
Reading the result registers using two-byte burst reads on  
the SMBus guarantees that the two bytes are coherent  
with each other—that is, they form a matched result pair.  
If the two bytes were read separately, it is possible that  
the internal result could be updated between the reads,  
leading to an incorrect ADC result.  
RXPOT  
Figure 4. RXPOT Block Diagram  
A
programmable, non-volatile digitally controlled  
Laser Diode Bias Control  
potentiometer is provided for adjusting the gain of the  
receive power measurement signal chain in the analog  
domain. Five bits in the RXPOT register are used to set  
and adjust the position of potentiometer. RXPOT  
functions as a programmable divider or attenuator. It is  
adjustable in steps from 1:1 (no divider action) down to  
1/32 in steps of 1/32. If RXPOT is set to zero, then the  
divider is bypassed completely. There will be no scaling  
of the input signal, and the resistor network will be  
disconnected from the VRX pin. At all other settings of  
RXPOT, there will be a 32k(typical) load seen on  
VRX.  
The MIC3003 can be configured to generate a constant  
bias current using electrical feedback, or regulate  
average transmitted optical power using a feedback  
signal from a monitor photodiode, as shown in Figure 5.  
An operational amplifier is used to control laser bias  
current via the VBIAS output. The VBIAS pin can drive a  
maximum of ±10mA. An external bipolar transistor  
provides current gain. The polarity of the op amp’s  
output is programmable with BIASREF (bit-5 in  
OEMCFG1) in order to accommodate either NPN or  
PNP transistors that drive common anode and common  
cathode laser, respectively. Additionally, the polarity of  
the feedback signal is programmable for use with either  
common-emitter or emitter-follower transistor circuits.  
25  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Furthermore, the reference level for the APC circuit is  
selectable to accommodate electrical, i.e., current  
feedback, or optical feedback via a monitor photodiode.  
Finally, any one of seven different internal feedback  
resistors can be selected. This internal resistor can be  
used alone or in parallel with an external resistor. This  
wide range of adjustability (50:1) accommodates a wide  
range of photodiode current, i.e., wide range of  
transmitter output power. The APC operating point can  
be kept near the mid-scale value of the APC DAC,  
insuring maximum SNR, maximum effective resolution  
for digital diagnostics, and the widest possible DAC  
adjustment range for temperature compensation, etc.  
See Figure 6.  
Figure 6. Programmable Feedback Resistor  
The APCCAL bit in OEMCAL0 is used to turn the APC  
function on and off. It will be turned on in the MIC3003’s  
default state as shipped from the factory. When the APC  
is on, the value in the selected APCSETx register is  
added to the signed compensation value taken from the  
APC look-up table and loaded into the VBIAS DAC. When  
the APC is off, the VBIAS DAC may be written directly via  
the VBIAS register, bypassing the look-up table entirely.  
This provides direct control of the laser diode bias during  
setup and calibration. In either case, the VBIAS DAC  
setting is reported in the APCDAC register.  
Laser Modulation Control  
As shown in Figure 5, a temperature-compensated DAC  
is provided to set and control the laser modulation  
current via an external laser driver circuit. The MODREF  
bit in OEMCFG0 selects whether the VMOD DAC output  
swings up from ground or down from VDD. If the laser  
driver requires a voltage input to set the modulation  
current, VMOD output can drive it directly. If a current  
input is required, a fixed resistor can be used between  
the driver and the VMOD output. Several different  
configurations are possible as shown in Figure 8.  
When the APC is on, i.e., the APCCAL bit in OEMCAL0  
is set to 0, the value corresponding to the current  
temperature is taken from the MODLUT look-up table,  
added to the selected MODSETx register, and loaded  
into the VMOD DAC. When the APC is off, the  
compensation value in VMOD is loaded directly into the  
VMOD DAC, bypassing the look-up table entirely. This  
provides for direct modulation control for setup and  
calibration.  
Figure 5. APC and Modulation Control  
Block Diagram  
Figure 7. Transmitter Configurations  
Supported by MIC3003  
26  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Configuration Bits  
Shutdown State  
OE  
0
SPOL  
SHDN  
Hi-Z  
Don’t Care  
1
0
1
GND  
1
V
DD  
Table 13. Shutdown State of SHDN vs.  
Configuration Bits  
Configuration Bits  
VBIAS Shutdown State  
OE  
0
INV  
BIASREF  
VBIAS  
Hi-Z  
Don’t Care Don’t Care  
1
Don’t Care  
Don’t Care  
0
1
GND  
1
V
DD  
Table 14. Shutdown State of VBIAS vs.  
Configuration Bits  
Configuration Bits  
VMOD Shutdown State  
OE  
0
MODREF  
VMOD  
Hi-Z  
Don’t Care  
Figure 8. VMOD Configured as Voltage Output  
with Gain  
1
0
1
GND  
1
V
DD  
Power On and Laser Start-Up  
When power is applied, the MIC3003 initializes its  
internal registers and state machine. This process takes  
Table 15. Shutdown State of VMOD vs.  
Configuration Bits  
tPOR, about 50ms. Following tPOR, analog-to-digital  
conversions begin, serial communication is possible, and  
the POR bit and data ready bits may be polled. The first  
In order to facilitate hot-plugging, the laser diode is not  
turned on until tINIT2 after Power-On. Following tINIT2, and  
assuming TXDISABLE is not asserted, the DACs will be  
loaded with their initial values. Since tCONV is much less  
than tINIT2, the first set of analog data, including  
set of analog data will be available tCONV after tPOR  
.
MIC3003s are shipped from the factory with the output  
enable bit, OE, set to zero, off. The power-up default  
state, therefore, is APC off, VBIAS, VMOD, and SHDN  
outputs disabled. VBIAS, VMOD, and SHDN will be floating  
(high impedance) and the laser diode, if connected, will  
be off. Once the device is incorporated into a transceiver  
and properly configured, then the shutdown states of  
SHDN, VBIAS, and VMOD will be determined by the state of  
the APC configuration and OE bits. Tables 13, 14, and  
15 illustrate the shutdown states of the various laser  
control outputs versus the control bits.  
temperature, is available at tINIT2  
.
Temperature  
compensation will be applied to the DAC values if  
enabled. APC will begin if OE is asserted. (If the output  
enable bit, OE, is not set, the VMOD, VBIAS, and SHDN  
outputs will float indefinitely.) Figure 9 shows the power-  
up timing of the MIC3003. If TXDISABLE is asserted at  
power-up, the VMOD and VBIAS outputs will stay in their  
shutdown states following MIC3003 initialization. A/D  
conversions will begin, but the laser will remain off.  
27  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Figure 9. MIC3003 Power-On Timing (OE = 1)  
Fault Comparators  
In addition to detecting and reporting the events specified  
in SFF-8472, the MIC3003 also monitors five fault  
conditions: inadequate supply voltage, thermal diode  
faults, excessive bias current, excessive transmit power,  
and APC op-amp saturation. Comparators monitor these  
parameters in order to respond quickly to fault conditions  
that could indicate link failure or safety issues, see Figure  
10. When a fault is detected, the laser is shut down and  
TXFAULT is asserted. Each fault source may be  
independently disabled using the FLTMSK register.  
FLTMSK is non-volatile, allowing faults to be masked only  
during calibration and testing or permanently.  
Figure 10. Fault Comparator Logic  
28  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Thermal diode faults are detected within the temperature  
measurement subsystem when an out-of-range signal is  
detected. A window comparator circuit monitors the  
voltage on the compensation capacitor to detect APC op-  
amp saturation (Figure 11). Op-amp saturation indicates  
that some fault has occurred in the control loop such as  
loss of feedback. The saturation detector is blanked for a  
time, tFLTTMR, following laser turn-on since the  
compensation voltage will essentially be zero at turn-on.  
The FLTTMR interval is programmable from 0.5ms to  
127.5ms (typical) in increments of 0.5ms (tFLTTMR).  
Note that a saturation comparator cannot be relied upon  
to meet certain eye-safety standards that require 100ms  
response times. This is because the operation of a  
saturation detector is limited by the loop bandwidth, i.e.,  
the choice of CCOMP. Even if the comparator itself was  
very fast, it would be subject to the limited slew-rate of the  
APC op-amp. Only the other fault comparator channels  
will meet <100ms timing requirements.  
applications in which the MIC3003 is performing all APC  
and laser management tasks. The TXFIN function is for  
situations in which an external device such as a laser diode  
driver IC is performing laser management tasks, including  
fault detection.  
If the TXFIN bit in OEMCFG3 is zero (the default mode),  
SHDN will be activated anytime the laser is off. Thus, it will  
be active if 1) TXDISABLE is asserted, 2) STXDIS in the  
CNTRL register, is set, or 3) a fault is detected. SHDN is a  
push-pull logic output. Its polarity is programmable via the  
SPOL bit in OEMCFG1.  
If TXFIN bit is set to one, pin 12 serves as an input that  
accepts fault signals from external devices such as laser  
diode driver ICs. Multiple TXFAULT signals cannot simply  
be wire-OR’ed together as they are open-drain and active  
high. The input polarity is programmable via the TXFPOL  
bit in OEMCFG3. TXFIN is logically OR’ed with the  
MIC3003’s internal fault sources to produce TXFAULT and  
determine the value of the transmit fault bit in CNTRL. See  
Figure 10.  
The MIC3003 can also except and respond to fault inputs  
from external devices. See the “SHDN and TXFIN”  
section.  
A similar comparator circuit monitors received signal  
strength and asserts RXLOS when loss-of-signal is  
detected (Figure 12). RXLOS will be asserted if VRX  
drops below the level programmed in LOSFLT.  
Hysteresis is implemented such that RXLOS will be de-  
asserted when VRX subsequently rises above the level  
programmed in LOSFLTn. The loss-of-signal comparator  
may be disabled completely by setting the LOSDIS bit in  
OEMCFG3. Once the LOS comparator is disabled, an  
external device may drive RXLOS. The state of the  
RXLOS pin is reported in the CNTRL register regardless  
of whether it is driven by the internal comparator or by an  
Figure 11. Saturation Detector  
external device.  
A
programmable digital-to-analog  
converter provides the comparator reference voltages for  
monitoring received signal strength, transmit power, and  
bias current. Since laser bias current varies greatly with  
temperature, there is a temperature compensation look-  
up table for the bias current fault DAC value.  
When a fault condition is detected, the laser will be  
shutdown immediately and TXFAULT will be asserted.  
The VMOD, VBIAS, and SHDN (if enabled by setting  
OEMCFG5 bit 7 to 1) outputs will be driven to their  
shutdown state according to the state of the configuration  
bits. The shutdown states of VMOD, VBIAS, and SHDN  
versus the configuration bit settings are shown in Table  
12, Table 13, and Table 14.  
SHDN and TXFIN  
SHDN and TXFIN are optional functions of pin 12. SHDN  
is an output function and is designed to drive a redundant  
safety switch in the laser current path. TXFIN is an input  
function and serves as an input for fault signals from  
external devices that must be reported to the host via  
TXFAULT. The SHDN function is designed for  
Figure 12. RXLOS Comparator Logic  
29  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Each time an updated average value is acquired, a new  
offset value for the APC setpoint is read from the  
corresponding look-up table (see Table 17) and transferred  
to the APC circuitry. This is illustrated in Equation 11. In a  
same way, new offset values are taken from similar look-up  
tables (see Table 18 and Table 19), added to the nominal  
values and transferred into the modulation and fault  
comparator DACs. The bias current high alarm threshold is  
compensated using a fourth look-up table (see Table 20).  
This compensation happens internally and does not affect  
any host-accessible registers.  
Temperature Measurement  
The temperature-to-digital converter is built around a  
switched current source and an eight-bit/nine-bit analog-  
to-digital converter. The temperature is calculated by  
measuring the forward voltage of a diode junction at two  
different bias current levels. An internal multiplexer directs  
the current source’s output to a diode junction. This data  
is also used as the input to the temperature  
compensation look-up tables. Each time temperature is  
sampled and an updated value acquired, new corrective  
values for modulation current and the APC setpoint are  
read from the corresponding tables, added to the set  
values, and transferred to the DACs.  
APCSETm= APCSETx + APCLUT(TCOMPm  
)
Table _ min TCOMPm Table _ max  
APCSETm= APCSETx + APCLUT(max)  
TCOMP > Table _ max  
Diode Faults  
The MIC3003 is designed to respond in a failsafe manner  
to hardware faults in the temperature sensing circuitry. If  
there is a fault with the on-chip sensing diode, the  
temperature data reported by the A/D converter will be  
forced to its full-scale value (+127 °C). The diode fault  
flag, DFLT, will be set in OEMCFG0, TXFAULT will be  
asserted, and the high temperature alarm and warning  
flags will be set. The reported temperature will remain at  
+127 °C until the fault condition is cleared. Diode faults  
may be reset by toggling TXDISABLE, as with any other  
fault. Diode faults will not be detected at power up until  
the first A/D conversion cycle is completed.  
APCSETm= APCSETx + APCLUT(min)  
TCOMP < Table _ min  
(9)  
If the measured temperature is greater than the maximum  
table value, the highest value in each table is used. If the  
measured temperature is less than the minimum, the  
minimum value is used. Hysteresis is employed to further  
enhance noise immunity and prevent oscillation. Each table  
entry spans two degrees C. The table index will not change  
unless the new temperature average results in a table index  
beyond the midpoint of the next entry in either direction.  
There is therefore 2 to 3°C of hysteresis on temperature  
compensation changes. The table index will never oscillate  
due to quantization noise as the hysteresis is much larger  
than ±12 LSB.  
Temperature Compensation  
Since the performance characteristics of laser diodes and  
photodiodes change with operating temperature, the  
MIC3003 provides a facility for temperature compensation  
of the APC. loop set-point, laser modulation current, bias  
current fault comparator threshold, and bias current high  
alarm flag threshold. Temperature compensation is  
performed using a look-up table (LUT) that stores values  
corresponding to each measured temperature over a  
150°C span. Four identical tables reside at serial address  
A4h and A6h as summarized in Table 16. Each table  
entry is a signed twos complement integer that is used as  
an offset to the parameter being compensated. The  
default value of all table entries is zero, giving a flat  
response.  
Serial  
Byte  
Function  
Address  
Addresses  
Base address 00h–3Fh  
APC Look-up Table  
+4h  
40h–7Fh  
IMOD Look-up Table  
80h–BFh  
C0h–FFh  
IFLT Look-up Table  
Bias High Alarm Look-up Table  
APC Look-up Table (cont.)  
IMOD Look-up Table (cont.)  
IFLT Look-up Table (cont.)  
The A/D converter reports a new temperature sample  
each tCONV. This occurs at roughly 10 Hz when 8-bit  
temperature resolution is selected. To prevent  
temperature oscillation due to thermal or electrical noise,  
sixteen successive temperature samples are averaged  
together and used to index the LUT.s. Temperature  
compensation results are therefore updated at 16xtCONV  
intervals, or about 1.6 seconds. This can be expressed as  
shown in Equation 8:  
Base address 58h–63h  
+6h  
64h–6Fh  
70h–7Bh  
7Ch–87h  
Bias High Alarm Look-up Table  
(cont.)  
Table 16. Temperature Compensation Look-up Tables  
Tn + Tn+1 + Tn+2 + • • •Tn+15  
TCOMPm  
=
(8)  
16  
30  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Serial Address Register  
Table  
Offset  
Temperature  
Offset (°C)  
Serial Address Register  
Address  
Table  
Offset  
Temperature  
Offset (°C)  
Address  
00h  
0
-45  
80h  
-45  
Base address  
+4h  
Base address  
+4h  
01h  
1
-44  
-43  
81h  
82h  
-44  
-43  
BEh  
3Fh  
64h  
63  
64  
80  
81  
82  
83  
BFh  
58  
63  
64  
80  
81  
82  
83  
Base address  
+6h  
Base address  
+6h  
6E  
74  
102  
62  
74  
102  
103  
103  
6F  
75  
104  
63  
75  
104  
Table 17. APC Temperature Compensation  
Look-Up Table  
Table 19. IBIAS Comparator Temperature Compensation  
Look-Up Table  
Serial Address Register  
Address  
Table  
Offset  
Temperature  
Offset (°C)  
Serial Address Register  
Address  
Table  
Offset  
Temperature  
Offset (°C)  
40h  
0
-45  
C0h  
-45  
Base address  
+4h  
Base address  
+4h  
41h  
1
-44  
-43  
C1h  
-44  
-43  
C2h  
FEh  
7Fh  
63  
64  
80  
81  
82  
83  
FFh  
63  
64  
80  
81  
82  
83  
70  
7C  
Base address  
+6h  
Base address  
+6h  
7A  
74  
102  
87  
74  
102  
103  
103  
7B  
75  
104  
Table 20. BIAS Current High Alarm Temperature  
Compensation Table  
Table 18. IMOD Temperature Compensation  
Look-Up Table  
31  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
The internal state machine calculates a new table index  
each time a new average temperature value becomes  
available. This table index is derived from the average  
temperature value. The table index is then converted into  
a table address for each of the four look-up tables. These  
operations can be expressed as:  
Control and Status I/O  
The logic for the transceiver control and status I/O is shown  
schematically in Figure 13. Note that the internal drivers on  
RXLOS/TRSOUT, RRSOUT/GPO, QGPO, and TXFAULT  
are all open-drain. These signals may be driven either by  
the internal logic or external drivers connected to the  
corresponding MIC3003 pins. In any case, the signal level  
appearing at the pins of the MIC3003 will be reported in the  
control register status bits.  
TAVG(n)  
INDEX =  
(10)  
2
Note that the control bits for TX_DISABLE and RRSOUT,  
TRSOUT, and the status bits for TXFAULT and RXLOS do  
not meet the timing requirements as specified in the SFP  
MSA or the GBIC Specification, revision 5.5 (SFF-8053) for  
the hardware signals. The speed of the SMBus serial  
interface limits the rate at which these functions can be  
manipulated and/or reported. The response time for the  
control and status bits is given in the “Electrical  
Characteristics” subsection.  
where TAVG(n) is the current average temperature; and  
TABLE_ADDRESS=INDEX+BASE_ADDRESS  
where BASE_ADDRESS is the physical base address of  
each table, i.e., 00h, 20h, 40h, 80h, or 60h (tables reside in  
the Base address + 4h and Base address + 6h pages of  
memory).  
At any given time, the current table index can be read in  
the LUTINDX register.  
Alarms and Warning Flags  
There are 20 different conditions that will cause the  
MIC3003 to set one of the bits in the WARNx or ALARMx  
registers. These conditions are listed in Table 21. The  
less critical of these events generate warning flags by  
setting a bit in WARN0 or WARN1. The more critical  
events cause bits to be set in ALARM0 or ALARM1.  
An event occurs when any alarm or warning condition  
becomes true. Each event causes its corresponding  
status bit in ALARM0, ALARM1, WARN0, or WARN1 to  
be set. This action cannot be masked by the host. IF  
OEMCFG-4 bits [7-4] are set to 0 (default value), the  
status bit will remain set until the host reads that  
particular status register, a power on-off cycle occurs, or  
the host toggles TXDISABLE.  
If TXDISABLE is asserted at any time during normal  
operation, A/D conversions continue. The A/D results for  
all parameters will continue to be reported. All events will  
be reported in the normal way. If they have not already  
been individually cleared by read operations, when  
TXDISABLE is de-asserted, all status registers will be  
cleared.  
32  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Event  
Condition  
MIC3003 Response  
Set ALARM0[7]  
Set ALARM0[6]  
Set ALARM0[5]  
Set ALARM0[4]  
Set ALARM0[3]  
Set ALARM0[2]  
Set ALARM0[1]  
Set ALARM0[0]  
Set ALARM1[7]  
Set ALARM1[6]  
Set WARN0[7]  
Set WARN0[6]  
Set WARN0[5]  
Set WARN0[4]  
Set WARN0[3]  
Set WARN0[2]  
Set WARN0[1]  
Set WARN0[0]  
Set WARN1[7]  
Set WARN1[6]  
Temperature high alarm  
Temperature low alarm  
Voltage high alarm  
Voltage low alarm  
TEMP > TMAX  
TEMP < TMIN  
VIN > VMAX  
VIN < VMIN  
TX bias high alarm  
TX bias low alarm  
IBIAS > IBMAX  
IBIAS < IBMIN  
TXOP > TXMAX  
TXOP < TXMIN  
RXOP > RXMAX  
RXOP < RXMIN  
TEMP > THIGH  
TEMP < TLOW  
VIN > VHIGH  
TX power high alarm  
TX power low alarm  
RX power high alarm  
RX power low alarm  
Temperature high warning  
Temperature low warning  
Voltage high warning  
Voltage low warning  
TX bias high warning  
TX bias low warning  
TX power high warning  
TX power low warning  
RX power high warning  
RX power low warning  
VIN < VLOW  
IBIAS > IBHIGH  
IBIAS < IBLOW  
TXOP > TXHIGH  
TXOP < TXLOW  
RXOP > RXHIGH  
RXOP < RXLOW  
Table 21. MIC3003 Alarm and Warning Events  
Figure 13. Control and Status I/O Logi  
33  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
System Timing  
The timing specifications for MIC3003 control and status I/O are given in the “Electrical Characteristics” subsection.  
Figure 14. Transmitter On-Off Timing  
Figure 15. Initialization Timing with TXDISABLE Asserted  
Figure 16. Initialization Timing with TXDISABLE Not Asserted  
34  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Figure 17. Loss-of-Signal (LOS) Timing  
Figure 18. Transmit Fault Timing  
35  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Figure 19. Successfully Clearing a Fault Condition  
Figure 20. Unsuccessful Attempt to Clear a Fault  
Warm Resets  
Actual results will depend upon the operating conditions  
and write-cycle endurance of the part in question.  
The MIC3003 can be reset to its power-on default state  
during operation by setting the RST bit in OEMCFG0.  
When this bit is set, TXFAULT and RXLOS will be de-  
asserted, all registers will be restored to their normal  
power-on default values, and any A/D conversion in  
progress will be halted and the results discarded. The  
state of the MIC3003 following this operation is  
indistinguishable from a power-on reset.  
Two registers, POHh and POHl, contain a 15-bit power-on  
hour measurement and an error flag, POHFLT. Great care  
has been taken to make the MIC3003’s hour meter immune  
to data corruption and to insure that valid data is maintained  
across power cycles. The hour meter employs multiple data  
copies and error correction codes to maintain data validity.  
This data is stored in the POHDATA registers. If POHFLT is  
set, however, the power-on hour meter data has been  
corrupted and should be ignored.  
Power-On Hour Meter  
The Power-On Hour meter logs operating hours using an  
internal real-time clock and stores the result in NVRAM.  
The hour count is incremented at ten-hour intervals in the  
middle of each interval. The first increment therefore  
takes place five hours after power-on. Time is  
accumulated whenever the MIC3003 is powered. The  
hour meter’s time base is accurate to +/-10% over all  
MIC3003 operating conditions, and is accurate to +/-5%  
in the range 0 to 70 degrees C. The counter is capable of  
storing counts of more than thirty years, but is ultimately  
limited by the write-cycle endurance of the non-volatile  
memory. This implies a range of at least twenty years.  
It is recommended that a two-byte sequential read  
operation be performed on POHh and POHl to insure  
coherency between the two registers. These registers are  
accessible by the OEM using a valid OEM password. The  
only operation that should be performed on these registers  
is to clear the hour meters initial value, if necessary, at the  
time of product shipment. The hour meter result may be  
cleared by setting all eight POHDATA bytes to 00h.  
36  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Test and Calibration Features  
features are available via registers in the OEM area. As  
shown in Table 22, these features include:  
Numerous features are included in the MIC3003 to  
facilitate development, testing, and diagnostics. These  
Control  
Function  
Description  
Register(s)  
Analog loop-back  
Provides analog visibility of op-amp and DAC outputs via the ADC  
Disables the fault comparator  
OEMCFG0  
OEMCAL0  
OEMCAL0  
Fault comparator disable control  
Fault comparator spin-on-channel  
mode  
Selects a single fault comparator channel  
Fault comparator output read-back  
TRSOUT, /INT read-back  
Inhibit EEPROM write cycles  
APC calibration mode  
Allows host to read individual fault comparator outputs  
Allows host to read the state of these pins  
OEMRD  
OEMRD  
Speeds repetitive writes to registers backed up by NVRAM  
OEMCAL0  
OEMCAL0  
Allows direct writes to MODDAC and APCDAC (temperature  
compensation not used)  
Continuity checking  
Halt A/D  
Forcing of RXLOS, TXFAULT, /INT  
OEMCAL0  
OEMCAL1  
OEMCAL1  
OEMCAL1  
OEMCAL1  
OEMCAL1  
Stops A/D conversions; ADC in one-shot mode  
Indicates ADC status  
ADC idle flag  
A/D one-shot mode  
A/D spin-on-channel mode  
Channel selection  
Performs a single A/D conversion on the selected input channel  
Selects a single input channel  
Selects ADC or fault comparator channel for spin-on-channel  
modes  
LUT index read-back  
Permits visibility of the LUT index calculated by the state-machine  
Facilitates presence detection and version control  
LUTINDX  
Manufacturer and device ID registers  
MFG_ID,  
DEV_ID  
Table 22. Test and Diagnostic Features  
37  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Serial Port Operation  
Block Writes  
The MIC3003 uses standard write byte, read byte, and  
read word operations for communication with its host. It  
also supports block write and block read transactions.  
