MIC5208-5.0BMM [MICREL]

Dual 50mA LDO Voltage Regulator Preliminary Information; 双50毫安LDO稳压器的初步信息
MIC5208-5.0BMM
型号: MIC5208-5.0BMM
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Dual 50mA LDO Voltage Regulator Preliminary Information
双50毫安LDO稳压器的初步信息

稳压器
文件: 总6页 (文件大小:58K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5208  
Dual 50mA LDO Voltage Regulator  
Preliminary Information  
General Description  
Features  
The MIC5208 is a dual linear voltage regulator with very low • Micrel Mini 8™ MSOP package  
dropout voltage (typically 20mV at light loads and 250mV at • Guaranteed 50mA output  
50mA), very low ground current (225µA at 10mA output), and • Low quiescent current  
better than 3% initial accuracy. It also features individual • Low dropout voltage  
logic-compatible enable/shutdown control inputs.  
• Wide selection of output voltages  
• Tight load and line regulation  
• Low temperature coefficient  
• Current and thermal limiting  
• Reversed input polarity protection  
• Zero off-mode current  
Designed especially for hand-held battery powered devices,  
the MIC5208 can be switched by a CMOS or TTL compatible  
logic signal, or the enable pin can be connected to the supply  
input for 3-terminal operation. When disabled, power con-  
sumption drops nearly to zero. Dropout ground current is  
minimized to prolong battery life.  
• Logic-controlled electronic enable  
Key features include current limiting, overtemperature shut-  
down, and protection against reversed battery.  
Applications  
The MIC5208 is available in 3.0V, 3.3V, 3.6V, 4.0V and 5.0V  
fixed voltage configurations. Other voltages are available;  
contact Micrel for details.  
• Cellular telephones  
• Laptop, notebook, and palmtop computers  
• Battery powered equipment  
• Bar code scanners  
• SMPS post regulator/dc-to-dc modules  
• High-efficiency linear power supplies  
Ordering Information  
Part Number  
Voltage  
3.0  
Accuracy Junction Temp. Range*  
Package  
MIC5208-3.0BMM  
MIC5208-3.3BMM  
MIC5208-3.6BMM  
MIC5208-4.0BMM  
MIC5208-5.0BMM  
3%  
3%  
3%  
3%  
3%  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
8-lead MSOP  
8-lead MSOP  
8-lead MSOP  
8-lead MSOP  
8-lead MSOP  
3.3  
3.6  
4.0  
5.0  
Other voltages available. Contact Micrel for details.  
Typical Application  
MIC5208  
1
2
3
4
8
7
6
5
Output A  
Output B  
Enable A  
Enable B  
1µF  
1µF  
Enable may be connected to V  
IN  
3-168  
1997  
MIC5208  
Micrel  
Pin Configuration  
1
2
3
4
8
7
6
5
OUTA  
GND  
INA  
ENA  
INB  
OUTB  
GND  
ENB  
MIC5208BMM  
Pin Description  
Pin Number  
Pin Name  
OUTA  
GND  
Pin Function  
1
2, 4  
3
Regulator Output A  
Ground: Both pins must be connected together.  
Regulator Output B  
OUTB  
ENB  
5
Enable/Shutdown B (Input): CMOS compatible input. Logic high = enable,  
logic low or open = shutdown. Do not leave floating.  
3
6
7
INB  
Supply Input B  
ENA  
Enable/Shutdown A (Input): CMOS compatible input. Logic high = enable,  
logic low or open = shutdown. Do not leave floating.  
8
INA  
Supply Input A  
1997  
3-169  
MIC5208  
Micrel  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Supply Input Voltage (V ) ............................ –20V to +20V Supply Input Voltage (V ) ............................... 2.5V to 16V  
IN  
IN  
Enable Input Voltage (V ) ........................... –20V to +20V Enable Input Voltage (V ) ................................. 0V to 16V  
EN  
EN  
Power Dissipation (P ) ............................ Internally Limited  
Junction Temperature (T ) ....................... –40°C to +125°C  
D
J
Storage Temperature Range ................... –60°C to +150°C 8-lead MSOP ) ................................................... Note 1  
JA  
Lead Temperature (soldering, 5 sec.) ....................... 260°C  
Electrical Characteristics  
VIN = VOUT + 1V; IL = 1mA; CL = 1µF, and VEN 2.0V; TJ = 25°C, bold values indicate –40°C to +125°C;  
for one-half of dual MIC5208; unless noted.  
Symbol  
Parameter  
Conditions  
Min Typical Max  
Units  
VO  
Output Voltage  
Accuracy  
variation from nominal VOUT  
–3  
–4  
3
4
%
%
VO/T  
VO/VO  
VO/VO  
Output Voltage  
Temperature Coeffcient  
Note 2  
50  
200 ppm/°C  
Line Regulation  
VIN = VOUT +1V to 16V  
IL = 0.1mA to 50mA, Note 3  
0.008  
0.08  
0.3  
0.5  
%
%
Load Regulation  
0.3  
0.5  
%
%
V
IN – VO  
Dropout Voltage, Note 4  
IL = 100µA  
IL = 20mA  
IL = 50mA  
20  
200  
250  
mV  
mV  
mV  
350  
500  
IQ  
Quiescent Current  
VEN 0.4V (shutdown)  
0.01  
10  
µA  
IGND  
Ground Pin Current  
Note 5  
V
EN 2.0V (enabled), IL = 100µA  
180  
225  
850  
µA  
µA  
µA  
IL = 20mA  
IL = 50mA  
750  
1200  
IGNDDO  
Ground Pin Current at Dropout  
Current Limit  
VIN = 0.5V less than designed VOUT, Note 5  
200  
180  
0.05  
300  
250  
µA  
mA  
ILIMIT  
VOUT = 0V  
VO/PD  
Control Input  
Thermal Regulation  
Note 6  
%/W  
Input Voltage Level  
Logic Low  
Logic High  
VIL  
VIH  
shutdown  
enabled  
0.6  
V
V
2.0  
IIL  
IIH  
Control Input Current  
V
V
IL 0.6V  
IH 2.0V  
0.01  
15  
1
50  
µA  
µA  
General Note: Devices are ESD protected, however, handling precautions are recommended.  
Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when  
operating the device outside of its rated operating conditions. The maximum allowable power dissipation is a function of the maximum  
junction temperature, T  
, the junction-to-ambient thermal resistance, θ , and the ambient temperature, T . The maximum allowable  
J(max)  
JA  
A
power dissipation at any ambient temperature is calculated using: P  
= (T  
– T ) / θ . Exceeding the maximum allowable power  
MAX  
J(max)  
A
JA  
dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. θ of the 8-lead MSOP is 200°C/W,  
JA  
mounted on a PC board.  
Note 2: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.  
Note 3: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects  
are covered by the thermal regulation specification.  
Note 4: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V  
differential.  
Note 5: Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of  
the load current plus the ground pin current.  
Note 6: Thermal regulation is defined as the change in output voltage at a time “t” after a change in power dissipation is applied, excluding load or line  
regulation effects. Specifications are for a 50mA load pulse at V = 16V for t = 10ms.  
IN  
3-170  
1997  
MIC5208  
Micrel  
Typical Characteristics  
Dropout Voltage  
vs. Temperature  
Dropout Characteristics  
(MIC5208-3.3)  
Dropout Voltage  
vs. Output Current  
1000  
400  
300  
200  
100  
0
4
3
2
1
0
CIN = 10µF  
OUT = 1µF  
CIN = 10µF  
OUT = 1µF  
C
C
IL = 100µA  
100  
10  
1
IL = 50mA  
IL = 50mA  
IL = 100µA  
IL = 1mA  
CIN = 10µF  
C
OUT = 1µF  
0.01  
0.1  
1
10  
100  
-60 -30  
0
30 60 90 120 150  
0
1
2
3
4
5
6
7
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Ground Current  
vs. Supply Voltage  
Ground Current  
vs. Temperature  
Ground Current  
vs. Output Current  
2000  
1500  
1000  
500  
0
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
CIN = 10µF  
OUT = 1µF  
IL = 50mA  
C
3
VOUT = 3.3V  
IL = 100µA  
IL = 50mA  
IL = 100µA  
VIN = VOUT + 1V  
0
10 20 30 40 50 60 70 80  
OUTPUT CURRENT (mA)  
0
1
2
3
4
5
6
7
-60 -30  
0
30 60 90 120 150  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Output Voltage  
vs. Output Current  
Short Circuit Current  
vs. Input Voltage  
Thermal Regulation  
(MIC5208-3.3)  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
160  
140  
120  
100  
80  
60  
40  
20  
0
-20  
-40  
CIN = 10µF  
OUT = 1µF  
C
-6  
100  
60  
50  
0
CIN = 10µF  
40  
C
OUT = 1µF  
20  
CL = 1µF  
0
-50  
-2  
0
50  
100  
150  
200  
0
1
2
3
4
5
6
7
0
2
4
6
8
10 12 14 16  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
TIME (ms)  
Output Voltage  
vs. Temperature  
Short Circuit Current  
vs. Temperature  
Minimum Supply Voltage  
vs. Temperature  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
200  
180  
160  
140  
120  
100  
3.5  
3.4  
3.3  
CIN = 10µF  
C
OUT = 1µF  
IL = 1mA  
V
= 3.3V  
OUT  
CIN = 10µF  
3 DEVICES  
C
OUT = 1µF  
HI / AVG / LO  
CIN = 10µF  
OUT = 1µF  
CURVES APPLICABLE  
C
AT 100µA AND 50mA  
-60 -30  
0
30 60 90 120 150  
-60 -30  
0
30 60 90 120 150  
-60 -30  
0
30 60 90 120 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1997  
3-171  
MIC5208  
Micrel  
Typical Characteristics  
Output Impedance  
Load Transient  
Load Transient  
1000  
200  
0
100  
0
100  
IL = 100µA  
COUT = 10µF  
COUT = 1µF  
IN = VOUT + 1  
-200  
-1400  
50  
-100  
-1200  
50  
V
IN = VOUT + 1  
10  
V
IL = 1mA  
1
IL = 50mA  
0.1  
0
0
0.01  
-50  
-1  
-50  
-5  
0
1
2
3
4
5
6
7
8
0
5
10  
15  
20  
TIME (ms)  
TIME (ms)  
FREQUENCY (Hz)  
Ripple Voltage  
vs. Frequency  
Line Transient  
(MIC5208-3.3)  
Line Transient  
(MIC5208-3.3)  
100  
3
2
2
1
CL = 1µF  
CL = 11µF  
I
L = 1mA  
80  
60  
1
I
L = 1mA  
0
0
-1  
-28  
-81  
6
40  
IL = 100µA  
6
4
2
CL = 1µF  
20  
0
4
V
IN = VOUT + 1  
2
-0.2 0.0 0.2 0.4 0.6 0.8 1.0  
TIME (ms)  
-0.2 0.0 0.2 0.4 0.6 0.8 1.0  
TIME (ms)  
FREQUENCY (Hz)  
Ripple Voltage  
vs. Frequency  
Enable Characteristics  
(MIC5208-3.3)  
Enable Characteristics  
(MIC5208-3.3)  
100  
80  
60  
40  
20  
0
4.0  
5
4
3
2
1
0
3.0  
2.0  
1.0  
0.0  
-1.40  
CL = 1µF  
L = 100µA  
CL = 1µF  
I
IL = 100µA  
-41  
IL = 1mA  
L = 1µF  
IN = VOUT + 1  
2
0
2
0
C
V
-2  
-2  
-2  
0
2
4
6
8
10  
-0.2 0.0 0.2 0.4 0.6 0.8 1.0  
TIME (ms)  
TIME (µs)  
FREQUENCY (Hz)  
Enable Voltage  
vs. Temperature  
Enable Current  
vs. Temperature  
Ripple Voltage  
vs. Frequency  
1.50  
1.25  
1.00  
0.75  
0.50  
40  
100  
80  
60  
40  
20  
0
CIN = 10µF  
OUT = 1µF  
L = 1mA  
CIN = 10µF  
OUT = 1µF  
IL = 1mA  
C
C
30  
20  
10  
0
I
VEN = 5V  
VON  
VOFF  
IL = 50mA  
L = 1µF  
IN = VOUT + 1  
VEN = 2V  
C
V
-60 -30  
0
30 60 90 120 150  
-60 -30  
0
30 60 90 120 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
3-172  
1997  
MIC5208  
Micrel  
No-Load Stability  
Applications Information  
The MIC5208 will remain stable and in regulation with no load  
(other than the internal voltage divider) unlike many other  
voltageregulators. ThisisespeciallyimportantinCMOSRAM  
keep-alive applications.  
Supply/Ground  
Both MIC5208 GND pins must be connected to the same  
ground potential. INA and INB can each be connected to a  
different supply.  
Thermal Shutdown  
Enable/Shutdown  
Thermal shutdown is independent on both halves of the dual  
MIC5208, however, an overtemperature condition in one half  
may affect the other half because of proximity.  
ENA (enable/shutdown) and ENB may be enabled sepa-  
rately. Forcing ENA/B high (> 2V) enables the associated  
regulator. ENA/B requires a small amount of current, typically  
15µA. While the logic threshold is TTL/CMOS compatible,  
Thermal Considerations  
Multilayer boards having a ground plane, wide traces near the  
pads, and large supply bus lines provide better thermal  
conductivity.  
ENA/B may be forced as high as 20V, independent of V .  
IN  
Input Capacitor  
A 0.1µF capacitor should be placed from IN to GND if there is  
more than 10 inches of wire between the input and the ac filter  
capacitor or if a battery is used as the input.  
The MIC5208-xxBMM (8-lead MSOP) has a thermal resis-  
tance of 200°C/W when mounted on a FR4 board with  
minimum trace widths and no ground plane.  
Output Capacitor  
PC Board  
Dielectric  
θJA  
An output capacitor is required between OUT and GND to  
prevent oscillation. Larger values improve the regulator’s  
transient response. The output capacitor value may be in-  
creased without limit.  
FR4  
200°C  
MSOP Thermal Characteristics  
3
The output capacitor should have an ESR (effective series  
resistance) of about 5or less and a resonant frequency  
above 500kHz. Most tantalum or aluminum electrolytic ca-  
pacitors are adequate; film types will work, but are more  
expensive. Since many aluminum electrolytics have electro-  
lytes that freeze at about –30°C, solid tantalums are recom-  
mended for operation below –25°C.  
For additional heat sink characteristics, please refer to Micrel  
Application Hint 17, “Calculating P.C. Board Heat Sink Area  
For Surface Mount Packages”.  
At lower values of output current, less output capacitance is  
required for output stability. The capacitor can be reduced to  
0.22µF for current below 10mA or 0.1µF for currents below  
1mA.  
1997  
3-173  

相关型号:

MIC5208-5.0BMMT&R

Fixed Positive LDO Regulator, PDSO8, MINI, MSOP-8
MICROCHIP

MIC5209

500mA Low-Noise LDO Regulator
MICREL

MIC5209-1.8BM

500mA Low-Noise LDO Regulator
MICREL

MIC5209-1.8BM

Fixed Positive LDO Regulator, 2.5V, 0.6V Dropout, BIPolar, PDSO8, SOIC-8
MICROCHIP

MIC5209-1.8BMT&R

Fixed Positive LDO Regulator, 2.5V, 0.6V Dropout, PDSO8, SOIC-8
MICROCHIP

MIC5209-1.8YM

500mA Low-Noise LDO Regulator
MICREL

MIC5209-1.8YM-TR

IC REG LDO 1.8V 0.5A 8SOIC
MICROCHIP

MIC5209-1.8YU

500mA Low-Noise LDO Regulator
MICREL

MIC5209-1.8YU

2.5V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PSSO5
MICROCHIP

MIC5209-1.8YUTR

暂无描述
MICREL

MIC5209-1.8YUTR

2.5V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PSSO5, LEAD FREE, TO-263, 5 PIN
MICROCHIP

MIC5209-2.5BM

500mA Low-Noise LDO Regulator
MICREL