TLA-7T101LF [MICREL]

Gigabit Ethernet Transceiver with RGMII Support; 千兆以太网收发器,支持RGMII
TLA-7T101LF
型号: TLA-7T101LF
厂家: MICREL SEMICONDUCTOR    MICREL SEMICONDUCTOR
描述:

Gigabit Ethernet Transceiver with RGMII Support
千兆以太网收发器,支持RGMII

变压器 共模扼流圈 局域网 以太网 以太网:10/100/1000BASE-T 局域网(LAN)标准
文件: 总56页 (文件大小:424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KSZ9021RL/RN  
Gigabit Ethernet Transceiver  
with RGMII Support  
General Description  
Features  
The KSZ9021RL is a completely integrated triple speed  
(10Base-T/100Base-TX/1000Base-T) Ethernet Physical  
Layer Transceiver for transmission and reception of data  
over standard CAT-5 unshielded twisted pair (UTP) cable.  
Single-chip 10/100/1000Mbps IEEE 802.3 compliant  
Ethernet Transceiver  
RGMII interface compliant to RGMII Version 1.3  
RGMII I/Os with 3.3V/2.5V tolerant and programmable  
timings to adjust and correct delays on both Tx and Rx  
paths  
The KSZ9021RL provides the Reduced Gigabit Media  
Independent Interface (RGMII) for direct connection to  
RGMII MACs in Gigabit Ethernet Processors and Switches  
for data transfer at 10/100/1000Mbps speed.  
Auto-negotiation to automatically select the highest link  
up speed (10/100/100Mbps) and duplex (half/full)  
The KSZ9021RL reduces board cost and simplifies board  
layout by using on-chip termination resistors for the four  
differential pairs and by integrating a LDO controller to  
drive a low cost MOSFET to supply the 1.2V core.  
On-chip termination resistors for the differential pairs  
On-chip LDO controller to support single 3.3V supply  
operation – requires only external FET to generate 1.2V  
for the core  
The KSZ9021RL provides diagnostic features to facilitate  
system bring-up and debugging in production testing and  
in product deployment. Parametric NAND tree support  
enables fault detection between KSZ9021 I/Os and board.  
Micrel LinkMD® TDR-based cable diagnostics permit  
identification of faulty copper cabling. Remote and local  
loopback functions provide verification of analog and  
digital data paths.  
Jumbo frame support up to 16KB  
125MHz Reference Clock Output  
Programmable LED outputs for link, activity and speed  
Baseline Wander Correction  
LinkMD® TDR-based cable diagnostics for identification  
of faulty copper cabling  
Parametric NAND Tree support for fault detection  
The KSZ9021RL is available in a 64-pin, lead-free E-LQFP  
package, and is offered as the KSZ9021RN in the smaller  
48-pin QFN package (See Ordering Information).  
between chip I/Os and board.  
Loopback modes for diagnostics  
____________________________________________________________________________________________________________  
Functional Diagram  
LinkMD is a registered trademark of Micrel, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-101309-1.1  
October 2009  
Micrel, Inc.  
KSZ9021RL/RN  
More Features  
Applications  
Automatic MDI/MDI-X crossover for detection and  
Laser/Network Printer  
Network Attached Storage (NAS)  
Network Server  
Gigabit LAN on Motherboard (GLOM)  
Broadband Gateway  
Gigabit SOHO/SMB Router  
IPTV  
IP Set-top Box  
Game Console  
Triple-play (data, voice, video) Media Center  
Media Converter  
correction of pair swap at all speeds of operation  
Automatic detection and correction of pair swap, pair  
skew and pair polarity  
MDC/MDIO Management Interface for PHY register  
configuration  
Interrupt pin option  
Power down and power saving modes  
Operating Voltages  
Core:  
I/O:  
Transceiver:  
1.2V (external FET or regulator)  
3.3V or 2.5V  
3.3V  
Available packages  
64-pin E-LQFP (10mm x 10mm): KSZ9021RL  
48-pin QFN (7mm x 7mm):  
KSZ9021RN  
Ordering Information  
Part Number  
Temp. Range  
0°C to 70°C  
Package  
Lead Finish  
Description  
KSZ9021RL  
64-Pin E-LQFP  
64-Pin E-LQFP  
48-Pin QFN  
Pb-Free  
Pb-Free  
Pb-Free  
Pb-Free  
RGMII, Commercial Temperature, 64-E-LQFP  
RGMII, Industrial Temperature, 64-E-LQFP  
RGMII, Commercial Temperature, 48-QFN  
RGMII, Industrial Temperature, 48-QFN  
KSZ9021RLI (1)  
KSZ9021RN  
KSZ9021RNI (1)  
-40°C to 85°C  
0°C to 70°C  
-40°C to 85°C  
48-Pin QFN  
Note:  
1. Contact factory for lead time.  
M9999-101309-1.1  
October 2009  
2
Micrel, Inc.  
KSZ9021RL/RN  
Revision History  
Revision  
1.0  
Date  
Summary of Changes  
1/16/09  
10/13/09  
Data sheet created.  
1.1  
Updated current consumption in Electrical Characteristics section.  
Corrected data sheet omission of register 1 bit 8 for 1000Base-T Extended Status information.  
Added the following register bits to provide further power saving during software power down: Tri-  
state all digital I/Os (reg. 258.7), LDO disable (reg. 263.15), Low frequency oscillator mode (reg.  
263.8).  
Added KSZ9021RN device and updated entire data sheet accordingly.  
Added 48-Pin QFN package information.  
M9999-101309-1.1  
October 2009  
3
Micrel, Inc.  
KSZ9021RL/RN  
Contents  
Pin Configuration – KSZ9021RL..........................................................................................................................................8  
Pin Description – KSZ9021RL..............................................................................................................................................9  
Strapping Options – KSZ9021RL.......................................................................................................................................14  
Pin Configuration – KSZ9021RN........................................................................................................................................15  
Pin Description – KSZ9021RN ...........................................................................................................................................16  
Strapping Options – KSZ9021RN ......................................................................................................................................21  
Functional Overview...........................................................................................................................................................22  
Functional Description: 10Base-T/100Base-TX Transceiver.........................................................................................23  
100Base-TX Transmit....................................................................................................................................................... 23  
100Base-TX Receive........................................................................................................................................................ 23  
Scrambler/De-scrambler (100Base-TX only).................................................................................................................... 23  
10Base-T Transmit ........................................................................................................................................................... 23  
10Base-T Receive ............................................................................................................................................................ 23  
Functional Description: 1000Base-T Transceiver ..........................................................................................................24  
Analog Echo Cancellation Circuit ..................................................................................................................................... 24  
Automatic Gain Control (AGC) ......................................................................................................................................... 24  
Analog-to-Digital Converter (ADC) ................................................................................................................................... 24  
Timing Recovery Circuit.................................................................................................................................................... 25  
Adaptive Equalizer............................................................................................................................................................ 25  
Trellis Encoder and Decoder............................................................................................................................................ 25  
Functional Description: 10/100/1000 Transceiver Features ..........................................................................................25  
Auto MDI/MDI-X................................................................................................................................................................ 25  
Pair- Swap, Alignment, and Polarity Check...................................................................................................................... 26  
Wave Shaping, Slew Rate Control and Partial Response................................................................................................ 26  
PLL Clock Synthesizer...................................................................................................................................................... 26  
Auto-Negotiation.................................................................................................................................................................26  
RGMII Interface....................................................................................................................................................................28  
RGMII Signal Definition .................................................................................................................................................... 29  
RGMII Signal Diagram...................................................................................................................................................... 29  
RGMII In-band Status....................................................................................................................................................... 30  
MII Management (MIIM) Interface.......................................................................................................................................30  
Interrupt (INT_N)..................................................................................................................................................................30  
LED Mode.............................................................................................................................................................................31  
Single LED Mode.............................................................................................................................................................. 31  
Tri-color Dual LED Mode .................................................................................................................................................. 31  
NAND Tree Support ............................................................................................................................................................32  
Power Management ............................................................................................................................................................33  
M9999-101309-1.1  
October 2009  
4
Micrel, Inc.  
KSZ9021RL/RN  
Power Saving Mode.......................................................................................................................................................... 33  
Software Power Down Mode............................................................................................................................................ 33  
Chip Power Down Mode................................................................................................................................................... 33  
Register Map........................................................................................................................................................................33  
Register Description...........................................................................................................................................................34  
IEEE Defined Registers.................................................................................................................................................... 34  
Vendor Specific Registers ................................................................................................................................................ 41  
Extended Registers .......................................................................................................................................................... 44  
Absolute Maximum Ratings...............................................................................................................................................46  
Operating Ratings...............................................................................................................................................................46  
Electrical Characteristic .....................................................................................................................................................46  
Timing Diagrams.................................................................................................................................................................48  
RGMII Timing.................................................................................................................................................................... 48  
Auto-Negotiation Timing ................................................................................................................................................... 49  
MDC/MDIO Timing ........................................................................................................................................................... 50  
Reset Timing..................................................................................................................................................................... 51  
Reset Circuit ........................................................................................................................................................................51  
Reference Circuits – LED Strap-in Pins............................................................................................................................52  
Reference Clock – Connection and Selection..................................................................................................................53  
Magnetics Specification .....................................................................................................................................................53  
Package Information...........................................................................................................................................................54  
M9999-101309-1.1  
October 2009  
5
Micrel, Inc.  
KSZ9021RL/RN  
List of Figures  
Figure 1. KSZ9021RL/RN Block Diagram............................................................................................................................22  
Figure 2: KSZ9021RL/RN 1000Base-T Block Diagram – Single Channel ..........................................................................24  
Figure 3: Auto-Negotiation Flow Chart.................................................................................................................................27  
Figure 4: KSZ9021RL/RN RGMII Interface..........................................................................................................................29  
Figure 5. RGMII v1.3 Specification (Figure 2 – Multiplexing & Timing Diagram) ................................................................48  
Figure 6. Auto-Negotiation Fast Link Pulse (FLP) Timing ...................................................................................................49  
Figure 7. MDC/MDIO Timing................................................................................................................................................50  
Figure 8. Reset Timing.........................................................................................................................................................51  
Figure 9. Recommended Reset Circuit................................................................................................................................51  
Figure 10. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output .....................................................52  
Figure 11. Reference Circuits for LED Strapping Pins.........................................................................................................52  
Figure 12. 25MHz Crystal / Oscillator Reference Clock Connection ...................................................................................53  
M9999-101309-1.1  
October 2009  
6
Micrel, Inc.  
KSZ9021RL/RN  
List of Tables  
Table 1: MDI / MDI-X Pin Mapping ......................................................................................................................................25  
Table 2: Auto-Negotiation Timers ........................................................................................................................................28  
Table 3. RGMII Signal Definition..........................................................................................................................................29  
Table 4: RGMII In-Band Status............................................................................................................................................30  
Table 5. MII Management Frame Format – for KSZ9021RL/RN.........................................................................................30  
Table 6: Single LED Mode – Pin Definition..........................................................................................................................31  
Table 7: Tri-color Dual LED Mode – Pin Definition..............................................................................................................31  
Table 8: NAND Tree Test Pin Order – for KSZ9021RL.......................................................................................................32  
Table 9: NAND Tree Test Pin Order – for KSZ9021RN ......................................................................................................32  
Table 10. RGMII v1.3 Specification (Timing Specifics from Table 2) ..................................................................................48  
Table 11. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters...............................................................................49  
Table 12. MDC/MDIO Timing Parameters...........................................................................................................................50  
Table 13. Reset Timing Parameters ....................................................................................................................................51  
Table 14. Reference Crystal/Clock Selection Criteria..........................................................................................................53  
Table 15. Magnetics Selection Criteria ................................................................................................................................53  
Table 16. Qualified Single Port 10/100/1000 Magnetics......................................................................................................53  
M9999-101309-1.1  
October 2009  
7
Micrel, Inc.  
KSZ9021RL/RN  
Pin Configuration – KSZ9021RL  
64-Pin E-LQFP  
(Top View)  
M9999-101309-1.1  
October 2009  
8
Micrel, Inc.  
KSZ9021RL/RN  
Pin Description – KSZ9021RL  
Pin Number  
Pin Name  
Type(1)  
Pin Function  
1
TXRXP_A  
I/O  
Media Dependent Interface[0], positive signal of differential pair  
1000Base-T Mode:  
TXRXP_A corresponds to BI_DA+ for MDI configuration and BI_DB+ for  
MDI-X configuration, respectively.  
10Base-T / 100Base-TX Mode:  
TXRXP_A is the positive transmit signal (TX+) for MDI configuration and  
the positive receive signal (RX+) for MDI-X configuration, respectively.  
2
TXRXM_A  
I/O  
Media Dependent Interface[0], negative signal of differential pair  
1000Base-T Mode:  
TXRXM_A corresponds to BI_DA- for MDI configuration and BI_DB- for  
MDI-X configuration, respectively.  
10Base-T / 100Base-TX Mode:  
TXRXM_A is the negative transmit signal (TX-) for MDI configuration and  
the negative receive signal (RX-) for MDI-X configuration, respectively.  
3
4
5
6
7
AGNDH  
AVDDL  
Gnd  
P
Analog ground  
1.2V analog VDD  
1.2V analog VDD  
3.3V analog VDD  
AVDDL  
P
AVDDH  
TXRXP_B  
P
I/O  
Media Dependent Interface[1], positive signal of differential pair  
1000Base-T Mode:  
TXRXP_B corresponds to BI_DB+ for MDI configuration and BI_DA+ for  
MDI-X configuration, respectively.  
10Base-T / 100Base-TX Mode:  
TXRXP_B is the positive receive signal (RX+) for MDI configuration and  
the positive transmit signal (TX+) for MDI-X configuration, respectively.  
8
TXRXM_B  
I/O  
Media Dependent Interface[1], negative signal of differential pair  
1000Base-T Mode:  
TXRXM_B corresponds to BI_DB- for MDI configuration and BI_DA- for  
MDI-X configuration, respectively.  
10Base-T / 100Base-TX Mode:  
TXRXM_B is the negative receive signal (RX-) for MDI configuration and  
the negative transmit signal (TX-) for MDI-X configuration, respectively.  
9
AGNDH  
Gnd  
I/O  
Analog ground  
10  
TXRXP_C  
Media Dependent Interface[2], positive signal of differential pair  
1000Base-T Mode:  
TXRXP_C corresponds to BI_DC+ for MDI configuration and BI_DD+ for  
MDI-X configuration, respectively.  
10Base-T / 100Base-TX Mode:  
TXRXP_C is not used.  
11  
TXRXM_C  
I/O  
Media Dependent Interface[2], negative signal of differential pair  
1000Base-T Mode:  
TXRXM_C corresponds to BI_DC- for MDI configuration and BI_DD- for  
MDI-X configuration, respectively.  
10Base-T / 100Base-TX Mode:  
TXRXM_C is not used.  
M9999-101309-1.1  
October 2009  
9
Micrel, Inc.  
KSZ9021RL/RN  
Pin Number  
Pin Name  
AVDDL  
Type(1)  
Pin Function  
12  
13  
14  
P
P
1.2V analog VDD  
AVDDL  
1.2V analog VDD  
TXRXP_D  
I/O  
Media Dependent Interface[3], positive signal of differential pair  
1000Base-T Mode:  
TXRXP_D corresponds to BI_DD+ for MDI configuration and BI_DC+ for  
MDI-X configuration, respectively.  
10Base-T / 100Base-TX Mode:  
TXRXP_D is not used.  
15  
TXRXM_D  
I/O  
Media Dependent Interface[3], negative signal of differential pair  
1000Base-T Mode:  
TXRXM_D corresponds to BI_DD- for MDI configuration and BI_DC- for  
MDI-X configuration, respectively.  
10Base-T / 100Base-TX Mode:  
TXRXM_D is not used.  
3.3V analog VDD  
16  
17  
18  
19  
AVDDH  
VSS  
P
Gnd  
Gnd  
I/O  
Digital ground  
VSS  
Digital ground  
LED2 /  
PHYAD1  
LED Output:  
Config Mode:  
Programmable LED2 Output /  
The pull-up/pull-down value is latched as PHYAD[1] during  
power-up / reset. See “Strapping Options” section for details.  
The LED2 pin is programmed by the LED_MODE strapping option (pin 55), and is  
defined as follows.  
Single LED Mode  
Link  
Pin State LED Definition  
Link off  
H
L
OFF  
ON  
Link on (any speed)  
Tri-color Dual LED Mode  
Link / Activity  
Pin State  
LED Definition  
LED2  
LED1  
LED2  
OFF  
LED1  
Link off  
H
L
H
OFF  
1000 Link / No Activity  
H
ON  
OFF  
1000 Link / Activity (RX, TX) Toggle  
H
Blinking  
OFF  
OFF  
100 Link / No Activity  
H
L
ON  
100 Link / Activity (RX, TX)  
10 Link / No Activity  
H
Toggle  
L
OFF  
Blinking  
ON  
L
ON  
10 Link / Activity (RX, TX)  
Toggle  
Toggle  
Blinking  
Blinking  
For Tri-color Dual LED Mode, LED2 works in conjunction with LED1 (pin 21) to  
indicate 10 Mbps Link and Activity.  
20  
DVDDH  
P
3.3V / 2.5V digital VDD  
M9999-101309-1.1  
October 2009  
10  
Micrel, Inc.  
KSZ9021RL/RN  
Pin Number  
Pin Name  
LED1 /  
Type(1)  
Pin Function  
LED Output:  
Config Mode:  
21  
I/O  
Programmable LED1 Output /  
PHYAD0  
The pull-up/pull-down value is latched as PHYAD[0] during  
power-up / reset. See “Strapping Options” section for details.  
The LED1 pin is programmed by the LED_MODE strapping option (pin 55), and is  
defined as follows.  
Single LED Mode  
Activity  
Pin State LED Definition  
No Activity  
H
OFF  
Activity (RX, TX)  
Toggle  
Blinking  
Tri-color Dual LED Mode  
Link / Activity  
Pin State  
LED Definition  
LED2  
LED1  
LED2  
OFF  
LED1  
Link off  
H
L
H
OFF  
1000 Link / No Activity  
H
ON  
OFF  
1000 Link / Activity (RX, TX) Toggle  
H
Blinking  
OFF  
OFF  
100 Link / No Activity  
H
L
ON  
100 Link / Activity (RX, TX)  
10 Link / No Activity  
H
Toggle  
L
OFF  
Blinking  
ON  
L
ON  
10 Link / Activity (RX, TX)  
Toggle  
Toggle  
Blinking  
Blinking  
For Tri-color Dual LED Mode, LED1 works in conjunction with LED2 (pin 19) to  
indicate 10 Mbps Link and Activity.  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
DVDDL  
VSS  
P
1.2V digital VDD  
Digital ground  
Gnd  
TXD0  
I
RGMII Mode:  
RGMII Mode:  
RGMII Mode:  
RGMII Mode:  
Digital ground  
1.2V digital VDD  
RGMII TD0 (Transmit Data 0) Input  
RGMII TD1 (Transmit Data 1) Input  
RGMII TD2 (Transmit Data 2) Input  
RGMII TD3 (Transmit Data 3) Input  
TXD1  
I
TXD2  
I
TXD3  
I
VSS  
Gnd  
DVDDL  
DVDDH  
TX_ER  
GTX_CLK  
TX_EN  
VSS  
P
P
3.3V / 2.5V digital VDD  
I
RGMII Mode:  
RGMII Mode:  
RGMII Mode:  
Digital ground  
1.2V digital VDD  
This pin is not used and should be left as a no connect.  
I
I
RGMII TXC (Transmit Reference Clock) Input  
RGMII TX_CTL (Transmit Control) Input  
Gnd  
P
DVDDL  
M9999-101309-1.1  
October 2009  
11  
Micrel, Inc.  
KSZ9021RL/RN  
Pin Number  
Pin Name  
RXD3 /  
Type(1)  
Pin Function  
RGMII Mode:  
Config Mode:  
36  
I/O  
RGMII RD3 (Receive Data 3) Output /  
MODE3  
The pull-up/pull-down value is latched as MODE3 during  
power-up / reset. See “Strapping Options” section for details.  
37  
38  
DVDDH  
RXD2 /  
MODE2  
P
3.3V / 2.5V digital VDD  
I/O  
RGMII Mode:  
Config Mode:  
RGMII RD2 (Receive Data 2) Output /  
The pull-up/pull-down value is latched as MODE2 during  
power-up / reset. See “Strapping Options” section for details.  
39  
40  
41  
VSS  
Gnd  
P
Digital ground  
1.2V digital VDD  
RGMII Mode:  
Config Mode:  
DVDDL  
RXD1 /  
MODE1  
I/O  
RGMII RD1 (Receive Data 1) Output /  
The pull-up/pull-down value is latched as MODE1 during  
power-up / reset. See “Strapping Options” section for details.  
42  
43  
RXD0 /  
I/O  
I/O  
RGMII Mode:  
Config Mode:  
RGMII RD0 (Receive Data 0) Output /  
MODE0  
The pull-up/pull-down value is latched as MODE0 during  
power-up / reset. See “Strapping Options” section for details.  
RX_DV /  
RGMII Mode:  
Config Mode:  
RGMII RX_CTL (Receive Control) Output /  
CLK125_EN  
Latched as CLK125_NDO Output Enable during power-up /  
reset. See “Strapping Options” section for details.  
44  
45  
46  
DVDDH  
RX_ER  
P
O
3.3V / 2.5V digital VDD  
RGMII Mode:  
RGMII Mode:  
Config Mode:  
This pin is not used and should be left as a no connect.  
RX_CLK /  
PHYAD2  
I/O  
RGMII RXC (Receive Reference Clock) Output /  
The pull-up/pull-down value is latched as PHYAD[2] during  
power-up / reset. See “Strapping Options” section for details.  
47  
48  
CRS  
MDC  
O
RGMII Mode:  
This pin is not used and should be left as a no connect.  
Ipu  
Management Data Clock Input  
This pin is the input reference clock for MDIO (pin 49).  
Management Data Input / Output  
49  
MDIO  
Ipu/O  
This pin is synchronous to MDC (pin 48) and requires an external pull-up resistor  
to 3.3V digital VDD in a range from 1.0Kto 4.7K.  
50  
51  
COL  
O
O
RGMII Mode:  
This pin is not used and should be left as a no connect.  
INT_N  
Interrupt Output  
This pin provides a programmable interrupt output and requires an external pull-up  
resistor to 3.3V digital VDD in a range from 1.0Kto 4.7Kwhen active low.  
Register 1Bh is the Interrupt Control/Status Register for programming the interrupt  
conditions and reading the interrupt status. Register 1Fh bit 14 sets the interrupt  
output to active low (default) or active high.  
52  
53  
54  
55  
DVDDL  
VSS  
P
Gnd  
P
1.2V digital VDD  
Digital ground  
DVDDL  
1.2V digital VDD  
CLK125_NDO /  
I/O  
125MHz Clock Output  
This pin provides a 125MHz reference clock output option for use by the MAC. /  
LED_MODE  
Config Mode:  
The pull-up/pull-down value is latched as LED_MODE during  
power-up / reset. See “Strapping Options” section for details.  
M9999-101309-1.1  
October 2009  
12  
Micrel, Inc.  
KSZ9021RL/RN  
Pin Number  
Pin Name  
Type(1)  
Pin Function  
56  
RESET_N  
Ipu  
Chip Reset (active low)  
Hardware pin configurations are strapped-in at the de-assertion (rising edge) of  
RESET_N. See “Strapping Options” section for more details.  
57  
LDO_O  
O
On-chip 1.2V LDO Controller Output  
This pin drives the input gate of a P-channel MOSFET to generate 1.2V for the  
chip’s core voltages. If 1.2V is provided by the system and this pin is not used, it  
can be left floating.  
58  
59  
AVDDL_PLL  
XO  
P
1.2V analog VDD for PLL  
O
25MHz Crystal feedback  
This pin is a no connect if oscillator or external clock source is used.  
Crystal / Oscillator / External Clock Input  
25MHz +/-50ppm tolerance  
60  
XI  
I
61  
62  
AVDDH  
ISET  
P
3.3V analog VDD  
I/O  
Set transmit output level  
Connect a 4.99K1% resistor to ground on this pin.  
Analog ground  
63  
64  
AGNDH_BG  
AVDDH  
Gnd  
P
3.3V analog VDD  
E-PAD  
E-PAD  
Gnd  
Exposed Pad on bottom of chip  
Connect E-PAD to ground.  
Note:  
1. P = Power supply.  
Gnd = Ground.  
I = Input.  
O = Output.  
I/O = Bi-directional.  
Ipu = Input with internal pull-up.  
Ipu/O = Input with internal pull-up / Output.  
M9999-101309-1.1  
October 2009  
13  
Micrel, Inc.  
KSZ9021RL/RN  
Strapping Options – KSZ9021RL  
Type(1)  
Pin Number  
Pin Name  
Pin Function  
46  
19  
21  
PHYAD2  
PHYAD1  
PHYAD0  
I/O  
The PHY Address, PHYAD[2:0], is latched at power-up / reset and is configurable to  
any value from 1 to 7. Each PHY address bit is configured as follows:  
I/O  
Pull-up = 1  
I/O  
Pull-down = 0  
PHY Address bits [4:3] are always set to ‘00’.  
36  
38  
41  
42  
MODE3  
MODE2  
MODE1  
MODE0  
I/O  
I/O  
I/O  
I/O  
The MODE[3:0] strap-in pins are latched at power-up / reset and are defined as  
follows:  
MODE[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
Mode  
Reserved – not used  
Reserved – not used  
Reserved – not used  
Reserved – not used  
NAND Tree Mode  
Reserved – not used  
Reserved – not used  
Chip Power Down Mode  
Reserved – not used  
Reserved – not used  
Reserved – not used  
Reserved – not used  
RGMII Mode – advertise 1000Base-T full-duplex only  
RGMII Mode – advertise 1000Base-T full and half-duplex only  
RGMII Mode – advertise all capabilities (10/100/1000 speed  
half/full duplex),except 1000Base-T half-duplex  
1111  
RGMII Mode – advertise all capabilities (10/100/1000 speed  
half/full duplex)  
43  
55  
CLK125_EN  
LED_MODE  
I/O  
I/O  
CLK125_EN is latched at power-up / reset and is defined as follows:  
Pull-up = Enable 125MHz Clock Output  
Pull-down = Disable 125MHz Clock Output  
Pin 55 (CLK125_NDO) provides the 125MHz reference clock output option for use by  
the MAC.  
LED_MODE is latched at power-up / reset and is defined as follows:  
Pull-up = Single LED Mode  
Pull-down = Tri-color Dual LED Mode  
Note:  
1. I/O = Bi-directional.  
Pin strap-ins are latched during power-up or reset. In some systems, the MAC receive input pins may be driven during  
power-up or reset, and consequently cause the PHY strap-in pins on the RGMII signals to be latched to the incorrect  
configuration. In this case, it is recommended to add external pull-ups/pull-downs on the PHY strap-in pins to ensure the  
PHY is configured to the correct pin strap-in mode.  
M9999-101309-1.1  
October 2009  
14  
Micrel, Inc.  
KSZ9021RL/RN  
Pin Configuration – KSZ9021RN  
48-Pin QFN  
(Top View)  
M9999-101309-1.1  
October 2009  
15  
Micrel, Inc.  
KSZ9021RL/RN  
Pin Description – KSZ9021RN  
Pin Number  
Pin Name  
Type(1)  
Pin Function  
1
2
AVDDH  
P
3.3V analog VDD  
TXRXP_A  
I/O  
Media Dependent Interface[0], positive signal of differential pair  
1000Base-T Mode:  
TXRXP_A corresponds to BI_DA+ for MDI configuration and BI_DB+ for  
MDI-X configuration, respectively.  
10Base-T / 100Base-TX Mode:  
TXRXP_A is the positive transmit signal (TX+) for MDI configuration and  
the positive receive signal (RX+) for MDI-X configuration, respectively.  
3
TXRXM_A  
I/O  
Media Dependent Interface[0], negative signal of differential pair  
1000Base-T Mode:  
TXRXM_A corresponds to BI_DA- for MDI configuration and BI_DB- for  
MDI-X configuration, respectively.  
10Base-T / 100Base-TX Mode:  
TXRXM_A is the negative transmit signal (TX-) for MDI configuration and  
the negative receive signal (RX-) for MDI-X configuration, respectively.  
4
5
AVDDL  
P
1.2V analog VDD  
TXRXP_B  
I/O  
Media Dependent Interface[1], positive signal of differential pair  
1000Base-T Mode:  
TXRXP_B corresponds to BI_DB+ for MDI configuration and BI_DA+ for  
MDI-X configuration, respectively.  
10Base-T / 100Base-TX Mode:  
TXRXP_B is the positive receive signal (RX+) for MDI configuration and  
the positive transmit signal (TX+) for MDI-X configuration, respectively.  
6
TXRXM_B  
I/O  
Media Dependent Interface[1], negative signal of differential pair  
1000Base-T Mode:  
TXRXM_B corresponds to BI_DB- for MDI configuration and BI_DA- for  
MDI-X configuration, respectively.  
10Base-T / 100Base-TX Mode:  
TXRXM_B is the negative receive signal (RX-) for MDI configuration and  
the negative transmit signal (TX-) for MDI-X configuration, respectively.  
7
8
TXRXP_C  
TXRXM_C  
AVDDL  
I/O  
I/O  
P
Media Dependent Interface[2], positive signal of differential pair  
1000Base-T Mode:  
TXRXP_C corresponds to BI_DC+ for MDI configuration and BI_DD+ for  
MDI-X configuration, respectively.  
10Base-T / 100Base-TX Mode:  
TXRXP_C is not used.  
Media Dependent Interface[2], negative signal of differential pair  
1000Base-T Mode:  
TXRXM_C corresponds to BI_DC- for MDI configuration and BI_DD- for  
MDI-X configuration, respectively.  
10Base-T / 100Base-TX Mode:  
TXRXM_C is not used.  
1.2V analog VDD  
9
M9999-101309-1.1  
October 2009  
16  
Micrel, Inc.  
KSZ9021RL/RN  
Pin Number  
Pin Name  
Type(1)  
Pin Function  
10  
TXRXP_D  
I/O  
Media Dependent Interface[3], positive signal of differential pair  
1000Base-T Mode:  
TXRXP_D corresponds to BI_DD+ for MDI configuration and BI_DC+ for  
MDI-X configuration, respectively.  
10Base-T / 100Base-TX Mode:  
TXRXP_D is not used.  
11  
TXRXM_D  
I/O  
Media Dependent Interface[3], negative signal of differential pair  
1000Base-T Mode:  
TXRXM_D corresponds to BI_DD- for MDI configuration and BI_DC- for  
MDI-X configuration, respectively.  
10Base-T / 100Base-TX Mode:  
TXRXM_D is not used.  
3.3V analog VDD  
12  
13  
14  
15  
AVDDH  
VSS_PS  
DVDDL  
LED2 /  
P
Gnd  
P
Digital ground  
1.2V digital VDD  
I/O  
LED Output:  
Config Mode:  
Programmable LED2 Output /  
PHYAD1  
The pull-up/pull-down value is latched as PHYAD[1] during  
power-up / reset. See “Strapping Options” section for details.  
The LED2 pin is programmed by the LED_MODE strapping option (pin 41), and is  
defined as follows.  
Single LED Mode  
Link  
Pin State LED Definition  
Link off  
H
L
OFF  
ON  
Link on (any speed)  
Tri-color Dual LED Mode  
Link / Activity  
Pin State  
LED Definition  
LED2  
LED1  
LED2  
OFF  
LED1  
Link off  
H
L
H
OFF  
1000 Link / No Activity  
H
ON  
OFF  
1000 Link / Activity (RX, TX) Toggle  
H
Blinking  
OFF  
OFF  
100 Link / No Activity  
H
L
ON  
100 Link / Activity (RX, TX)  
10 Link / No Activity  
H
Toggle  
L
OFF  
Blinking  
ON  
L
ON  
10 Link / Activity (RX, TX)  
Toggle  
Toggle  
Blinking  
Blinking  
For Tri-color Dual LED Mode, LED2 works in conjunction with LED1 (pin 17) to  
indicate 10 Mbps Link and Activity.  
16  
DVDDH  
P
3.3V / 2.5V digital VDD  
M9999-101309-1.1  
October 2009  
17  
Micrel, Inc.  
KSZ9021RL/RN  
Pin Number  
Pin Name  
LED1 /  
Type(1)  
Pin Function  
LED Output:  
Config Mode:  
17  
I/O  
Programmable LED1 Output /  
PHYAD0  
The pull-up/pull-down value is latched as PHYAD[0] during  
power-up / reset. See “Strapping Options” section for details.  
The LED1 pin is programmed by the LED_MODE strapping option (pin 41), and is  
defined as follows.  
Single LED Mode  
Activity  
Pin State LED Definition  
No Activity  
H
OFF  
Activity (RX, TX)  
Toggle  
Blinking  
Tri-color Dual LED Mode  
Link / Activity  
Pin State  
LED Definition  
LED2  
LED1  
LED2  
OFF  
LED1  
Link off  
H
L
H
OFF  
1000 Link / No Activity  
H
ON  
OFF  
1000 Link / Activity (RX, TX) Toggle  
H
Blinking  
OFF  
OFF  
100 Link / No Activity  
H
L
ON  
100 Link / Activity (RX, TX)  
10 Link / No Activity  
H
Toggle  
L
OFF  
Blinking  
ON  
L
ON  
10 Link / Activity (RX, TX)  
Toggle  
Toggle  
Blinking  
Blinking  
For Tri-color Dual LED Mode, LED1 works in conjunction with LED2 (pin 15) to  
indicate 10 Mbps Link and Activity.  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
DVDDL  
TXD0  
P
1.2V digital VDD  
I
I
RGMII Mode:  
RGMII Mode:  
RGMII Mode:  
RGMII Mode:  
1.2V digital VDD  
RGMII Mode:  
RGMII Mode:  
1.2V digital VDD  
RGMII Mode:  
Config Mode:  
RGMII TD0 (Transmit Data 0) Input  
RGMII TD1 (Transmit Data 1) Input  
RGMII TD2 (Transmit Data 2) Input  
RGMII TD3 (Transmit Data 3) Input  
TXD1  
TXD2  
I
TXD3  
I
DVDDL  
GTX_CLK  
TX_EN  
DVDDL  
RXD3 /  
MODE3  
P
I
RGMII TXC (Transmit Reference Clock) Input  
RGMII TX_CTL (Transmit Control) Input  
I
P
I/O  
RGMII RD3 (Receive Data 3) Output /  
The pull-up/pull-down value is latched as MODE3 during  
power-up / reset. See “Strapping Options” section for details.  
28  
RXD2 /  
I/O  
RGMII Mode:  
Config Mode:  
RGMII RD2 (Receive Data 2) Output /  
MODE2  
The pull-up/pull-down value is latched as MODE2 during  
power-up / reset. See “Strapping Options” section for details.  
29  
30  
31  
VSS  
Gnd  
P
Digital ground  
1.2V digital VDD  
RGMII Mode:  
Config Mode:  
DVDDL  
RXD1 /  
MODE1  
I/O  
RGMII RD1 (Receive Data 1) Output /  
The pull-up/pull-down value is latched as MODE1 during  
power-up / reset. See “Strapping Options” section for details.  
M9999-101309-1.1  
October 2009  
18  
Micrel, Inc.  
KSZ9021RL/RN  
Pin Number  
Pin Name  
RXD0 /  
Type(1)  
Pin Function  
RGMII Mode:  
Config Mode:  
32  
I/O  
RGMII RD0 (Receive Data 0) Output /  
MODE0  
The pull-up/pull-down value is latched as MODE0 during  
power-up / reset. See “Strapping Options” section for details.  
33  
RX_DV /  
I/O  
RGMII Mode:  
Config Mode:  
RGMII RX_CTL (Receive Control) Output /  
CLK125_EN  
Latched as CLK125_NDO Output Enable during power-up /  
reset. See “Strapping Options” section for details.  
34  
35  
DVDDH  
RX_CLK /  
PHYAD2  
P
3.3V / 2.5V digital VDD  
I/O  
RGMII Mode:  
Config Mode:  
RGMII RXC (Receive Reference Clock) Output /  
The pull-up/pull-down value is latched as PHYAD[2] during  
power-up / reset. See “Strapping Options” section for details.  
36  
37  
MDC  
Ipu  
Management Data Clock Input  
This pin is the input reference clock for MDIO (pin 37).  
Management Data Input / Output  
MDIO  
Ipu/O  
This pin is synchronous to MDC (pin 36) and requires an external pull-up resistor  
to 3.3V digital VDD in a range from 1.0Kto 4.7K.  
38  
INT_N  
O
Interrupt Output  
This pin provides a programmable interrupt output and requires an external pull-up  
resistor to 3.3V digital VDD in a range from 1.0Kto 4.7Kwhen active low.  
Register 1Bh is the Interrupt Control/Status Register for programming the interrupt  
conditions and reading the interrupt status. Register 1Fh bit 14 sets the interrupt  
output to active low (default) or active high.  
39  
40  
41  
DVDDL  
DVDDH  
P
P
1.2V digital VDD  
3.3V / 2.5V digital VDD  
CLK125_NDO /  
I/O  
125MHz Clock Output  
This pin provides a 125MHz reference clock output option for use by the MAC. /  
LED_MODE  
RESET_N  
Config Mode:  
The pull-up/pull-down value is latched as LED_MODE during  
power-up / reset. See “Strapping Options” section for details.  
42  
43  
Ipu  
O
Chip Reset (active low)  
Hardware pin configurations are strapped-in at the de-assertion (rising edge) of  
RESET_N. See “Strapping Options” section for more details.  
LDO_O  
On-chip 1.2V LDO Controller Output  
This pin drives the input gate of a P-channel MOSFET to generate 1.2V for the  
chip’s core voltages. If 1.2V is provided by the system and this pin is not used, it  
can be left floating.  
44  
45  
AVDDL_PLL  
XO  
P
1.2V analog VDD for PLL  
O
25MHz Crystal feedback  
This pin is a no connect if oscillator or external clock source is used.  
Crystal / Oscillator / External Clock Input  
25MHz +/-50ppm tolerance  
46  
XI  
I
47  
48  
AVDDH  
ISET  
P
3.3V analog VDD  
I/O  
Set transmit output level  
Connect a 4.99K1% resistor to ground on this pin.  
Exposed Paddle on bottom of chip  
Connect P_GND to ground.  
PADDLE  
P_GND  
Gnd  
M9999-101309-1.1  
October 2009  
19  
Micrel, Inc.  
KSZ9021RL/RN  
Note:  
1. P = Power supply.  
Gnd = Ground.  
I = Input.  
O = Output.  
I/O = Bi-directional.  
Ipu = Input with internal pull-up.  
Ipu/O = Input with internal pull-up / Output.  
M9999-101309-1.1  
October 2009  
20  
Micrel, Inc.  
KSZ9021RL/RN  
Strapping Options – KSZ9021RN  
Type(1)  
Pin Number  
Pin Name  
Pin Function  
35  
15  
17  
PHYAD2  
PHYAD1  
PHYAD0  
I/O  
The PHY Address, PHYAD[2:0], is latched at power-up / reset and is configurable to  
any value from 1 to 7. Each PHY address bit is configured as follows:  
I/O  
Pull-up = 1  
I/O  
Pull-down = 0  
PHY Address bits [4:3] are always set to ‘00’.  
27  
28  
31  
32  
MODE3  
MODE2  
MODE1  
MODE0  
I/O  
I/O  
I/O  
I/O  
The MODE[3:0] strap-in pins are latched at power-up / reset and are defined as  
follows:  
MODE[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
Mode  
Reserved – not used  
Reserved – not used  
Reserved – not used  
Reserved – not used  
NAND Tree Mode  
Reserved – not used  
Reserved – not used  
Chip Power Down Mode  
Reserved – not used  
Reserved – not used  
Reserved – not used  
Reserved – not used  
RGMII Mode – advertise 1000Base-T full-duplex only  
RGMII Mode – advertise 1000Base-T full and half-duplex only  
RGMII Mode – advertise all capabilities (10/100/1000 speed  
half/full duplex),except 1000Base-T half-duplex  
1111  
RGMII Mode – advertise all capabilities (10/100/1000 speed  
half/full duplex)  
33  
41  
CLK125_EN  
LED_MODE  
I/O  
I/O  
CLK125_EN is latched at power-up / reset and is defined as follows:  
Pull-up = Enable 125MHz Clock Output  
Pull-down = Disable 125MHz Clock Output  
Pin 41 (CLK125_NDO) provides the 125MHz reference clock output option for use by  
the MAC.  
LED_MODE is latched at power-up / reset and is defined as follows:  
Pull-up = Single LED Mode  
Pull-down = Tri-color Dual LED Mode  
Note:  
1. I/O = Bi-directional.  
Pin strap-ins are latched during power-up or reset. In some systems, the MAC receive input pins may be driven during  
power-up or reset, and consequently cause the PHY strap-in pins on the RGMII signals to be latched to the incorrect  
configuration. In this case, it is recommended to add external pull-ups/pull-downs on the PHY strap-in pins to ensure the  
PHY is configured to the correct pin strap-in mode.  
M9999-101309-1.1  
October 2009  
21  
Micrel, Inc.  
KSZ9021RL/RN  
Functional Overview  
The KSZ9021RL/RN is a completely integrated triple speed (10Base-T/100Base-TX/1000Base-T) Ethernet Physical Layer  
Transceiver solution for transmission and reception of data over a standard CAT-5 unshielded twisted pair (UTP) cable.  
Its on-chip proprietary 1000Base-T transceiver and Manchester/MLT-3 signaling-based 10Base-T/100Base-TX  
transceivers are all IEEE 802.3 compliant.  
The KSZ9021RL/RN reduces board cost and simplifies board layout by using on-chip termination resistors for the four  
differential pairs and by integrating a LDO controller to drive a low cost MOSFET to supply the 1.2V core.  
On the copper media interface, the KSZ9021RL/RN can automatically detect and correct for differential pair  
misplacements and polarity reversals, and correct propagation delays and re-sync timing between the four differential  
pairs, as specified in the IEEE 802.3 standard for 1000Base-T operation.  
The KSZ9021RL/RN provides the RGMII interface for a direct and seamless connection to RGMII MACs in Gigabit  
Ethernet Processors and Switches for data transfer at 10/100/1000Mbps speed.  
The following figure shows a high-level block diagram of the KSZ9021RL/RN.  
Figure 1. KSZ9021RL/RN Block Diagram  
M9999-101309-1.1  
October 2009  
22  
Micrel, Inc.  
KSZ9021RL/RN  
Functional Description: 10Base-T/100Base-TX Transceiver  
100Base-TX Transmit  
The 100Base-TX transmit function performs parallel to serial conversion, 4B/5B coding, scrambling, NRZ-to-NRZI  
conversion, and MLT-3 encoding and transmission.  
The circuitry starts with a parallel-to-serial conversion, which converts the RGMII data from the MAC into a 125MHz serial  
bit stream. The data and control stream is then converted into 4B/5B coding, followed by a scrambler. The serialized data  
is further converted from NRZ-to-NRZI format, and then transmitted in MLT-3 current output. The output current is set by  
an external 4.99K1% resistor for the 1:1 transformer ratio.  
The output signal has a typical rise/fall time of 4ns and complies with the ANSI TP-PMD standard regarding amplitude  
balance, overshoot, and timing jitter. The wave-shaped 10Base-T output is also incorporated into the 100Base-TX  
transmitter.  
100Base-TX Receive  
The 100BASE-TX receiver function performs adaptive equalization, DC restoration, MLT-3-to-NRZI conversion, data and  
clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion.  
The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted pair  
cable. Since the amplitude loss and phase distortion is a function of the cable length, the equalizer must adjust its  
characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on  
comparisons of incoming signal strength against some known cable characteristics, and then tunes itself for optimization.  
This is an ongoing process and self-adjusts against environmental changes such as temperature variations.  
Next, the equalized signal goes through a DC restoration and data conversion block. The DC restoration circuit is used to  
compensate for the effect of baseline wander and to improve the dynamic range. The differential data conversion circuit  
converts the MLT-3 format back to NRZI. The slicing threshold is also adaptive.  
The clock recovery circuit extracts the 125MHz clock from the edges of the NRZI signal. This recovered clock is then used  
to convert the NRZI signal into the NRZ format. This signal is sent through the de-scrambler followed by the 4B/5B  
decoder. Finally, the NRZ serial data is converted to the RGMII format and provided as the input data to the MAC.  
Scrambler/De-scrambler (100Base-TX only)  
The purpose of the scrambler is to spread the power spectrum of the signal to reduce electromagnetic interference (EMI)  
and baseline wander. Transmitted data is scrambled through the use of an 11-bit wide linear feedback shift register  
(LFSR). The scrambler generates a 2047-bit non-repetitive sequence, and the receiver then de-scrambles the incoming  
data stream using the same sequence as at the transmitter.  
10Base-T Transmit  
The output 10Base-T driver is incorporated into the 100Base-TX driver to allow transmission with the same magnetic.  
They are internally wave-shaped and pre-emphasized into typical outputs of 2.5V amplitude. The harmonic contents are  
at least 31 dB below the fundamental when driven by an all-ones Manchester-encoded signal.  
10Base-T Receive  
On the receive side, input buffer and level detecting squelch circuits are employed. A differential input receiver circuit and  
a phase-locked loop (PLL) perform the decoding function. The Manchester-encoded data stream is separated into clock  
signal and NRZ data. A squelch circuit rejects signals with levels less than 300 mV or with short pulse widths in order to  
prevent noises at the receive inputs from falsely triggering the decoder. When the input exceeds the squelch limit, the PLL  
locks onto the incoming signal and the KSZ9021RL/RN decodes a data frame. The receiver clock is maintained active  
during idle periods in between receiving data frames.  
M9999-101309-1.1  
October 2009  
23  
Micrel, Inc.  
KSZ9021RL/RN  
Functional Description: 1000Base-T Transceiver  
The 1000Base-T transceiver is based on a mixed-signal/digital signal processing (DSP) architecture, which includes the  
analog front-end, digital channel equalizers, trellis encoders/decoders, echo cancellers, cross-talk cancellers, precision  
clock recovery scheme, and power efficient line drivers.  
The following figure shows a high-level block diagram of a single channel of the 1000Base-T transceiver for one of the  
four differential pairs.  
OTHER  
CHANNELS  
XTAL  
Clk  
Generation  
Side-Stream Scrambler  
&
TX  
Signal  
Symbol Encoder  
Transmit  
Block  
PCS State Machines  
LED Driver  
Pair Swap  
&
Analog  
Hybrid  
NEXT Canceller  
Descrambler  
Echo Canceller  
Align Unit  
+
Decoder  
Baseline  
Wander  
Compensation  
RX-  
ADC  
FFE  
SLICER  
+
RX  
Signal  
Clock & Phase  
Recovery  
DFE  
MII  
MII  
Registers  
Auto-Negotiation  
Management  
Control  
PMA State  
Machines  
Figure 2. KSZ9021RL/RN 1000Base-T Block Diagram – Single Channel  
Analog Echo Cancellation Circuit  
In 1000Base-T mode, the analog echo cancellation circuit helps to reduce the near-end echo. This analog hybrid circuit  
relieves the burden of the ADC and the adaptive equalizer.  
This circuit is disabled in 10Base-T/100Base-TX mode.  
Automatic Gain Control (AGC)  
In 1000Base-T mode, the automatic gain control (AGC) circuit provides initial gain adjustment to boost up the signal level.  
This pre-conditioning circuit is used to improve the signal-to-noise ratio of the receive signal.  
Analog-to-Digital Converter (ADC)  
In 1000Base-T mode, the analog-to-digital converter (ADC) digitizes the incoming signal. ADC performance is essential to  
the overall performance of the transceiver.  
This circuit is disabled in 10Base-T/100Base-TX mode.  
M9999-101309-1.1  
October 2009  
24  
Micrel, Inc.  
KSZ9021RL/RN  
Timing Recovery Circuit  
In 1000Base-T mode, the mixed-signal clock recovery circuit, together with the digital phase locked loop, is used to  
recover and track the incoming timing information from the received data. The digital phase locked loop has very low long-  
term jitter to maximize the signal-to-noise ratio of the receive signal.  
The 1000Base-T slave PHY is required to transmit the exact receive clock frequency recovered from the received data  
back to the 1000Base-T master PHY. Otherwise, the master and slave will not be synchronized after long transmission.  
Additionally, this helps to facilitate echo cancellation and NEXT removal.  
Adaptive Equalizer  
In 1000Base-T mode, the adaptive equalizer provides the following functions:  
Detection for partial response signaling  
Removal of NEXT and ECHO noise  
Channel equalization  
Signal quality is degraded by residual echo that is not removed by the analog hybrid and echo due to impedance  
mismatch. The KSZ9021RL/RN employs a digital echo canceller to further reduce echo components on the receive signal.  
In 1000Base-T mode, the data transmission and reception occurs simultaneously on all four pairs of wires (four channels).  
This results in high frequency cross-talk coming from adjacent wires. The KSZ9021RL/RN employs three NEXT  
cancellers on each receive channel to minimize the cross-talk induced by the other three channels.  
In 10Base-T/100Base-TX mode, the adaptive equalizer needs only to remove the inter-symbol interference and recover  
the channel loss from the incoming data.  
Trellis Encoder and Decoder  
In 1000Base-T mode, the transmitted 8-bit data is scrambled into 9-bit symbols and further encoded into 4D-PAM5  
symbols. The initial scrambler seed is determined by the specific PHY address to reduce EMI when more than one  
KSZ9021RL/RN is used on the same board. On the receiving side, the idle stream is examined first. The scrambler seed,  
pair skew, pair order and polarity have to be resolved through the logic. The incoming 4D-PAM5 data is then converted  
into 9-bit symbols and then de-scrambled into 8-bit data.  
Functional Description: 10/100/1000 Transceiver Features  
Auto MDI/MDI-X  
The Automatic MDI/MDI-X feature eliminates the need to determine whether to use a straight cable or a crossover cable  
between the KSZ9021RL/RN and its link partner. This auto-sense function detects the MDI/MDI-X pair mapping from the  
link partner, and then assigns the MDI/MDI-X pair mapping of the KSZ9021RL/RN accordingly.  
The following table shows the KSZ9021RL/RN 10/100/1000 pin-out assignments for MDI/MDI-X pin mapping.  
MDI  
100Base-TX  
TX+/-  
MDI-X  
100Base-TX  
RX+/-  
Pin (RJ-45 pair)  
1000Base-T  
A+/-  
10Base-T  
TX+/-  
1000Base-T  
B+/-  
10Base-T  
RX+/-  
TXRXP/M_A (1,2)  
TXRXP/M_B (3,6)  
TXRXP/M_C (4,5)  
TXRXP/M_D (7,8)  
B+/-  
RX+/-  
RX+/-  
A+/-  
TX+/-  
TX+/-  
C+/-  
Not used  
Not used  
Not used  
Not used  
D+/-  
Not used  
Not used  
Not used  
Not used  
D+/-  
C+/-  
Table 1. MDI / MDI-X Pin Mapping  
Auto MDI/MDI-X is enabled by default. It is disabled by writing a one to register 28 (1Ch) bit 6. MDI and MDI-X mode is  
set by register 28 (1Ch) bit 7 if auto MDI/MDI-X is disabled.  
An isolation transformer with symmetrical transmit and receive data paths is recommended to support auto MDI/MDI-X.  
M9999-101309-1.1  
October 2009  
25  
Micrel, Inc.  
KSZ9021RL/RN  
Pair- Swap, Alignment, and Polarity Check  
In 1000Base-T mode, the KSZ9021RL/RN  
Detects incorrect channel order and automatically restore the pair order for the A, B, C, D pairs (four channels)  
Supports 50±10ns difference in propagation delay between pairs of channels in accordance with the IEEE 802.3  
standard, and automatically corrects the data skew so the corrected 4-pairs of data symbols are synchronized  
Incorrect pair polarities of the differential signals are automatically corrected for all speeds.  
Wave Shaping, Slew Rate Control and Partial Response  
In communication systems, signal transmission encoding methods are used to provide the noise-shaping feature and to  
minimize distortion and error in the transmission channel.  
For 1000Base-T, a special partial response signaling method is used to provide the band-limiting feature for the  
transmission path.  
For 100Base-TX, a simple slew rate control method is used to minimize EMI.  
For 10Base-T, pre-emphasis is used to extend the signal quality through the cable.  
PLL Clock Synthesizer  
The KSZ9021RL/RN generates 125MHz, 25MHz and 10MHz clocks for system timing. Internal clocks are generated from  
the external 25MHz crystal or reference clock.  
Auto-Negotiation  
The KSZ9021RL/RN conforms to the auto-negotiation protocol, defined in Clause 28 of the IEEE 802.3 Specification.  
Auto-negotiation allows UTP (Unshielded Twisted Pair) link partners to select the highest common mode of operation.  
During auto-negotiation, link partners advertise capabilities across the UTP link to each other, and then compare their own  
capabilities with those they received from their link partners. The highest speed and duplex setting that is common to the  
two link partners is selected as the mode of operation.  
The following list shows the speed and duplex operation mode from highest to lowest.  
Priority 1: 1000Base-T, full-duplex  
Priority 2: 1000Base-T, half-duplex  
Priority 3: 100Base-TX, full-duplex  
Priority 4: 100Base-TX, half-duplex  
Priority 5: 10Base-T, full-duplex  
Priority 6: 10Base-T, half-duplex  
If auto-negotiation is not supported or the KSZ9021RL/RN link partner is forced to bypass auto-negotiation for 10Base-T  
and 100Base-TX modes, then the KSZ9021RL/RN sets its operating mode by observing the input signal at its receiver.  
This is known as parallel detection, and allows the KSZ9021RL/RN to establish a link by listening for a fixed signal  
protocol in the absence of auto-negotiation advertisement protocol.  
The auto-negotiation link up process is shown in the following flow chart.  
M9999-101309-1.1  
October 2009  
26  
Micrel, Inc.  
KSZ9021RL/RN  
Start Auto Negotiation  
Parallel  
Operation  
No  
Force Link Setting  
Yes  
Attempt Auto  
Negotiation  
Listen for 100BaseTX  
Idles  
Listen for 10BaseT Link  
Pulses  
Bypass Auto Negotiation  
and Set Link Mode  
No  
Join Flow  
Link Mode Set ?  
Yes  
Link Mode Set  
Figure 3. Auto-Negotiation Flow Chart  
For 1000Base-T mode, auto-negotiation is required and always used to establish link. During 1000Base-T auto-  
negotiation, Master and Slave configuration is first resolved between link partners, and then link is established with the  
highest common capabilities between link partners.  
Auto-negotiation is enabled by default at power-up or after hardware reset. Afterwards, auto-negotiation can be enabled  
or disabled through register 0 bit 12. If auto-negotiation is disabled, then the speed is set by register 0 bits 6 and 13, and  
the duplex is set by register 0 bit 8.  
If the speed is changed on the fly, then the link goes down and either auto-negotiation or parallel detection will initiate until  
a common speed between KSZ9021RL/RN and its link partner is re-established for link.  
If link is already established, and there is no change of speed on the fly, then the changes will not take effect unless either  
auto-negotiation is restarted through register 0 bit 9, or a link down to link up transition occurs (i.e., disconnecting and  
reconnecting the cable).  
After auto-negotiation is completed, the link status is updated in register 1 and the link partner capabilities are updated in  
registers 5, 6, and 10.  
The auto-negotiation finite state machines employ interval timers to manage the auto-negotiation process. The duration of  
these timers under normal operating conditions are summarized in the following table.  
M9999-101309-1.1  
October 2009  
27  
Micrel, Inc.  
KSZ9021RL/RN  
Auto-Negotiation Interval Timers  
Transmit Burst interval  
Time Duration  
16 ms  
Transmit Pulse interval  
68 us  
FLP detect minimum time  
FLP detect maximum time  
Receive minimum Burst interval  
Receive maximum Burst interval  
Data detect minimum interval  
Data detect maximum interval  
NLP test minimum interval  
NLP test maximum interval  
Link Loss time  
17.2 us  
185 us  
6.8 ms  
112 ms  
35.4 us  
95 us  
4.5 ms  
30 ms  
52 ms  
Break Link time  
1480 ms  
830 ms  
1000 ms  
Parallel Detection wait time  
Link Enable wait time  
Table 2. Auto-Negotiation Timers  
RGMII Interface  
The Reduced Gigabit Media Independent Interface (RGMII) is compliant with the RGMII Version 1.3 Specification. It  
provides a common interface between RGMII PHYs and MACs, and has the following key characteristics:  
Pin count is reduced from 24 pins for the IEEE Gigabit Media Independent Interface (GMII) to 12 pins for RGMII.  
All speeds (10Mbps, 100Mbps, and 1000Mbps) are supported at both half and full duplex.  
Data transmission and reception are independent and belong to separate signal groups.  
Transmit data and receive data are each 4-bit wide, a nibble.  
In RGMII operation, the RGMII pins function as follow:  
The MAC sources the transmit reference clock, TXC, at 125MHz for 1000Mbps, 25MHz for 100Mbps and 2.5MHz  
for 10Mbps.  
The PHY recovers and sources the receive reference clock, RXC, at 125MHz for 1000Mbps, 25MHz for 100Mbps  
and 2.5MHz for 10Mbps.  
For 1000Base-T, the transmit data, TXD[3:0], is presented on both edges of TXC, and the received data,  
RXD[3:0], is clocked out on both edges of the recovered 125 MHz clock, RXC.  
For 10Base-T/100Base-TX, the MAC will hold TX_CTL low until both PHY and MAC operate at the same speed.  
During the speed transition, the receive clock will be stretched on either positive or negative pulse to ensure that  
no clock glitch is presented to the MAC at any time.  
TX_ER and RX_ER are combined with TX_EN and RX_DV, respectively, to form TX_CTL and RX_CTL. These  
two RGMII control signals are valid at the falling clock edge.  
After power-up or reset, the KSZ9021RL/RN is configured to RGMII mode if the MODE[3:0] strap-in pins are set to one of  
the RGMII mode capability options. See Strapping Options section for available options.  
The KSZ9021RL/RN has the option to output a low jitter 125MHz reference clock on the CLK125_NDO pin. This clock  
provides a lower cost reference clock alternative for RGMII MACs that require a 125MHz crystal or oscillator. The 125MHz  
clock output is enabled after power-up or reset if the CLK125_EN strap-in pin is pulled high.  
M9999-101309-1.1  
October 2009  
28  
Micrel, Inc.  
KSZ9021RL/RN  
RGMII Signal Definition  
The following table describes the RGMII signals. Refer to the RGMII Version 1.3 Specification for more detailed  
information.  
RGMII  
RGMII  
Pin Type  
(with respect  
to PHY)  
Pin Type  
(with respect  
to MAC)  
Signal Name Signal Name  
Description  
(per spec)  
(per KSZ9021RL/RN)  
TXC  
GTX_CLK  
Input  
Output  
Transmit Reference Clock  
(125MHz for 1000Mbps, 25MHz for  
100Mbps, 2.5MHz for 10Mbps)  
TX_CTL  
TXD[3:0]  
RXC  
TX_EN  
Input  
Output  
Output  
Input  
Transmit Control  
TXD[3:0]  
RX_CLK  
Input  
Transmit Data [3:0]  
Receive Reference Clock  
Output  
(125MHz for 1000Mbps, 25MHz for  
100Mbps, 2.5MHz for 10Mbps)  
RX_CTL  
RXD[3:0]  
RX_DV  
Output  
Output  
Input  
Input  
Receive Control  
RXD[3:0]  
Receive Data [3:0]  
Table 3. RGMII Signal Definition  
RGMII Signal Diagram  
The KSZ9021RL/RN RGMII pin connections to the MAC are shown in the following figure.  
RGMII  
KSZ9021RL/RN  
Ethernet MAC  
TXC  
GTX_CLK  
TX_EN  
TX_CTL  
TXD[3:0]  
TXD[3:0]  
RX_CLK  
RX_DV  
RXC  
RX_CTL  
RXD[3:0]  
RXD[3:0]  
Figure 4. KSZ9021RL/RN RGMII Interface  
M9999-101309-1.1  
October 2009  
29  
Micrel, Inc.  
KSZ9021RL/RN  
RGMII In-band Status  
The KSZ9021RL/RN can provide in-band status to the MAC during the inter-frame gap when RX_DV is de-asserted.  
RGMII in-band status is disabled by default. It is enabled by writing a one to extended register 256 (100h) bit 8.  
The in-band status is sent to the MAC using the RXD[3:0] data pins, and is described in the following table.  
RX_DV  
RXD3  
RXD[2:1]  
RXD0  
Duplex Status  
0 = half-duplex  
RX_CLK clock speed  
00 =2.5MHz  
Link Status  
0 = Link down  
1 = Link up  
0
(valid only when RX_DV 1 = full-duplex  
is low and register 256  
01 =25MHz  
10 =125MHz  
11 = reserved  
bit 8 is set to 1)  
Table 4. RGMII In-Band Status  
MII Management (MIIM) Interface  
The KSZ9021RL/RN supports the IEEE 802.3 MII Management Interface, also known as the Management Data Input /  
Output (MDIO) Interface. This interface allows upper-layer devices to monitor and control the state of the KSZ9021RL/RN.  
An external device with MIIM capability is used to read the PHY status and/or configure the PHY settings. Further detail  
on the MIIM interface can be found in Clause 22.2.4.5 of the IEEE 802.3 Specification.  
The MIIM interface consists of the following:  
A physical connection that incorporates the clock line (MDC) and the data line (MDIO).  
A specific protocol that operates across the aforementioned physical connection that allows an external controller  
to communicate with one or more KSZ9021RL/RN device. Each KSZ9021RL/RN device is assigned a PHY  
address between 1 and 7 by the PHYAD[2:0] strapping pins.  
A 32 register address space to access the KSZ9021RL/RN IEEE Defined Registers, Vendor Specific Registers  
and Extended Registers. See Register Map section.  
The following table shows the MII Management frame format for the KSZ9021RL/RN.  
Preamble  
Start of  
Frame  
Read/Write PHY  
REG  
TA  
Data  
Idle  
OP Code  
Address  
Address  
Bits [4:0]  
RRRRR  
RRRRR  
Bits [15:0]  
Bits [4:0]  
00AAA  
Read 32 1’s  
01  
01  
10  
01  
Z0  
10  
DDDDDDDD_DDDDDDDD  
DDDDDDDD_DDDDDDDD  
Z
Z
Write 32 1’s  
00AAA  
Table 5. MII Management Frame Format – for KSZ9021RL/RN  
Interrupt (INT_N)  
The INT_N pin is an optional interrupt signal that is used to inform the external controller that there has been a status  
update in the KSZ9021RL/RN PHY register. Bits [15:8] of register 27 (1Bh) are the interrupt control bits to enable and  
disable the conditions for asserting the INT_N signal. Bits [7:0] of register 27 (1Bh) are the interrupt status bits to indicate  
which interrupt conditions have occurred. The interrupt status bits are cleared after reading register 27 (1Bh).  
Bit 14 of register 31 (1Fh) sets the interrupt level to active high or active low. The default is active low.  
The MII management bus option gives the MAC processor complete access to the KSZ9021RL/RN control and status  
registers. Additionally, an interrupt pin eliminates the need for the processor to poll the PHY for status change.  
M9999-101309-1.1  
October 2009  
30  
Micrel, Inc.  
KSZ9021RL/RN  
LED Mode  
The KSZ9021RL/RN provides two programmable LED output pins, LED2 and LED1, which are configurable to support  
two LED modes. The LED mode is configured by the LED_MODE strap-in pin. It is latched at power-up/reset and is  
defined as follows:  
Pull-up:  
Single LED Mode  
Pull-down: Tri-color Dual LED Mode  
Single LED Mode  
In Single LED Mode, the LED2 pin indicates the link status while the LED1 pin indicates the activity status, as shown in  
the following table.  
LED pin  
LED2  
Pin State  
LED Definition Link / Activity  
H
OFF  
Link off  
L
ON  
Link on (any speed)  
No Activity  
H
OFF  
LED1  
Toggle  
Blinking  
Activity (RX, TX)  
Table 6. Single LED Mode – Pin Definition  
Tri-color Dual LED Mode  
In Tri-color Dual LED Mode, the Link and Activity status are indicated by the LED2 pin for 1000Base-T, by the LED1 pin  
for 100Base-TX, and by both LED2 and LED1 pin, working in conjunction, for 10Base-T. This is summarized in the  
following table.  
LED Pin  
LED Pin  
(State)  
(Definition)  
Link / Activity  
LED2  
LED1  
LED2  
OFF  
LED1  
H
H
OFF  
Link off  
L
H
ON  
OFF  
1000 Link / No Activity  
1000 Link / Activity (RX, TX)  
100 Link / No Activity  
100 Link / Activity (RX, TX)  
10 Link / No Activity  
10 Link / Activity (RX, TX)  
Toggle  
H
Blinking  
OFF  
OFF  
H
L
ON  
H
Toggle  
L
OFF  
Blinking  
ON  
L
ON  
Toggle  
Toggle  
Blinking  
Blinking  
Table 7. Tri-color Dual LED Mode – Pin Definition  
Each LED output pin can directly drive a LED with a series resistor (typically 220to 470).  
For activity indication, the LED output toggles at approximately 12.5Hz (80ms) to ensure visibility to the human eye.  
M9999-101309-1.1  
October 2009  
31  
Micrel, Inc.  
KSZ9021RL/RN  
NAND Tree Support  
The KSZ9021RL/RN provides parametric NAND tree support for fault detection between chip I/Os and board. NAND tree  
mode is enabled at power-up / reset with the MODE[3:0] strap-in pins set to 0100.  
The following tables list the NAND tree pin order for KSZ9021RL and KSZ9021RN.  
Pin  
Description  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
LED2  
LED1  
TXD0  
TXD1  
TXD2  
TXD3  
TX_ER  
GTX_CLK  
TX_EN  
RX_DV  
RX_ER  
RX_CLK  
CRS  
COL  
INT_N  
MDC  
MDIO  
CLK125_NDO  
Table 8. NAND Tree Test Pin Order – for KSZ9021RL  
Pin  
Description  
Input  
LED2  
LED1  
Input  
TXD0  
Input  
TXD1  
Input  
TXD2  
Input  
TXD3  
Input  
GTX_CLK  
TX_EN  
RX_DV  
RX_CLK  
INT_N  
MDC  
Input  
Input  
Input  
Input  
Input  
Input  
MDIO  
Input  
CLK125_NDO  
Output  
Table 9. NAND Tree Test Pin Order – for KSZ9021RN  
M9999-101309-1.1  
October 2009  
32  
Micrel, Inc.  
KSZ9021RL/RN  
Power Management  
The KSZ9021RL/RN offers the following power management modes:  
Power Saving Mode  
This mode is a KSZ9021RL/RN green feature to reduce power consumption when the cable is unplugged. It is in effect  
when auto-negotiation mode is enabled and the cable is disconnected (no link).  
Software Power Down Mode  
This mode is used to power down the KSZ9021RL/RN device when it is not in use after power-up. Power down mode is  
enabled by writing a one to register 0h bit 11. In the power down state, the KSZ9021RL/RN disables all internal functions,  
except for the MII management interface. The KSZ9021RL/RN exits power down mode after writing a zero to register 0h  
bit 11.  
Chip Power Down Mode  
This mode provides the lowest power state for the KSZ9021RL/RN when it is not in use and is mounted on the board.  
Chip power down mode is enabled at power-up / reset with the MODE[3:0] strap-in pins set to 0111. The KSZ9021RL/RN  
exits chip power down mode when a hardware reset is applied to the RESET_N pin with the MODE[3:0] strap-in pins set  
to an operating mode other than chip power down mode.  
Register Map  
The IEEE 802.3 Specification provides a 32 register address space for the PHY. Registers 0 thru 15 are standard PHY  
registers, defined per the specification. Registers 16 thru 31 are vendor specific registers.  
The KSZ9021RL/RN uses the IEEE provided register space for IEEE Defined Registers and Vendor Specific Registers,  
and uses the following registers to access Extended Registers:  
Register 11 (Bh) for Extended Register – Control  
Register 12 (Ch) for Extended Register – Data Write  
Register 13 (Dh) for Extended Register – Data Read  
Examples:  
Extended Register Read  
// Read from Operation Mode Strap Status Register  
// Set register 259 (103h) for read  
// Read register value  
1. Write register 11 (Bh) with 0103h  
2. Read register 13 (Dh)  
Extended Register Write  
// Write to Operation Mode Strap Override Register  
// Set register 258 (102h) for write  
1. Write register 11 (Bh) with 8102h  
2. Write register 12 (Ch) with 0010h  
// Write 0010h value to register to set NAND Tree mode  
Register Number (Hex)  
Description  
IEEE Defined Registers  
0 (0h)  
1 (1h)  
2 (2h)  
3 (3h)  
4 (4h)  
5 (5h)  
6 (6h)  
7 (7h)  
Basic Control  
Basic Status  
PHY Identifier 1  
PHY Identifier 2  
Auto-Negotiation Advertisement  
Auto-Negotiation Link Partner Ability  
Auto-Negotiation Expansion  
Auto-Negotiation Next Page  
M9999-101309-1.1  
October 2009  
33  
Micrel, Inc.  
KSZ9021RL/RN  
Register Number (Hex)  
8 (8h)  
Description  
Auto-Negotiation Link Partner Next Page Ability  
1000Base-T Control  
9 (9h)  
10 (Ah)  
1000Base-T Status  
11 (Bh)  
Extended Register – Control  
Extended Register – Data Write  
Extended Register – Data Read  
Reserved  
12 (Ch)  
13 (Dh)  
14 (Eh)  
15 (Fh)  
Extended – MII Status  
Vendor Specific Registers  
16 (10h)  
Reserved  
17 (11h)  
Remote Loopback, LED Mode  
LinkMD® – Cable Diagnostic  
Digital PMA/PCS Status  
Reserved  
18 (12h)  
19 (13h)  
20 (14h)  
21 (15h)  
RXER Counter  
22 (16h) – 26 (1Ah)  
27 (1Bh)  
Reserved  
Interrupt Control/Status  
Digital Debug Control 1  
Reserved  
28 (1Ch)  
29 (1Dh) – 30 (1Eh)  
31 (1Fh)  
PHY Control  
Extended Registers  
256 (100h)  
257 (101h)  
258 (102h)  
259 (103h)  
260 (104h)  
261 (105h)  
263 (107h)  
Common Control  
Strap Status  
Operation Mode Strap Override  
Operation Mode Strap Status  
RGMII Clock and Control Pad Skew  
RGMII RX Data Pad Skew  
Analog Test Register  
Register Description  
IEEE Defined Registers  
Mode(1)  
Address  
Name  
Description  
Default  
Register 0 (0h) – Basic Control  
0.15  
0.14  
Reset  
1 = Software PHY reset  
RW/SC  
0
0 = Normal operation  
This bit is self-cleared after a ‘1’ is written to it.  
1 = Loop-back mode  
Loop-back  
RW  
0
0 = Normal operation  
M9999-101309-1.1  
October 2009  
34  
Micrel, Inc.  
KSZ9021RL/RN  
Mode(1)  
Address  
Name  
Description  
Default  
0.13  
Speed Select  
(LSB)  
[0.6, 0.13]  
RW  
Hardware Setting  
[1,1] = Reserved  
[1,0] = 1000Mbps  
[0,1] = 100Mbps  
[0,0] = 10Mbps  
This bit is ignored if auto-negotiation is enabled  
(register 0.12 = 1).  
0.12  
0.11  
Auto-  
Negotiation  
Enable  
1 = Enable auto-negotiation process  
0 = Disable auto-negotiation process  
RW  
RW  
1
0
If enabled, auto-negotiation result overrides  
settings in register 0.13, 0.8 and 0.6.  
Power Down  
Isolate  
1 = Power down mode  
0 = Normal operation  
0.10  
0.9  
1 = Electrical isolation of PHY from RGMII  
0 = Normal operation  
RW  
0
0
Restart Auto-  
Negotiation  
1 = Restart auto-negotiation process  
0 = Normal operation.  
RW/SC  
This bit is self-cleared after a ‘1’ is written to it.  
1 = Full-duplex  
0.8  
Duplex Mode  
Reserved  
RW  
Hardware Setting  
0 = Half-duplex  
0.7  
0.6  
RW  
RW  
0
0
Speed Select  
(MSB)  
[0.6, 0.13]  
[1,1] = Reserved  
[1,0] = 1000Mbps  
[0,1] = 100Mbps  
[0,0] = 10Mbps  
This bit is ignored if auto-negotiation is enabled  
(register 0.12 = 1).  
0.5:0  
Reserved  
RO  
RO  
RO  
RO  
RO  
RO  
00_0000  
Register 1 (1h) – Basic Status  
1.15  
1.14  
1.13  
1.12  
1.11  
100Base-T4  
1 = T4 capable  
0
1
1
1
1
0 = Not T4 capable  
100Base-TX  
Full Duplex  
1 = Capable of 100Mbps full-duplex  
0 = Not capable of 100Mbps full-duplex  
1 = Capable of 100Mbps half-duplex  
0 = Not capable of 100Mbps half-duplex  
1 = Capable of 10Mbps full-duplex  
0 = Not capable of 10Mbps full-duplex  
100Base-TX  
Half Duplex  
10Base-T Full  
Duplex  
10Base-T Half 1 = Capable of 10Mbps half-duplex  
Duplex  
0 = Not capable of 10Mbps half-duplex  
1.10:9  
1.8  
Reserved  
RO  
RO  
00  
1
Extended  
Status  
1 = Extended Status Information in Reg. 15.  
0 = No Extended Status Information in Reg. 15.  
M9999-101309-1.1  
October 2009  
35  
Micrel, Inc.  
KSZ9021RL/RN  
Mode(1)  
RO  
Address  
1.7  
Name  
Description  
Default  
Reserved  
No Preamble  
0
1
1.6  
1 = Preamble suppression  
RO  
0 = Normal preamble  
1.5  
Auto-  
Negotiation  
Complete  
1 = Auto-negotiation process completed  
0 = Auto-negotiation process not completed  
RO  
0
1.4  
1.3  
Remote Fault  
1 = Remote fault  
RO/LH  
RO  
0
1
0 = No remote fault  
Auto-  
Negotiation  
Ability  
1 = Capable to perform auto-negotiation  
0 = Not capable to perform auto-negotiation  
1.2  
1.1  
1.0  
Link Status  
1 = Link is up  
RO/LL  
RO/LH  
RO  
0
0
1
0 = Link is down  
Jabber Detect  
1 = Jabber detected  
0 = Jabber not detected (default is low)  
1 = Supports extended capabilities registers  
Extended  
Capability  
Register 2 (2h) – PHY Identifier 1  
2.15:0  
PHY ID  
Number  
Assigned to the 3rd through 18th bits of the  
Organizationally Unique Identifier (OUI).  
Kendin Communication’s OUI is 0010A1 (hex)  
RO  
RO  
0022h  
Register 3 (3h) – PHY Identifier 2  
3.15:10  
PHY ID  
Number  
Assigned to the 19th through 24th bits of the  
Organizationally Unique Identifier (OUI).  
Kendin Communication’s OUI is 0010A1 (hex)  
0001_01  
10_0001  
3.9:4  
3.3:0  
Model Number Six bit manufacturer’s model number  
RO  
RO  
Revision  
Number  
Four bit manufacturer’s revision number  
Indicates silicon revision  
Register 4 (4h) – Auto-Negotiation Advertisement  
4.15  
Next Page  
1 = Next page capable  
RW  
0
0 = No next page capability.  
4.14  
4.13  
Reserved  
RO  
0
0
Remote Fault  
1 = Remote fault supported  
0 = No remote fault  
RW  
4.12  
Reserved  
Pause  
RO  
0
4.11:10  
[4.11, 4.10]  
RW  
00  
[0,0] = No PAUSE  
[1,0] = Asymmetric PAUSE (link partner)  
[0,1] = Symmetric PAUSE  
[1,1] = Symmetric & Asymmetric PAUSE  
(local device)  
4.9  
4.8  
100Base-T4  
1 = T4 capable  
RO  
0
1
0 = No T4 capability  
100Base-TX  
Full-Duplex  
1 = 100Mbps full-duplex capable  
0 = No 100Mbps full-duplex capability  
RW  
M9999-101309-1.1  
October 2009  
36  
Micrel, Inc.  
KSZ9021RL/RN  
Mode(1)  
Address  
Name  
Description  
Default  
4.7  
100Base-TX  
Half-Duplex  
1 = 100Mbps half-duplex capable  
0 = No 100Mbps half-duplex capability  
1 = 10Mbps full-duplex capable  
0 = No 10Mbps full-duplex capability  
1 = 10Mbps half-duplex capable  
0 = No 10Mbps half-duplex capability  
[00001] = IEEE 802.3  
RW  
1
4.6  
10Base-T  
Full-Duplex  
RW  
RW  
RW  
1
4.5  
10Base-T  
Half-Duplex  
1
4.4:0  
Selector Field  
0_0001  
Register 5 (5h) – Auto-Negotiation Link Partner Ability  
5.15  
5.14  
5.13  
Next Page  
1 = Next page capable  
RO  
RO  
RO  
0
0
0
0 = No next page capability  
1 = Link code word received from partner  
0 = Link code word not yet received  
1 = Remote fault detected  
Acknowledge  
Remote Fault  
0 = No remote fault  
5.12  
Reserved  
Pause  
RO  
0
5.11:10  
[5.11, 5.10]  
RW  
00  
[0,0] = No PAUSE  
[1,0] = Asymmetric PAUSE (link partner)  
[0,1] = Symmetric PAUSE  
[1,1] = Symmetric & Asymmetric PAUSE  
(local device)  
5.9  
100Base-T4  
1 = T4 capable  
RO  
RO  
RO  
RO  
RO  
RO  
0
0 = No T4 capability  
5.8  
5.7  
5.6  
5.5  
5.4:0  
100Base-TX  
Full-Duplex  
1 = 100Mbps full-duplex capable  
0 = No 100Mbps full-duplex capability  
1 = 100Mbps half-duplex capable  
0 = No 100Mbps half-duplex capability  
1 = 10Mbps full-duplex capable  
0 = No 10Mbps full-duplex capability  
1 = 10Mbps half-duplex capable  
0 = No 10Mbps half-duplex capability  
[00001] = IEEE 802.3  
0
100Base-TX  
Half-Duplex  
0
10Base-T  
Full-Duplex  
0
10Base-T  
Half-Duplex  
0
Selector Field  
0_0000  
Register 6 (6h) – Auto-Negotiation Expansion  
6.15:5  
6.4  
Reserved  
RO  
0000_0000_000  
0
Parallel  
Detection Fault  
1 = Fault detected by parallel detection  
0 = No fault detected by parallel detection.  
1 = Link partner has next page capability  
RO/LH  
6.3  
6.2  
6.1  
Link Partner  
Next Page  
Able  
RO  
0
1
0
0 = Link partner does not have next page  
capability  
Next Page  
Able  
1 = Local device has next page capability  
RO  
0 = Local device does not have next page  
capability  
Page Received 1 = New page received  
0 = New page not received yet  
RO/LH  
M9999-101309-1.1  
October 2009  
37  
Micrel, Inc.  
KSZ9021RL/RN  
Mode(1)  
Address  
Name  
Description  
Default  
6.0  
Link Partner  
Auto-  
Negotiation  
Able  
1 = Link partner has auto-negotiation capability  
RO  
0
0 = Link partner does not have auto-negotiation  
capability  
Register 7 (7h) – Auto-Negotiation Next Page  
7.15  
Next Page  
1 = Additional next page(s) will follow  
0 = Last page  
RW  
0
7.14  
7.13  
Reserved  
RO  
0
1
Message Page 1 = Message page  
0 = Unformatted page  
RW  
7.12  
7.11  
Acknowledge2  
1 = Will comply with message  
RW  
RO  
0
0
0 = Cannot comply with message  
Toggle  
1 = Previous value of the transmitted link code  
word equaled logic one  
0 = Logic zero  
7.10:0  
Message Field  
11-bit wide field to encode 2048 messages  
RW  
RO  
RO  
RO  
RO  
RO  
000_0000_0001  
Register 8 (8h) – Auto-Negotiation Link Partner Next Page Ability  
8.15  
8.14  
8.13  
8.12  
8.11  
Next Page  
1 = Additional Next Page(s) will follow  
0 = Last page  
0
0
0
0
0
Acknowledge  
1 = Successful receipt of link word  
0 = No successful receipt of link word  
Message Page 1 = Message page  
0 = Unformatted page  
Acknowledge2  
1 = Able to act on the information  
0 = Not able to act on the information  
Toggle  
1 = Previous value of transmitted link code  
word equal to logic zero  
0 = Previous value of transmitted link code  
word equal to logic one  
8.10:0  
Message Field  
RO  
000_0000_0000  
Register 9 (9h) – 1000Base-T Control  
M9999-101309-1.1  
October 2009  
38  
Micrel, Inc.  
KSZ9021RL/RN  
Mode(1)  
Address  
Name  
Description  
Default  
9:15:13  
Test Mode Bits Transmitter test mode operations  
RW  
000  
[9.15:13]  
[000]  
Mode  
Normal Operation  
[001]  
Test mode 1 –Transmit waveform  
test  
[010]  
[011]  
[100]  
[101]  
[110]  
[111]  
Test mode 2 –Transmit jitter test  
in Master mode  
Test mode 3 –Transmit jitter test  
in Slave mode  
Test mode 4 –Transmitter  
distortion test  
Reserved, operations not  
identified  
Reserved, operations not  
identified  
Reserved, operations not  
identified  
9.12  
9.11  
MASTER-  
SLAVE  
1 = Enable MASTER-SLAVE Manual  
configuration value  
RW  
RW  
0
0
Manual Config  
Enable  
0 = Disable MASTER-SLAVE Manual  
configuration value  
MASTER-  
SLAVE  
1 = Configure PHY as MASTER during  
MASTER-SLAVE negotiation  
Manual Config  
Value  
0 = Configure PHY as SLAVE during MASTER-  
SLAVE negotiation  
This bit is ignored if MASTER-SLAVE Manual  
Config is disabled (register 9.12 = 0).  
9.10  
Port Type  
1 = Indicate the preference to operate as  
RW  
0
multiport device (MASTER)  
0 = Indicate the preference to operate as single-  
port device (SLAVE)  
This bit is valid only if the MASTER-SLAVE  
Manual Config Enable bit is disabled (register  
9.12 = 0).  
9.9  
1000Base-T  
Full-Duplex  
1 = Advertise PHY is 1000Base-T full-duplex  
capable  
RW  
RW  
1
0 = Advertise PHY is not 1000Base-T full-  
duplex capable  
9.8  
1000Base-T  
Half-Duplex  
1 = Advertise PHY is 1000Base-T half-duplex  
capable  
Hardware Setting  
0 = Advertise PHY is not 1000Base-T half-  
duplex capable  
9.7:0  
Reserved  
Write as 0, ignore on read  
RO  
Register 10 (Ah) – 1000Base-T Status  
10.15  
MASTER-  
SLAVE  
1 = MASTER-SLAVE configuration fault  
detected  
RO/LH/SC  
0
configuration  
fault  
0 = No MASTER-SLAVE configuration fault  
detected  
M9999-101309-1.1  
October 2009  
39  
Micrel, Inc.  
KSZ9021RL/RN  
Mode(1)  
Address  
Name  
Description  
Default  
10.14  
MASTER-  
SLAVE  
1 = Local PHY configuration resolved to  
MASTER  
RO  
0
configuration  
resolution  
0 = Local PHY configuration resolved to  
SLAVE  
10.13  
10.12  
Local  
Receiver  
Status  
1 = Local Receiver OK (loc_rcvr_status = 1)  
0 = Local Receiver not OK (loc_rcvr_status = 0)  
RO  
RO  
0
0
Remote  
Receiver  
Status  
1 = Remote Receiver OK (rem_rcvr_status = 1)  
0 = Remote Receiver not OK (rem_rcvr_status  
= 0)  
10.11  
A.10  
LP 1000T FD  
LP 1000T HD  
Reserved  
1 = Link Partner is capable of 1000Base-T full-  
duplex  
RO  
RO  
0
0
0 = Link Partner is not capable of 1000Base-T  
full-duplex  
1 = Link Partner is capable of 1000Base-T half-  
duplex  
0 = Link Partner is not capable of 1000Base-T  
half-duplex  
10.9:8  
10.7:0  
RO  
00  
Idle Error  
Count  
Cumulative count of errors detected when  
receiver is receiving idles and  
RO/SC  
0000_0000  
PMA_TXMODE.indicate = SEND_N.  
The counter is incremented every symbol  
period that rxerror_status = ERROR.  
Register 11 (Bh) – Extended Register – Control  
11.15  
Extended  
Register –  
read/write  
select  
1 = Write Extended Register  
0 = Read Extended Register  
RW  
0
11.14:9  
11.8  
Reserved  
RW  
RW  
000_000  
0
Extended  
Register –  
page  
Select page for Extended Register  
Select Extended Register Address  
11.7:0  
Extended  
Register –  
address  
RW  
0000_0000  
Register 12 (Ch) – Extended Register – Data Write  
12.15:0  
Extended  
Register –  
write  
16-bit value to write to Extend Register Address RW  
in register 11 (Bh) bits [7:0]  
0000_0000_0000_0000  
Register 13 (Dh) – Extended Register – Data Read  
13.15:0  
Extended  
Register –  
read  
16-bit value read from Extend Register Address RO  
in register 11 (Bh) bits [7:0]  
0000_0000_0000_0000  
Register 15 (Fh) – Extended – MII Status  
15.15  
1000Base-X  
Full-duplex  
1 = PHY able to perform 1000Base-X  
full-duplex  
RO  
0
0 = PHY not able to perform 1000Base-X  
full-duplex  
M9999-101309-1.1  
October 2009  
40  
Micrel, Inc.  
KSZ9021RL/RN  
Mode(1)  
Address  
Name  
Description  
Default  
15.14  
1000Base-X  
Half-duplex  
1 = PHY able to perform 1000Base-X  
half-duplex  
RO  
0
0 = PHY not able to perform 1000Base-X  
half-duplex  
15.13  
15.12  
1000Base-T  
Full-duplex  
1 = PHY able to perform 1000Base-T  
full-duplex 1000BASE-X  
0 = PHY not able to perform 1000Base-T  
full-duplex  
RO  
RO  
RO  
1
1
-
1000Base-T  
Half-duplex  
1 = PHY able to perform 1000Base-T  
half-duplex  
0 = PHY not able to perform 1000Base-T  
half-duplex  
15.11:0  
Reserved  
Ignore when read  
Note:  
1. RW = Read/Write.  
RO = Read only.  
SC = Self-cleared.  
LH = Latch high.  
LL = Latch low.  
Vendor Specific Registers  
Mode(1)  
Address  
Name  
Description  
Default  
Register 17 (11h) – Remote Loopback, LED Mode  
17.15:9  
17.8  
Reserved  
RW  
RW  
0000_001  
0
Remote  
Loopback  
1 = Enable Remote Loopback  
0 = Disable Remote Loopback  
17.7:6  
17.5:4  
17.3  
Reserved  
Reserved  
RW  
RW  
RW  
11  
11  
0
LED Test  
Enable  
1 = Enable LED test mode  
0 = Disable LED test mode  
17.2:1  
17.0  
Reserved  
Reserved  
RW  
RO  
00  
0
Register 18 (12h) – LinkMD® – Cable Diagnostic  
18.15  
Reserved  
Reserved  
Reserved  
RW/SC  
RW  
0
18.14:8  
18.7:0  
000_0000  
0000_0000  
RO  
Register 19 (13h) – Digital PMA/PCS Status  
19.15:3  
19.2  
Reserved  
RO/LH  
RO  
0000_0000_0000_0  
0
1000Base-T  
Link Status  
1000 Base-T Link Status  
1 = Link status is OK  
0 = Link status is not OK  
M9999-101309-1.1  
October 2009  
41  
Micrel, Inc.  
KSZ9021RL/RN  
Mode(1)  
Address  
Name  
Description  
Default  
19.1  
100Base-TX  
Link Status  
100 Base-TX Link Status  
1 = Link status is OK  
RO  
0
0 = Link status is not OK  
19.0  
Reserved  
RO  
0
Register 21 (15h) – RXER Counter  
21.15:0  
RXER Counter Receive error counter for Symbol Error frames  
RO/RC  
RW  
0000_0000_0000_0000  
0
Register 27 (1Bh) – Interrupt Control/Status  
27.15  
27.14  
27.13  
27.12  
27.11  
Jabber  
Interrupt  
Enable  
1 = Enable Jabber Interrupt  
0 = Disable Jabber Interrupt  
Receive Error  
Interrupt  
Enable  
1 = Enable Receive Error Interrupt  
0 = Disable Receive Error Interrupt  
RW  
RW  
RW  
RW  
0
0
0
0
Page Received 1 = Enable Page Received Interrupt  
Interrupt  
Enable  
0 = Disable Page Received Interrupt  
Parallel Detect 1 = Enable Parallel Detect Fault Interrupt  
Fault Interrupt  
Enable  
0 = Disable Parallel Detect Fault Interrupt  
Link Partner  
Acknowledge  
Interrupt  
1 = Enable Link Partner Acknowledge Interrupt  
0 = Disable Link Partner Acknowledge  
Interrupt  
Enable  
27.10  
27.9  
27.8  
Link Down  
Interrupt  
Enable  
1 = Enable Link Down Interrupt  
0 = Disable Link Down Interrupt  
RW  
RW  
RW  
0
0
0
Remote Fault  
Interrupt  
Enable  
1 = Enable Remote Fault Interrupt  
0 = Disable Remote Fault Interrupt  
Link Up  
Interrupt  
Enable  
1 = Enable Link Up Interrupt  
0 = Disable Link Up Interrupt  
27.7  
27.6  
27.5  
27.4  
27.3  
Jabber  
Interrupt  
1 = Jabber occurred  
RO/RC  
RO/RC  
RO/RC  
RO/RC  
RO/RC  
0
0
0
0
0
0 = Jabber did not occurred  
1 = Receive Error occurred  
0 = Receive Error did not occurred  
1 = Page Receive occurred  
0 = Page Receive did not occurred  
Receive Error  
Interrupt  
Page Receive  
Interrupt  
Parallel Detect 1 = Parallel Detect Fault occurred  
Fault Interrupt  
0 = Parallel Detect Fault did not occurred  
Link Partner  
Acknowledge  
Interrupt  
1 = Link Partner Acknowledge occurred  
0 = Link Partner Acknowledge did not occurred  
27.2  
27.1  
Link Down  
Interrupt  
1 = Link Down occurred  
RO/RC  
RO/RC  
0
0
0 = Link Down did not occurred  
1 = Remote Fault occurred  
0 = Remote Fault did not occurred  
Remote Fault  
Interrupt  
M9999-101309-1.1  
October 2009  
42  
Micrel, Inc.  
KSZ9021RL/RN  
Mode(1)  
Address  
Name  
Description  
Default  
27.0  
Link Up  
Interrupt  
1 = Link Up occurred  
0 = Link Up did not occurred  
RO/RC  
0
Register 28 (1Ch) – Digital Debug Control 1  
28.15:8  
28.7  
Reserved  
mdi_set  
RW  
0000_0000  
0
mdi_set has no function when swapoff (reg28.6) RW  
is de-asserted.  
1 = When swapoff is asserted, if mdi_set is  
asserted, chip will operate at MDI mode.  
0 = When swapoff is asserted, if mdi_set is de-  
asserted, chip will operate at MDI-X mode.  
28.6  
swapoff  
1 = Disable auto crossover function  
0 = Enable auto crossover function  
RW  
0
28.5:1  
28.0  
Reserved  
RW  
RW  
00_000  
0
PCS Loopback 1 = Enable 10Base-T and 100Base-TX  
Loopback for register 0h bit 14.  
0 = normal function  
Register 31 (1Fh) – PHY Control  
31.15  
31.14  
Reserved  
RW  
RW  
0
0
Interrupt Level  
1 = Interrupt pin active high  
0 = Interrupt pin active low  
31.13:12  
31.11:10  
31.9  
Reserved  
RW  
00  
Reserved  
RO/LH/RC 00  
Enable Jabber  
1 = Enable jabber counter  
0 = Disable jabber counter  
RW  
1
31.8:7  
31.6  
Reserved  
RW  
RO  
00  
0
Speed status  
1000Base-T  
1 = Indicate chip final speed status at  
1000Base-T  
31.5  
31.4  
31.3  
Speed status  
100Base-TX  
1 = Indicate chip final speed status at  
100Base-TX  
RO  
RO  
RO  
0
0
0
Speed status  
10Base-T  
1 = Indicate chip final speed status at  
10Base-T  
Duplex status  
Indicate chip duplex status  
1 = Full-duplex  
0 = Half-duplex  
31.2  
1000Base-T  
Mater/Slave  
status  
1 = Indicate 1000Base-T Master mode  
0 = Indicate 1000Base-T Slave mode  
RO  
0
31.1  
31.0  
Software  
Reset  
1 = Reset chip, except all registers  
0 = Disable reset  
RW  
RO  
0
0
Link Status  
Check Fail  
1 = Fail  
0 = Not Failing  
Note:  
1. RW = Read/Write.  
RC = Read-cleared  
RO = Read only.  
SC = Self-cleared.  
LH = Latch high.  
M9999-101309-1.1  
October 2009  
43  
Micrel, Inc.  
KSZ9021RL/RN  
Extended Registers  
Mode(1)  
Address  
Name  
Description  
Default  
Register 256 (100h) – Common Control  
256.15:9  
256.8  
Reserved  
RW  
RW  
0000_000  
0
RGMII In-band 1 = Enable  
PHY Status  
0 = Disable  
256.7:0  
Reserved  
RW  
Register 257 (101h) – Strap Status  
257.15:6  
257.5  
Reserved  
RO  
RO  
CLK125_EN  
status  
1 = CLK125_EN strap-in is enabled  
0 = CLK125_EN strap-in is disabled  
Strapped-in value for PHY Address  
257.4:0  
PHYAD[4:0]  
status  
RO  
Register 258 (102h) – Operation Mode Strap Override  
258.15  
258.14  
258.13  
258.12  
RGMII all  
capabilities  
override  
1 = Override strap-in for RGMII advertise all  
capabilities  
RW  
RW  
RW  
RW  
RGMII no  
1000BT_HD  
override  
1 = Override strap-in for RGMII advertise all  
capabilities except 1000Base-T half-duplex  
RGMII  
1000BT_H/FD  
only override  
1 = Override strap-in for RGMII advertise  
1000Base-T full and half-duplex only  
RGMII  
1000BT_FD  
only override  
1 = Override strap-in for RGMII advertise  
1000Base-T full-duplex only  
258.11:8  
258.7  
Reserved  
RW  
RW  
Tri-state all  
digital I/Os  
1 = Tri-state all digital I/Os for further power  
saving during software power down  
0
258.6:5  
258.4  
Reserved  
RW  
RW  
NAND Tree  
override  
1 = Override strap-in for NAND Tree mode  
258.3:0  
Reserved  
RW  
RO  
Register 259 (103h) – Operation Mode Strap Status  
259.15  
259.14  
259.13  
RGMII all  
capabilities  
strap-in status  
1 = Strap to RGMII advertise all capabilities  
RGMII no  
1000BT_HD  
strap-in status  
1 = Strap to RGMII advertise all capabilities  
except 1000Base-T half-duplex  
RO  
RO  
RGMII only  
1000BT_H/FD  
strap-in status  
1 = Strap to RGMII advertise 1000Base-T full  
and half-duplex only  
259.12  
RGMII only  
1000BT_FD  
strap-in status  
1 = Strap to RGMII advertise 1000Base-T full-  
duplex only  
RO  
RO  
259.11:5  
Reserved  
M9999-101309-1.1  
October 2009  
44  
Micrel, Inc.  
KSZ9021RL/RN  
Mode(1)  
Address  
Name  
Description  
Default  
259.4  
NAND Tree  
1 = Strap to NAND Tree mode  
RO  
strap-in status  
259.3:0  
Reserved  
RO  
Register 260 (104h) – RGMII Clock and Control Pad Skew  
260.15:12  
260.11:8  
260.7:4  
rxc_pad_skew  
RGMII RXC PAD Skew Control (0.2ns/step)  
RW  
0111  
0111  
0111  
0111  
rxdv_pad_skew RGMII RX_CTL PAD Skew Control (0.2ns/step) RW  
txc_pad_skew  
RGMII TXC PAD Skew Control (0.2ns/step)  
RW  
RW  
260.3:0  
txen_pad_skew RGMII TX_CTL PAD Skew Control (0.2ns/step)  
Register 261 (105h) – RGMII RX Data Pad Skew  
261.15:12  
261.11:8  
261.7:4  
rxd3_pad_skew RGMII RXD3 PAD Skew Control (0.2ns/step)  
RW  
RW  
RW  
RW  
0111  
0111  
0111  
0111  
rxd2_pad_skew RGMII RXD2 PAD Skew Control (0.2ns/step)  
rxd1_pad_skew RGMII RXD1 PAD Skew Control (0.2ns/step)  
rxd0_pad_skew RGMII RXD0 PAD Skew Control (0.2ns/step)  
261.3:0  
Register 263 (107h) – Analog Test Register  
263.15  
LDO disable  
1 = LDO controller disable  
0 = LDO controller enable  
RW  
0
263.14:9  
263.8  
Reserved  
RW  
RW  
000_000  
0
Low frequency  
oscillator mode  
1 = Low frequency oscillator mode enable  
0 = Low frequency oscillator mode disable  
Use for further power saving during software  
power down.  
263.7:0  
Reserved  
RW  
0000_0000  
Note:  
1. RW = Read/Write.  
RO = Read only.  
M9999-101309-1.1  
October 2009  
45  
Micrel, Inc.  
KSZ9021RL/RN  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage  
Supply Voltage  
(DVDDL, AVDDL, AVDDL_PLL)....... -0.5V to VDD+10%  
(AVDDH).......................................... -0.5V to VDD +10%  
(DVDDH)................................ -0.5V to VDD (3.3V)+10%  
Input Voltage (all inputs) ........................ -0.5V to VDD +10%  
Output Voltage (all outputs) ................... -0.5V to VDD +10%  
Lead Temperature (soldering, 10sec.)....................... 260°C  
Storage Temperature (Ts) ..........................-55°C to +150°C  
(DVDDL, AVDDL, AVDDL_PLL).... +1.140V to +1.260V  
(AVDDH)........................................ +3.135V to +3.465V  
(DVDDH @ 3.3V) ..........................+3.135V to +3.465V  
(DVDDH @ 2.5V) ..........................+2.375V to +2.625V  
Ambient Temperature  
(TA Commercial: KSZ9021RL/RN) ..........0°C to +70°C  
(TA Industrial: KSZ9021RLI/RNI)..........-40°C to +85°C  
Maximum Junction Temperature (TJ Max) ................. 125°C  
Thermal Resistance (θJA)....................................31.85°C/W  
Thermal Resistance (θJC)......................................8.07°C/W  
Electrical Characteristics(3)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Supply Current – Core / Digital I/Os  
ICORE  
1.2V total of:  
1000Base-T Link-up (no traffic)  
528  
563  
158  
158  
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DVDDL (1.2V digital core) +  
AVDDL (1.2V analog core) +  
AVDDL_PLL (1.2V for PLL)  
1000Base-T Full-duplex @ 100% utilization  
100Base-TX Link-up (no traffic)  
100Base-TX Full-duplex @ 100% utilization  
10Base-T Link-up (no traffic)  
10Base-T Full-duplex @ 100% utilization  
Power Saving Mode (cable unplugged)  
Software Power Down Mode (register 0.11 =1)  
7
15  
1.3  
1.3  
Chip Power Down Mode  
(strap-in pins MODE[3:0] = 0111)  
IDVDDH_2.5  
2.5V for digital I/Os  
1000Base-T Link-up (no traffic)  
13  
37  
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1000Base-T Full-duplex @ 100% utilization  
100Base-TX Link-up (no traffic)  
(RGMII operating @ 2.5V)  
100Base-TX Full-duplex @ 100% utilization  
10Base-T Link-up (no traffic)  
9
2
10Base-T Full-duplex @ 100% utilization  
Power Saving Mode (cable unplugged)  
Software Power Down Mode (register 0.11 =1)  
5
7
3
Chip Power Down Mode  
1
(strap-in pins MODE[3:0] = 0111)  
IDVDDH_3.3  
3.3V for digital I/Os  
1000Base-T Link-up (no traffic)  
20  
58  
11  
15  
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1000Base-T Full-duplex @ 100% utilization  
100Base-TX Link-up (no traffic)  
(RGMII operating @ 3.3V)  
100Base-TX Full-duplex @ 100% utilization  
10Base-T Link-up (no traffic)  
10Base-T Full-duplex @ 100% utilization  
Power Saving Mode (cable unplugged)  
Software Power Down Mode (register 0.11 =1)  
11  
9
7
Chip Power Down Mode  
1
(strap-in pins MODE[3:0] = 0111)  
M9999-101309-1.1  
October 2009  
46  
Micrel, Inc.  
KSZ9021RL/RN  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Supply Current – Transceiver (equivalent to current draw through external transformer center taps for PHY transceivers with  
current-mode transmit drivers)  
IAVDDH  
3.3V for transceiver  
1000Base-T Link-up (no traffic)  
75  
75  
29  
29  
35  
43  
36  
2
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
1000Base-T Full-duplex @ 100% utilization  
100Base-TX Link-up (no traffic)  
100Base-TX Full-duplex @ 100% utilization  
10Base-T Link-up (no traffic)  
10Base-T Full-duplex @ 100% utilization  
Power Saving Mode (cable unplugged)  
Software Power Down Mode (register 0.11 =1)  
Chip Power Down Mode  
1
(strap-in pins MODE[3:0] = 0111)  
TTL Inputs  
VIH  
VIL  
IIN  
Input High Voltage  
Input Low Voltage  
Input Current  
2.0  
2.4  
V
V
0.8  
10  
VIN = GND ~ VDDIO  
-10  
µA  
TTL Outputs  
VOH  
VOL  
|Ioz|  
Output High Voltage  
IOH = -4mA  
IOL = 4mA  
V
V
Output Low Voltage  
0.4  
10  
Output Tri-State Leakage  
µA  
100Base-TX Transmit (measured differentially after 1:1 transformer)  
VO  
Peak Differential Output Voltage  
Output Voltage Imbalance  
Rise/Fall Time  
0.95  
1.05  
V
%
ns  
ns  
ns  
%
100termination across differential output  
100termination across differential output  
VIMB  
tr, tf  
2
5
3
0
Rise/Fall Time Imbalance  
Duty Cycle Distortion  
Overshoot  
0.5  
± 0.25  
5
VSET  
Reference Voltage of ISET  
Output Jitter  
R(ISET) = 4.99K  
Peak-to-peak  
0.535  
0.7  
V
1.4  
ns  
10Base-T Transmit (measured differentially after 1:1 transformer)  
VP  
Peak Differential Output Voltage  
Jitter Added  
2.2  
2.8  
3.5  
V
100termination across differential output  
Peak-to-peak  
ns  
dB  
Harmonic Rejection  
Transmit all-one signal sequence  
-31  
10Base-T Receive  
VSQ  
Squelch Threshold  
5MHz square wave  
300  
400  
mV  
Notes:  
1. Exceeding the absolute maximum rating may damage the device. Stresses greater than the absolute maximum rating may cause permanent  
damage to the device. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is  
not implied. Maximum conditions for extended periods may affect reliability.  
2. The device is not guaranteed to function outside its operating rating.  
3. TA = 25°C. Specification is for packaged product only.  
M9999-101309-1.1  
October 2009  
47  
Micrel, Inc.  
KSZ9021RL/RN  
Timing Diagrams  
RGMII Timing  
The KSZ9021RL/RN RGMII timing conforms to the timing requirements per the RGMII Version 1.3 Specification.  
Figure 5. RGMII v1.3 Specification (Figure 2 – Multiplexing and Timing Diagram)  
Timing Parameter  
TskewT  
Description  
Min  
-500  
1
Typ  
Max  
500  
2.6  
8.8  
Unit  
ps  
Data to Clock output Skew (at Transmitter)  
Data to Clock input Skew (at Receiver)  
Clock Cycle Duration for 1000Base-T  
TskewR  
ns  
Tcyc (1000Base-T)  
7.2  
36  
8
ns  
Tcyc (100Base-TX) Clock Cycle Duration for 100Base-TX  
Tcyc (10Base-T) Clock Cycle Duration for 10Base-T  
40  
44  
ns  
360  
400  
440  
ns  
Table 10. RGMII v1.3 Specification (Timing Specifics from Table 2)  
Accounting for TskewT, the TskewR specification in the above table requires the PCB board design to incorporate clock  
routing for TXC and RXC with an additional trace delay of greater than 1.5ns and less than 2.1ns for 1000Base-T. For  
10Base-T/100Base-TX, the maximum delay is much greater than the 2.1ns for 1000Base-T, and thus is not specified.  
M9999-101309-1.1  
October 2009  
48  
Micrel, Inc.  
KSZ9021RL/RN  
Auto-Negotiation Timing  
Auto-Negotiation  
Fast Link Pulse (FLP) Tim ing  
FLP  
FLP  
Burst  
Burst  
TX+/TX-  
tFLPW  
tBTB  
Clock  
Pulse  
Data  
Pulse  
Clock  
Pulse  
Data  
Pulse  
TX+/TX-  
tPW  
tPW  
tCTD  
tCTC  
Figure 6. Auto-Negotiation Fast Link Pulse (FLP) Timing  
Timing Parameter  
Description  
Min  
Typ  
16  
Max  
Units  
ms  
ms  
ns  
tBTB  
tFLPW  
tPW  
FLP Burst to FLP Burst  
FLP Burst width  
8
24  
2
Clock/Data Pulse width  
Clock Pulse to Data Pulse  
Clock Pulse to Clock Pulse  
100  
64  
tCTD  
tCTC  
55.5  
111  
17  
69.5  
139  
33  
µs  
128  
µs  
Number of Clock/Data Pulse per  
FLP Burst  
Table 11. Auto-Negotiation Fast Link Pulse (FLP) Timing Parameters  
M9999-101309-1.1  
October 2009  
49  
Micrel, Inc.  
KSZ9021RL/RN  
MDC/MDIO Timing  
tP  
MDC  
tMD1  
tMD2  
MDIO  
(PHY input)  
Valid  
Data  
Valid  
Data  
tMD3  
MDIO  
(PHY output)  
Valid  
Data  
Figure 7. MDC/MDIO Timing  
Timing Parameter  
Description  
Min  
Typ  
Max  
Unit  
ns  
tP  
MDC period  
400  
t1MD1  
tMD2  
tMD3  
MDIO (PHY input) setup to rising edge of MDC  
MDIO (PHY input) hold from rising edge of MDC  
MDIO (PHY output) delay from rising edge of MDC  
10  
10  
0
ns  
ns  
ns  
Table 12. MDC/MDIO Timing Parameters  
M9999-101309-1.1  
October 2009  
50  
Micrel, Inc.  
KSZ9021RL/RN  
Reset Timing  
The recommended KSZ9021RL/RN power-up reset timing is summarized in the following figure and table.  
Supply  
Voltage  
tsr  
RESET_N  
Figure 8. Reset Timing  
Parameter  
Description  
Min  
Max  
Units  
tsr  
Stable supply voltage to reset high  
10  
ms  
Table 13. Reset Timing Parameters  
After the de-assertion of reset, it is recommended to wait a minimum of 100µs before starting programming on the MIIM  
(MDC/MDIO) Interface.  
Reset Circuit  
The following reset circuit is recommended for powering up the KSZ9021RL/RN if reset is triggered by the power supply.  
3.3V  
D1: 1N4148  
D1  
R 10K  
KSZ9021RL/RN  
RESET_N  
C 10uF  
Figure 9. Recommended Reset Circuit  
M9999-101309-1.1  
October 2009  
51  
Micrel, Inc.  
KSZ9021RL/RN  
The following reset circuit is recommended for applications where reset is driven by another device (e.g., CPU or FPGA).  
At power-on-reset, R, C and D1 provide the necessary ramp rise time to reset the KSZ9021RL/RN device. The  
RST_OUT_n from CPU/FPGA provides the warm reset after power up.  
3.3V  
R 10K  
D1  
KSZ9021RL/RN  
CPU/FPGA  
RESET_N  
RST_OUT_n  
D2  
C 10uF  
D1, D2: 1N4148  
Figure 10. Recommended Reset Circuit for Interfacing with CPU/FPGA Reset Output  
Reference Circuits – LED Strap-in Pins  
The pull-up and pull-down reference circuits for the LED2/PHYAD1 and LED1/PHYAD0 strapping pins are shown in the  
following figure.  
Figure 11. Reference Circuits for LED Strapping Pins  
M9999-101309-1.1  
October 2009  
52  
Micrel, Inc.  
KSZ9021RL/RN  
Reference Clock – Connection and Selection  
A crystal or external clock source, such as an oscillator, is used to provide the reference clock for the KSZ9021RL/RN.  
The reference clock is 25 MHz for all operating modes of the KSZ9021RL/RN.  
The following figure and table shows the reference clock connection to pins XI and XO of the KSZ9021RL/RN, and the  
reference clock selection criteria.  
22pF  
22pF  
XI  
XI  
25MHz OSC  
+/-50ppm  
22pF  
22pF  
NC  
XO  
XO  
NC  
25MHz XTAL  
+/-50ppm  
Figure 12. 25MHz Crystal / Oscillator Reference Clock Connection  
Characteristics  
Value  
25  
Units  
MHz  
ppm  
Frequency  
Frequency tolerance (max)  
±50  
Table 14. Reference Crystal/Clock Selection Criteria  
Magnetics Specification  
A 1:1 isolation transformer is required at the line interface. An isolation transformer with integrated common-mode chokes  
is recommended for exceeding FCC requirements.  
The following tables provide recommended magnetic characteristics and a list of qualified magnetics for the  
KSZ9021RL/RN.  
Parameter  
Value  
Test Condition  
Turns ratio  
1 CT : 1 CT  
350µH  
Open-circuit inductance (min.)  
Insertion loss (max.)  
HIPOT (min.)  
100mV, 100kHz, 8mA  
0MHz – 100MHz  
1.0dB  
1500Vrms  
Table 15. Magnetics Selection Criteria  
Magnetic Manufacturer  
Part Number  
H5007NL  
Auto MDI-X  
Yes  
Number of Port  
Pulse  
TDK  
1
1
TLA-7T101LF  
Yes  
Table 16. Qualified Single Port 10/100/1000 Magnetics  
M9999-101309-1.1  
October 2009  
53  
Micrel, Inc.  
KSZ9021RL/RN  
Package Information  
48-Pin (7mm x 7mm) QFN  
M9999-101309-1.1  
October 2009  
54  
Micrel, Inc.  
KSZ9021RL/RN  
64-Pin (10mm x 10mm) E-LQFP (V)  
M9999-101309-1.1  
October 2009  
55  
Micrel, Inc.  
KSZ9021RL/RN  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility  
is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without  
notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems  
where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems  
are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose  
failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s use or sale of  
Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to  
fully indemnify Micrel for any damages resulting from such use or sale.  
© 2009 Micrel, Incorporated.  
M9999-101309-1.1  
October 2009  
56  

相关型号:

TLA-7T201LF-T

Pulse transformers
TDK

TLA-8-2013

Low Noise Amplifier 2 GHz - 8 GHz
TELEDYNE

TLA-8-2014

Low Noise Amplifier 2 GHz - 8 GHz
TELEDYNE

TLA-8-2015

Low Noise Amplifier 2 GHz - 8 GHz
TELEDYNE

TLA050-3E

Datacom Transformer, LAN Application(s), 1:1
TDK

TLA050-3S

Datacom Transformer, 10 BASE-2/5/T Application(s), 1:1
TDK

TLA06AMA

3-Terminal Negative Regulators
NSC

TLA075-3E

Datacom Transformer, LAN Application(s), 1:1
TDK

TLA075-3S

Datacom Transformer, 10 BASE-2/5/T Application(s), 1:1
TDK

TLA0814

Audio Line Matching Transformer
FILTRAN

TLA0839

Audio Hybrid Transformer
FILTRAN

TLA08AAA

THIN MICRO SMD 8 BUMP
NSC