The write byte operation involves sending the devices  
address (with the R/W bit low to signal a write operation),  
followed by the address of the register to be operated  
upon and the data byte. The read byte operation is a  
composite write and read operation: the host first sends  
the devices address followed by the register address, as  
in a write operation. A new start bit must then be sent to  
the MIC3003, followed by a repeat of the device address  
with the R/W bit (LSB) set to the high (read) state. The  
data to be read from the part may then be clocked out. A  
read word is similar, but two successive data bytes are  
clocked out rather than one. These protocols are shown  
in Figures 21 to 24.  
To increase the speed of block writes, the MIC3003 allows  
up to eight consecutive bytes to be written before the  
internal memory update begins.  
The block write sequence begins just like a write byte  
operation with the host sending the device address, R/W bit  
low, register address, etc. After the first data byte is sent  
the host will receive an acknowledge. Up to seven more  
bytes can be sent in sequence. The MIC3003 will  
acknowledge each one and increment its internal address  
register in anticipation of the next byte. After the last byte is  
sent, the host issues a STOP. The MIC3003’s internal write  
process then begins.  
Block writes of up to eight bytes can begin and end at any  
byte address without restriction. Block writes that increment  
over register address FFh will simply “wrap around” and  
continue at address 00h within the same device address  
space.  
The MIC3003 will respond to up to four sequential device  
addresses depending upon whether it is in OEM or User  
mode. A match between one of the MIC3003’s addresses  
and the address specified in the serial bit stream must be  
made to initiate communication. The MIC3003 responds  
to device addresses A0h and A2h in User Mode; it also  
responds to A4h and A6h in OEM Mode (assuming the  
base address is A0h).  
To accelerate calibration and testing, NVRAM write cycles  
can be disabled completely by setting the WRINH bit in  
OEMCAL0. Writes to registers that do not have NVRAM  
backup, will not incur write-cycle delays when writes are  
inhibited. Write operations on registers that exist only in  
NVRAM will still incur write cycle delays.  
Figure 21. Write Byte Protocol  
Figure 22. Read Byte Protocol  
Figure 23. Read_Word Protocol  
38  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Figure 24. Eight-Byte Block Write Protocol  
Acknowledge Polling  
The corresponding four-byte field for password entry,  
OEMPW, is located at serial address A2h. This field is  
therefore always visible to the host system. OEMPW is  
compared to the four-byte OEMPWSET field at serial  
address A6h. If the two fields match, access is allowed to  
the OEM areas of the MIC3003 non-volatile memory at  
serial addresses A4h and A6h. If OEMPWSET is all zeroes,  
no password security will exist. The value in OEMPW will  
be ignored. This helps prevent a deliberately unsecured  
MIC3003 from being inadvertently locked. Once a valid  
password is entered, the MIC3003 OEM areas will be  
accessible. The OEM areas may be re-secured by writing  
an incorrect password value at OEMPW, e.g., all zeroes. In  
all cases, OEMPW must be written LSB first through MSB  
last. The OEM areas will be inaccessible following the final  
write operation to OEMPW’s LSB. The OEMPW field is  
reset to all zeros at power on. Any values written to these  
locations will be readable by the host regardless of the  
locked/unlocked status of the device. If OEMPWSET is set  
to zero (00000000h), the MIC3003 will remain unlocked  
regardless of the contents of the OEMPW field. This is the  
factory default security setting.  
The MIC3003’s non-volatile memory cannot be accessed  
during the internal memory update. To allow for maximum  
speed bulk writes, the MIC3003 supports acknowledge  
polling. The MIC3003 will not acknowledge serial bus  
transactions while internal writes are in progress. The  
host may therefore monitor for the end of the write  
process  
by  
periodically  
checking  
for  
an  
acknowledgement. The longest duration for the internal  
memory update to complete for a block write is  
approximately 26 ms.  
Write Protection and Data Security  
OEM Password  
A password is required to access the OEM areas of the  
MIC3003, specifically the non-volatile memory, look-up  
tables, and registers at serial addresses A4h and A6h. A  
four-byte field, OEMPWSET, at serial address A6h is  
used for setting the OEM password. The OEM password  
is set by writing OEMPWSET with the new value. The  
password comparison is performed following the write to  
the MSB of the OEMPW, address 7Bh (or 7Eh if  
OEMCFG5 bit 2 is set to 1) at serial address A2h.  
Therefore, this byte must be written last. A four-byte  
burst-write sequence to address 78h (or 7Bh if OEMCFG5  
bit 2 is set to 1) may be used as this will result in the  
MSbyte being written last. New passwords written to the  
OEMPWSET registers will not take effect until after a  
power-on reset occurs or a warm reset is performed using  
the RST bit in OEMCFG0. This allows the new password  
to be verified before it takes effect.  
Note that a valid OEM password allows access to the OEM  
and user areas of the chip, i.e., the entire memory map.  
OEM Mode and User Mode  
When the OEM password is unlocked (either by matching  
the set password or if the password is all zeros), the  
MIC3003 is in OEM Mode. If the part is locked, the part is in  
User Mode.  
39  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Detailed Register Descriptions  
Note: Serial bus addresses shown assume that the base device address is AOh.  
Alarm Threshold Registers  
Temperature High Alarm Threshold  
D[7]  
read/write  
D[6]  
read/write  
D[5]  
read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 °C)  
b h  
Serial address  
A2  
h
Byte addresses  
MS byte (TMAXh): 00 = 00  
h
LS byte (TMAXl): 01 = 01  
h
Each LS bit of TMAXh represents one degree Celsius. TMAXl is not used, since all limit comparisons for temperature use  
eight-bit values.  
The eight bits of the high alarm threshold value (TMAXh) are compared to the temperature result (TEMPh). ALARM0 bit 7 is  
set if Result > Threshold.  
Temperature Low Alarm Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 °C)  
b h  
Serial address  
A2  
h
Byte addresses  
MS byte (TMINh): 02 = 02  
h
LS byte (TMINl): 03 = 03  
h
Each LS bit of TMINh represents one degree Celsius. TMINl is not used, since all limit comparisons for temperature use eight-  
bit values..  
The eight MS bits of the low alarm threshold value (TMINh) are compared to the temperature result (TEMPh). ALARM0 bit 6 is  
set if Result < Threshold.  
Voltage High Alarm Threshold  
D[5]  
read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
D[7]  
read/write  
D[6]  
read/write  
Default value for both bytes  
Serial address  
0000 0000 = 00 (0 V)  
b h  
A2  
h
Byte addresses  
MS byte (VMAXh): 08 = 08  
h
LS byte (VMAXl): 09 = 09  
h
Each LS bit of VMAXh represents 25.6 mV and each LS bit of VMAXl represents 0.1 mV. The sixteen-bit threshold value  
(VMAXh:VMAXl) is compared to the sixteen bits value of the voltage result (VINh:VINl). ALARM0 bit 5 is set if  
Result > Threshold.  
40  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
D[0]  
Voltage Low Alarm Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 V)  
b h  
Serial address  
A2  
h
Byte addresses  
MS byte (VMINh): 10 = 0A  
h
LS byte (VMINl): 11 = 0B  
h
Each LS bit of VMINh represents 25.6 mV and each LS bit of VMINl represents 0.1 mV. The sixteen-bit threshold value  
(VMINh:VMINl) is compared to the sixteen-bit value of the voltage result (VINh:VINl). ALARM0 bit 4 is set if Result < Threshold.  
Bias Current High Alarm Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 mA)  
b h  
Serial address  
A2  
h
Byte addresses  
MS byte (IMAXh): 16 = 10  
h
LS byte (IMAXl): 17 = 11  
h
Each LS bit of IMAXh represents 512 μA and each LS bit of IMAXl represents 2 μA. The sixteen-bit threshold value  
(IMAXh:IMAXl) is compared to the sixteen-bit value of the bias current result (ILDh:ILDl). ALARM0 bit 3 is set if Result >  
Threshold.  
Bias Current Low Alarm Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 mA)  
b h  
Serial address  
A2  
h
Byte addresses  
MS byte (IMINh): 18 = 12  
h
LS byte (IMINl): 19 = 13  
h
Each LS bit of IMINh represents 512 μA and each LS bit of IMINl represents 2 μA. The sixteen-bit threshold value  
(IMINh:IMINl) is compared to the sixteen-bit value of the bias current result (ILDh:ILDl). ALARM0 bit 2 is set if  
Result < Threshold.  
TX Optical Power High Alarm Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 mW)  
b h  
Serial address  
A2  
h
Byte addresses  
MS byte (TXMAXh): 24 = 18  
h
LS byte (TXMAXl): 25 = 19  
h
Each LS bit of TXMAXh represents 25.6 μW, and each LS bit of TXMAXl represents 0.1 μW. The sixteen-bit threshold value  
(TXMAXh:TXMAXl) is compared to the sixteen-bit value of the TX power result (TXOPh:TXOPl). ALARM0 bit 1 is set if Result >  
Threshold.  
41  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
D[0]  
TX Optical Power Low Alarm Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 mW)  
b h  
Serial address  
A2  
h
Byte addresses  
MS byte (TXMINh): 26 = 1A  
h
LS byte (TXMINl): 27 = 1B  
h
Each LS bit of TXMINh represents 25.6 μW, and each LS bit of TXMINl represents 0.1 μW. The sixteen-bit threshold value  
(TXMINh:TXMINl) is compared to the sixteen-bit value of the TX power reading (TXOPh:TXOPl). ALARM0 bit 0 is set if  
Result < Threshold.  
RX Optical Power High Alarm Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 mW)  
b h  
Serial address  
A2  
h
Bytes addresses  
MS byte (RXMAXh): 32 = 20  
h
LS byte (RXMAXl): 33 = 21  
h
Each LS bit of RXMAXh represents 25.6 μW, and each LS bit of RXMAXl represents 0.1 μW. The sixteen-bit threshold value  
(RXMAXh:RXMAXl) is compared to the sixteen-bit value of the RX power result (RXOPh:RXOPl). ALARM1 bit 7 is set if  
Result > Threshold.  
RX Optical Power Low Alarm Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0mW)  
b h  
Serial Address  
A2  
h
Byte Address  
MS byte (RXMINh): 34 = 22  
h
LS byte (RXMINl): 35 = 23  
h
Each LSB of RXMINh represents 25.6 μW, and each LS bit of RXMINl represents 0.1 μW. The sixteen-bit threshold value  
(RXMINh:RXMINl) is compared to the sixteen-bit value of the RX power result (RXOPh:RXOPl). ALARM1 bit 6 is set if  
Result < Threshold.  
42  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Warning Threshold Registers  
Temperature High Warning Threshold  
D[7]  
read/write  
D[6]  
read/write  
D[5]  
read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 °C)  
b h  
Serial address  
A2  
h
Bytes addresses  
MS byte (THIGHh): 04 = 04  
h
LS byte (THIGHl): 05 = 05  
h
Each LS bit of THIGHh represents one degree Celsius. THIGHl is not used, since all limit comparisons for temperature use  
eight-bit values.  
The eight bits of the high warning threshold value (THIGHh) are compared to the temperature result (TEMPh). WARN0 bit 7 is  
set if Result > Threshold.  
Temperature Low Warning Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 °C)  
b h  
Serial address  
A2  
h
Bytes addresses  
MS byte (TLOWh): 06 = 06  
h
LS byte (TLOWl): 07 = 07  
h
Each LS bit of TLOWh represents one degree Celsius. TLOWl is not used, since all limit comparisons for temperature use  
eight-bit values.  
The eight bits of the high warning threshold value (TLOWh) are compared to the temperature result (TEMPh). WARN0 bit 6 is  
set if Result < Threshold.  
Voltage High Warning Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 V)  
b h  
Serial address  
A2  
h
Bytes addresses  
MS byte (VHIGHh): 12 = 0C  
h
LS byte (VHIGHl): 13 = 0D  
h
Each LS bit of VHIGHh represents 25.6 mV and each LS bit of VHIGHl represents 0.1 mV. The sixteen-bit threshold value  
(VHIGHh:VHIGHl) is compared to the sixteen bits value of the voltage result (VINh:VINl). WARN0 bit 5 is set if  
Result > Threshold.  
43  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
D[0]  
Voltage Low Warning Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 V)  
b h  
Serial address  
A2  
h
Byte addresses  
MS byte (VLOWh): 14 = 0E  
h
LS byte (VLOWl): 15 = 0F  
h
Each LS bit of VLOWh represents 25.6 mV and each LS bit of VLOWl represents 0.1 mV. The sixteen-bit threshold value  
(VLOWh:VLOWl) is compared to the sixteen-bit value of the voltage result (VINh:VINl). WARN0 bit 4 is set if  
Result < Threshold.  
Bias Current High Warning Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 mA)  
b h  
Serial address  
A2  
h
Bytes addresses  
MS byte (IHIGHh): 20 = 14  
h
LS byte (IHIGHl): 21 = 15  
h
Each LS bit of IHIGHh represents 512 μA and each LS bit of IHIGHl represents 2 μA. The sixteen-bit threshold value  
(IHIGHh:IHIGHl) is compared to the sixteen-bit value of the bias current result (ILDh:ILDl). WARN0 bit 3 is set if Result >  
Threshold.  
Bias Current Low Warning Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 mA)  
b h  
Serial address  
A2  
h
Bytes addresses  
MS byte (ILOWh): 22 = 16  
h
LS byte (ILOWl): 23 = 17  
h
Each LS bit of ILOWh represents 512 μA and each LS bit of ILOWl represents 2 μA. The sixteen-bit threshold value  
(ILOWh:ILOWl) is compared to the sixteen-bit value of the bias current result (ILDh:ILDl). WARN0 bit 2 is set if  
Result < Threshold.  
TX Optical Power High Warning  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 mW)  
b h  
Serial address  
A2  
h
Bytes addresses  
MS byte (TXHIGHh): 28 = 1C  
h
LS byte (TXHIGHl): 29 = 1D  
h
Each LS bit of TXHIGHh represents 25.6 μW, and each LS bit of TXHIGHl represents 0.1 μW. The sixteen-bit threshold value  
(TXHIGHh:TXHIGHl) is compared to the sixteen-bit value of the TX power result (TXOPh:TXOPl).WARN0 bit 1 is set if Result >  
Threshold.  
44  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
D[0]  
TX Optical Power Low Warning  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 mW)  
b h  
Serial address  
A2  
h
Byte addresses  
MS byte (TXLOWh): 30 = 1E  
h
LS byte (TXLOWl): 31 = 1F  
h
Each LS bit of TXLOWh represents 25.6 μW, and each LS bit of TXLOWl represents 0.1 μW. The sixteen-bit threshold value  
(TXLOWh:TXLOWl) is compared to the sixteen-bit value of the TX power reading (TXOPh:TXOPl). ALARM0 bit 0 is set if  
Result < Threshold.  
RX Optical Power High Warning Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 mW)  
b h  
Serial address  
A2  
h
Byte addresses  
MS byte (RXHIGHh): 36 = 24  
h
LS byte (RXHIGHl): 37 = 25  
h
Each LS bit of RXHIGHh represents 25.6 μW, and each LS bit of RXHIGHl represents 0.1 μW. The sixteen-bit threshold value  
(RXHIGHh:RXHIGHl) is compared to the sixteen-bit value of the RX power result (RXOPh:RXOPl). WARN1 bit 7 is set if  
Result > Threshold.  
RX Optical Power Low Warning Threshold  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for both bytes  
0000 0000 = 00 (0 mW)  
b h  
Serial address  
A2  
h
Byte addresses  
MS byte (RXLOWh): 38 = 26  
h
LS byte (RXLOWl): 39 = 27  
h
Each LSB of RXLOWh represents 25.6 μW, and each LS bit of RXLOWl represents 0.1 μW. The sixteen-bit threshold value  
(RXLOWh:RXLOWl) is compared to the sixteen-bit value of the RX power result (RXOPh:RXOPl). WARN1 bit 6 is set if  
Result < Threshold.  
Checksum (CHKSUM)  
Checksum of bytes 0 - 94 at serial address A2h  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value  
Serial address  
Byte address  
0000 0000 = 00  
b
h
A2  
h
95 = 5F  
h
This register is provided for compliance with SFF-8472. It is implemented as general-purpose non-volatile memory. Read/write  
access is possible whenever a valid OEM password has been entered. CHKSUM is read-only in User Mode.  
45  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
ADC Result Registers  
Temperature Result  
D[7]  
read-only  
D[6]  
read-only  
D[5]  
read-only  
D[4]  
read-only  
D[3]  
read-only  
D[2]  
read-only  
D[1]  
read-only  
D[0]  
read-only  
Serial address  
A2  
h
Byte addresses  
MS byte (TEMPh): 96 = 60  
h
LS byte (TEMPl): 97 = 61  
h
Each LS bit of TEMPh represents one degree Celsius. The TEMPh register is to be used in conjunction with the most  
significant bit of TEMPl to yield an eight-bit or nine-bit signed (two’s complement) temperature value.  
If OEMCFG6 bit 1 is set to zero, temperature is read to 1 °C resolution in TEMPh only, and TEMPl is zero.  
If OEMCFG6 bit 1 is set to one, then temperature is read to 0.5 °C resolution as a nine-bit value consisting of TEMPh and the  
MS bit of TEMPl. The lower seven bits of TEMPl are zero.  
TEMPh will contain measured temperature data after the completion of one conversion.  
Voltage  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
Default Value  
(2)  
0000 0000 = 00 (0V)  
b
h
Serial address  
Byte addresses  
A2  
h
MS byte (VINh): 98 = 62  
h
LS byte (VINl): 99 = 63  
h
Each LSB of VINh represents 25.6 mV, and each LS bit of VINl represents 0.1 mV. VINh is used in conjunction with VINl to  
yield an unsigned sixteen-bit value.  
In external calibration mode, the host should process the results using the appropriate slope and offset coefficients. VINh  
contains the eight-bit ADC result and VINl is zero.  
In internal calibration mode, the MIC3003’s ALU applies the coefficients stored in (VSLPh:VSLPl) and (VOFFh:VOFFl).  
The VIN registers will contain valid data after one ADC conversion cycle.  
Notes:  
1. TEMPh will contain measured temperature data after the completion of one conversion.  
2. VINh will contain measured data after one A/D conversion cycle.  
Laser Diode Bias Current  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
(3)  
Default Value  
0000 0000 = 00 (0mA)  
b
h
Serial address  
Byte addresses  
A2  
h
MS byte (ILDh):100 = 64  
h
LS byte (ILDl):101 = 65  
h
Each LSB of ILDh represents 512 μA, and each LS bit of ILDl represents 2 μA. ILDh is used in conjunction with ILDl to yield an  
unsigned sixteen-bit value.  
In external calibration mode, the host should process the results using the appropriate slope and offset coefficients. ILDh  
contains the eight-bit ADC result and ILDl is zero.  
In internal calibration mode, the MIC3003’s ALU applies the coefficients stored in (ISLPh:ISLPl) and (IOFFh:IOFFl).  
The ILD registers will contain valid data after one ADC conversion cycle.  
46  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
D[0]  
Transmitted Optical Power  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
(4)  
Default Value  
0000 0000 = 00 (0mW)  
b
h
Serial address  
Byte address  
A2  
h
MS byte (TXOPh): 102 = 66  
h
LS byte (TXOPl): 103 = 67  
h
Each LSB of TXOPh represents 25.6 μW, and each LS bit of TXOPl represents 0.1 μW. TXOPh is used in conjunction with  
TXOPl to yield an unsigned sixteen-bit value.  
In external calibration mode, the host should process the results using the appropriate slope and offset coefficients. TXOPh  
contains the eight-bit ADC result and TXOPl is zero.  
In internal calibration mode, the MIC3003’s ALU applies the coefficients stored in (TXSLPh:TXSLPl) and (TXOFFh:TXOFFl).  
The TXOP registers will contain valid data after one ADC conversion cycle.  
Notes:  
3. ILDh will contain measured data after one A/D conversion cycle.  
4. TXOPh will contain measured data after one A/D conversion cycle.  
Received Optical Power  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
Default Value  
(6)  
0000 0000 = 00 (0mW)  
b
h
Serial address  
Byte address  
A2  
h
MS byte (RXOPh): 104 = 68  
h
LS byte (RXOPl): 105 = 69  
h
Each LSB of RXOPh represents 25.6 μW, and each LS bit of RXOPl represents 0.1 μW.RXOPh is used in conjunction with  
RXOPl to yield an unsigned sixteen-bit value.  
In external calibration mode, the host should process the results using the appropriate slope and offset coefficients. RXOPh  
contains the twelve-bit ADC result and the lower four bits of RXOPl are zero.  
In internal calibration mode, the MIC3003’s ALU applies the coefficients stored in (RXSLP[0-7]h:RXSLP[0-7]l) and  
(RXOFF[0-7]h:RXOFFl[0-7]).  
The RXOP registers will contain valid data after one ADC conversion cycle.  
Control and Status (CNTRL)  
D[7]  
TXDIS  
read-only  
D[6]  
STXDIS  
read/write  
D[5]  
RS1S  
read-only  
D[4]  
RS0S  
read-only  
D[3]  
SRS0  
read/write  
D[2]  
TXFLT  
read-only  
D[1]  
LOS  
read-only  
D[0]  
POR  
read-only  
Default value  
Serial address  
Byte address  
0000 0000 = 00  
b
h
A2  
h
110 = 6E  
h
47  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Bit(s)  
Function  
Operation  
D[7]  
D[6]  
TXDIS  
Reflects the state of the TXDISABLE pin  
1 = disabled,  
0 = enabled  
STXDIS  
Soft transmit disable STXDIS is Ored with TXDIS 1 = disabled  
to control the laser which will be turned off if one  
of these two signals is set to 1  
0 = enabled  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
RS1S  
RS0S  
SRS0  
TXFLT  
LOS  
Reflects the state of RS1 (pin 10)  
1 = RS1 is high (>4.25 Gbps);  
0 = RS1 is low (4.25 Gbps)  
1 = RS0 is high (>4.25 Gbps)  
0 = RS0 is low (4.25 Gbps)  
1 = Set RS0 high  
Reflects the state of RS0 (pin 4)  
Soft rate select (sets the state of the RS0 pin)  
Reflects the state of the TXFAULT pin  
0 = Set RS0 low  
1 = TXFAULT is high (fault)  
0 = TXFAULT low (no fault)  
1 = RXLOS is high (loss of signal)  
Loss Of Signal. Reflects the state of the RXLOS  
pin  
0 = RXLOS is low (no loss of signal)  
POR  
MIC3003 power-on status  
0 = POR complete, all analog data results  
have been converted at least once  
1 = POR and first ADC sample cycle in  
progress  
Application Select Control Mode (ASCM)  
D[7-6]  
D[5-0]  
Control bits  
read/write  
Table select  
read/write  
Default value  
0000 0000 = 00  
b h  
Serial address  
Byte address  
A2  
h
111 = 6F  
h
Bit(s)  
Function  
Operation  
D[7-6]  
D[5-0]  
Application Select Control Bits  
Table Select  
48  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Bit 7  
0
Bit 6  
0
Rate Select/Extended Rate Select Emulation Mode:  
RS0 (pin 4) controls RRSOUT( pin 23)  
RS1 (pin 10) does not control TRSOUT (pin24)  
Byte 110 bit 3 controls RRSOUT (pin 23)  
Byte 118 bit 3 controls TRSOUT (pin 24)  
0
1
1
Hardware Application Select Mode:  
RS0 (pin 4) controls RRSOUT( pin 23)  
RS1 (pin 10) controls TRSOUT (pin 24)  
Byte 110 bit 3 does not control RRSOUT (pin 23)  
Byte 118 bit 3 does not control TRSOUT (pin 24)  
X
Software Mode:  
RS0 (pin4) does not control RRSOUT( pin 23)  
RS1 (pin10) does not control TRSOUT (pin 24)  
Byte 110 bit 3 does not control RRSOUT (pin 23)  
Byte 118 bit 3 does not control TRSOUT (pin 24)  
49  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Alarm Flags  
Alarm Status Register 0 (ALARM0)  
D[7]  
A7  
D[6]  
A6  
D[5]  
A5  
D[4]  
A4  
D[3]  
A3  
D[2]  
A2  
D[1]  
A1  
D[0]  
A0  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
Default value  
Serial address  
Byte address  
0000 0000 = 00 (no events pending)  
b h  
A2  
h
112 = 70  
h
The power-up default value is 00 . Following the first complete A/D conversion cycle, however, any of the bits may be set  
h
depending upon the results.  
Bit(s)  
Function  
Operation  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
High temperature alarm, TEMP > TMAX  
Low temperature alarm, TEMP < TMIN  
High voltage alarm, VIN > VMAX  
Low voltage alarm, VIN < VMIN  
High laser diode bias alarm, IBIAS > IMAX  
Low laser diode bias alarm, IBIAS < IMIN  
1 = condition exists, 0 = normal/OK  
1 = condition exists, 0 = normal/OK  
1 = condition exists, 0 = normal/OK  
1 = condition exists, 0 = normal/OK  
1 = condition exists, 0 = normal/OK  
1 = condition exists, 0 = normal/OK  
1 = condition exists, 0 = normal/OK  
High transmit optical power alarm,  
TXOP > TXMAX  
D[0]  
A0  
Low transmit optical power alarm,  
TXOP < TXMIN  
1 = condition exists, 0 = normal/OK  
Alarm Status Register 1 (ALARM1)  
D[7]  
A15  
D[6]  
A14  
D[5]  
reserved  
D[4]  
reserved  
D[3]  
reserved  
D[2]  
reserved  
D[1]  
reserved  
D[0]  
reserved  
read-only  
read-only  
Default value  
Serial address  
Byte address  
0000 0000 = 00 (no events pending)  
b h  
A2  
h
113 = 71  
h
The power-up default value is 00 . Following the first complete A/D conversion cycle, however, either of the bits may be set  
h
depending upon the results.  
Bit(s)  
Function  
Operation  
D[7]  
D[6]  
A15  
A14  
High received power (overload) alarm, RXOP > RXMAX 1 = condition exists, 0 = normal/OK  
Low received power (LOS) alarm, RXOP < RXMIN  
Reserved  
1 = condition exists, 0 = normal/OK  
Reserved, returns zero on reads  
D[5:0]  
50  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Warning Flags  
Warning Status Register 0 (WARN0)  
D[7]  
W7  
D[6]  
W6  
D[5]  
W5  
D[4]  
W4  
D[3]  
W3  
D[2]  
W2  
D[1]  
W1  
D[0]  
W0  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
0000 0000 = 00 (no events pending)  
Default value  
Serial address  
Byte address  
b
h
A2  
h
116 = 74  
h
The power-up default value is 00 . Following the first complete A/D conversion cycle, however, any of the bits may be set  
h
depending upon the results.  
Bit(s)  
Function  
Operation  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
W7  
W6  
W5  
W4  
W3  
W2  
W1  
High temperature warning, TEMP > THIGH  
Low temperature warning, TEMP < TLOW  
High voltage warning, VIN > VHIGH  
Low voltage warning, VIN < VLOW  
High laser diode bias warning, IBIAS > IHIGH  
Low laser diode bias warning, IBIAS < ILOW  
1 = condition exists, 0 = normal/OK  
1 = condition exists, 0 = normal/OK  
1 = condition exists, 0 = normal/OK  
1 = condition exists, 0 = normal/OK  
1 = condition exists, 0 = normal/OK  
1 = condition exists, 0 = normal/OK  
1 = condition exists, 0 = normal/OK  
High transmit optical power warning,  
TXOP > TXHIGH  
D[0]  
W0  
Low transmit optical power warning,  
TXOP < TXLOW  
1 = condition exists, 0 = normal/OK  
Warning Status Register 1 (WARN1)  
D[7]  
W15  
D[6]  
W14  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00 (no events pending)  
b h  
A2  
h
117 = 75  
h
The power-up default value is 00 . Following the first complete A/D conversion cycle, however, either of the bits may be set  
h
depending upon the results.  
Bit(s)  
Function  
Operation  
D[7]  
D[6]  
W15  
W14  
Received power high warning, RXOP > RXHIGH 1 = condition exists, 0 = normal/OK  
Received power low warning, RXOP < RXMIN  
Reserved  
1 = condition exists, 0 = normal/OK  
Reserved, returns zero on reads  
D[5:0]  
51  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Extended Control and Status (ECNTRL)  
D[7]  
reserved  
D[6]  
reserved  
D[5]  
reserved  
D[4]  
reserved  
D[3]  
SRS1  
D[2]  
reserved  
D[1]  
PLOS  
D[0]  
PLS  
read/write  
read/write  
read/write  
Default Value  
Serial Address  
Byte Address  
0000 0000 = 00  
b
h
A2  
h
118 = 76  
h
Bit(s)  
Function  
Operation  
D[7-4]  
D[3]  
Reserved  
Reserved—always read as zeros  
Assert the TRSOUT pin in Rate  
SRS1  
Soft rate select (RS1)  
Select/Extended Rate Select Emulation  
Mode  
D[2]  
D[1]  
D[0]  
Reserved  
Reserved—always reads as zero  
PLOS  
PLS  
Power Level Operation State  
Power Level Select  
These two bits are read/write but change  
no functionality of the MIC3003  
OEM Password Entry (OEMPW)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for all four bytes  
0000 0000 = 00 (reset to zero at power-on)  
b h  
Serial address  
A2  
h
Byte addresses  
If OEMCFG5-2 = 0: 120 – 123 = 78 – 7B  
h h  
If OEMCFG5-2 = 1: 123 – 126 = 7B – 7E  
h
h
This four-byte field is for entry of the password required to access the OEM area of the MIC3003’s memory and registers. A  
valid OEM password will also permit access to the user areas of memory. This field is compared to the four-byte OEMPWSET  
field at serial address A6h, bytes 12 - 15 (0C – 0F ). If the two fields match, access is allowed to the OEM areas of the  
h
h
MIC3003 non-volatile memory at serial addresses A4 and A6 . The OEM password is set by writing the new value into  
h
h
OEMPWSET. The password comparison is performed following the write to the highest address byte of OEMPW, address 7B  
if OEMCFG5 bit 2 is low, or 7E if OEMCFG5 bit 2 is high. This byte must be written last.  
h
h
A four-byte burst-write sequence to OEMPW may be used as this will result in the highest address byte being written last.  
OEMPW is reset to zero at power on. Any values written to OEMPW will be readable by the host regardless of the  
locked/unlocked status of the device. If OEMPWSET is set to zero (00000000 ), the MIC3003 will remain unlocked regardless  
h
of the contents of the OEMPW field. This is the factory default security setting.  
Byte  
Weight  
3
2
1
0
OEM Password Entry, Most Significant Byte (Address = 7Bh resp. 7Eh)  
OEM Password Entry, 2nd Most Significant Byte (Address = 7Ah resp. 7Dh)  
OEM Password Entry, 2nd Least Significant Byte (Address = 79h resp. 7Ch)  
OEM Password Entry, Least Significant Byte (Address = 78h resp. 7Bh)  
52  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
D[0]  
Power-On Hours (POHh and POHl)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value of both bytes when the  
MIC3003 is shipped from the factory  
0000 0000 = 00  
b
h
Serial address  
A6  
h
Bytes addresses  
MS byte (POHh): 251 = FB  
h
LS byte (POHl): 252 = FC  
h
The lower seven bits of POHh contain the most significant bits of the 15-bit power-on hours measurement. The value in POHh  
should be combined with the eight-bit power-on hours low byte, POHl, to yield the complete result.  
The most significant bit of POHh, POHFLT, is an error flag. If POHFLT is set, the power-on hour meter data has been  
corrupted and should be ignored.  
It is recommended that a two-byte sequential (block) SMBus read operation be performed on POHh and POHl to insure  
coherency between the two registers.  
This register is non-volatile and will be maintained through power and reset cycles, including unanticipated power failures.  
POHh Bit(s)  
Function  
Operation  
D[7]  
Power-on hours fault flag, POHFLT  
1 = fault: the power-on hours value is corrupted and cannot  
be relied upon  
0 = no fault: the power-on hours value is correct  
D[6:0]  
Power-on hours, most significant seven bits  
Data Ready Flags (DATARDY)  
D[4] D[3]  
TXRDY RXDY  
read/write  
D[7]  
TRDY  
read/write  
D[6]  
VRDY  
read/write  
D[5]  
IRDY  
read/write  
D[2]  
reserved  
D[1]  
reserved  
D[0]  
reserved  
read/write  
Default value  
Serial address  
Byte address  
0000 0000 = 00  
b
h
A6  
h
253 = FD  
h
When the A/D conversion for a given parameter is completed and the results available to the host, the appropriate data ready  
flag will be set. The flag will be cleared when the host reads the corresponding result register.  
Bit(s)  
Function  
Operation  
D[7]  
D[6]  
TRDY  
VRDY  
IRDY  
Temperature data ready flag  
Voltage data ready flag  
Bias current data ready flag  
Transmit power data ready flag  
Receive power data ready flag  
Reserved  
0 = Result register contains old data; 1 = new data ready  
0 = Result register contains old data; 1 = new data ready  
0 = Result register contains old data; 1 = new data ready  
0 = Result register contains old data; 1 = new data ready  
0 = Result register contains old data; 1 = new data ready  
Reserved  
D[5]  
D[4]  
TXRDY  
RXRDY  
D[3]  
D[2:0]  
53  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
User Control Register (USRCTL)  
D[7]  
Reserved  
read/write  
D[6]  
PORM  
read/write  
D[5]  
PORS  
read/write  
D[4]  
IE  
read/write  
D[3]  
APCSEL  
read/write  
D[2]  
APCSEL  
read/write  
D[1]  
APCSEL  
read/write  
D[0]  
MODSEL  
read/write  
Default value  
Serial address  
Byte address  
0010 0000 = 20  
b
h
A2  
h
254 = FE  
h
This register provides for control of the nominal APC setpoint and management of interrupts by the end-user. APCSEL[1:0]  
select which of the APC setpoint registers, APCSET0, APCSET1, or APCSET2 are used as the nominal automatic power  
control setpoint. Similarly, MODSEL[1:0] select which of MODSET0, MODSET1, or MODSET2 are used to select the  
modulation level of the laser.  
IE must be set for any host interrupts to occur via the /INT pin. If IE is set while /INT is asserted, /INT will be de-asserted  
immediately.  
PORS is always set high by any power-on reset event. If PORM is high, the power-on event will also generate a host interrupt.  
PORS will be cleared to zero and the interrupt output de-asserted when USRCTL is read by the host.  
If PORM is set following the setting of PORS, PORS will remain set, and /INT will be asserted immediately. /INT will not be de-  
asserted until USRCTL is read by the host.  
PORM, IE, APCSEL, and MODSEL are non-volatile and will be maintained through power and reset cycles.  
Bit(s)  
Function  
Operation  
D[7]  
D[6]  
Reserved  
Always write as zero; reads undefined.  
1 = POR interrupts mask enabled  
0 = POR interrupts mask disabled  
1 = POR interrupt occurred  
0 = No POR interrupt  
PORM  
PORS  
IE  
Power-on interrupt mask  
D[5]  
Power-on interrupt flag  
D[4]  
Global interrupt enable  
1 = Host interrupts are enabled  
0 = Host interrupts are disabled  
D[3:2]  
APCSEL  
Selects APC setpoint register  
00 = APCSET0  
01 = APCSET1  
10 = APCSET2  
11 = Reserved  
00 = MODSET0  
01 = MODSET1  
10 = MODSET2  
11 = Reserved  
D[1:0]  
MODSEL Selects Modulation setpoint register  
RESETOUT  
D[4]  
D[7]  
D[6]  
D[5]  
D[3]  
D[2]  
D[1]  
D[0]  
reserved  
read-only  
reserved  
read-only  
reserved  
read-only  
reserved  
read-only  
reserved  
read-only  
RESETOUT  
read/write  
RESETOUT RESETOUT  
read/write  
read/write  
Default Value  
Serial address  
Byte address  
0000 0000 = 00  
b
h
A2  
h
255 = FF  
h
54  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Bit(s)  
Function  
Operation  
D[7-3]  
D[2:0]  
Reserved  
Read-only; these bits always return 00000.  
RESETOUT Controls the reset output at pin 2  
(QGPO) when Reset mode is  
By default, these three bits are 000, and the QGPO output  
is undriven.  
selected (OEMCFG3-7 set to 1)  
If RESET mode is selected in OEMCFG3:  
When the three bits are written to 111, QGPO’s open-drain  
output will be driven low for 125 μs (typical), after which  
QGPO reenters the undriven state.  
The RESETOUT field is cleared from 111 to 000 22.5 ms  
(typical) after the de-assertion edge of QGPO. Other values  
of this delay may be selected in the TRSTCLR[2:0] field in  
OEMCFG2.  
If Reset mode in OEMCFG3 is not selected, these three  
bits have no function.  
OEM Configuration Register 0 (OEMCFG0)  
D[5] D[4] D[3]  
OE MODREF  
reserved  
D[7]  
RST  
write only  
D[6]  
QGPOS  
read/write  
D[2]  
VAUX[2]  
read/write  
D[1]  
VAUX[1]  
read/write  
D[0]  
VAUX[0]  
read/write  
DFLT  
read-only  
reserved  
Default value  
Serial address  
Byte address  
0000 0000 = 00  
b
h
A6  
h
00 = 00  
h
A write to OEMCFG0 will result in any A/D conversion in progress being aborted and the result discarded. The A/D will begin a  
new conversion sequence once the write operation is complete.  
All bits in OEMCFG0 are non-volatile except DFLT and RST. A valid OEM password is required for access to this register.  
Bit(s)  
Function  
Operation  
D[7]  
D[6]  
RST  
0 = no action; 1 = reset  
Issuing a software reset by setting RST high is equivalent to  
a full power cycle of the MIC3003.  
QGPOS  
Determines the state of QGPO in  
GPO mode  
If OEMCFG3 bit 7 (QGPOM) is low, this bit determines  
whether the QGPO output is high (undriven) or low (driven-  
open-drain).  
If QGPOM is high (Reset mode), this bit has no function  
1 = diode fault; 0 = OK.  
D[5]  
D[4]  
DFLT  
OE  
Diode fault flag.  
Output enable for SHDN, V  
,
1 = enabled; 0 = hi-Z  
MOD  
and V  
BIAS  
.
D[3]  
MODREF Selects whether V  
is  
referenced to ground or V  
1 = V ; 0 = GND  
DD  
MOD  
.
DD  
D[2:0]  
VAUX[2:0] Selects the voltage reported in  
VINh:VINl.  
000 = V  
001 = V  
010 = V  
011 = V  
IN  
DDA  
BIAS  
MOD  
100 = APCDAC  
101 = MODDAC  
110 = FLTDAC  
55  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
OEM Configuration Register 1 (OEMCFG1)  
D[7]  
INV  
read/write  
D[6]  
GAIN  
read/write  
D[5]  
BIASREF  
read/write  
D[4]  
RFB[2]  
read/write  
D[3]  
RFB[1]  
read/write  
D[2]  
RFB[0]  
read/write  
D[1]  
SRCE  
read/write  
D[0]  
SPOL  
read/write  
Default value  
Serial address  
Byte address  
0000 0010 = 02  
b
h
A6  
h
1 = 01  
h
A write to OEMCFG1 will result in any A/D conversion in progress being aborted and the result discarded. The A/D will begin a  
new conversion sequence once the write operation is complete.  
All bits in OEMCFG1 are non-volatile and will be maintained through power and reset cycles. A valid OEM password is  
required for access to this register.  
Bit(s)  
INV  
Function  
Operation  
D[7]  
Inverts the APC op-amp inputs.  
When low, the BIAS DAC output is  
connected to the “+”input and FB is  
connected to the “–” input of the op  
amp. Set low to use the APC  
feedback loop.  
0 = emitter follower (no inversion);  
1 = common emitter (inverted); read/write; non-volatile.  
D[6]  
GAIN  
Sets the feedback voltage range by  
changing the APCDAC output  
swing; 0-VREF for optical feedback,  
1 = VREF/4 full scale;  
0 = VREF full scale  
0-VREF/4 for electrical feedback.  
D[5]  
BIASREF  
RFB[2:0]  
Selects whether FB and VMPD are  
referenced to ground or VDD and  
1 = VDD; 0 = GNDA  
If this bit is set to 0, bit 1 should be set to 1  
If this bit is set to 1, bit 1 should be set to 0  
selects feedback resistor termination  
voltage (VDDA or GNDA).  
D[4:2]  
Selects internal feedback resistance. 000 = ∞  
Resistors will be terminated to VDDA  
or GNDA according to BIASREF.  
001 = 800 Ω  
010 = 1.6kΩ  
011 = 3.2kΩ  
100 = 6.4kΩ  
101 = 12.8kΩ  
110 = 25.6kΩ  
111 = 51.2kΩ  
D[1]  
D[0]  
SRCE  
SPOL  
V
BIAS source or sink drive.  
1 = source (NPN): bit 5 should be set to 0.  
0 = sink (PNP): bit 5 should be set to 1.  
1 = SHDN is active-high  
0 = SHDN is active-low  
Polarity of the shutdown output,  
SHDN, when active.  
56  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
D[0]  
OEM Configuration Register 2 (OEMCFG2)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
SMBADR[3]  
read/write  
SMBADR[2]  
read/write  
SMBADR[1]  
read/write  
SMBADR[0]  
read/write  
TRSTCLR[2] TRSTCLR[1] TRSTCLR[0]  
read/write read/write read/write  
read/write  
Default value  
1010 0010 = xx (device address = 1010 xxxx )  
b h b  
This value is the basis for using A0 , A2 , A4 , and A6 as the names of  
h
h
h
h
the different device address spaces of the MIC3003.  
Serial address  
Byte address  
A6  
h
2 = 02  
h
Caution: Changes to SMBADR take effect immediately. Any accesses following a write to SMBADR must be to the newly  
programmed serial bus address.  
A valid OEM password is required for access to this register. This register is non-volatile and will be maintained through power  
and reset cycles.  
Bit(s)  
SMBADR[3:0]  
Function  
Operation  
D[7:4]  
D[3:0]  
Most significant four bits of the  
serial bus device address  
Writes take effect immediately.  
TRSTCLR[2:0] Set the delay between QGPO and  
the clearing of RESETOUT  
These three bits set the delay between the de-assertion  
edge of the QGPO output in Reset mode and the  
subsequent clearing of the three RESETOUT bits in the  
RESETOUT Register:  
000: Zero delay  
001: 17.5 ms typical  
010: 22.5 ms typical (default)  
011: 27.0 ms typical  
100: 45 ms typical  
Minimum and maximum values may be found by adding  
tolerances of -10% and +10% to the above values.  
If Reset mode is not selected, these bits have no function.  
57  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
APC Setpoint 0, 1, and 2 (APCSET0, APCSET1, APCSET2)  
Automatic Power Control Setpoint  
D[7]  
read/write  
D[6]  
read/write  
D[5]  
read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
Default value for all three bytes  
Serial address  
0000 0000 = 00  
b
h
A6  
h
Byte addresses  
APCSET0: 3 = 03  
APCSET1: 4 = 04  
APCSET2: 5 = 05  
h
h
h
When the APC is on, the eight-bit signed integer compensation value corresponding to the current temperature is taken from  
the BIASLUT look-up table, added to the selected APCSET (0, 1, or 2) register and loaded into the VBIAS DAC.  
If DAC Calibration mode is selected in OEMCAL0, a write to any one of the three APCSETn registers will cause the VBIAS DAC  
to be updated immediately. DAC Calibration mode disables the output of the BIASLUT lookup table, so the unmodified  
APCSETn register value propagates directly to the DAC.  
The eight-bit value presented to the VBIAS DAC is always available for read back in the APCDAC register.  
A valid OEM password is required for access to these registers. These registers are non-volatile and will be maintained through  
power and reset cycles.  
Modulation Setpoint 0, 1, and 2 (MODSET0, MODSET1, and MODSET2)  
Nominal VMOD Setpoint  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for all three bytes  
Serial address  
0000 0000 = 00  
b
h
A6  
h
Byte address  
MODSET0: 6 = 06  
h
MODSET1: 30 = 1E  
h
MODSET2: 31 = 1F  
h
When the APC is on, the eight-bit signed integer compensation value corresponding to the current temperature is taken from  
the MODLUT look-up table, added to the selected MODSET (0, 1, or 2) register and loaded into the VMOD DAC.  
If DAC Calibration mode is selected in OEMCAL0, a write to any one of the three MODSETn registers will cause the VMOD DAC  
to be updated immediately. DAC Calibration mode disables the output of the MODLUT lookup table, so the unmodified  
MODSETn register value propagates directly to the DAC.  
The eight-bit value presented to the VMOD DAC is always available for read back in the MODDAC register.  
A valid OEM password is required for access to these registers. These registers are non-volatile and will be maintained through  
power and reset cycles.  
58  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
IBIAS Fault Threshold (IBFLT)  
Bias Current Fault Threshold  
D[7]  
read/write  
D[6]  
read/write  
D[5]  
read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
Default value  
Serial address  
Byte address  
0000 0000 = 00  
b
h
A6  
h
7 = 07  
h
When the Fault Comparator is running, the eight-bit signed integer compensation value corresponding to the current  
temperature is taken from the IFTLUT look-up table, added to IBFLT, and used for comparison with the laser bias current value  
for fault generation. Faults are generated if the bias current value exceeds the compensated (LUT offset) IBFLT register  
contents.  
If DAC Calibration mode is selected in OEMCAL0, the output of the IFTLUT lookup table is disabled, so the unmodified IBFLT  
register value propagates directly to the Fault Comparator DAC.  
A valid OEM password is required for access to these registers. These registers are non-volatile and will be maintained through  
power and reset cycles.  
Transmit Power Fault Threshold (TXFLT)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value  
Serial address  
Byte address  
0000 0000 = 00  
b
h
A6  
h
8 = 08  
h
When the Fault Comparator is running the TXFLT register value is used for comparison with the transmit power value for fault  
generation. Faults are generated if the transmit power exceeds the TXFLT register contents.  
A valid OEM password is required for access to this register. This register is non-volatile and will be maintained through power  
and reset cycles.  
Loss-Of-Signal Threshold (LOSFLT)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value  
Serial address  
Byte address  
0000 0000 = 00  
b
h
A6  
h
9 = 09  
h
When the Fault Comparator is running, a fault is generated if the received power is lower than the LOSFLT value set in this  
register.  
A valid OEM password is required for access to this register. This register is non-volatile and will be maintained through power  
and reset cycles.  
59  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Fault Suppression Timer (FLTTMR)  
Fault Suppression Interval in Increments of 0.5 ms  
D[7]  
read/write  
D[6]  
read/write  
D[5]  
read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
Default value  
Serial address  
Byte address  
0000 0000 = 00  
b
h
A6  
h
10 = 0A  
h
Saturation faults are suppressed for a time, t  
starts up. The length of this interval is (FLTTMR x 0.5 ms), typical. A value of zero will result in no fault suppression.  
, following laser turn-on. This avoids nuisance tripping while the APC loop  
FLTTMR  
A valid OEM password is required for access to this register. This register is non-volatile and will be maintained through power  
and reset cycles.  
Fault Mask (FLTMSK)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
reserved  
OEMIM  
read/write  
POHE  
read/write  
reserved  
SATMSK  
read/write  
TXMSK  
read/write  
IAMSK  
read/write  
DFMSK  
read/write  
Default value  
Serial address  
Byte address  
0000 0000 = 00  
b
h
A6  
h
11 = 0B  
h
A valid OEM password is required for access to this register. This register is non-volatile and will be maintained through power  
and reset cycles.  
Bit  
Function  
Operation  
D[7]  
OEMIM  
OEM interrupt mask  
1 = Interrupts are masked  
0 = Interrupts are enabled  
This bit is similar to the IE (Global Interrupt Enable) bit in the  
User Control Register. The /INT output can only be asserted  
if IE is high and OEMIM is low.  
D[6]  
POHE  
D[5:4]  
OEM Power-on Hour Meter enable  
Reserved  
1 = Power-on Hour Meter enabled  
0 = Power-on Hour Meter disabled  
Always write as zero; reads undefined  
1 = masked; 0 = enabled  
D[5:4]  
D[3]  
D[2]  
D[1]  
D[0]  
SATMSK APC saturation fault mask  
TXMSK  
IAMSK  
DFMSK  
High TX optical power fault mask  
High bias current high fault mask  
Diode fault mask  
1 = masked; 0 = enabled  
1 = masked; 0 = enabled  
1 = masked; 0 = enabled  
60  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
D[0]  
OEM Password Setting (OEMPWSET)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value for all bytes  
Serial address  
0000 0000 = 00  
b
h
A6  
h
Byte addresses  
12 - 15 = 0C - 0F  
h h  
This four-byte field is the password required for access to the OEM area of the MIC3003’s memory and registers. This field is  
compared to the four-byte OEMPW field at serial address A2 . If the two fields match, access is allowed to the OEM areas of  
h
the MIC3003 non-volatile memory at serial addresses A4 and A6 .  
h
h
The OEM password may be set by writing the new value into OEMPWSET. The new password will not take effect until after a  
power-on reset occurs or a warm reset is performed using the RST bit in OEMCFG0. This allows the new password to be  
verified before it takes effect.  
These registers are non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for  
access to this register.  
Byte  
Weight  
3
2
1
0
OEM Password, Most Significant Byte  
OEM Password, 2nd Most Significant Byte  
OEM Password, 2nd Least Significant Byte  
OEM Password, Least Significant Byte  
OEM Calibration 0 (OEMCAL0)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
reserved  
read-only  
FLTDIS  
read/write  
FSPIN  
read/write  
WRINH  
read/write  
APCCAL  
read/write  
reserved  
read-only  
reserved  
read-only  
FRCOPS  
read/write  
Default value  
Serial address  
Byte address  
0000 0000 = 00  
b
h
A6  
h
16 = 10  
h
A valid OEM password is required for access to this register. This register is volatile and will not keep its value through power  
cycles.  
61  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Bit  
Function  
Operation  
D[7]  
D[6]  
Reserved  
Always write as zero; reads undefined.  
0 = Fault Comparator faults enabled  
1 = Fault Comparator faults disabled  
FLTDIS  
Fault Comparator disable  
When FLTDIS is high, the Fault Comparator does not run,  
and the following faults are not detected:  
High IBIAS faults  
High transmit power faults  
Low receive power faults  
If a fault condition was detected prior to the assertion of  
FLTDIS, the fault flag will remain active until cleared, but  
cannot be set again until the Fault Comparator is allowed  
to run.  
D[5]  
D[4]  
FSPIN  
Fault Comparator “spin-on-channel” mode 0 = Normal Fault Comparator operation  
select; do not enable ADC and FC spin-  
1 = Force the Fault Comparator to spin on one channel  
on-channel modes simultaneously.  
When the Fault Comparator spins on just one channel  
(selected via OEMCAL1[1:0]), the two channels not being  
examined will not, of course, respond to fault conditions.  
WRINH  
Inhibit NVRAM write cycles.  
0 = Normal NVRAM operation  
1 = Inhibit NVRAM writes  
When WRINH is high, writes to the MIC3003’s internal  
memory do not occur. Registers that are non-volatile are  
written with the new value, but will not retain that value  
through a power cycle, since the NVRAM backing storage  
has not been modified.  
D[3]  
APCCAL Selects APC DAC calibration mode -  
DACs may be controlled directly.  
0 = Normal mode  
1 = DAC calibration mode.  
When DAC calibration mode is enabled, the temperature  
compensation lookup tables are disabled, so the DACs  
are presented with the values written into their  
corresponding registers.  
D[2:1]  
D[0]  
Reserved  
Always write as zeros; reads undefined.  
0 = Normal operation  
FRCOPS Forces outputs for board-level or system-  
level testing  
1 = Force outputs for testing: The following outputs are  
driven to their active states:  
TXFAULT (active polarity set in OEMCFG5)  
/INT (only driven if the OEMIM bit is clear in  
FLTMSK)  
RXLOS (active polarity and RXLOS selection are  
set in OEMCFG6)  
62  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
D[0]  
OEM Calibration 1 (OEMCAL1)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
reserved  
read-only  
Default value  
ADSTP  
read/write  
ADIDL  
read-only  
ONESHOT  
read/write  
ADSPIN  
read/write  
SPIN[2]  
read/write  
SPIN[1]  
read/write  
SPIN[0]  
read/write  
0000 0000 = 00  
b
h
Serial address  
Byte address  
A6  
h
17 = 11  
h
A valid OEM password is required for access to this register. This register is volatile and will not keep its value through power  
cycles.  
Bit  
Function  
Operation  
D[7]  
D[6]  
Reserved  
Always write as zero; reads undefined.  
0 = ADC in normal operation  
1 = ADC stopped  
ADSTP  
Stop ADC: Halts the analog to digital  
converter  
When ADSTP is set, the five-channel ADC halts and no  
new ADC results are computed. Existing result registers  
are not changed.  
In addition, no new temperature compensation is applied  
to the APC loop and fault parameters, and no  
comparisons of the ADC results against the alarm and  
warning limits is performed.  
D[5]  
D[4]  
ADIDL  
ADC idle flag  
0 = ADC is busy  
1 = ADC is idle  
ADIDL may be used in conjunction with ONESHOT to  
determine when the single ADC conversion is complete.  
After ONESHOT is set, the ADC runs until completion  
and then halts. Software may poll ADIDL to detect this  
completion before interrofating the result.  
ONESHOT Triggers one-shot A/D conversion cycle  
0 = Normal ADC operation  
1 = ADC one-shot mode  
Setting ONESHOT high starts the ADC and causes it to  
stop after the next conversion is complete. After the  
conversion, the ADC remains stopped until ONESHOT is  
set low.  
Multiple single ADC conversions may be executed by  
repeatedly writing one to ONESHOT.  
D[3]  
ADSPIN  
Selects ADC spin-on-channel mode; do  
not enable ADC and FC spin-on-channel  
modes simultaneously  
0 = Normal ADC operation  
1 = ADC spin-on-channel  
D[2:0]  
SPIN[2:0]  
ADC and Fault Comparator (FC) channel  
select for spin-on-channel mode; do not  
enable ADC and FC spin-on-channel  
modes simultaneously  
ADC:  
000 = temperature  
001 = voltage  
010 = VILD  
011 = VMPD  
100 = VRX  
63  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
D[7]  
MIC3003GFL  
LUT Index (LUTINDX)  
D[6]  
read-only  
D[5]  
read-only  
D[4]  
D[3]  
read-only  
D[2]  
read-only  
D[1]  
read-only  
D[0]  
read-only  
read-only  
read-only  
Default value (before the first set of 16  
temperature measurements has been  
accumulated)  
0000 0000 = 00  
b
h
Serial address  
A6  
h
Byte address  
18 = 12h  
The look-up table index is derived from the current temperature measurement as follows:  
INDEX = TAVG / 2  
where TAVG is the current average temperature, averaged over a set of 16 samples. This register allows the current table index  
to be read by the host. The appropriate table base address must be added to LUTINDX to form a complete table index in  
physical memory.  
A valid OEM password is required for access to this register.  
OEM Configuration 3 (OEMCFG3)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
QGPOM  
TXFPOL  
read/write  
GPOD  
read/write  
GPOM  
read/write  
GPOC  
read/write  
TXFINM  
read/write  
LOSDIS  
read/write  
INTCAL  
read/write  
read/write  
Default value  
0000 1000 = 08  
b
h
Serial address  
Byte address  
A6  
h
19 = 13  
h
This register is non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for access  
to this register.  
64  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Bit  
Function  
Operation  
D[7]  
D[6]  
QGPOM QGPO pin function select  
0: GPO (general purpose output)  
1: Reset output  
TXFPOL TXFIN active polarity select; a fault is  
indicated when TXFIN = TXFPOL  
0 = The TXFIN input is active-low  
1 = The TXFIN input is active-high  
This bit is ignored if TXFINM = 0  
0 = GPO output is open-drain  
1 = GPO output is push-pull  
This bit is ignored if GPOM = 0  
0 = RRSOUT output  
D[5]  
GPOD  
GPO output drive  
D[4]  
D[3]  
GPOM  
GPOC  
GPO/RRSOUT pin mode select  
GPO output control  
1 = GPO output  
0 = Set the GPO pin low  
1 = Set the GPO pin high  
This bit is ignored if GPOM = 0  
0 = SHDN output  
D[2]  
D[1]  
TXFINM SHDN/TXFIN pin mode select  
1 = TXFIN input  
LOSDIS RXLOS comparator and output disable  
0 = RXLOS fault enabled, and the RXLOS output is enabled  
for normal operation  
1 = RXLOS fault disabled; also, the RXLOS output is  
disabled, and will remain low  
D[0]  
INTCAL  
Calibration mode select  
0 = External calibration mode  
1 = Internal calibration(the MIC3003’s ALU applies slope and  
offset coefficients to the ALU results as necessary)  
BIAS DAC Setting (APCDAC)  
Current VBIAS Setting  
D[7]  
D[6]  
read-only  
D[5]  
read-only  
D[4]  
read-only  
D[3]  
read-only  
D[2]  
read-only  
D[1]  
read-only  
D[0]  
read-only  
read-only  
Default value  
0000 0000 = 00  
b
h
Serial address  
Byte address  
A6  
h
20 = 14  
h
This register reflects (reads back) the value being sent to the BIAS DAC (APCSET0, APCSET1, or APCSET2 whichever is  
selected, with temperature compensation applied).  
A valid OEM password is required for access to this register.  
65  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Modulation DAC Setting (MODDAC)  
Current VMOD Setting  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
Default value  
0000 0000 = 00  
b
h
Serial address  
Byte address  
A6  
h
21 = 15  
h
This register reflects (reads back) the value set in the being sent to the modulation DAC (MODSET0, MODSET1, or MODSET2  
whichever is selected, with temperature compensation applied).  
A valid OEM password is required for access to this register.  
OEM Readback Register (OEMRD)  
D[7]  
D[6]  
D[5]  
RXP_FLT  
Read-only  
D[4]  
INT  
D[3]  
D[2]  
IBFLT  
read-only  
D[1]  
TXFLT  
read-only  
D[0]  
RRSOUT  
read-only  
Reserved  
read-only  
Default value  
KILL_LASER  
read-only  
APCSAT  
read-only  
read-only  
0000 0000 = 00  
b
h
Serial address  
Byte address  
A6  
h
22 = 16  
h
This register reflects (reads back) the status of the bits corresponding to the parameters defined below.  
A valid OEM password is required for access to this register.  
Bit  
Function  
Operation  
D[7]  
D[6]  
Reserved  
Always reads as a zero  
KILL_LASER State of the internal laser disable 0: The MIC3003 is disabling the laser  
signal  
1: The laser is enabled to operate  
D[5]  
RXP_FLT  
Registered Fault Comparator  
detection of a receive power  
fault  
0: No Fault Comparator receive power fault  
1: The Fault Comparator has detected a receive power fault  
D[4]  
D[3]  
D[2]  
D[1]  
INT  
Mirrors state of /INT but active-  
high  
1 = The interrupt is asserted  
0 = No pending interrupt.  
1 = APC saturation fault detected  
0 = Normal operation.  
APCSAT  
IBFLT  
Registered APC saturation fault  
Registered Fault Comparator  
detection of an IBIAS fault  
1 = IBIAS fault detected  
0 = Normal operation  
TXFLT  
Registered Fault Comparator  
detection of a transmit power  
fault  
1 = Registered transmit power fault  
0 = normal operation  
D[0]  
TRSOUT  
State of the rate select output  
pin, TRSOUT  
1 = high; 0 = low  
66  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Signal Detect Threshold (LOSFLTn)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value  
read/write  
read/write  
0000 0000 = 00  
b
h
Serial address  
Byte address  
A6  
h
23 = 17  
h
This eight-bit register works in conjunction with the LOSFLT register to provide hysteresis and control the operation of the loss of  
signal comparator. The comparator’s output, RXLOS, is asserted when the input on VRX falls below the level in LOSFLT. The  
output will then be de-asserted when the VRX signal rises above the level in LOSFLTn.  
The input signal is subject to scaling by the RXPOT. If the LOS comparator is disabled, i.e., LOSDIS = 1, this register is ignored.  
A valid OEM password is required for access to this register. This register is non-volatile and will be maintained through power  
and reset cycles.  
RX EEPOT Tap Selection (RXPOT)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
reserved  
read-only  
reserved  
read-only  
reserved  
RXPOT[4]  
read/write  
RXPOT[3]  
read/write  
RXPOT[2]  
read/write  
RXPOT[1]  
read/write  
RXPOT[0]  
read/write  
read-only  
Default value  
0000 0000 = 00  
b
h
Serial address  
Byte address  
A6  
h
24 = 18  
h
This register is non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for access  
to these registers.  
Bit(s)  
D[7:5]  
D[4:0]  
Function  
Operation  
Reserved  
Reserved. Always write as zero; reads return zeros.  
Adjust gain of the receive power measurement:  
RXPOT tap selection:  
00000 = No divider action  
00001 = 31/32  
00010 = 30/32  
11110 = 2/32  
11111 = 1/32  
OEM Configuration 4 (OEMCFG4)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
TXF_WRN  
read/write  
TXF_ALM  
read/write  
LAT_WRN  
read/write  
LAT_ALM  
read/write  
ISTART[3]  
read/write  
ISTART[2]  
read/write  
ISTART[1]  
read/write  
ISTART[0]  
read/write  
Default value  
0000 0000 = 00  
b
h
Serial address  
Byte address  
A6  
h
25 = 19  
h
This register is non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for  
access to these registers.  
67  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Bit(s)  
Function  
Operation  
Allows warnings to assert  
D[7]  
TXF_WRN  
0: Warnings do not assert TXFAULT  
1: Warnings assert TXFAULT  
TXFAULT  
The RXPWR low warning flag does not assert TXFAULT  
0: Alarms do not assert TXFAULT  
D[6]  
D[5]  
TXF_ALM  
LAT_WRN  
Allows alarms to assert  
TXFAULT  
1: Alarms assert TXFAULT  
The RXPWR low alarm flag does not assert TXFAULT  
Warning latch  
0: Warnings flags are latched. They are cleared by reading  
the register or toggling TXDISABLE.  
1: Warnings flags are not latched., i.e. they are set and reset  
with the warning condition. The flags are also cleared by  
reading the register or toggling TXDISABLE.  
D[4]  
LAT_ALM  
Alarm latch  
0: Alarms flags are latched. They are cleared by reading the  
register or toggling TXDISABLE.  
1: Alarms flags are not latched., i.e. they are set and reset  
with alarm condition. The flags are also cleared by reading  
the register or toggling TXDISABLE.  
D[3:0]  
ISTART[3:0]  
I
START current level selection.  
ISTART current level selection:  
0000 = No ISTART current  
0001 - 1111 = 0.375 mA x ISTART[[3:0]  
I
START is used to speed up the laser start-up after a fault  
occurs. The charging current of the compensation capacitor  
starts from ISTART instead of ramping up from 0.  
OEM Configuration 5 (OEMCFG5)  
D[4] D[3]  
read/write read/write  
D[7]  
D[6]  
read/write  
D[5]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
read/write  
Default value  
0000 0000 = 00  
b
h
Serial address  
Byte address  
A6  
h
26 = 1A  
h
This register is non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for access  
to these registers.  
68  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Bit(s)  
Function  
Operation  
D[7]  
SHDN output enable / disable  
0: SHDN is enabled. TXFAULT will trigger the SHDN output  
1: SHDN is disabled. TXFAULT has no effect on the SHDN output  
This applies when pin 12 is set as the SHDN output  
D[6]  
D[5]  
Lookup table temperature  
offset control  
0: The temperature result used for the LUT access averaging algorithm does  
not have the offset coefficient applied  
1: The temperature result used for the LUT access averaging algorithm is  
offset by the signed 6-bit (.5 C resolution) offset coefficient.  
Temperature result register  
offset control  
0: The temperature result register does not have the offset coefficient applied  
1: The temperature result register is offset by the signed 6-bit (.5 C resolution)  
offset coefficient.  
D[4]  
D[3]  
D[2]  
D[1]  
Polarity of TXFAULT  
0: TXFAULT is active-high  
1: TXFAULT is active-low  
0: Multipart mode off  
SMBus multipart support  
OEM password location  
1: Multipart mode on  
0: A6h: 120-123 (78h-7Bh)  
1: A6h: 123-126 (7Bh-7Eh)  
0: SMBUS timeout enabled  
1: SMBUS timeout disabled  
SMBUS timeout enable /  
disable  
OEM Configuration 6 (OEMCFG6)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Default value  
Serial address  
Byte address  
0000 0000 = 00  
b
h
A6  
h
27 = 1B  
h
This register is non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for access  
to these registers.  
69  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Bit(s)  
Function  
Operation  
D[7]  
A0h space access control  
0: A0h space is used according to SFF-8472  
1: A0h space does not respond to any access request. SMBus transactions to  
A0h receive a NACK response.  
D[6:5]  
RXPWR Linearization Intervals  
00: Temperature-based coefficient selection  
01: Programmable delimiters  
10: Hard coded delimiters  
11: Reserved  
Options 01 and 10 partition the receive power result range into eight regions,  
each of which has its own slope and offset coefficients. The delimiters identify  
the region boundaries within the 12-bit receive power range of results, and  
may be either hard-coded (10) or programmable (01).  
Use of hard-coded delimiters frees up extra A6 memory space for scratchpad  
use.  
D[4]  
D[3]  
TXDISABLE debounce enable 0: TXDISABLE is not debounced  
/ disable  
1: TXDISABLE is debounced. Glitches less than 5 ms are rejected.  
Set this bit to 1 if a mechanical switch is used for TXDISABLE. Set to 0 for  
normal operation to assure compliance to the SFP MSA.  
RXLOS Polarity  
0: The RXLOS output is low for normal operation and high with a loss of signal  
condition.  
1: The RXLOS output is high for normal operation (signal detected) and low  
with a loss of signal (no signal detected) condition.  
D[2]  
D[1]  
D[0]  
RXLOS/TRSOUT Select  
Temperature resolution  
TXFAULT clear mode  
0: RXLOS is selected for output  
1: TRRSOUT is selected for output  
0: Temperature is measured to a resolution of 1 ºC (eight-bit resolution)  
1: Temperature is measured to a resolution of 0.5 ºC (nine-bit resolution)  
0: TXFAULT remains set until TXDISABLE is toggled  
1: TXFAULT is in continuous mode and follows the state of the faults  
In continuous mode, the fault conditions asserting TXFAULT are not registered  
and turn on and off According to the MIC3003’s operation.  
Power-On Hour Meter Data (POHDATA)  
D[7]  
read/write  
D[6]  
read/write  
D[5]  
read/write  
D[4]  
read/write  
D[3]  
read/write  
D[2]  
read/write  
D[1]  
read/write  
D[0]  
read/write  
Default values for all bytes when the MIC3003 0000 0000 = 00  
b
h
is shipped  
Serial address  
A6  
h
Byte addresses  
32 – 34 and 36 - 38 = 20 - 22 and 24 - 26  
h
h
h
h
These registers are used for backing up the POH result during power cycles. At power-up, the POH meter selects the larger of  
the two values as the initial count. Incremental results are stored in alternate register pairs. The power-on hour meter may be  
reset or preset by writing to these registers.  
These registers are not typically intended to be used by the OEM or end user. The current value of the power-on hours meter  
may be read from the POHh and POHl registers.  
If it is necessary to preset the power-on hours meter to a specific value, please consult the factory for the exact format to be  
written to the POHDATA registers.  
These registers are non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for  
access to these registers.  
70  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Byte  
Weight  
3
2
1
0
POHA, high-byte  
POHA, low-byte  
POHB, high-byte  
POHB, low-byte  
OEM Scratchpad Registers (SCRATCHn)  
Default value  
Serial address  
Byte addresses  
0000 0000 = 00  
b
h
A6  
h
136 - 207 (88 - CF )  
h
208 - 221 (D0 - DD ): This area is part of the OEM scratch pad only if the hard-  
h
coded delimiters option for receive power linearization is used.  
222 - 250 (DE - FA )  
h
The scratchpad registers are general-purpose non-volatile memory locations. They can be freely read from and written to any  
time the MIC3003 is in OEM mode.  
RX Power Coefficient Look-up Table (RXLUTn)  
Default values  
Offset coefficients are set to a default value of zero  
Slope coefficients are set to a default value of 1.0  
Serial address  
Byte addresses  
A6  
h
40 - 71 = 28 - 47  
h
h
These registers hold the receive power slope and offset coefficients used to calibrate the MIC3003’s ADC receive power result  
in internal calibration mode.  
These registers are non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for  
access to these registers.  
A6 Address  
40 (28h)  
41 (29h)  
42 (2Ah)  
43 (2Bh)  
44 (2Ch)  
45 (2Dh)  
46 (2Eh)  
47 (2Fh)  
Bytes  
Definition  
RXSLP0h  
RXSLP0l  
RXOFF0h  
RXOFF0l  
RXSLP1h  
RXSLP1l  
RXOFF1h  
RXOFF1l  
RX slope 0, high byte  
RX slope 0, low byte  
RX offset 0, high byte  
RX offset 0, low byte  
RX slope 1, high byte  
RX slope 1, low byte  
RX offset 1, high byte  
RX offset 1, low byte  
68 (44h)  
69 (45h)  
70 (46h)  
71 (47h)  
RXSLP7h  
RXSLP7l  
RXOFF7h  
RXOFF7l  
RX slope 7, high byte  
RX slope 7, low byte  
RX offset 7, high byte  
RX offset 7, low byte  
71  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Calibration Constants (CALCOEFn)  
Default values  
Offset coefficients are set to a default value of zero  
Slope coefficients are set to a default value of 1.0  
Serial address  
Byte addresses  
A6  
h
74 - 87 = 4Ah - 57h  
These registers hold the slope and offset coefficients used to calibrate the MIC3003’s ADC results in internal calibration mode.  
Note that the temperature offset is also used in external calibration mode; but this can be disabled in OEMCFG5 (or by setting  
the offset coefficient to zero).  
These registers are non-volatile and will be maintained through power and reset cycles. A valid OEM password is required for  
access to these registers.  
A6  
Bytes  
Definition  
Address  
74 (4Ah)  
75 (4Bh)  
76 (4Ch)  
77 (4Dh)  
78 (4Eh)  
79 (4Fh)  
80 (50h)  
81 (51h)  
82 (52h)  
83 (53h)  
84 (54h)  
85 (55h)  
86 (56h)  
87 (57h)  
TOFFh  
TOFF0l  
VSLP0h  
VSLP0l  
VOFFh  
VOFF0l  
ISLP0h  
ISLP0l  
Temperature offset (six-bit signed offset, .5 C resolution)  
Not used  
Voltage slope, high byte  
Voltage slope, low byte  
Voltage offset, high byte  
Voltage offset, low byte  
Bias current slope, high byte  
Bias current slope, low byte  
Bias current offset, high byte  
Bias current offset, low byte  
TX Power slope, high byte  
TX Power slope, low byte  
TX Power offset, high byte  
TX Power offset, low byte  
IOFFh  
IOFF0l  
TXSLPh  
TXSLPl  
TXOFFh  
TXOFFl  
Manufacturer ID Register (MFG_ID)  
Identifies Micrel as the manufacturer of the device. Always returns 2Ah  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
Default value  
0010 1010 = 2A  
b
h
Serial address  
Byte address  
A6  
h
254 = FE  
h
The value in this register, in combination with the DEV_ID register, serves to identify the MIC3003 and its revision number to  
software.  
This register is read-only.  
Bit(s)  
Function  
Operation  
D[7:0]  
Identifies Micrel as the manufacturer of the device. Always  
Read-only. Always returns A  
h
returns 2A .  
h
72  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Device ID Register (DEV_ID)  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
read-only  
MIC3003 Device ID  
always reads 0 at D[7-6] and 11 at D[5-4]  
Die Revision  
Default value  
Serial address  
Byte address  
0011 XXXX = 3X  
b
h
A6  
h
255 = FF  
h
The value in this register, in combination with the MFG_ID register, serve to identify the MIC3003 and its revision number to  
software. This register is read-only.  
73  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  
Micrel, Inc.  
MIC3003GFL  
Package Information  
24-Pin MLF® (MLF-24)  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its  
use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical  
implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user.  
A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to  
fully indemnify Micrel for any damages resulting from such use or sale.  
© 2010 Micrel, Incorporated.  
74  
M9999-072910-A  
hbwhelp@micrel.com or (408) 955-1690  
July 2010  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY