MIC4685 [MICREL]

3A SPAK SuperSwitcher⑩ Buck Regulator; 3A SPAK SuperSwitcher ™降压稳压器
MIC4685
型号: MIC4685
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

3A SPAK SuperSwitcher⑩ Buck Regulator
3A SPAK SuperSwitcher ™降压稳压器

稳压器
文件: 总15页 (文件大小:155K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC4685  
3A SPAK SuperSwitcher™ Buck Regulator  
Final  
General Description  
Features  
The MIC4685 is a high-efficiency 200kHz stepdown (buck)  
switching regulator. Power conversion efficiency of above  
85% is easily obtainable for a wide variety of applications.  
TheMIC4685achieves3Aofcontinuouscurrentinthe7-lead  
SPAK package.  
Low 2mm profile SPAK package  
3A continuous output current  
Wide 4V to 30V input voltage range (34V transient)  
Fixed 200kHz PWM operation  
Over 85% efficiency  
Output voltage adjustable to 1.235V  
All surface mount solution  
Internally compensated with fast transient response  
Over-current protection  
Frequency foldback short-circuit protection  
Thermal shutdown  
The thermal performance of the SPAK allows it to replace  
TO-220s and TO-263s (D PAKs) in many applications. The  
SPAK saves board space with a 36% smaller footprint than  
TO-263.  
2
Highefficiencyismaintainedoverawideoutputcurrentrange  
byutilizingaboostcapacitortoincreasethevoltageavailable  
to saturate the internal power switch. As a result of this high  
efficiency, only the ground plane of the PCB is needed for a  
heat sink.  
Applications  
Point of load power supplies  
Simple high-efficiency step-down regulators  
5V to 3.3V/2A conversion  
12V to 5V/3.3V/2.5V/1.8V 3A conversion  
Dual-output ±5V conversion  
Base stations  
The MIC4685 allows for a high degree of safety. It has a wide  
input voltage range of 4V to 30V (34V transient), allowing it to  
beusedinapplicationswhereinputvoltagetransientsmaybe  
present. Built-in safety features include over-current protec-  
tion, frequency-foldback short-circuit protection, and thermal  
shutdown.  
LCD power supplies  
Battery chargers  
The MIC4685 is available in an 7-lead SPAK package with a  
junction temperature range of –40°C to +125°C.  
Ordering Information  
Part Number  
Voltage  
Junction Temperature Range  
Package  
MIC4685BR  
Adj  
40°C to +125°C  
SPAK-07L  
Typical Applications  
DBS  
3A, 20V  
VIN  
5V  
±10%  
CBS  
0.33µF/50V  
VIN  
8V to 30V  
MIC4685BR  
MIC4685BR  
CBS  
2
1
6
3
2
5
1
6
3
0.33µF/50V  
IN  
BS  
SW  
FB  
VOUT  
3.3V/2A  
IN  
BS  
SW  
FB  
VOUT  
1.8V/3A  
L1  
L1  
5
EN  
EN  
R1  
39µH  
R1  
CIN  
68µF  
10V  
39µH  
CIN  
33µF  
35V  
3.01k  
330µF  
6.3V  
3.01k  
COUT  
330µF  
6.3V  
D1  
GND  
4, Tab  
R2  
D1  
R2  
6.49k  
GND  
4, Tab  
3A  
1.78k  
3A  
20V  
40V  
1.8V Output Converter  
5V to 3.3V Converter  
Micrel, Inc. 1849 Fortune Drive San Jose, CA 95131 USA tel + 1 (408) 944-0800 fax + 1 (408) 944-0970 http://www.micrel.com  
September 2002  
1
MIC4685  
MIC4685  
Micrel  
Pin Configuration  
7
6
5
4
3
2
1
NC  
SW  
EN  
GND  
FB  
IN  
BS  
SPAK-07L (R)  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
BS  
Bootstrap Voltage Node (External Component): Connect to external boost  
capacitor.  
2
3
IN  
Supply (Input): Unregulated +4V to 30V supply voltage (34V transient)  
FB  
Feedback (Input): Outback voltage feedback to regulator. Connect to 1.235V  
tap of resistive divider.  
4, Tab  
GND  
EN  
Ground  
5
6
Enable (Input): Logic high = enable; logic low = shutdown  
SW  
Switch (Output): Emitter of NPN output switch. Connect to external storage  
inductor and Schottky diode.  
7
NC  
No Connect. Tie this pin to ground.  
Bootstrap (BS, Pin 1)  
Detailed Pin Description  
Switch (SW, Pin 6)  
The bootstrap pin in conjunction with the external bootstrap  
capacitor provides a bias voltage higher than the input  
voltage to the MIC4685s main NPN pass element. The  
bootstrap capacitor sees the dv/dt of the switching action at  
the SW pin as an AC voltage. The bootstrap capacitor then  
couples the AC voltage back to the BS pin plus the dc offset  
The switch pin is tied to the emitter of the main internal NPN  
transistor. This pin is biased up to the input voltage minus the  
V
of the main NPN pass element. The emitter is also  
SAT  
driven negative when the output inductors magnetic field  
collapses at turn-off. During the OFF time the SW pin is  
clamped by the output Schottky diode to a 0.5V typically.  
of V where it is rectified and used to provide additional drive  
IN  
to the main switch, in this case a NPN transistor.  
Ground (GND, Pin 4, Tab)  
This additional drive reduces the NPNs saturation voltage  
There are two main areas of concern when it comes to the  
ground pin, EMI and ground current. In a buck regulator or  
any other non-isolated switching regulator the output  
capacitor(s) and diode(s) ground is referenced back to the  
switching regulators or controllers ground pin. Any resis-  
tance between these reference points causes an offset  
voltage/IR drop proportional to load current and poor load  
regulation. This is why its important to keep the output  
groundsplacedascloseaspossibletotheswitchingregulators  
ground pin. To keep radiated EMI to a minimum it is neces-  
sary to place the input capacitor ground lead as close as  
possible to the switching regulators ground pin.  
and increases efficiency, from a V  
of 1.8V, and 75%  
SAT  
efficiency to a V  
of 0.5V and 88% efficiency respectively.  
SAT  
Feedback (FB, Pin 3)  
The feedback pin is tied to the inverting side of an error  
amplifier. The noninverting side is tied to a 1.235V bandgap  
reference. An external resistor voltage divider is required  
from the output to ground, with the center tied to the feedback  
pin.  
Enable (EN, Pin 5)  
The enable (EN) input is used to turn on the regulator and is  
TTL compatible. Note: connect the enable pin to the input if  
unused. A logic-high enables the regulator. A logic-low shuts  
downtheregulatorandreducesthestand-byquiescent input  
current to typically 150µA. The enable pin has an upper  
threshold of 2.0V minimum and lower threshold of 0.8V  
maximum. The hysterisis provided by the upper and lower  
thresholds acts as an UVLO and prevents unwanted turn on  
of the regulator due to noise.  
Input Voltage (V , Pin 2)  
IN  
The V pin is the collector of the main NPN pass element.  
IN  
Thispinisalsoconnectedtotheinternalregulator.Theoutput  
diode or clamping diode should have its cathode as close as  
possible to this point to avoid voltage spikes adding to the  
voltage across the collector.  
MIC4685  
2
September 2002  
MIC4685  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Voltage (V ), Note 1 ......................................+34V  
Supply Voltage (V ) Note 4 ........................... +4V to +30V  
IN  
IN  
Enable Voltage (V ) .................................... 0.3V to +V  
Junction Temperature (T ) ....................... 40°C to +125°C  
EN  
IN  
IN  
J
Steady-State Output Switch Voltage (V ) ....... 1V to V  
Package Thermal Resistance  
SW  
Feedback Voltage (V )..............................................+12V  
θ
θ
, SPAK-7 Lead ............................................11.8°C/W  
, SPAK-7 Lead ..............................................2.2°C/W  
FB  
JA  
JC  
Storage Temperature (T ) ....................... 65°C to +150°C  
S
ESD Rating Note 3 ....................................................... 2kV  
Electrical Characteristics  
VIN = VEN = 12V, VOUT = 5V; IOUT = 500mA; TA = 25°C, unless otherwise noted. Bold values indicate 40°C TJ +125°C.  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Feedback Voltage  
(±2%)  
(±3%)  
1.210  
1.198  
1.235  
1.260  
1.272  
V
V
8V VIN 30V, 0.1A ILOAD 1A, VOUT = 5V, Note 4  
1.186  
1.173  
1.235  
1.284  
1.297  
V
V
Feedback Bias Current  
Maximum Duty Cycle  
Output Leakage Current  
50  
94  
nA  
%
VFB = 1.0V  
VIN = 30V, VEN = 0V, VSW = 0V  
VIN = 30V, VEN = 0V, VSW = 1V  
VFB = 1.5V  
5
500  
20  
µA  
mA  
mA  
mA  
V
1.4  
6
Quiescent Current  
12  
Bootstrap Drive Current  
Bootstrap Voltage  
VFB = 1.5V, VSW = 0V  
IBS = 10mA, VFB = 1.5V, VSW = 0V  
VFB = 0V  
250  
5.5  
30  
380  
6.2  
70  
Frequency Fold Back  
Oscillator Frequency  
Saturation Voltage  
120  
225  
kHz  
kHz  
V
180  
200  
0.59  
IOUT = 1A  
Short Circuit Current Limit  
Shutdown Current  
VFB = 0V, See Test Circuit  
VEN = 0V  
3.5  
2
6
A
150  
200  
µA  
V
Enable Input Logic Level  
regulator on  
regulator off  
0.8  
50  
V
Enable Pin Input Current  
VEN = 0V (regulator off)  
VEN = 12V (regulator on)  
16  
µA  
mA  
°C  
1  
0.83  
160  
Thermal Shutdown @ TJ  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5kin series with 100pF.  
Note 4. 2.5V of headroom is required between V and V  
. The headroom can be reduced by implementing a bootstrap diode as seen on the 5V to  
OUT  
IN  
3.3V circuit on page 1.  
September 2002  
3
MIC4685  
MIC4685  
Micrel  
Test Circuit  
Device Under Test  
68µH  
+12V  
2
5
6
1
VIN  
SW  
EN  
BS  
I
GND  
4, Tab  
FB  
3
Current Limit Test Circuit  
Shutdown Input Behavior  
ON  
OFF  
GUARANTEED  
OFF  
GUARANTEED  
ON  
0.8V  
1.25V  
2V  
TYPICAL  
OFF  
TYPICAL  
ON  
0V  
1.4V  
VIN(max)  
Enable Hysteresis  
MIC4685  
4
September 2002  
MIC4685  
Micrel  
Typical Characteristics  
(T = 25°C unless otherwise noted)  
A
Efficiency  
vs. Output Current  
100  
Efficiency  
Efficiency  
vs. Output Current  
vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 8V  
VIN = 8V  
VIN = 12V  
VIN = 8V  
90  
80  
VIN = 24V  
VIN = 30V  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 30V  
VIN = 30V  
VIN = 12V  
VIN = 12V  
Standard  
Configuration  
Standard  
Configuration  
OUT = 2.5V  
Standard  
Configuration  
V
OUT = 3.3V  
V
V
OUT = 5.0V  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT CURRENT (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT CURRENT (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT CURRENT (A)  
Efficiency  
Efficiency  
Efficiency  
vs. Output Current  
vs. Output Current  
vs. Output Current  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 7.5V  
VIN = 8V  
VIN = 4.5V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 12V  
VIN = 24V  
VIN = 5V  
VIN = 12V  
VIN = 16V  
VIN = 30V  
VIN = 12V  
VIN = 16V  
Standard  
Configuration  
Bootstrap  
Configuration  
OUT = 5.0V  
Bootstrap  
Configuration  
VOUT = 3.3V  
V
OUT = 1.8V  
V
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT CURRENT (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT CURRENT (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT CURRENT (A)  
Efficiency  
vs. Output Current  
Efficiency  
vs. Output Current  
Quiescent Current  
vs. Input Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.3  
6.2  
6.1  
6
VIN = 5V  
VIN = 5V  
VIN = 12V  
VIN = 12V  
VIN = 16V  
VIN = 16V  
5.9  
5.8  
5.7  
Bootstrap  
Configuration  
Bootstrap  
Configuration  
VOUT = 1.8V  
VEN= 5V  
VOUT = 2.5V  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT CURRENT (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
OUTPUT CURRENT (A)  
Minimum Duty Cycle  
vs. Input Voltage  
Bootstrap Voltage  
vs. Input Voltage  
Bootstrap Drive Current  
vs. Input Voltage  
350  
300  
250  
200  
150  
100  
50  
12  
10  
8
7
6
5
4
3
2
1
0
6
4
VIN = 12V  
VIN = 12V  
2
V
FB = 1.5V  
VOUT = 1.8V  
V
FB = 1.5V  
0
0
0
5
10 15 20 25 30  
INPUT VOLTAGE (V)  
0
2
4
6
8
10 12 14 16 18 20  
0
5
10 15 20 25 30  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
September 2002  
5
MIC4685  
MIC4685  
Micrel  
Feedback Voltage  
vs. Input Voltage  
Shutdown Current  
vs. Input Voltage  
Saturation Voltage  
vs. Input Voltage  
1.250  
605  
600  
595  
590  
585  
580  
575  
570  
200  
180  
160  
140  
120  
100  
80  
1.245  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
60  
40  
IOUT = 10mA  
IOUT = 1A  
VOUT = 5V  
VOUT = 1.8V  
20  
VEN = 0V  
0
0
5
10 15 20 25 30  
INPUT VOLTAGE (V)  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
Feedback Voltage  
vs. Temperature  
Load Regulation  
Shutdown Hysteresis vs.  
Temperature  
1.258  
1.248  
1.238  
1.228  
1.218  
1.208  
1.198  
6
5
1.809  
1.808  
1.807  
1.806  
1.805  
1.804  
1.803  
1.802  
ON  
4
3
2
IOUT = 10mA  
1
OFF  
V
V
IN = 12V  
OUT = 1.8V  
0
VOUT = 13V  
0.5  
OUTPUT CURRENT (A)  
-1  
-40 -20  
0
20 40 60 80 100120140  
-50  
0
50  
100 150 200  
0
1
1.5  
2
2.5  
3
3.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Line Regulation  
Enable Threshold  
vs. Temperature  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
Upper Threshold  
Lower Threshold  
VIN = 12V  
V
OUT = 5V  
IOUT = 0.100A  
I
OUT = 100mA  
0
5
10 15 20 25 30 35  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
MIC4685  
6
September 2002  
MIC4685  
Micrel  
Typical Safe Operating Area (SOA)  
(SOA measured on the MIC4685 Evaluation Board*)  
5V Output SOA  
Standard Configuration  
3.3V Output SOA  
Standard Configuration  
2.5V Output SOA  
Standard Configuration  
5.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
TA = 25°C  
4.5  
TA = 25°C  
TA = 25°C  
TJ = 125°C  
TJ = 125°C  
TJ = 125°C  
4.0  
D = Max  
D = Max  
D = Max  
3.5  
3.0  
2.5  
2.0  
TA = 60°C  
TJ = 125°C  
1.5  
TA = 60°C  
J = 125°C  
D = Max  
TA = 60°C  
J = 125°C  
D = Max  
1.0  
T
T
D = Max  
0.5  
0.0  
0
5
10 15 20 25 30 35  
INPUT VOLTAGE (V)  
0
5
10 15 20 25 30 35  
INPUT VOLTAGE (V)  
0
5
10 15 20 25 30 35  
INPUT VOLTAGE (V)  
5.0V Output SOA  
Bootstrap Configuration  
1.8V Output SOA  
Standard Configuration  
3.3V Output SOA  
Bootstrap Configuration  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
TA = 25°C  
TA = 25°C  
TA = 25°C  
TJ = 125°C  
D = Max  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
TJ = 125°C  
TJ = 125°C  
D = Max  
D = Max  
TA = 60°C  
TJ = 125°C  
D = Max  
TA = 60°C  
J = 125°C  
D = Max  
TA = 60°C  
J = 125°C  
D = Max  
T
T
6
8
10 12 14 16 18  
INPUT VOLTAGE (V)  
0
5
10 15 20 25 30 35  
INPUT VOLTAGE (V)  
3
5
7
9
11 13 15 17  
INPUT VOLTAGE (V)  
2.5V Output SOA  
Bootstrap Configuration  
1.8V Output SOA  
Bootstrap Configuration  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
TA = 25°C  
TA = 25°C  
TJ = 125°C  
TJ = 125°C  
D = Max  
D = Max  
TA = 60°C  
J = 125°C  
D = Max  
TA = 60°C  
J = 125°C  
D = Max  
T
T
3
5
7
9
11 13 15 17  
3
5
7
9
11 13 15 17  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
* I  
I
< 3A, D1: Diode Inc. B340 (3A/40V)  
> 3A, D1: SBM1040 (10A/40V)  
OUT  
OUT  
September 2002  
7
MIC4685  
MIC4685  
Micrel  
Functional Characteristics  
Load Transient  
Switching Frequency Foldback  
VIN = 12V  
VOUT = 5V  
IOUT = 1.0A to 0.1A  
Normal  
Operation  
5.1V  
5V  
200kHz  
1A  
0A  
Short  
Circuit  
Operation  
Typical  
70kHz  
TIME (25µs/div.)  
TIME  
Frequency Foldback  
The MIC4685 folds the switching frequency back during a  
hardshortcircuitconditiontoreducetheenergypercycleand  
protect the device.  
MIC4685  
8
September 2002  
MIC4685  
Micrel  
Block Diagrams  
VIN  
IN  
Bootstrap  
Charger  
Enable  
Internal  
Regulator  
R1  
R2  
V
= V  
+1  
OUT  
REF  
V
OUT  
R1= R2  
1  
200kHz  
Oscillator  
Thermal  
Shutdown  
Current  
Limit  
V
REF  
V
= 1.235V  
REF  
Com-  
parator  
VOUT  
SW  
FB  
Driver  
COUT  
Reset  
R1  
R2  
Error  
Amp  
1.235V  
Bandgap  
Reference  
MIC4685  
FIgure 1. Adjustable Regulator  
A higher feedback voltage increases the error amplifier  
output voltage. A higher error amplifier voltage (comparator  
inverting input) causes the comparator to detect only the  
peaks of the sawtooth, reducing the duty cycle of the com-  
parator output. A lower feedback voltage increases the duty  
cycle. The MIC4685 uses a voltage-mode control architec-  
ture.  
Functional Description  
The MIC4685 is a variable duty cycle switch-mode regulator  
with an internal power switch. Refer to the above block  
diagram.  
Supply Voltage  
The MIC4685 operates from a +4V to +30V (34V transient)  
unregulated input. Highest efficiency operation is from a  
supply voltage around +12V. See the efficiency curves in the  
Typical Characteristics section on page 5.  
Output Switching  
When the internal switch is ON, an increasing current flows  
from the supply V through external storage inductor L1, to  
IN,  
Enable/Shutdown  
output capacitor C  
and the load. Energy is stored in the  
OUT  
inductor as the current increases with time.  
The enable (EN) input is TTL compatible. Tie the input high  
if unused. A logic-high enables the regulator. A logic-low  
shuts down the internal regulator which reduces the current  
When the internal switch is turned OFF, the collapse of the  
magnetic field in L1 forces current to flow through fast  
to typically 150µA when V = 0V.  
recovery diode D1, charging C  
.
EN  
OUT  
Feedback  
Output Capacitor  
An external resistive voltage divider is required from the  
output voltage to ground, center tapped to the FB pin. See  
Table 1 and Table 2 for recommended resistor values.  
External output capacitor C  
reduces ripple.  
provides stabilization and  
OUT  
Return Paths  
Duty Cycle Control  
During the ON portion of the cycle, the output capacitor and  
load currents return to the supply ground. During the OFF  
portion of the cycle, current is being supplied to the output  
capacitor and load by storage inductor L1, which means that  
D1 is part of the high-current return path.  
A fixed-gain error amplifier compares the feedback signal  
with a 1.235V bandgap voltage reference. The resulting error  
amplifier output voltage is compared to a 200kHz sawtooth  
waveform to produce a voltage controlled variable duty cycle  
output.  
September 2002  
9
MIC4685  
MIC4685  
Micrel  
The efficiency is used to determine how much of the output  
Applications Information  
Adjustable Regulators  
power (P  
) is dissipated in the regulator circuit (P ).  
OUT  
D
P
Adjustable regulators require a 1.235V feedback signal.  
Recommended voltage-divider resistor values for common  
output voltages are included in Table 1.  
OUT  
P =  
P  
OUT  
D
η
7.5W  
0.84  
PD =  
7.5W  
For other voltages, the resistor values can be determined  
using the following formulas:  
P = 1.43W  
D
A worst-case rule of thumb is to assume that 80% of the total  
R1  
VOUT = VREF  
+1  
output power dissipation is in the MIC4685 (P  
is in the diode-inductor-capacitor circuit.  
) and 20%  
R2  
D(IC)  
VOUT  
P
P
P
= 0.8 P  
D
D(IC)  
D(IC)  
D(IC)  
R1= R2  
1  
VREF  
= 0.8 × 1.43W  
= 1.14W  
VREF = 1.235V  
Calculate the worst-case junction temperature:  
T = P + (T T ) + T  
Thermal Considerations  
θ
J
D(IC) JC  
C
A
A(max)  
The MIC4685 is capable of high current due to the thermally  
optimized SPAK package.  
where:  
T = MIC4685 junction temperature  
J
OnelimitationofthemaximumoutputcurrentonanyMIC4685  
P
= MIC4685 power dissipation  
D(IC)  
design is the junction-to-ambient thermal resistance (θ ) of  
JA  
θ
= junction-to-case thermal resistance.  
JC  
the design (package and ground plane).  
Examining θ in more detail:  
JA  
The θ for the MIC4685s 7-lead SPAK is approximately  
2.2°C/W.  
JC  
θ
= (θ + θ  
)
CA  
JA  
JC  
where:  
T = pintemperature measurement taken at the  
C
θ
θ
= junction-to-case thermal resistance  
= case-to-ambient thermal resistance  
Tab.  
JC  
CA  
T = ambient temperature  
A
θ
θ
is a relatively constant 2.2°C/W for a 7-lead SPAK.  
T
= maximum ambient operating temperature  
JC  
A(max)  
for the specific design.  
is dependent on layout and is primarily governed by the  
CA  
connection of pins 4, and Tab to the ground plane. The  
purpose of the ground plane is to function as a heat sink.  
Calculating the maximum junction temperature given a  
maximum ambient temperature of 60°C:  
Checking the Maximum Junction Temperature:  
T = 1.14 × 2.2°C + (46°C 25°C) + 60°C  
J
For this example, with an output power (P  
) of 7.5W, (5V  
T = 83.5°C  
OUT  
J
output at 1.5A with V = 12V) and 60°C maximum ambient  
IN  
This value is within the allowable maximum operating junc-  
tion temperature of 125°C as listed in Operating Ratings.”  
Typical thermal shutdown is 160°C and is listed in Electrical  
Characteristics. Alsosee TypicalSafeOperatingArea(SOA)  
graphs on page 7.  
temperature, what is the junction temperature?  
Referring to the Typical Characteristics: 5V Output Effi-  
ciencygraph, read the efficiency (η) for 1.5A output current  
at V = 12V or perform you own measurement.  
IN  
η = 84%  
MIC4685  
10  
September 2002  
MIC4685  
Micrel  
Layout Considerations  
Bootstrap Diode  
Thebootstrapdiodeprovidesanexternalbiassourcedirectly  
tothemainpasselement, thisreducesV thusallowingthe  
Layout is very important when designing any switching regu-  
lator. Rapidly changing currents through the printed circuit  
board traces and stray inductance can generate voltage  
transients which can cause problems.  
SAT  
MIC4685 to be used in very low head-room applications i.e.  
5V to3.3V withhighefficiencies.Bootstrapdiodenotfor  
IN  
OUT  
use if V exceeds 16V, V . See Figure 3.  
To minimize stray inductance and ground loops, keep trace  
lengths as short as possible. For example, keep D1 close to  
pin 6 and pin 4, and Tab, keep L1 away from sensitive node  
IN  
IN  
FB, and keep C close to pin 2 and pin 4, and Tab. See  
IN  
ApplicationsInformation:ThermalConsiderationsforground  
plane layout.  
Thefeedbackpinshouldbekeptasfarwayfromtheswitching  
elements (usually L1 and D1) as possible.  
A circuit with sample layouts are provided. See Figure 7.  
Gerber files are available upon request.  
VIN  
+4V to +30V  
MIC4685BR  
(34V transient)  
2
5
1
6
IN  
EN  
BS  
L1  
39µH  
VOUT  
R1  
SW  
CIN  
COUT  
3
FB  
7-lead  
SPAK  
GND  
4, Tab  
D1  
R2  
GND  
Figure 2. Critical Traces for Layout  
September 2002  
11  
MIC4685  
MIC4685  
Micrel  
Recommended Components for a Given Output Voltage (Bootstrap Configuration)  
VOUT IOUT  
*
R1  
R2  
VIN  
C1  
D1  
D2  
L1  
C4  
5.0V 2.1A 3.01k 976Ω  
3.3V 2.2A 3.01k 1.78k  
2.5V 2.0A 3.01k 2.94k  
1.8V 2.0A 3.01k 6.49k  
7.5V16V 47µF, 20V  
3A, 30V 1A, 20V  
39µH  
330µF, 6.3V  
Vishay-Dale  
Vishay-Dale  
595D476X0020D2T  
Schottky Schottky Sumida  
B330A  
MBRX120 CDRH127R-390MC 594D337X06R3D2T  
6.0V16V 47µF, 20V  
3A, 30V 1A, 20V  
Schottky Schottky Sumida  
B330A  
39µH  
330µF, 6.3V  
Vishay-Dale  
Vishay-Dale  
595D476X0020D2T  
MBRX120 CDRH127R-390MC 594D337X06R3D2T  
5.0V16V 47µF, 20V  
3A, 30V 1A, 20V  
Schottky Schottky Sumida  
B330A  
39µH  
330µF, 6.3V  
Vishay-Dale  
Vishay-Dale  
595D476X0020D2T  
MBRX120 CDRH127R-390MC 594D337X06R3D2T  
5.0V16V 47µF, 20V  
3A, 30V 1A, 20V  
Schottky Schottky Sumida  
B330A  
39µH  
330µF, 6.3V  
Vishay-Dale  
Vishay-Dale  
595D476X0020D2T  
MBRX120 CDRH127R-390MC 594D337X06R3D2T  
*
Maximum output current at minimum input voltage. See SOA curves for maximum output current vs. input voltage.  
Table 1. Recommended Components for Common Ouput Voltages  
D2  
MBRX120  
1A/20V  
JP3  
L1  
39µH  
J1  
J2  
U1 MIC4685BR  
VIN  
VOUT  
2
5
6
IN  
SW  
C3  
0.33µF  
50V  
1
3
C2  
0.1µF  
50V  
BS  
FB  
C4*  
optional  
R1  
R2  
C1  
ON  
47µF  
20V  
J3  
GND  
EN  
C5  
330µF  
6.3V  
C7  
0.1µF  
50V  
OFF  
D1  
GND  
4, Tab  
B330A  
or  
SS33  
J4  
GND  
* C4 can be used to provide additional stability  
and improved transient response.  
Note: optimized for 5VOUT  
Figure 3. Schematic Diagram  
MIC4685  
12  
September 2002  
MIC4685  
Micrel  
Recommended Components for a Given Output Voltage (Standard Configuration)  
VOUT IOUT  
*
R1  
R2  
VIN  
C1  
D1  
L1  
C5  
5.0V  
2.0A 3.01k  
976Ω  
8V30V  
33µF, 35V  
3A, 40V  
39µH  
330µF, 6.3V  
Vishay-Dale  
Schottky Sumida  
Vishay-Dale  
595D336X0035R2T  
B340A  
CDRH127-390MC  
594D337X06R3D2T  
3.3V  
2.4A 3.01k  
1.78k  
2.94k  
6.49k  
8V26V  
7V23V  
6V16V  
33µF, 35V  
Vishay-Dale  
595D336X0035R2T  
3A, 40V  
Schottky Sumida  
B340A  
39µH  
330µF, 6.3V  
Vishay-Dale  
594D337X06R3D2T  
CDRH127-390MC  
2.5V 2.35A 3.01k  
33µF, 35V  
Vishay-Dale  
595D336X0035R2T  
3A, 40V  
Schottky Sumida  
B340A  
39µH  
330µF, 6.3V  
Vishay-Dale  
594D337X06R3D2T  
CDRH127-390MC  
1.8V  
2.0A 3.01k  
47µF, 25V  
3A, 40V  
39µH  
330µF, 6.3V  
Vishay-Dale  
595D476X0025D2T  
Schottky Sumida  
B340A CDRH127-390MC  
Vishay-Dale  
594D337X06R3D2T  
*
Maximum output current at minimum input voltage. See SOA curves for maximum output current vs. input voltage.  
Table 2. Recommended Components for Common Ouput Voltages  
D2***  
B340  
JP3  
J1  
VIN  
J2  
VOUT  
2A  
L1  
39µH  
U1 MIC4685BR  
(34V transient)  
2
5
6
IN  
SW  
C3  
0.33µF  
50V  
1
3
C2  
0.1µF  
50V  
BS  
FB  
C4*  
R1  
optional  
C1  
33µF  
35V  
J3  
GND  
3.01k  
ON  
EN  
C5  
C7  
OFF  
D1  
B340A  
R2  
6.49k  
R3  
2.94k  
R4  
1.78k  
R5  
330µF  
C6**  
0.1µF  
GND  
976Ω  
6.3V  
50V  
4, Tab  
1
2
3
5
JP1a  
1.8V  
JP1b  
2.5V  
JP1c7 JP1d  
3.3V 5.0V  
J4  
GND  
8
4
6
*
C4 can be used to provide additional stability  
and improved transient response.  
Note: optimized for 5VOUT  
** C6 Optional  
*** D2 is not used for standard configuration and JP3 is open.  
Figure 4. Evaluation Board Schematic Diagram  
September 2002  
13  
MIC4685  
MIC4685  
Micrel  
Printed Circuit Board  
Figure 5b. Bottom Silk Screen  
Figure 5a. Top Silk Screen  
Figure 5d. Bottom Side Copper  
Figure 5c. Top Side Copper  
Abbreviated Bill of Material (Critical Components)  
Reference  
C1  
Part Number  
Manufacturer  
Vishay Sprague1  
Vitramon  
Description  
Qty  
1
594D336X0035R2T  
VJ0805Y104KXAAB  
GRM426X7R334K50  
Optional  
33µF 35V  
C2, C7  
C3  
0.1µF 50V  
2
Murata  
0.33µF, 50V ceramic capacitor  
1800pF, 50V ceramic  
330µF, 6.3V, tantalum  
Schottky 3A 40V  
Schottky 3A 40V  
C4*  
(1)  
1
C5  
594D337X06R3D2T  
B340A  
Vishay Sprague1  
Diode Inc2  
D1  
1
D2  
B340A  
MBRX120  
Diode Inc2  
1
Micro Commercial Component5 Schottky 1A 22V  
L1  
CDRH127-390MC  
Sumida3  
39µH  
1
1
U1  
MIC4685BR  
Micrel Semiconductor4  
3A 200kHz SPAK buck regulator  
1
2
3
4
5
Vishay Sprague, Inc., tel: 207-490-7256, http://www.vishay.com  
Diodes Inc, tel: 805-446-4800, http://www.diodes.com  
Sumida, tel: 510-668-0660, http://www.sumida.com  
Micrel, tel: 408-944-0800, httzp://www.micrel.com  
Micro Commercial Component, tel: 818-701-4933, http://www.mccsemi.com  
MIC4685  
14  
September 2002  
MIC4685  
Micrel  
Package Information  
DIMENSIONS:  
INCH (MM)  
0.375 (9.52)  
0.365 (9.27)  
0.360 (9.14)  
0.350 (8.89)  
0.080 (2.03)  
0.070 (1.78)  
0.050 (1.27)  
0.256 BSC  
(6.50 BSC)  
0.030 (0.76)  
0.010 BSC  
(0.25 BSC)  
0.316 BSC  
(8.03 BSC)  
0.045 (1.14)  
0.035 (0.89)  
0.320 (8.13)  
0.310 (7.87)  
0.420 (10.67)  
0.410 (10.41)  
0.031 (0.79)  
0.025 (0.63)  
0.050 BSC  
(1.27 BSC)  
0.005 (0.13)  
0.001 (0.03)  
0.031 (0.89)  
0.041 (1.14)  
0.010 BSC  
(0.25 BSC)  
6¡  
0¡  
SCALE 20:1  
SPAK-07L (R)  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 2002 Micrel Incorporated  
September 2002  
15  
MIC4685  

相关型号:

MIC4685-3.3BR

Switching Regulator, Voltage-mode, 1A, 225kHz Switching Freq-Max, PSSO7, SPAK-7
MICROCHIP

MIC4685-3.3BR

Switching Regulator, Voltage-mode, 1A, 225kHz Switching Freq-Max, PSSO7, SPAK-7
MICREL

MIC4685-3.3WR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PSSO7
MICROCHIP

MIC4685-3.3YR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PSSO7
MICROCHIP

MIC4685-5.0BR

Switching Regulator, Voltage-mode, 1A, 225kHz Switching Freq-Max, PSSO7, SPAK-7
MICROCHIP

MIC4685-5.0WR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PSSO7
MICROCHIP

MIC4685BR

3A SPAK SuperSwitcher⑩ Buck Regulator
MICREL

MIC4685BR

Switching Regulator, Voltage-mode, 1A, 225kHz Switching Freq-Max, PSSO7, SPAK-7
MICROCHIP

MIC4685BR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PSSO7, SPAK-7
ROCHESTER

MIC4685BRTR

SWITCHING REGULATOR, 225 kHz SWITCHING FREQ-MAX, PSSO7, SPAK-7
ROCHESTER

MIC4685WR

3A SPAK SuperSwitcher Buck Regulator
MICREL

MIC4685WR

SWITCHING REGULATOR, 225kHz SWITCHING FREQ-MAX, PSSO7
MICROCHIP