MIC5200-5.0BM [MICREL]

100mA Low-Dropout Voltage Regulator Preliminary Information; 100mA时的低压差稳压器的初步信息
MIC5200-5.0BM
型号: MIC5200-5.0BM
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

100mA Low-Dropout Voltage Regulator Preliminary Information
100mA时的低压差稳压器的初步信息

稳压器
文件: 总6页 (文件大小:90K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5200  
100mA Low-Dropout Voltage Regulator  
Preliminary Information  
Features  
General Description  
The MIC5200 is an efficient linear voltage regulator with very  
low dropout voltage (typically 17mV at light loads and 200mV  
at 100mA), and very low ground current (1mA at 100mA  
output), offering better than 1% initial accuracy with a logic  
compatible ON/OFF switching input. Designed especially for  
hand-heldbatterypowereddevices,theMIC5200isswitched  
by a CMOS or TTL compatible logic signal. The ENABLE  
controlmaybetieddirectlytoVIN ifunneeded.Whendisabled,  
power consumption drops nearly to zero. The ground current  
of the MIC5200 increases only slightly in dropout, further  
prolongingbatterylife. KeyMIC5200featuresincludeprotec-  
tion against reversed battery, current limiting, and over-  
temperature shutdown.  
• High output voltage accuracy  
• Variety of output voltages  
• Guaranteed 100mA output  
• Low quiescent current  
• Low dropout voltage  
• Extremely tight load and line regulation  
• Very low temperature coefficient  
• Current and thermal limiting  
• Zero OFF mode current  
• Logic-controlled electronic shutdown  
• Available in 8-lead SOIC, MM8™ 8-lead MSOP,  
and SOT-223 packages  
Applications  
• Cellular Telephones  
• Laptop, Notebook, and Palmtop Computers  
• Battery Powered Equipment  
3
The MIC5200 is available in several fixed voltages and  
accuracyconfigurations. Otheroptionsareavailable;contact  
Micrel for details.  
• PCMCIA VCC and VPP Regulation/Switching  
• Bar Code Scanners  
• SMPS Post-Regulator/ DC to DC Modules  
• High Efficiency Linear Power Supplies  
Ordering Information  
Part Number  
Voltage  
3.0  
Accuracy Junction Temp. Range*  
Package  
SO-8  
MIC5200-3.0BM  
MIC5200-3.3BM  
MIC5200-4.8BM  
MIC5200-5.0BM  
MIC5200-3.3BMM  
MIC5200-5.0BMM  
MIC5200-3.0BS  
MIC5200-3.3BS  
MIC5200-4.8BS  
MIC5200-5.0BS  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
3.3  
SO-8  
4.85  
5.0  
SO-8  
SO-8  
3.3V  
5.0V  
3.0  
MSOP-8  
MSOP-8  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
3.3  
4.85  
5.0  
Other voltages available. Contact Micrel for details.  
Typical Application  
MIC5200-3.3  
Output  
1µF  
Enable  
3-123  
July 1998  
MIC5200  
Micrel  
Pin Configuration  
OUT  
OUT  
IN  
IN  
NC  
EN  
NC  
GND  
MIC5200-x.xBM  
(SO-8)  
MIC5200-x.xBMM  
(MSOP-8)  
1
2
3
IN GND OUT  
MIC5200-x.xBS  
(SOT-223)  
EN may be tied directly to VIN  
Pin Description  
Pin Number  
SOT-223  
Pin Number  
SO-8, MSOP-8  
Pin Name  
Pin Function  
3
2, TAB  
1
1, 2  
3, 6  
OUT  
NC  
Output: Pins 1 and 2 must be externally connected together.  
(not internally connected): Connect to ground plane for lowest thermal  
resistance.  
4
5
GND  
EN  
Ground: Ground pin and TAB are internally connected.  
Enable/Shutdown (Input): TTL compatible input. High = enabled;  
low = shutdown.  
7, 8  
IN  
Supply Input: Pins 7 and 8 must be extenally connected together.  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Input Voltage ............................................................... 2.5V to 26V  
Operating Junction Temperature Range............. –40°C to +125°C  
Enable Input Voltage.................................................... –20V to VIN  
Power Dissipation ............................................... Internally Limited  
Lead Temperature (soldering, 5 sec.) .................................. 260°C  
Operating Junction Temperature Range............. –40°C to +125°C  
Input Supply Voltage ................................................ –20V to +60V  
Enable Input Voltage................................................ –20V to +60V  
Thermal Characteristics  
SOT-223 JC)..................................................................... 15°C/W  
SO-8 JA) ..................................................................... See Note 1  
Absolute Maximum Ratings indicate limits beyond which damage  
to the device may occur. Electrical specifications do not apply when  
operating the device beyond its specified Operating Ratings.  
July 1998  
3-124  
MIC5200  
Micrel  
Electrical Characteristics  
Limits in standard typeface are for TJ = 25°C and limits in boldface apply over the junction temperature range of –40°C to +125°C.  
Unless otherwise specified, VIN = VOUT + 1V, IL = 1mA, CL = 3.3µF, and VENABLE 2.0V  
Symbol  
Parameter  
Conditions  
Min Typical Max  
Units  
VO  
Output Voltage  
Accuracy  
Variation from specified VOUT  
–1  
–2  
1
2
%
VO  
T  
Output Voltage  
Temperature Coef.  
(Note 2)  
40  
150 ppm/°C  
VO  
VIN  
Line Regulation  
Load Regulation  
VIN = VOUT + 1 V to 26V  
IL = 0.1mA to 100mA (Note 3)  
0.004  
0.04  
0.10  
0.40  
%
%
VO  
0.16  
VOUT  
0.30  
VIN – VO  
Dropout Voltage  
(Note 4)  
IL = 100µA  
IL = 20mA  
IL = 30mA  
IL = 50mA  
IL = 100mA  
17  
mV  
130  
150  
190  
230  
350  
IGND  
IGND  
Quiescent Current  
Ground Pin Current  
V
ENABLE 0.7V (Shutdown)  
ENABLE 2.0V, IL = 100µA  
0.01  
10  
µA  
µA  
V
130  
270  
330  
500  
1000  
3
IL = 20mA  
IL = 30mA  
IL = 50mA  
IL = 100mA  
350  
1500  
330  
PSRR  
Ripple Rejection  
70  
dB  
IGNDDO  
Ground Pin  
VIN = 0.5V less than specified VOUT  
270  
µA  
Current at Dropout  
IL = 100µA (Note 5)  
ILIMIT  
Current Limit  
VOUT = 0V  
(Note 6)  
100  
250  
mA  
VO  
PD  
Thermal Regulation  
0.05  
%/W  
en  
Output Noise  
100  
µV  
ENABLE Input  
Input Voltage Level  
VIL  
Logic Low  
Logic High  
OFF  
ON  
0.7  
V
2.0  
IIL  
IIH  
ENABLE Input Current  
V
V
IL 0.7V  
IH 2.0V  
0.01  
15  
1
50  
µA  
Note 1:  
Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not  
apply when operating the device outside of its rated operating conditions. The maximum allowable power dissipation is a  
function of the maximum junction temperature, TJ (MAX), the junction-to-ambient thermal resistance, θJA, and the ambient  
temperature, TA. The maximum allowable power dissipation at any ambient temperature is calculated using: P(MAX)  
=
(TJ(MAX) – TA) ÷ θJA. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the  
regulator will go into thermal shutdown. The θJC of the MIC5200-xxBS is 15°C/W and θJA for the MIC5200BM is 160°C/W  
mounted on a PC board (see “Thermal Considerations” section for further details).  
Note 2:  
Note 3:  
Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.  
Regulationismeasuredatconstantjunctiontemperatureusinglowdutycyclepulsetesting. Partsaretestedforloadregulation  
in the load range from 0.1mA to 100mA. Changes in output voltage due to heating effects are covered by the thermal regulation  
specification.  
Note 4:  
Note 5:  
Note 6:  
Dropout Voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value  
measured at 1V differential.  
Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply  
is the sum of the load current plus the ground pin current.  
Thermalregulationisdefinedasthechangeinoutputvoltageatatimetafterachangeinpowerdissipationisapplied, excluding  
load or line regulation effects. Specifications are for a 100mA load pulse at VIN = 26V for t = 10ms.  
3-125  
July 1998  
MIC5200  
Micrel  
Typical Characteristics  
Dropout Voltage  
vs. Output Current  
Dropout Voltage  
vs. Temperature  
Dropout  
Characteristics  
250  
0.4  
0.3  
0.2  
0.1  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
200  
150  
100  
50  
IL = 100mA  
IL = 100mA  
IL = 100µA, 1mA  
IL = 1mA  
0
0.01 0.1  
1
10  
100 1000  
-60 -30  
0
30 60 90 120 150  
0
2
4
6
8
10  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Ground Current  
vs. Output Current  
Output Voltage  
vs. Output Current  
Ground Current  
vs. Supply Voltage  
10  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
CIN = 2.2µF  
COUT = 4.7µF  
IL = 100mA  
1
IL = 1mA  
0.1  
0.01  
0.1  
1
10  
100  
0
2
4
6
8
10  
0.0  
0.1  
0.2  
0.3  
OUTPUT CURRENT (mA)  
SUPPLY VOLTAGE (V)  
OUTPUT CURRENT (A)  
Ground Current  
vs. Temperature  
Ground Current  
vs. Temperature  
Thermal Regulation  
(3.3V Version)  
0.30  
0.25  
0.20  
0.15  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
100  
ILOAD = 100µA  
CIN = 2.2µF  
COUT = 4.7µF  
ILOAD = 100mA  
CIN = 2.2µF  
COUT = 4.7µF  
50  
0
CL = 4.7 µF  
2-050  
100  
0
-100  
-60 -30  
0
30 60 90 120 150  
-50  
0
50  
100  
150  
-5  
0
5
10 15 20 25 30 35  
TIME (ms)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Output Current  
vs. Temperature  
Minimum Input Voltage  
vs. Temperature  
Output Voltage vs. Temp.  
(3.3V Version)  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
300  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
3.23  
3.22  
3.21  
3.20  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
CIN = 2.2µF  
COUT = 4.7µF  
CIN = 2.2µF  
COUT = 4.7µF  
ILOAD = 1mA  
VOUT = 3.3V  
3 DEVICES:  
HI / AVG / LO  
VOUT = 0V  
(SHORT CIRCUIT)  
CURVES APPLICABLE  
AT 100µA AND 100mA  
-60 -30  
0
30 60 90 120 150  
-60 -30  
0
30 60 90 120 150  
-60 -30  
0
30 60 90 120 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
July 1998  
3-126  
MIC5200  
Micrel  
Short Circuit Current  
vs. Input Voltage  
Load Transient  
Load Transient  
300  
20  
10  
20  
10  
250  
200  
150  
100  
50  
0
0
-10  
-20  
3-030  
-10  
-20  
3-030  
CL = 4.7µF  
CL = 47µF  
CIN = 2.2µF  
COUT = 4.7µF  
VOUT = 3.3V  
200  
100  
0
200  
100  
0
0
1
2
3
4
5
6
7
-2  
0
2
4
6
8
10  
-10  
0
10  
20  
30  
40  
INPUT VOLTAGE (V)  
TIME (ms)  
TIME (ms)  
Supply Current vs. Supply  
Voltage (3.3V Version)  
Line Transient  
Line Transient  
120  
100  
80  
60  
40  
20  
0
10  
5
15  
10  
5
CL = 1 µF  
IL = 1mA  
CL = 10 µF  
IL = 1mA  
0
3
-5  
0
-108  
-85  
6
4
2
6
4
2
RL = 33Ω  
0
1
2
3
4
5
6
7
8
9
10  
-0.2  
0
0.2  
0.4  
0.6  
0.8  
-0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6  
TIME (ms)  
SUPPLY VOLTAGE (V)  
TIME (ms)  
Supply Current vs. Supply  
Voltage (3.3V Version)  
Enable Transient  
(3.3V Version)  
Enable Transient  
(3.3V Version)  
60  
50  
40  
30  
20  
10  
0
5
4
3
2
1
5
4
3
2
1
CL = 4.7 µF  
IL = 1mA  
CL = 4.7 µF  
IL = 100mA  
0
-41  
0
-41  
RL = 66Ω  
2
0
2
0
-2  
-50  
-2  
-50  
0
1
2
3
4
5
6
7
0
50 100 150 200 250 300  
0
50 100 150 200 250 300  
SUPPLY VOLTAGE (V)  
TIME (µs)  
TIME (µs)  
Enable Current Threshold  
vs. Temperature  
Enable Voltage Threshold  
vs. Temperature  
Output Impedance  
1000  
100  
10  
35  
30  
25  
20  
15  
10  
5
1.6  
1.4  
1.2  
1
CIN = 2.2µF  
COUT = 4.7µF  
CIN = 2.2µF  
COUT = 4.7µF  
IL = 100µA  
IL = 1mA  
1
ON  
VEN = 5V  
0.1  
0.8  
0.6  
0.4  
OFF  
0.01  
0.001  
VEN = 2V  
IL = 100mA  
0
-5  
-60 -30  
0
30 60 90 120 150  
-60 -30  
0
30 60 90 120 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
3-127  
July 1998  
MIC5200  
Micrel  
Ripple  
vs. Frequency  
Ripple  
vs. Frequency  
Ripple  
vs. Frequency  
100  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
IL = 100µA  
IL = 1mA  
IL = 100mA  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Applications Information  
Thermal Considerations  
Part I. Layout  
External Capacitors  
The MIC5200-xxBM (8-pin surface mount package) has the  
following thermal characteristics when mounted on a single  
layer copper-clad printed circuit board.  
A 1µF capacitor is recommended between the MIC5200  
output and ground to prevent oscillations due to instability.  
Larger values serve to improve the regulator's transient re-  
sponse. Most types of tantalum or aluminum electrolytics will  
be adequate; film types will work, but are costly and therefore  
notrecommended.Manyaluminumelectrolyticshaveelectro-  
lytes that freeze at about –30°C, so solid tantalum capacitors  
are recommended for operation below –25°C. The important  
parameters of the capacitor are an effective series resistance  
of about 5or less and a resonant frequency above 500kHz.  
The value of this capacitor may be increased without limit.  
PC Board  
Dielectric  
FR4  
θJA  
160°C/W  
120°C/W  
Ceramic  
Multi-layer boards having a ground plane, wide traces near  
the pads, and large supply bus lines provide better thermal  
conductivity.  
The"worstcase"valueof160°C/Wassumesnogroundplane,  
At lower values of output current, less output capacitance is  
required for output stability. The capacitor can be reduced to  
0.47µF for current below 10mA or 0.33µF for currents below  
1 mA. A 1µF capacitor should be placed from the MIC5200  
input to ground if there is more than 10 inches of wire between  
the input and the AC filter capacitor or if a battery is used as  
the input.  
minimum trace widths, and a FR4 material board.  
Part II. Nominal Power Dissipation and Die Temperature  
The MIC5200-xxBM at a 25°C ambient temperature will  
operate reliably at up to 625mW power dissipation when  
mounted in the "worst case" manner described above. At an  
ambient temperature of 55°C, the device may safely dissipate  
440mW. These power levels are equivalent to a die tempera-  
ture of 125°C, the recommended maximum temperature for  
non-military grade silicon integrated circuits.  
The MIC5200 will remain stable and in regulation with no load  
in addition to the internal voltage divider, unlike many other  
voltageregulators. ThisisespeciallyimportantinCMOSRAM  
keep-alive applications.  
For MIC5200-xxBS (SOT-223 package) heat sink character-  
istics, please refer to Micrel Application Hint 17, “Calculating  
P.C. Board Heat Sink Area for Surface Mount Packages”.  
When used in dual supply systems where the regulator load  
is returned to a negative supply, the output voltage must be  
diode clamped to ground.  
50 mil  
ENABLE Input  
The MIC5200 features nearly zero OFF mode current. When  
the ENABLE input is held below 0.7V, all internal circuitry is  
powered off. Pulling this pin high (over 2.0V) re-enables the  
device and allows operation. The ENABLE pin requires a  
small amount of current, typically 15µA. While the logic  
threshold is TTL/CMOS compatible, ENABLE may be pulled  
as high as 30V, independent of the voltage on VIN.  
245 mil  
150 mil  
30 mil  
50 mil  
Minimum recommended board pad size, SO-8.  
July 1998  
3-128  

相关型号:

MIC5200-5.0BMM

100mA Low-Dropout Voltage Regulator Preliminary Information
MICREL

MIC5200-5.0BMT&R

Fixed Positive LDO Regulator, 5V, 0.35V Dropout, PDSO8, SOIC-8
MICROCHIP

MIC5200-5.0BS

100mA Low-Dropout Voltage Regulator Preliminary Information
MICREL

MIC5200-5.0BST&R

Fixed Positive LDO Regulator, 5V, 0.35V Dropout, PDSO4, SOT-223, 3 PIN
MICREL

MIC5200-5.0YM

100mA Low-Dropout Regulator
MICREL

MIC5200-5.0YMM

100mA Low-Dropout Regulator
MICREL

MIC5200-5.0YMM-TR

5V FIXED POSITIVE LDO REGULATOR, 0.35V DROPOUT, PDSO8
MICROCHIP

MIC5200-5.0YMMTR

5V FIXED POSITIVE LDO REGULATOR, 0.35V DROPOUT, PDSO8, LEAD FREE, MSOP-8
MICROCHIP

MIC5200-5.0YMTR

暂无描述
MICREL

MIC5200-5.0YS

100mA Low-Dropout Regulator
MICREL

MIC5200-5.0YS-TR

100 mA Low-Dropout Regulator
MICROCHIP

MIC5200-5.0YSTR

5V FIXED POSITIVE LDO REGULATOR, 0.35V DROPOUT, PDSO4, LEAD FREE, SOT-223, 3 PIN
MICROCHIP