MIC7111YM5-TR [MICREL]

1.8V to 11V, 15 μA, 25 kHz GBW, Rail-to-Rail Input and Output Operational Amplifier;
MIC7111YM5-TR
型号: MIC7111YM5-TR
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

1.8V to 11V, 15 μA, 25 kHz GBW, Rail-to-Rail Input and Output Operational Amplifier

文件: 总8页 (文件大小:76K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC7111  
1.8V IttyBitty™ Rail-to-Rail Input/Output Op Amp  
Preliminary Information  
General Description  
Features  
The MIC7111 is a micropower operational amplifier featuring  
rail-to-rail input and output performance in Micrel’s IttyBitty  
SOT-23-5 package. The MIC7111 is ideal for systems where  
small size is a critical consideration.  
• Small footprint SOT-23-5 package  
• Guaranteed performance at 1.8V, 2.7V, 5V, and 10V  
• 15µA typical supply current at 1.8V  
• 25kHz gain-bandwidth at 5V  
• Output swing to within 1mV of rails  
with 1.8V supply and 100kload  
• Suitable for driving capacitive loads  
The MIC7111 is designed to operate from 1.8V to 11V power  
supplies.  
The MIC7111 benefits small battery operated portable elec-  
tronic devices where small size and the ability to place the  
amplifier close to the signal source are primary design  
concerns.  
Applications  
• Wireless and cellular communications  
• GaAs RF amplifier bias amplifier  
• Current sensing for battery chargers  
• Reference voltage buffer  
For other package options, please contact the factory.  
• Transducer linearization and interface  
• Portable computing  
Ordering Information  
Part Number  
Junction Temp. Range  
Package  
MIC7111BM5  
–40°C to +85°C  
SOT-23-5  
Functional Configuration  
Pin Configuration  
IN+ V+ OUT  
IN+ V+ OUT  
3
2
1
3
2
1
Part  
Identification  
A13  
4
5
4
5
IN–  
V–  
IN–  
V–  
SOT-23-5 (M5)  
Pin Description  
Pin Number  
Pin Name  
Pin Function  
1
2
3
4
5
OUT  
V+  
Amplifier Output  
Positive Supply  
Noninverting Input  
Inverting Input  
Negative Suppy  
IN+  
IN–  
V–  
IttyBitty is a trademark of Micrel, Inc.  
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com  
June 1998  
1
MIC7111  
MIC7111  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 1)  
Supply Voltage (V – V )...........................................12V  
Supply Voltage (V – V ).............................. 1.8V to 11V  
V+  
V–  
V+ V–  
Differential Input Voltage (V  
– V ) ...........±(V – V  
)
Junction Temperature (T ) ......................... –40°C to +85°C  
J
IN+  
IN–  
V+  
V–  
I/O Pin Voltage (V , V  
), Note 2  
Max. Junction Temperature (T  
), Note 3 ........... +85°C  
IN  
OUT  
J(max)  
.............................................V + 0.3V to V – 0.3V  
Package Thermal Resistance (θ ), Note 4..........325°C/W  
V+  
V–  
JA  
Junction Temperature (T ) ...................................... +150°C  
Max. Power Dissipation............................................ Note 3  
J
Storage Temperature ............................... –65°C to +150°C  
Lead Temperature (soldering, 10 sec.) ..................... 260°C  
ESD, Note 5.................................................................. 2kV  
DC Electrical Characteristics (1.8V)  
VV+ = +1.8V, VV– = 0V, VCM = VOUT = VV+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
VOS  
Input Offset Voltage  
0.9  
7
9
mV  
mV  
TCVOS  
IB  
Input Offset Voltage  
Temperature Drift  
2.0  
1
µV/°C  
Input Bias Current  
Input Offset Current  
Input Resistance  
10  
500  
pA  
pA  
IOS  
0.01  
0.5  
75  
pA  
pA  
RIN  
>10  
85  
TΩ  
+PSRR  
Positive Power Supply  
Rejection Ratio  
1.8V VV+ 5V, VV– = 0V,  
VCM = VOUT = 0.9V  
60  
60  
50  
dB  
–PSRR  
Negative Power Supply  
Rejection Ratio  
–1.8V VV– –5V, VV+ = 0V,  
VCM = VOUT = –0.9V  
85  
dB  
CMRR  
CIN  
Common-Mode Rejection Ratio  
Common Mode Input Capacitance  
Output Voltage Swing  
VCM = –0.2V to +2.0V  
70  
3
dB  
pF  
VOUT  
output high, RL = 100k,  
specified as VV+ – VOUT  
0.14  
1
1
mV  
mV  
output low, RL = 100k  
0.14  
6.8  
1
1
mV  
mV  
output high, RL = 2k,  
specified as VV+ – VOUT  
23  
34  
mV  
mV  
output low, RL = 2k  
6.8  
23  
34  
mV  
mV  
ISC  
AVOL  
Is  
Output Short Circuit Current  
sourcing, VOUT = 0V  
sinking, VOUT = 1.8V  
sourcing  
15  
15  
25  
25  
mA  
mA  
Note 6  
Voltage Gain  
400  
400  
15  
V/mV  
V/mV  
µA  
sinking  
Supply Current  
VV+ = 1.8V, VOUT = VV+/2  
35  
AC Electrical Characteristics (1.8V)  
V+ = +1.8V, V– = 0V, VCM = VOUT = VV+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted  
SR  
Slew Rate  
voltage follower, 1V step, RL = 100k@0.9V  
VOUT = 1VP–P  
0.015  
V/µs  
GBW  
Gain Bandwidth Product  
25  
kHz  
MIC7111  
2
June 1998  
MIC7111  
Micrel  
DC Electrical Characteristics (2.7V)  
VV+ = +2.7V, VV– = 0V, VCM = VOUT = VV+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
VOS  
Input Offset Voltage  
0.9  
7
9
mV  
mV  
TCVOS  
IB  
Input Offset Voltage  
Temperature Drift  
2.0  
1
µV/°C  
Input Bias Current  
Input Offset Current  
Input Resistance  
10  
500  
pA  
pA  
IOS  
0.01  
0.5  
75  
pA  
pA  
RIN  
>10  
90  
TΩ  
+PSRR  
Positive Power Supply  
Rejection Ratio  
2.7V VV+ 5V, VV– = 0V,  
VCM = VOUT = 1.35V  
60  
60  
52  
dB  
–PSRR  
Negative Power Supply  
Rejection Ratio  
–2.7V VV– –5V, VV+ = 0V,  
VCM = VOUT = –1.35V  
90  
dB  
CMRR  
CIN  
Common-Mode Rejection Ratio  
Common Mode Input Capacitance  
Output Voltage Swing  
VCM = –0.2V to +2.9V  
75  
3
dB  
pF  
VOUT  
output high, RL = 100k,  
specified as VV+ – VOUT  
0.2  
1
1
mV  
mV  
output low, RL = 100k  
0.2  
10  
10  
1
1
mV  
mV  
output high, RL = 2k,  
specified as VV+ – VOUT  
33  
50  
mV  
mV  
output low, RL = 2k  
33  
50  
mV  
mV  
ISC  
AVOL  
Is  
Output Short Circuit Current  
sourcing, VOUT = 0V  
sinking, VOUT = 2.7V  
sourcing  
30  
30  
50  
50  
mA  
mA  
Note 6  
Voltage Gain  
400  
400  
17  
V/mV  
V/mV  
µA  
sinking  
Supply Current  
VV+ = 2.7V, VOUT = VV+/2  
42  
AC Electrical Characteristics (2.7V)  
V+ = +2.7V, V– = 0V, VCM = VOUT = VV+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
SR  
Slew Rate  
voltage follower, 1V step, RL = 100k@1.35V  
VOUT = 1VP–P  
0.015  
V/µs  
GBW  
Gain Bandwidth Product  
25  
kHz  
June 1998  
3
MIC7111  
MIC7111  
Micrel  
DC Electrical Characteristics (5V)  
VV+ = +5.0V, VV– = 0V, VCM = VOUT = VV+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
VOS  
Input Offset Voltage  
0.9  
7
9
mV  
mV  
TCVOS  
IB  
Input Offset Voltage  
Temperature Drift  
2.0  
1
µV/°C  
Input Bias Current  
Input Offset Current  
Input Resistance  
10  
500  
pA  
pA  
IOS  
0.01  
0.5  
75  
pA  
pA  
RIN  
>10  
95  
TΩ  
+PSRR  
Positive Power Supply  
Rejection Ratio  
5V VV+ 10V, VV– = 0V,  
VCM = VOUT = 2.5V  
65  
65  
57  
dB  
–PSRR  
Negative Power Supply  
Rejection Ratio  
–5V VV– –10V, VV+ = 0V,  
VCM = VOUT = –2.5V  
95  
dB  
CMRR  
CIN  
Common-Mode Rejection Ratio  
Common Mode Input Capacitance  
Output Voltage Swing  
VCM = –0.2V to +5.2V  
80  
3
dB  
pF  
VOUT  
output high, RL = 100k,  
specified as VV+ – VOUT  
0.3  
1.5  
1.5  
mV  
mV  
output low, RL = 100k  
0.3  
15  
15  
1.5  
1.5  
mV  
mV  
output high, RL = 2k,  
specified as VV+ – VOUT  
50  
75  
mV  
mV  
output low, RL = 2k  
50  
75  
mV  
mV  
ISC  
AVOL  
IS  
Output Short Circuit Current  
sourcing, VOUT = 0V  
sinking, VOUT = 5V  
sourcing  
80  
80  
100  
100  
500  
500  
20  
mA  
mA  
Note 6  
Voltage Gain  
V/mV  
V/mV  
µA  
sinking  
Supply Current  
VV+ = 5V, VOUT = VV+/2  
50  
AC Electrical Characteristics (5V)  
V+ = +5V, V– = 0V, VCM = VOUT = VV+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
SR  
Slew Rate  
voltage follower, 1V step, RL = 100k@1.5V  
VOUT = 1VP–P  
0.02  
V/µs  
GBW  
Gain Bandwidth Product  
25  
kHz  
DC Electrical Characteristics (10V)  
VV+ = +10V, VV– = 0V, VCM = VOUT = VV+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
VOS  
Input Offset Voltage  
0.9  
7
9
mV  
mV  
TCVOS  
Input Offset Voltage  
Temperature Drift  
2.0  
µV/°C  
MIC7111  
4
June 1998  
MIC7111  
Micrel  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
IB  
Input Bias Current  
1
10  
500  
pA  
pA  
IOS  
Input Offset Current  
0.01  
0.5  
75  
pA  
pA  
RIN  
Input Resistance  
>10  
95  
TΩ  
+PSRR  
Positive Power Supply  
Rejection Ratio  
5V VV+ 10V, VV– = 0V,  
VCM = VOUT = 2.5V  
65  
65  
60  
dB  
–PSRR  
Negative Power Supply  
Rejection Ratio  
–5V VV– –10V, VV+ = 0V,  
VCM = VOUT = –2.5V  
95  
dB  
CMRR  
CIN  
Common-Mode Rejection Ratio  
Common Mode Input Capacitance  
Output Voltage Swing  
VCM = –0.2V to +10.2V  
85  
3
dB  
pF  
VOUT  
output high, RL = 100k,  
specified as VV+ – VOUT  
0.45  
2.5  
2.5  
mV  
mV  
output low, RL = 100k  
0.45  
24  
2.5  
2.5  
mV  
mV  
output high, RL = 2k,  
specified as VV+ – VOUT  
80  
120  
mV  
mV  
output low, RL = 2k  
24  
80  
120  
mV  
mV  
ISC  
AVOL  
IS  
Output Short Circuit Current  
sourcing, VOUT = 0V  
sinking, VOUT = 10V  
sourcing  
100  
100  
200  
200  
500  
500  
25  
mA  
mA  
Note 6  
Voltage Gain  
V/mV  
V/mV  
µA  
sinking  
Supply Current  
VV+ = 10V, VOUT = VV+/2  
65  
AC Electrical Characteristics (10V)  
V+ = +10V, V– = 0V, VCM = VOUT = VV+/2; RL = 1M; TJ = 25°C, bold values indicate –40°C TJ +85°C; unless noted  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
SR  
Slew Rate  
voltage follower, 1V step, RL = 100k@1.35V  
VOUT = 1VP–P  
0.02  
V/µs  
GBW  
φM  
Gain Bandwidth Product  
Phase Margin  
25  
50  
15  
kHz  
°
GM  
Gain Margin  
dB  
eN  
iN  
Input Referred Voltage Noise  
Input Referred Current Noise  
f = 1kHz, VCM = 1.0V  
f = 1kHz  
110  
nV/ Hz  
pA/ Hz  
0.03  
General Notes: Devices are ESD protected; however, handling precautions are recommended. All limits guaranteed by testing on statistical analysis.  
Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when  
operating the device outside its recommended operating ratings.  
Note 2: I/O Pin Voltage is any external voltage to which an input or output is referenced.  
Note 3: The maximum allowable power dissipation is a function of the maximum junction temperature, T  
; the junction-to-ambient thermal  
J(max)  
resistance, θ ; and the ambient temperature, T . The maximum allowable power dissipation at any ambient temperature is calculated using:  
JA  
A
P
= (T  
– T ) ÷ θ . Exceeding the maximum allowable power dissipation will result in excessive die temperature.  
D
J(max) A JA  
Note 4: Thermal resistance, θ , applies to a part soldered on a printed-circuit board.  
JA  
Note 5: Human body model, 1.5k in series with 100pF.  
Note 6: Short circuit may cause the device to exceed maxium allowable power dissipation. See Note 3.  
June 1998  
5
MIC7111  
MIC7111  
Micrel  
Driving Capacitive Loads  
Application Information  
Drivingacapacitiveloadintroducesphase-lagintotheoutput  
signal,andthisinturnreducesop-ampsystemphasemargin.  
The application that is least forgiving of reduced phase  
margin is a unity gain amplifier. The MIC7111 can typically  
drivea500pFcapacitiveloadconnecteddirectlytotheoutput  
when configured as a unity-gain amplifier.  
Input Common-Mode Voltage  
The MIC7111 tolerates input overdrive by at least 300mV  
beyond either rail without producing phase inversion.  
If the absolute maximum input voltage is exceeded, the input  
current should be limited to ±5mA maximum to prevent  
reducing reliability. A 10kseries input resistor, used as a  
currentlimiter, willprotecttheinputstructurefromvoltagesas  
large as 50V above the supply or below ground. See Figure  
1.  
Using Large-Value Feedback Resistors  
A large-value feedback resistor (> 500k) can reduce the  
phase margin of a system. This occurs when the feedback  
resistor acts in conjunction with input capacitance to create  
phase lag in the fedback signal. Input capacitance is usually  
a combination of input circuit components and other parasitic  
capacitance, such as amplifier input capacitance and stray  
printed circuit board capacitance.  
VOUT  
RIN  
VIN  
Figure 2 illustrates a method of compensating phase lag  
caused by using a large-value feedback resistor. Feedback  
10k  
capacitor C introduces sufficient phase lead to overcome  
FB  
Figure 1. Input Current-Limit Protection  
Output Voltage Swing  
the phase lag caused by feedback resistor R and input  
capacitance C . The value of C is determined by first  
FB  
IN  
FB  
estimating C and then applying the following formula:  
IN  
Sink and source output resistances of the MIC7111 are  
equal. Maximum output voltage swing is determined by the  
load and the approximate output resistance. The output  
resistance is:  
R
IN × CIN RFB × CFB  
CFB  
RFB  
VDROP  
ROUT  
=
ILOAD  
RIN  
V
is the voltage dropped within the amplifier output  
DROP  
VIN  
stage. V  
and I  
can be determined from the V  
LOAD O  
DROP  
VOUT  
(outputswing)portionoftheappropriateElectricalCharacter-  
istics table. I is equal to the typical output high voltage  
CIN  
LOAD  
minus V+/2 and divided by R  
. For example, using the  
LOAD  
Electrical Characteristics DC (5V) table, the typical output  
voltage drop using a 2kload (connected to V+/2) is 0.015V,  
Figure 2. Cancelling Feedback Phase Lag  
which produces an I  
of:  
LOAD  
SinceasignificantpercentageofC maybecausedbyboard  
2.5V 0.015V  
IN  
= 1.243mA  
layout, it is important to note that the correct value of C may  
FB  
2kΩ  
then:  
15mV  
R
=
= 12.112Ω  
OUT  
1.243mA  
MIC7111  
6
June 1998  
MIC7111  
Micrel  
VS  
change when changing from a breadboard to the final circuit  
layout.  
0.5V to Q1 VCEO(sus)  
Typical Circuits  
VOUT  
0V to V+  
V+  
1.8V to 10V  
Some single-supply, rail-to-rail applications for which the  
MIC7111 is well suited are shown in the circuit diagrams of  
Figures 3 through 7.  
3
4
2
MIC7111  
VIN  
0V to 2V  
IOUT  
1
V+  
1.8V to 10V  
Q1  
VCEO = 40V  
5
2N3904  
{
IC(max) = 200mA  
3
2
5
MIC7111  
VIN  
V +  
RS  
10  
2W  
1
VOUT  
0V to V+  
0V to  
Change Q1 and RS  
for higher current  
and/or different gain.  
4
1
A
V
V
IN  
R2  
IOUT  
=
= 100mA/V as shown  
RS  
910k  
R1  
100k  
Figure 5. Voltage-Controlled Current Sink  
R4  
Figure 3a. Noninverting Amplifier  
100k  
C1  
V+  
0.001µF  
100  
V+  
4
3
2
MIC7111  
1
VOUT  
V+  
0V  
5
R2  
AV = 1+  
10  
R1  
R4  
R2  
V+  
100k  
100k  
R3  
100k  
0
0
100  
V
(V)  
IN  
Figure 3b. Noninverting Amplifier Behavior  
Figure 6. Square Wave Oscillator  
V+  
1.8V to 10V  
CIN  
R1  
R2  
3
4
2
5
33k  
MIC7111  
330k  
V+  
VIN  
0V to V+  
1
VOUT  
0V to V+  
4
3
2
MIC7111  
COUT  
VOUT  
1
VOUT = VIN  
0V  
RL  
5
Figure 4. Voltage Follower/Buffer  
R3  
V+  
R2 330k  
= = 10  
330k  
A
= −  
V
R4  
330k  
C1  
1µF  
R1 33k  
Figure 7. AC-Coupled Inverting Amplifier  
June 1998  
7
MIC7111  
MIC7111  
Micrel  
Package Information  
1.90 (0.075) REF  
0.95 (0.037) REF  
1.75 (0.069) 3.00 (0.118)  
1.50 (0.059) 2.60 (0.102)  
DIMENSIONS:  
MM (INCH)  
1.30 (0.051)  
0.90 (0.035)  
3.02 (0.119)  
2.80 (0.110)  
0.20 (0.008)  
0.09 (0.004)  
10°  
0°  
0.15 (0.006)  
0.00 (0.000)  
0.50 (0.020)  
0.35 (0.014)  
0.60 (0.024)  
0.10 (0.004)  
SOT-23-5 (M5)  
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 1998 Micrel Incorporated  
MIC7111  
8
June 1998  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY