MIC5310-SJYML [MICREL]

Dual 150mA μCap LDO in 2mm x 2mm MLF?; 双150毫安μCap LDO采用2mm x 2mm MLF ?
MIC5310-SJYML
型号: MIC5310-SJYML
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Dual 150mA μCap LDO in 2mm x 2mm MLF?
双150毫安μCap LDO采用2mm x 2mm MLF ?

文件: 总11页 (文件大小:346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC5310  
Dual 150mA µCap LDO in 2mm x 2mm MLF®  
General Description  
Features  
The MIC5310 is a tiny Dual Ultra Low Dropout  
(ULDO™) linear regulator ideally suited for portable  
electronics due to its high power supply ripple  
rejection (PSRR) and ultra low output noise. The  
MIC5310 integrates two high-performance 150mA  
ULDOs into a tiny 2mm x 2mm leadless MLF®  
package, which provides exceptional thermal package  
characteristics.  
2.3V to 5.5V input voltage range  
Ultra-low dropout voltage ULDO™ 35mV @ 150mA  
High PSRR - >70dB @ 1KHz  
Ultra-low output noise: 30µVRMS  
±2% initial output accuracy  
Tiny 8-pin 2mm x 2mm MLF® leadless package  
Excellent Load/Line transient response  
Fast start up time: 30µs  
The MIC5310 is a µCap design which enables  
operation with very small ceramic output capacitors  
for stability, thereby reducing required board space  
and component cost. The combination of extremely  
low-drop-out voltage, high power supply rejection and  
exceptional thermal package characteristics makes it  
ideal for powering RF/noise sensitive circuitry, cellular  
phone camera modules, imaging sensors for digital  
still cameras, PDAs, MP3 players and WebCam  
applications  
µCap stable with 1µF ceramic capacitor  
Thermal shutdown protection  
Low quiescent current: 75µA per output  
Current limit protection  
Applications  
Mobile phones  
The MIC5310 ULDO™ is available in fixed-output  
voltages in the tiny 8-pin 2mm x 2mm leadless MLF®  
package which occupies less than half the board area  
of a single SOT-6 package. Additional voltage options  
are available. For more information, contact Micrel  
marketing department.  
PDAs  
GPS receivers  
Portable electronics  
Portable media players  
Digital still and video cameras  
Data sheets and support documentation are found on  
the Micrel web site www.micrel.com.  
Typical Application  
ULDO is a trademark of Micrel, Inc.  
MLF and MicroLeadFrame are registered trademarks of Amkor Technology, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-032411-C  
March 2011  
Micrel, Inc.  
MIC5310  
RF Power Supply Circuit  
Block Diagram  
MIC5310 Fixed Block Diagram  
2
M9999-032411-C  
March 2011  
Micrel, Inc.  
MIC5310  
Ordering Information  
Functional  
Part number  
Ordering  
Part Number  
Junction  
Temperature Range  
2
Marking1  
GFZ  
GGZ  
GWZ  
JGZ  
JJZ  
VOUT1/VOUT2  
Package3  
MIC5310-1.8/1.5YML  
MIC5310-1.8/1.8YML  
MIC5310-1.8/1.6YML  
MIC5310-2.5/1.8YML  
MIC5310-2.5/2.5YML  
MIC5310-2.6/1.85YML  
MIC5310-2.6/1.8YML  
MIC5310-2.7/2.7YML  
MIC5310-2.8/1.5YML  
MIC5310-2.8/1.8YML  
MIC5310-2.8/2.6YML  
MIC5310-2.8/2.8YML  
MIC5310-2.85/1.85YML  
MIC5310-2.85/2.6YML  
MIC5310-2.85/2.85YML  
MIC5310-2.9/1.5YML  
MIC5310-2.9/1.8YML  
MIC5310-2.9/2.9YML  
MIC5310-3.0/1.8YML  
MIC5310-3.0/2.5YML  
MIC5310-3.0/2.6YML  
MIC5310-3.0/2.8YML  
MIC5310-3.0/2.85YML  
MIC5310-3.0/3.0YML  
MIC5310-3.3/1.5YML  
MIC5310-3.3/1.8YML  
MIC5310-3.3/2.5YML  
MIC5310-3.3/2.6YML  
MIC5310-3.3/2.8YML  
MIC5310-3.3/2.85YML  
MIC5310-3.3/2.9YML  
MIC5310-3.3/3.0YML  
MIC5310-3.3/3.2YML  
MIC5310-3.3/3.3YML  
MIC5310-GFYML  
MIC5310-GGYML  
MIC5310-GWYML  
MIC5310-JGYML  
MIC5310-JJYML  
MIC5310-KDYML  
MIC5310-KGYML  
MIC5310-LLYML  
MIC5310-MFYML  
MIC5310-MGYML  
MIC5310-MKYML  
MIC5310-MMYML  
MIC5310-NDYML  
MIC5310-NKYML  
MIC5310-NNYML  
MIC5310-OFYML  
MIC5310-OGYML  
MIC5310-OOYML  
MIC5310-PGYML  
MIC5310-PJYML  
MIC5310-PKYML  
MIC5310-PMYML  
MIC5310-PNYML  
MIC5310-PPYML  
MIC5310-SFYML  
MIC5310-SGYML  
MIC5310-SJYML  
MIC5310-SKYML  
MIC5310-SMYML  
MIC5310-SNYML  
MIC5310-SOYML  
MIC5310-SPYML  
MIC5310-SRYML  
MIC5310-SSYML  
1.8V/1.5V  
1.8V/1.8V  
1.8V/1.6V  
2.5V/1.8V  
2.5V/2.5V  
2.6V/1.85  
2.6V/1.8V  
2.7V/2.7V  
2.8V/1.5V  
2.8V/1.8V  
2.8V/2.6V  
2.8V/2.8V  
2.85V/1.85V  
2.85V/2.6V  
2.85V/2.85V  
2.9V/1.5V  
2.9V/1.8V  
2.9V/2.9V  
3.0V/1.8V  
3.0V/2.5V  
3.0V/2.6V  
3.0V/2.8V  
3.0V/2.85V  
3.0V/3.0V  
3.3V/1.5V  
3.3V/1.8V  
3.3V/2.5V  
3.3V/2.6V  
3.3V/2.8V  
3.3V/2.85V  
3.3V/2.9V  
3.3V/3.0V  
3.3V/3.2V  
3.3V/3.3V  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
8-Pin 2x2 MLF®  
KDZ  
KGZ  
LLZ  
MFZ  
MGZ  
MKZ  
MMZ  
NDZ  
NKZ  
NNZ  
OFZ  
OGZ  
OOZ  
PGZ  
PJZ  
PKZ  
PMZ  
PNZ  
PPZ  
SFZ  
SGZ  
SJZ  
SKZ  
SMZ  
SNZ  
SOZ  
SPZ  
SRZ  
SSZ  
Notes:  
1. Over bar symbol ( ¯ ) may not be to scale. Over bar at Pin 1.  
2. Other voltage options available. Contact Micrel for more details.  
3. MLF® is a GREEN RoHS compliant package. Lead finish is NiPdAu. Mold compound is Halogen Free.  
3
M9999-032411-C  
March 2011  
Micrel, Inc.  
MIC5310  
Pin Configuration  
8-Pin 2mm x 2mm MLF (ML)  
Top View  
Pin Description  
Pin Number  
Pin Name  
VIN  
Pin Function  
1
2
3
Supply Input.  
Ground  
GND  
BYP  
Reference Bypass: Connect external 0.1µF to GND to reduce output noise.  
May be left open when bypass capacitor is not required.  
4
5
EN2  
EN1  
Enable Input (regulator 2). Active High Input. Logic High = On; Logic Low = Off;  
Do not leave floating.  
Enable Input (regulator 1). Active High Input. Logic High = On; Logic Low = Off;  
Do not leave floating.  
6
7
8
NC  
VOUT2  
VOUT1  
EP  
Not internally connected  
Regulator Output – LDO2  
Regulator Output – LDO1  
Exposed Pad. Connect EP to GND.  
4
M9999-032411-C  
March 2011  
Micrel, Inc.  
MIC5310  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage (VIN).....................................0V to +6V  
Enable Input Voltage (VEN)...........................0V to +6V  
Power Dissipation...........................Internally Limited(3)  
Lead Temperature (soldering, 3sec ...................260°C  
Storage Temperature (TS)................. -65°C to +150°C  
ESD Rating(4) .........................................................2kV  
Supply voltage (VIN)............................... +2.3V to +5.5V  
Enable Input Voltage (VEN).............................. 0V to VIN  
Junction Temperature .........................-40°C to +125°C  
Junction Thermal Resistance  
MLF-8 (θJA) ............................................... 90°C/W  
Electrical Characteristics(5)  
VIN = EN1 = EN2 = VOUT + 1.0V; higher of the two regulator outputs, IOUTLDO1 = IOUTLDO2 = 100µA; COUT1 = COUT2 = 1µF;  
CBYP = 0.1µF; TJ = 25°C, bold values indicate –40°C TJ +125°C, unless noted.  
Parameter  
Conditions  
Min  
-2.0  
-3.0  
Typ  
Max  
+2.0  
+3.0  
Units  
%
Output Voltage Accuracy  
Variation from nominal VOUT  
Variation from nominal VOUT; –40°C to +125°C  
%
Line Regulation  
VIN = VOUT + 1V to 5.5V; IOUT = 100µA  
0.02  
0.3  
0.6  
%/V  
%/V  
Load Regulation  
IOUT = 100µA to 150mA  
IOUT = 100µA  
0.5  
0.1  
12  
2.0  
%
Dropout Voltage (Note 6)  
mV  
mV  
mV  
mV  
µA  
µA  
µA  
µA  
dB  
dB  
I
I
I
OUT = 50mA  
OUT = 100mA  
OUT = 150mA  
50  
75  
25  
35  
100  
120  
120  
190  
2
Ground Current  
EN1 = High; EN2 = Low; IOUT = 100µA to 150mA  
EN1 = Low; EN2 = High; IOUT = 100µA to 150mA  
EN1 = EN2 = High; IOUT1 = 150mA, IOUT2 = 150mA  
EN1 = EN2 = 0V  
85  
85  
150  
0.01  
70  
Ground Current in Shutdown  
Ripple Rejection  
f = 1kHz; COUT = 1.0µF; CBYP = 0.1µF  
f = 20kHz; COUT = 1.0µF; CBYP = 0.1µF  
65  
Current Limit  
VOUT = 0V  
300  
1.1  
550  
30  
950  
0.2  
mA  
Output Voltage Noise  
Enable Inputs (EN1 / EN2)  
Enable Input Voltage  
COUT = 1.0 µF; CBYP = 0.1µF; 10Hz to 100kHz  
µVRMS  
Logic Low  
Logic High  
VIL 0.2V  
VIH 1.0V  
V
V
Enable Input Current  
0.01  
0.01  
µA  
µA  
Turn-on Time (See Timing Diagram)  
Turn-on Time (LDO1 and 2)  
COUT = 1.0µF; CBYP = 0.01µF  
30  
100  
µs  
Notes:  
1. Exceeding the absolute maximum rating may damage the device.  
2. The device is not guaranteed to function outside its operating rating.  
3. The maximum allowable power dissipation of any TA (ambient temperature) is PD(max) = (TJ(max) – TA) / θJA. Exceeding the maximum allowable  
power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.  
4. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.  
5. Specification for packaged product only.  
6. Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal VOUT. For outputs below  
2.3V, the dropout voltage is the input-to-output differential with the minimum input voltage 2.3V.  
5
M9999-032411-C  
March 2011  
Micrel, Inc.  
MIC5310  
Typical Characteristics  
Ground Current vs. Temperature  
MIC5310 - Output Noise  
Dropout Voltage  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
Spectral Density  
10  
40  
35  
30  
25  
20  
15  
10  
5
150 mA  
1
100 mA  
0.1  
Vin=Vout+1  
V
in = Vout + 1V  
C
out=1uF  
50 mA  
EN1 = V , EN2 =  
in  
C
F
V
by p=0.01u  
V =Vout+1  
GND  
0.01  
in  
100 uA  
Vout=3V  
Vout = 3V  
=3V  
C
out=1uF  
Cout = 1 uF  
0.001  
0
10  
100  
1,000 10,000 100,00 1,000,0 10,000,  
-40  
-20  
0
20  
40  
60  
80  
100 120  
0
20  
40  
60  
80  
100  
120  
140  
0
00  
000  
Temperature (°C)  
Frequency (Hz)  
Iout (mA)  
Output Voltage  
Output Voltage vs Output  
Current  
Dropout Characteristics  
3.3  
3.2  
3.1  
3
3.2  
3.15  
3.1  
3.5  
3
2.5  
2
3.05  
3
100uA  
2.95  
2.9  
150mA  
V
in = Vout + 1V  
in = EN1 = EN2  
out = 3V  
Iout = 100 uA  
out = 1 uF  
1.5  
1
V
2.9  
2.8  
2.7  
2.85  
2.8  
V
Vin=Vout+1  
C
Cout=1uF  
V
out=3V  
0.5  
0
2.75  
2.7  
Cout=1uF  
-40 -20  
0
20  
40  
60  
80 100 120  
0
1
2
3
4
5
6
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Output Current (mA)  
Input Voltage (V)  
Dropout Voltage  
Ground Current vs Output  
Current  
Current Limit vs. Input Voltage  
50  
40  
30  
20  
10  
0
600  
580  
560  
540  
520  
500  
480  
460  
440  
420  
400  
Vout = 3 V  
in = Vout + 1 V  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
V
150mA  
Vin = EN1 = EN2  
C
out = 1 uF  
100mA  
Vout=3V  
V =Vout+1V  
in  
Ven1=Ven2=V  
50 mA  
in  
Cout1=Cout2=1uF  
Cout=1uF  
en=V  
100uA  
V
in  
10mA  
0
25  
50  
75  
100  
125  
150  
2
3
4
5
-60 -40 -20  
0
20 40 60 80 100 120 140  
Temperature (°C)  
Output Current (mA)  
Input Voltage (V)  
6
M9999-032411-C  
March 2011  
Micrel, Inc.  
MIC5310  
Typical Characteristics (Continued)  
Power Supply Rejection Ratio  
Power Supply Rejection Ratio  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
-80  
-70  
-60  
-50  
-40  
-30  
-20  
-10  
0
V = 3.4V  
in  
V
out=3V  
out=1uF  
out=50mA  
Vin= 3.6V  
Vout=3V  
C
I
Cout=1uF  
C
byp=0.1uF  
Iout=150mA  
Cby p=0.1uF  
1,000  
10  
10  
100  
1,000  
10,000  
100,000  
1,000,000  
100  
10,000  
100,000  
1,000,000  
Frequency (Hz)  
Frequency (Hz)  
7
M9999-032411-C  
March 2011  
Micrel, Inc.  
MIC5310  
Functional Characteristics  
8
M9999-032411-C  
March 2011  
Micrel, Inc.  
MIC5310  
Applications Information  
Enable/Shutdown  
Bypass Capacitor  
The MIC5310 comes with dual active-high enable pins  
that allow each regulator to be enabled independently.  
Forcing the enable pin low disables the regulator and  
sends it into a “zero” off mode current state. In this  
state, current consumed by the regulator goes nearly  
to zero. Forcing the enable pin high enables the  
output voltage. The active high enable pin uses  
CMOS technology and the enable pin cannot be left  
floating; a floating enable pin may cause an  
indeterminate state on the output.  
A capacitor can be placed from the noise bypass pin  
to ground to reduce output voltage noise. The  
capacitor bypasses the internal reference. A 0.1µF  
capacitor is recommended for applications that require  
low-noise outputs. The bypass capacitor can be  
increased, further reducing noise and improving  
PSRR. Turn on time increases slightly with respect to  
bypass capacitance. A unique, quick start circuit  
allows the MIC5310 to drive a large capacitor on the  
bypass pin without significantly slowing turn on time.  
Input Capacitor  
No-Load Stability  
The MIC5310 is a high-performance, high bandwidth  
device. Therefore, it requires a well bypassed input  
supply for optimal performance. A 1µF capacitor is  
required from the input to ground to provide stability.  
