MIC49150-0.9WR [MICREL]

1.5A Low Voltage LDO Regulator w/Dual Input Voltages; 1.5A低压LDO稳压器瓦特/双输入电压
MIC49150-0.9WR
型号: MIC49150-0.9WR
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
1.5A低压LDO稳压器瓦特/双输入电压

稳压器 调节器 输出元件
文件: 总13页 (文件大小:340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC49150  
1.5A Low Voltage LDO Regulator  
w/Dual Input Voltages  
General Description  
Features  
The MIC49150 is a high-bandwidth, low-dropout, 1.5A volt-  
age regulator ideal for powering core voltages of low-  
power microprocessors. The MIC49150 implements a dual  
supply conguration allowing for very low output  
impedance and very fast transient response.  
Input Voltage Range:  
VIN: 1.4V to 6.5V  
BIAS: 3.0V to 6.5V  
V
Stable with 1µF ceramic capacitor  
±1% initial tolerance  
The MIC49150 requires a bias input supply and a main  
input supply, allowing for ultra-low input voltages on the  
main supply rail. The input supply operates from 1.4V to  
6.5V and the bias supply requires between 3V and 6.5V  
for proper operation. The MIC49150 offers xed output  
voltages from 0.9V to 1.8V and adjustable output voltages  
down to 0.9V.  
Maximum dropout voltage (VIN–VOUT) of 500mV  
over temperature  
Adjustable output voltage down to 0.9V  
Ultra fast transient response (Up to 10MHz bandwidth)  
Excellent line and load regulation specications  
Logic controlled shutdown option  
Thermal shutdown and current limit protection  
Power MSOP-8 and S-Pak packages  
The MIC49150 requires a minimum of output capacitance  
for stability, working optimally with small ceramic  
capacitors.  
Junction temperature range: –40°C to 125°C  
The MIC49150 is available in an 8-pin power MSOP pack-  
age and a 5-pin S-Pak. Its operating temperature range is  
–40°C to +125°C.  
Applications  
Data sheets and support documentation can be found on  
Micrel’s web site at www.micrel.com.  
Graphics processors  
PC add-in cards  
Microprocessor core voltage supply  
Low voltage digital ICs  
High efficiency linear power supplies  
SMPS post regulators  
Typical Application  
MIC49150BR  
VIN = 1.8V  
VOUT = 1.0V  
R1  
IN  
OUT  
V
BIAS = 3.3V  
BIAS  
ADJ  
COUT = 1µF  
Ceramic  
R2  
CBIAS = 1µF  
Ceramic  
GND  
CIN = 1µF  
Ceramic  
Low Voltage,  
Fast Transient Response Regulator  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-111306  
November 2006  
1
Micrel, Inc.  
MIC49150  
Ordering Information  
Part Number  
Output  
Current  
Junction  
Temp. Range  
Voltage  
Package  
Standard  
Pb-Free /  
RoHS Compliant  
MIC49150-0.9BMM  
MIC49150-1.2BMM  
MIC49150-1.5BMM  
MIC49150-1.8BMM  
MIC49150BMM  
MIC49150-0.9YMM  
MIC49150-1.2YMM  
MIC49150-1.5YMM  
MIC49150-1.8YMM  
MIC49150YMM  
1.5A  
1.5A  
1.5A  
1.5A  
1.5A  
1.5A  
1.5A  
1.5A  
1.5A  
1.5A  
0.9V  
1.2V  
1.5V  
1.8V  
Adj.  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
–40° to +125°C  
8-Pin Power MSOP  
8-Pin Power MSOP  
8-Pin Power MSOP  
8-Pin Power MSOP  
8-Pin Power MSOP  
5-Pin S-PAK  
MIC49150-0.9BR  
MIC49150-1.2BR  
MIC49150-1.5BR  
MIC49150-1.8BR  
MIC49150BR  
MIC49150-0.9WR*  
MIC49150-1.2WR*  
MIC49150-1.5WR*  
MIC49150-1.8WR*  
MIC49150WR*  
0.9V  
1.2V  
1.5V  
1.8V  
Adj.  
5-Pin S-PAK  
5-Pin S-PAK  
5-Pin S-PAK  
5-Pin S-PAK  
* RoHS Compliant with ‘high-melting solder’ exemption.  
Pin Configuration  
GND  
GND  
GND  
GND  
1
2
3
4
8
7
6
5
EN/ADJ.  
VBIAS  
5
VOUT  
4 VIN  
3 GND  
2
VBIAS  
VIN  
1 EN/ADJ.  
VOUT  
8-Pin Power MSPO (MM)  
5-Pin S-Pak (R)  
Pin Description  
Pin Number  
8-MSOP  
Pin Number  
Pin Name  
Pin Name  
5-SPak  
1
1
EN  
ADJ  
Enable (Input): CMOS compatible input. Logic high = enable,  
logic low = shutdown.  
Adjustable regulator feedback input. Connect to resistor  
voltage divider.  
2
3
2
4
VBIAS  
VIN  
Input Bias Voltage for powering all circuitry on the regulator  
with the exception of the output power device.  
Input voltage which supplies current to the output power  
device.  
4
5
3
OUT  
GND  
Regulator Output.  
5/6/7/8  
Ground (TAB is connected to ground on S-Pak).  
M9999-111306  
November 2006  
2
Micrel, Inc.  
MIC49150  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage (VIN).........................................................8V  
Bias Supply Voltage (VBIAS)..............................................8V  
Enable Input Voltage (VEN)...............................................8V  
Power Dissipation .....................................Internally Limited  
ESD Rating(3)..................................................................4kV  
Supply Voltage (VIN)......................................... 1.4V to 6.5V  
Bias Supply Voltage (VBIAS)................................. 3V to 6.5V  
Enable Input Voltage (VEN).................................. 0V to 6.5V  
Junction Temperature (TJ) ..................–40°C TJ +125°C  
Package Thermal Resistance  
MSOP-8 (θJA).....................................................80°C/W  
S-Pak (θJC) ..........................................................2°C/W  
Electrical Characteristics(4)  
TA = 25°C with VBIAS = VOUT + 2.1V; VIN = VOUT + 1V; bold values indicate –40°C< TJ < +125°C, unless noted(5).  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Output Voltage Accuracy  
At 25°C  
Over temperature range  
–1  
–2  
+1  
+2  
%
%
Line Regulation  
Load Regulation  
VIN = VOUT +1V to 6.5V  
IL = 0mA to 1.5A  
–0.1  
0.01  
0.2  
+0.1  
%/V  
1
1.5  
%
%
Dropout Voltage (VIN - VOUT  
)
IL = 750mA  
IL = 1.5A  
130  
280  
200  
300  
400  
500  
mV  
mV  
mV  
mV  
Dropout Voltage (VBIAS - VOUT), IL = 750mA  
1.3  
1.65  
V
V
V
Note 5  
IL = 1.5A  
1.9  
2.1  
Ground Pin Current, Note 6  
IL = 0mA  
IL = 1.5A  
15  
15  
mA  
mA  
mA  
25  
30  
Ground Pin Current in  
Shutdown  
VEN 0.6V, (IBIAS + ICC), Note 7  
0.5  
9
1
2
µA  
µA  
Current thru VBIAS  
IL = 0mA  
15  
25  
mA  
mA  
mA  
IL = 1.5A  
32  
Current Limit  
MIC49150  
1.6  
2.3  
3.4  
4
A
A
Enable Input (Note 7)  
Enable Input Threshold  
(Fixed Voltage only)  
Regulator enable  
Regulator shutdown  
1.6  
V
V
0.6  
Enable Pin Input Current  
Reference  
Independent of state  
0.1  
0.9  
1
µA  
Reference Voltage  
0.891  
0.882  
0.909  
0.918  
V
V
Notes:  
1. Exceeding the absolute maximum rating may damage the device.  
2. The device is not guaranteed to function outside its operating rating.  
3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5kin series with 100pF.  
4. Specification for packaged product only.  
5. For VOUT 1V, VBIAS dropout specication does not apply due to a minimum 3V VBIAS input.  
6. IGND = IBIAS + (IIN – IOUT). At high loads, input current on VIN will be less than the output current, due to drive current being supplied by VBIAS  
.
7. Fixed output voltage versions only.  
M9999-111306  
November 2006  
3
Micrel, Inc.  
MIC49150  
Typical Characteristics  
)  
)  
)  
300  
250  
200  
150  
100  
50  
80  
80  
70  
60  
50  
70  
60  
50  
40  
30  
20  
10  
0
40  
VBIAS = 3.3V  
VBIAS = 3.3V  
VIN = 1.8V  
30  
20  
10  
0
VIN = 1.8V  
OUT = 1.0V  
IOUT = 1.5A  
OUT = 1µF ceramic  
V
V
OUT = 1.0V  
IOUT = 1.5A  
OUT = 1µF ceramic  
VBIAS = 5V  
VOUT = 1.0V  
C
C
0
0.01 0.1  
1
10  
100 1000  
0.01 0.1  
1
10  
100 1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
OUTPUT CURRENT (mA)  
Dropout Voltage  
(Bias Supply)  
Dropout Voltage  
vs. Temperature  
(Input Supply)  
Dropout Voltage  
vs. Temperature  
(Bias Supply)  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
400  
350  
300  
250  
200  
150  
100  
50  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
VIN = 2.5V  
IOUT = 1.5A  
VOUT = 1.5V  
VBIAS = 5V  
IOUT = 1.5A  
VOUT = 1. 5V  
VIN = 2.5V  
VOUT = 1.5V  
0
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE(°C)  
TEMPERATURE(°C)  
OUTPUT CURRENT (mA)  
Dropout Characteristics  
(Input Voltage)  
Dropout Characteristics  
(Bias Voltage)  
Load Regulation  
1.505  
1.504  
1.503  
1.502  
1.501  
1.500  
1.499  
1.498  
1.497  
1.496  
1.495  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
IOUT = 10mA  
IOUT = 10mA  
IOUT = 1.5A  
IOUT = 1.5A  
VBIAS = 5V  
IN = 2.5V  
VBIAS = 5V  
VOUT = 1.5V  
V
VIN = 2.5V  
VOUT = 1.5V  
0
1
2
3
4
5
6
7
0
0.5  
1
1.5  
2
2.5  
BIAS VOLTAGE (V)  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
Maximum Bias Current  
vs. Temperature  
Bias Current  
Maximum Bias Current  
vs. Bias Voltage  
vs. Temperature  
45  
40  
35  
30  
25  
20  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
VIN = 2.5V  
VOUT = 1.5V  
VBIAS = 5V  
VADJ = 0V  
IOUT = 750mA  
I
OUT = 1.5A  
VBIAS = 5V  
VADJ = 0V  
VIN = 2.5V  
IOUT = 1500mA  
V
IN = 2.5V  
IOUT = 100mA  
15  
10  
5
*Note: Maximum bias current is bias  
current with input in dropout  
IOUT = 10mA  
20 40 60 80 100 120  
0
0
0
3
3.5  
4
4.5  
5
5.5  
6
6.5  
-40 -20  
0
-40 -20  
0
20 40 60 80 100 120  
BIAS VOLTAGE (V)  
TEMPERATURE(°C)  
TEMPERATURE(°C)  
M9999-111306  
November 2006  
4
Micrel, Inc.  
MIC49150  
Typical Characteristics (cont.)  
Bias Current  
vs. Output Current  
Bias Current  
vs. Bias Voltage  
Ground Current  
vs. Bias Voltage  
50  
14  
12  
10  
8
14  
12  
10  
8
VBIAS = 5V  
IBIAS  
VIN = 2.5V  
40  
30  
20  
10  
0
VOUT = 1.5V  
IBIAS  
6
6
IOUT = 100mA  
VIN = 2.5V  
VOUT = 1.5V  
IOUT = 0mA  
4
4
VIN = 2.5V  
2
2
VOUT = 1.5V  
0
0
3
3.5  
4
4.5  
5
5.5  
6
6.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
BIAS VOLTAGE (V)  
BIAS VOLTAGE (V)  
OUTPUT CURRENT (mA)  
Bias Current  
vs. Bias Voltage  
Bias Current  
vs. Bias Voltage  
Bias Current  
vs. Input Voltage  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
20  
18  
16  
14  
12  
10  
8
VBIAS = 5V  
VOUT = 1.5V  
IOUT = 750mA  
V
IN = 2.5V  
IBIAS  
IOUT = 100mA  
VOUT = 1.5V  
IBIAS  
IOUT = 0mA  
IOUT = 1500mA  
IN = 2.5V  
VOUT = 1.5V  
6
V
4
2
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
INPUT VOLTAGE (V)  
BIAS VOLTAGE (V)  
BIAS VOLTAGE (V)  
Reference Voltage  
vs. Bias Voltage  
Bias Current  
vs. Input Voltage  
Reference Voltage  
vs. Input Voltage  
0.901  
0.900  
0.899  
0.901  
300  
250  
200  
150  
100  
50  
VBIAS = 5V  
OUT = 1.5V  
1500mA  
VIN = 2.5V  
VBIAS = 5V  
V
750mA  
0.900  
0.899  
0
0
0.5  
1
1.5  
2
2.5  
1.4  
2.4  
3.4  
4.4  
5.4  
6.4  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
BIAS VOLTAGE (V)  
Short Circuit Current  
vs. Temperature  
Enable Threshold  
vs. Bias Voltage  
Output Voltage  
vs. Temperature  
1.55  
1.54  
1.53  
1.52  
1.51  
1.50  
1.49  
1.48  
1.47  
1.46  
1.45  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VBIAS = 5V  
VIN = 2.5V  
ON  
OFF  
VBIAS = 5V  
V
IN = 2.5V  
VIN = 2.5V  
VOUT = 0V  
0
3
-40 -20  
0
20 40 60 80 100 120  
3.5  
4
4.5  
5
5.5  
6
6.5  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
BIAS VOLTAGE (V)  
TEMPERATURE (°C)  
M9999-111306  
November 2006  
5
Micrel, Inc.  
MIC49150  
Typical Characteristics (cont.)  
Enable Threshold  
vs. Temperature  
1.6  
ON  
1.4  
1.2  
1.0  
OFF  
0.8  
0.6  
0.4  
VBIAS = 5V  
V
IN = 2.5V  
0.2  
0
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
M9999-111306  
November 2006  
6
Micrel, Inc.  
MIC49150  
Functional Characteristics  
M9999-111306  
November 2006  
7
Micrel, Inc.  
MIC49150  
Functional Diagram  
VBIAS  
VIN  
Ilimit  
VEN ADJ  
/
Fixed  
Bandgap  
Enable  
Adj.  
VOUT  
VIN Open  
Circuit  
R1  
R2  
Fixed  
M9999-111306  
November 2006  
8
Micrel, Inc.  
MIC49150  
type of ceramic capacitors. Z5U and Y5V dielectric  
capacitors change value by as much as 50% and 60%  
respectively over their operating temperature ranges. To  
use a ceramic chip capacitor with Y5V dielectric, the  
value must be much higher than an X7R ceramic or a  
tantalum capacitor to ensure the same capacitance  
value over the operating temperature range. Tantalum  
capacitors have a very stable dielectric (10% over their  
operating temperature range) and can also be used with  
this device.  
Application Information  
The MIC49150 is an ultra-high performance, low-dropout  
linear regulator designed for high current applications  
requiring fast transient response. The MIC49150 utilizes  
two input supplies, signicantly reducing dropout  
voltage, perfect for low-voltage, DC-to-DC conversion.  
The MIC49150 requires a minimum of external comp-  
onents and obtains a bandwidth of up to 10MHz. As a  
µCap regulator, the output is tolerant of virtually any type  
of capacitor including ceramic type and tantalum type  
capacitors.  
Input Capacitor  
The MIC49150 regulator is fully protected from damage  
due to fault conditions, offering linear current limiting and  
thermal shutdown.  
An input capacitor of 1µF or greater is recommended  
when the device is more than 4" away from the bulk  
supply capacitance, or when the supply is a battery.  
Small, surface-mount, ceramic chip capacitors can be  
used for the bypassing. The capacitor should be placed  
within 1" of the device for optimal performance. Larger  
values will help to improve ripple rejection by bypassing  
the input to the regulator, further improving the integrity  
of the output voltage.  
Bias Supply Voltage  
VBIAS, requiring relatively light current, provides power to  
the control portion of the MIC49150. VBIAS requires  
approximately 33mA for a 1.5A load current. Dropout  
conditions require higher currents. Most of the biasing  
current is used to supply the base current to the pass  
transistor. This allows the pass element to be driven into  
saturation, reducing the dropout to 300mV at a 1.5A load  
current. Bypassing on the bias pin is recommended to  
improve performance of the regulator during line and  
load transients. Small ceramic capacitors from VBIAS to  
ground help reduce high frequency noise from being  
injected into the control circuitry from the bias rail and  
are good design practice. Good bypass techniques  
typically include one larger capacitor such as 1µF  
ceramic and smaller valued capacitors such as 0.01µF  
or 0.001µF in parallel with that larger capacitor to  
decouple the bias supply. The VBIAS input voltage must  
be 1.6V above the output voltage with a minimum VBIAS  
input voltage of 3 volts.  
Thermal Design  
Linear regulators are simple to use. The most  
complicated design parameters to consider are thermal  
characteristics. Thermal design requires the following  
application-specic parameters:  
Maximum ambient temperature (TA)  
Output current (IOUT  
)
Output voltage (VOUT  
Input voltage (VIN)  
)
Ground current (IGND  
)
First, calculate the power dissipation of the regulator  
from these numbers and the device parameters from this  
datasheet.  
PD = VIN × IIN + VBIAS × IBIAS – VOUT × IOUT  
Input Supply Voltage  
The input current will be less than the output current at  
high output currents as the load increases. The bias  
current is a sum of base drive and ground current.  
Ground current is constant over load current. Then the  
heat sink thermal resistance is determined with this  
formula:  
VIN provides the high current to the collector of the pass  
transistor. The minimum input voltage is 1.4V, allowing  
con-version from low voltage supplies.  
Output Capacitor  
The MIC49150 requires a minimum of output capaci-  
tance to maintain stability. However, proper capacitor  
selection is important to ensure desired transient  
response. The MIC49150 is specically designed to be  
stable with virtually any capacitance value and ESR. A  
1µF ceramic chip capacitor should satisfy most app-  
lications. Output capacitance can be increased without  
bound. See “Typical Characteristic” for examples of load  
transient response.  
T
TA  
J(MAX)  
θSA  
=
(
θJC + θCS  
)
PD  
The heat sink may be signicantly reduced in  
applications where the maximum input voltage is known  
and large compared with the dropout voltage. Use a  
series input resistor to drop excessive voltage and  
distribute the heat between this resistor and the  
regulator. The low-dropout properties of the MIC49150  
allow signicant reductions in regulator power dissipation  
and the associated heat sink without compromising  
performance. When this technique is employed, a  
X7R dielectric ceramic capacitors are recommended  
because of their temperature performance. X7R-type  
capacitors change capacitance by 15% over their  
operating temperature range and are the most stable  
M9999-111306  
November 2006  
9
Micrel, Inc.  
MIC49150  
capacitor of at least 1µF is needed directly between the  
input and regulator ground. Refer to “Application Note 9  
for further details and examples on thermal design and  
heat sink specication.  
MSOP-8  
Minimum Load Current  
The MIC49150, unlike most other high current  
regulators, does not require a minimum load to maintain  
output voltage regulation.  
Power MSOP-8 Thermal Characteristics  
qJA  
One of the secrets of the MIC49150’s performance is its  
power MSOP-8 package featuring half the thermal  
resistance of a standard MSOP-8 package. Lower  
thermal resistance means more output current or higher  
input voltage for a given package size.  
ground plane  
heat sink area  
qJC  
qCA  
AMBIENT  
printed circuit board  
Figure 1. Thermal Resistance  
Lower thermal resistance is achieved by joining the four  
ground leads with the die attach paddle to create a  
single-piece electrical and thermal conductor. This  
concept has been used by MOSFET manufacturers for  
years, proving very reliable and cost effective for the  
user.  
Figure 2 shows copper area versus power dissipation  
with each trace corresponding to a different temperature  
rise above ambient.  
From these curves, the minimum area of copper  
necessary for the part to operate safely can be  
determined. The maximum allowable temperature rise  
must be calculated to determine operation along which  
Thermal resistance consists of two main elements, θJC  
(junction-to-case thermal resistance) and θCA (case-to-  
ambient thermal resistance). See Figure 1. θJC is the  
resistance from the die to the leads of the package. θCA  
is the resistance from the leads to the ambient air and it  
includes θCS (case-to-sink thermal resistance) and θSA  
(sink-to-ambient thermal resistance).  
curve.  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
Using the power MSOP-8 reduces the θJC dramatically  
and allows the user to reduce θCA. The total thermal  
resistance, θJA (junction-to-ambient thermal resistance)  
is the limiting factor in calculating the maximum power  
dissipation capability of the device. Typically, the power  
MSOP-8 has a θJA of 80°C/W, this is signicantly lower  
than the standard MSOP-8 which is typically 160°C/W.  
θCA is reduced because pins 5 through 8 can now be  
soldered directly to a ground plane which signicantly  
reduces the case-to-sink thermal resistance and sink to  
ambient thermal resistance.  
0
0.25 0.50 0.75 1.00 1.25 1.50  
POWER DISSIPATION (W)  
Figure 2. Copper Area vs. Power-MSOP  
Power Dissipation (TJA)  
Low-dropout linear regulators from Micrel are rated to a  
maximum junction temperature of 125°C. It is important  
not to exceed this maximum junction temperature during  
operation of the device. To prevent this maximum  
junction temperature from being exceeded, the  
appropriate ground plane heat sink must be used.  
900  
T
= 125°C  
85°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
J
50°C 25°C  
0
0.25 0.50 0.75 1.00 1.25 1.50  
POWER DISSIPATION (W)  
Figure 3. Copper Area vs. Power-MSOP  
Power Dissipation (TA)  
M9999-111306  
November 2006  
10  
Micrel, Inc.  
MIC49150  
T = TJ(max) – TA(max)  
J(max) = 125°C  
The θJA of this package is ideally 80°C/W, but it will vary  
depending upon the availability of copper ground plane  
to which it is attached.  
T
TA(max) = maximum ambient operating temp-  
erature  
Adjustable Regulator Design  
For example, the maximum ambient temperature is  
50°C, the T is determined as follows:  
The MIC49150 adjustable version allows programming  
the output voltage anywhere between 0.9Vand 5V. Two  
resistors are used. The resistor value between VOUT and  
the adjust pin should not exceed 10k. Larger values  
can cause instability. The resistor values are calculated  
by:  
T = 125°C – 50°C  
T = 75°C  
Using Figure 2, the minimum amount of required copper  
can be determined based on the required power  
dissipation. Power dissipation in a linear regulator is  
calculated as follows:  
V
OUT  
R1 = R2× ⎜  
1⎟  
0.9  
PD = VIN × IIN + VBIAS × IBIAS – VOUT × IOUT  
Where VOUT is the desired output voltage.  
Using a typical application of 750mA output current, 1.2V  
output voltage, 1.8V input voltage and 3.3V bias voltage,  
the power dissipation is as follows:  
Enable  
The xed output voltage versions of the MIC49150  
feature an active high enable input (EN) that allows on-  
off control of the regulator. Current drain reduces to  
“zero” when the device is shutdown, with only  
microamperes of leakage current. The EN input has  
TTL/CMOS compatible thresholds for simple logic  
interfacing. EN may be directly tied to VIN and pulled up  
to the maximum supply voltage.  
PD = (1.8V) × (730mA) + 3.3V(30mA) – 1.2V(750mA)  
At full current, a small percentage of the output current is  
supplied from the bias supply, therefore the input current  
is less than the output current.  
PD = 513mW  
From Figure 2, the minimum current of copper required  
to operate this application at a T of 75°C is less than  
100mm2.  
Quick Method  
Determine the power dissipation requirements for the  
design along with the maximum ambient temperature at  
which the device will be operated. Refer to Figure 3,  
which shows safe operating curves for three different  
ambient temperatures: 25°C, 50°C and 85°C. From  
these curves, the minimum amount of copper can be  
determined by knowing the maxi-mum power dissipation  
required. If the maximum ambient temperature is 50°C  
and the power dissipation is as above, 513mW, the  
curve in Figure 3 shows that the required area of copper  
is less than 100mm2.  
M9999-111306  
November 2006  
11  
Micrel, Inc.  
MIC49150  
Package Information  
8-Pin MSOP (MM)  
5-Pin S-Pak (R)  
M9999-111306  
November 2006  
12  
Micrel, Inc.  
MIC49150  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its  
use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant  
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2003 Micrel, Incorporated.  
M9999-111306  
November 2006  
13  

相关型号:

MIC49150-0.9WR-TR

IC REG LDO 0.9V 1.5A SPAK-5
MICROCHIP

MIC49150-0.9YMM

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-0.9YMMTR

0.9V FIXED POSITIVE LDO REGULATOR, 0.5V DROPOUT, PDSO8, ROHS COMPLIANT, MSOP-8
MICROCHIP

MIC49150-1.2BMM

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-1.2BMMTR

Fixed Positive LDO Regulator, 1.2V, 0.5V Dropout, PDSO8, MSOP-8
MICROCHIP

MIC49150-1.2BR

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-1.2BRTR

暂无描述
MICREL

MIC49150-1.2WR

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-1.2WR-TR

IC REG LDO 1.2V 1.5A SPAK-5
MICROCHIP

MIC49150-1.2YMM

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL

MIC49150-1.2YMMTR

1.2V FIXED POSITIVE LDO REGULATOR, 0.5V DROPOUT, PDSO8, ROHS COMPLIANT, POWER, MSOP-8
MICROCHIP

MIC49150-1.5BMM

1.5A Low Voltage LDO Regulator w/Dual Input Voltages
MICREL