MIC39100-1.8BS [MICREL]

1A Low-Voltage Low-Dropout Regulator; 1A低压低压降稳压器
MIC39100-1.8BS
型号: MIC39100-1.8BS
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

1A Low-Voltage Low-Dropout Regulator
1A低压低压降稳压器

稳压器 调节器 光电二极管 输出元件
文件: 总12页 (文件大小:104K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC39100/39101/39102  
1A Low-Voltage Low-Dropout Regulator  
General Description  
Features  
The MIC39100, MIC39101, and MIC39102 are 1A low-  
dropout linear voltage regulators that provide low-voltage,  
high-current output from an extremely small package. Utiliz-  
ing Micrel’s proprietary Super βeta PNP™ pass element, the  
MIC39100/1/2 offers extremely low dropout (typically 410mV  
at 1A) and low ground current (typically 11mA at 1A).  
• Fixed and adjustable output voltages to 1.24V  
• 410mV typical dropout at 1A  
Ideal for 3.0V to 2.5V conversion  
Ideal for 2.5V to 1.8V conversion  
• 1A minimum guaranteed output current  
• 1% initial accuracy  
• Low ground current  
The MIC39100 is a fixed output regulator offered in the  
SOT-223 package. The MIC39101 and MIC39102 are fixed  
and adjustable regulators, respectively, in a thermally en-  
hanced power 8-lead SOP (small outline package).  
• Current limiting and thermal shutdown  
• Reversed-battery protection  
• Reversed-leakage protection  
• Fast transient response  
• Low-profile SOT-223 package  
• Power SO-8 package  
The MIC39100/1/2 is ideal for PC add-in cards that need to  
convert from standard 5V to 3.3V, 3.3V to 2.5V or 2.5V to  
1.8V.Aguaranteedmaximumdropoutvoltageof630mVover  
all operating conditions allows the MIC39100/1/2 to provide  
2.5V from a supply as low as 3.13V and 1.8V from a supply  
as low as 2.43V.  
Applications  
• LDO linear regulator for PC add-in cards  
• PowerPC™ power supplies  
• High-efficiency linear power supplies  
• SMPS post regulator  
• Multimedia and PC processor supplies  
• Battery chargers  
The MIC39100/1/2 is fully protected with overcurrent limiting,  
thermal shutdown, and reversed-battery protection. Fixed  
voltages of 5.0V, 3.3V, 2.5V, and 1.8V are available on  
MIC39100/1 with adjustable output voltages to 1.24V on  
MIC39102.  
• Low-voltage microcontrollers and digital logic  
For other voltages, contact Micrel.  
Ordering Information  
Part Number  
Voltage Junction Temp. Range  
Package  
MIC39100-1.8BS  
MIC39100-2.5BS  
MIC39100-3.3BS  
MIC39100-5.0BS  
MIC39101-1.8BM  
MIC39101-2.5BM  
MIC39101-3.3BM  
MIC39101-5.0BM  
MIC39102BM  
1.8V  
2.5V  
3.3V  
5.0V  
1.8V  
2.5V  
3.3V  
5.0V  
Adj.  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
SOP-8  
SOP-8  
SOP-8  
SOP-8  
SOP-8  
Typical Applications  
100k  
Error  
Flag  
Output  
MIC39100  
MIC39101  
MIC39102  
VIN  
3.3V  
VIN  
3.3V  
VIN  
2.5V  
IN  
OUT  
2.5V  
IN  
OUT  
2.5V  
IN  
OUT  
1.5V  
R1  
R1  
ENABLE  
SHUTDOWN  
ENABLE  
SHUTDOWN  
EN  
FLG  
EN  
ADJ  
10µF  
tantalum  
10µF  
tantalum  
10µF  
tantalum  
GND  
R2  
GND  
GND  
2.5V/1A Regulator  
2.5V/1A Regulator with Error Flag  
1.5V/1A Adjustable Regulator  
Super βeta PNP is a trademark of Micrel, Inc.  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com  
June 2000  
1
MIC39100/39101/39102  
MIC39100/39101/39102  
Micrel  
Pin Configuration  
GND  
TAB  
1
2
3
IN GND OUT  
MIC39100-x.x  
Fixed  
SOT-223 (S)  
EN  
IN  
1
2
3
4
8
7
6
5
GND  
GND  
GND  
GND  
EN  
IN  
1
2
3
4
8
7
6
5
GND  
GND  
GND  
GND  
OUT  
FLG  
OUT  
ADJ  
MIC39101-x.x  
Fixed  
SOP-8 (M)  
MIC39102  
Adjustable  
SOP-8 (M)  
Pin Description  
Pin No.  
Pin No.  
Pin No.  
Pin Name  
Pin Function  
MIC39100 MIC39101 MIC39102  
1
1
1
EN  
Enable (Input): CMOS-compatible control input. Logic high = enable, logic  
low or open = shutdown.  
2
3
4
2
3
IN  
Supply (Input)  
3
OUT  
FLG  
Regulator Output  
Flag (Output): Open-collector error flag output. Active low = output under-  
voltage.  
4
ADJ  
Adjustment Input: Feedback input. Connect to resitive voltage-divider  
network.  
2, TAB  
58  
58  
GND  
Ground  
MIC39100/39101/39102  
2
June 2000  
MIC39100/39101/39102  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Voltage (V ) ..................................... 20V to +20V  
Supply Voltage (V ) .................................. +2.25V to +16V  
IN  
IN  
Enable Voltage (V ) ..................................................+20V  
Enable Voltage (V ) ..................................................+16V  
EN  
EN  
Storage Temperature (T ) ....................... 65°C to +150°C  
Maximum Power Dissipation (P  
)..................... Note 4  
S
D(max)  
Lead Temperature (soldering, 5 sec.) ....................... 260°C  
ESD, Note 3  
Junction Temperature (T ) ....................... 40°C to +125°C  
J
Package Thermal Resistance  
SOT-223 ) .....................................................15°C/W  
JC  
SOP-8 ).........................................................20°C/W  
JC  
Electrical Characteristics  
VIN = VOUT + 1V; VEN = 2.25V; TJ = 25°C, bold values indicate 40°C TJ +125°C; unless noted  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
VOUT  
Output Voltage  
10mA  
1  
2  
1
2
%
%
10mA IOUT 1A, VOUT + 1V VIN 8V  
Line Regulation  
Load Regulation  
IOUT = 10mA, VOUT + 1V VIN 16V  
VIN = VOUT + 1V, 10mA IOUT 1A,  
0.06  
0.2  
40  
0.5  
1
%
%
VOUT/T  
Output Voltage Temp. Coefficient,  
100 ppm/°C  
Note 5  
VDO  
Dropout Voltage, Note 6  
IOUT = 100mA, VOUT = 1%  
140  
200  
250  
mV  
mV  
IOUT = 500mA, VOUT = 1%  
IOUT = 750mA, VOUT = 1%  
IOUT = 1A, VOUT = 1%  
275  
330  
mV  
mV  
500  
550  
630  
mV  
mV  
410  
400  
4
IGND  
Ground Current, Note 7  
IOUT = 100mA, VIN = VOUT + 1V  
IOUT = 500mA, VIN = VOUT + 1V  
IOUT = 750mA, VIN = VOUT + 1V  
IOUT = 1A, VIN = VOUT + 1V  
µA  
mA  
mA  
mA  
A
6.5  
11  
20  
IOUT(lim)  
Enable Input  
VEN  
Current Limit  
VOUT = 0V, VIN = VOUT + 1V  
1.8  
2.5  
Enable Input Voltage  
Enable Input Current  
logic low (off)  
logic high (on)  
VEN = 2.25V  
0.8  
V
V
2.25  
IEN  
1
15  
30  
75  
µA  
µA  
VEN = 0.8V  
2
4
µA  
µA  
Flag Output  
IFLG(leak)  
Output Leakage Current  
Output Low Voltage  
VOH = 16V  
0.01  
210  
1
2
µA  
µA  
VFLG(do)  
VFLG  
VIN = 2.250V, IOL, = 250µA, Note 9  
300  
400  
mV  
mV  
Low Threshold  
High Threshold  
Hysteresis  
% of VOUT  
% of VOUT  
93  
%
%
%
99.2  
1
June 2000  
3
MIC39100/39101/39102  
MIC39100/39101/39102  
Micrel  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
MIC39102 Only  
Reference Voltage  
1.228 1.240 1.252  
V
V
V
1.215  
1.203  
1.265  
1.277  
Note 10  
Note 7  
Adjust Pin Bias Current  
40  
20  
80  
120  
nA  
nA  
Reference Voltage  
Temp. Coefficient  
ppm/°C  
Adjust Pin Bias Current  
Temp. Coefficient  
0.1  
nA/°C  
Note 1. Exceeding the absolute maximum ratings may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Devices are ESD sensitive. Handling precautions recommended.  
Note 4.  
P
= (T  
T ) ÷ θ , where θ depends upon the printed circuit layout. See Applications Information.”  
J(max) A JA JA  
D(max)  
Note 5. Output voltage temperature coefficient is V  
÷ (T  
T  
) where T  
is +125°C and T is 40°C.  
J(min)  
OUT(worst case)  
J(max)  
J(min)  
J(max)  
Note 6.  
V
= V V  
when V  
decreases to 98% of its nominal output voltage with V = V  
+ 1V. For output voltages below 2.25V, dropout  
OUT  
DO  
IN  
OUT  
OUT  
IN  
voltage is the input-to-output voltage differential with the minimum input voltage being 2.25V. Minimum input operating voltage is 2.25V.  
Note 7.  
Note 8.  
I
is the quiescent current. I = I + I  
.
OUT  
GND  
IN  
GND  
V
0.8V, V 8V, and V  
= 0V.  
EN  
IN  
OUT  
Note 9. For a 2.5V device, V = 2.250V (device is in dropout).  
IN  
Note 10. V  
V  
(V 1V), 2.25V V 16V, 10mA I 1A, T = T  
.
REF  
OUT  
IN  
IN  
L
J
MAX  
Note 11. Thermal regulation is defined as the change in output voltage at a time t after a change in power dissipation is applied, excluding load or line  
regulation effects. Specifications are for a 200mA load pulse at V = 16V for t = 10ms.  
IN  
MIC39100/39101/39102  
4
June 2000  
MIC39100/39101/39102  
Micrel  
Typical Characteristics  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
Power Supply  
Rejection Ratio  
80  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
VIN = 5V  
VOUT = 3.3V  
VIN = 5V  
VOUT = 3.3V  
VIN = 3.3V  
VOUT = 2.5V  
60  
40  
IOUT = 1A  
20  
IOUT = 1A  
COUT = 47µF  
CIN = 0  
IOUT = 1A  
COUT = 10µF  
CIN = 0  
COUT = 10µF  
CIN = 0  
0
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
1k  
10k 1M  
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
1k  
10k 1M  
1k  
10k  
1M  
10  
100  
100k  
10  
100  
100k  
10  
100  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Power Supply  
Rejection Ratio  
Dropout Voltage  
vs. Output Current  
Dropout Voltage  
vs. Temperature  
80  
600  
500  
VIN = 3.3V  
VOUT = 2.5V  
450  
400  
350  
300  
250  
200  
150  
100  
50  
ILOAD = 1A  
550  
500  
450  
400  
350  
300  
2.5V  
60  
40  
20  
0
1.8V  
3.3V  
3.3V  
1.8V  
TA = 25°C  
2.5V  
IOUT = 1A  
COUT = 47µF  
CIN = 0  
0
1E+1 1E+2 1E+3 1E+4 1E+5 1E+6  
1k  
10k  
-40 -20  
0
20 40 60 80 100 120  
1M  
3.5  
8
0
250 500 750 1000 1250  
OUTPUT CURRENT (mA)  
10  
100  
100k  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Dropout Characteristics  
(2.5V)  
Dropout Characteristics  
(3.3V)  
Ground Current  
vs. Output Current  
2.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
14  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
12  
10  
8
I
=100mA  
I
=100mA  
LOAD  
LOAD  
1.8V  
2.5V  
I
LOAD  
=750mA  
3.3V  
I
LOAD  
=750mA  
6
I
=1A  
LOAD  
4
I
=1A  
LOAD  
2
0
0
200 400 600 800 1000  
OUTPUT CURRENT (mA)  
2
2.3  
2.6  
2.9  
3.2  
2.8  
3.2  
3.6  
4.0  
4.4  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Ground Current  
vs. Supply Voltage (2.5V)  
Ground Current  
vs. Supply Voltage (2.5V)  
Ground Current  
vs. Supply Voltage (3.3V)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
35  
30  
25  
20  
15  
10  
5
ILOAD =100mA  
I
=100mA  
=10mA  
LOAD  
I
=1A  
LOAD  
I
LOAD  
ILOAD =10mA  
0
0
2
4
6
8
0
2
4
6
0
2
4
6
8
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
June 2000  
5
MIC39100/39101/39102  
MIC39100/39101/39102  
Micrel  
Ground Current  
vs. Supply Voltage (3.3V)  
Ground Current  
vs. Temperature  
Ground Current  
vs. Temperature  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
50  
40  
30  
20  
10  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5V  
3.3V  
ILOAD =10mA  
I
=1A  
LOAD  
1.8V  
3.3V  
2.5V  
1.8V  
ILOAD = 500mA  
-40 -20  
0
20 40 60 80 100 120  
0
2
4
6
8
-40 -20  
0
20 40 60 80 100 120  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Output Voltage  
vs. Temperature  
Ground Current  
vs. Temperature  
Short Circuit  
vs. Temperature  
20  
15  
10  
5
3.40  
3.35  
3.30  
3.25  
3.20  
2.5  
2.0  
1.5  
1.0  
0.5  
0
ILOAD = 1A  
3.3V  
Typical 3.3V  
Device  
1.8V  
2.5V  
2.5V  
1.8V  
3.3V  
0
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Error Flag  
Pull-Up Resistor  
Enable Current  
vs. Temperature  
Flag-Low Voltage  
vs. Temperature  
12  
10  
8
250  
200  
150  
100  
50  
6
5
4
3
2
1
VIN = 5V  
VIN = VOUT + 1V  
FLAG-LOW  
VOLTAGE  
VEN = 2.4V  
FLAG HIGH  
(OK)  
6
VIN = 2.25V  
RPULL-UP = 22kΩ  
4
FLAG LOW  
(FAULT)  
2
0
0
0
0.01 0.1  
1
10 100 100010000  
-40 -20  
0
20 40 60 80 100120140  
-40 -20  
0
20 40 60 80 100120140  
RESISTANCE (k)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MIC39100/39101/39102  
6
June 2000  
MIC39100/39101/39102  
Micrel  
Functional Characteristics  
Load Transient Response  
Load Transient Response  
VOUT = 2.5V  
COUT = 10µF  
VOUT = 2.5V  
COUT = 47µF  
1A  
1A  
100mA  
10mA  
TIME (250µs/div.)  
TIME (500µs/div.)  
Line Transient Response  
TIME (25µs/div.)  
June 2000  
7
MIC39100/39101/39102  
MIC39100/39101/39102  
Micrel  
Functional Diagrams  
IN  
OUT  
OV ILIMIT  
18V  
1.240V  
Ref.  
Thermal  
Shut-  
down  
MIC39100  
GND  
MIC39100 Fixed Regulator Block Diagram  
OUT  
IN  
O.V.  
ILIMIT  
18V  
1.180V  
1.240V  
Ref.  
FLAG  
EN  
Thermal  
Shut-  
down  
GND  
MIC39101  
MIC39101 Fixed Regulator with Flag and Enable Block Diagram  
OUT  
IN  
O.V.  
ILIMIT  
18V  
1.240V  
Ref.  
ADJ  
EN  
Thermal  
Shut-  
down  
GND  
MIC39102  
MIC39102 Adjustable Regulator Block Diagram  
MIC39100/39101/39102  
8
June 2000  
MIC39100/39101/39102  
Micrel  
Input Capacitor  
Applications Information  
An input capacitor of 1µF or greater is recommended when  
thedeviceismorethan4inchesawayfromthebulkacsupply  
capacitance or when the supply is a battery. Small, surface  
mount, ceramic chip capacitors can be used for bypassing.  
Larger values will help to improve ripple rejection by bypass-  
ing the input to the regulator, further improving the integrity of  
the output voltage.  
The MIC39100/1/2 is a high-performance low-dropout volt-  
age regulator suitable for moderate to high-current voltage  
regulator applications. Its 630mV dropout voltage at full load  
and overtemperature makes it especially valuable in battery-  
powered systems and as high-efficiency noise filters in post-  
regulator applications. Unlike older NPN-pass transistor de-  
signs, where the minimum dropout voltage is limited by the  
base-to-emitter voltage drop and collector-to-emitter satura-  
tion voltage, dropout performance of the PNP output of these  
Error Flag  
The MIC39101 features an error flag (FLG), which monitors  
the output voltage and signals an error condition when this  
voltage drops 5% below its expected value. The error flag is  
an open-collector output that pulls low under fault conditions  
and may sink up to 10mA. Low output voltage signifies a  
number of possible problems, including an overcurrent fault  
(the device is in current limit) or low input voltage. The flag  
output is inoperative during overtemperature conditions. A  
devices is limited only by the low V saturation voltage.  
CE  
A trade-off for the low dropout voltage is a varying base drive  
requirement. Micrels Super βeta PNPprocess reduces  
this drive requirement to only 2% of the load current.  
The MIC39100/1/2 regulator is fully protected from damage  
due to fault conditions. Linear current limiting is provided.  
Output current during overload conditions is constant. Ther-  
mal shutdown disables the device when the die temperature  
exceeds the maximum safe operating temperature. Tran-  
sient protection allows device (and load) survival even when  
the input voltage spikes above and below nominal. The  
outputstructureoftheseregulatorsallowsvoltagesinexcess  
of the desired output voltage to be applied without reverse  
current flow.  
pull-up resistor from FLG to either V or V  
is required for  
IN  
OUT  
properoperation.Forinformationregardingtheminimumand  
maximum values of pull-up resistance, refer to the graph in  
the typical characteristics section of the data sheet.  
Enable Input  
The MIC39101 and MIC39102 versions feature an active-  
high enable input (EN) that allows on-off control of the  
regulator. Current drain reduces to zerowhen the device is  
shutdown, with only microamperes of leakage current. The  
EN input has TTL/CMOS compatible thresholds for simple  
MIC39100-x.x  
VIN  
VOUT  
IN  
OUT  
GND  
logic interfacing. EN may be directly tied to V and pulled up  
CIN  
COUT  
IN  
to the maximum supply voltage  
Transient Response and 3.3V to 2.5V or 2.5V to 1.8V  
Conversion  
Figure 1. Capacitor Requirements  
Output Capacitor  
The MIC39100/1/2 has excellent transient response to varia-  
tions in input voltage and load current. The device has been  
designed to respond quickly to load current variations and  
input voltage variations. Large output capacitors are not  
required to obtain this performance. A standard 10µF output  
capacitor, preferably tantalum, is all that is required. Larger  
values help to improve performance even further.  
The MIC39100/1/2 requires an output capacitor to maintain  
stability and improve transient response. Proper capacitor  
selection is important to ensure proper operation. The  
MIC39100/1/2 output capacitor selection is dependent upon  
theESR(equivalentseriesresistance)oftheoutputcapacitor  
to maintain stability. When the output capacitor is 10µF or  
greater, the output capacitor should have an ESR less than  
2. This will improve transient response as well as promote  
stability. Ultra-low-ESR capacitors (<100m), such as ce-  
ramic chip capacitors, may promote instability. These very  
low ESR levels may cause an oscillation and/or underdamp-  
ed transient response. A low-ESR solid tantalum capacitor  
works extremely well and provides good transient response  
and stability over temperature. Aluminum electrolytics can  
also be used, as long as the ESR of the capacitor is <2.  
By virtue of its low-dropout voltage, this device does not  
saturate into dropout as readily as similar NPN-based de-  
signs. Whenconvertingfrom3.3Vto2.5Vor2.5Vto1.8V, the  
NPN based regulators are already operating in dropout, with  
typical dropout requirements of 1.2V or greater. To convert  
down to 2.5V or 1.8V without operating in dropout, NPN-  
based regulators require an input voltage of 3.7V at the very  
least. The MIC39100 regulator will provide excellent perfor-  
mance with an input as low as 3.0V or 2.5V respectively. This  
gives the PNP based regulators a distinct advantage over  
older, NPN based linear regulators.  
The value of the output capacitor can be increased without  
limit. Higher capacitance values help to improve transient  
response and ripple rejection and reduce output noise.  
Minimum Load Current  
TheMIC39100/1/2regulatorisspecifiedbetweenfiniteloads.  
If the output current is too small, leakage currents dominate  
and the output voltage rises. A 10mA minimum load current  
is necessary for proper regulation.  
June 2000  
9
MIC39100/39101/39102  
MIC39100/39101/39102  
Micrel  
Adjustable Regulator Design  
sink thermal resistance) and θ  
(sink-to-ambient thermal  
SA  
resistance).  
Using the power SOP-8 reduces the θ dramatically and  
JC  
MIC39102  
allows the user to reduce θ . The total thermal resistance,  
VIN  
IN  
OUT  
VOUT  
COUT  
CA  
R1  
R2  
θ
(junction-to-ambient thermal resistance) is the limiting  
JA  
ENABLE  
SHUTDOWN  
EN  
ADJ  
factor in calculating the maximum power dissipation capabil-  
GND  
ity of the device. Typically, the power SOP-8 has a θ of  
JC  
20°C/W, this is significantly lower than the standard SOP-8  
R1  
R2  
which is typically 75°C/W. θ  
is reduced because pins 5  
V
= 1.240V 1+  
CA  
OUT  
through 8 can now be soldered directly to a ground plane  
which significantly reduces the case-to-sink thermal resis-  
tance and sink to ambient thermal resistance.  
Figure 2. Adjustable Regulator with Resistors  
The MIC39102 allows programming the output voltage any-  
wherebetween1.24Vandthe16Vmaximumoperatingrating  
of the family. Two resistors are used. Resistors can be quite  
large, up to 1M, because of the very high input impedance  
and low bias current of the sense comparator: The resistor  
values are calculated by:  
Low-dropout linear regulators from Micrel are rated to a  
maximum junction temperature of 125°C. It is important not  
to exceed this maximum junction temperature during opera-  
tionofthedevice.Topreventthismaximumjunctiontempera-  
ture from being exceeded, the appropriate ground plane heat  
sink must be used.  
VOUT  
R1= R2  
1  
1.240  
Where V is the desired output voltage. Figure 2 shows  
O
SOP-8  
component definition. Applications with widely varying load  
currents may scale the resistors to draw the minimum load  
current required for proper operation (see above).  
Power SOP-8 Thermal Characteristics  
θJA  
One of the secrets of the MIC39101/2s performance is its  
power SO-8 package featuring half the thermal resistance of  
a standard SO-8 package. Lower thermal resistance means  
more output current or higher input voltage for a given  
package size.  
ground plane  
heat sink area  
θJC  
θCA  
AMBIENT  
printed circuit board  
Lower thermal resistance is achieved by joining the four  
ground leads with the die attach paddle to create a single-  
piece electrical and thermal conductor. This concept has  
been used by MOSFET manufacturers for years, proving  
very reliable and cost effective for the user.  
Figure 3. Thermal Resistance  
Figure 4 shows copper area versus power dissipation with  
each trace corresponding to a different temperature rise  
above ambient.  
Thermal resistance consists of two main elements, θ  
From these curves, the minimum area of copper necessary  
for the part to operate safely can be determined. The maxi-  
mum allowable temperature rise must be calculated to deter-  
mine operation along which curve.  
JC  
(junction-to-casethermalresistance)andθ (case-to-ambi-  
CA  
ent thermal resistance). See Figure 3. θ is the resistance  
JC  
from the die to the leads of the package. θ is the resistance  
CA  
from the leads to the ambient air and it includes θ (case-to-  
CS  
900  
800  
900  
T
= 125°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
J
TJA  
=
700  
600  
500  
400  
300  
200  
100  
0
TA = 85°C  
50°C 25°C  
0
0.25 0.50 0.75 1.00 1.25 1.50  
POWER DISSIPATION (W)  
0
0.25 0.50 0.75 1.00 1.25 1.50  
POWER DISSIPATION (W)  
Figure 4. Copper Area vs. Power-SOP  
Power Dissipation  
Figure 5. Copper Area vs. Power-SOP  
Power Dissipation  
MIC39100/39101/39102  
10  
June 2000  
MIC39100/39101/39102  
Micrel  
Quick Method  
T = T  
T  
A(max)  
J(max)  
Determine the power dissipation requirements for the design  
along with the maximum ambient temperature at which the  
device will be operated. Refer to Figure 5, which shows safe  
operating curves for three different ambient temperatures:  
25°C, 50°C and 85°C. From these curves, the minimum  
amount of copper can be determined by knowing the maxi-  
mum power dissipation required. If the maximum ambient  
temperature is 50°C and the power dissipation is as above,  
836mW, the curve in Figure 5 shows that the required area of  
T
= 125°C  
J(max)  
T
= maximum ambient operating temperature  
A(max)  
Forexample, themaximumambienttemperatureis50°C, the  
T is determined as follows:  
T = 125°C 50°C  
T = 75°C  
Using Figure 4, the minimum amount of required copper can  
be determined based on the required power dissipation.  
Power dissipation in a linear regulator is calculated as fol-  
lows:  
2
copper is 160mm .  
The θ of this package is ideally 63°C/W, but it will vary  
JA  
depending upon the availability of copper ground plane to  
which it is attached.  
P = (V V  
) I  
+ V · I  
D
IN  
OUT OUT IN GND  
If we use a 2.5V output device and a 3.3V input at an output  
current of 1A, then our power dissipation is as follows:  
P = (3.3V 2.5V) × 1A + 3.3V × 11mA  
D
P = 800mW + 36mW  
D
P = 836mW  
D
From Figure 4, the minimum amount of copper required to  
2
operate this application at a T of 75°C is 160mm .  
June 2000  
11  
MIC39100/39101/39102  
MIC39100/39101/39102  
Micrel  
Package Information  
3.15 (0.124)  
2.90 (0.114)  
C
L
7.49 (0.295)  
6.71 (0.264)  
3.71 (0.146)  
3.30 (0.130)  
C
L
2.41 (0.095)  
2.21 (0.087)  
1.04 (0.041)  
0.85 (0.033)  
4.7 (0.185)  
4.5 (0.177)  
DIMENSIONS:  
MM (INCH)  
1.70 (0.067)  
1.52 (0.060)  
16°  
10°  
6.70 (0.264)  
6.30 (0.248)  
0.10 (0.004)  
0.38 (0.015)  
10°  
MAX  
0.02 (0.0008)  
0.25 (0.010)  
0.84 (0.033)  
0.64 (0.025)  
0.91 (0.036) MIN  
SOT-223 (S)  
0.026 (0.65)  
MAX)  
PIN 1  
0.157 (3.99)  
0.150 (3.81)  
DIMENSIONS:  
INCHES (MM)  
0.020 (0.51)  
0.013 (0.33)  
0.050 (1.27)  
TYP  
45°  
0.0098 (0.249)  
0.0040 (0.102)  
0.010 (0.25)  
0.007 (0.18)  
0°8°  
0.197 (5.0)  
0.189 (4.8)  
0.050 (1.27)  
0.016 (0.40)  
SEATING  
PLANE  
0.064 (1.63)  
0.045 (1.14)  
0.244 (6.20)  
0.228 (5.79)  
8-Lead SOP (M)  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 2000 Micrel Incorporated  
MIC39100/39101/39102  
12  
June 2000  

相关型号:

MIC39100-1.8BSTR

Fixed Positive LDO Regulator, 1.8V, 0.63V Dropout, PDSO4, SOT-223, 4 PIN
MICROCHIP

MIC39100-1.8BSTR

1.8 V FIXED POSITIVE LDO REGULATOR, 0.63 V DROPOUT, PDSO4, SOT-223, 4 PIN
ROCHESTER

MIC39100-1.8WS

1A Low-Voltage Low-Dropout Regulator
MICREL

MIC39100-1.8WS-TR

1.8V FIXED POSITIVE LDO REGULATOR, 0.63V DROPOUT, PDSO4
MICROCHIP

MIC39100-1.8WSTR

1.8V FIXED POSITIVE LDO REGULATOR, 0.63V DROPOUT, PDSO4, ROHS COMPLIANT, SOT-223, 4 PIN
MICROCHIP

MIC39100-2.5BS

1A Low-Voltage Low-Dropout Regulator
MICREL

MIC39100-2.5BSTR

Fixed Positive LDO Regulator, 2.5V, 0.63V Dropout, BIPolar, PDSO4, SOT-223, 4 PIN
MICROCHIP

MIC39100-2.5BSTR

2.5 V FIXED POSITIVE LDO REGULATOR, 0.63 V DROPOUT, PDSO4, SOT-223, 4 PIN
ROCHESTER

MIC39100-2.5WS

2.5V FIXED POSITIVE LDO REGULATOR, 0.63V DROPOUT, PDSO4
MICROCHIP

MIC39100-2.5WSTR

2.5 V FIXED POSITIVE LDO REGULATOR, 0.63 V DROPOUT, PDSO4, ROHS COMPLIANT, SOT-223, 4 PIN
MICROCHIP

MIC39100-3.3BS

1A Low-Voltage Low-Dropout Regulator
MICREL

MIC39100-3.3BSTR

Regulator, 1 Output, 3.3V1, BIPolar
MICROCHIP