Low ESR ceramic capacitors provide optimal  
performance at a minimum of space. Additional high  
frequency capacitors, such as small valued NPO  
dielectric type capacitors, help filter out high frequency  
noise and are good practice in any RF based circuit.  
Unlike many other voltage regulators, the MIC5310  
will remain stable and in regulation with no load. This  
is especially important in CMOS RAM keep alive  
applications.  
Thermal Considerations  
The MIC5310 is designed to provide 150mA of  
continuous current for both outputs in a very small  
package. Maximum ambient operating temperature  
can be calculated based on the output current and the  
voltage drop across the part. Given that the input  
Output Capacitor  
The MIC5310 requires an output capacitor of 1µF or  
greater to maintain stability. The design is optimized  
for use with low ESR ceramic chip capacitors. High  
ESR capacitors may cause high frequency oscillation.  
The output capacitor can be increased, but  
performance has been optimized for a 1µF ceramic  
output capacitor and does not improve significantly  
with larger capacitance.  
,
voltage is 3.3V, the output voltage is 2.8V for VOUT1  
1.5V for VOUT2 and the output current = 150mA. The  
actual power dissipation of the regulator circuit can be  
determined using the equation:  
PD = (VIN – VOUT1) IOUT1 + (VIN – VOUT2) IOUT2+ VIN IGND  
Because this device is CMOS and the ground current  
is typically <100µA over the load range, the power  
dissipation contributed by the ground current is < 1%  
and can be ignored for this calculation.  
X7R/X5R dielectric type ceramic capacitors are  
recommended because of their temperature  
PD = (3.3V – 2.8V) × 150mA + (3.3V -1.5) × 150mA  
PD = 0.345W  
performance.  
X7R  
type  
capacitors  
change  
capacitance by 15% over their operating temperature  
range and are the most stable type of ceramic  
capacitors. Z5U and Y5V dielectric capacitors change  
value by as much as 50% and 60%, respectively, over  
their operating temperature ranges. To use a ceramic  
chip capacitor with Y5V dielectric, the value must be  
much higher than an X7R ceramic capacitor to ensure  
the same minimum capacitance over the equivalent  
operating temperature range.  
To determine the maximum ambient operating  
temperature of the package, use the junction-to-  
ambient thermal resistance of the device and the  
following basic equation:  
TJ(MAX) - TA  
PD(MAX)  
=
JA  
TJ(max) = 125°C, the maximum junction temperature of  
the die θJA thermal resistance = 90°C/W.  
The table below shows junction-to-ambient thermal  
resistance for the MIC5310 in different packages.  
9
M9999-032411-C  
March 2011  
Micrel, Inc.  
MIC5310  
For example, when operating the MIC5310-MFYML at  
an input voltage of 3.3V and 150mA loads at each  
output with a minimum footprint layout, the maximum  
ambient operating temperature TA can be determined  
as follows:  
θJA Recommended  
Minimum Footprint  
Package  
8-Pin 2x2 MLF®  
90°C/W  
Thermal Resistance  
0.345W = (125°C – TA)/(90°C/W)  
TA = 93.95°C  
Substituting PD for PD(max) and solving for the ambient  
operating temperature will give the maximum  
operating conditions for the regulator circuit. The  
junction-to-ambient thermal resistance for the  
minimum footprint is 90°C/W.  
Therefore, a 2.8V/1.5V application with 150mA at  
each output current can accept an ambient operating  
temperature of 93.95°C in a 2mm x 2mm MLF®  
package. For a full discussion of heat sinking and  
thermal effects on voltage regulators, refer to the  
“Regulator Thermals” section of Micrel’s Designing  
with Low-Dropout Voltage Regulators handbook. This  
information can be found on Micrel's website at:  
The maximum power dissipation must not be  
exceeded for proper operation.  
http://www.micrel.com/_PDF/other/LDOBk_ds.pdf  
10  
M9999-032411-C  
March 2011  
Micrel, Inc.  
MIC5310  
Package Information  
8-Pin 2mm x 2mm MLF (ML)  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com  
Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This  
information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry,  
specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Micrel’s terms and conditions of sale for such products, Micrel assumes no liability  
whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties  
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant  
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2006 Micrel, Incorporated.  
11  
M9999-032411-C  
March 2011  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY