MIC5212 [MICREL]

Dual 500mA LDO Regulator; 双500毫安LDO稳压器
MIC5212
型号: MIC5212
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Dual 500mA LDO Regulator
双500毫安LDO稳压器

稳压器
文件: 总9页 (文件大小:173K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5212  
Dual 500mA LDO Regulator  
Final  
General Description  
Features  
The MIC5212 is a dual linear voltage regulator with very-low  
dropout voltage (typically 10mV at light loads and 350mV at  
500mA), very-low ground current (225µA at 10mA output),  
and better than 1% initial accuracy.  
Fused lead frame SOIC-8  
Up to 500mA per regulator output  
Low quiescent current  
Low dropout voltage  
Tight load and line regulation  
Low temperature coefficient  
Current and thermal limiting  
Reversed input polarity protection  
Both regulator outputs can supply up to 500mA at the same  
time as long as each regulator’s maximum junction tempera-  
ture is not exceeded.  
Key features include current limiting, overtemperature shut-  
down, and protection against reversed battery.  
Applications  
The MIC5212 is available in a fixed 3.3V/2.5V output voltage  
configuration. Othervoltagesareavailable;contactMicrelfor  
details.  
Hard disk drives  
CD R/W  
Bar code scanners  
SMPS post regulator/DC-to-DC modules  
High-efficiency linear power supplies  
Ordering Information  
Part Number  
Voltage Accuracy Junction Temp. Range*  
Package  
8-lead SOIC  
MIC5212-SJBM  
3.3V/2.5V  
1.0%  
40°C to +125°C  
Other voltages available. Contact Micrel for details.  
Typical Application  
MIC5212-SJBM  
VO1 = 3.3V  
VO2 = 2.5V  
IN = 5V  
4.7µF  
INA OUTA  
INB  
OUTB  
GND  
4.7µF 4.7µF  
3.3V/2.5V Dual LDO  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com  
April 2003  
1
MIC5212  
MIC5212  
Micrel  
Pin Configuration  
SOIC-8 (M)  
Pin Description  
Pin Number  
Pin Name  
OUTA  
INA  
Pin Function  
1
Regulator A Output  
Regulator A Input  
Regulator B Input  
Regulator B Output  
Ground  
2
3
4
INB  
OUTB  
GND  
5, 6, 7, 8  
MIC5212  
2
April 2003  
MIC5212  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Input Voltage (V A or B) ................. 20V to +20V  
Supply Input Voltage (V ) ............................... 2.5V to 16V  
IN  
IN  
Power Dissipation (P ) ............................ Internally Limited  
Junction Temperature (T ) ....................... 40°C to +125°C  
D
J
Storage Temperature Range ................... 60°C to +150°C  
Lead Temperature (soldering, 5 sec.) ....................... 260°C  
Thermal Resistance )......................................... Note 3  
JA  
Electrical Characteristics  
Regulator A and B VIN = VOUT + 1V; IL = 100µA; CL = 4.7µF; TJ = 25°C, bold values indicate 40°C TJ +125°C; unless noted.  
Symbol  
Parameter  
Conditions  
Min Typical Max  
Units  
VO  
Output Voltage Accuracy  
variation from specified VOUT  
1  
2  
1
2
%
%
VO/T  
VO/VO  
VO/VO  
Output Voltage  
Temperature Coefficient  
Note 4  
40  
ppm/°C  
Line Regulation  
VIN = VOUT + 1V to 16V  
IL = 0.1mA to 500mA, Note 5  
0.009  
0.05  
0.05  
0.1  
% / V  
% / V  
Load Regulation  
0.7  
1.0  
%
%
VIN VO  
Dropout Voltage, Note 6  
(per regulator)  
IL = 150mA  
IL = 500mA  
175  
350  
275  
350  
500  
600  
mV  
mV  
mV  
mV  
IGND  
Ground Pin Current, Note 7  
(per regulator)  
IL = 150mA  
IL = 500mA  
1.5  
12  
2.5  
3.0  
20  
mA  
mA  
mA  
mA  
25  
PSRR  
ILIMIT  
Ripple Rejection  
Current Limit  
f = 120Hz, IL = 150mA  
75  
dB5  
mA  
VOUT = 0V  
750  
500  
1000  
Spectral Noise Density  
VOUT = 2.5V, IOUT = 50mA, COUT = 2.2µF  
nV/Hz  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when  
operating the device outside of its operating ratings. The maximum allowable power dissipation is a function of the maximum junction  
temperature, T  
, the junction-to-ambient thermal resistance, θ , and the ambient temperature, T . The maximum allowable power  
J(max)  
JA  
A
dissipation at any ambient temperature is calculated using: P  
= (T  
T ) ÷ θ . Exceeding the maximum allowable power dissipa-  
D(max)  
J(max)  
A
JA  
tion will result in excessive die temperature, and the regulator will go into thermal shutdown. The θ of the 8-lead SOIC (M) is 63°C/W  
JA  
mounted on a PC board (see Thermal Considerationssection for further details).  
Note 4. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.  
Note 5. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load  
range from 0.1mA to 500mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.  
Note 6. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V  
differential.  
Note 7. Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of  
the load current plus the ground pin current.  
April 2003  
3
MIC5212  
MIC5212  
Micrel  
Typical Characteristics  
MIC5212-3.3 PSRR  
MIC5212 PSRR  
500mA Load  
MIC5212-2.5 PSRR  
150mA Load  
150mA Load  
90  
90  
90  
80  
70  
60  
50  
40  
30  
20 C  
80  
70  
60  
50  
40  
80  
70  
60  
50  
40  
30  
20 C  
30 500mA  
20 C  
OUT = 10µF Tantulum  
VIN = 4.3V  
OUT = 10µF Tantulum  
VIN = 4.3V  
OUT = 10µF Tantulum  
VIN = 4.3V  
10 VOUT = 3.3V  
VIN = VOUT + 1V  
0
10 VOUT = 3.3V  
VIN = VOUT + 1V  
0
10 VOUT = 3.3V  
VIN = VOUT + 1V  
0
10  
1k  
10  
10  
10k  
100  
100k 1M  
100  
100k 1M  
100  
1k  
100k 1M  
10k  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
MIC5212-2.5 PSRR  
500mA Load  
Ground Current  
vs. Temperature  
S/C Current  
vs. Temperature  
90  
14  
800  
80  
70  
60  
50  
40  
30  
20  
10  
0
500mA  
700  
600  
500  
400  
300  
200  
100  
0
12  
10  
8
6
300mA  
4
COUT = 10µF Tantulum  
IN = 4.3V  
VOUT = 3.3V  
IN = VOUT + 1V  
V
2
150mA  
100µA  
20 40 60 80 100 120  
V
0
-40 -20  
0
-40 -20  
0
20 40 60 80 100 120  
10  
100  
1k  
10k 100k 1M  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Output Voltage  
vs. Temperature  
Dropout Voltage  
vs. Temperature  
Dropout Voltage  
vs. Load Current  
3.320  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
350  
300  
250  
200  
150  
100  
50  
500mA  
300mA  
150mA  
0
0
-40 -20  
0
20 40 60 80 100 120  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
Ground Current  
vs. Load  
14  
12  
10  
8
6
4
2
0
0
100 200 300 400 500  
OUTPUT CURRENT (mA)  
MIC5212  
4
April 2003  
MIC5212  
Micrel  
Output 1 Load Transient Response  
Output 2 Load Transient Response  
500mA  
500mA  
10mA  
10mA  
TIME (1ms/div.)  
TIME (1ms/div.)  
Output 1 Line Transient Response  
Line Transient Response  
7V  
6V  
4.3V  
3.5V  
TIME (1ms/div.)  
TIME (1ms/div.)  
Turn-On Response  
3.3V, 500mA  
2.5V, 200mA  
TIME (40µs/div.)  
April 2003  
5
MIC5212  
MIC5212  
Micrel  
Functional Diagram  
MIC5212  
6
April 2003  
MIC5212  
Micrel  
Lower thermal resistance is achieved by joining the four  
ground leads with the die attach paddle to create a single-  
piece electrical and thermal conductor. This concept has  
been used by MOSFET manufacturers for years, proving  
very reliable and cost effective for the user.  
Applications Information  
Input Capacitor  
A 1µF capacitor should be placed from IN to GND if there is  
more than 10 inches of wire between the input and the AC  
filter capacitor or if a battery is used as the input.  
Thermal resistance consists of two main elements, θ  
JC  
Output Capacitor  
(junction-to-casethermalresistance)andθ (case-to-ambi-  
CA  
ent thermal resistance). See Figure 1. θ is the resistance  
An output capacitor is required between OUT and GND to  
prevent oscillation. 1.0µF minimum is recommended. Larger  
values improve the regulators transient response. The out-  
put capacitor value may be increased without limit.  
JC  
from the die to the leads of the package. θ is the resistance  
CA  
from the leads to the ambient air and it includes θ (case-to-  
CS  
sink thermal resistance) and θ (sink-to-ambient thermal  
SA  
resistance).  
The output capacitor should have an ESR (Effective Series  
Resistance) of about 5or less and a resonant frequency  
above 1MHz. Ultra-low-ESR capacitors may cause a low-  
amplitudeoscillationand/orunderdampedtransientresponse.  
Most tantalum or aluminum electrolytic capacitors are ad-  
equate; film types will work, but are more expensive. Since  
many aluminum electrolytic capacitors have electrolytes that  
freeze at about 30°C, solid tantalum capacitors are recom-  
mended for operation below 25°C.  
SO-8  
θJA  
At lower values of output current, less output capacitance is  
required for output stability. The capacitor can be reduced to  
0.47µF for current below 10mA or 0.33µF for currents below  
1mA.  
ground plane  
heat sink area  
θJC  
θCA  
AMBIENT  
printed circuit board  
No-Load Stability  
Figure 1. Thermal Resistance  
TheMIC5212willremainstableandinregulationwithnoload  
(other than the internal voltage divider) unlike many other  
voltage regulators. This is especially important in CMOS  
RAM keep-alive applications.  
Using the power SO-8 reduces the θ dramatically and  
JC  
allows the user to reduce θ . The total thermal resistance,  
CA  
θ
(junction-to-ambient thermal resistance) is the limiting  
JA  
Dual-Supply Operation  
factor in calculating the maximum power dissipation capabil-  
ity of the device. Typically, the power SO-8 has a θ of  
20°C/W, this is significantly lower than the standard SO-8  
When used in dual supply systems where the regulator load  
is returned to a negative supply, the output voltage must be  
diode clamped to ground.  
JC  
which is typically 75°C/W. θ  
is reduced because pins 5  
CA  
through 8 can now be soldered directly to a ground plane  
which significantly reduces the case-to-sink thermal resis-  
tance and sink to ambient thermal resistance.  
Power SO-8 Thermal Characteristics  
One of the secrets of the MIC5212s performance is its power  
SO-8 package featuring half the thermal resistance of a  
standard SO-8 package. Lower thermal resistance means  
more output current or higher input voltage for a given  
package size.  
April 2003  
7
MIC5212  
MIC5212  
Micrel  
Quick Method  
Low dropout linear regulators from Micrel are rated to a  
maximum junction temperature of 125°C. It is important not  
to exceed this maximum junction temperature during opera-  
tionofthedevice.Topreventthismaximumjunctiontempera-  
ture from being exceeded, the appropriate ground plane heat  
sink must be used.  
Determine the power dissipation requirements for the design  
along with the maximum ambient temperature at which the  
device will be operated. Refer to Figure 3, which shows safe  
operating curves for three different ambient temperatures:  
25°C, 50°C and 85°C. From these curves, the minimum  
amount of copper can be determined by knowing the maxi-  
mum power dissipation required. If the maximum ambient  
temperature is 50°C and the power dissipation is as above,  
920mW, the curve in Figure 3 shows that the required area of  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2
copper is 500mm .  
The θ of this package is ideally 63°C/W, but it will vary  
JA  
depending upon the availability of copper ground plane to  
which it is attached.  
900  
0
0.25 0.50 0.75 1.00 1.25 1.50  
POWER DISSIPATION (W)  
T
= 125°C  
85°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
J
50°C 25°C  
Figure 2. Copper Area vs. Power-SO  
Power Dissipation (∆T  
)
JA  
Figure 2 shows copper area versus power dissipation with  
each trace corresponding to a different temperature rise  
above ambient.  
From these curves, the minimum area of copper necessary  
for the part to operate safely can be determined. The maxi-  
mum allowable temperature rise must be calculated to deter-  
mine operation along which curve.  
0
0.25 0.50 0.75 1.00 1.25 1.50  
POWER DISSIPATION (W)  
Figure 3. Copper Area vs. Power-SO  
Power Dissipation (T )  
A
T = T  
T  
A(max)  
J(max)  
T
= 125°C  
J(max)  
T
= maximum ambient operating temperature  
A(max)  
Forexample, themaximumambienttemperatureis50°C, the  
T is determined as follows:  
T = 125°C 50°C  
T = 75°C  
Using Figure 2, the minimum amount of required copper can  
be determined based on the required power dissipation.  
Power dissipation in a linear regulator is calculated as fol-  
lows:  
P = (V  
V  
V  
) × I  
) × I  
+ V  
+ V  
× I  
× I  
D
IN1  
OUT1  
OUT2  
OUT1  
OUT2  
IN1  
IN2  
GND1  
+ (V  
IN2  
GND2  
Withacommon5Vinput,a3.3V,300mAoutputonLDO1and  
a 2.5V, 150mA output on LDO 2, power dissipation is as  
follows:  
P = (5V 3.3V) × 300mA + 5V × 5mA  
D
+ (5V 2.5V) × 150mA + 5V × 1.8mA  
P = 0.919W  
D
From Figure 2, the minimum amount of copper required to  
2
operate this application at a T of 75°C is 500mm .  
MIC5212  
8
April 2003  
MIC5212  
Micrel  
Package Information  
0.026 (0.65)  
MAX)  
PIN 1  
0.157 (3.99)  
0.150 (3.81)  
DIMENSIONS:  
INCHES (MM)  
0.020 (0.51)  
0.013 (0.33)  
0.050 (1.27)  
TYP  
45°  
0.0098 (0.249)  
0.0040 (0.102)  
0.010 (0.25)  
0.007 (0.18)  
0°8°  
0.197 (5.0)  
0.189 (4.8)  
0.050 (1.27)  
0.016 (0.40)  
SEATING  
PLANE  
0.064 (1.63)  
0.045 (1.14)  
0.244 (6.20)  
0.228 (5.79)  
8-Pin SOIC (M)  
MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchasers  
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchasers own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2003 Micrel, Incorporated.  
April 2003  
9
MIC5212  

相关型号:

MIC5212-SJBM

Dual 500mA LDO Regulator
MICREL

MIC5212-SJBM

Fixed Positive LDO Regulator, 2 Output, 3.3V1, 2.5V2, PDSO8, SOIC-8
MICROCHIP

MIC5212-SJBMTR

暂无描述
MICREL

MIC5212-SJBMTR

Fixed Positive LDO Regulator, 2 Output, 3.3V1, 2.5V2, PDSO8, SOIC-8
MICROCHIP

MIC5212-SJYM

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO8
MICROCHIP

MIC5212-SJYM-TR

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO8
MICROCHIP

MIC5212-SJYMTR

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PDSO8, LEAD FREE, SOIC-8
MICROCHIP

MIC5213

Teeny⑩ SC-70 レCap Low-Dropout Regulator Advance Information
MICREL

MIC5213-2.5BC5

Teeny⑩ SC-70 レCap Low-Dropout Regulator Advance Information
MICREL

MIC5213-2.5BC5TR

Fixed Positive LDO Regulator, 2.5V, 0.6V Dropout, PDSO5, SC-70, 5 PIN
MICROCHIP

MIC5213-2.5YC5

Teeny SC-70 μCap Low-Dropout Regulator
MICREL

MIC5213-2.5YC5

2.5V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PDSO5
MICROCHIP