48GA002 [MICROCHIP]

28/44-Pin General Purpose, 16-Bit Flash Microcontrollers; 44分之28引脚通用16位闪存微控制器
48GA002
型号: 48GA002
厂家: MICROCHIP    MICROCHIP
描述:

28/44-Pin General Purpose, 16-Bit Flash Microcontrollers
44分之28引脚通用16位闪存微控制器

闪存 微控制器
文件: 总268页 (文件大小:1989K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC24FJ64GA004 Family  
Data Sheet  
28/44-Pin General Purpose,  
16-Bit Flash Microcontrollers  
2010 Microchip Technology Inc.  
DS39881D  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
32  
PICtail, PIC logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-022-5  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS39881D-page 2  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
28/44-Pin General Purpose, 16-Bit Flash Microcontrollers  
High-Performance CPU:  
• Modified Harvard Architecture  
Analog Features:  
• 10-Bit, up to 13-Channel Analog-to-Digital Converter:  
• Up to 16 MIPS Operation @ 32 MHz  
• 8 MHz Internal Oscillator with 4x PLL Option and  
Multiple Divide Options  
• 17-Bit by 17-Bit Single-Cycle Hardware Multiplier  
• 32-Bit by 16-Bit Hardware Divider  
• 16-Bit x 16-Bit Working Register Array  
• C Compiler Optimized Instruction Set Architecture:  
- 76 base instructions  
- 500 ksps conversion rate  
- Conversion available during Sleep and Idle  
• Dual Analog Comparators with Programmable  
Input/Output Configuration  
Peripheral Features:  
• Peripheral Pin Select:  
- Allows independent I/O mapping of many peripherals  
- Up to 26 available pins (44-pin devices)  
- Flexible addressing modes  
- Continuous hardware integrity checking and safety  
interlocks prevent unintentional configuration changes  
• 8-Bit Parallel Master/Slave Port (PMP/PSP):  
- Up to 16-bit multiplexed addressing, with up to  
11 dedicated address pins on 44-pin devices  
- Programmable polarity on control lines  
• Two Address Generation Units for Separate Read  
and Write Addressing of Data Memory  
Special Microcontroller Features:  
• Operating Voltage Range of 2.0V to 3.6V  
• 5.5V Tolerant Input (digital pins only)  
• High-Current Sink/Source (18 mA/18 mA) on All I/O Pins  
• Flash Program Memory:  
- 10,000 erase/write  
- 20-year data retention minimum  
• Power Management modes:  
- Sleep, Idle, Doze and Alternate Clock modes  
- Operating current 650 A/MIPS typical at 2.0V  
- Sleep current 150 nA typical at 2.0V  
• Fail-Safe Clock Monitor Operation:  
- Detects clock failure and switches to on-chip,  
low-power RC oscillator  
• On-Chip, 2.5V Regulator with Tracking mode  
• Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
• Flexible Watchdog Timer (WDT) with On-Chip,  
Low-Power RC Oscillator for Reliable Operation  
• In-Circuit Serial Programming™ (ICSP™) and  
In-Circuit Debug (ICD) via 2 Pins  
• Hardware Real-Time Clock/Calendar (RTCC):  
- Provides clock, calendar and alarm functions  
• Programmable Cyclic Redundancy Check (CRC)  
• Two 3-Wire/4-Wire SPI modules (support 4 Frame  
modes) with 8-Level FIFO Buffer  
2
• Two I C™ modules support Multi-Master/Slave  
mode and 7-Bit/10-Bit Addressing  
• Two UART modules:  
- Supports RS-485, RS-232, and LIN 1.2  
- On-chip hardware encoder/decoder for IrDA  
®
- Auto-wake-up on Start bit  
- Auto-Baud Detect  
- 4-level deep FIFO buffer  
• Five 16-Bit Timers/Counters with Programmable Prescaler  
• Five 16-Bit Capture Inputs  
• Five 16-Bit Compare/PWM Outputs  
• Configurable Open-Drain Outputs on Digital I/O Pins  
• Up to 4 External Interrupt Sources  
• JTAG Boundary Scan Support  
Remappable Peripherals  
PIC24FJ  
Device  
16GA002  
32GA002  
48GA002  
64GA002  
16GA004  
32GA004  
48GA004  
64GA004  
28  
28  
28  
28  
44  
44  
44  
44  
16K  
32K  
48K  
64K  
16K  
32K  
48K  
64K  
4K  
8K  
8K  
8K  
4K  
8K  
8K  
8K  
16  
16  
16  
16  
26  
26  
26  
26  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
10  
10  
10  
10  
13  
13  
13  
13  
2
2
2
2
2
2
2
2
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
2010 Microchip Technology Inc.  
DS39881D-page 3  
PIC24FJ64GA004 FAMILY  
Pin Diagrams  
28-Pin SPDIP, SSOP, SOIC  
VDD  
VSS  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
MCLR  
AN0/VREF+/CN2/RA0  
AN1/VREF-/CN3/RA1  
AN9/RP15/CN11/PMCS1/RB15  
AN10/CVREF/RTCC/RP14/CN12/PMWR/RB14  
AN11/RP13/CN13/PMRD/RB13  
AN12/RP12/CN14/PMD0/RB12  
PGC2/EMUC2/TMS/RP11/CN15/PMD1/RB11  
PGD2/EMUD2/TDI/RP10/CN16/PMD2/RB10  
VCAP/VDDCORE  
PGD1/EMUD1/AN2/C2IN-/RP0/CN4/RB0  
PGC1/EMUC1/AN3/C2IN+/RP1/CN5/RB1  
AN4/C1IN-/RP2/SDA2/CN6/RB2  
AN5/C1IN+/RP3/SCL2/CN7/RB3  
VSS  
OSCI/CLKI/CN30/RA2  
9
DISVREG  
10  
11  
12  
13  
14  
OSCO/CLKO/CN29/PMA0/RA3  
SOSCI/RP4/PMBE/CN1/RB4  
SOSCO/T1CK/CN0/PMA1/RA4  
VDD  
TDO/RP9/SDA1/CN21/PMD3/RB9  
TCK/RP8/SCL1/CN22/PMD4/RB8  
RP7/INT0/CN23/PMD5/RB7  
PGC3/EMUC3/RP6/ASCL1/CN24/PMD6/RB6  
PGD3/EMUD3/RP5/ASDA1/CN27/PMD7/RB5  
(1)  
28-Pin QFN  
28272625242322  
PGD1/EMUD1/AN2/C2IN-/RP0/CN4/RB0  
PGC1/EMUC1/AN3/C2IN+/RP1/CN5/RB1  
AN4/C1IN-/RP2/SDA2/CN6/RB2  
AN5/C1IN+/RP3/SCL2/CN7/RB3  
VSS  
1
2
3
4
5
6
7
AN11/RP13/CN13/PMRD/RB13  
AN12/RP12/CN14/PMD0/RB12  
PGC2/EMUC2/TMS/RP11/CN15/PMD1/RB11  
21  
20  
19  
PIC24FJXXGA002  
18 PGD2/EMUD2/TDI/RP10/CN16/PMD2/RB10  
VCAP/VDDCORE  
16 DISVREG  
17  
OSCI/CLKI/CN30/RA2  
OSCO/CLKO/CN29/PMA0/RA3  
15 TDO/RP9/SDA1/CN21/PMD3/RB9  
8
9 1011 121314  
Legend:  
RPn represents remappable peripheral pins.  
Note 1: Back pad on QFN devices should be connected to Vss.  
DS39881D-page 4  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
Pin Diagrams (Continued)  
44-Pin QFN(1)  
33 SOSCI/RP4/CN1/RB4  
RP9/SDA1/CN21/PMD3/RB9  
1
2
3
4
5
6
7
8
TDO/PMA8/RA8  
32  
RP22/CN18/PMA1/RC6  
RP23/CN17/PMA0/RC7  
RP24/CN20/PMA5/RC8  
31 OSCO/CLKO/CN29/RA3  
30 OSCI/CLKI/CN30/RA2  
VSS  
28 VDD  
29  
RP25/CN19/PMA6/RC9  
DISVREG  
VCAP/VDDCORE  
PGD2/EMUD2/RP10/CN16/PMD2/RB10  
PGC2/EMUC2/RP11/CN15/PMD1/RB11  
AN12/RP12/CN14/PMD0/RB12  
PIC24FJXXGA004  
AN8/RP18/CN10/PMA2/RC2  
AN7/RP17/CN9/RC1  
AN6/RP16/CN8/RC0  
AN5/C1IN+/RP3/SCL2/CN7/RB3  
27  
26  
25  
24  
9
10  
23 AN4/C1IN-/RP2/SDA2/CN6/RB2  
AN11/RP13/CN13/PMRD/RB13 11  
Legend:  
RPn represents remappable peripheral pins.  
Note 1: Back pad on QFN devices should be connected to Vss.  
2010 Microchip Technology Inc.  
DS39881D-page 5  
PIC24FJ64GA004 FAMILY  
Pin Diagrams (Continued)  
44-Pin TQFP  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RP9/SDA1/CN21/PMD3/RB9  
SOSCI/RP4/CN1/RB4  
TDO/PMA8/RA8  
OSCO/CLKO/CN29/RA3  
OSCI/CLKI/CN30/RA2  
VSS  
1
RP22/CN18/PMA1/RC6  
RP23/CN17/PMA0/RC7  
RP24/CN20/PMA5/RC8  
2
3
4
5
6
7
8
9
RP25/CN19/PMA6/RC9  
VDD  
PIC24FJXXGA004  
DISVREG  
VCAP/VDDCORE  
PGD2/EMUD2/RP10/CN16/PMD2/RB10  
PGC2/EMUC2/RP11/CN15/PMD1/RB11  
AN12/RP12/CN14/PMD0/RB12  
AN11/RP13/CN13/PMRD/RB13  
AN8/RP18/CN10/PMA2/RC2  
AN7/RP17/CN9/RC1  
AN6/RP16/CN8/RC0  
AN5/C1IN+/RP3/SCL2/CN7/RB3  
AN4/C1IN-/RP2/SDA2/CN6/RB2  
10  
11  
Legend:  
RPn represents remappable peripheral pins.  
DS39881D-page 6  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 9  
2.0 Guidelines for Getting Started with 16-bit Microcontrollers ........................................................................................................ 19  
3.0 CPU ........................................................................................................................................................................................... 25  
4.0 Memory Organization................................................................................................................................................................. 31  
5.0 Flash Program Memory.............................................................................................................................................................. 49  
6.0 Resets ........................................................................................................................................................................................ 55  
7.0 Interrupt Controller ..................................................................................................................................................................... 61  
8.0 Oscillator Configuration.............................................................................................................................................................. 95  
9.0 Power-Saving Features............................................................................................................................................................ 103  
10.0 I/O Ports ................................................................................................................................................................................... 105  
11.0 Timer1 ..................................................................................................................................................................................... 125  
12.0 Timer2/3 and Timer4/5 ............................................................................................................................................................ 127  
13.0 Input Capture............................................................................................................................................................................ 133  
14.0 Output Compare....................................................................................................................................................................... 135  
15.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 141  
2
16.0 Inter-Integrated Circuit (I C™) ................................................................................................................................................. 151  
17.0 Universal Asynchronous Receiver Transmitter (UART)........................................................................................................... 159  
18.0 Parallel Master Port (PMP)....................................................................................................................................................... 167  
19.0 Real-Time Clock And Calendar (RTCC) ................................................................................................................................. 177  
20.0 Programmable Cyclic Redundancy Check (CRC) Generator .................................................................................................. 187  
21.0 10-Bit High-Speed A/D Converter ............................................................................................................................................ 191  
22.0 Comparator Module.................................................................................................................................................................. 201  
23.0 Comparator Voltage Reference................................................................................................................................................ 205  
24.0 Special Features ...................................................................................................................................................................... 207  
25.0 Development Support............................................................................................................................................................... 217  
26.0 Instruction Set Summary.......................................................................................................................................................... 221  
27.0 Electrical Characteristics.......................................................................................................................................................... 229  
28.0 Packaging Information.............................................................................................................................................................. 247  
Appendix A: Revision History............................................................................................................................................................. 259  
Appendix B: Additional Guidance for PIC24FJ64GA004 Family Applications................................................................................... 260  
Index ................................................................................................................................................................................................. 261  
The Microchip Web Site..................................................................................................................................................................... 265  
Customer Change Notification Service .............................................................................................................................................. 265  
Customer Support.............................................................................................................................................................................. 265  
Reader Response.............................................................................................................................................................................. 266  
Product Identification System ............................................................................................................................................................ 267  
2010 Microchip Technology Inc.  
DS39881D-page 7  
PIC24FJ64GA004 FAMILY  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS39881D-page 8  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
1.1.2  
POWER-SAVING TECHNOLOGY  
1.0  
DEVICE OVERVIEW  
All of the devices in the PIC24FJ64GA004 family  
incorporate a range of features that can significantly  
reduce power consumption during operation. Key  
items include:  
This document contains device-specific information for  
the following devices:  
• PIC24FJ16GA002  
• PIC24FJ32GA002  
• PIC24FJ48GA002  
• PIC24FJ64GA002  
• PIC24FJ16GA004  
• PIC24FJ32GA004  
• PIC24FJ48GA004  
• PIC24FJ64GA004  
On-the-Fly Clock Switching: The device clock  
can be changed under software control to the  
Timer1 source or the internal, low-power RC  
oscillator during operation, allowing the user to  
incorporate power-saving ideas into their software  
designs.  
Doze Mode Operation: When timing-sensitive  
applications, such as serial communications,  
require the uninterrupted operation of peripherals,  
the CPU clock speed can be selectively reduced,  
allowing incremental power savings without  
missing a beat.  
This family introduces a new line of Microchip devices:  
a 16-bit microcontroller family with a broad peripheral  
feature set and enhanced computational performance.  
The PIC24FJ64GA004 family offers a new migration  
option for those high-performance applications which  
may be outgrowing their 8-bit platforms, but don’t  
require the numerical processing power of a digital  
signal processor.  
Instruction-Based Power-Saving Modes: The  
microcontroller can suspend all operations, or  
selectively shut down its core while leaving its  
peripherals active, with a single instruction in  
software.  
1.1  
Core Features  
1.1.3  
OSCILLATOR OPTIONS AND  
FEATURES  
1.1.1  
16-BIT ARCHITECTURE  
Central to all PIC24F devices is the 16-bit modified  
Harvard architecture, first introduced with Microchip’s  
dsPIC® digital signal controllers. The PIC24F CPU core  
offers a wide range of enhancements, such as:  
All of the devices in the PIC24FJ64GA004 family offer  
five different oscillator options, allowing users a range  
of choices in developing application hardware. These  
include:  
• 16-bit data and 24-bit address paths with the  
ability to move information between data and  
memory spaces  
• Two Crystal modes using crystals or ceramic  
resonators.  
• Two External Clock modes offering the option of a  
divide-by-2 clock output.  
• Linear addressing of up to 12 Mbytes (program  
space) and 64 Kbytes (data)  
• A Fast Internal Oscillator (FRC) with a nominal  
8 MHz output, which can also be divided under  
software control to provide clock speeds as low as  
31 kHz.  
• A 16-element working register array with built-in  
software stack support  
• A 17 x 17 hardware multiplier with support for  
integer math  
• A Phase Lock Loop (PLL) frequency multiplier,  
available to the External Oscillator modes and the  
FRC oscillator, which allows clock speeds of up to  
32 MHz.  
• Hardware support for 32 by 16-bit division  
• An instruction set that supports multiple  
addressing modes and is optimized for high-level  
languages such as ‘C’  
• A separate internal RC oscillator (LPRC) with a  
fixed 31 kHz output, which provides a low-power  
option for timing-insensitive applications.  
• Operational performance up to 16 MIPS  
The internal oscillator block also provides a stable  
reference source for the Fail-Safe Clock Monitor. This  
option constantly monitors the main clock source  
against a reference signal provided by the internal  
oscillator and enables the controller to switch to the  
internal oscillator, allowing for continued low-speed  
operation or a safe application shutdown.  
2010 Microchip Technology Inc.  
DS39881D-page 9  
PIC24FJ64GA004 FAMILY  
1.1.4  
EASY MIGRATION  
1.3  
Details on Individual Family  
Members  
Regardless of the memory size, all devices share the  
same rich set of peripherals, allowing for a smooth  
migration path as applications grow and evolve.  
Devices in the PIC24FJ64GA004 family are available  
in 28-pin and 44-pin packages. The general block  
diagram for all devices is shown in Figure 1-1.  
The consistent pinout scheme used throughout the  
entire family also aids in migrating to the next larger  
device. This is true when moving between devices with  
the same pin count, or even jumping from 28-pin to  
44-pin devices.  
The devices are differentiated from each other in two  
ways:  
1. Flash program memory (64 Kbytes for  
PIC24FJ64GA devices, 48 Kbytes for  
PIC24FJ48GA devices, 32 Kbytes for  
PIC24FJ32GA devices and 16 Kbytes for  
PIC24FJ16GA devices).  
The PIC24F family is pin-compatible with devices in the  
dsPIC33 family, and shares some compatibility with the  
pinout schema for PIC18 and dsPIC30. This extends  
the ability of applications to grow from the relatively  
simple, to the powerful and complex, yet still selecting  
a Microchip device.  
2. Internal SRAM memory (4k for PIC24FJ16GA  
devices, 8k for all other devices in the family).  
3. Available I/O pins and ports (21 pins on 2 ports  
for 28-pin devices and 35 pins on 3 ports for  
44-pin devices).  
1.2  
Other Special Features  
Communications: The PIC24FJ64GA004 family  
incorporates a range of serial communication  
peripherals to handle a range of application  
requirements. There are two independent I2C  
modules that support both Master and Slave  
modes of operation. Devices also have, through  
the peripheral pin select feature, two independent  
UARTs with built-in IrDA encoder/decoders and  
two SPI modules.  
All other features for devices in this family are identical.  
These are summarized in Table 1-1.  
A
list of the pin features available on the  
PIC24FJ64GA004 family devices, sorted by function, is  
shown in Table 1-2. Note that this table shows the pin  
location of individual peripheral features and not how  
they are multiplexed on the same pin. This information  
is provided in the pinout diagrams in the beginning of  
the data sheet. Multiplexed features are sorted by the  
priority given to a feature, with the highest priority  
peripheral being listed first.  
Peripheral Pin Select: The peripheral pin select  
feature allows most digital peripherals to be  
mapped over a fixed set of digital I/O pins. Users  
may independently map the input and/or output of  
any one of the many digital peripherals to any one  
of the I/O pins.  
Parallel Master/Enhanced Parallel Slave Port:  
One of the general purpose I/O ports can be  
reconfigured for enhanced parallel data communi-  
cations. In this mode, the port can be configured  
for both master and slave operations, and  
supports 8-bit and 16-bit data transfers with up to  
16 external address lines in Master modes.  
Real-Time Clock/Calendar: This module  
implements a full-featured clock and calendar with  
alarm functions in hardware, freeing up timer  
resources and program memory space for use of  
the core application.  
10-Bit A/D Converter: This module incorporates  
programmable acquisition time, allowing for a  
channel to be selected and a conversion to be  
initiated without waiting for a sampling period, as  
well as faster sampling speeds.  
DS39881D-page 10  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 1-1:  
DEVICE FEATURES FOR THE PIC24FJ64GA004 FAMILY  
Features  
Operating Frequency  
DC – 32 MHz  
Program Memory (bytes)  
Program Memory (instructions)  
Data Memory (bytes)  
16K  
5,504  
4096  
32K  
48K  
64K  
16K  
5,504  
4096  
32K  
48K  
64K  
11,008 16,512 22,016  
8192  
11,008 16,512 22,016  
8192  
Interrupt Sources  
43  
(soft vectors/NMI traps)  
(39/4)  
I/O Ports  
Ports A, B  
21  
Ports A, B, C  
35  
Total I/O Pins  
Timers:  
Total Number (16-bit)  
32-Bit (from paired 16-bit timers)  
Input Capture Channels  
Output Compare/PWM Channels  
Input Change Notification Interrupt  
Serial Communications:  
UART  
5(1)  
2
5(1)  
5(1)  
21  
30  
2(1)  
2(1)  
2
SPI (3-wire/4-wire)  
I2C™  
Parallel Communications (PMP/PSP)  
JTAG Boundary Scan  
Yes  
Yes  
10-Bit Analog-to-Digital Module  
(input channels)  
10  
16  
13  
26  
Analog Comparators  
Remappable Pins  
Resets (and delays)  
2
POR, BOR, RESETInstruction, MCLR, WDT, Illegal Opcode,  
REPEATInstruction, Hardware Traps, Configuration Word Mismatch  
(PWRT, OST, PLL Lock)  
Instruction Set  
Packages  
76 Base Instructions, Multiple Addressing Mode Variations  
28-Pin SPDIP/SSOP/SOIC/QFN  
44-Pin QFN/TQFP  
Note 1: Peripherals are accessible through remappable pins.  
2010 Microchip Technology Inc.  
DS39881D-page 11  
PIC24FJ64GA004 FAMILY  
FIGURE 1-1:  
PIC24FJ64GA004 FAMILY GENERAL BLOCK DIAGRAM  
Data Bus  
Interrupt  
Controller  
16  
16  
16  
8
Data Latch  
Data RAM  
PSV & Table  
Data Access  
Control Block  
PCH  
PCL  
23  
Program Counter  
Address  
Latch  
PORTA(1)  
RA0:RA9  
Stack  
Control  
Logic  
Repeat  
Control  
Logic  
16  
23  
16  
Read AGU  
Write AGU  
Address Latch  
Program Memory  
Data Latch  
PORTB  
RB0:RB15  
16  
EA MUX  
Address Bus  
24  
PORTC(1)  
RC0:RC9  
16  
16  
Inst Latch  
Inst Register  
RP(1)  
Instruction  
Decode &  
RP0:RP25  
Control  
Divide  
Support  
Control Signals  
16 x 16  
W Reg Array  
17x17  
Multiplier  
Power-up  
Timer  
Timing  
Generation  
OSCO/CLKO  
OSCI/CLKI  
Oscillator  
Start-up Timer  
FRC/LPRC  
Oscillators  
16-Bit ALU  
16  
Power-on  
Reset  
Precision  
Band Gap  
Reference  
Watchdog  
Timer  
DISVREG  
BOR and  
LVD(2)  
Voltage  
Regulator  
VDDCORE/VCAP  
VDD,VSS  
MCLR  
10-Bit  
ADC  
Timer2/3(3)  
Comparators(3)  
Timer4/5(3)  
RTCC  
Timer1  
PMP/PSP  
PWM/  
OC1-5(3)  
UART1/2(3)  
IC1-5(3)  
SPI1/2(3)  
I2C1/2  
CN1-22(1)  
Note 1: Not all pins or features are implemented on all device pinout configurations. See Table 1-2 for I/O port pin descriptions.  
2: BOR and LVD functionality is provided when the on-board voltage regulator is enabled.  
3: Peripheral I/Os are accessible through remappable pins.  
DS39881D-page 12  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 1-2:  
PIC24FJ64GA004 FAMILY PINOUT DESCRIPTIONS  
Pin Number  
Input  
Buffer  
28-Pin  
SPDIP/  
SSOP/SOIC  
Function  
I/O  
Description  
28-Pin  
QFN  
44-Pin  
QFN/TQFP  
AN0  
2
3
27  
28  
1
19  
20  
21  
22  
23  
24  
25  
26  
27  
15  
14  
11  
10  
42  
41  
17  
16  
23  
24  
21  
22  
30  
31  
I
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
A/D Analog Inputs.  
AN1  
I
AN2  
4
I
AN3  
5
2
I
AN4  
6
3
I
AN5  
7
4
I
AN6  
26  
25  
24  
23  
15  
14  
6
23  
22  
21  
20  
12  
11  
3
I
AN7  
I
AN8  
I
AN9  
I
AN10  
AN11  
AN12  
ASCL1  
ASDA1  
AVDD  
AVSS  
C1IN-  
C1IN+  
C2IN-  
C2IN+  
CLKI  
CLKO  
Legend:  
I
I
I
2
(1)  
I/O  
I/O  
P
P
I
I C  
Alternate I2C1 Synchronous Serial Clock Input/Output.  
Alternate I2C2 Synchronous Serial Clock Input/Output.  
Positive Supply for Analog Modules.  
Ground Reference for Analog Modules.  
Comparator 1 Negative Input.  
2
(1)  
I C  
ANA  
ANA  
ANA  
ANA  
ANA  
7
4
I
Comparator 1 Positive Input.  
4
1
I
Comparator 2 Negative Input.  
5
2
I
Comparator 2 Positive Input.  
9
6
I
Main Clock Input Connection.  
10  
7
O
System Clock Output.  
TTL = TTL input buffer  
ANA = Analog level input/output  
Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.  
ST = Schmitt Trigger input buffer  
2
2
I C™ = I C/SMBus input buffer  
2010 Microchip Technology Inc.  
DS39881D-page 13  
PIC24FJ64GA004 FAMILY  
TABLE 1-2:  
PIC24FJ64GA004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
28-Pin  
SPDIP/  
SSOP/SOIC  
Function  
I/O  
Description  
28-Pin  
QFN  
44-Pin  
QFN/TQFP  
CN0  
12  
11  
2
9
34  
33  
19  
20  
21  
22  
23  
24  
25  
26  
27  
15  
14  
11  
10  
9
I
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ANA  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Interrupt-on-Change Inputs.  
CN1  
8
I
CN2  
27  
28  
1
I
CN3  
3
I
CN4  
4
I
CN5  
5
2
I
CN6  
6
3
I
CN7  
7
4
I
CN8  
26  
25  
24  
23  
22  
21  
18  
17  
16  
15  
14  
10  
9
23  
22  
21  
20  
19  
18  
15  
14  
13  
12  
11  
7
I
CN9  
I
CN10  
CN11  
CN12  
CN13  
CN14  
CN15  
CN16  
CN17  
CN18  
CN19  
CN20  
CN21  
CN22  
CN23  
CN24  
CN25  
CN26  
CN27  
CN28  
CN29  
CN30  
CVREF  
DISVREG  
EMUC1  
EMUD1  
EMUC2  
EMUD2  
EMUC3  
EMUD3  
INT0  
I
I
I
I
I
I
8
I
3
I
2
I
5
I
4
I
1
I
44  
43  
42  
37  
38  
41  
36  
31  
30  
14  
6
I
I
I
I
I
I
I
I
6
I
25  
19  
5
22  
16  
2
O
I
Comparator Voltage Reference Output.  
Voltage Regulator Disable.  
21  
22  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
In-Circuit Emulator Clock Input/Output.  
In-Circuit Emulator Data Input/Output.  
In-Circuit Emulator Clock Input/Output.  
In-Circuit Emulator Data Input/Output.  
In-Circuit Emulator Clock Input/Output.  
In-Circuit Emulator Data Input/Output.  
External Interrupt Input.  
4
1
22  
21  
15  
14  
16  
1
19  
18  
12  
11  
13  
26  
8
42  
41  
43  
18  
MCLR  
I
Master Clear (device Reset) Input. This line is brought low  
to cause a Reset.  
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.  
DS39881D-page 14  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 1-2:  
PIC24FJ64GA004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
28-Pin  
SPDIP/  
SSOP/SOIC  
Function  
I/O  
Description  
28-Pin  
QFN  
44-Pin  
QFN/TQFP  
OSCI  
9
6
7
30  
31  
22  
21  
9
I
ANA  
ANA  
ST  
Main Oscillator Input Connection.  
OSCO  
PGC1  
PGD1  
PGC2  
PGD2  
PGC3  
PGD3  
PMA0  
10  
5
O
Main Oscillator Output Connection.  
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
In-Circuit Debugger and ICSP™ Programming Clock  
In-Circuit Debugger and ICSP Programming Data.  
In-Circuit Debugger and ICSP Programming Clock.  
In-Circuit Debugger and ICSP Programming Data.  
In-Circuit Debugger and ICSP Programming Clock.  
In-Circuit Debugger and ICSP Programming Data.  
4
1
ST  
22  
21  
14  
15  
10  
19  
18  
12  
11  
7
ST  
8
ST  
42  
41  
3
ST  
ST  
ST/TTL Parallel Master Port Address Bit 0 Input (Buffered Slave  
modes) and Output (Master modes).  
PMA1  
12  
9
2
I/O  
ST/TTL Parallel Master Port Address Bit 1 Input (Buffered Slave  
modes) and Output (Master modes).  
PMA2  
PMA3  
PMA4  
PMA5  
PMA6  
PMA7  
PMA8  
PMA9  
PMA10  
PMA11  
PMA12  
PMA13  
PMBE  
PMCS1  
PMD0  
PMD1  
PMD2  
PMD3  
PMD4  
PMD5  
PMD6  
PMD7  
PMRD  
PMWR  
Legend:  
11  
26  
23  
22  
21  
18  
17  
16  
15  
14  
24  
25  
8
27  
38  
37  
4
O
O
Parallel Master Port Address (Demultiplexed Master  
modes).  
O
O
5
O
13  
32  
35  
12  
36  
15  
10  
9
O
O
O
O
O
O
O
O
Parallel Master Port Byte Enable Strobe.  
23  
20  
19  
18  
15  
14  
13  
12  
11  
21  
22  
O
Parallel Master Port Chip Select 1 Strobe/Address Bit 14.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
ST/TTL Parallel Master Port Data (Demultiplexed Master mode) or  
Address/Data (Multiplexed Master modes).  
ST/TTL  
8
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
1
44  
43  
42  
41  
11  
14  
Parallel Master Port Read Strobe.  
Parallel Master Port Write Strobe.  
O
TTL = TTL input buffer  
ANA = Analog level input/output  
Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.  
ST = Schmitt Trigger input buffer  
2
2
I C™ = I C/SMBus input buffer  
2010 Microchip Technology Inc.  
DS39881D-page 15  
PIC24FJ64GA004 FAMILY  
TABLE 1-2:  
PIC24FJ64GA004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
28-Pin  
SPDIP/  
SSOP/SOIC  
Function  
I/O  
Description  
28-Pin  
QFN  
44-Pin  
QFN/TQFP  
RA0  
RA1  
RA2  
RA3  
RA4  
RA7  
RA8  
RA9  
RA10  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RB8  
RB9  
RB10  
RB11  
RB12  
RB13  
RB14  
RB15  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
RC8  
RC9  
Legend:  
2
27  
28  
6
19  
20  
30  
31  
34  
13  
32  
35  
12  
21  
22  
23  
24  
33  
41  
42  
43  
44  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
PORTA Digital I/O.  
3
9
10  
12  
4
7
9
1
PORTB Digital I/O.  
5
2
6
3
7
4
11  
14  
15  
16  
17  
18  
21  
22  
23  
24  
25  
26  
8
11  
12  
13  
14  
15  
18  
19  
20  
21  
22  
23  
8
9
10  
11  
14  
15  
25  
26  
27  
36  
37  
38  
2
PORTC Digital I/O.  
3
4
5
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
2
2
I C™ = I C/SMBus input buffer  
Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.  
DS39881D-page 16  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 1-2:  
PIC24FJ64GA004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
28-Pin  
SPDIP/  
SSOP/SOIC  
Function  
I/O  
Description  
28-Pin  
QFN  
44-Pin  
QFN/TQFP  
RP0  
4
1
21  
22  
23  
24  
33  
41  
42  
43  
44  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Remappable Peripheral.  
RP1  
5
2
RP2  
6
3
RP3  
7
4
RP4  
11  
14  
15  
16  
17  
18  
21  
22  
23  
24  
25  
26  
25  
17  
7
8
RP5  
11  
12  
13  
14  
15  
18  
19  
20  
21  
22  
23  
22  
14  
4
RP6  
RP7  
RP8  
RP9  
RP10  
RP11  
RP12  
RP13  
RP14  
RP15  
RP16  
RP17  
RP18  
RP19  
RP20  
RP21  
RP22  
RP23  
RP24  
RP25  
RTCC  
SCL1  
SCL2  
SDA1  
SDA2  
SOSCI  
SOSCO  
Legend:  
8
9
10  
11  
14  
15  
25  
26  
27  
36  
37  
38  
2
3
4
5
14  
44  
24  
1
Real-Time Clock Alarm Output.  
2
I/O  
I/O  
I/O  
I/O  
I
I C  
I2C1 Synchronous Serial Clock Input/Output.  
I2C2 Synchronous Serial Clock Input/Output.  
I2C1 Data Input/Output.  
2
I C  
2
18  
6
15  
3
I C  
2
23  
33  
34  
I C  
I2C2 Data Input/Output.  
11  
12  
8
ANA  
ANA  
Secondary Oscillator/Timer1 Clock Input.  
Secondary Oscillator/Timer1 Clock Output.  
9
O
TTL = TTL input buffer  
ANA = Analog level input/output  
Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.  
ST = Schmitt Trigger input buffer  
2
2
I C™ = I C/SMBus input buffer  
2010 Microchip Technology Inc.  
DS39881D-page 17  
PIC24FJ64GA004 FAMILY  
TABLE 1-2:  
PIC24FJ64GA004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
28-Pin  
SPDIP/  
SSOP/SOIC  
Function  
I/O  
Description  
28-Pin  
QFN  
44-Pin  
QFN/TQFP  
T1CK  
TCK  
12  
17  
9
14  
34  
13  
I
I
ST  
ST  
ST  
Timer1 Clock.  
JTAG Test Clock Input.  
JTAG Test Data Input.  
TDI  
21  
18  
35  
I
TDO  
18  
15  
32  
O
I
JTAG Test Data Output.  
TMS  
22  
19  
12  
ST  
JTAG Test Mode Select Input.  
VDD  
13, 28  
20  
10, 25  
17  
28, 40  
7
P
P
P
Positive Supply for Peripheral Digital Logic and I/O Pins.  
External Filter Capacitor Connection (regulator enabled).  
VDDCAP  
VDDCORE  
20  
17  
7
Positive Supply for Microcontroller Core Logic (regulator  
disabled).  
VREF-  
VREF+  
VSS  
3
2
28  
27  
20  
19  
I
I
ANA  
ANA  
A/D and Comparator Reference Voltage (low) Input.  
A/D and Comparator Reference Voltage (high) Input.  
Ground Reference for Logic and I/O Pins.  
8, 27  
5, 24  
29, 39  
P
Legend:  
TTL = TTL input buffer  
ANA = Analog level input/output  
ST = Schmitt Trigger input buffer  
I C™ = I C/SMBus input buffer  
2
2
Note 1: Alternative multiplexing when the I2C1SEL Configuration bit is cleared.  
DS39881D-page 18  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTIONS  
2.0  
2.1  
GUIDELINES FOR GETTING  
STARTED WITH 16-BIT  
MICROCONTROLLERS  
(2)  
C2  
VDD  
Basic Connection Requirements  
Getting started with the PIC24FJ64GA004 Family of  
16-bit microcontrollers requires attention to a minimal  
set of device pin connections before proceeding with  
development.  
(1)  
(1)  
R1  
R2  
(EN/DIS)VREG  
VCAP/VDDCORE  
MCLR  
C1  
The following pins must always be connected:  
C7  
PIC24FXXXX  
• All VDD and VSS pins  
(see Section 2.2 “Power Supply Pins”)  
VDD  
VSS  
VSS  
VDD  
(2)  
(2)  
C3  
C6  
• All AVDD and AVSS pins, regardless of whether or  
not the analog device features are used  
(see Section 2.2 “Power Supply Pins”)  
• MCLR pin  
(see Section 2.3 “Master Clear (MCLR) Pin”)  
(2)  
(2)  
C4  
C5  
• ENVREG/DISVREG and VCAP/VDDCORE pins  
(PIC24FJ devices only)  
(see Section 2.4 “Voltage Regulator Pins  
(ENVREG/DISVREG and VCAP/VDDCORE)”)  
Key (all values are recommendations):  
C1 through C6: 0.1 F, 20V ceramic  
These pins must also be connected if they are being  
used in the end application:  
C7: 10 F, 6.3V or greater, tantalum or ceramic  
R1: 10 k  
• PGECx/PGEDx pins used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes  
(see Section 2.5 “ICSP Pins”)  
R2: 100to 470Ω  
Note 1: See Section 2.4 “Voltage Regulator Pins  
(ENVREG/DISVREG and VCAP/VDDCORE)”  
for explanation of ENVREG/DISVREG pin  
connections.  
• OSCI and OSCO pins when an external oscillator  
source is used  
(see Section 2.6 “External Oscillator Pins”)  
2: The example shown is for a PIC24F device  
with five VDD/VSS and AVDD/AVSS pairs.  
Other devices may have more or less pairs;  
adjust the number of decoupling capacitors  
appropriately.  
Additionally, the following pins may be required:  
• VREF+/VREF- pins used when external voltage  
reference for analog modules is implemented  
Note:  
The AVDD and AVSS pins must always be  
connected, regardless of whether any of  
the analog modules are being used.  
The minimum mandatory connections are shown in  
Figure 2-1.  
2010 Microchip Technology Inc.  
DS39881D-page 19  
PIC24FJ64GA004 FAMILY  
2.2  
Power Supply Pins  
2.3  
Master Clear (MCLR) Pin  
The MCLR pin provides two specific device  
functions: device Reset, and device programming  
and debugging. If programming and debugging are  
2.2.1  
DECOUPLING CAPACITORS  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD and  
AVSS is required.  
not required in the end application,  
a
direct  
connection to VDD may be all that is required. The  
addition of other components, to help increase the  
application’s resistance to spurious Resets from  
Consider the following criteria when using decoupling  
capacitors:  
voltage sags, may be beneficial.  
A
typical  
Value and type of capacitor: A 0.1 F (100 nF),  
10-20V capacitor is recommended. The capacitor  
should be a low-ESR device with a resonance  
frequency in the range of 200 MHz and higher.  
Ceramic capacitors are recommended.  
configuration is shown in Figure 2-1. Other circuit  
designs may be implemented, depending on the  
application’s requirements.  
During programming and debugging, the resistance  
and capacitance that can be added to the pin must  
be considered. Device programmers and debuggers  
drive the MCLR pin. Consequently, specific voltage  
levels (VIH and VIL) and fast signal transitions must  
not be adversely affected. Therefore, specific values  
of R1 and C1 will need to be adjusted based on the  
application and PCB requirements. For example, it is  
recommended that the capacitor, C1, be isolated  
from the MCLR pin during programming and  
debugging operations by using a jumper (Figure 2-2).  
The jumper is replaced for normal run-time  
operations.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is no greater  
than 0.25 inch (6 mm).  
Handling high-frequency noise: If the board is  
experiencing high-frequency noise (upward of  
tens of MHz), add a second ceramic type capaci-  
tor in parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 F to 0.001 F. Place this  
second capacitor next to each primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible  
(e.g., 0.1 F in parallel with 0.001 F).  
Any components associated with the MCLR pin  
should be placed within 0.25 inch (6 mm) of the pin.  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
VDD  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum, thereby reducing PCB trace  
R1  
R2  
MCLR  
PIC24FXXXX  
JP  
C1  
inductance.  
Note 1: R1 10 kis recommended. A suggested  
starting value is 10 k. Ensure that the  
MCLR pin VIH and VIL specifications are met.  
2.2.2  
TANK CAPACITORS  
On boards with power traces running longer than six  
inches in length, it is suggested to use a tank capacitor  
for integrated circuits including microcontrollers to  
supply a local power source. The value of the tank  
capacitor should be determined based on the trace  
resistance that connects the power supply source to  
the device, and the maximum current drawn by the  
device in the application. In other words, select the tank  
capacitor so that it meets the acceptable voltage sag at  
the device. Typical values range from 4.7 F to 47 F.  
2: R2 470will limit any current flowing into  
MCLR from the external capacitor, C, in the  
event of MCLR pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
DS39881D-page 20  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
FIGURE 2-3:  
FREQUENCY vs. ESR  
PERFORMANCE FOR  
SUGGESTED VCAP  
2.4  
Voltage Regulator Pins  
(ENVREG/DISVREG and  
VCAP/VDDCORE)  
10  
1
Note:  
This section applies only to PIC24FJ  
devices with an on-chip voltage regulator.  
The on-chip voltage regulator enable/disable pin  
(ENVREG or DISVREG, depending on the device  
family) must always be connected directly to either a  
supply voltage or to ground. The particular connection  
is determined by whether or not the regulator is to be  
used:  
0.1  
0.01  
• For ENVREG, tie to VDD to enable the regulator,  
or to ground to disable the regulator  
0.001  
0.01  
0.1  
1
10  
100  
1000 10,000  
Frequency (MHz)  
• For DISVREG, tie to ground to enable the  
regulator or to VDD to disable the regulator  
Note:  
Data for Murata GRM21BF50J106ZE01 shown.  
Measurements at 25°C, 0V DC bias.  
Refer to Section 24.2 “On-Chip Voltage Regulator”  
for details on connecting and using the on-chip  
regulator.  
2.5  
ICSP Pins  
When the regulator is enabled, a low-ESR (<5)  
capacitor is required on the VCAP/VDDCORE pin to  
stabilize the voltage regulator output voltage. The  
VCAP/VDDCORE pin must not be connected to VDD, and  
must use a capacitor of 10 F connected to ground. The  
type can be ceramic or tantalum. A suitable example is  
the Murata GRM21BF50J106ZE01 (10 F, 6.3V) or  
equivalent. Designers may use Figure 2-3 to evaluate  
ESR equivalence of candidate devices.  
The PGECx and PGEDx pins are used for In-Circuit  
Serial Programming (ICSP) and debugging purposes.  
It is recommended to keep the trace length between  
the ICSP connector and the ICSP pins on the device as  
short as possible. If the ICSP connector is expected to  
experience an ESD event, a series resistor is recom-  
mended, with the value in the range of a few tens of  
ohms, not to exceed 100.  
Pull-up resistors, series diodes and capacitors on the  
PGECx and PGEDx pins are not recommended as they  
will interfere with the programmer/debugger communi-  
cations to the device. If such discrete components are  
an application requirement, they should be removed  
from the circuit during programming and debugging.  
Alternatively, refer to the AC/DC characteristics and  
timing requirements information in the respective  
device Flash programming specification for information  
on capacitive loading limits and pin input voltage high  
(VIH) and input low (VIL) requirements.  
The placement of this capacitor should be close to  
VCAP/VDDCORE. It is recommended that the trace  
length not exceed 0.25 inch (6 mm). Refer to  
Section 27.0 “Electrical Characteristics” for  
additional information.  
When the regulator is disabled, the VCAP/VDDCORE pin  
must be tied to a voltage supply at the VDDCORE level.  
Refer to Section 27.0 “Electrical Characteristics” for  
information on VDD and VDDCORE.  
For device emulation, ensure that the “Communication  
Channel Select” (i.e., PGECx/PGEDx pins) programmed  
into the device matches the physical connections for the  
ICSP to the Microchip debugger/emulator tool.  
For more information on available Microchip  
development tools connection requirements, refer to  
Section 25.0 “Development Support”.  
2010 Microchip Technology Inc.  
DS39881D-page 21  
PIC24FJ64GA004 FAMILY  
FIGURE 2-4:  
SUGGESTED PLACEMENT  
OF THE OSCILLATOR  
CIRCUIT  
2.6  
External Oscillator Pins  
Many microcontrollers have options for at least two  
oscillators: a high-frequency primary oscillator and a  
low-frequency  
secondary  
oscillator  
(refer to  
Single-Sided and In-line Layouts:  
Section 8.0 “Oscillator Configuration” for details).  
Copper Pour  
(tied to ground)  
Primary Oscillator  
Crystal  
The oscillator circuit should be placed on the same  
side of the board as the device. Place the oscillator  
circuit close to the respective oscillator pins with no  
more than 0.5 inch (12 mm) between the circuit  
components and the pins. The load capacitors should  
be placed next to the oscillator itself, on the same side  
of the board.  
DEVICE PINS  
Primary  
OSCI  
OSCO  
GND  
Oscillator  
C1  
C2  
`
`
Use a grounded copper pour around the oscillator cir-  
cuit to isolate it from surrounding circuits. The  
grounded copper pour should be routed directly to the  
MCU ground. Do not run any signal traces or power  
traces inside the ground pour. Also, if using a two-sided  
board, avoid any traces on the other side of the board  
where the crystal is placed.  
SOSCO  
SOSC I  
Secondary  
Oscillator  
Crystal  
`
Layout suggestions are shown in Figure 2-4. In-line  
packages may be handled with a single-sided layout  
that completely encompasses the oscillator pins. With  
fine-pitch packages, it is not always possible to com-  
pletely surround the pins and components. A suitable  
solution is to tie the broken guard sections to a mirrored  
ground layer. In all cases, the guard trace(s) must be  
returned to ground.  
Sec Oscillator: C2  
Sec Oscillator: C1  
Fine-Pitch (Dual-Sided) Layouts:  
Top Layer Copper Pour  
(tied to ground)  
In planning the application’s routing and I/O assign-  
ments, ensure that adjacent port pins and other signals  
in close proximity to the oscillator are benign (i.e., free  
of high frequencies, short rise and fall times and other  
similar noise).  
Bottom Layer  
Copper Pour  
(tied to ground)  
OSCO  
For additional information and design guidance on  
oscillator circuits, please refer to these Microchip  
Application Notes, available at the corporate web site  
(www.microchip.com):  
C2  
Oscillator  
Crystal  
GND  
• AN826, “Crystal Oscillator Basics and Crystal  
Selection for rfPIC™ and PICmicro® Devices”  
C1  
• AN849, “Basic PICmicro® Oscillator Design”  
OSCI  
• AN943, “Practical PICmicro® Oscillator Analysis  
and Design”  
AN949, “Making Your Oscillator Work”  
DEVICE PINS  
DS39881D-page 22  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
If your application needs to use certain A/D pins as  
analog input pins during the debug session, the user  
application must modify the appropriate bits during  
initialization of the ADC module, as follows:  
2.7  
Configuration of Analog and  
Digital Pins During ICSP  
Operations  
If an ICSP compliant emulator is selected as a debug-  
ger, it automatically initializes all of the A/D input pins  
(ANx) as “digital” pins. Depending on the particular  
device, this is done by setting all bits in the ADnPCFG  
register(s), or clearing all bit in the ANSx registers.  
• For devices with an ADnPCFG register, clear the  
bits corresponding to the pin(s) to be configured  
as analog. Do not change any other bits, particu-  
larly those corresponding to the PGECx/PGEDx  
pair, at any time.  
All PIC24F devices will have either one or more  
ADnPCFG registers or several ANSx registers (one for  
each port); no device will have both. Refer to  
Section 21.0 “10-Bit High-Speed A/D Converter” for  
more specific information.  
• For devices with ANSx registers, set the bits  
corresponding to the pin(s) to be configured as  
analog. Do not change any other bits, particularly  
those corresponding to the PGECx/PGEDx pair,  
at any time.  
The bits in these registers that correspond to the A/D  
pins that initialized the emulator must not be changed  
by the user application firmware; otherwise,  
communication errors will result between the debugger  
and the device.  
When a Microchip debugger/emulator is used as a  
programmer, the user application firmware must  
correctly configure the ADnPCFG or ANSx registers.  
Automatic initialization of this register is only done  
during debugger operation. Failure to correctly  
configure the register(s) will result in all A/D pins being  
recognized as analog input pins, resulting in the port  
value being read as a logic '0', which may affect user  
application functionality.  
2.8  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic low state. Alternatively, connect a 1 kΩ  
to 10 kresistor to VSS on unused pins and drive the  
output to logic low.  
2010 Microchip Technology Inc.  
DS39881D-page 23  
PIC24FJ64GA004 FAMILY  
NOTES:  
DS39881D-page 24  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
For most instructions, the core is capable of executing  
a data (or program data) memory read, a working reg-  
3.0  
CPU  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 2. CPU” (DS39703).  
ister (data) read, a data memory write and a program  
(instruction) memory read per instruction cycle. As a  
result, three parameter instructions can be supported,  
allowing trinary operations (that is, A + B = C) to be  
executed in a single cycle.  
A high-speed, 17-bit by 17-bit multiplier has been  
included to significantly enhance the core arithmetic  
capability and throughput. The multiplier supports  
Signed, Unsigned and Mixed mode, 16-bit by 16-bit or  
8-bit by 8-bit, integer multiplication. All multiply  
instructions execute in a single cycle.  
The PIC24F CPU has a 16-bit (data) modified Harvard  
architecture with an enhanced instruction set and a  
24-bit instruction word with a variable length opcode  
field. The Program Counter (PC) is 23 bits wide and  
addresses up to 4M instructions of user program  
memory space. A single-cycle instruction prefetch  
mechanism is used to help maintain throughput and pro-  
vides predictable execution. All instructions execute in a  
single cycle, with the exception of instructions that  
change the program flow, the double-word move  
(MOV.D) instruction and the table instructions. Over-  
head-free program loop constructs are supported using  
the REPEAT instructions, which are interruptible at any  
point.  
The 16-bit ALU has been enhanced with integer divide  
assist hardware that supports an iterative non-restoring  
divide algorithm. It operates in conjunction with the  
REPEATinstruction looping mechanism and a selection  
of iterative divide instructions to support 32-bit (or  
16-bit), divided by 16-bit, integer signed and unsigned  
division. All divide operations require 19 cycles to  
complete but are interruptible at any cycle boundary.  
The PIC24F has a vectored exception scheme with up  
to 8 sources of non-maskable traps and up to 118 inter-  
rupt sources. Each interrupt source can be assigned to  
one of seven priority levels.  
PIC24F devices have sixteen, 16-bit working registers  
in the programmer’s model. Each of the working  
registers can act as a data, address or address offset  
register. The 16th working register (W15) operates as  
a Software Stack Pointer for interrupts and calls.  
A block diagram of the CPU is shown in Figure 3-1.  
The upper 32 Kbytes of the data space memory map  
can optionally be mapped into program space at any  
16K word boundary defined by the 8-bit Program Space  
Visibility Page Address (PSVPAG) register. The program  
to data space mapping feature lets any instruction  
access program space as if it were data space.  
3.1  
Programmer’s Model  
The programmer’s model for the PIC24F is shown in  
Figure 3-2. All registers in the programmer’s model are  
memory mapped and can be manipulated directly by  
instructions. A description of each register is provided  
in Table 3-1. All registers associated with the  
programmer’s model are memory mapped.  
The Instruction Set Architecture (ISA) has been  
significantly enhanced beyond that of the PIC18, but  
maintains an acceptable level of backward compatibil-  
ity. All PIC18 instructions and addressing modes are  
supported, either directly, or through simple macros.  
Many of the ISA enhancements have been driven by  
compiler efficiency needs.  
The core supports Inherent (no operand), Relative,  
Literal, Memory Direct and three groups of addressing  
modes. All modes support Register Direct and various  
Register Indirect modes. Each group offers up to seven  
addressing modes. Instructions are associated with  
predefined addressing modes depending upon their  
functional requirements.  
2010 Microchip Technology Inc.  
DS39881D-page 25  
PIC24FJ64GA004 FAMILY  
FIGURE 3-1:  
PIC24F CPU CORE BLOCK DIAGRAM  
PSV & Table  
Data Access  
Control Block  
Data Bus  
Interrupt  
Controller  
16  
16  
16  
8
Data Latch  
Data RAM  
23  
16  
PCH  
PCL  
23  
Program Counter  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
23  
16  
RAGU  
WAGU  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
16  
Address Bus  
ROM Latch  
24  
16  
Instruction  
Decode &  
Control  
Instruction Reg  
Control Signals  
to Various Blocks  
Hardware  
Multiplier  
16 x 16  
W Register Array  
Divide  
16  
Support  
16-Bit ALU  
16  
To Peripheral Modules  
DS39881D-page 26  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 3-1:  
CPU CORE REGISTERS  
Register(s) Name  
Description  
W0 through W15  
PC  
Working Register Array  
23-Bit Program Counter  
SR  
ALU STATUS Register  
SPLIM  
Stack Pointer Limit Value Register  
Table Memory Page Address Register  
Program Space Visibility Page Address Register  
Repeat Loop Counter Register  
CPU Control Register  
TBLPAG  
PSVPAG  
RCOUNT  
CORCON  
FIGURE 3-2:  
PROGRAMMER’S MODEL  
15  
0
W0 (WREG)  
Divider Working Registers  
Multiplier Registers  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
Working/Address  
Registers  
W8  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
Frame Pointer  
Stack Pointer  
0
Stack Pointer Limit  
Value Register  
0
SPLIM  
22  
0
0
PC  
Program Counter  
7
0
0
0
Table Memory Page  
Address Register  
TBLPAG  
7
Program Space Visibility  
Page Address Register  
PSVPAG  
15  
15  
Repeat Loop Counter  
Register  
RCOUNT  
IPL  
SRH  
SRL  
0
— — — — — — —  
ALU STATUS Register (SR)  
DC  
RA N OV Z  
C
2 1 0  
15  
0
— — — — — — — — — — — — IPL3 PSV — —  
CPU Control Register (CORCON)  
Registers or bits shadowed for PUSH.Sand POP.Sinstructions.  
2010 Microchip Technology Inc.  
DS39881D-page 27  
PIC24FJ64GA004 FAMILY  
3.2  
CPU Control Registers  
REGISTER 3-1:  
SR: ALU STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
DC  
bit 15  
bit 8  
R/W-0(1)  
IPL2(2)  
bit 7  
R/W-0(1)  
IPL1(2)  
R/W-0(1)  
IPL0(2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
DC: ALU Half Carry/Borrow bit  
1= A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)  
of the result occurred  
0= No carry-out from the 4th or 8th low-order bit of the result has occurred  
bit 7-5  
IPL2:IPL0: CPU Interrupt Priority Level Status bits(1,2)  
111= CPU interrupt priority level is 7 (15); user interrupts disabled.  
110= CPU interrupt priority level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU interrupt priority level is 4 (12)  
011= CPU interrupt priority level is 3 (11)  
010= CPU interrupt priority level is 2 (10)  
001= CPU interrupt priority level is 1 (9)  
000= CPU interrupt priority level is 0 (8)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RA: REPEATLoop Active bit  
1= REPEATloop in progress  
0= REPEATloop not in progress  
N: ALU Negative bit  
1= Result was negative  
0= Result was non-negative (zero or positive)  
OV: ALU Overflow bit  
1= Overflow occurred for signed (2’s complement) arithmetic in this arithmetic operation  
0= No overflow has occurred  
Z: ALU Zero bit  
1= An operation which effects the Z bit has set it at some time in the past  
0= The most recent operation which effects the Z bit has cleared it (i.e., a non-zero result)  
C: ALU Carry/Borrow bit  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
2: The IPL Status bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority  
Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.  
DS39881D-page 28  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 3-2:  
CORCON: CPU CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/C-0  
IPL3(1)  
R/W-0  
PSV  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
IPL3: CPU Interrupt Priority Level Status bit(1)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
bit 2  
PSV: Program Space Visibility in Data Space Enable bit  
1= Program space visible in data space  
0= Program space not visible in data space  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: User interrupts are disabled when IPL3 = 1.  
The PIC24F CPU incorporates hardware support for  
both multiplication and division. This includes a  
dedicated hardware multiplier and support hardware  
for 16-bit divisor division.  
3.3  
Arithmetic Logic Unit (ALU)  
The PIC24F ALU is 16 bits wide and is capable of addi-  
tion, subtraction, bit shifts and logic operations. Unless  
otherwise mentioned, arithmetic operations are 2’s  
complement in nature. Depending on the operation, the  
ALU may affect the values of the Carry (C), Zero (Z),  
Negative (N), Overflow (OV) and Digit Carry (DC)  
Status bits in the SR register. The C and DC Status bits  
operate as Borrow and Digit Borrow bits, respectively,  
for subtraction operations.  
3.3.1  
MULTIPLIER  
The ALU contains a high-speed, 17-bit x 17-bit  
multiplier. It supports unsigned, signed or mixed sign  
operation in several multiplication modes:  
1. 16-bit x 16-bit signed  
2. 16-bit x 16-bit unsigned  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W  
register array, or data memory, depending on the  
addressing mode of the instruction. Likewise, output  
data from the ALU can be written to the W register array  
or a data memory location.  
3. 16-bit signed x 5-bit (literal) unsigned  
4. 16-bit unsigned x 16-bit unsigned  
5. 16-bit unsigned x 5-bit (literal) unsigned  
6. 16-bit unsigned x 16-bit signed  
7. 8-bit unsigned x 8-bit unsigned  
2010 Microchip Technology Inc.  
DS39881D-page 29  
PIC24FJ64GA004 FAMILY  
3.3.2  
DIVIDER  
3.3.3  
MULTI-BIT SHIFT SUPPORT  
The divide block supports 32-bit/16-bit and 16-bit/16-bit  
signed and unsigned integer divide operations with the  
following data sizes:  
The PIC24F ALU supports both single bit and  
single-cycle, multi-bit arithmetic and logic shifts.  
Multi-bit shifts are implemented using a shifter block,  
capable of performing up to a 15-bit arithmetic right  
shift, or up to a 15-bit left shift, in a single cycle. All  
multi-bit shift instructions only support Register Direct  
Addressing for both the operand source and result  
destination.  
1. 32-bit signed/16-bit signed divide  
2. 32-bit unsigned/16-bit unsigned divide  
3. 16-bit signed/16-bit signed divide  
4. 16-bit unsigned/16-bit unsigned divide  
The quotient for all divide instructions ends up in W0  
and the remainder in W1. Sixteen-bit signed and  
unsigned DIV instructions can specify any W register  
for both the 16-bit divisor (Wn), and any W register  
(aligned) pair (W(m + 1):Wm) for the 32-bit dividend.  
The divide algorithm takes one cycle per bit of divisor,  
so both 32-bit/16-bit and 16-bit/16-bit instructions take  
the same number of cycles to execute.  
A full summary of instructions that use the shift  
operation is provided below in Table 3-2.  
TABLE 3-2:  
Instruction  
INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION  
Description  
ASR  
SL  
Arithmetic shift right source register by one or more bits.  
Shift left source register by one or more bits.  
LSR  
Logical shift right source register by one or more bits.  
DS39881D-page 30  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
from either the 23-bit Program Counter (PC) during pro-  
gram execution, or from table operation or data space  
remapping, as described in Section 4.3 “Interfacing  
Program and Data Memory Spaces”.  
4.0  
MEMORY ORGANIZATION  
As Harvard architecture devices, PIC24F micro-  
controllers feature separate program and data memory  
spaces and busses. This architecture also allows the  
direct access of program memory from the data space  
during code execution.  
User access to the program memory space is restricted  
to the lower half of the address range (000000h to  
7FFFFFh). The exception is the use of TBLRD/TBLWT  
operations which use TBLPAG<7> to permit access to  
the Configuration bits and Device ID sections of the  
configuration memory space.  
4.1  
Program Address Space  
The program address memory space of the  
PIC24FJ64GA004 family devices is 4M instructions.  
The space is addressable by a 24-bit value derived  
Memory maps for the PIC24FJ64GA004 family of  
devices are shown in Figure 4-1.  
FIGURE 4-1:  
PROGRAM SPACE MEMORY MAP FOR PIC24FJ64GA004 FAMILY DEVICES  
PIC24FJ16GA  
PIC24FJ32GA  
PIC24FJ48GA  
PIC24FJ64GA  
000000h  
000002h  
000004h  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
0000FEh  
000100h  
000104h  
0001FEh  
000200h  
Alternate Vector Table  
Alternate Vector Table  
Alternate Vector Table  
Alternate Vector Table  
User Flash  
Program Memory  
(5.5K instructions)  
Flash Config Words  
002BFEh  
002C00h  
User Flash  
Program Memory  
(11K instructions)  
User Flash  
Program Memory  
(16K instructions)  
User Flash  
Program Memory  
(22K instructions)  
0057FEh  
005800h  
Flash Config Words  
0083FEh  
008400h  
Flash Config Words  
Flash Config Words  
00ABFEh  
00AC00h  
Unimplemented  
Unimplemented  
Read ‘0’  
Read ‘0’  
Unimplemented  
Unimplemented  
Read ‘0’  
Read ‘0’  
7FFFFFh  
800000h  
Reserved  
Reserved  
Reserved  
Reserved  
F7FFFEh  
F80000h  
Device Config Registers  
Reserved  
Device Config Registers  
Reserved  
Device Config Registers  
Reserved  
Device Config Registers  
Reserved  
F8000Eh  
F80010h  
FEFFFEh  
FF0000h  
DEVID (2)  
DEVID (2)  
DEVID (2)  
DEVID (2)  
FFFFFFh  
Note:  
Memory areas are not shown to scale.  
2010 Microchip Technology Inc.  
DS39881D-page 31  
PIC24FJ64GA004 FAMILY  
4.1.1  
PROGRAM MEMORY  
ORGANIZATION  
4.1.3  
FLASH CONFIGURATION WORDS  
In PIC24FJ64GA004 family devices, the top two words  
of on-chip program memory are reserved for configura-  
tion information. On device Reset, the configuration  
information is copied into the appropriate Configuration  
registers. The addresses of the Flash Configuration  
Word for devices in the PIC24FJ64GA004 family are  
shown in Table 4-1. Their location in the memory map  
is shown with the other memory vectors in Figure 4-1.  
The program memory space is organized in  
word-addressable blocks. Although it is treated as  
24 bits wide, it is more appropriate to think of each  
address of the program memory as a lower and upper  
word, with the upper byte of the upper word being  
unimplemented. The lower word always has an even  
address, while the upper word has an odd address  
(Figure 4-2).  
The Configuration Words in program memory are a  
compact format. The actual Configuration bits are  
mapped in several different registers in the configuration  
memory space. Their order in the Flash Configuration  
Words do not reflect a corresponding arrangement in the  
configuration space. Additional details on the device  
Configuration Words are provided in Section 24.1  
“Configuration Bits”.  
Program memory addresses are always word-aligned  
on the lower word, and addresses are incremented or  
decremented by two during code execution. This  
arrangement also provides compatibility with data  
memory space addressing and makes it possible to  
access data in the program memory space.  
4.1.2  
HARD MEMORY VECTORS  
TABLE 4-1:  
FLASH CONFIGURATION  
WORDS FOR PIC24FJ64GA004  
FAMILY DEVICES  
All PIC24F devices reserve the addresses between  
00000h and 000200h for hard coded program execu-  
tion vectors. A hardware Reset vector is provided to  
redirect code execution from the default value of the  
PC on device Reset to the actual start of code. A GOTO  
instruction is programmed by the user at 000000h with  
the actual address for the start of code at 000002h.  
Program  
Memory  
Configuration  
Word  
Device  
(K words)  
Addresses  
002BFCh:  
002BFEh  
PIC24F devices also have two interrupt vector tables,  
located from 000004h to 0000FFh and 000100h to  
0001FFh. These vector tables allow each of the many  
device interrupt sources to be handled by separate  
ISRs. A more detailed discussion of the interrupt vector  
tables is provided in Section 7.1 “Interrupt Vector  
Table”.  
PIC24FJ16GA  
PIC24FJ32GA  
PIC24FJ48GA  
PIC24FJ64GA  
5.5  
11  
0057FCh:  
0057FEh  
0083FCh:  
0083FEh  
16  
22  
00ABFCh:  
00ABFEh  
FIGURE 4-2:  
PROGRAM MEMORY ORGANIZATION  
least significant word  
8
msw  
Address  
PC Address  
(lsw Address)  
most significant word  
23  
16  
0
000000h  
000002h  
000004h  
000006h  
00000000  
000001h  
000003h  
000005h  
000007h  
00000000  
00000000  
00000000  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
Instruction Width  
DS39881D-page 32  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
PIC24FJ64GA family devices implement a total of  
8 Kbytes of data memory. Should an EA point to a  
location outside of this area, an all zero word or byte will  
be returned.  
4.2  
Data Address Space  
The PIC24F core has a separate, 16-bit wide data mem-  
ory space, addressable as a single linear range. The  
data space is accessed using two Address Generation  
Units (AGUs), one each for read and write operations.  
The data space memory map is shown in Figure 4-3.  
4.2.1  
DATA SPACE WIDTH  
The data memory space is organized in  
byte-addressable, 16-bit wide blocks. Data is aligned  
in data memory and registers as 16-bit words, but all  
data space EAs resolve to bytes. The Least Significant  
Bytes of each word have even addresses, while the  
Most Significant Bytes have odd addresses.  
All Effective Addresses (EAs) in the data memory space  
are 16 bits wide and point to bytes within the data space.  
This gives a data space address range of 64 Kbytes or  
32K words. The lower half of the data memory space  
(that is, when EA<15> = 0) is used for implemented  
memory addresses, while the upper half (EA<15> = 1) is  
reserved for the program space visibility area (see  
Section 4.3.3 “Reading Data From Program Memory  
Using Program Space Visibility”).  
FIGURE 4-3:  
DATA SPACE MEMORY MAP FOR PIC24FJ64GA004 FAMILY DEVICES(1)  
MSB  
Address  
LSB  
Address  
MSB  
LSB  
0000h  
0001h  
SFR  
Space  
SFR Space  
Data RAM  
07FFh  
0801h  
07FEh  
0800h  
Near  
Data Space  
Implemented  
Data RAM  
1FFFh  
2001h  
1FFEh  
2000h  
27FEh(2)  
2800h  
27FFh(2)  
2801h  
Unimplemented  
Read as ‘0’  
7FFFh  
8001h  
7FFFh  
8000h  
Program Space  
Visibility Area  
FFFFh  
FFFEh  
Note 1: Data memory areas are not shown to scale.  
2: Upper memory limit for PIC24FJ16GAXXX devices is 17FFh.  
2010 Microchip Technology Inc.  
DS39881D-page 33  
PIC24FJ64GA004 FAMILY  
A sign-extend instruction (SE) is provided to allow  
users to translate 8-bit signed data to 16-bit signed  
values. Alternatively, for 16-bit unsigned data, users  
can clear the MSB of any W register by executing a  
zero-extend (ZE) instruction on the appropriate  
address.  
4.2.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
To maintain backward compatibility with PIC® devices  
and improve data space memory usage efficiency, the  
PIC24F instruction set supports both word and byte  
operations. As a consequence of byte accessibility, all  
Effective Address (EA) calculations are internally scaled  
to step through word-aligned memory. For example, the  
core recognizes that Post-Modified Register Indirect  
Addressing mode [Ws++] will result in a value of Ws + 1  
for byte operations and Ws + 2 for word operations.  
Although most instructions are capable of operating on  
word or byte data sizes, it should be noted that some  
instructions operate only on words.  
4.2.3  
NEAR DATA SPACE  
The 8-Kbyte area between 0000h and 1FFFh is  
referred to as the near data space. Locations in this  
space are directly addressable via a 13-bit absolute  
address field within all memory direct instructions. The  
remainder of the data space is addressable indirectly.  
Additionally, the whole data space is addressable using  
MOV instructions, which support Memory Direct  
Addressing with a 16-bit address field.  
Data byte reads will read the complete word which con-  
tains the byte, using the LSb of any EA to determine  
which byte to select. The selected byte is placed onto  
the LSB of the data path. That is, data memory and reg-  
isters are organized as two parallel, byte-wide entities  
with shared (word) address decode but separate write  
lines. Data byte writes only write to the corresponding  
side of the array or register which matches the byte  
address.  
4.2.4  
SFR SPACE  
All word accesses must be aligned to an even address.  
Misaligned word data fetches are not supported, so  
care must be taken when mixing byte and word opera-  
tions, or translating from 8-bit MCU code. If a  
misaligned read or write is attempted, an address error  
trap will be generated. If the error occurred on a read,  
the instruction underway is completed; if it occurred on  
a write, the instruction will be executed but the write will  
not occur. In either case, a trap is then executed, allow-  
ing the system and/or user to examine the machine  
state prior to execution of the address Fault.  
The first 2 Kbytes of the near data space, from 0000h  
to 07FFh, are primarily occupied with Special Function  
Registers (SFRs). These are used by the PIC24F core  
and peripheral modules for controlling the operation of  
the device.  
SFRs are distributed among the modules that they  
control and are generally grouped together by module.  
Much of the SFR space contains unused addresses;  
these are read as ‘0’. A diagram of the SFR space,  
showing where SFRs are actually implemented, is  
shown in Table 4-2. Each implemented area indicates  
a 32-byte region where at least one address is imple-  
mented as an SFR. A complete listing of implemented  
SFRs, including their addresses, is shown in Tables 4-3  
through 4-24.  
All byte loads into any W register are loaded into the  
Least Significant Byte. The Most Significant Byte is not  
modified.  
TABLE 4-2:  
IMPLEMENTED REGIONS OF SFR DATA SPACE  
SFR Space Address  
xx00  
xx20  
xx40  
xx60  
xx80  
xxA0  
xxC0  
xxE0  
000h  
100h  
200h  
300h  
400h  
500h  
600h  
700h  
Core  
ICN  
Interrupts  
Timers  
A/D  
Capture  
Compare  
I2C™  
UART  
SPI  
I/O  
PMP  
RTC/Comp  
CRC  
System  
PPS  
NVM/PMD  
Legend: — = No implemented SFRs in this block  
DS39881D-page 34  
2010 Microchip Technology Inc.  
TABLE 4-3:  
CPU CORE REGISTERS MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WREG0  
WREG1  
WREG2  
WREG3  
WREG4  
WREG5  
WREG6  
WREG7  
WREG8  
WREG9  
WREG10  
WREG11  
WREG12  
WREG13  
WREG14  
WREG15  
SPLIM  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
002E  
0030  
0032  
0034  
0036  
0042  
0044  
0052  
Working Register 0  
Working Register 1  
Working Register 2  
Working Register 3  
Working Register 4  
Working Register 5  
Working Register 6  
Working Register 7  
Working Register 8  
Working Register 9  
Working Register 10  
Working Register 11  
Working Register 12  
Working Register 13  
Working Register 14  
Working Register 15  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0800  
xxxx  
0000  
0000  
0000  
0000  
xxxx  
0000  
0000  
xxxx  
Stack Pointer Limit Value Register  
Program Counter Low Byte Register  
PCL  
PCH  
Program Counter Register High Byte  
Table Memory Page Address Register  
TBLPAG  
PSVPAG  
RCOUNT  
SR  
Program Space Visibility Page Address Register  
Repeat Loop Counter Register  
DC  
IPL2  
IPL1  
IPL0  
RA  
N
OV  
Z
C
CORCON  
DISICNT  
Legend:  
IPL3  
PSV  
Disable Interrupts Counter Register  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-4:  
ICN REGISTER MAP  
File  
Name  
All  
Resets  
Addr Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1 0060 CN15IE  
CN14IE  
CN30IE  
CN13IE  
CN29IE  
CN12IE  
CN28IE(1)  
CN11IE  
CN27IE  
CN10IE(1)  
CN26IE(1)  
CN9IE(1)  
CN25IE(1)  
CN8IE(1)  
CN24IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN20IE(1)  
CN4PUE  
CN3IE  
CN19IE(1)  
CN3PUE  
CN2IE  
CN18IE(1)  
CN2PUE  
CN1IE  
CN17IE(1)  
CN1PUE  
CN0IE  
0000  
0000  
CNEN2 0062  
CN23IE  
CN22IE  
CN21IE  
CN16IE  
CNPU1 0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE(1) CN9PUE(1) CN8PUE(1) CN7PUE CN6PUE CN5PUE  
CN0PUE 0000  
CNPU2 006A  
CN30PUE CN29PUE CN28PUE(1) CN27PUE CN26PUE(1) CN25PUE(1) CN24PUE CN23PUE CN22PUE CN21PUE CN20PUE(1) CN19PUE(1) CN18PUE(1) CN17PUE(1) CN16PUE 0000  
— = unimplemented, read as ‘ ’. Reset values are shown in hexadecimal.  
Bits are not available on 28-pin devices; read as ‘ ’.  
Legend:  
0
Note  
1:  
0
TABLE 4-5:  
INTERRUPT CONTROLLER REGISTER MAP  
File  
Addr  
Name  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080  
INTCON2 0082  
NSTDIS  
ALTIVT  
DISI  
MATHERR ADDRERR STKERR OSCFAIL  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
4444  
4444  
4444  
T1IF  
CNIF  
INT2EP  
OC1IF  
CMIF  
INT1EP  
IC1IF  
INT0EP  
INT0IF  
IFS0  
0084  
0086  
0088  
008A  
008C  
0094  
0096  
0098  
009A  
009C  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B4  
00B6  
00B8  
00BA  
00BC  
00C2  
00C4  
00C8  
AD1IF  
INT2IF  
PMPIF  
U1TXIF U1RXIF  
SPI1IF  
OC4IF  
SPF1IF  
OC3IF  
OC5IF  
T3IF  
T2IF  
OC2IF  
IC2IF  
IFS1  
U2TXIF  
U2RXIF  
T5IF  
T4IF  
INT1IF  
MI2C1IF SI2C1IF  
IFS2  
IC5IF  
IC4IF  
IC3IF  
SPI2IF  
SPF2IF  
IFS3  
RTCIF  
MI2C2IF SI2C2IF  
IFS4  
LVDIF  
T3IE  
CRCIF  
T1IE  
CNIE  
U2ERIF  
OC1IE  
CMIE  
U1ERIF  
IC1IE  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC10  
IPC11  
IPC12  
IPC15  
IPC16  
IPC18  
Legend:  
AD1IE  
INT2IE  
PMPIE  
U1TXIE U1RXIE  
SPI1IE  
OC4IE  
SPF1IE  
OC3IE  
OC5IE  
T2IE  
OC2IE  
IC2IE  
INT0IE  
U2TXIE  
U2RXIE  
T5IE  
T4IE  
INT1IE  
MI2C1IE SI2C1IE  
IC5IE  
IC4IE  
IC3IE  
SPI2IE  
SPF2IE  
RTCIE  
MI2C2IE SI2C2IE  
U2ERIE U1ERIE  
LVDIE  
OC1IP0  
OC2IP0  
CRCIE  
T1IP2  
T2IP2  
T1IP1  
T2IP1  
T1IP0  
T2IP0  
OC1IP2  
OC2IP2  
OC1IP1  
OC2IP1  
IC1IP2  
IC2IP2  
IC1IP1  
IC2IP1  
IC1IP0  
IC2IP0  
INT0IP2 INT0IP1 INT0IP0  
U1RXIP2 U1RXIP1 U1RXIP0  
SPI1IP2 SPI1IP1 SPI1IP0  
SPF1IP2 SPF1IP1 SPF1IP0  
AD1IP2 AD1IP1 AD1IP0  
MI2C1P2 MI2C1P1 MI2C1P0  
T3IP2  
T3IP1  
T3IP0  
CNIP2  
CNIP1  
CNIP0  
CMIP2  
CMIP1  
CMIP0  
U1TXIP2 U1TXIP1 U1TXIP0 4444  
SI2C1P2 SI2C1P1 SI2C1P0  
INT1IP2 INT1IP1 INT1IP0  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
4444  
T4IP2  
T4IP1  
T4IP0  
OC4IP2  
OC4IP1  
OC4IP0  
OC3IP2  
OC3IP1  
OC3IP0  
INT2IP0  
SPI2IP0  
IC3IP0  
OC5IP0  
PMPIP0  
U2TXIP2 U2TXIP1 U2TXIP0  
U2RXIP2 U2RXIP1 U2RXIP0  
INT2IP2 INT2IP1  
SPI2IP2 SPI2IP1  
T5IP2  
T5IP1  
T5IP0  
IC5IP2  
IC5IP1  
IC5IP0  
IC4IP2  
IC4IP1  
IC4IP0  
SPF2IP2 SPF2IP1 SPF2IP0  
IC3IP2  
IC3IP1  
OC5IP2  
OC5IP1  
PMPIP2 PMPIP1  
MI2C2P2 MI2C2P1 MI2C2P0  
RTCIP2 RTCIP1 RTCIP0  
U2ERIP2 U2ERIP1 U2ERIP0  
SI2C2P2 SI2C2P1 SI2C2P0  
CRCIP2 CRCIP1 CRCIP0  
U1ERIP2 U1ERIP1 U1ERIP0  
LVDIP2  
LVDIP1  
LVDIP0  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-6:  
TIMER REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1  
PR1  
0100  
0102  
0104  
0106  
0108  
010A  
010C  
010E  
0110  
0112  
0114  
0116  
0118  
011A  
011C  
011E  
0120  
Timer1 Register  
0000  
FFFF  
0000  
0000  
0000  
0000  
FFFF  
FFFF  
0000  
0000  
0000  
0000  
0000  
FFFF  
FFFF  
0000  
0000  
Timer1 Period Register  
T1CON  
TMR2  
TMR3HLD  
TMR3  
PR2  
TON  
TSIDL  
TGATE TCKPS1 TCKPS0  
TSYNC  
TCS  
Timer2 Register  
Timer3 Holding Register (for 32-bit timer operations only)  
Timer3 Register  
Timer2 Period Register  
PR3  
Timer3 Period Register  
T2CON  
T3CON  
TMR4  
TMR5HLD  
TMR5  
PR4  
TON  
TON  
TSIDL  
TSIDL  
TGATE TCKPS1 TCKPS0  
TGATE TCKPS1 TCKPS0  
T32  
TCS  
TCS  
Timer4 Register  
Timer5 Holding Register (for 32-bit operations only)  
Timer5 Register  
Timer4 Period Register  
PR5  
Timer5 Period Register  
T4CON  
T5CON  
Legend:  
TON  
TON  
TSIDL  
TSIDL  
TGATE TCKPS1 TCKPS0  
TGATE TCKPS1 TCKPS0  
T32  
TCS  
TCS  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-7:  
INPUT CAPTURE REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IC1BUF  
IC1CON  
IC2BUF  
IC2CON  
IC3BUF  
IC3CON  
IC4BUF  
IC4CON  
IC5BUF  
IC5CON  
Legend:  
0140  
0142  
0144  
0146  
0148  
014A  
014C  
014E  
0150  
0152  
Input 1 Capture Register  
ICTMR  
Input 2 Capture Register  
ICTMR  
Input 3 Capture Register  
ICTMR  
Input 4 Capture Register  
ICTMR  
Input 5 Capture Register  
ICTMR  
FFFF  
0000  
FFFF  
0000  
FFFF  
0000  
FFFF  
0000  
FFFF  
0000  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICI1  
ICI1  
ICI1  
ICI1  
ICI1  
ICI0  
ICI0  
ICI0  
ICI0  
ICI0  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICM2  
ICM2  
ICM2  
ICM2  
ICM2  
ICM1  
ICM1  
ICM1  
ICM1  
ICM1  
ICM0  
ICM0  
ICM0  
ICM0  
ICM0  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-8:  
OUTPUT COMPARE REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC1RS  
OC1R  
0180  
0182  
0184  
0186  
0188  
018A  
018C  
018E  
0190  
0192  
0194  
0196  
0198  
019A  
019C  
Output Compare 1 Secondary Register  
Output Compare 1 Register  
FFFF  
FFFF  
0000  
FFFF  
FFFF  
0000  
FFFF  
FFFF  
0000  
FFFF  
FFFF  
0000  
FFFF  
FFFF  
0000  
OC1CON  
OC2RS  
OC2R  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCFLT OCTSEL  
OCFLT OCTSEL  
OCFLT OCTSEL  
OCFLT OCTSEL  
OCFLT OCTSEL  
OCM2  
OCM2  
OCM2  
OCM2  
OCM2  
OCM1  
OCM1  
OCM1  
OCM1  
OCM1  
OCM0  
OCM0  
OCM0  
OCM0  
OCM0  
Output Compare 2 Secondary Register  
Output Compare 2 Register  
OC2CON  
OC3RS  
OC3R  
Output Compare 3 Secondary Register  
Output Compare 3 Register  
OC3CON  
OC4RS  
OC4R  
Output Compare 4 Secondary Register  
Output Compare 4 Register  
OC4CON  
OC5RS  
OC5R  
Output Compare 5 Secondary Register  
Output Compare 5 Register  
OC5CON  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-9:  
I2C™ REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C1RCV  
I2C1TRN  
I2C1BRG  
I2C1CON  
I2C1STAT  
I2C1ADD  
I2C1MSK  
I2C2RCV  
I2C2TRN  
I2C2BRG  
I2C2CON  
I2C2STAT  
I2C2ADD  
I2C2MSK  
Legend:  
0200  
0202  
0204  
0206  
0208  
020A  
020C  
0210  
0212  
0214  
0216  
0218  
021A  
021C  
Receive Register 1  
Transmit Register 1  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator Register 1  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
BCL  
DISSLW  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D/A  
ACKEN  
P
RCEN  
S
PEN  
R/W  
RSEN  
RBF  
SEN  
TBF  
ACKSTAT TRSTAT  
GCSTAT ADD10  
IWCOL  
Address Register 1  
AMSK5 AMSK4  
AMSK9  
AMSK8  
AMSK7  
AMSK6  
AMSK3  
AMSK2  
AMSK1  
AMSK0  
Receive Register 2  
Transmit Register 2  
Baud Rate Generator Register 2  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
BCL  
DISSLW  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D/A  
ACKEN  
P
RCEN  
S
PEN  
R/W  
RSEN  
RBF  
SEN  
TBF  
ACKSTAT TRSTAT  
GCSTAT ADD10  
IWCOL  
Address Register 2  
AMSK5 AMSK4  
AMSK9  
AMSK8  
AMSK7  
AMSK6  
AMSK3  
AMSK2  
AMSK1  
AMSK0  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-10: UART REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1MODE  
U1STA  
0220  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UTXBF  
UEN0  
WAKE  
LPBACK  
ABAUD  
RXINV  
RIDLE  
UTX4  
URX4  
BRGH  
PERR  
UTX3  
URX3  
PDSEL1 PDSEL0  
STSEL  
URXDA  
UTX0  
0000  
0110  
0000  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0222 UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN  
TRMT URXISEL1 URXISEL0 ADDEN  
FERR  
UTX2  
URX2  
OERR  
UTX1  
URX1  
U1TXREG 0224  
U1RXREG 0226  
UTX8  
URX8  
UTX7  
URX7  
UTX6  
URX6  
UTX5  
URX5  
URX0  
U1BRG  
U2MODE  
U2STA  
0228  
0230  
Baud Rate Generator Prescaler Register  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UTXBF  
UEN0  
WAKE  
LPBACK  
ABAUD  
RXINV  
RIDLE  
UTX4  
URX4  
BRGH  
PERR  
UTX3  
URX3  
PDSEL1 PDSEL0  
STSEL  
URXDA  
UTX0  
0232 UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN  
TRMT URCISEL1 URCISEL0 ADDEN  
FERR  
UTX2  
URX2  
OERR  
UTX1  
URX1  
U2TXREG 0234  
U2RXREG 0236  
UTX8  
URX8  
UTX7  
URX7  
UTX6  
URX6  
UTX5  
URX5  
URX0  
U2BRG  
0238  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Baud Rate Generator Prescaler  
Legend:  
TABLE 4-11: SPI REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI1STAT  
0240  
SPIEN  
SPISIDL  
SPIBEC2 SPIBEC1 SPIBEC0 SRMPT SPIROV SRXMPT SISEL2  
SISEL1  
SPRE1  
SISEL0  
SPRE0  
SPITBF  
PPRE1  
SPIFE  
SPIRBF  
PPRE0  
SPIBEN  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
SPI1CON1 0242  
SPI1CON2 0244  
DISSCK DISSDO MODE16  
SMP  
CKE  
SSEN  
CKP  
MSTEN  
SPRE2  
FRMEN  
SPIFSD SPIFPOL  
SPI1BUF  
SPI2STAT  
0248  
0260  
SPI1 Transmit/Receive Buffer  
SPIBEC2 SPIBEC1 SPIBEC0 SRMPT SPIROV SRXMPT SISEL2  
SPIEN  
SPISIDL  
SISEL1  
SPRE1  
SISEL0  
SPRE0  
SPITBF  
PPRE1  
SPIFE  
SPIRBF  
PPRE0  
SPIBEN  
SPI2CON1 0262  
SPI2CON2 0264  
DISSCK DISSDO MODE16  
SMP  
CKE  
SSEN  
CKP  
MSTEN  
SPRE2  
FRMEN  
SPIFSD SPIFPOL  
SPI2BUF  
0268  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
SPI2 Transmit/Receive Buffer  
Legend:  
TABLE 4-12: PORTA REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA  
PORTA  
LATA  
02C0  
02C2  
02C4  
02C6  
TRISA10(1) TRISA9(1) TRISA8(1) TRISA7(1)  
RA10(1) RA9(1) RA8(1) RA7(1)  
LATA10(1) LATA9(1) LATA8(1) LATA7(1)  
ODA10(1) ODA9(1) ODA8(1) ODA7(1)  
TRISA4 TRISA3(2) TRISA2(3) TRISA1  
TRISA0  
RA0  
079F  
0000  
0000  
0000  
RA4  
RA3(2)  
RA2(3)  
RA1  
LATA4  
ODA4  
LATA3(2) LATA2(3)  
ODA3(2) ODA2(3)  
LATA1  
ODA1  
LATA0  
ODA0  
ODCA  
Legend:  
Note 1:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Bits are not available on 28-pin devices; read as ‘0’.  
2:  
3:  
Bits are available only when the primary oscillator is disabled (POSCMD<1:0> = 00); otherwise read as ‘0’.  
Bits are available only when the primary oscillator is disabled or EC mode is selected (POSCMD<1:0> = 00or 11) and CLKO is disabled (OSCIOFNC = 0); otherwise, read as ‘0’.  
TABLE 4-13: PORTB REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
PORTB  
LATB  
02C8  
02CA  
02CC  
02CE  
TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9  
TRISB8  
RB8  
TRISB7  
RB7  
TRISB6  
RB6  
TRISB5  
RB5  
TRISB4  
RB4  
TRISB3 TRISB2  
TRISB1  
RB1  
TRISB0  
RB0  
FFFF  
0000  
0000  
0000  
RB15  
LATB15 LATB14 LATB13 LATB12  
ODB15 ODB14 ODB13 ODB12  
RB14  
RB13  
RB12  
RB11  
LATB11  
ODB11  
RB10  
LATB10  
ODB10  
RB9  
RB3  
RB2  
LATB9  
ODB9  
LATB8  
ODB8  
LATB7  
ODB7  
LATB6  
ODB6  
LATB5  
ODB5  
LATB4  
ODB4  
LATB3  
ODB3  
LATB2  
ODB2  
LATB1  
ODB1  
LATB0  
ODB0  
ODCB  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-14: PORTC REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISC(1)  
PORTC(1) 02D2  
LATC(1)  
ODCC(1)  
02D0  
TRISC9 TRISC8 TRISC7 TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0  
03FF  
0000  
0000  
0000  
RC9  
RC8  
LATC8  
OSC8  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
02D4  
02D6  
LATC9  
ODC9  
LATC7  
ODC7  
LATC6  
ODC6  
LATC5  
ODC5  
LATC4  
ODC4  
LATC3  
ODC3  
LATC2  
ODC2  
LATC1  
ODC1  
LATC0  
ODC0  
Legend:  
Note 1:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Bits are not available on 28-pin devices; read as ‘0’.  
TABLE 4-15: PAD CONFIGURATION REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PADCFG1 02FC  
Legend:  
RTSECSEL PMPTTL 0000  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-16: ADC REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC1BUF0  
ADC1BUF1  
ADC1BUF2  
ADC1BUF3  
ADC1BUF4  
0300  
0302  
0304  
0306  
0308  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
0000  
0000  
0000  
0000  
ADC1BUF5 030A  
ADC1BUF6 030C  
ADC1BUF7 030E  
ADC1BUF8  
ADC1BUF9  
0310  
0312  
ADC1BUFA 0314  
ADC1BUFB 0316  
ADC1BUFC 0318  
ADC1BUFD 031A  
ADC1BUFE 031C  
ADC1BUFF 031E  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS  
0320  
0322  
0324  
0328  
032C  
0330  
ADON  
VCFG2  
ADRC  
VCFG1  
ADSIDL  
VCFG0  
FORM1  
FORM0  
SSRC2  
BUFS  
SSRC1  
SSRC0  
SMPI3  
ADCS5  
ASAM  
SMPI0  
ADCS2  
SAMP  
BUFM  
ADCS1  
DONE  
ALTS  
CSCNA  
SAMC2  
SMPI2  
ADCS4  
SMPI1  
ADCS3  
SAMC4  
SAMC3  
SAMC1  
SAMC0  
ADCS7  
ADCS6  
ADCS0  
CH0NB  
PCFG15  
CSSL15  
CH0SB3 CH0SB2 CH0SB1 CH0SB0 CH0NA  
CH0SA3 CH0SA2 CH0SA1 CH0SA0  
AD1PCFG  
AD1CSSL  
PCFG12 PCFG11 PCFG10 PCFG9 PCFG8(1) PCFG7(1) PCFG6(1) PCFG5  
CSSL12 CSSL11 CSSL10  
CSSL9 CSSL8(1) CSSL7(1) CSSL6(1) CSSL5  
PCFG4  
CSSL4  
PCFG3  
CSSL3  
PCFG2  
CSSL2  
PCFG1  
CSSL1  
PCFG0  
CSSL0  
Legend:  
Note 1:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Bits are not available on 28-pin devices; read as ‘0’.  
TABLE 4-17: PARALLEL MASTER/SLAVE PORT REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMCON  
0600 PMPEN  
PSIDL ADRMUX1 ADRMUX0 PTBEEN PTWREN PTRDEN  
CSF1  
CSF0  
ALP  
CS1P  
BEP  
WRSP  
RDSP  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
PMMODE 0602  
PMADDR 0604  
PMDOUT1  
BUSY  
IRQM1  
CS1  
IRQM0  
INCM1  
INCM0  
MODE16 MODE1 MODE0 WAITB1 WAITB0 WAITM3 WAITM2 WAITM1 WAITM0 WAITE1 WAITE0  
ADDR10 ADDR9  
ADDR8  
ADDR7  
ADDR6  
ADDR5  
ADDR4  
ADDR3  
ADDR2  
ADDR1  
ADDR0  
Parallel Port Data Out Register 1 (Buffers 0 and 1)  
Parallel Port Data Out Register 2 (Buffers 2 and 3)  
Parallel Port Data In Register 1 (Buffers 0 and 1)  
Parallel Port Data In Register 2 (Buffers 2 and 3)  
PMDOUT2 0606  
PMDIN1  
PMDIN2  
PMAEN  
PMSTAT  
Legend:  
0608  
060A  
060C  
060E  
PTEN14  
IBOV  
PTEN10  
IB2F  
PTEN9  
IB1F  
PTEN8  
IB0F  
PTEN7  
OBE  
PTEN6  
OBUF  
PTEN5  
PTEN4  
PTEN3  
OB3E  
PTEN2  
OB2E  
PTEN1  
OB1E  
PTEN0  
OB0E  
IBF  
IB3F  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-18: REAL-TIME CLOCK AND CALENDAR REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ALRMVAL  
0620  
Alarm Value Register Window Based on ALRMPTR<1:0>  
xxxx  
0000  
xxxx  
0000  
ALCFGRPT 0622 ALRMEN CHIME  
AMASK3  
AMASK2 AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7 ARPT6  
RTCC Value Register Window Based on RTCPTR<1:0>  
ARPT5  
CAL5  
ARPT4 ARPT3 ARPT2  
ARPT1  
CAL1  
ARPT0  
CAL0  
RTCVAL  
RCFGCAL  
Legend:  
0624  
0626  
RTCEN  
RTCWREN RTCSYNC HALFSEC RTCOE RTCPTR1 RTCPTR0  
CAL7  
CAL6  
CAL4  
CAL3  
CAL2  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-19: DUAL COMPARATOR REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMCON  
CVRCON  
Legend:  
0630  
0632  
CMIDL  
C2EVT  
C1EVT  
C2EN  
C1EN  
C2OUTEN C1OUTEN C2OUT  
C1OUT  
C2INV  
CVRR  
C1INV  
C2NEG  
CVR3  
C2POS  
CVR2  
C1NEG  
CVR1  
C1POS  
CVR0  
0000  
0000  
CVREN CVROE  
CVRSS  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-20: CRC REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CRCCON  
CRCXOR  
CRCDAT  
0640  
0642  
0644  
CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWORD0 CRCFUL CRCMPT  
X13 X12 X11 X10 X9 X8 X7 X6  
CRCGO  
X4  
PLEN3  
X3  
PLEN2  
X2  
PLEN1  
X1  
PLEN0  
0040  
0000  
0000  
0000  
X15  
X14  
X5  
CRC Data Input Register  
CRC Result Register  
CRCWDAT 0646  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-21: PERIPHERAL PIN SELECT REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPINR0  
RPINR1  
RPINR3  
RPINR4  
RPINR7  
RPINR8  
RPINR9  
RPINR11  
0680  
0682  
0686  
0688  
068E  
0690  
0692  
0696  
INT1R4  
INT1R3  
INT1R2  
INT1R1  
INT1R0  
1F00  
001F  
1F1F  
1F1F  
1F1F  
1F1F  
001F  
1F1F  
1F1F  
1F1F  
1F1F  
001F  
1F1F  
001F  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
INT2R4  
INT2R3  
INT2R2  
INT2R1  
INT2R0  
T3CKR4 T3CKR3  
T5CKR4 T5CKR3  
T3CKR2  
T5CKR2  
IC2R2  
IC4R2  
T3CKR1  
T5CKR1  
IC2R1  
IC4R1  
T3CKR0  
T5CKR0  
IC2R0  
IC4R0  
T2CKR4 T2CKR3 T2CKR2  
T4CKR4 T4CKR3 T4CKR2  
T2CKR1 T2CKR0  
T4CKR1 T4CKR0  
IC2R4  
IC4R4  
IC2R3  
IC4R3  
IC1R4  
IC3R4  
IC5R4  
IC1R3  
IC3R3  
IC5R3  
IC1R2  
IC3R2  
IC5R2  
IC1R1  
IC3R1  
IC5R1  
IC1R0  
IC3R0  
IC5R0  
OCFBR4 OCFBR3 OCFBR2 OCFBR1 OCFBR0  
U1CTSR4 U1CTSR3 U1CTSR2 U1CTSR1 U1CTSR0  
U2CTSR4 U2CTSR3 U2CTSR2 U2CTSR1 U2CTSR0  
OCFAR4 OCFAR3 OCFAR2 OCFAR1 OCFAR0  
U1RXR4 U1RXR3 U1RXR2 U1RXR1 U1RXR0  
U2RXR4 U2RXR3 U2RXR2 U2RXR1 U2RXR0  
RPINR18 06A4  
RPINR19 06A6  
RPINR20 06A8  
RPINR21 06AA  
RPINR22 06AC  
RPINR23 06AE  
SCK1R4 SCK1R3 SCK1R2  
SCK1R1 SCK1R0  
SDI1R4  
SS1R4  
SDI2R4  
SS2R4  
RP0R4  
RP2R4  
RP4R4  
RP6R4  
RP8R4  
RP10R4  
RP12R4  
RP14R4  
SDI1R3  
SS1R3  
SDI2R3  
SS2R3  
RP0R3  
RP2R3  
RP4R3  
RP6R3  
RP8R3  
RP10R3  
RP12R3  
RP14R3  
SDI1R2  
SS1R2  
SDI2R2  
SS2R2  
RP0R2  
RP2R2  
RP4R2  
RP6R2  
RP8R2  
RP10R2  
RP12R2  
RP14R2  
SDI1R1  
SS1R1  
SDI2R1  
SS2R1  
RP0R1  
RP2R1  
RP4R1  
RP6R1  
RP8R1  
RP10R1  
RP12R1  
RP14R1  
SDI1R0  
SS1R0  
SDI2R0  
SS2R0  
RP0R0  
RP2R0  
RP4R0  
RP6R0  
RP8R0  
RP10R0  
RP12R0  
RP14R0  
SCK2R4 SCK2R3 SCK2R2  
SCK2R1 SCK2R0  
RPOR0  
RPOR1  
RPOR2  
RPOR3  
RPOR4  
RPOR5  
RPOR6  
RPOR7  
RPOR8  
RPOR9  
RPOR10  
RPOR11  
RPOR12  
06C0  
06C2  
06C4  
06C6  
06C8  
06CA  
06CC  
06CE  
06D0  
06D2  
06D4  
06D6  
06D8  
RP1R4  
RP3R4  
RP5R4  
RP7R4  
RP9R4  
RP11R4  
RP13R4  
RP15R4  
RP1R3  
RP3R3  
RP5R3  
RP7R3  
RP9R3  
RP11R3  
RP13R3  
RP15R3  
RP1R2  
RP3R2  
RP5R2  
RP7R2  
RP9R2  
RP11R2  
RP13R2  
RP15R2  
RP1R1  
RP3R1  
RP5R1  
RP7R1  
RP9R1  
RP11R1  
RP13R1  
RP15R1  
RP1R0  
RP3R0  
RP5R0  
RP7R0  
RP9R0  
RP11R0  
RP13R0  
RP15R0  
RP17R4(1) RP17R3(1) RP17R2(1) RP17R1(1) RP17R0(1)  
RP19R4(1) RP19R3(1) RP19R2(1) RP19R1(1) RP19R0(1)  
RP21R4(1) RP21R3(1) RP21R2(1) RP21R1(1) RP21R0(1)  
RP23R4(1) RP23R3(1) RP23R2(1) RP23R1(1) RP23R0(1)  
RP25R4(1) RP25R3(1) RP25R2(1) RP25R1(1) RP25R0(1)  
RP16R4(1) RP16R3(1) RP16R2(1) RP16R1(1) RP16R0(1) 0000  
RP18R4(1) RP18R3(1) RP18R2(1) RP18R1(1) RP18R0(1) 0000  
RP20R4(1) RP20R3(1) RP20R2(1) RP20R1(1) RP20R0(1) 0000  
RP22R4(1) RP22R3(1) RP22R2(1) RP22R1(1) RP22R0(1) 0000  
RP24R4(1) RP24R3(1) RP24R2(1) RP24R1(1) RP24R0(1) 0000  
Legend:  
Note 1:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Bits are only available on the 44-pin devices; otherwise, they read as ‘0’.  
TABLE 4-22: CLOCK CONTROL REGISTER MAP  
File  
Name  
All  
Resets  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCON  
0740  
TRAPR IOPUWR  
CM  
VREGS  
EXTR  
SWR  
SWDTEN WDTO  
SLEEP  
CF  
IDLE  
BOR  
POR  
(Note 1)  
OSCCON 0742  
ROI  
COSC2  
DOZE2  
COSC1  
DOZE1  
COSC0  
DOZE0  
NOSC2  
NOSC1  
NOSC0 CLKLOCK IOLOCK  
LOCK  
SOSCEN OSWEN (Note 2)  
CLKDIV  
0744  
0748  
DOZEN  
RCDIV2 RCDIV1 RCDIV0  
3140  
0000  
OSCTUN  
TUN5  
TUN4  
TUN3  
TUN2  
TUN1  
TUN0  
Legend:  
Note 1:  
2:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
RCON register Reset values are dependent on type of Reset.  
OSCCON register Reset values are dependent on configuration fuses and by type of Reset.  
TABLE 4-23: NVM REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
NVMCON 0760  
WR  
WREN  
WRERR  
ERASE  
NVMOP3 NVMOP2 NVMOP1 NVMOP0 0000(1)  
NVMKEY  
0766  
NVMKEY<7:0>  
0000  
Legend:  
Note 1:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.  
TABLE 4-24: PMD REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
PMD2  
PMD3  
Legend:  
0770  
0772  
0774  
T5MD  
T4MD  
T3MD  
T2MD  
IC5MD  
T1MD  
IC4MD  
I2C1MD  
U2MD  
U1MD  
SPI2MD SPI1MD  
ADC1MD 0000  
IC3MD  
IC2MD  
IC1MD  
OC5MD OC4MD OC3MD OC2MD OC1MD  
I2C2MD  
0000  
0000  
CMPMD RTCCMD PMPMD CRCPMD  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
PIC24FJ64GA004 FAMILY  
4.2.5  
SOFTWARE STACK  
4.3  
Interfacing Program and Data  
Memory Spaces  
In addition to its use as a working register, the W15  
register in PIC24F devices is also used as a Software  
Stack Pointer. The pointer always points to the first  
available free word and grows from lower to higher  
addresses. It pre-decrements for stack pops and  
post-increments for stack pushes, as shown in  
Figure 4-4. Note that for a PC push during any CALL  
instruction, the MSB of the PC is zero-extended before  
the push, ensuring that the MSB is always clear.  
The PIC24F architecture uses a 24-bit wide program  
space and 16-bit wide data space. The architecture is  
also a modified Harvard scheme, meaning that data  
can also be present in the program space. To use this  
data successfully, it must be accessed in a way that  
preserves the alignment of information in both spaces.  
Aside from normal execution, the PIC24F architecture  
provides two methods by which program space can be  
accessed during operation:  
Note:  
A PC push during exception processing  
will concatenate the SRL register to the  
MSB of the PC prior to the push.  
• Using table instructions to access individual bytes  
or words anywhere in the program space  
The Stack Pointer Limit Value register (SPLIM), associ-  
ated with the Stack Pointer, sets an upper address  
boundary for the stack. SPLIM is uninitialized at Reset.  
As is the case for the Stack Pointer, SPLIM<0> is  
forced to ‘0’ because all stack operations must be  
word-aligned. Whenever an EA is generated using  
W15 as a source or destination pointer, the resulting  
address is compared with the value in SPLIM. If the  
contents of the Stack Pointer (W15) and the SPLIM  
register are equal, and a push operation is performed,  
a stack error trap will not occur. The stack error trap will  
occur on a subsequent push operation. Thus, for  
example, if it is desirable to cause a stack error trap  
when the stack grows beyond address 2000h in RAM,  
initialize the SPLIM with the value, 1FFEh.  
• Remapping a portion of the program space into  
the data space (program space visibility)  
Table instructions allow an application to read or write  
to small areas of the program memory. This makes the  
method ideal for accessing data tables that need to be  
updated from time to time. It also allows access to all  
bytes of the program word. The remapping method  
allows an application to access a large block of data on  
a read-only basis, which is ideal for look ups from a  
large table of static data. It can only access the least  
significant word of the program word.  
4.3.1  
ADDRESSING PROGRAM SPACE  
Since the address ranges for the data and program  
spaces are 16 and 24 bits, respectively, a method is  
needed to create a 23-bit or 24-bit program address  
from 16-bit data registers. The solution depends on the  
interface method to be used.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0800h. This prevents the stack from  
interfering with the Special Function Register (SFR)  
space.  
For table operations, the 8-bit Table Memory Page  
Address register (TBLPAG) is used to define a 32K word  
region within the program space. This is concatenated  
with a 16-bit EA to arrive at a full 24-bit program space  
address. In this format, the Most Significant bit of  
TBLPAG is used to determine if the operation occurs in  
the user memory (TBLPAG<7> = 0) or the configuration  
memory (TBLPAG<7> = 1).  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
FIGURE 4-4:  
CALL STACK FRAME  
0000h  
15  
0
For remapping operations, the 8-bit Program Space  
Visibility Page Address register (PSVPAG) is used to  
define a 16K word page in the program space. When  
the Most Significant bit of the EA is ‘1’, PSVPAG is con-  
catenated with the lower 15 bits of the EA to form a  
23-bit program space address. Unlike table operations,  
this limits remapping operations strictly to the user  
memory area.  
PC<15:0>  
000000000  
W15 (before CALL)  
PC<22:16>  
<Free Word>  
W15 (after CALL)  
POP : [--W15]  
PUSH: [W15++]  
Table 4-25 and Figure 4-5 show how the program EA is  
created for table operations and remapping accesses  
from the data EA. Here, P<23:0> refers to a program  
space word, whereas D<15:0> refers to a data space  
word.  
2010 Microchip Technology Inc.  
DS39881D-page 45  
PIC24FJ64GA004 FAMILY  
TABLE 4-25: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
PC<22:1>  
0
0xx xxxx xxxx xxxx xxxx xxx0  
TBLPAG<7:0> Data EA<15:0>  
0xxx xxxx  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
Data EA<14:0>(1)  
Program Space Visibility User  
(Block Remap/Read)  
0
0
PSVPAG<7:0>  
xxxx xxxx  
xxx xxxx xxxx xxxx  
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of  
the address is PSVPAG<0>.  
FIGURE 4-5:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter(1)  
Program Counter  
23 Bits  
0
0
1/0  
EA  
Table Operations(2)  
1/0  
TBLPAG  
8 Bits  
16 Bits  
24 Bits  
Select  
1
0
EA  
Program Space Visibility(1)  
(Remapping)  
0
PSVPAG  
8 Bits  
15 Bits  
23 Bits  
Byte Select  
User/Configuration  
Space Select  
Note 1: The LSb of program space addresses is always fixed as ‘0’ in order to maintain word alignment of  
data in the program and data spaces.  
2: Table operations are not required to be word-aligned. Table read operations are permitted in the  
configuration memory space.  
DS39881D-page 46  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
2. TBLRDH (Table Read High): In Word mode, it  
4.3.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
maps the entire upper word of a program address  
(P<23:16>) to  
a data address. Note that  
D<15:8>, the ‘phantom’ byte, will always be ‘0’.  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the program space without going through  
data space. The TBLRDH and TBLWTH instructions are  
the only method to read or write the upper 8 bits of a  
program space word as data.  
In Byte mode, it maps the upper or lower byte of  
the program word to D<7:0> of the data  
address, as above. Note that the data will  
always be ‘0’ when the upper ‘phantom’ byte is  
selected (byte select = 1).  
In a similar fashion, two table instructions, TBLWTH  
and TBLWTL, are used to write individual bytes or  
words to a program space address. The details of  
their operation are explained in Section 5.0 “Flash  
Program Memory”.  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two 16-bit  
word-wide address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space which contains the least significant  
data word, and TBLRDHand TBLWTHaccess the space  
which contains the upper data byte.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table  
Memory Page Address register (TBLPAG). TBLPAG  
covers the entire program memory space of the  
device, including user and configuration spaces. When  
TBLPAG<7> = 0, the table page is located in the user  
memory space. When TBLPAG<7> = 1, the page is  
located in configuration space.  
Two table instructions are provided to move byte or  
word-sized (16-bit) data to and from program space.  
Both function as either byte or word operations.  
1. TBLRDL (Table Read Low): In Word mode, it  
maps the lower word of the program space  
location (P<15:0>) to a data address (D<15:0>).  
Note:  
Only table read operations will execute in  
the configuration memory space, and only  
then, in implemented areas such as the  
Device ID. Table write operations are not  
allowed.  
In Byte mode, either the upper or lower byte of  
the lower program word is mapped to the lower  
byte of a data address. The upper byte is  
selected when byte select is ‘1’; the lower byte  
is selected when it is ‘0’.  
FIGURE 4-6:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
TBLPAG  
02  
Data EA<15:0>  
23  
15  
0
000000h  
23  
16  
8
0
00000000  
00000000  
00000000  
00000000  
020000h  
030000h  
‘Phantom’ Byte  
TBLRDH.B(Wn<0> = 0)  
TBLRDL.B(Wn<0> = 1)  
TBLRDL.B(Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register.  
Only read operations are shown; write operations are also valid in  
the user memory area.  
800000h  
2010 Microchip Technology Inc.  
DS39881D-page 47  
PIC24FJ64GA004 FAMILY  
24-bit program word are used to contain the data. The  
upper 8 bits of any program space locations used as  
data should be programmed with ‘1111 1111’ or  
0000 0000’ to force a NOP. This prevents possible  
issues should the area of code ever be accidentally  
executed.  
4.3.3  
READING DATA FROM PROGRAM  
MEMORY USING PROGRAM SPACE  
VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word page of the program space.  
This provides transparent access of stored constant  
data from the data space without the need to use  
special instructions (i.e., TBLRDL/H).  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
Program space access through the data space occurs if  
the Most Significant bit of the data space EA is ‘1’, and  
program space visibility is enabled by setting the PSV bit  
in the CPU Control register (CORCON<2>). The loca-  
tion of the program memory space to be mapped into the  
data space is determined by the Program Space Visibil-  
ity Page Address register (PSVPAG). This 8-bit register  
defines any one of 256 possible pages of 16K words in  
program space. In effect, PSVPAG functions as the  
upper 8 bits of the program memory address, with the  
15 bits of the EA functioning as the lower bits. Note that  
by incrementing the PC by 2 for each program memory  
word, the lower 15 bits of data space addresses directly  
map to the lower 15 bits in the corresponding program  
space addresses.  
For operations that use PSV and are executed outside  
a REPEATloop, the MOV and MOV.Dinstructions will  
require one instruction cycle in addition to the specified  
execution time. All other instructions will require two  
instruction cycles in addition to the specified execution  
time.  
For operations that use PSV which are executed inside  
a REPEAT loop, there will be some instances that  
require two instruction cycles in addition to the  
specified execution time of the instruction:  
• Execution in the first iteration  
• Execution in the last iteration  
• Execution prior to exiting the loop due to an  
interrupt  
• Execution upon re-entering the loop after an  
interrupt is serviced  
Data reads to this area add an additional cycle to the  
instruction being executed, since two program memory  
fetches are required.  
Any other iteration of the REPEAT loop will allow the  
instruction accessing data, using PSV, to execute in a  
single cycle.  
Although each data space address, 8000h and higher,  
maps directly into a corresponding program memory  
address (see Figure 4-7), only the lower 16 bits of the  
FIGURE 4-7:  
PROGRAM SPACE VISIBILITY OPERATION  
When CORCON<2> = 1and EA<15> = 1:  
Program Space  
Data Space  
PSVPAG  
02  
23  
15  
0
000000h  
0000h  
Data EA<14:0>  
010000h  
018000h  
The data in the page  
designated by PSV-  
PAG is mapped into  
the upper half of the  
data memory  
8000h  
space....  
PSV Area  
...while the lower 15  
bits of the EA specify  
an exact address  
within the PSV area.  
This corresponds  
exactly to the same  
lower 15 bits of the  
actual program space  
address.  
FFFFh  
800000h  
DS39881D-page 48  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
RTSP is accomplished using TBLRD (table read) and  
TBLWT (table write) instructions. With RTSP, the user  
5.0  
FLASH PROGRAM MEMORY  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
may write program memory data in blocks of 64 instruc-  
tions (192 bytes) at a time, and erase program memory  
in blocks of 512 instructions (1536 bytes) at a time.  
5.1  
Table Instructions and Flash  
Programming  
”Section  
4.  
Program  
Memory”  
(DS39715).  
Regardless of the method used, all programming of  
Flash memory is done with the table read and table  
write instructions. These allow direct read and write  
access to the program memory space from the data  
memory while the device is in normal operating mode.  
The 24-bit target address in the program memory is  
formed using the TBLPAG<7:0> bits and the Effective  
Address (EA) from a W register specified in the table  
instruction, as shown in Figure 5-1.  
The PIC24FJ64GA004 family of devices contains inter-  
nal Flash program memory for storing and executing  
application code. The memory is readable, writable and  
erasable when operating with VDD over 2.25V.  
Flash memory can be programmed in three ways:  
• In-Circuit Serial Programming™ (ICSP™)  
• Run-Time Self-Programming (RTSP)  
• Enhanced In-Circuit Serial Programming  
(Enhanced ICSP)  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
both Word and Byte modes.  
ICSP allows a PIC24FJ64GA004 family device to be  
serially programmed while in the end application circuit.  
This is simply done with two lines for the programming  
clock and programming data (which are named PGCx  
and PGDx, respectively), and three other lines for  
power (VDD), ground (VSS) and Master Clear (MCLR).  
This allows customers to manufacture boards with  
unprogrammed devices and then program the micro-  
controller just before shipping the product. This also  
allows the most recent firmware or a custom firmware  
to be programmed.  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits<23:16> of program memory. TBLRDH  
and TBLWTHcan also access program memory in Word  
or Byte mode.  
FIGURE 5-1:  
ADDRESSING FOR TABLE REGISTERS  
24 Bits  
Program Counter  
Using  
Program  
Counter  
0
0
Working Reg EA  
Using  
Table  
Instruction  
TBLPAG Reg  
8 Bits  
1/0  
16 Bits  
User/Configuration  
Space Select  
Byte  
Select  
24-Bit EA  
2010 Microchip Technology Inc.  
DS39881D-page 49  
PIC24FJ64GA004 FAMILY  
5.2  
RTSP Operation  
5.3  
Enhanced In-Circuit Serial  
Programming  
The PIC24F Flash program memory array is organized  
into rows of 64 instructions or 192 bytes. RTSP allows  
the user to erase blocks of eight rows (512 instructions)  
at a time and to program one row at a time. It is also  
possible to program single words.  
Enhanced In-Circuit Serial Programming uses an  
on-board bootloader, known as the program executive,  
to manage the programming process. Using an SPI  
data frame format, the program executive can erase,  
program and verify program memory. For more  
information on Enhanced ICSP, see the device  
programming specification.  
The 8-row erase blocks and single row write blocks are  
edge-aligned, from the beginning of program memory, on  
boundaries of 1536 bytes and 192 bytes, respectively.  
When data is written to program memory using TBLWT  
instructions, the data is not written directly to memory.  
Instead, data written using table writes is stored in  
holding latches until the programming sequence is  
executed.  
5.4  
Control Registers  
There are two SFRs used to read and write the  
program Flash memory: NVMCON and NVMKEY.  
The NVMCON register (Register 5-1) controls which  
blocks are to be erased, which memory type is to be  
programmed and when the programming cycle starts.  
Any number of TBLWT instructions can be executed  
and a write will be successfully performed. However,  
64 TBLWTinstructions are required to write the full row  
of memory.  
NVMKEY is a write-only register that is used for write  
protection. To start a programming or erase sequence,  
the user must consecutively write 55h and AAh to the  
NVMKEY register. Refer to Section 5.5 “Programming  
Operations” for further details.  
To ensure that no data is corrupted during a write, any  
unused addresses should be programmed with  
FFFFFFh. This is because the holding latches reset to  
an unknown state, so if the addresses are left in the  
Reset state, they may overwrite the locations on rows  
which were not rewritten.  
5.5  
Programming Operations  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. During a programming or erase operation, the  
processor stalls (waits) until the operation is finished.  
Setting the WR bit (NVMCON<15>) starts the opera-  
tion and the WR bit is automatically cleared when the  
operation is finished.  
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the buffers. Programming is performed by  
setting the control bits in the NVMCON register.  
Data can be loaded in any order and the holding regis-  
ters can be written to multiple times before performing  
a write operation. Subsequent writes, however, will  
wipe out any previous writes.  
Configuration Word values are stored in the last two  
locations of program memory. Performing a page erase  
operation on the last page of program memory clears  
these values and enables code protection. As a result,  
avoid performing page erase operations on the last  
page of program memory.  
Note:  
Writing to a location multiple times without  
erasing it is not recommended.  
All of the table write operations are single-word writes  
(2 instruction cycles), because only the buffers are writ-  
ten. A programming cycle is required for programming  
each row.  
DS39881D-page 50  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 5-1:  
NVMCON: FLASH MEMORY CONTROL REGISTER  
R/SO-0  
WR  
R/W-0  
WREN  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
WRERR  
bit 15  
bit 8  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ERASE  
NVMOP3(1) NVMOP2(1) NVMOP1(1) NVMOP0(1)  
bit 7  
bit 0  
Legend:  
SO = Set Only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
WR: Write Control bit  
1= Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is  
cleared by hardware once operation is complete.  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit  
1= Enable Flash program/erase operations  
0= Inhibit Flash program/erase operations  
WRERR: Write Sequence Error Flag bit  
1= An improper program or erase sequence attempt or termination has occurred (bit is set  
automatically on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
ERASE: Erase/Program Enable bit  
1= Perform the erase operation specified by NVMOP3:NVMOP0 on the next WR command  
0= Perform the program operation specified by NVMOP3:NVMOP0 on the next WR command  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
NVMOP3:NVMOP0: NVM Operation Select bits(1)  
1111= Memory bulk erase operation (ERASE = 1) or no operation (ERASE = 0)(2)  
0011= Memory word program operation (ERASE = 0) or no operation (ERASE = 1)  
0010= Memory page erase operation (ERASE = 1) or no operation (ERASE = 0)  
0001= Memory row program operation (ERASE = 0) or no operation (ERASE = 1)  
Note 1: All other combinations of NVMOP3:NVMOP0 are unimplemented.  
2: Available in ICSP™ mode only. Refer to device programming specification.  
2010 Microchip Technology Inc.  
DS39881D-page 51  
PIC24FJ64GA004 FAMILY  
4. Write the first 64 instructions from data RAM into  
the program memory buffers (see Example 5-1).  
5.5.1  
PROGRAMMING ALGORITHM FOR  
FLASH PROGRAM MEMORY  
5. Write the program block to Flash memory:  
The user can program one row of Flash program memory  
at a time. To do this, it is necessary to erase the 8-row  
erase block containing the desired row. The general  
process is:  
a) Set the NVMOP bits to ‘0001’ to configure  
for row programming. Clear the ERASE bit  
and set the WREN bit.  
b) Write 55h to NVMKEY.  
c) Write AAh to NVMKEY.  
1. Read eight rows of program memory  
(512 instructions) and store in data RAM.  
d) Set the WR bit. The programming cycle  
begins and the CPU stalls for the duration  
of the write cycle. When the write to Flash  
memory is done, the WR bit is cleared  
automatically.  
2. Update the program data in RAM with the  
desired new data.  
3. Erase the block (see Example 5-1):  
a) Set the NVMOP bits (NVMCON<3:0>) to  
0010’ to configure for block erase. Set the  
ERASE (NVMCON<6>) and WREN  
(NVMCON<14>) bits.  
6. Repeat steps 4 and 5, using the next available  
64 instructions from the block in data RAM by  
incrementing the value in TBLPAG, until all  
512 instructions are written back to Flash  
memory.  
b) Write the starting address of the block to be  
erased into the TBLPAG and W registers.  
c) Write 55h to NVMKEY.  
d) Write AAh to NVMKEY.  
For protection against accidental operations, the write  
initiate sequence for NVMKEY must be used to allow  
any erase or program operation to proceed. After the  
programming command has been executed, the user  
must wait for the programming time until programming  
is complete. The two instructions following the start of  
the programming sequence should be NOPs, as shown  
in Example 5-3.  
e) Set the WR bit (NVMCON<15>). The erase  
cycle begins and the CPU stalls for the dura-  
tion of the erase cycle. When the erase is  
done, the WR bit is cleared automatically.  
EXAMPLE 5-1:  
ERASING A PROGRAM MEMORY BLOCK  
; Set up NVMCON for block erase operation  
MOV  
MOV  
#0x4042, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
; Initialize PM Page Boundary SFR  
; Initialize in-page EA[15:0] pointer  
; Set base address of erase block  
; Block all interrupts with priority <7  
; for next 5 instructions  
TBLWTL W0, [W0]  
DISI  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
DS39881D-page 52  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
EXAMPLE 5-2:  
LOADING THE WRITE BUFFERS  
; Set up NVMCON for row programming operations  
MOV  
MOV  
#0x4001, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000, W0  
W0, TBLPAG  
#0x6000, W0  
;
; Initialize PM Page Boundary SFR  
; An example program memory address  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
TBLWTL  
#LOW_WORD_0, W2  
#HIGH_BYTE_0, W3  
W2, [W0]  
;
;
; Write PM low word into program latch  
; Write PM high byte into program latch  
TBLWTH  
W3, [W0++]  
; 1st_program_word  
MOV  
#LOW_WORD_1, W2  
#HIGH_BYTE_1, W3  
W2, [W0]  
;
;
MOV  
TBLWTL  
; Write PM low word into program latch  
; Write PM high byte into program latch  
TBLWTH  
W3, [W0++]  
;
2nd_program_word  
MOV  
MOV  
TBLWTL  
#LOW_WORD_2, W2  
#HIGH_BYTE_2, W3  
W2, [W0]  
;
;
; Write PM low word into program latch  
; Write PM high byte into program latch  
TBLWTH  
W3, [W0++]  
; 63rd_program_word  
MOV  
#LOW_WORD_31, W2  
;
MOV  
TBLWTL  
TBLWTH  
#HIGH_BYTE_31, W3  
W2, [W0]  
W3, [W0]  
;
; Write PM low word into program latch  
; Write PM high byte into program latch  
EXAMPLE 5-3:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
BTSC  
BRA  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; 2 NOPs required after setting WR  
;
; Wait for the sequence to be completed  
;
NVMCON, #15  
$-2  
2010 Microchip Technology Inc.  
DS39881D-page 53  
PIC24FJ64GA004 FAMILY  
instructions write the desired data into the write latches  
and specify the lower 16 bits of the program memory  
address to write to. To configure the NVMCON register  
for a word write, set the NVMOP bits (NVMCON<3:0>)  
to ‘0011’. The write is performed by executing the  
unlock sequence and setting the WR bit (see  
Example 5-4).  
5.5.2  
PROGRAMMING A SINGLE WORD  
OF FLASH PROGRAM MEMORY  
If a Flash location has been erased, it can be pro-  
grammed using table write instructions to write an  
instruction word (24-bit) into the write latch. The  
TBLPAG register is loaded with the 8 Most Significant  
Bytes of the Flash address. The TBLWTLand TBLWTH  
EXAMPLE 5-4:  
PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY  
; Setup a pointer to data Program Memory  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
;Initialize PM Page Boundary SFR  
;Initialize a register with program memory address  
MOV  
MOV  
#LOW_WORD_N, W2  
#HIGH_BYTE_N, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; Setup NVMCON for programming one word to data Program Memory  
MOV  
MOV  
#0x4003, W0  
W0, NVMCON  
;
; Set NVMOP bits to 0011  
DISI  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#5  
; Disable interrupts while the KEY sequence is written  
; Write the key sequence  
#0x55, W0  
W0, NVMKEY  
#0xAA, W0  
W0, NVMKEY  
NVMCON, #WR  
; Start the write cycle  
; 2 NOPs required after setting WR  
;
DS39881D-page 54  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
Any active source of Reset will make the SYSRST  
signal active. Many registers associated with the CPU  
6.0  
RESETS  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 7. Reset” (DS39712).  
and peripherals are forced to a known Reset state.  
Most registers are unaffected by a Reset; their status is  
unknown on POR and unchanged by all other Resets.  
Note:  
Refer to the specific peripheral or CPU  
section of this manual for register Reset  
states.  
The Reset module combines all Reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
All types of device Reset will set a corresponding status  
bit in the RCON register to indicate the type of Reset  
(see Register 6-1). A Power-on Reset will clear all bits  
except for the BOR and POR bits (RCON<1:0>) which  
are set. The user may set or clear any bit at any time  
during code execution. The RCON bits only serve as  
status bits. Setting a particular Reset status bit in  
software will not cause a device Reset to occur.  
• POR: Power-on Reset  
• MCLR: Pin Reset  
• SWR: RESETInstruction  
• WDT: Watchdog Timer Reset  
• BOR: Brown-out Reset  
The RCON register also has other bits associated with  
the Watchdog Timer and device power-saving states.  
The function of these bits is discussed in other sections  
of this manual.  
• CM: Configuration Mismatch Reset  
• TRAPR: Trap Conflict Reset  
• IOPUWR: Illegal Opcode Reset  
• UWR: Uninitialized W Register Reset  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset will be meaningful.  
A simplified block diagram of the Reset module is  
shown in Figure 6-1.  
FIGURE 6-1:  
RESET SYSTEM BLOCK DIAGRAM  
RESET  
Instruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
POR  
VDD Rise  
Detect  
SYSRST  
VDD  
Brown-out  
Reset  
BOR  
Enable Voltage Regulator  
Trap Conflict  
Illegal Opcode  
Configuration Mismatch  
Uninitialized W Register  
2010 Microchip Technology Inc.  
DS39881D-page 55  
PIC24FJ64GA004 FAMILY  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER(1)  
R/W-0  
TRAPR  
bit 15  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CM  
R/W-0  
IOPUWR  
VREGS  
bit 8  
R/W-0  
EXTR  
R/W-0  
SWR  
R/W-0  
SWDTEN(2)  
R/W-0  
WDTO  
R/W-0  
R/W-0  
IDLE  
R/W-1  
BOR  
R/W-1  
POR  
SLEEP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit  
1= An illegal opcode detection, an illegal address mode or uninitialized W register used as an  
Address Pointer caused a Reset  
0= An illegal opcode or uninitialized W Reset has not occurred  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
CM: Configuration Word Mismatch Reset Flag bit  
1= A Configuration Word Mismatch Reset has occurred  
0= A Configuration Word Mismatch Reset has not occurred  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
VREGS: Voltage Regulator Standby Enable bit  
1= Regulator remains active during Sleep  
0= Regulator goes to standby during Sleep  
EXTR: External Reset (MCLR) Pin bit  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
SWR: Software Reset (Instruction) Flag bit  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
SWDTEN: Software Enable/Disable of WDT bit(2)  
1= WDT is enabled  
0= WDT is disabled  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
SLEEP: Wake From Sleep Flag bit  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
IDLE: Wake-up From Idle Flag bit  
1= Device has been in Idle mode  
0= Device has not been in Idle mode  
BOR: Brown-out Reset Flag bit  
1= A Brown-out Reset has occurred. Note that BOR is also set after a Power-on Reset.  
0= A Brown-out Reset has not occurred  
POR: Power-on Reset Flag bit  
1= A Power-up Reset has occurred  
0= A Power-up Reset has not occurred  
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
DS39881D-page 56  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 6-1:  
RESET FLAG BIT OPERATION  
Setting Event  
Flag Bit  
Clearing Event  
TRAPR (RCON<15>)  
IOPUWR (RCON<14>)  
CM (RCON<9>)  
Trap Conflict Event  
POR  
Illegal Opcode or Uninitialized W Register Access  
Configuration Mismatch Reset  
MCLR Reset  
POR  
POR  
EXTR (RCON<7>)  
SWR (RCON<6>)  
WDTO (RCON<4>)  
SLEEP (RCON<3>)  
IDLE (RCON<2>)  
BOR (RCON<1>)  
POR (RCON<0>)  
POR  
RESETInstruction  
POR  
WDT Time-out  
PWRSAVInstruction, POR  
PWRSAV #SLEEPInstruction  
PWRSAV #IDLEInstruction  
POR, BOR  
POR  
POR  
POR  
Note: All Reset flag bits may be set or cleared by the user software.  
6.1  
Clock Source Selection at Reset  
6.2  
Device Reset Times  
If clock switching is enabled, the system clock source at  
device Reset is chosen as shown in Table 6-2. If clock  
switching is disabled, the system clock source is always  
selected according to the oscillator Configuration bits.  
Refer to Section 8.0 “Oscillator Configuration” for  
further details.  
The Reset times for various types of device Reset are  
summarized in Table 6-3. Note that the system Reset  
signal, SYSRST, is released after the POR and PWRT  
delay times expire.  
The time that the device actually begins to execute  
code will also depend on the system oscillator delays,  
which include the Oscillator Start-up Timer (OST) and  
the PLL lock time. The OST and PLL lock times occur  
in parallel with the applicable SYSRST delay times.  
TABLE 6-2:  
OSCILLATOR SELECTION vs.  
TYPE OF RESET (CLOCK  
SWITCHING ENABLED)  
The FSCM delay determines the time at which the  
FSCM begins to monitor the system clock source after  
the SYSRST signal is released.  
Reset Type  
Clock Source Determinant  
POR  
BOR  
FNOS Configuration bits  
(CW2<10:8>)  
MCLR  
WDTO  
SWR  
COSC Control bits  
(OSCCON<14:12>)  
2010 Microchip Technology Inc.  
DS39881D-page 57  
PIC24FJ64GA004 FAMILY  
TABLE 6-3:  
Reset Type  
POR  
RESET DELAY TIMES FOR VARIOUS DEVICE RESETS  
System Clock  
Delay  
FSCM  
Delay  
Clock Source  
SYSRST Delay  
Notes  
1, 2, 3  
EC, FRC, FRCDIV, LPRC TPOR + TSTARTUP + TRST  
TFSCM  
TFSCM  
TFSCM  
ECPLL, FRCPLL  
XT, HS, SOSC  
XTPLL, HSPLL  
EC, FRC, FRCDIV, LPRC  
ECPLL, FRCPLL  
XT, HS, SOSC  
XTPLL, HSPLL  
Any Clock  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TLOCK  
TOST  
1, 2, 3, 5, 6  
1, 2, 3, 4, 6  
TPOR + TSTARTUP + TRST TOST + TLOCK  
1, 2, 3, 4, 5, 6  
BOR  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TRST  
2, 3  
TLOCK  
TFSCM  
TFSCM  
TFSCM  
2, 3, 5, 6  
TOST  
2, 3, 4, 6  
TOST + TLOCK  
2, 3, 4, 5, 6  
MCLR  
WDT  
3
3
3
3
3
3
Any Clock  
TRST  
Software  
Any clock  
TRST  
Illegal Opcode Any Clock  
Uninitialized W Any Clock  
TRST  
TRST  
Trap Conflict  
Any Clock  
TRST  
Note 1: TPOR = Power-on Reset delay (10 s nominal).  
2: TSTARTUP = TVREG (10 s nominal) if on-chip regulator is enabled or TPWRT (64 ms nominal) if on-chip  
regulator is disabled.  
3: TRST = Internal state Reset time.  
4: TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the  
oscillator clock to the system.  
5: TLOCK = PLL lock time (2 ms nominal).  
6: TFSCM = Fail-Safe Clock Monitor delay.  
DS39881D-page 58  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
6.2.1  
POR AND LONG OSCILLATOR  
START-UP TIMES  
6.2.2.1  
FSCM Delay for Crystal and PLL  
Clock Sources  
The oscillator start-up circuitry and its associated delay  
timers are not linked to the device Reset delays that  
occur at power-up. Some crystal circuits (especially  
low-frequency crystals) will have a relatively long  
start-up time. Therefore, one or more of the following  
conditions is possible after SYSRST is released:  
When the system clock source is provided by a crystal  
oscillator and/or the PLL, a small delay, TFSCM, will  
automatically be inserted after the POR and PWRT  
delay times. The FSCM will not begin to monitor the  
system clock source until this delay expires. The FSCM  
delay time is nominally 100 s and provides additional  
time for the oscillator and/or PLL to stabilize. In most  
cases, the FSCM delay will prevent an oscillator failure  
trap at a device Reset when the PWRT is disabled.  
• The oscillator circuit has not begun to oscillate.  
• The Oscillator Start-up Timer has not expired (if a  
crystal oscillator is used).  
• The PLL has not achieved a lock (if PLL is used).  
6.3  
Special Function Register Reset  
States  
The device will not begin to execute code until a valid  
clock source has been released to the system. There-  
fore, the oscillator and PLL start-up delays must be  
considered when the Reset delay time must be known.  
Most of the Special Function Registers (SFRs) associ-  
ated with the PIC24F CPU and peripherals are reset to a  
particular value at a device Reset. The SFRs are  
grouped by their peripheral or CPU function and their  
Reset values are specified in each section of this manual.  
6.2.2  
FAIL-SAFE CLOCK MONITOR  
(FSCM) AND DEVICE RESETS  
The Reset value for each SFR does not depend on the  
type of Reset, with the exception of four registers. The  
Reset value for the Reset Control register, RCON, will  
depend on the type of device Reset. The Reset value  
for the Oscillator Control register, OSCCON, will  
depend on the type of Reset and the programmed  
values of the FNOSC bits in the CW2 register (see  
Table 6-2). The RCFGCAL and NVMCON registers are  
only affected by a POR.  
If the FSCM is enabled, it will begin to monitor the  
system clock source when SYSRST is released. If a  
valid clock source is not available at this time, the  
device will automatically switch to the FRC oscillator  
and the user can switch to the desired crystal oscillator  
in the Trap Service Routine.  
2010 Microchip Technology Inc.  
DS39881D-page 59  
PIC24FJ64GA004 FAMILY  
NOTES:  
DS39881D-page 60  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
7.1.1  
ALTERNATE INTERRUPT VECTOR  
TABLE  
7.0  
INTERRUPT CONTROLLER  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 8. Interrupts” (DS39707).  
The Alternate Interrupt Vector Table (AIVT) is located  
after the IVT, as shown in Figure 7-1. Access to the  
AIVT is provided by the ALTIVT control bit  
(INTCON2<15>). If the ALTIVT bit is set, all interrupt  
and exception processes will use the alternate vectors  
instead of the default vectors. The alternate vectors are  
organized in the same manner as the default vectors.  
The PIC24F interrupt controller reduces the numerous  
peripheral interrupt request signals to a single interrupt  
request signal to the PIC24F CPU. It has the following  
features:  
The AIVT supports emulation and debugging efforts by  
providing a means to switch between an application  
and a support environment without requiring the inter-  
rupt vectors to be reprogrammed. This feature also  
enables switching between applications for evaluation  
of different software algorithms at run time. If the AIVT  
is not needed, the AIVT should be programmed with  
the same addresses used in the IVT.  
• Up to 8 processor exceptions and software traps  
• 7 user-selectable priority levels  
• Interrupt Vector Table (IVT) with up to 118 vectors  
• A unique vector for each interrupt or exception  
source  
• Fixed priority within a specified user priority level  
7.2  
Reset Sequence  
• Alternate Interrupt Vector Table (AIVT) for debug  
support  
A device Reset is not a true exception because the  
interrupt controller is not involved in the Reset process.  
The PIC24F devices clear their registers in response to  
a Reset which forces the PC to zero. The micro-  
controller then begins program execution at location  
000000h. The user programs a GOTOinstruction at the  
Reset address, which redirects program execution to  
the appropriate start-up routine.  
• Fixed interrupt entry and return latencies  
7.1  
Interrupt Vector Table  
The Interrupt Vector Table (IVT) is shown in Figure 7-1.  
The IVT resides in program memory, starting at location  
000004h. The IVT contains 126 vectors, consisting of  
8 non-maskable trap vectors, plus up to 118 sources of  
interrupt. In general, each interrupt source has its own  
vector. Each interrupt vector contains a 24-bit wide  
address. The value programmed into each interrupt  
vector location is the starting address of the associated  
Interrupt Service Routine (ISR).  
Note:  
Any unimplemented or unused vector  
locations in the IVT and AIVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
Interrupt vectors are prioritized in terms of their natural  
priority; this is linked to their position in the vector table.  
All other things being equal, lower addresses have a  
higher natural priority. For example, the interrupt asso-  
ciated with vector 0 will take priority over interrupts at  
any other vector address.  
PIC24FJ64GA004  
family  
devices  
implement  
non-maskable traps and unique interrupts. These are  
summarized in Table 7-1 and Table 7-2.  
2010 Microchip Technology Inc.  
DS39881D-page 61  
PIC24FJ64GA004 FAMILY  
FIGURE 7-1:  
PIC24F INTERRUPT VECTOR TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
000000h  
000002h  
000004h  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
000014h  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
00007Ch  
00007Eh  
000080h  
(1)  
Interrupt Vector Table (IVT)  
Interrupt Vector 116  
Interrupt Vector 117  
Reserved  
0000FCh  
0000FEh  
000100h  
000102h  
Reserved  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
000114h  
(1)  
Alternate Interrupt Vector Table (AIVT)  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
00017Ch  
00017Eh  
000180h  
Interrupt Vector 116  
Interrupt Vector 117  
Start of Code  
0001FEh  
000200h  
Note 1: See Table 7-2 for the interrupt vector list.  
TABLE 7-1:  
TRAP VECTOR DETAILS  
IVT Address  
Vector Number  
AIVT Address  
Trap Source  
0
1
2
3
4
5
6
7
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000104h  
000106h  
000108h  
00010Ah  
00010Ch  
00010Eh  
000110h  
0001172h  
Reserved  
Oscillator Failure  
Address Error  
Stack Error  
Math Error  
Reserved  
Reserved  
Reserved  
DS39881D-page 62  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 7-2:  
IMPLEMENTED INTERRUPT VECTORS  
Interrupt Bit Locations  
Enable  
Vector  
Number  
AIVT  
Address  
Interrupt Source  
IVT Address  
Flag  
Priority  
ADC1 Conversion Done  
Comparator Event  
CRC Generator  
External Interrupt 0  
External Interrupt 1  
External Interrupt 2  
I2C1 Master Event  
I2C1 Slave Event  
I2C2 Master Event  
I2C2 Slave Event  
Input Capture 1  
Input Capture 2  
Input Capture 3  
Input Capture 4  
Input Capture 5  
Input Change Notification  
Output Compare 1  
Output Compare 2  
Output Compare 3  
Output Compare 4  
Output Compare 5  
Parallel Master Port  
Real-Time Clock/Calendar  
SPI1 Error  
13  
18  
67  
0
00002Eh  
000038h  
00009Ah  
000014h  
00003Ch  
00004Eh  
000036h  
000034h  
000078h  
000076h  
000016h  
00001Eh  
00005Eh  
000060h  
000062h  
00003Ah  
000018h  
000020h  
000046h  
000048h  
000066h  
00006Eh  
000090h  
000026h  
000028h  
000054h  
000056h  
00001Ah  
000022h  
000024h  
00004Ah  
00004Ch  
000096h  
00002Ah  
00002Ch  
000098h  
000050h  
000052h  
0000A4h  
00012Eh  
000138h  
00019Ah  
000114h  
00013Ch  
00014Eh  
000136h  
000034h  
000178h  
000176h  
000116h  
00011Eh  
00015Eh  
000160h  
000162h  
00013Ah  
000118h  
000120h  
000146h  
000148h  
000166h  
00016Eh  
000190h  
000126h  
000128h  
000154h  
000156h  
00011Ah  
000122h  
000124h  
00014Ah  
00014Ch  
000196h  
00012Ah  
00012Ch  
000198h  
000150h  
000152h  
000124h  
IFS0<13>  
IFS1<2>  
IFS4<3>  
IFS0<0>  
IFS1<4>  
IFS1<13>  
IFS1<1>  
IFS1<0>  
IFS3<2>  
IFS3<1>  
IFS0<1>  
IFS0<5>  
IFS2<5>  
IFS2<6>  
IFS2<7>  
IFS1<3>  
IFS0<2>  
IFS0<6>  
IFS1<9>  
IFS1<10>  
IFS2<9>  
IFS2<13>  
IFS3<14>  
IFS0<9>  
IFS0<10>  
IFS2<0>  
IFS2<1>  
IFS0<3>  
IFS0<7>  
IFS0<8>  
IFS1<11>  
IFS1<12>  
IFS4<1>  
IFS0<11>  
IFS0<12>  
IFS4<2>  
IFS1<14>  
IFS1<15>  
IFS4<8>  
IEC0<13>  
IEC1<2>  
IEC4<3>  
IEC0<0>  
IEC1<4>  
IEC1<13>  
IEC1<1>  
IEC1<0>  
IEC3<2>  
IEC3<1>  
IEC0<1>  
IEC0<5>  
IEC2<5>  
IEC2<6>  
IEC2<7>  
IEC1<3>  
IEC0<2>  
IEC0<6>  
IEC1<9>  
IEC1<10>  
IEC2<9>  
IEC2<13>  
IEC3<13>  
IEC0<9>  
IEC0<10>  
IEC0<0>  
IEC2<1>  
IEC0<3>  
IEC0<7>  
IEC0<8>  
IEC1<11>  
IEC1<12>  
IEC4<1>  
IEC0<11>  
IEC0<12>  
IEC4<2>  
IEC1<14>  
IEC1<15>  
IEC4<8>  
IPC3<6:4>  
IPC4<10:8>  
IPC16<14:12>  
IPC0<2:0>  
20  
29  
17  
16  
50  
49  
1
IPC5<2:0>  
IPC7<6:4>  
IPC4<6:4>  
IPC4<2:0>  
IPC12<10:8>  
IPC12<6:4>  
IPC0<6:4>  
5
IPC1<6:4>  
37  
38  
39  
19  
2
IPC9<6:4>  
IPC9<10:8>  
IPC9<14:12>  
IPC4<14:12>  
IPC0<10:8>  
IPC1<10:8>  
IPC6<6:4>  
6
25  
26  
41  
45  
62  
9
IPC6<10:8>  
IPC10<6:4>  
IPC11<6:4>  
IPC15<10:8>  
IPC2<6:4>  
SPI1 Event  
10  
32  
33  
3
IPC2<10:8>  
IPC8<2:0>  
SPI2 Error  
SPI2 Event  
IPC8<6:4>  
Timer1  
IPC0<14:12>  
IPC1<14:12>  
IPC2<2:0>  
Timer2  
7
Timer3  
8
Timer4  
27  
28  
65  
11  
12  
66  
30  
31  
72  
IPC6<14:12>  
IPC7<2:0>  
Timer5  
UART1 Error  
IPC16<6:4>  
IPC2<14:12>  
IPC3<2:0>  
UART1 Receiver  
UART1 Transmitter  
UART2 Error  
IPC16<10:8>  
IPC7<10:8>  
IPC7<14:12>  
IPC17<2:0>  
UART2 Receiver  
UART2 Transmitter  
LVD Low-Voltage Detect  
2010 Microchip Technology Inc.  
DS39881D-page 63  
PIC24FJ64GA004 FAMILY  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the same sequence that they are  
listed in Table 7-2. For example, the INT0 (External  
Interrupt 0) is shown as having a vector number and a  
natural order priority of 0. Thus, the INT0IF status bit is  
found in IFS0<0>, the INT0IE enable bit in IEC0<0>  
and the INT0IP<2:0> priority bits in the first position of  
IPC0 (IPC0<2:0>).  
7.3  
Interrupt Control and Status  
Registers  
The PIC24FJ64GA004 family of devices implements a  
total of 28 registers for the interrupt controller:  
• INTCON1  
• INTCON2  
• IFS0 through IFS4  
Although they are not specifically part of the interrupt  
control hardware, two of the CPU control registers con-  
tain bits that control interrupt functionality. The ALU  
STATUS register (SR) contains the IPL2:IPL0 bits  
(SR<7:5>). These indicate the current CPU interrupt  
priority level. The user may change the current CPU  
priority level by writing to the IPL bits.  
• IEC0 through IEC4  
• IPC0 through IPC12, IPC15, IPC16 and IPC18  
Global interrupt control functions are controlled from  
INTCON1 and INTCON2. INTCON1 contains the Inter-  
rupt Nesting Disable (NSTDIS) bit, as well as the  
control and status flags for the processor trap sources.  
The INTCON2 register controls the external interrupt  
request signal behavior and the use of the Alternate  
Interrupt Vector Table.  
The CORCON register contains the IPL3 bit, which  
together with IPL2:IPL0, also indicates the current CPU  
priority level. IPL3 is a read-only bit so that trap events  
cannot be masked by the user software.  
The IFSx registers maintain all of the interrupt request  
flags. Each source of interrupt has a status bit which is  
set by the respective peripherals, or external signal,  
and is cleared via software.  
All interrupt registers are described in Register 7-1  
through Register 7-29, in the following pages.  
The IECx registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
The IPCx registers are used to set the interrupt priority  
level for each source of interrupt. Each user interrupt  
source can be assigned to one of eight priority levels.  
DS39881D-page 64  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 7-1:  
SR: ALU STATUS REGISTER (IN CPU)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
DC(1)  
bit 15  
bit 8  
R/W-0  
IPL2(2,3)  
bit 7  
R/W-0  
IPL1(2,3)  
R/W-0  
IPL0(2,3)  
R-0  
RA(1)  
R/W-0  
N(1)  
R/W-0  
OV(1)  
R/W-0  
Z(1)  
R/W-0  
C(1)  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-5  
IPL2:IPL0: CPU Interrupt Priority Level Status bits(2,3)  
111= CPU interrupt priority level is 7 (15). User interrupts disabled.  
110= CPU interrupt priority level is 6 (14)  
101= CPU interrupt priority level is 5 (13)  
100= CPU interrupt priority level is 4 (12)  
011= CPU interrupt priority level is 3 (11)  
010= CPU interrupt priority level is 2 (10)  
001= CPU interrupt priority level is 1 (9)  
000= CPU interrupt priority level is 0 (8)  
Note 1: See Register 3-1 for the description of the remaining bit(s) that are not dedicated to interrupt control  
functions.  
2: The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU interrupt priority level.  
The value in parentheses indicates the interrupt priority level if IPL3 = 1.  
3: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
REGISTER 7-2:  
CORCON: CPU CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV(1)  
U-0  
U-0  
bit 7  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 3  
IPL3: CPU Interrupt Priority Level Status bit(2)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
Note 1: See Register 3-2 for the description of the remaining bit(s) that are not dedicated to interrupt control  
functions.  
2: The IPL3 bit is concatenated with the IPL2:IPL0 bits (SR<7:5>) to form the CPU interrupt priority level.  
2010 Microchip Technology Inc.  
DS39881D-page 65  
PIC24FJ64GA004 FAMILY  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
NSTDIS  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
MATHERR  
ADDRERR  
STKERR  
OSCFAIL  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
bit 14-5  
bit 4  
Unimplemented: Read as ‘0’  
MATHERR: Arithmetic Error Trap Status bit  
1= Overflow trap has occurred  
0= Overflow trap has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
DS39881D-page 66  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 7-4:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-0  
ALTIVT  
bit 15  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DISI  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
INT2EP  
INT1EP  
INT0EP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ALTIVT: Enable Alternate Interrupt Vector Table bit  
1= Use Alternate Interrupt Vector Table  
0= Use standard (default) vector table  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIinstruction is not active  
bit 13-3  
bit 2  
Unimplemented: Read as ‘0’  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 1  
bit 0  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
2010 Microchip Technology Inc.  
DS39881D-page 67  
PIC24FJ64GA004 FAMILY  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0  
U-0  
U-0  
R/W-0  
AD1IF  
R/W-0  
R/W-0  
R/W-0  
SPI1IF  
R/W-0  
R/W-0  
T3IF  
U1TXIF  
U1RXIF  
SPF1IF  
bit 15  
bit 8  
R/W-0  
T2IF  
R/W-0  
OC2IF  
R/W-0  
IC2IF  
U-0  
R/W-0  
T1IF  
R/W-0  
OC1IF  
R/W-0  
IC1IF  
R/W-0  
INT0IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
AD1IF: A/D Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIF: UART1 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1RXIF: UART1 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1IF: SPI1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPF1IF: SPI1 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
T3IF: Timer3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
T2IF: Timer2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
OC2IF: Output Compare Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
IC2IF: Input Capture Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1IF: Timer1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
bit 0  
OC1IF: Output Compare Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC1IF: Input Capture Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT0IF: External Interrupt 0 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS39881D-page 68  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 7-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1  
R/W-0  
U2TXIF  
bit 15  
R/W-0  
R/W-0  
INT2IF  
R/W-0  
T5IF  
R/W-0  
T4IF  
R/W-0  
OC4IF  
R/W-0  
OC3IF  
U-0  
U2RXIF  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
INT1IF  
R/W-0  
CNIF  
R/W-0  
CMIF  
R/W-0  
R/W-0  
MI2C1IF  
SI2C1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIF: UART2 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U2RXIF: UART2 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT2IF: External Interrupt 2 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T5IF: Timer5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T4IF: Timer4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC4IF: Output Compare Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC3IF: Output Compare Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8-5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IF: External Interrupt 1 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
CNIF: Input Change Notification Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
CMIF: Comparator Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
MI2C1IF: Master I2C1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SI2C1IF: Slave I2C1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2010 Microchip Technology Inc.  
DS39881D-page 69  
PIC24FJ64GA004 FAMILY  
REGISTER 7-7:  
IFS2: INTERRUPT FLAG STATUS REGISTER 2  
U-0  
U-0  
R/W-0  
PMPIF  
U-0  
U-0  
U-0  
R/W-0  
OC5IF  
U-0  
bit 15  
bit 8  
R/W-0  
IC5IF  
R/W-0  
IC4IF  
R/W-0  
IC3IF  
U-0  
U-0  
U-0  
R/W-0  
SPI2IF  
R/W-0  
SPF2IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
PMPIF: Parallel Master Port Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-10  
bit 9  
Unimplemented: Read as ‘0’  
OC5IF: Output Compare Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
bit 7  
Unimplemented: Read as ‘0’  
IC5IF: Input Capture Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
bit 5  
IC4IF: Input Capture Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC3IF: Input Capture Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4-2  
bit 1  
Unimplemented: Read as ‘0’  
SPI2IF: SPI2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
SPI2IF: SPI2 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS39881D-page 70  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 7-8:  
IFS3: INTERRUPT FLAG STATUS REGISTER 3  
U-0  
R/W-0  
RTCIF  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
MI2C2IF  
SI2C2IF  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
RTCIF: Real-Time Clock/Calendar Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13-3  
bit 2  
Unimplemented: Read as ‘0’  
MI2C2IF: Master I2C2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 1  
bit 0  
SI2C2IF: Slave I2C2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
DS39881D-page 71  
PIC24FJ64GA004 FAMILY  
REGISTER 7-9:  
IFS4: INTERRUPT FLAG STATUS REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
LVDIF  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CRCIF  
R/W-0  
R/W-0  
U-0  
U2ERIF  
U1ERIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
LVDIF: Low-Voltage Detect Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
CRCIF: CRC Generator Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
bit 0  
U2ERIF: UART2 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1ERIF: UART1 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
DS39881D-page 72  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0  
U-0  
U-0  
R/W-0  
AD1IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3IE  
U1TXIE  
U1RXIE  
SPI1IE  
SPF1IE  
bit 15  
bit 8  
R/W-0  
T2IE  
R/W-0  
OC2IE  
R/W-0  
IC2IE  
U-0  
R/W-0  
T1IE  
R/W-0  
OC1IE  
R/W-0  
IC1IE  
R/W-0  
INT0IE(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
AD1IE: A/D Conversion Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIE: UART1 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U1RXIE: UART1 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI1IE: SPI1 Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPF1IE: SPI1 Fault Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8  
T3IE: Timer3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 7  
T2IE: Timer2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
OC2IE: Output Compare Channel 2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 5  
IC2IE: Input Capture Channel 2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1IE: Timer1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 2  
bit 1  
bit 0  
OC1IE: Output Compare Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC1IE: Input Capture Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT0IE: External Interrupt 0 Enable bit(1)  
1= Interrupt request enabled  
0= Interrupt request not enabled  
Note 1: If INTxIE = 1, this external interrupt input must be configured to an available RPn pin. See Section 10.4  
”Peripheral Pin Select” for more information.  
2010 Microchip Technology Inc.  
DS39881D-page 73  
PIC24FJ64GA004 FAMILY  
REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
INT2IE(1)  
R/W-0  
T5IE  
R/W-0  
T4IE  
R/W-0  
OC4IE  
R/W-0  
OC3IE  
U-0  
U2TXIE  
U2RXIE  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
INT1IE(1)  
R/W-0  
CNIE  
R/W-0  
CMIE  
R/W-0  
R/W-0  
MI2C1IE  
SI2C1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIE: UART2 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U2RXIE: UART2 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT2IE: External Interrupt 2 Enable bit(1)  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T5IE: Timer5 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T4IE: Timer4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC4IE: Output Compare Channel 4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC3IE: Output Compare Channel 3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8-5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IE: External Interrupt 1 Enable bit(1)  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 3  
bit 2  
bit 1  
bit 0  
CNIE: Input Change Notification Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
CMIE: Comparator Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
MI2C1IE: Master I2C1 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SI2C1IE: Slave I2C1 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
Note 1: If INTxIE = 1, this external interrupt input must be configured to an available RPn pin. See Section 10.4  
”Peripheral Pin Select” for more information.  
DS39881D-page 74  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
OC5IE  
U-0  
PMPIE  
bit 15  
bit 8  
R/W-0  
IC5IE  
R/W-0  
IC4IE  
R/W-0  
IC3IE  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
SPI2IE  
SPF2IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
PMPIE: Parallel Master Port Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 12-10  
bit 9  
Unimplemented: Read as ‘0’  
OC5IE: Output Compare Channel 5 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8  
bit 7  
Unimplemented: Read as ‘0’  
IC5IE: Input Capture Channel 5 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
bit 5  
IC4IE: Input Capture Channel 4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC3IE: Input Capture Channel 3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 4-2  
bit 1  
Unimplemented: Read as ‘0’  
SPI2IE: SPI2 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 0  
SPF2IE: SPI2 Fault Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
2010 Microchip Technology Inc.  
DS39881D-page 75  
PIC24FJ64GA004 FAMILY  
REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3  
U-0  
R/W-0  
RTCIE  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
MI2C2IE  
SI2C2IE  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
RTCIE: Real-Time Clock/Calendar Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 13-3  
bit 2  
Unimplemented: Read as ‘0’  
MI2C2IE: Master I2C2 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 1  
bit 0  
SI2C2IE: Slave I2C2 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
Unimplemented: Read as ‘0’  
DS39881D-page 76  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
LVDIE  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
CRCIE  
U2ERIE  
U1ERIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
LVDIE: Low-Voltage Detect Interrupt Enable Status bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
CRCIE: CRC Generator Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 2  
U2ERIE: UART2 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 1  
bit 0  
U1ERIE: UART1 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
DS39881D-page 77  
PIC24FJ64GA004 FAMILY  
REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0  
U-0  
R/W-1  
T1IP2  
R/W-0  
T1IP1  
R/W-0  
T1IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC1IP2  
OC1IP1  
OC1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
IC1IP2  
R/W-0  
IC1IP1  
R/W-0  
IC1IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT0IP2  
INT0IP1  
INT0IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
T1IP2:T1IP0: Timer1 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC1IP2:OC1IP0: Output Compare Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC1IP2:IC1IP0: Input Capture Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT0IP2:INT0IP0: External Interrupt 0 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS39881D-page 78  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1  
U-0  
R/W-1  
T2IP2  
R/W-0  
T2IP1  
R/W-0  
T2IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC2IP2  
OC2IP1  
OC2IP0  
bit 15  
bit 8  
U-0  
R/W-1  
IC2IP2  
R/W-0  
IC2IP1  
R/W-0  
IC2IP0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
T2IP2:T2IP0: Timer2 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC2IP2:OC2IP0: Output Compare Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC2IP2:IC2IP0: Input Capture Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
DS39881D-page 79  
PIC24FJ64GA004 FAMILY  
REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U1RXIP2  
U1RXIP1  
U1RXIP0  
SPI1IP2  
SPI1IP1  
SPI1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
T3IP2  
R/W-0  
T3IP1  
R/W-0  
T3IP0  
SPF1IP2  
SPF1IP1  
SPF1IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U1RXIP2:U1RXIP0: UART1 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
SPI1IP2:SPI1IP0: SPI1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPF1IP2:SPF1IP0: SPI1 Fault Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T3IP2:T3IP0: Timer3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS39881D-page 80  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
AD1IP2  
AD1IP1  
AD1IP0  
U1TXIP2  
U1TXIP1  
U1TXIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
AD1IP2:AD1IP0: A/D Conversion Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U1TXIP2:U1TXIP0: UART1 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2010 Microchip Technology Inc.  
DS39881D-page 81  
PIC24FJ64GA004 FAMILY  
REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4  
U-0  
R/W-1  
CNIP2  
R/W-0  
CNIP1  
R/W-0  
CNIP0  
U-0  
R/W-1  
CMIP2  
R/W-0  
CMIP1  
R/W-0  
CMIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
MI2C1P2  
MI2C1P1  
MI2C1P0  
SI2C1P2  
SI2C1P1  
SI2C1P0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CNIP2:CNIP0: Input Change Notification Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
CMIP2:CMIP0: Comparator Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
MI2C1P2:MI2C1P0: Master I2C1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C1P2:SI2C1P0: Slave I2C1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS39881D-page 82  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT1IP2  
INT1IP1  
INT1IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
INT1IP2:INT1IP0: External Interrupt 1 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2010 Microchip Technology Inc.  
DS39881D-page 83  
PIC24FJ64GA004 FAMILY  
REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6  
U-0  
R/W-1  
T4IP2  
R/W-0  
T4IP1  
R/W-0  
T4IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC4IP2  
OC4IP1  
OC4IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
OC3IP2  
OC3IP1  
OC3IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
T4IP2:T4IP0: Timer4 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC4IP2:OC4IP0: Output Compare Channel 4 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
OC3IP2:OC3IP0: Output Compare Channel 3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39881D-page 84  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 7-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U2TXIP2  
U2TXIP1  
U2TXIP0  
U2RXIP2  
U2RXIP1  
U2RXIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
T5IP2  
R/W-0  
T5IP1  
R/W-0  
T5IP0  
INT2IP2  
INT2IP1  
INT2IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U2TXIP2:U2TXIP0: UART2 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U2RXIP2:U2RXIP0: UART2 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT2IP2:INT2IP0: External Interrupt 2 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T5IP2:T5IP0: Timer5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2010 Microchip Technology Inc.  
DS39881D-page 85  
PIC24FJ64GA004 FAMILY  
REGISTER 7-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
SPI2IP2  
SPI2IP1  
SPI2IP0  
SPF2IP2  
SPF2IP1  
SPF2IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
SPI2IP2:SPI2IP0: SPI2 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SPF2IP2:SPF2IP0: SPI2 Fault Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS39881D-page 86  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 7-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9  
U-0  
R/W-1  
IC5IP2  
R/W-0  
IC5IP1  
R/W-0  
IC5IP0  
U-0  
R/W-1  
IC4IP2  
R/W-0  
IC4IP1  
R/W-0  
IC4IP0  
bit 15  
bit 8  
U-0  
R/W-1  
IC3IP2  
R/W-0  
IC3IP1  
R/W-0  
IC3IP0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
IC5IP2:IC5IP0: Input Capture Channel 5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
IC4IP2:IC4IP0: Input Capture Channel 4 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC3IP2:IC3IP0: Input Capture Channel 3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
DS39881D-page 87  
PIC24FJ64GA004 FAMILY  
REGISTER 7-25: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
OC5IP2  
OC5IP1  
OC5IP0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
OC5IP2:OC5IP0: Output Compare Channel 5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
REGISTER 7-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
PMPIP2  
PMPIP1  
PMPIP0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
PMPIP2:PMPIP0: Parallel Master Port Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39881D-page 88  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 7-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
MI2C2P2  
MI2C2P1  
MI2C2P0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
SI2C2P2  
SI2C2P1  
SI2C2P0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
MI2C2P2:MI2C2P0: Master I2C2 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SI2C2P2:SI2C2P0: Slave I2C2 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
DS39881D-page 89  
PIC24FJ64GA004 FAMILY  
REGISTER 7-28: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
RTCIP2  
RTCIP1  
RTCIP0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
RTCIP2:RTCIP0: Real-Time Clock/Calendar Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
DS39881D-page 90  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 7-29: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
CRCIP2  
CRCIP1  
CRCIP0  
U2ERIP2  
U2ERIP1  
U2ERIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U1ERIP2  
U1ERIP1  
U1ERIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CRCIP2:CRCIP0: CRC Generator Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U2ERIP2:U2ERIP0: UART2 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
U1ERIP2:U1ERIP0: UART1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
DS39881D-page 91  
PIC24FJ64GA004 FAMILY  
REGISTER 7-30: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
LVDIP2  
LVDIP1  
LVDIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
LVDIP2:LVDIP0: Low-Voltage Detect Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS39881D-page 92  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
7.4.3  
TRAP SERVICE ROUTINE  
7.4  
Interrupt Setup Procedures  
A Trap Service Routine (TSR) is coded like an ISR,  
except that the appropriate trap status flag in the  
INTCON1 register must be cleared to avoid re-entry  
into the TSR.  
7.4.1  
INITIALIZATION  
To configure an interrupt source:  
1. Set the NSTDIS Control bit (INTCON1<15>) if  
nested interrupts are not desired.  
7.4.4  
INTERRUPT DISABLE  
2. Select the user-assigned priority level for the  
interrupt source by writing the control bits in the  
appropriate IPCx register. The priority level will  
depend on the specific application and type of  
interrupt source. If multiple priority levels are not  
desired, the IPCx register control bits for all  
enabled interrupt sources may be programmed  
to the same non-zero value.  
All user interrupts can be disabled using the following  
procedure:  
1. Push the current SR value onto the software  
stack using the PUSHinstruction.  
2. Force the CPU to priority level 7 by inclusive  
ORing the value OEh with SRL.  
To enable user interrupts, the POPinstruction may be  
Note: At a device Reset, the IPCx registers are  
initialized, such that all user interrupt  
sources are assigned to priority level 4.  
used to restore the previous SR value.  
Note that only user interrupts with a priority level of 7 or  
less can be disabled. Trap sources (level 8-15) cannot  
be disabled.  
3. Clear the interrupt flag status bit associated with  
the peripheral in the associated IFSx register.  
The DISI instruction provides a convenient way to  
disable interrupts of priority levels 1-6 for a fixed period  
of time. Level 7 interrupt sources are not disabled by  
the DISIinstruction.  
4. Enable the interrupt source by setting the  
interrupt enable control bit associated with the  
source in the appropriate IECx register.  
7.4.2  
INTERRUPT SERVICE ROUTINE  
The method that is used to declare an ISR and initialize  
the IVT with the correct vector address will depend on  
the programming language (i.e., ‘C’ or assembler) and  
the language development toolsuite that is used to  
develop the application. In general, the user must clear  
the interrupt flag in the appropriate IFSx register for the  
source of the interrupt that the ISR handles. Otherwise,  
the ISR will be re-entered immediately after exiting the  
routine. If the ISR is coded in assembly language, it  
must be terminated using a RETFIE instruction to  
unstack the saved PC value, SRL value and old CPU  
priority level.  
2010 Microchip Technology Inc.  
DS39881D-page 93  
PIC24FJ64GA004 FAMILY  
NOTES:  
DS39881D-page 94  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
• Software-controllable switching between various  
clock sources  
8.0  
OSCILLATOR  
CONFIGURATION  
• Software-controllable postscaler for selective  
clocking of CPU for system power savings  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 6. Oscillator” (DS39700).  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and permits safe application recovery  
or shutdown  
A simplified diagram of the oscillator system is shown  
in Figure 8-1.  
The oscillator system for PIC24FJ64GA004 family  
devices has the following features:  
• A total of four external and internal oscillator options  
as clock sources, providing 11 different clock modes  
• On-chip 4x PLL to boost internal operating frequency  
on select internal and external oscillator sources  
FIGURE 8-1:  
PIC24FJ64GA004 FAMILY CLOCK DIAGRAM  
PIC24FJ64GA004 Family  
Primary Oscillator  
CLKO  
XT, HS, EC  
CLKDIV<14:12>  
OSCO  
OSCI  
XTPLL, HSPLL  
ECPLL,FRCPLL  
CPU  
4 x PLL  
8 MHz  
4 MHz  
FRC  
Oscillator  
FRCDIV  
Peripherals  
8 MHz  
(nominal)  
CLKDIV<10:8>  
FRC  
LPRC  
LPRC  
Oscillator  
31 kHz (nominal)  
Secondary Oscillator  
SOSC  
SOSCO  
SOSCI  
SOSCEN  
Enable  
Oscillator  
Clock Control Logic  
Fail-Safe  
Clock  
Monitor  
WDT, PWRT  
Clock Source Option  
for Other Modules  
2010 Microchip Technology Inc.  
DS39881D-page 95  
PIC24FJ64GA004 FAMILY  
8.1  
CPU Clocking Scheme  
8.2  
Initial Configuration on POR  
The system clock source can be provided by one of  
four sources:  
The oscillator source (and operating mode) that is  
used at a device Power-on Reset event is selected  
using Configuration bit settings. The oscillator Config-  
uration bit settings are located in the Configuration  
registers in the program memory (refer to  
Section 24.1 “Configuration Bits” for further  
details). The Primary Oscillator Configuration bits,  
POSCMD1:POSCMD0 (Configuration Word 2<1:0>),  
and the Initial Oscillator Select Configuration bits,  
• Primary Oscillator (POSC) on the OSCI and  
OSCO pins  
• Secondary Oscillator (SOSC) on the SOSCI and  
SOSCO pins  
• Fast Internal RC (FRC) Oscillator  
• Low-Power Internal RC (LPRC) Oscillator  
FNOSC2:FNOSC0  
(Configuration Word 2<10:8>),  
The primary oscillator and FRC sources have the  
option of using the internal 4x PLL. The frequency of  
the FRC clock source can optionally be reduced by the  
programmable clock divider. The selected clock source  
generates the processor and peripheral clock sources.  
select the oscillator source that is used at a Power-on  
Reset. The FRC primary oscillator with postscaler  
(FRCDIV) is the default (unprogrammed) selection.  
The secondary oscillator, or one of the internal  
oscillators, may be chosen by programming these bit  
locations.  
The processor clock source is divided by two to pro-  
duce the internal instruction cycle clock, FCY. In this  
document, the instruction cycle clock is also denoted  
by FOSC/2. The internal instruction cycle clock, FOSC/2,  
can be provided on the OSCO I/O pin for some  
operating modes of the primary oscillator.  
The Configuration bits allow users to choose between  
the various clock modes, shown in Table 8-1.  
8.2.1  
CLOCK SWITCHING MODE  
CONFIGURATION BITS  
The FCKSM Configuration bits (Configuration  
Word 2<7:6>) are used to jointly configure device clock  
switching and the Fail-Safe Clock Monitor (FSCM).  
Clock switching is enabled only when FCKSM1 is  
programmed (‘0’). The FSCM is enabled only when  
FCKSM1:FCKSM0 are both programmed (‘00’).  
TABLE 8-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
POSCMD1:  
POSCMD0  
FNOSC2:  
FNOSC0  
Oscillator Mode  
Oscillator Source  
Note  
1, 2  
Fast RC Oscillator with Postscaler  
(FRCDIV)  
Internal  
11  
111  
(Reserved)  
Internal  
Internal  
xx  
11  
00  
110  
101  
100  
1
1
1
Low-Power RC Oscillator (LPRC)  
Secondary (Timer1) Oscillator  
(SOSC)  
Secondary  
Primary Oscillator (XT) with PLL  
Module (XTPLL)  
Primary  
Primary  
01  
00  
011  
011  
Primary Oscillator (EC) with PLL  
Module (ECPLL)  
Primary Oscillator (HS)  
Primary Oscillator (XT)  
Primary Oscillator (EC)  
Primary  
Primary  
Primary  
Internal  
10  
01  
00  
11  
010  
010  
010  
001  
Fast RC Oscillator with PLL Module  
(FRCPLL)  
1
1
Fast RC Oscillator (FRC)  
Internal  
11  
000  
Note 1: OSCO pin function is determined by the OSCIOFCN Configuration bit.  
2: This is the default oscillator mode for an unprogrammed (erased) device.  
DS39881D-page 96  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
The Clock Divider register (Register 8-2) controls the  
features associated with Doze mode, as well as the  
postscaler for the FRC oscillator.  
8.3  
Control Registers  
The operation of the oscillator is controlled by three  
Special Function Registers:  
The FRC Oscillator Tune register (Register 8-3) allows  
the user to fine tune the FRC oscillator over a range of  
approximately ±12%. Each bit increment or decrement  
changes the factory calibrated frequency of the FRC  
oscillator by a fixed amount.  
• OSCCON  
• CLKDIV  
• OSCTUN  
The OSCCON register (Register 8-1) is the main con-  
trol register for the oscillator. It controls clock source  
switching and allows the monitoring of clock sources.  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R-0  
R-0  
R-0  
U-0  
R/W-x(1)  
NOSC2  
R/W-x(1)  
NOSC1  
R/W-x(1)  
NOSC0  
COSC2  
COSC1  
COSC0  
bit 15  
bit 8  
R/SO-0  
R/W-0  
IOLOCK(2)  
R-0(3)  
LOCK  
U-0  
R/CO-0  
CF  
U-0  
R/W-0  
R/W-0  
CLKLOCK  
bit 7  
SOSCEN  
OSWEN  
bit 0  
Legend:  
CO = Clear Only bit  
W = Writable bit  
‘1’ = Bit is set  
SO = Set Only bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC2:COSC0: Current Oscillator Selection bits  
111= Fast RC Oscillator with Postscaler (FRCDIV)  
110= Reserved  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator with Postscaler and PLL module (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
NOSC2:NOSC0: New Oscillator Selection bits(1)  
111= Fast RC Oscillator with Postscaler (FRCDIV)  
110= Reserved  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator with Postscaler and PLL module (FRCPLL)  
000= Fast RC Oscillator (FRC)  
Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.  
2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In  
addition, if the IOL1WAY Configuration bit is ‘1’ once the IOLOCK bit is set, it cannot be cleared.  
3: Also resets to ‘0’ during any valid clock switch or whenever a non-PLL Clock mode is selected.  
2010 Microchip Technology Inc.  
DS39881D-page 97  
PIC24FJ64GA004 FAMILY  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)  
bit 7  
CLKLOCK: Clock Selection Lock Enabled bit  
If FSCM is enabled (FCKSM1 = 1):  
1= Clock and PLL selections are locked  
0= Clock and PLL selections are not locked and may be modified by setting the OSWEN bit  
If FSCM is disabled (FCKSM1 = 0):  
Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.  
bit 6  
bit 5  
IOLOCK: I/O Lock Enable bit(2)  
1= I/O lock is active  
0= I/O lock is not active  
LOCK: PLL Lock Status bit(3)  
1= PLL module is in lock or PLL module start-up timer is satisfied  
0= PLL module is out of lock, PLL start-up timer is running or PLL is disabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CF: Clock Fail Detect bit  
1= FSCM has detected a clock failure  
0= No clock failure has been detected  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit  
1= Enable secondary oscillator  
0= Disable secondary oscillator  
bit 0  
OSWEN: Oscillator Switch Enable bit  
1= Initiate an oscillator switch to clock source specified by NOSC2:NOSC0 bits  
0= Oscillator switch is complete  
Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.  
2: The state of the IOLOCK bit can only be changed once an unlocking sequence has been executed. In  
addition, if the IOL1WAY Configuration bit is ‘1’ once the IOLOCK bit is set, it cannot be cleared.  
3: Also resets to ‘0’ during any valid clock switch or whenever a non-PLL Clock mode is selected.  
DS39881D-page 98  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 8-2:  
CLKDIV: CLOCK DIVIDER REGISTER  
R/W-0  
ROI  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
DOZEN(1)  
R/W-0  
R/W-0  
R/W-1  
DOZE2  
DOZE1  
DOZE0  
RCDIV2  
RCDIV1  
RCDIV0  
bit 15  
bit 8  
U-0  
U-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts clear the DOZEN bit and reset the CPU peripheral clock ratio to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12  
DOZE2:DOZE0: CPU Peripheral Clock Ratio Select bits  
111= 1:128  
110= 1:64  
101= 1:32  
100= 1:16  
011= 1:8  
010= 1:4  
001= 1:2  
000= 1:1  
bit 11  
DOZEN: DOZE Enable bit(1)  
1= DOZE2:DOZE0 bits specify the CPU peripheral clock ratio  
0= CPU peripheral clock ratio set to 1:1  
bit 10-8  
RCDIV2:RCDIV0: FRC Postscaler Select bits  
111= 31.25 kHz (divide by 256)  
110= 125 kHz (divide by 64)  
101= 250 kHz (divide by 32)  
100= 500 kHz (divide by 16)  
011= 1 MHz (divide by 8)  
010= 2 MHz (divide by 4)  
001= 4 MHz (divide by 2)  
000= 8 MHz (divide by 1)  
bit 7  
Unimplemented: Read as ‘0’  
Unimplemented: Read as ‘1’  
Unimplemented: Read as ‘0’  
bit 6  
bit 5-0  
Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.  
2010 Microchip Technology Inc.  
DS39881D-page 99  
PIC24FJ64GA004 FAMILY  
REGISTER 8-3:  
OSCTUN: FRC Oscillator Tune Register  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
TUN5(1)  
R/W-0  
TUN4(1)  
R/W-0  
TUN3(1)  
R/W-0  
TUN2(1)  
R/W-0  
TUN1(1)  
R/W-0  
TUN0(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN5:TUN0: FRC Oscillator Tuning bits  
011111= Maximum frequency deviation  
011110=  
000001=  
000000= Center frequency, oscillator is running at factory calibrated frequency  
111111=  
100001=  
100000= Minimum frequency deviation  
Note 1: Increments or decrements of TUN5:TUN0 may not change the FRC frequency in equal steps over the  
FRC tuning range, and may not be monotonic.  
8.4.1  
ENABLING CLOCK SWITCHING  
8.4  
Clock Switching Operation  
To enable clock switching, the FCKSM1 Configuration  
bit in Flash Configuration Word 2 must be programmed  
to ‘0’. (Refer to Section 24.1 “Configuration Bits” for  
further details.) If the FCKSM1 Configuration bit is  
unprogrammed (‘1’), the clock switching function and  
Fail-Safe Clock Monitor function are disabled. This is  
the default setting.  
With few limitations, applications are free to switch  
between any of the four clock sources (POSC, SOSC,  
FRC and LPRC) under software control and at any  
time. To limit the possible side effects that could result  
from this flexibility, PIC24F devices have a safeguard  
lock built into the switching process.  
Note:  
The primary oscillator mode has three  
different submodes (XT, HS and EC)  
which are determined by the POSCMDx  
Configuration bits. While an application  
can switch to and from primary oscillator  
mode in software, it cannot switch  
between the different primary submodes  
without reprogramming the device.  
The NOSCx control bits (OSCCON<10:8>) do not  
control the clock selection when clock switching is dis-  
abled. However, the COSCx bits (OSCCON<14:12>)  
will reflect the clock source selected by the FNOSCx  
Configuration bits.  
The OSWEN control bit (OSCCON<0>) has no effect  
when clock switching is disabled. It is held at ‘0’ at all  
times.  
DS39881D-page 100  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
A recommended code sequence for a clock switch  
includes the following:  
8.4.2  
OSCILLATOR SWITCHING  
SEQUENCE  
1. Disable interrupts during the OSCCON register  
unlock and write sequence.  
At a minimum, performing a clock switch requires this  
basic sequence:  
2. Execute the unlock sequence for the OSCCON  
high byte by writing 78h and 9Ah to  
1. If  
desired,  
read  
the  
COSCx  
bits  
(OSCCON<14:12>), to determine the current  
oscillator source.  
OSCCON<15:8>  
instructions.  
in  
two  
back-to-back  
2. Perform the unlock sequence to allow a write to  
the OSCCON register high byte.  
3. Write new oscillator source to the NOSCx bits in  
the instruction immediately following the unlock  
sequence.  
3. Write the appropriate value to the NOSCx bits  
(OSCCON<10:8>) for the new oscillator source.  
4. Execute the unlock sequence for the OSCCON  
low byte by writing 46h and 57h to  
OSCCON<7:0> in two back-to-back instructions.  
4. Perform the unlock sequence to allow a write to  
the OSCCON register low byte.  
5. Set the OSWEN bit to initiate the oscillator  
switch.  
5. Set the OSWEN bit in the instruction immediately  
following the unlock sequence.  
Once the basic sequence is completed, the system  
clock hardware responds automatically as follows:  
6. Continue to execute code that is not clock  
sensitive (optional).  
1. The clock switching hardware compares the  
COSCx bits with the new value of the NOSCx  
bits. If they are the same, then the clock switch  
is a redundant operation. In this case, the  
OSWEN bit is cleared automatically and the  
clock switch is aborted.  
7. Invoke an appropriate amount of software delay  
(cycle counting) to allow the selected oscillator  
and/or PLL to start and stabilize.  
8. Check to see if OSWEN is ‘0’. If it is, the switch  
was successful. If OSWEN is still set, then  
check the LOCK bit to determine the cause of  
failure.  
2. If a valid clock switch has been initiated, the  
LOCK (OSCCON<5>) and CF (OSCCON<3>)  
bits are cleared.  
The core sequence for unlocking the OSCCON register  
and initiating a clock switch is shown in Example 8-1.  
3. The new oscillator is turned on by the hardware  
if it is not currently running. If a crystal oscillator  
must be turned on, the hardware will wait until  
the OST expires. If the new source is using the  
PLL, then the hardware waits until a PLL lock is  
detected (LOCK = 1).  
EXAMPLE 8-1:  
BASIC CODE SEQUENCE  
FOR CLOCK SWITCHING  
;Place the new oscillator selection in W0  
;OSCCONH (high byte) Unlock Sequence  
MOV  
MOV  
MOV  
MOV.b  
MOV.b  
#OSCCONH, w1  
#0x78, w2  
#0x9A, w3  
w2, [w1]  
4. The hardware waits for 10 clock cycles from the  
new clock source and then performs the clock  
switch.  
w3, [w1]  
5. The hardware clears the OSWEN bit to indicate a  
successful clock transition. In addition, the  
NOSCx bit values are transferred to the COSCx  
bits.  
;Set new oscillator selection  
MOV.b WREG, OSCCONH  
;OSCCONL (low byte) unlock sequence  
MOV  
MOV  
MOV  
MOV.b  
MOV.b  
#OSCCONL, w1  
#0x46, w2  
#0x57, w3  
w2, [w1]  
6. The old clock source is turned off at this time,  
with the exception of LPRC (if WDT or FSCM  
are enabled) or SOSC (if SOSCEN remains  
set).  
w3, [w1]  
;Start oscillator switch operation  
BSET OSCCON,#0  
Note 1: The processor will continue to execute  
code throughout the clock switching  
sequence. Timing sensitive code should  
not be executed during this time.  
2: Direct clock switches between any  
primary oscillator mode with PLL and  
FRCPLL mode are not permitted. This  
applies to clock switches in either direc-  
tion. In these instances, the application  
must switch to FRC mode as a transition  
clock source between the two PLL  
modes.  
2010 Microchip Technology Inc.  
DS39881D-page 101  
PIC24FJ64GA004 FAMILY  
8.4.3  
SECONDARY OSCILLATOR  
LOW-POWER OPERATION  
8.4.4  
OSCILLATOR LAYOUT  
On low pin count devices, such as those in the  
PIC24FJ64GA004 family, due to pinout limitations, the  
SOSC is more susceptible to noise than other PIC24F  
devices. Unless proper care is taken in the design and  
layout of the SOSC circuit, it is possible for  
inaccuracies to be introduced into the oscillator's  
period.  
Note:  
This feature is implemented only on  
PIC24FJ64GA004 family devices with a  
major silicon revision level of B or later  
(DEVREV register value is 3042h or  
greater).  
The Secondary Oscillator (SOSC) can operate in two  
distinct levels of power consumption based on device  
configuration. In Low-Power mode, the oscillator  
operates in a low-gain, low-power state. By default, the  
oscillator uses a higher gain setting, and therefore,  
requires more power. The Secondary Oscillator Mode  
Selection bits, SOSCSEL<1:0> (CW2<12:11>),  
determine the oscillator’s power mode.  
In general, the crystal circuit connections should be as  
short as possible. It is also good practice to surround  
the crystal circuit with a ground loop or ground plane.  
For more detailed information on crystal circuit design,  
please refer to the “PIC24F Family Reference Manual”,  
Section 6. “Oscillator” (DS39700) and Microchip  
Application Notes: AN826, Crystal Oscillator Basics  
and Crystal Selection for rfPIC® and PICmicro®  
Devices” (DS00826) and AN849, “Basic PICmicro®  
Oscillator Design” (DS00849).  
When Low-Power mode is used, care must be taken in  
the design and layout of the SOSC circuit to ensure that  
the oscillator will start up and oscillate properly. The  
lower gain of this mode makes the SOSC more  
sensitive to noise and requires a longer start-up time.  
DS39881D-page 102  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
and code execution, but allows peripheral modules to  
continue operation. The assembly syntax of the  
9.0  
POWER-SAVING FEATURES  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 10. Power-Saving Features”  
(DS39698). Additional power-saving tips  
can also be found in Appendix B: “Addi-  
tional Guidance for PIC24FJ64GA004  
Family Applications” of this document.  
PWRSAVinstruction is shown in Example 9-1.  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset.  
When the device exits these modes, it is said to  
“wake-up”.  
Note: SLEEP_MODE and IDLE_MODE are con-  
stants defined in the assembler include  
file for the selected device.  
9.2.1  
SLEEP MODE  
The PIC24FJ64GA004 family of devices provides the  
ability to manage power consumption by selectively  
managing clocking to the CPU and the peripherals. In  
general, a lower clock frequency and a reduction in the  
number of circuits being clocked constitutes lower  
consumed power. All PIC24F devices manage power  
consumption in four different ways:  
Sleep mode has these features:  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
• The device current consumption will be reduced  
to a minimum provided that no I/O pin is sourcing  
current.  
• Clock frequency  
• The Fail-Safe Clock Monitor does not operate  
during Sleep mode since the system clock source  
is disabled.  
• Instruction-based Sleep and Idle modes  
• Software controlled Doze mode  
• Selective peripheral control in software  
• The LPRC clock will continue to run in Sleep  
mode if the WDT is enabled.  
Combinations of these methods can be used to selec-  
tively tailor an application’s power consumption, while  
still maintaining critical application features, such as  
timing-sensitive communications.  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode.  
• Some device features or peripherals may  
continue to operate in Sleep mode. This includes  
items such as the input change notification on the  
I/O ports, or peripherals that use an external clock  
input. Any peripheral that requires the system  
clock source for its operation will be disabled in  
Sleep mode.  
9.1  
Clock Frequency and Clock  
Switching  
PIC24F devices allow for a wide range of clock  
frequencies to be selected under application control. If  
the system clock configuration is not locked, users can  
choose low-power or high-precision oscillators by simply  
changing the NOSC bits. The process of changing a sys-  
tem clock during operation, as well as limitations to the  
process, are discussed in more detail in Section 8.0  
“Oscillator Configuration”.  
The device will wake-up from Sleep mode on any of the  
these events:  
• On any interrupt source that is individually  
enabled  
• On any form of device Reset  
• On a WDT time-out  
On wake-up from Sleep, the processor will restart with  
the same clock source that was active when Sleep  
mode was entered.  
9.2  
Instruction-Based Power-Saving  
Modes  
PIC24F devices have two special power-saving modes  
that are entered through the execution of a special  
PWRSAVinstruction. Sleep mode stops clock operation  
and halts all code execution; Idle mode halts the CPU  
EXAMPLE 9-1:  
PWRSAV INSTRUCTION SYNTAX  
PWRSAV  
PWRSAV  
#SLEEP_MODE  
#IDLE_MODE  
; Put the device into SLEEP mode  
; Put the device into IDLE mode  
2010 Microchip Technology Inc.  
DS39881D-page 103  
PIC24FJ64GA004 FAMILY  
It is also possible to use Doze mode to selectively  
reduce power consumption in event driven applica-  
tions. This allows clock sensitive functions, such as  
synchronous communications, to continue without  
interruption while the CPU Idles, waiting for something  
to invoke an interrupt routine. Enabling the automatic  
return to full-speed CPU operation on interrupts is  
enabled by setting the ROI bit (CLKDIV<15>). By  
default, interrupt events have no effect on Doze mode  
operation.  
9.2.2  
IDLE MODE  
Idle mode has these features:  
• The CPU will stop executing instructions.  
• The WDT is automatically cleared.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 9.4  
“Selective Peripheral Module Control”).  
• If the WDT or FSCM is enabled, the LPRC will  
also remain active.  
9.4  
Selective Peripheral Module  
Control  
The device will wake from Idle mode on any of these  
events:  
Idle and Doze modes allow users to substantially  
reduce power consumption by slowing or stopping the  
CPU clock. Even so, peripheral modules still remain  
clocked and thus consume power. There may be cases  
where the application needs what these modes do not  
provide: the allocation of power resources to CPU  
processing with minimal power consumption from the  
peripherals.  
• Any interrupt that is individually enabled.  
• Any device Reset.  
• A WDT time-out.  
On wake-up from Idle, the clock is reapplied to the CPU  
and instruction execution begins immediately, starting  
with the instruction following the PWRSAVinstruction or  
the first instruction in the ISR.  
PIC24F devices address this requirement by allowing  
peripheral modules to be selectively disabled, reducing  
or eliminating their power consumption. This can be  
done with two control bits:  
9.2.3  
INTERRUPTS COINCIDENT WITH  
POWER SAVE INSTRUCTIONS  
Any interrupt that coincides with the execution of a  
PWRSAVinstruction will be held off until entry into Sleep  
or Idle mode has completed. The device will then  
wake-up from Sleep or Idle mode.  
• The Peripheral Enable bit, generically named,  
“XXXEN”, located in the module’s main control  
SFR.  
• The Peripheral Module Disable (PMD) bit,  
generically named, “XXXMD”, located in one of  
the PMD control registers.  
9.3  
Doze Mode  
Generally, changing clock speed and invoking one of  
the power-saving modes are the preferred strategies  
for reducing power consumption. There may be cir-  
cumstances, however, where this is not practical. For  
example, it may be necessary for an application to  
maintain uninterrupted synchronous communication,  
even while it is doing nothing else. Reducing system  
clock speed may introduce communication errors,  
Both bits have similar functions in enabling or disabling  
its associated module. Setting the PMD bit for a module  
disables all clock sources to that module, reducing its  
power consumption to an absolute minimum. In this  
state, the control and status registers associated with  
the peripheral will also be disabled, so writes to those  
registers will have no effect and read values will be  
invalid. Many peripheral modules have a corresponding  
PMD bit.  
while using  
a
power-saving mode may stop  
communications completely.  
In contrast, disabling a module by clearing its XXXEN  
bit disables its functionality, but leaves its registers  
available to be read and written to. Power consumption  
is reduced, but not by as much as the PMD bit does.  
Most peripheral modules have an enable bit;  
exceptions include capture, compare and RTCC.  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock contin-  
ues to operate from the same source and at the same  
speed. Peripheral modules continue to be clocked at  
the same speed while the CPU clock speed is reduced.  
Synchronization between the two clock domains is  
maintained, allowing the peripherals to access the  
SFRs while the CPU executes code at a slower rate.  
To achieve more selective power savings, peripheral  
modules can also be selectively disabled when the  
device enters Idle mode. This is done through the  
control bit of the generic name format, “XXXIDL”. By  
default, all modules that can operate during Idle mode  
will do so. Using the disable on Idle feature allows fur-  
ther reduction of power consumption during Idle mode,  
enhancing power savings for extremely critical power  
applications.  
Doze mode is enabled by setting the DOZEN bit  
(CLKDIV<11>). The ratio between peripheral and core  
clock speed is determined by the DOZE2:DOZE0 bits  
(CLKDIV<14:12>). There are eight possible  
configurations, from 1:1 to 1:256, with 1:1 being the  
default.  
DS39881D-page 104  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as  
10.0 I/O PORTS  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
a general purpose output pin is disabled. The I/O pin  
may be read, but the output driver for the parallel port  
bit will be disabled. If a peripheral is enabled, but the  
peripheral is not actively driving a pin, that pin may be  
driven by a port.  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 12. I/O Ports with Peripheral  
Pin Select (PPS)” (DS39711).  
All port pins have three registers directly associated  
with their operation as digital I/O. The Data Direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is a ‘1’, then the pin  
is an input. All port pins are defined as inputs after a  
Reset. Reads from the Output Latch register (LATx),  
read the latch. Writes to the latch, write the latch.  
Reads from the port (PORTx), read the port pins, while  
writes to the port pins, write the latch.  
All of the device pins (except VDD, VSS, MCLR and  
OSCI/CLKI) are shared between the peripherals and  
the parallel I/O ports. All I/O input ports feature Schmitt  
Trigger inputs for improved noise immunity.  
10.1 Parallel I/O (PIO) Ports  
A parallel I/O port that shares a pin with a peripheral is,  
in general, subservient to the peripheral. The periph-  
eral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pin. The logic also prevents “loop through”, in  
which a port’s digital output can drive the input of a  
peripheral that shares the same pin. Figure 10-1 shows  
how ports are shared with other peripherals and the  
associated I/O pin to which they are connected.  
Any bit and its associated data and control registers  
that are not valid for a particular device will be  
disabled. That means the corresponding LATx and  
TRISx registers and the port pin will read as zeros.  
When a pin is shared with another peripheral or func-  
tion that is defined as an input only, it is, nevertheless,  
regarded as a dedicated port because there is no  
other competing source of outputs.  
FIGURE 10-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Peripheral Module  
Output Multiplexers  
Peripheral Input Data  
Peripheral Module Enable  
Peripheral Output Enable  
Peripheral Output Data  
I/O  
1
0
Output Enable  
Output Data  
1
0
PIO Module  
Read TRIS  
Data Bus  
WR TRIS  
D
Q
I/O Pin  
CK  
TRIS Latch  
D
Q
WR LAT +  
WR PORT  
CK  
Data Latch  
Read LAT  
Input Data  
Read PORT  
2010 Microchip Technology Inc.  
DS39881D-page 105  
PIC24FJ64GA004 FAMILY  
10.1.1  
OPEN-DRAIN CONFIGURATION  
TABLE 10-1: INPUT VOLTAGE LEVELS  
Tolerated  
In addition to the PORT, LAT and TRIS registers for  
data control, each port pin can also be individually con-  
figured for either digital or open-drain output. This is  
controlled by the Open-Drain Control register, ODCx,  
associated with each port. Setting any of the bits con-  
figures the corresponding pin to act as an open-drain  
output.  
Port or Pin  
Description  
Input  
PORTA<4:0>  
VDD  
Only VDD input levels  
tolerated.  
PORTB<15:12>  
PORTB<4:0>  
PORTC<2:0>(1)  
PORTA<10:7>(1)  
PORTB<11:5>  
PORTC<9:3>(1)  
The open-drain feature allows the generation of  
outputs higher than VDD (e.g., 5V) on any desired  
digital only pins by using external pull-up resistors. The  
maximum open-drain voltage allowed is the same as  
the maximum VIH specification.  
5.5V  
Tolerates input levels  
above VDD, useful for  
most standard logic.  
Note 1: Unavailable on 28-pin devices.  
10.2 Configuring Analog Port Pins  
10.3 Input Change Notification  
The use of the AD1PCFG and TRIS registers control  
the operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their correspond-  
ing TRIS bit set (input). If the TRIS bit is cleared  
(output), the digital output level (VOH or VOL) will be  
converted.  
The input change notification function of the I/O ports  
allows the PIC24FJ64GA004 family of devices to gen-  
erate interrupt requests to the processor in response to  
a change of state on selected input pins. This feature is  
capable of detecting input change of states even in  
Sleep mode, when the clocks are disabled. Depending  
on the device pin count, there are up to 22 external sig-  
nals that may be selected (enabled) for generating an  
interrupt request on a change of state.  
When reading the PORT register, all pins configured as  
analog input channels will read as cleared (a low level).  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin that is defined as  
a digital input (including the ANx pins) may cause the  
input buffer to consume current that exceeds the  
device specifications.  
There are four control registers associated with the CN  
module. The CNEN1 and CNEN2 registers contain the  
interrupt enable control bits for each of the CN input  
pins. Setting any of these bits enables a CN interrupt  
for the corresponding pins.  
10.2.1  
I/O PORT WRITE/READ TIMING  
Each CN pin also has a weak pull-up connected to it.  
The pull-ups act as a current source that is connected  
to the pin, and eliminate the need for external resistors  
when push button or keypad devices are connected.  
The pull-ups are enabled separately using the CNPU1  
and CNPU2 registers, which contain the control bits for  
each of the CN pins. Setting any of the control bits  
enables the weak pull-ups for the corresponding pins.  
One instruction cycle is required between a port  
direction change or port write operation and a read  
operation of the same port. Typically, this instruction  
would be a NOP.  
10.2.2  
ANALOG INPUT PINS AND  
VOLTAGE CONSIDERATIONS  
The voltage tolerance of pins used as device inputs is  
dependent on the pin’s input function. Pins that are used  
as digital only inputs are able to handle DC voltages up  
to 5.5V, a level typical for digital logic circuits. In contrast,  
pins that also have analog input functions of any kind  
can only tolerate voltages up to VDD. Voltage excursions  
beyond VDD on these pins are always to be avoided.  
Table 10-1 summarizes the input capabilities. Refer to  
Section 27.1 “DC Characteristics” for more details.  
When the internal pull-up is selected, the pin pulls up to  
VDD – 0.7V (typical). Make sure that there is no external  
pull-up source when the internal pull-ups are enabled,  
as the voltage difference can cause a current path.  
Note:  
Pull-ups on change notification pins  
should always be disabled whenever the  
port pin is configured as a digital output.  
EXAMPLE 10-1:  
PORT WRITE/READ EXAMPLE  
MOV  
MOV  
NOP  
0xFF00, W0  
W0, TRISBB  
; Configure PORTB<15:8> as inputs  
; and PORTB<7:0> as outputs  
; Delay 1 cycle  
BTSS PORTB, #13  
; Next Instruction  
DS39881D-page 106  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
A key difference between pin select and non pin select  
peripherals is that pin select peripherals are not asso-  
10.4 Peripheral Pin Select  
A major challenge in general purpose devices is provid-  
ing the largest possible set of peripheral features while  
minimizing the conflict of features on I/O pins. The chal-  
lenge is even greater on low pin count devices similar  
to the PIC24FJ64GA family. In an application that  
needs to use more than one peripheral multiplexed on  
single pin, inconvenient workarounds in application  
code or a complete redesign may be the only option.  
ciated with a default I/O pin. The peripheral must  
always be assigned to a specific I/O pin before it can be  
used. In contrast, non pin select peripherals are always  
available on a default pin, assuming that the peripheral  
is active and not conflicting with another peripheral.  
10.4.2.1  
Peripheral Pin Select Function  
Priority  
The peripheral pin select feature provides an alterna-  
tive to these choices by enabling the user’s peripheral  
set selection and their placement on a wide range of  
I/O pins. By increasing the pinout options available on  
When a pin selectable peripheral is active on a given  
I/O pin, it takes priority over all other digital I/O and dig-  
ital communication peripherals associated with the pin.  
Priority is given regardless of the type of peripheral that  
is mapped. Pin select peripherals never take priority  
over any analog functions associated with the pin.  
a
particular device, users can better tailor the  
microcontroller to their entire application, rather than  
trimming the application to fit the device.  
10.4.3  
CONTROLLING PERIPHERAL PIN  
SELECT  
The peripheral pin select feature operates over a fixed  
subset of digital I/O pins. Users may independently  
map the input and/or output of any one of many digital  
peripherals to any one of these I/O pins. Peripheral pin  
select is performed in software and generally does not  
require the device to be reprogrammed. Hardware  
safeguards are included that prevent accidental or  
spurious changes to the peripheral mapping once it has  
been established.  
Peripheral pin select features are controlled through  
two sets of Special Function Registers: one to map  
peripheral inputs, and one to map outputs. Because  
they are separately controlled, a particular peripheral’s  
input and output (if the peripheral has both) can be  
placed on any selectable function pin without  
constraint.  
The association of a peripheral to a peripheral select-  
able pin is handled in two different ways, depending on  
if an input or an output is being mapped.  
10.4.1  
AVAILABLE PINS  
The peripheral pin select feature is used with a range  
of up to 26 pins; the number of available pins is depen-  
dent on the particular device and its pincount. Pins that  
support the peripheral pin select feature include the  
designation “RPn” in their full pin designation, where  
“RP” designates a remappable peripheral and “n” is the  
remappable pin number. See Table 1-2 for pinout  
options in Each Package Offering.  
10.4.3.1  
Input Mapping  
The inputs of the peripheral pin select options are  
mapped on the basis of the peripheral; that is, a control  
register associated with a peripheral dictates the pin it  
will be mapped to. The RPINRx registers are used to  
configure peripheral input mapping (see Register 10-1  
through Register 10-14). Each register contains two  
sets of 5-bit fields, with each set associated with one of  
the pin selectable peripherals. Programming a given  
peripheral’s bit field with an appropriate 5-bit value  
maps the RPn pin with that value to that peripheral. For  
any given device, the valid range of values for any of  
the bit fields corresponds to the maximum number of  
peripheral pin selections supported by the device.  
10.4.2  
AVAILABLE PERIPHERALS  
The peripherals managed by the peripheral pin select  
are all digital only peripherals. These include general  
serial communications (UART and SPI), general pur-  
pose timer clock inputs, timer related peripherals (input  
capture and output compare) and external interrupt  
inputs. Also included are the outputs of the comparator  
module, since these are discrete digital signals.  
The peripheral pin select module is not applied to  
I2C™, change notification inputs, RTCC alarm outputs  
or peripherals with analog inputs.  
2010 Microchip Technology Inc.  
DS39881D-page 107  
PIC24FJ64GA004 FAMILY  
TABLE 10-2:  
SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)(1)  
Configuration  
Bits  
Input Name  
Function Name  
Register  
External Interrupt 1  
External Interrupt 2  
Timer2 External Clock  
Timer3 External Clock  
Timer4 External Clock  
Timer5 External Clock  
Input Capture 1  
INT1  
INT2  
RPINR0  
RPINR1  
RPINR3  
RPINR3  
RPINR4  
RPINR4  
RPINR7  
RPINR7  
RPINR8  
RPINR8  
RPINR9  
RPINR11  
RPINR11  
RPINR18  
RPINR18  
RPINR19  
RPINR19  
RPINR20  
RPINR20  
RPINR21  
RPINR22  
RPINR22  
RPINR23  
INTR1<4:0>  
INTR2R<4:0>  
T2CKR<4:0>  
T3CKR<4:0>  
T4CKR<4:0>  
T5CKR<4:0>  
IC1R<4:0>  
T2CK  
T3CK  
T4CK  
T5CK  
IC1  
Input Capture 2  
IC2  
IC2R<4:0>  
Input Capture 3  
IC3  
IC3R<4:0>  
Input Capture 4  
IC4  
IC4R<4:0>  
Input Capture 5  
IC5  
IC5R<4:0>  
Output Compare Fault A  
Output Compare Fault B  
UART1 Receive  
OCFA  
OCFB  
U1RX  
U1CTS  
U2RX  
U2CTS  
SDI1  
OCFAR<4:0>  
OCFBR<4:0>  
U1RXR<4:0>  
U1CTSR<4:0>  
U2RXR<4:0>  
U2CTSR<4:0>  
SDI1R<4:0>  
SCK1R<4:0>  
SS1R<4:0>  
SDI2R<4:0>  
SCK2R<4:0>  
SS2R<4:0>  
UART1 Clear To Send  
UART2 Receive  
UART2 Clear To Send  
SPI1 Data Input  
SPI1 Clock Input  
SCK1IN  
SS1IN  
SDI2  
SPI1 Slave Select Input  
SPI2 Data Input  
SPI2 Clock Input  
SCK2IN  
SS2IN  
SPI2 Slave Select Input  
Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.  
Because of the mapping technique, the list of peripher-  
als for output mapping also includes a null value of  
00000’. This permits any given pin to remain discon-  
nected from the output of any of the pin selectable  
peripherals.  
10.4.3.2  
Output Mapping  
In contrast to inputs, the outputs of the peripheral pin  
select options are mapped on the basis of the pin. In  
this case, a control register associated with a particular  
pin dictates the peripheral output to be mapped. The  
RPORx registers are used to control output mapping.  
Like the RPINRx registers, each register contains two  
5-bit fields; each field being associated with one RPn  
pin (see Register 10-15 through Register 10-27). The  
value of the bit field corresponds to one of the periph-  
erals and that peripheral’s output is mapped to the pin  
(see Table 10-3).  
DS39881D-page 108  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 10-3: SELECTABLE OUTPUT  
SOURCES (MAPS FUNCTION  
TO OUTPUT)  
10.4.4.1  
Control Register Lock  
Under normal operation, writes to the RPINRx and  
RPORx registers are not allowed. Attempted writes will  
appear to execute normally, but the contents of the  
registers will remain unchanged. To change these reg-  
isters, they must be unlocked in hardware. The register  
lock is controlled by the IOLOCK bit (OSCCON<6>).  
Setting IOLOCK prevents writes to the control  
registers; clearing IOLOCK allows writes.  
OutputFunction  
Function  
Output Name  
Number(1)  
NULL(2)  
C1OUT  
C2OUT  
U1TX  
0
1
NULL  
Comparator 1 Output  
Comparator 2 Output  
UART1 Transmit  
2
3
To set or clear IOLOCK, a specific command sequence  
must be executed:  
U1RTS(3)  
4
UART1 Request To Send  
UART2 Transmit  
U2TX  
5
1. Write 46h to OSCCON<7:0>.  
U2RTS(3)  
SDO1  
6
UART2 Request To Send  
SPI1 Data Output  
2. Write 57h to OSCCON<7:0>.  
3. Clear (or set) IOLOCK as a single operation.  
7
SCK1OUT  
SS1OUT  
SDO2  
8
SPI1 Clock Output  
SPI1 Slave Select Output  
SPI2 Data Output  
Unlike the similar sequence with the oscillator’s LOCK  
bit, IOLOCK remains in one state until changed. This  
allows all of the peripheral pin selects to be configured  
with a single unlock sequence followed by an update to  
all control registers, then locked with a second lock  
sequence.  
9
10  
11  
12  
18  
19  
20  
21  
22  
SCK2OUT  
SS2OUT  
OC1  
SPI2 Clock Output  
SPI2 Slave Select Output  
Output Compare 1  
Output Compare 2  
Output Compare 3  
Output Compare 4  
Output Compare 5  
10.4.4.2  
Continuous State Monitoring  
OC2  
OC3  
In addition to being protected from direct writes, the  
contents of the RPINRx and RPORx registers are  
constantly monitored in hardware by shadow registers.  
If an unexpected change in any of the registers occurs  
(such as cell disturbances caused by ESD or other  
external events), a Configuration Mismatch Reset will  
be triggered.  
OC4  
OC5  
Note 1: Value assigned to the RPn<4:0> pins corre-  
sponds to the peripheral output function  
number.  
2: The NULL function is assigned to all RPn  
outputs at device Reset and disables the  
RPn output function.  
10.4.4.3  
Configuration Bit Pin Select Lock  
As an additional level of safety, the device can be con-  
figured to prevent more than one write session to the  
RPINRx and RPORx registers. The IOL1WAY  
(CW2<4>) Configuration bit blocks the IOLOCK bit  
from being cleared after it has been set once. If  
IOLOCK remains set, the register unlock procedure will  
not execute and the Peripheral Pin Select Control reg-  
isters cannot be written to. The only way to clear the bit  
and re-enable peripheral remapping is to perform a  
device Reset.  
3: IrDA® BCLK functionality uses this output.  
10.4.3.3  
Mapping Limitations  
The control schema of the peripheral pin select is  
extremely flexible. Other than systematic blocks that  
prevent signal contention caused by two physical pins  
being configured as the same functional input or two  
functional outputs configured as the same pin, there  
are no hardware enforced lock outs. The flexibility  
extends to the point of allowing a single input to drive  
multiple peripherals or a single functional output to  
drive multiple output pins.  
In the default (unprogrammed) state, IOL1WAY is set,  
restricting users to one write session. Programming  
IOL1WAY allows users unlimited access (with the  
proper use of the unlock sequence) to the Peripheral  
Pin Select registers.  
10.4.4  
CONTROLLING CONFIGURATION  
CHANGES  
Because peripheral remapping can be changed during  
run time, some restrictions on peripheral remapping  
are needed to prevent accidental configuration  
changes. PIC24F devices include three features to  
prevent alterations to the peripheral map:  
• Control register lock sequence  
• Continuous state monitoring  
• Configuration bit remapping lock  
2010 Microchip Technology Inc.  
DS39881D-page 109  
PIC24FJ64GA004 FAMILY  
A final consideration is that peripheral pin select func-  
tions neither override analog inputs, nor reconfigure  
pins with analog functions for digital I/O. If a pin is  
configured as an analog input on device Reset, it must  
be explicitly reconfigured as digital I/O when used with  
a peripheral pin select.  
10.4.5  
CONSIDERATIONS FOR  
PERIPHERAL PIN SELECTION  
The ability to control peripheral pin selection introduces  
several considerations into application design that  
could be overlooked. This is particularly true for several  
common peripherals that are available only as  
remappable peripherals.  
Example 10-2 shows a configuration for bidirectional  
communication with flow control using UART1. The  
following input and output functions are used:  
The main consideration is that the peripheral pin  
selects are not available on default pins in the device’s  
default (Reset) state. Since all RPINRx registers reset  
to ‘11111’ and all RPORx registers reset to ‘00000’, all  
peripheral pin select inputs are tied to RP31 and all  
peripheral pin select outputs are disconnected.  
• Input Functions: U1RX, U1CTS  
• Output Functions: U1TX, U1RTS  
EXAMPLE 10-2:  
CONFIGURING UART1  
INPUT AND OUTPUT  
FUNCTIONS  
Note:  
In tying peripheral pin select inputs to  
RP31, RP31 does not have to exist on a  
device for the registers to be reset to it.  
//*************************************  
// Unlock Registers  
This situation requires the user to initialize the device  
with the proper peripheral configuration before any  
other application code is executed. Since the IOLOCK  
bit resets in the unlocked state, it is not necessary to  
execute the unlock sequence after the device has  
come out of Reset. For application safety, however, it is  
best to set IOLOCK and lock the configuration after  
writing to the control registers.  
//*************************************  
asm volatile ( "MOV  
#OSCCON, w1 \n"  
"MOV  
"MOV  
#0x46, w2  
#0x57, w3  
\n"  
\n"  
\n"  
\n"  
"MOV.b w2, [w1]  
"MOV.b w3, [w1]  
"BCLR OSCCON,#6");  
//***************************  
Because the unlock sequence is timing critical, it must  
be executed as an assembly language routine in the  
same manner as changes to the oscillator configura-  
tion. If the bulk of the application is written in C or  
another high-level language, the unlock sequence  
should be performed by writing inline assembly.  
// Configure Input Functions  
// (See Table 10-2)  
//***************************  
//***************************  
// Assign U1RX To Pin RP0  
//***************************  
RPINR18bits.U1RXR = 0;  
Choosing the configuration requires the review of all  
peripheral pin selects and their pin assignments,  
especially those that will not be used in the application.  
In all cases, unused pin-selectable peripherals should  
be disabled completely. Unused peripherals should  
have their inputs assigned to an unused RPn pin  
function. I/O pins with unused RPn functions should be  
configured with the null peripheral output.  
//***************************  
// Assign U1CTS To Pin RP1  
//***************************  
RPINR18bits.U1CTSR = 1;  
//***************************  
// Configure Output Functions  
// (See Table 10-3)  
//***************************  
//***************************  
// Assign U1TX To Pin RP2  
//***************************  
RPOR1bits.RP2R = 3;  
The assignment of a peripheral to a particular pin does  
not automatically perform any other configuration of the  
pin’s I/O circuitry. In theory, this means adding a  
pin-selectable output to a pin may mean inadvertently  
driving an existing peripheral input when the output is  
driven. Users must be familiar with the behavior of  
other fixed peripherals that share a remappable pin and  
know when to enable or disable them. To be safe, fixed  
digital peripherals that share the same pin should be  
disabled when not in use.  
//***************************  
// Assign U1RTS To Pin RP3  
//***************************  
RPOR1bits.RP3R = 4;  
//*************************************  
// Lock Registers  
//*************************************  
Along these lines, configuring a remappable pin for a  
specific peripheral does not automatically turn that fea-  
ture on. The peripheral must be specifically configured  
for operation and enabled, as if it were tied to a fixed pin.  
Where this happens in the application code (immediately  
following device Reset and peripheral configuration or  
inside the main application routine) depends on the  
peripheral and its use in the application.  
asm volatile ( "MOV  
#OSCCON, w1 \n"  
"MOV  
"MOV  
"MOV.b w2, [w1]  
"MOV.b w3, [w1]  
#0x46, w2  
#0x57, w3  
\n"  
\n"  
\n"  
\n"  
"BSET  
OSCCON, #6" );  
DS39881D-page 110  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
10.5 Peripheral Pin Select Registers  
Note:  
Input and output register values can only  
be changed if OSCCON<IOLOCK> = 0.  
See Section 10.4.4.1 “Control Register  
Lock” for a specific command sequence.  
The PIC24FJ64GA004 family of devices implements a  
total of 27 registers for remappable peripheral  
configuration:  
• Input Remappable Peripheral Registers (14)  
• Output Remappable Peripheral Registers (13)  
REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT1R4  
INT1R3  
INT1R2  
INT1R1  
INT1R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
bit 7-0  
Unimplemented: Read as ‘0’  
INT1R4:INT1R0: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits  
Unimplemented: Read as ‘0’  
REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT2R4  
INT2R3  
INT2R2  
INT2R1  
INT2R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
INT2R4:INT2R0: Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits  
2010 Microchip Technology Inc.  
DS39881D-page 111  
PIC24FJ64GA004 FAMILY  
REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T3CKR4  
T3CKR3  
T3CKR2  
T3CKR1  
T3CKR0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T2CKR4  
T2CKR3  
T2CKR2  
T2CKR1  
T2CKR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
bit 7-5  
Unimplemented: Read as ‘0’  
T3CKR4:T3CKR0: Assign Timer3 External Clock (T3CK) to the Corresponding RPn Pin bits  
Unimplemented: Read as ‘0’  
bit 4-0  
T2CKR4:T2CKR0: Assign Timer2 External Clock (T2CK) to the Corresponding RPn Pin bits  
REGISTER 10-4: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T5CKR0  
bit 8  
T5CKR4  
T5CKR3  
T5CKR2  
T5CKR1  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T4CKR4  
T4CKR3  
T4CKR2  
T4CKR1  
T4CKR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
bit 7-5  
Unimplemented: Read as ‘0’  
T5CKR4:T5CKR0: Assign Timer5 External Clock (T5CK) to the Corresponding RPn Pin bits  
Unimplemented: Read as ‘0’  
bit 4-0  
T4CKR4:T4CKR0: Assign Timer4 External Clock (T4CK) to the Corresponding RPn Pin bits  
DS39881D-page 112  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 10-5: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7  
U-0  
U-0  
U-0  
R/W-1  
IC2R4  
R/W-1  
IC2R3  
R/W-1  
IC2R2  
R/W-1  
IC2R1  
R/W-1  
IC2R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-1  
IC1R4  
R/W-1  
IC1R3  
R/W-1  
IC1R2  
R/W-1  
IC1R1  
R/W-1  
IC1R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
bit 7-5  
Unimplemented: Read as ‘0’  
IC2R4:IC2R0: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits  
Unimplemented: Read as ‘0’  
bit 4-0  
IC1R4:IC1R0: Assign Input Capture 1 (IC1) to the Corresponding RPn Pin bits  
REGISTER 10-6: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8  
U-0  
U-0  
U-0  
R/W-1  
IC4R4  
R/W-1  
IC4R3  
R/W-1  
IC4R2  
R/W-1  
IC4R1  
R/W-1  
IC4R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-1  
IC3R4  
R/W-1  
IC3R3  
R/W-1  
IC3R2  
R/W-1  
IC3R1  
R/W-1  
IC3R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
bit 7-5  
Unimplemented: Read as ‘0’  
IC4R4:IC4R0: Assign Input Capture 4 (IC4) to the Corresponding RPn Pin bits  
Unimplemented: Read as ‘0’  
bit 4-0  
IC3R4:IC3R0: Assign Input Capture 3 (IC3) to the Corresponding RPn Pin bits  
2010 Microchip Technology Inc.  
DS39881D-page 113  
PIC24FJ64GA004 FAMILY  
REGISTER 10-7: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-1  
IC5R4  
R/W-1  
IC5R3  
R/W-1  
IC5R2  
R/W-1  
IC5R1  
R/W-1  
IC5R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
IC5R4:IC5R0: Assign Input Capture 5 (IC5) to the Corresponding RPn Pin bits  
REGISTER 10-8: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
OCFBR4  
OCFBR3  
OCFBR2  
OCFBR1  
OCFBR0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
OCFAR4  
OCFAR3  
OCFAR2  
OCFAR1  
OCFAR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
bit 7-5  
Unimplemented: Read as ‘0’  
OCFBR4:OCFBR0: Assign Output Compare Fault B (OCFB) to the Corresponding RPn Pin bits  
Unimplemented: Read as ‘0’  
bit 4-0  
OCFAR4:OCFAR0: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits  
DS39881D-page 114  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 10-9: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U1CTSR4  
U1CTSR3  
U1CTSR2  
U1CTSR1  
U1CTSR0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U1RXR4  
U1RXR3  
U1RXR2  
U1RXR1  
U1RXR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
bit 7-5  
Unimplemented: Read as ‘0’  
U1CTSR4:U1CTSR0: Assign UART1 Clear to Send (U1CTS) to the Corresponding RPn Pin bits  
Unimplemented: Read as ‘0’  
bit 4-0  
U1RXR4:U1RXR0: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits  
REGISTER 10-10: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U2CTSR0  
bit 8  
U2CTSR4  
U2CTSR3  
U2CTSR2  
U2CTSR1  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U2RXR4  
U2RXR3  
U2RXR2  
U2RXR1  
U2RXR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
bit 7-5  
Unimplemented: Read as ‘0’  
U2CTSR4:U2CTSR0: Assign UART2 Clear to Send (U2CTS) to the Corresponding RPn Pin bits  
Unimplemented: Read as ‘0’  
bit 4-0  
U2RXR4:U2RXR0: Assign UART2 Receive (U2RX) to the Corresponding RPn Pin bits  
2010 Microchip Technology Inc.  
DS39881D-page 115  
PIC24FJ64GA004 FAMILY  
REGISTER 10-11: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SCK1R4  
SCK1R3  
SCK1R2  
SCK1R1  
SCK1R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SDI1R4  
SDI1R3  
SDI1R2  
SDI1R1  
SDI1R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
bit 7-5  
Unimplemented: Read as ‘0’  
SCK1R4:SCK1R0: Assign SPI1 Clock Input (SCK1IN) to the Corresponding RPn Pin bits  
Unimplemented: Read as ‘0’  
bit 4-0  
SDI1R4:SDI1R0: Assign SPI1 Data Input (SDI1) to the Corresponding RPn Pin bits  
REGISTER 10-12: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SS1R4  
SS1R3  
SS1R2  
SS1R1  
SS1R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
SS1R4:SS1R0: Assign SPI1 Slave Select Input (SS1IN) to the Corresponding RPn Pin bits  
DS39881D-page 116  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 10-13: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SCK2R4  
SCK2R3  
SCK2R2  
SCK2R1  
SCK2R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SDI2R4  
SDI2R3  
SDI2R2  
SDI2R1  
SDI2R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
bit 7-5  
Unimplemented: Read as ‘0’  
SCK2R4:SCK2R0: Assign SPI2 Clock Input (SCK2IN) to the Corresponding RPn Pin bits  
Unimplemented: Read as ‘0’  
bit 4-0  
SDI2R4:SDI2R0: Assign SPI2 Data Input (SDI2) to the Corresponding RPn Pin bits  
REGISTER 10-14: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SS2R4  
SS2R3  
SS2R2  
SS2R1  
SS2R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
SS2R4:SS2R0: Assign SPI2 Slave Select Input (SS2IN) to the Corresponding RPn Pin bits  
2010 Microchip Technology Inc.  
DS39881D-page 117  
PIC24FJ64GA004 FAMILY  
REGISTER 10-15: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP1R4  
RP1R3  
RP1R2  
RP1R1  
RP1R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP0R4  
RP0R3  
RP0R2  
RP0R1  
RP0R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP1R4:RP1R0: Peripheral Output Function is Assigned to RP1 Output Pin bits  
(see Table 10-3 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP0R4:RP0R0: Peripheral Output Function is Assigned to RP0 Output Pin bits  
(see Table 10-3 for peripheral function numbers)  
REGISTER 10-16: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP3R4  
RP3R3  
RP3R2  
RP3R1  
RP3R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP2R4  
RP2R3  
RP2R2  
RP2R1  
RP2R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP3R4:RP3R0: Peripheral Output Function is Assigned to RP3 Output Pin bits  
(see Table 10-3 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP2R4:RP2R0: Peripheral Output Function is Assigned to RP2 Output Pin bits  
(see Table 10-3 for peripheral function numbers)  
DS39881D-page 118  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 10-17: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP5R4  
RP5R3  
RP5R2  
RP5R1  
RP5R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP4R4  
RP4R3  
RP4R2  
RP4R1  
RP4R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP5R4:RP5R0: Peripheral Output Function is Assigned to RP5 Output Pin bits  
(see Table 10-3 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP4R4:RP4R0: Peripheral Output Function is Assigned to RP4 Output Pin bits  
(see Table 10-3 for peripheral function numbers)  
REGISTER 10-18: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP7R4  
RP7R3  
RP7R2  
RP7R1  
RP7R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP6R4  
RP6R3  
RP6R2  
RP6R1  
RP6R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP7R4:RP7R0: Peripheral Output Function is Assigned to RP7 Output Pin bits  
(see Table 10-3 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP6R4:RP6R0: Peripheral Output Function is Assigned to RP6 Output Pin bits  
(see Table 10-3 for peripheral function numbers)  
2010 Microchip Technology Inc.  
DS39881D-page 119  
PIC24FJ64GA004 FAMILY  
REGISTER 10-19: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP9R4  
RP9R3  
RP9R2  
RP9R1  
RP9R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP8R4  
RP8R3  
RP8R2  
RP8R1  
RP8R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP9R4:RP9R0: Peripheral Output Function is Assigned to RP9 Output Pin bits  
(see Table 10-3 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP8R4:RP8R0: Peripheral Output Function is Assigned to RP8 Output Pin bits  
(see Table 10-3 for peripheral function numbers)  
REGISTER 10-20: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP11R4  
RP11R3  
RP11R2  
RP11R1  
RP11R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP10R4  
RP10R3  
RP10R2  
RP10R1  
RP10R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP11R4:RP11R0: Peripheral Output Function is Assigned to RP11 Output Pin bits  
(see Table 10-3 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP10R4:RP10R0: Peripheral Output Function is Assigned to RP10 Output Pin bits  
(see Table 10-3 for peripheral function numbers)  
DS39881D-page 120  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 10-21: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP13R4  
RP13R3  
RP13R2  
RP13R1  
RP13R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP12R4  
RP12R3  
RP12R2  
RP12R1  
RP12R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP13R4:RP13R0: Peripheral Output Function is Assigned to RP13 Output Pin bits  
(see Table 10-3 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP12R4:RP12R0: Peripheral Output Function is Assigned to RP12 Output Pin bits  
(see Table 10-3 for peripheral function numbers)  
REGISTER 10-22: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP15R4  
RP15R3  
RP15R2  
RP15R1  
RP15R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP14R4  
RP14R3  
RP14R2  
RP14R1  
RP14R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP15R4:RP15R0: Peripheral Output Function is Assigned to RP15 Output Pin bits  
(see Table 10-3 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP14R4:RP14R0: Peripheral Output Function is Assigned to RP14 Output Pin bits  
(see Table 10-3 for peripheral function numbers)  
2010 Microchip Technology Inc.  
DS39881D-page 121  
PIC24FJ64GA004 FAMILY  
REGISTER 10-23: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8  
U-0  
U-0  
U-0  
R/W-0  
RP17R4(1)  
R/W-0  
RP17R3(1)  
R/W-0  
RP17R2(1)  
R/W-0  
RP17R1(1)  
R/W-0  
RP17R0(1)  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
RP16R4(1)  
R/W-0  
RP16R3(1)  
R/W-0  
RP16R2(1)  
R/W-0  
RP16R1(1)  
R/W-0  
RP16R0(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP17R4:RP17R0: Peripheral Output Function is Assigned to RP17 Output Pin bits(1)  
(see Table 10-3 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP16R4:RP16R0: Peripheral Output Function is Assigned to RP16 Output Pin bits(1)  
(see Table 10-3 for peripheral function numbers)  
Note 1: Bits are only available on the 44-pin devices; otherwise, they read as ‘0’.  
REGISTER 10-24: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP19R4  
RP19R3  
RP19R2  
RP19R1  
RP19R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP18R4  
RP18R3  
RP18R2  
RP18R1  
RP18R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP19R4:RP19R0: Peripheral Output Function is Assigned to RP19 Output Pin bits(1)  
(see Table 10-3 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP18R4:RP18R0: Peripheral Output Function is Assigned to RP18 Output Pin bits(1)  
(see Table 10-3 for peripheral function numbers)  
Note 1: Bits are only available on the 44-pin devices; otherwise, they read as ‘0’.  
DS39881D-page 122  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 10-25: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10  
U-0  
U-0  
U-0  
R/W-0  
RP21R4(1)  
R/W-0  
RP21R3(1)  
R/W-0  
RP21R2(1)  
R/W-0  
RP21R1(1)  
R/W-0  
RP21R0(1)  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
RP20R4(1)  
R/W-0  
RP20R3(1)  
R/W-0  
RP20R2(1)  
R/W-0  
RP20R1(1)  
R/W-0  
RP20R0(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP21R4:RP21R0: Peripheral Output Function is Assigned to RP21 Output Pin bits(1)  
(see Table 10-3 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP20R4:RP20R0: Peripheral Output Function is Assigned to RP20 Output Pin bits(1)  
(see Table 10-3 for peripheral function numbers)  
Note 1: Bits are only available on the 44-pin devices; otherwise, they read as ‘0’.  
REGISTER 10-26: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11  
U-0  
U-0  
U-0  
R/W-0  
RP23R4(1)  
R/W-0  
RP23R3(1)  
R/W-0  
RP23R2(1)  
R/W-0  
RP23R1(1)  
R/W-0  
RP23R0(1)  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
RP22R4(1)  
R/W-0  
RP22R3(1)  
R/W-0  
RP22R2(1)  
R/W-0  
RP22R1(1)  
R/W-0  
RP22R0(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP23R4:RP23R0: Peripheral Output Function is Assigned to RP23 Output Pin bits(1)  
(see Table 10-3 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP22R4:RP22R0: Peripheral Output Function is Assigned to RP22 Output Pin bits(1)  
(see Table 10-3 for peripheral function numbers)  
Note 1: Bits are only available on the 44-pin devices; otherwise, they read as ‘0’.  
2010 Microchip Technology Inc.  
DS39881D-page 123  
PIC24FJ64GA004 FAMILY  
REGISTER 10-27: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12  
U-0  
U-0  
U-0  
R/W-0  
RP25R4(1)  
R/W-0  
RP25R3(1)  
R/W-0  
RP25R2(1)  
R/W-0  
RP25R1(1)  
R/W-0  
RP25R0(1)  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
RP24R4(1)  
R/W-0  
RP24R3(1)  
R/W-0  
RP24R2(1)  
R/W-0  
RP24R1(1)  
R/W-0  
RP24R0(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP25R4:RP25R0: Peripheral Output Function is Assigned to RP25 Output Pin bits(1)  
(see Table 10-3 for peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP24R4:RP24R0: Peripheral Output Function is Assigned to RP24 Output Pin bits(1)  
(see Table 10-3 for peripheral function numbers)  
Note 1: Bits are only available on the 44-pin devices; otherwise, they read as ‘0’.  
DS39881D-page 124  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
Figure 11-1 presents a block diagram of the 16-bit timer  
module.  
11.0 TIMER1  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 14. Timers” (DS39704).  
To configure Timer1 for operation:  
1. Set the TON bit (= 1).  
2. Select the timer prescaler ratio using the  
TCKPS1:TCKPS0 bits.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
The Timer1 module is a 16-bit timer which can serve as  
the time counter for the Real-Time Clock (RTC), or  
operate as a free-running, interval timer/counter.  
Timer1 can operate in three modes:  
4. Set or clear the TSYNC bit to configure  
synchronous or asynchronous operation.  
5. Load the timer period value into the PR1  
register.  
• 16-Bit Timer  
6. If interrupts are required, set the interrupt enable  
bit, T1IE. Use the priority bits, T1IP2:T1IP0, to  
set the interrupt priority.  
• 16-Bit Synchronous Counter  
• 16-Bit Asynchronous Counter  
Timer1 also supports these features:  
• Timer Gate Operation  
• Selectable Prescaler Settings  
• Timer Operation during CPU Idle and Sleep  
modes  
• Interrupt on 16-Bit Period Register Match or  
Falling Edge of External Gate Signal  
FIGURE 11-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
TCKPS1:TCKPS0  
TON  
2
SOSCO/  
1x  
01  
00  
T1CK  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
SOSCEN  
SOSCI  
TCY  
TGATE  
TCS  
TGATE  
1
0
Q
Q
D
Set T1IF  
CK  
0
Reset  
Equal  
TMR1  
Sync  
1
TSYNC  
Comparator  
PR1  
2010 Microchip Technology Inc.  
DS39881D-page 125  
PIC24FJ64GA004 FAMILY  
REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS1  
TCKPS0  
TSYNC  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer1 On bit  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS1:TCKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit  
When TCS = 1:  
1= Synchronize external clock input  
0= Do not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit  
1= External clock from T1CK pin (on the rising edge)  
0= Internal clock (FOSC/2)  
Unimplemented: Read as ‘0’  
DS39881D-page 126  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
To configure Timer2/3 or Timer4/5 for 32-bit operation:  
12.0 TIMER2/3 AND TIMER4/5  
1. Set the T32 bit (T2CON<3> or T4CON<3> = 1).  
Note:  
This data sheet summarizes the features  
2. Select the prescaler ratio for Timer2 or Timer4  
using the TCKPS1:TCKPS0 bits.  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 14. Timers” (DS39704).  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits. If TCS is set to external clock,  
RPINRx (TxCK) must be configured to an avail-  
able RPn pin. See Section 10.4 “Peripheral  
Pin Select” for more information.  
The Timer2/3 and Timer4/5 modules are 32-bit timers,  
which can also be configured as four independent 16-bit  
timers with selectable operating modes.  
4. Load the timer period value. PR3 (or PR5) will  
contain the most significant word of the value  
while PR2 (or PR4) contains the least significant  
word.  
As a 32-bit timer, Timer2/3 and Timer4/5 operate in  
three modes:  
5. If interrupts are required, set the interrupt enable  
bit, T3IE or T5IE; use the priority bits,  
T3IP2:T3IP0 or T5IP2:T5IP0, to set the interrupt  
priority. Note that while Timer2 or Timer4 con-  
trols the timer, the interrupt appears as a Timer3  
or Timer5 interrupt.  
• Two independent 16-bit timers (Timer2 and  
Timer3) with all 16-bit operating modes (except  
Asynchronous Counter mode)  
• Single 32-bit timer  
• Single 32-bit synchronous counter  
They also support these features:  
6. Set the TON bit (= 1).  
• Timer gate operation  
The timer value, at any point, is stored in the register  
pair, TMR3:TMR2 (or TMR5:TMR4). TMR3 (TMR5)  
always contains the most significant word of the count,  
while TMR2 (TMR4) contains the least significant word.  
• Selectable prescaler settings  
• Timer operation during Idle and Sleep modes  
• Interrupt on a 32-Bit Period register match  
• ADC Event Trigger (Timer4/5 only)  
To configure any of the timers for individual 16-bit  
operation:  
Individually, all four of the 16-bit timers can function as  
synchronous timers or counters. They also offer the  
features listed above, except for the ADC Event  
Trigger; this is implemented only with Timer5. The  
operating modes and enabled features are determined  
by setting the appropriate bit(s) in the T2CON, T3CON,  
T4CON and T5CON registers. T2CON and T4CON are  
shown in generic form in Register 12-1; T3CON and  
T5CON are shown in Register 12-2.  
1. Clear the T32 bit corresponding to that timer  
(T2CON<3> for Timer2 and Timer3 or  
T4CON<3> for Timer4 and Timer5).  
2. Select the timer prescaler ratio using the  
TCKPS1:TCKPS0 bits.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits. See Section 10.4 “Peripheral  
Pin Select” for more information.  
For 32-bit timer/counter operation, Timer2 and Timer4  
are the least significant word; Timer3 and Timer4 are  
the most significant word of the 32-bit timers.  
4. Load the timer period value into the PRx register.  
5. If interrupts are required, set the interrupt enable  
bit, TxIE; use the priority bits, TxIP2:TxIP0, to  
set the interrupt priority.  
Note:  
For 32-bit operation, T3CON and T5CON  
control bits are ignored. Only T2CON and  
T4CON control bits are used for setup and  
control. Timer2 and Timer4 clock and gate  
inputs are utilized for the 32-bit timer  
modules, but an interrupt is generated with  
the Timer3 or Timer5 interrupt flags.  
6. Set the TON bit (TxCON<15> = 1).  
2010 Microchip Technology Inc.  
DS39881D-page 127  
PIC24FJ64GA004 FAMILY  
FIGURE 12-1:  
TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM  
TCKPS1:TCKPS0  
2
TON  
T2CK  
(T4CK)  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
01  
00  
Sync  
TCY  
(2)  
TGATE  
TGATE  
(2)  
TCS  
1
0
Q
D
Set T3IF (T5IF)  
Q
CK  
PR3  
PR2  
(PR5)  
(PR4)  
(3)  
ADC Event Trigger  
Equal  
MSB  
Comparator  
LSB  
TMR2  
(TMR4)  
TMR3  
(TMR5)  
Sync  
Reset  
16  
(1)  
(1)  
Read TMR2 (TMR4)  
Write TMR2 (TMR4)  
16  
16  
TMR3HLD  
(TMR5HLD)  
Data Bus<15:0>  
Note 1: The 32-Bit Timer Configuration bit, T32, must be set for 32-bit timer/counter operation. All control bits are  
respective to the T2CON and T4CON registers.  
2: This peripheral’s inputs must be assigned to an available RPn pin before use. Please see Section  
10.4 “Peripheral Pin Select” for more information.  
3: The ADC event trigger is available only on Timer2/3.  
DS39881D-page 128  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
FIGURE 12-2:  
TIMER2 AND TIMER4 (16-BIT SYNCHRONOUS) BLOCK DIAGRAM  
TCKPS1:TCKPS0  
2
TON  
T2CK  
(T4CK)  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
01  
00  
TGATE  
(1)  
TCS  
TGATE  
TCY  
(1)  
Q
D
1
0
Set T2IF (T4IF)  
Q
CK  
Reset  
Equal  
TMR2 (TMR4)  
Sync  
Comparator  
PR2 (PR4)  
Note 1: This peripheral’s inputs must be assigned to an available RPn pin before use. Please see Section  
10.4 “Peripheral Pin Select” for more information.  
FIGURE 12-3:  
TIMER3 AND TIMER5 (16-BIT SYNCHRONOUS) BLOCK DIAGRAM  
TCKPS1:TCKPS0  
2
TON  
T3CK  
(T5CK)  
1x  
01  
00  
Sync  
Prescaler  
1, 8, 64, 256  
TGATE  
(1)  
TCS  
TGATE  
TCY  
(1)  
Q
Q
D
1
0
Set T3IF (T5IF)  
CK  
Reset  
Equal  
TMR3 (TMR5)  
(2)  
ADC Event Trigger  
Comparator  
PR3 (PR5)  
Note 1: This peripheral’s inputs must be assigned to an available RPn pin before use. Please see Section  
10.4 “Peripheral Pin Select” for more information.  
2: The ADC event trigger is available only on Timer3.  
2010 Microchip Technology Inc.  
DS39881D-page 129  
PIC24FJ64GA004 FAMILY  
REGISTER 12-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32(1)  
U-0  
R/W-0  
TCS(2)  
U-0  
TGATE  
TCKPS1  
TCKPS0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
TON: Timerx On bit  
When TxCON<3> = 1:  
1= Starts 32-bit Timerx/y  
0= Stops 32-bit Timerx/y  
When TxCON<3> = 0:  
1= Starts 16-bit Timerx  
0= Stops 16-bit Timerx  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timerx Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
bit 3  
TCKPS1:TCKPS0: Timerx Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
T32: 32-Bit Timer Mode Select bit(1)  
1= Timerx and Timery form a single 32-bit timer  
0= Timerx and Timery act as two 16-bit timers  
In 32-bit mode, T3CON control bits do not affect 32-bit timer operation.  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timerx Clock Source Select bit(2)  
1= External clock from pin, TxCK (on the rising edge)  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: In 32-bit mode, the T3CON or T5CON control bits do not affect 32-bit timer operation.  
2: If TCS = 1, RPINRx (TxCK) must be configured to an available RPn pin. For more information, see  
Section 10.4 “Peripheral Pin Select”.  
DS39881D-page 130  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 12-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER  
R/W-0  
TON(1)  
U-0  
R/W-0  
TSIDL(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
TGATE(1)  
R/W-0  
TCKPS1(1)  
R/W-0  
TCKPS0(1)  
U-0  
U-0  
R/W-0  
TCS(1,2)  
U-0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
TON: Timery On bit(1)  
1= Starts 16-bit Timery  
0= Stops 16-bit Timery  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit(1)  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timery Gated Time Accumulation Enable bit(1)  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS1:TCKPS0: Timery Input Clock Prescale Select bits(1)  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timery Clock Source Select bit(1,2)  
1= External clock from pin TyCK (on the rising edge)  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When 32-bit operation is enabled (T2CON<3> or T4CON<3> = 1), these bits have no effect on Timery  
operation; all timer functions are set through T2CON and T4CON.  
2: If TCS = 1, RPINRx (TxCK) must be configured to an available RPn pin. See Section 10.4 “Peripheral  
Pin Select” for more information.  
2010 Microchip Technology Inc.  
DS39881D-page 131  
PIC24FJ64GA004 FAMILY  
NOTES:  
DS39881D-page 132  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
13.0 INPUT CAPTURE  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 15. Input Capture” (DS39701).  
FIGURE 13-1:  
INPUT CAPTURE BLOCK DIAGRAM  
From 16-Bit Timers  
TMRy TMRx  
16  
16  
ICTMR  
(ICxCON<7>)  
1
0
Prescaler  
FIFO  
R/W  
Logic  
Edge Detection Logic  
and  
Clock Synchronizer  
Counter  
(1, 4, 16)  
ICx Pin  
ICM<2:0> (ICxCON<2:0>)  
3
Mode Select  
ICOV, ICBNE (ICxCON<4:3>)  
ICxBUF  
ICI<1:0>  
Interrupt  
Logic  
ICxCON  
System Bus  
Set Flag ICxIF  
(in IFSn Register)  
Note 1: An ‘x’ in a signal, register or bit name denotes the number of the capture channel.  
2: This peripheral’s inputs must be assigned to an available RPn pin before use. Please see Section 10.4  
“Peripheral Pin Select” for more information.  
2010 Microchip Technology Inc.  
DS39881D-page 133  
PIC24FJ64GA004 FAMILY  
13.1 Input Capture Registers  
REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ICSIDL  
bit 15  
bit 8  
R/W-0  
R/W-0  
ICI1  
R/W-0  
ICI0  
R-0, HC  
ICOV  
R-0, HC  
ICBNE  
R/W-0  
ICM2(1)  
R/W-0  
ICM1(1)  
R/W-0  
ICM0(1)  
ICTMR  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ICSIDL: Input Capture x Module Stop in Idle Control bit  
1= Input capture module will halt in CPU Idle mode  
0= Input capture module will continue to operate in CPU Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
ICTMR: Input Capture x Timer Select bit  
1= TMR2 contents are captured on capture event  
0= TMR3 contents are captured on capture event  
bit 6-5  
ICI1:ICI0: Select Number of Captures per Interrupt bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture x Overflow Status Flag bit (read-only)  
1= Input capture overflow occurred  
0= No input capture overflow occurred  
bit 3  
ICBNE: Input Capture x Buffer Empty Status bit (read-only)  
1= Input capture buffer is not empty, at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM2:ICM0: Input Capture x Mode Select bits(1)  
111= Input capture functions as interrupt pin only when device is in Sleep or Idle mode (rising edge  
detect only, all other control bits are not applicable)  
110= Unused (module disabled)  
101= Capture mode, every 16th rising edge  
100= Capture mode, every 4th rising edge  
011= Capture mode, every rising edge  
010= Capture mode, every falling edge  
001= Capture mode, every edge (rising and falling) – ICI<1:0> bits do not control interrupt generation  
for this mode  
000= Input capture module turned off  
Note 1: RPINRx (ICxRx) must be configured to an available RPn pin. For more information, see Section 10.4  
“Peripheral Pin Select”.  
DS39881D-page 134  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
10. To initiate another single pulse output, change the  
Timer and Compare register settings, if needed,  
and then issue a write to set the OCM bits to ‘100’.  
14.0 OUTPUT COMPARE  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
Disabling and re-enabling of the timer and clear-  
ing the TMRy register are not required, but may  
be advantageous for defining a pulse from a  
known event time boundary.  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section  
16.  
Output  
Compare”  
The output compare module does not have to be dis-  
abled after the falling edge of the output pulse. Another  
pulse can be initiated by rewriting the value of the  
OCxCON register.  
(DS39706).  
14.1 Setup for Single Output Pulse  
Generation  
14.2 Setup for Continuous Output  
Pulse Generation  
When the OCM control bits (OCxCON<2:0>) are set to  
100’, the selected output compare channel initializes  
the OCx pin to the low state and generates a single  
output pulse.  
When the OCM control bits (OCxCON<2:0>) are set to  
101’, the selected output compare channel initializes  
the OCx pin to the low state and generates output  
pulses on each and every compare match event.  
To generate a single output pulse, the following steps  
are required (these steps assume the timer source is  
initially turned off, but this is not a requirement for the  
module operation):  
For the user to configure the module for the generation  
of a continuous stream of output pulses, the following  
steps are required (these steps assume the timer  
source is initially turned off, but this is not a requirement  
for the module operation):  
1. Determine the instruction clock cycle time. Take  
into account the frequency of the external clock  
to the timer source (if one is used) and the timer  
prescaler settings.  
2. Calculate time to the rising edge of the output  
pulse relative to the TMRy start value (0000h).  
3. Calculate the time to the falling edge of the pulse  
based on the desired pulse width and the time to  
the rising edge of the pulse.  
4. Write the values computed in steps 2 and 3  
above into the Output Compare x register,  
OCxR, and the Output Compare x Secondary  
register, OCxRS, respectively.  
5. Set Timer Period register, PRy, to value equal to  
or greater than value in OCxRS, the Output  
Compare x Secondary register.  
1. Determine the instruction clock cycle time. Take  
into account the frequency of the external clock  
to the timer source (if one is used) and the timer  
prescaler settings.  
2. Calculate time to the rising edge of the output  
pulse relative to the TMRy start value (0000h).  
3. Calculate the time to the falling edge of the pulse  
based on the desired pulse width and the time to  
the rising edge of the pulse.  
4. Write the values computed in step 2 and 3 above  
into the Output Compare x register, OCxR, and  
the Output Compare x Secondary register,  
OCxRS, respectively.  
5. Set Timer Period register, PRy, to value equal to  
or greater than value in OCxRS.  
6. Set the OCM bits to ‘100’ and the OCTSEL  
(OCxCON<3>) bit to the desired timer source.  
The OCx pin state will now be driven low.  
7. Set the TON (TyCON<15>) bit to ‘1’, which  
enables the compare time base to count.  
6. Set the OCM bits to ‘101’ and the OCTSEL bit to  
the desired timer source. The OCx pin state will  
now be driven low.  
7. Enable the compare time base by setting the TON  
(TyCON<15>) bit to ‘1’.  
8. Upon the first match between TMRy and OCxR,  
the OCx pin will be driven high.  
9. When the incrementing timer, TMRy, matches the  
Output Compare x Secondary register, OCxRS,  
the second and trailing edge (high-to-low) of the  
pulse is driven onto the OCx pin. No additional  
pulses are driven onto the OCx pin and it remains  
at low. As a result of the second compare match  
event, the OCxIF interrupt flag bit is set, which  
will result in an interrupt if it is enabled, by set-  
ting the OCxIE bit. For further information on  
peripheral interrupts, refer to Section 7.0  
“Interrupt Controller”.  
8. Upon the first match between TMRy and OCxR,  
the OCx pin will be driven high.  
9. When the compare time base, TMRy, matches the  
OCxRS, the second and trailing edge (high-to-low)  
of the pulse is driven onto the OCx pin.  
10. As a result of the second compare match event,  
the OCxIF interrupt flag bit set.  
11. When the compare time base and the value in its  
respective Timer Period register match, the TMRy  
register resets to 0x0000and resumes counting.  
12. Steps 8 through 11 are repeated and a continuous  
stream of pulses is generated indefinitely. The  
OCxIF flag is set on each OCxRS/TMRy compare  
match event.  
2010 Microchip Technology Inc.  
DS39881D-page 135  
PIC24FJ64GA004 FAMILY  
EQUATION 14-1: CALCULATING THE PWM  
14.3 Pulse-Width Modulation Mode  
PERIOD(1)  
Note:  
This peripheral contains input and output  
functions that may need to be configured  
by the peripheral pin select. See  
Section 10.4 “Peripheral Pin Select” for  
more information.  
PWM Period = [(PRy) + 1] • TCY • (Timer Prescale Value)  
where:  
PWM Frequency = 1/[PWM Period]  
Note 1: Based on TCY = 2 * TOSC, Doze mode  
and PLL are disabled.  
The following steps should be taken when configuring  
the output compare module for PWM operation:  
1. Set the PWM period by writing to the selected  
Timer Period register (PRy).  
Note:  
A PRy value of N will produce a PWM  
period of N + 1 time base count cycles. For  
example, a value of 7 written into the PRy  
register will yield a period consisting of  
8 time base cycles.  
2. Set the PWM duty cycle by writing to the OCxRS  
register.  
3. Write the OCxR register with the initial duty cycle.  
4. Enable interrupts, if required, for the timer and  
output compare modules. The output compare  
interrupt is required for PWM Fault pin utilization.  
14.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
OCxRS register. The OCxRS register can be written to  
at any time, but the duty cycle value is not latched into  
OCxR until a match between PRy and TMRy occurs  
(i.e., the period is complete). This provides a double  
buffer for the PWM duty cycle and is essential for glitch-  
less PWM operation. In the PWM mode, OCxR is a  
read-only register.  
5. Configure the output compare module for one of  
two PWM Operation modes by writing to the  
Output Compare Mode bits, OCM<2:0>  
(OCxCON<2:0>).  
6. Set the TMRy prescale value and enable the time  
base by setting TON (TxCON<15>) = 1.  
Note:  
The OCxR register should be initialized  
before the output compare module is first  
enabled. The OCxR register becomes a  
Read-Only Duty Cycle register when the  
module is operated in the PWM modes.  
The value held in OCxR will become the  
PWM duty cycle for the first PWM period.  
The contents of the Output Compare x  
Secondary register, OCxRS, will not be  
transferred into OCxR until a time base  
period match occurs.  
Some important boundary parameters of the PWM duty  
cycle include:  
• If the Output Compare x register, OCxR, is loaded  
with 0000h, the OCx pin will remain low (0% duty  
cycle).  
• If OCxR is greater than PRy (Timer Period  
register), the pin will remain high (100% duty  
cycle).  
• If OCxR is equal to PRy, the OCx pin will be low  
for one time base count value and high for all  
other count values.  
14.3.1  
PWM PERIOD  
See Example 14-1 for PWM mode timing details.  
Table 14-1 shows example PWM frequencies and  
resolutions for a device operating at 10 MIPS.  
The PWM period is specified by writing to PRy, the  
Timer Period register. The PWM period can be  
calculated using Equation 14-1.  
EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION(1)  
FCY  
log10  
(
)
FPWM • (Timer Prescale Value)  
bits  
Maximum PWM Resolution (bits) =  
log10(2)  
Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled.  
DS39881D-page 136  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
EXAMPLE 14-1:  
PWM PERIOD AND DUTY CYCLE CALCULATIONS(1)  
1. Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where FOSC = 8 MHz with PLL  
(32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.  
TCY = 2 * Tosc = 62.5 ns  
PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 s  
PWM Period = (PR2 + 1) • TCY • (Timer 2 Prescale Value)  
19.2 s  
PR2  
= (PR2 + 1) • 62.5 ns • 1  
= 306  
2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:  
PWM Resolution = log10(FCY/FPWM)/log102) bits  
= (log10(16 MHz/52.08 kHz)/log102) bits  
= 8.3 bits  
Note 1: Based on TCY = 2 * TOSC, Doze mode and PLL are disabled.  
TABLE 14-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (FCY = 4 MHz)(1)  
PWM Frequency  
7.6 Hz  
61 Hz  
122 Hz  
977 Hz  
3.9 kHz  
31.3 kHz  
125 kHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
1
FFFFh  
16  
1
1
1
1
007Fh  
7
1
001Fh  
5
FFFFh  
16  
7FFFh  
15  
0FFFh  
12  
03FFh  
10  
Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled.  
TABLE 14-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (FCY = 16 MHz)(1)  
PWM Frequency  
30.5 Hz  
244 Hz  
488 Hz  
3.9 kHz  
15.6 kHz  
125 kHz  
500 kHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
1
FFFFh  
16  
1
1
1
1
007Fh  
7
1
001Fh  
5
FFFFh  
16  
7FFFh  
15  
0FFFh  
12  
03FFh  
10  
Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled.  
2010 Microchip Technology Inc.  
DS39881D-page 137  
PIC24FJ64GA004 FAMILY  
FIGURE 14-1:  
OUTPUT COMPARE MODULE BLOCK DIAGRAM  
Set Flag bit  
(1)  
OCxIF  
(1)  
OCxRS  
(1)  
Output  
Logic  
(1)  
S
R
Q
OCxR  
OCx  
Output Enable  
3
OCM2:OCM0  
Mode Select  
(2)  
(4)  
Comparator  
OCFA or OCFB  
OCTSEL  
0
1
0
1
16  
16  
Period match signals  
from time bases  
(see Note 3).  
TMR register inputs  
from time bases  
(see Note 3).  
Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare channels 1  
through 5.  
2: OCFA pin controls OC1-OC4 channels. OCFB pin controls the OC5 channel.  
3: Each output compare channel can use one of two selectable time bases. Refer to the device data sheet for the time  
bases associated with the module.  
4: This peripheral’s inputs and outputs must be assigned to an available RPn pin before use. Please see Section 10.4  
“Peripheral Pin Select” section for more information.  
DS39881D-page 138  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
14.4 Output Compare Register  
REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
OCSIDL  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R-0, HC  
OCFLT  
R/W-0  
R/W-0  
OCM2(1)  
R/W-0  
OCM1(1)  
R/W-0  
OCM0(1)  
OCTSEL  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
OCSIDL: Stop Output Compare x in Idle Mode Control bit  
1= Output Compare x will halt in CPU Idle mode  
0= Output Compare x will continue to operate in CPU Idle mode  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
OCFLT: PWM Fault Condition Status bit  
1= PWM Fault condition has occurred (cleared in HW only)  
0= No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)  
bit 3  
OCTSEL: Output Compare x Timer Select bit  
1= Timer3 is the clock source for Output Compare x  
0= Timer2 is the clock source for Output Compare x  
Refer to the device data sheet for specific time bases available to the output compare module.  
bit 2-0  
OCM2:OCM0: Output Compare x Mode Select bits(1)  
111= PWM mode on OCx, Fault pin, OCFx, enabled(2)  
110= PWM mode on OCx, Fault pin, OCFx, disabled(2)  
101= Initialize OCx pin low, generate continuous output pulses on OCx pin  
100= Initialize OCx pin low, generate single output pulse on OCx pin  
011= Compare event toggles OCx pin  
010= Initialize OCx pin high, compare event forces OCx pin low  
001= Initialize OCx pin low, compare event forces OCx pin high  
000= Output compare channel is disabled  
Note 1: RPORx (OCx) must be configured to an available RPn pin. For more information, see Section 10.4  
“Peripheral Pin Select”.  
2: OCFA pin controls OC1-OC4 channels. OCFB pin controls the OC5 channel.  
2010 Microchip Technology Inc.  
DS39881D-page 139  
PIC24FJ64GA004 FAMILY  
NOTES:  
DS39881D-page 140  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
The SPI serial interface consists of four pins:  
15.0 SERIAL PERIPHERAL  
INTERFACE (SPI)  
• SDIx: Serial Data Input  
• SDOx: Serial Data Output  
• SCKx: Shift Clock Input or Output  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
• SSx: Active-Low Slave Select or Frame  
Synchronization I/O Pulse  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 23. Serial Peripheral Interface  
(SPI)” (DS39699)  
The SPI module can be configured to operate using 2,  
3 or 4 pins. In the 3-pin mode, SSx is not used. In the  
2-pin mode, both SDOx and SSx are not used.  
Block diagrams of the module in Standard and  
Enhanced modes are shown in Figure 15-1 and  
Figure 15-2.  
The Serial Peripheral Interface (SPI) module is a  
synchronous serial interface useful for communicating  
with other peripheral or microcontroller devices. These  
peripheral devices may be serial EEPROMs, shift reg-  
isters, display drivers, A/D Converters, etc. The SPI  
module is compatible with Motorola’s SPI and SIOP  
interfaces.  
Depending on the pin count, devices of the  
PIC24FJ64GA004 family offer one or two SPI modules  
on a single device.  
Note:  
In this section, the SPI modules are  
referred to together as SPIx or separately  
as SPI1 and SPI2. Special Function Reg-  
isters will follow a similar notation. For  
example, SPIxCON1 or SPIxCON2 refers  
to the control register for the SPI1 or SPI2  
module.  
The module supports operation in two buffer modes. In  
Standard mode, data is shifted through a single serial  
buffer. In Enhanced Buffer mode, data is shifted  
through an 8-level FIFO buffer.  
Note:  
Do not perform read-modify-write opera-  
tions (such as bit-oriented instructions) on  
the SPIxBUF register in either Standard or  
Enhanced Buffer mode.  
The module also supports a basic framed SPI protocol  
while operating in either Master or Slave mode. A total  
of four framed SPI configurations are supported.  
2010 Microchip Technology Inc.  
DS39881D-page 141  
PIC24FJ64GA004 FAMILY  
To set up the SPI module for the Standard Master mode  
of operation:  
To set up the SPI module for the Standard Slave mode  
of operation:  
1. If using interrupts:  
1. Clear the SPIxBUF register.  
2. If using interrupts:  
a) Clear the SPIxIF bit in the respective IFSx  
register.  
a) Clear the SPIxIF bit in the respective IFSx  
register.  
b) Set the SPIxIE bit in the respective IECx  
register.  
b) Set the SPIxIE bit in the respective IECx  
register.  
c) Write the SPIxIP bits in the respective IPCx  
register to set the interrupt priority.  
c) Write the SPIxIP bits in the respective IPCx  
register to set the interrupt priority.  
2. Write the desired settings to the SPIxCON1 and  
SPIxCON2  
(SPIxCON1<5>) = 1.  
3. Clear the SPIROV bit (SPIxSTAT<6>).  
registers  
with  
MSTEN  
3. Write the desired settings to the SPIxCON1  
and SPIxCON2 registers with MSTEN  
(SPIxCON1<5>) = 0.  
4. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
4. Clear the SMP bit.  
5. If the CKE bit is set, then the SSEN bit  
(SPIxCON1<7>) must be set to enable the SSx  
pin.  
5. Write the data to be transmitted to the SPIxBUF  
register. Transmission (and reception) will start  
as soon as data is written to the SPIxBUF  
register.  
6. Clear the SPIROV bit (SPIxSTAT<6>).  
7. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
FIGURE 15-1:  
SPIx MODULE BLOCK DIAGRAM (STANDARD MODE)  
SCKx  
1:1 to 1:8  
Secondary  
Prescaler  
1:1/4/16/64  
Primary  
Prescaler  
FCY  
SSx/FSYNCx  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Control  
Shift  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
SPIxBUF  
Write SPIxBUF  
Read SPIxBUF  
16  
Internal Data Bus  
DS39881D-page 142  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
To set up the SPI module for the Enhanced Buffer  
Master mode of operation:  
To set up the SPI module for the Enhanced Buffer  
Slave mode of operation:  
1. If using interrupts:  
1. Clear the SPIxBUF register.  
2. If using interrupts:  
a) Clear the SPIxIF bit in the respective IFSx  
register.  
• Clear the SPIxIF bit in the respective IFSx  
register.  
b) Set the SPIxIE bit in the respective IECx  
register.  
• Set the SPIxIE bit in the respective IECx  
register.  
c) Write the SPIxIP bits in the respective IPCx  
register.  
• Write the SPIxIP bits in the respective IPCx  
register to set the interrupt priority.  
2. Write the desired settings to the SPIxCON1 and  
SPIxCON2  
(SPIxCON1<5>) = 1.  
3. Clear the SPIROV bit (SPIxSTAT<6>).  
registers  
with  
MSTEN  
3. Write the desired settings to the SPIxCON1 and  
SPIxCON2  
registers  
with  
MSTEN  
(SPIxCON1<5>) = 0.  
4. Select Enhanced Buffer mode by setting the  
SPIBEN bit (SPIxCON2<0>).  
4. Clear the SMP bit.  
5. If the CKE bit is set, then the SSEN bit must be  
set, thus enabling the SSx pin.  
5. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
6. Clear the SPIROV bit (SPIxSTAT<6>).  
6. Write the data to be transmitted to the SPIxBUF  
register. Transmission (and reception) will start  
as soon as data is written to the SPIxBUF  
register.  
7. Select Enhanced Buffer mode by setting the  
SPIBEN bit (SPIxCON2<0>).  
8. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
FIGURE 15-2:  
SPIx MODULE BLOCK DIAGRAM (ENHANCED MODE)  
SCKx  
1:1/4/16/64  
Primary  
Prescaler  
1:1 to 1:8  
Secondary  
Prescaler  
FCY  
SSx/FSYNCx  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Control  
Shift  
SDOx  
SDIx  
Enable  
Master Clock  
bit0  
SPIxSR  
Transfer  
Transfer  
8-Level FIFO  
Receive Buffer  
8-Level FIFO  
Transmit Buffer  
SPIxBUF  
Write SPIxBUF  
Read SPIxBUF  
16  
Internal Data Bus  
2010 Microchip Technology Inc.  
DS39881D-page 143  
PIC24FJ64GA004 FAMILY  
REGISTER 15-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER  
R/W-0  
SPIEN(1)  
U-0  
R/W-0  
U-0  
U-0  
R-0  
R-0  
R-0  
SPISIDL  
SPIBEC2  
SPIBEC1  
SPIBEC0  
bit 15  
bit 8  
R-0  
R/C-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R-0  
R-0  
SRMPT  
SPIROV  
SRXMPT  
SISEL2  
SISEL1  
SISEL0  
SPITBF  
SPIRBF  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
SPIEN: SPIx Enable bit(1)  
1= Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-11  
bit 10-8  
Unimplemented: Read as ‘0’  
SPIBEC2:SPIBEC0: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)  
Master mode:  
Number of SPI transfers pending.  
Slave mode:  
Number of SPI transfers unread.  
bit 7  
bit 6  
SRMPT: Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode)  
1= SPIx Shift register is empty and ready to send or receive  
0= SPIx Shift register is not empty  
SPIROV: Receive Overflow Flag bit  
1= A new byte/word is completely received and discarded. The user software has not read the previous  
data in the SPIxBUF register.  
0= No overflow has occurred  
bit 5  
SRXMPT: Receive FIFO Empty bit (valid in Enhanced Buffer mode)  
1= Receive FIFO is empty  
0= Receive FIFO is not empty  
bit 4-2  
SISEL2:SISEL0: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)  
111= Interrupt when SPIx transmit buffer is full (SPITBF bit is set)  
110= Interrupt when last bit is shifted into SPIxSR; as a result, the TX FIFO is empty  
101= Interrupt when the last bit is shifted out of SPIxSR; now the transmit is complete  
100= Interrupt when one data is shifted into the SPIxSR; as a result, the TX FIFO has one open spot  
011= Interrupt when SPIx receive buffer is full (SPIRBF bit set)  
010= Interrupt when SPIx receive buffer is 3/4 or more full  
001= Interrupt when data is available in receive buffer (SRMPT bit is set)  
000= Interrupt when the last data in the receive buffer is read; as a result, the buffer is empty  
(SRXMPT bit is set)  
Note 1: If SPIEN = 1, these functions must be assigned to available RPn pins before use. See Section 10.4  
“Peripheral Pin Select” for more information.  
DS39881D-page 144  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 15-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 1  
SPITBF: SPIx Transmit Buffer Full Status bit  
1= Transmit not yet started, SPIxTXB is full  
0= Transmit started, SPIxTXB is empty  
In Standard Buffer mode:  
Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB.  
Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.  
In Enhanced Buffer mode:  
Automatically set in hardware when CPU writes SPIxBUF location, loading the last available buffer location.  
Automatically cleared in hardware when a buffer location is available for a CPU write.  
bit 0  
SPIRBF: SPIx Receive Buffer Full Status bit  
1= Receive complete, SPIxRXB is full  
0= Receive is not complete, SPIxRXB is empty  
In Standard Buffer mode:  
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB.  
Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.  
In Enhanced Buffer mode:  
Automatically set in hardware when SPIx transfers data from SPIxSR to buffer, filling the last unread  
buffer location.  
Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.  
Note 1: If SPIEN = 1, these functions must be assigned to available RPn pins before use. See Section 10.4  
“Peripheral Pin Select” for more information.  
2010 Microchip Technology Inc.  
DS39881D-page 145  
PIC24FJ64GA004 FAMILY  
REGISTER 15-2: SPIXCON1: SPIx CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
DISSCK(1)  
R/W-0  
DISSDO(2)  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE(3)  
MODE16  
bit 15  
bit 8  
R/W-0  
SSEN(4)  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
MSTEN  
SPRE2  
SPRE1  
SPRE0  
PPRE1  
PPRE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
DISSCK: Disables SCKx pin bit (SPI Master modes only)(1)  
1= Internal SPI clock is disabled; pin functions as I/O  
0= Internal SPI clock is enabled  
bit 11  
bit 10  
bit 9  
DISSDO: Disables SDOx pin bit(2)  
1= SDOx pin is not used by module; pin functions as I/O  
0= SDOx pin is controlled by the module  
MODE16: Word/Byte Communication Select bit  
1= Communication is word-wide (16 bits)  
0= Communication is byte-wide (8 bits)  
SMP: SPIx Data Input Sample Phase bit  
Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
Slave mode:  
SMP must be cleared when SPIx is used in Slave mode.  
bit 8  
bit 7  
bit 6  
bit 5  
CKE: SPIx Clock Edge Select bit(3)  
1= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)  
0= Serial output data changes on transition from Idle clock state to active clock state (see bit 6)  
SSEN: Slave Select Enable bit (Slave mode)(4)  
1= SSx pin used for Slave mode  
0= SSx pin not used by module; pin controlled by port function  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level; active state is a low level  
0= Idle state for clock is a low level; active state is a high level  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
Note 1: If DISSCK = 0, SCKx must be configured to an available RPn pin. See Section 10.4 “Peripheral Pin  
Select” for more information.  
2: If DISSDO = 0, SDOx must be configured to an available RPn pin. See Section 10.4 “Peripheral Pin  
Select” for more information.  
3: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed  
SPI modes (FRMEN = 1).  
4: If SSEN = 1, SSx must be configured to an available RPn pin. See Section 10.4 “Peripheral Pin Select”  
for more information.  
DS39881D-page 146  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 15-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED)  
bit 4-2  
SPRE2:SPRE0: Secondary Prescale bits (Master mode)  
111= Secondary prescale 1:1  
110= Secondary prescale 2:1  
...  
000= Secondary prescale 8:1  
bit 1-0  
PPRE1:PPRE0: Primary Prescale bits (Master mode)  
11= Primary prescale 1:1  
10= Primary prescale 4:1  
01= Primary prescale 16:1  
00= Primary prescale 64:1  
Note 1: If DISSCK = 0, SCKx must be configured to an available RPn pin. See Section 10.4 “Peripheral Pin  
Select” for more information.  
2: If DISSDO = 0, SDOx must be configured to an available RPn pin. See Section 10.4 “Peripheral Pin  
Select” for more information.  
3: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed  
SPI modes (FRMEN = 1).  
4: If SSEN = 1, SSx must be configured to an available RPn pin. See Section 10.4 “Peripheral Pin Select”  
for more information.  
REGISTER 15-3: SPIxCON2: SPIx CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRMEN  
SPIFSD  
SPIFPOL  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SPIFE  
R/W-0  
SPIBEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
FRMEN: Framed SPIx Support bit  
1= Framed SPIx support enabled  
0= Framed SPIx support disabled  
SPIFSD: Frame Sync Pulse Direction Control on SSx pin bit  
1= Frame sync pulse input (slave)  
0= Frame sync pulse output (master)  
SPIFPOL: Frame Sync Pulse Polarity bit (Frame mode only)  
1= Frame sync pulse is active-high  
0= Frame sync pulse is active-low  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
SPIFE: Frame Sync Pulse Edge Select bit  
1= Frame sync pulse coincides with first bit clock  
0= Frame sync pulse precedes first bit clock  
bit 0  
SPIBEN: Enhanced Buffer Enable bit  
1= Enhanced Buffer enabled  
0= Enhanced Buffer disabled (Legacy mode)  
2010 Microchip Technology Inc.  
DS39881D-page 147  
PIC24FJ64GA004 FAMILY  
FIGURE 15-3:  
SPI MASTER/SLAVE CONNECTION (STANDARD MODE)  
PROCESSOR 1 (SPI Master)  
PROCESSOR 2 (SPI Slave)  
SDOx  
SDIx  
Serial Receive Buffer  
(SPIxRXB)(2)  
Serial Receive Buffer  
(SPIxRXB)(2)  
SDIx  
SDOx  
Shift Register  
(SPIxSR)  
Shift Register  
(SPIxSR)  
LSb  
MSb  
MSb  
LSb  
Serial Transmit Buffer  
Serial Transmit Buffer  
(SPIxTXB)(2)  
(SPIxTXB)(2)  
Serial Clock  
SCKx  
SSx(1)  
SCKx  
SPIx Buffer  
SPIx Buffer  
(SPIxBUF)(2)  
(SPIxBUF)(2)  
SSEN (SPIxCON1<7>) = 1and MSTEN (SPIxCON1<5>) = 0  
MSTEN (SPIxCON1<5>) = 1)  
Note 1: Using the SSx pin in Slave mode of operation is optional.  
2: User must write transmit data to read received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory  
mapped to SPIxBUF.  
FIGURE 15-4:  
SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)  
PROCESSOR 1 (SPI Enhanced Buffer Master)  
PROCESSOR 2 (SPI Enhanced Buffer Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Shift Register  
(SPIxSR)  
Shift Register  
(SPIxSR)  
LSb  
MSb  
MSb  
LSb  
8-Level FIFO Buffer  
8-Level FIFO Buffer  
Serial Clock  
SPIx Buffer  
SPIx Buffer  
SCKx  
SSx  
SCKx  
SSx(1)  
(SPIxBUF)(2)  
(SPIxBUF)(2)  
MSTEN (SPIxCON1<5>) = 1and  
SPIBEN (SPIxCON2<0>) = 1  
SSEN (SPIxCON1<7>) = 1,  
MSTEN (SPIxCON1<5>) = 0and  
SPIBEN (SPIxCON2<0>) = 1  
Note 1: Using the SSx pin in Slave mode of operation is optional.  
2: User must write transmit data to read received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory  
mapped to SPIxBUF.  
DS39881D-page 148  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
FIGURE 15-5:  
FIGURE 15-6:  
FIGURE 15-7:  
FIGURE 15-8:  
SPI MASTER, FRAME MASTER CONNECTION DIAGRAM  
PIC24F  
PROCESSOR 2  
(SPI Slave, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
SPI MASTER, FRAME SLAVE CONNECTION DIAGRAM  
PIC24F  
PROCESSOR 2  
SPI Master, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
SPI SLAVE, FRAME MASTER CONNECTION DIAGRAM  
PIC24F  
PROCESSOR 2  
(SPI Slave, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync.  
Pulse  
SPI SLAVE, FRAME SLAVE CONNECTION DIAGRAM  
PIC24F  
PROCESSOR 2  
(SPI Master, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
2010 Microchip Technology Inc.  
DS39881D-page 149  
PIC24FJ64GA004 FAMILY  
EQUATION 15-1: RELATIONSHIP BETWEEN DEVICE AND SPI CLOCK SPEED(1)  
FCY  
FSCK =  
Primary Prescaler * Secondary Prescaler  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
TABLE 15-1: SAMPLE SCK FREQUENCIES(1,2)  
Secondary Prescaler Settings  
FCY = 16 MHz  
1:1  
2:1  
4:1  
6:1  
8:1  
Primary Prescaler Settings  
1:1  
4:1  
Invalid  
4000  
1000  
250  
8000  
2000  
500  
4000  
1000  
250  
63  
2667  
667  
167  
42  
2000  
500  
125  
31  
16:1  
64:1  
125  
FCY = 5 MHz  
Primary Prescaler Settings  
1:1  
4:1  
5000  
1250  
313  
78  
2500  
625  
156  
39  
1250  
313  
78  
833  
208  
52  
625  
156  
39  
16:1  
64:1  
20  
13  
10  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
2: SCKx frequencies shown in kHz.  
DS39881D-page 150  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
16.2 Communicating as a Master in a  
Single Master Environment  
16.0 INTER-INTEGRATED CIRCUIT  
2
(I C™)  
The details of sending a message in Master mode  
Note:  
This data sheet summarizes the features  
depends on the communications protocol for the device  
being communicated with. Typically, the sequence of  
events is as follows:  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 24. Inter-Integrated Circuit  
(I2C™)” (DS39702).  
1. Assert a Start condition on SDAx and SCLx.  
2. Send the I2C device address byte to the slave  
with a write indication.  
The Inter-Integrated Circuit™ (I2C™) module is a serial  
interface useful for communicating with other periph-  
eral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, display drivers, A/D  
Converters, etc.  
3. Wait for and verify an Acknowledge from the  
slave.  
4. Send the first data byte (sometimes known as  
the command) to the slave.  
5. Wait for and verify an Acknowledge from the  
slave.  
The I2C module supports these features:  
6. Send the serial memory address low byte to the  
slave.  
• Independent master and slave logic  
• 7-bit and 10-bit device addresses  
• General call address, as defined in the I2C protocol  
7. Repeat steps 4 and 5 until all data bytes are  
sent.  
• Clock stretching to provide delays for the  
processor to respond to a slave data request  
8. Assert a Repeated Start condition on SDAx and  
SCLx.  
• Both 100 kHz and 400 kHz bus specifications.  
• Configurable address masking  
9. Send the device address byte to the slave with  
a read indication.  
• Multi-Master modes to prevent loss of messages  
in arbitration  
10. Wait for and verify an Acknowledge from the  
slave.  
• Bus Repeater mode, allowing the acceptance of  
all messages as a slave regardless of the address  
11. Enable master reception to receive serial  
memory data.  
• Automatic SCL  
12. Generate an ACK or NACK condition at the end  
of a received byte of data.  
A block diagram of the module is shown in Figure 16-1.  
13. Generate a Stop condition on SDAx and SCLx.  
16.1 Peripheral Remapping Options  
The I2C modules are tied to fixed pin assignments, and  
cannot be reassigned to alternate pins using peripheral  
pin select. To allow some flexibility with peripheral  
multiplexing, the I2C1 module in all devices, can be  
reassigned to the alternate pins, designated as ASCL1  
and ASDA1 during device configuration.  
Pin assignment is controlled by the I2C1SEL Configu-  
ration bit; programming this bit (= 0) multiplexes the  
module to the ASCL1 and ASDA1 pins.  
2010 Microchip Technology Inc.  
DS39881D-page 151  
PIC24FJ64GA004 FAMILY  
FIGURE 16-1:  
I2C™ BLOCK DIAGRAM  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx  
SDAx  
I2CxRSR  
LSB  
Address Match  
Write  
Read  
Match Detect  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
I2CxCON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2CxTRN  
LSB  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
TCY/2  
I2CxBRG  
DS39881D-page 152  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
16.3 Setting Baud Rate When  
Operating as a Bus Master  
16.4 Slave Address Masking  
The I2CxMSK register (Register 16-3) designates  
address bit positions as “don’t care” for both 7-Bit and  
10-Bit Addressing modes. Setting a particular bit loca-  
tion (= 1) in the I2CxMSK register causes the slave  
module to respond whether the corresponding address  
bit value is a ‘0’ or a ‘1’. For example, when I2CxMSK  
is set to ‘00100000’, the slave module will detect both  
addresses, ‘0000000’ and ‘00100000’.  
To compute the Baud Rate Generator reload value, use  
Equation 16-1.  
EQUATION 16-1: COMPUTING BAUD RATE  
RELOAD VALUE(1)  
FCY  
FSCL =  
---------------------------------------------------------------------  
To enable address masking, the IPMI (Intelligent  
Peripheral Management Interface) must be disabled by  
clearing the IPMIEN bit (I2CxCON<11>).  
FCY  
I2CxBRG + 1 +  
-----------------------------  
10000000  
or  
Note:  
As a result of changes in the I2C™ proto-  
col, the addresses in Table 16-2 are  
reserved and will not be Acknowledged in  
Slave mode. This includes any address  
mask settings that include any of these  
addresses.  
FCY  
FCY  
I2CxBRG =  
1  
----------- -----------------------------  
FSCL 10000000  
Note 1: Based on FCY = FOSC/2; Doze mode and  
PLL are disabled.  
TABLE 16-1: I2C™ CLOCK RATES(1)  
Required  
I2CxBRG Value  
Actual  
FSCL  
System  
FSCL  
FCY  
(Decimal)  
(Hexadecimal)  
100 kHz  
100 kHz  
100 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
1 MHz  
16 MHz  
8 MHz  
4 MHz  
16 MHz  
8 MHz  
4 MHz  
2 MHz  
16 MHz  
8 MHz  
4 MHz  
157  
78  
39  
37  
18  
9
9D  
4E  
27  
25  
12  
9
100 kHz  
100 kHz  
99 kHz  
404 kHz  
404 kHz  
385 kHz  
385 kHz  
1.026 MHz  
1.026 MHz  
0.909 MHz  
4
4
13  
6
D
1 MHz  
6
1 MHz  
3
3
Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled.  
TABLE 16-2: I2C™ RESERVED ADDRESSES(1)  
Slave  
Address  
R/W  
Bit  
Description  
0000 000  
0000 000  
0000 001  
0000 010  
0000 011  
0000 1xx  
1111 1xx  
1111 0xx  
0
1
x
x
x
x
x
x
General Call Address(2)  
Start Byte  
Cbus Address  
Reserved  
Reserved  
HS Mode Master Code  
Reserved  
10-Bit Slave Upper Byte(3)  
Note 1: The address bits listed here will never cause an address match, independent of the address mask settings.  
2: Address will be Acknowledged only if GCEN = 1.  
3: Match on this address can only occur on the upper byte in 10-Bit Addressing mode.  
2010 Microchip Technology Inc.  
DS39881D-page 153  
PIC24FJ64GA004 FAMILY  
REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER  
R/W-0  
I2CEN  
U-0  
R/W-0  
R/W-1 HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0, HC  
ACKEN  
R/W-0, HC  
RCEN  
R/W-0, HC  
PEN  
R/W-0, HC  
RSEN  
R/W-0, HC  
SEN  
STREN  
ACKDT  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
I2CEN: I2Cx Enable bit  
1= Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins  
0= Disables I2Cx module. All I2C™ pins are controlled by port functions.  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: Stop in Idle Mode bit  
1= Discontinues module operation when device enters an Idle mode  
0= Continues module operation in Idle mode  
bit 12  
SCLREL: SCLx Release Control bit (when operating as I2C Slave)  
1= Releases SCLx clock  
0= Holds SCLx clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software may write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware clear at  
beginning of slave transmission. Hardware clear at end of slave reception.  
If STREN = 0:  
Bit is R/S (i.e., software may only write ‘1’ to release clock). Hardware clear at beginning of slave transmission.  
bit 11  
bit 10  
bit 9  
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit  
1= IPMI Support mode is enabled; all addresses Acknowledged  
0= IPMI mode is disabled  
A10M: 10-Bit Slave Addressing bit  
1= I2CxADD is a 10-bit slave address  
0= I2CxADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control disabled  
0= Slew rate control enabled  
bit 8  
SMEN: SMBus Input Levels bit  
1= Enables I/O pin thresholds compliant with SMBus specification  
0= Disables SMBus input thresholds  
bit 7  
GCEN: General Call Enable bit (when operating as I2C slave)  
1= Enables interrupt when a general call address is received in the I2CxRSR (module is enabled for  
reception)  
0= General call address disabled  
bit 6  
STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with SCLREL bit.  
1= Enables software or receive clock stretching  
0= Disables software or receive clock stretching  
DS39881D-page 154  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)  
bit 5  
ACKDT: Acknowledge Data bit (When operating as I2C master. Applicable during master receive.)  
Value that will be transmitted when the software initiates an Acknowledge sequence.  
1= Sends NACK during Acknowledge  
0= Sends ACK during Acknowledge  
bit 4  
ACKEN: Acknowledge Sequence Enable bit (When operating as I2C master. Applicable during master  
receive.)  
1= Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware  
clear at end of master Acknowledge sequence.  
0= Acknowledge sequence not in progress  
bit 3  
bit 2  
bit 1  
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C. Hardware clear at end of eighth bit of master receive data byte.  
0= Receives sequence not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiates Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.  
0= Stop condition not in progress  
RSEN: Repeated Start Condition Enabled bit (when operating as I2C master)  
1= Initiates Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master  
Repeated Start sequence.  
0= Repeated Start condition not in progress  
bit 0  
SEN: Start Condition Enabled bit (when operating as I2C master)  
1= Initiates Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence.  
0= Start condition not in progress  
2010 Microchip Technology Inc.  
DS39881D-page 155  
PIC24FJ64GA004 FAMILY  
REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER  
R-0, HSC  
ACKSTAT  
R-0, HSC  
TRSTAT  
U-0  
U-0  
U-0  
R/C-0, HS  
BCL  
R-0, HSC  
GCSTAT  
R-0, HSC  
ADD10  
bit 15  
bit 8  
R/C-0, HS  
IWCOL  
R/C-0, HS  
I2COV  
R-0, HSC R/C-0, HSC R/C-0, HSC  
R-0, HSC  
R/W  
R-0, HSC  
RBF  
R-0, HSC  
TBF  
D/A  
P
S
bit 7  
bit 0  
Legend:  
C = Clearable bit  
HS = Hardware Settable bit  
HSC = Hardware Settable,  
Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ACKSTAT: Acknowledge Status bit  
1= NACK was detected last  
0= ACK was detected last  
Hardware set or clear at end of Acknowledge.  
bit 14  
TRSTAT: Transmit Status bit  
(When operating as I2C™ master. Applicable to master transmit operation.)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.  
bit 13-11  
bit 10  
Unimplemented: Read as ‘0’  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No collision  
Hardware set at detection of bus collision.  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware set when address matches general call address. Hardware clear at Stop detection.  
ADD10: 10-Bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.  
IWCOL: Write Collision Detect bit  
1= An attempt to write the I2CxTRN register failed because the I2C module is busy  
0= No collision  
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2CxRCV register is still holding the previous byte  
0= No overflow  
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).  
D/A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was device address  
Hardware clear at device address match. Hardware set by write to I2CxTRN or by reception of slave byte.  
DS39881D-page 156  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
R/W: Read/Write Information bit (when operating as I2C slave)  
1= Read – indicates data transfer is output from slave  
0= Write – indicates data transfer is input to slave  
Hardware set or clear after reception of I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive complete, I2CxRCV is full  
0= Receive not complete, I2CxRCV is empty  
Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.  
TBF: Transmit Buffer Full Status bit  
1= Transmit in progress, I2CxTRN is full  
0= Transmit complete, I2CxTRN is empty  
Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.  
2010 Microchip Technology Inc.  
DS39881D-page 157  
PIC24FJ64GA004 FAMILY  
REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK9  
AMSK8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AMSK7  
AMSK6  
AMSK5  
AMSK4  
AMSK3  
AMSK2  
AMSK1  
AMSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
AMSK9:AMSK0: Mask for Address Bit x Select bits  
1= Enable masking for bit x of incoming message address; bit match not required in this position  
0= Disable masking for bit x; bit match required in this position  
16.5 Acknowledge Status  
In both Master and Slave modes, the ACKSTAT bit is  
only updated when transmitting data resulting in the  
reception of an ACK or NACK from another device. Do  
not check the state of ACKSTAT when receiving data,  
either as a Slave or a Master. Reading ACKSTAT after  
receiving address or data bytes returns an invalid  
result.  
DS39881D-page 158  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
• Fully Integrated Baud Rate Generator with 16-Bit  
Prescaler  
17.0 UNIVERSAL ASYNCHRONOUS  
RECEIVER TRANSMITTER  
(UART)  
• Baud Rates Ranging from 1 Mbps to 15 bps at  
16 MIPS  
• 4-Deep, First-In-First-Out (FIFO) Transmit Data  
Buffer  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 21. UART” (DS39708).  
• 4-Deep FIFO Receive Data Buffer  
• Parity, Framing and Buffer Overrun Error Detection  
• Support for 9-bit mode with Address Detect  
(9th bit = 1)  
• Transmit and Receive Interrupts  
The Universal Asynchronous Receiver Transmitter  
(UART) module is one of the serial I/O modules available  
in the PIC24F device family. The UART is a full-duplex  
asynchronous system that can communicate with  
peripheral devices, such as personal computers, LIN,  
RS-232 and RS-485 interfaces. The module also sup-  
ports a hardware flow control option with the UxCTS and  
UxRTS pins and also includes an IrDA® encoder and  
decoder.  
• Loopback mode for Diagnostic Support  
• Support for Sync and Break Characters  
• Supports Automatic Baud Rate Detection  
• IrDA Encoder and Decoder Logic  
• 16x Baud Clock Output for IrDA Support  
A simplified block diagram of the UART is shown in  
Figure 17-1. The UART module consists of these key  
important hardware elements:  
The primary features of the UART module are:  
• Baud Rate Generator  
• Full-Duplex, 8 or 9-Bit Data Transmission through  
the UxTX and UxRX Pins  
• Asynchronous Transmitter  
• Asynchronous Receiver  
• Even, Odd or No Parity Options (for 8-bit data)  
• One or Two Stop bits  
• Hardware Flow Control Option with UxCTS and  
UxRTS Pins  
FIGURE 17-1:  
UART SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
IrDA®  
BCLKx  
Hardware Flow Control  
UARTx Receiver  
UxRTS  
UxCTS  
UxRX  
UARTx Transmitter  
UxTX  
Note:  
This peripheral’s inputs and outputs must be assigned to an available RPn pin before use. Please  
see Section 10.4 “Peripheral Pin Select” for more information.  
2010 Microchip Technology Inc.  
DS39881D-page 159  
PIC24FJ64GA004 FAMILY  
The maximum baud rate (BRGH = 0) possible is  
FCY/16 (for UxBRG = 0) and the minimum baud rate  
17.1 UART Baud Rate Generator (BRG)  
The UART module includes a dedicated 16-bit Baud  
Rate Generator. The UxBRG register controls the  
period of a free-running, 16-bit timer. Equation 17-1  
shows the formula for computation of the baud rate  
with BRGH = 0.  
possible is FCY/(16 * 65536).  
Equation 17-2 shows the formula for computation of  
the baud rate with BRGH = 1.  
EQUATION 17-2: UART BAUD RATE WITH  
BRGH = 1(1)  
EQUATION 17-1: UART BAUD RATE WITH  
BRGH = 0(1)  
FCY  
Baud Rate =  
4 • (UxBRG + 1)  
FCY  
Baud Rate =  
16 • (UxBRG + 1)  
FCY  
1  
UxBRG =  
4 • Baud Rate  
FCY  
16 • Baud Rate  
– 1  
UxBRG =  
Note 1: Based on FCY = FOSC/2, Doze mode  
and PLL are disabled.  
Note 1: Based on FCY = FOSC/2, Doze mode  
and PLL are disabled.  
The maximum baud rate (BRGH = 1) possible is FCY/4  
(for UxBRG = 0) and the minimum baud rate possible  
is FCY/(4 * 65536).  
Example 17-1 shows the calculation of the baud rate  
error for the following conditions:  
Writing a new value to the UxBRG register causes the  
BRG timer to be reset (cleared). This ensures the BRG  
does not wait for a timer overflow before generating the  
new baud rate.  
• FCY = 4 MHz  
• Desired Baud Rate = 9600  
EXAMPLE 17-1:  
BAUD RATE ERROR CALCULATION (BRGH = 0)(1)  
Desired Baud Rate = FCY/(16 (UxBRG + 1))  
Solving for UxBRG value:  
UxBRG  
UxBRG  
UxBRG  
= ((FCY/Desired Baud Rate)/16) – 1  
= ((4000000/9600)/16) – 1  
= 25  
Calculated Baud Rate= 4000000/(16 (25 + 1))  
= 9615  
Error  
= (Calculated Baud Rate – Desired Baud Rate)  
Desired Baud Rate  
= (9615 – 9600)/9600  
= 0.16%  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
DS39881D-page 160  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
17.2 Transmitting in 8-Bit Data Mode  
17.5 Receiving in 8-Bit or 9-Bit Data  
Mode  
1. Set up the UART:  
a) Write appropriate values for data, parity and  
Stop bits.  
1. Set up the UART (as described in Section 17.2  
“Transmitting in 8-Bit Data Mode”).  
b) Write appropriate baud rate value to the  
UxBRG register.  
2. Enable the UART.  
3. A receive interrupt will be generated when one  
or more data characters have been received as  
per interrupt control bit, URXISELx.  
c) Set up transmit and receive interrupt enable  
and priority bits.  
2. Enable the UART.  
4. Read the OERR bit to determine if an overrun  
error has occurred. The OERR bit must be reset  
in software.  
3. Set the UTXEN bit (causes a transmit interrupt  
2 cycles after being set).  
5. Read UxRXREG.  
4. Write data byte to lower byte of UxTXREG word.  
The value will be immediately transferred to the  
Transmit Shift Register (TSR), and the serial bit  
stream will start shifting out with next rising edge  
of the baud clock.  
The act of reading the UxRXREG character will move  
the next character to the top of the receive FIFO,  
including a new set of PERR and FERR values.  
5. Alternately, the data byte may be transferred  
while UTXEN = 0, and then the user may set  
UTXEN. This will cause the serial bit stream to  
begin immediately because the baud clock will  
start from a cleared state.  
17.6 Operation of UxCTS and UxRTS  
Control Pins  
UARTx Clear to Send (UxCTS) and Request to Send  
(UxRTS) are the two hardware controlled pins that are  
associated with the UART module. These two pins  
allow the UART to operate in Simplex and Flow Control  
mode. They are implemented to control the transmis-  
sion and reception between the Data Terminal  
Equipment (DTE). The UEN<1:0> bits in the UxMODE  
register configure these pins.  
6. A transmit interrupt will be generated as per  
interrupt control bit, UTXISELx.  
17.3 Transmitting in 9-Bit Data Mode  
1. Set up the UART (as described in Section 17.2  
“Transmitting in 8-Bit Data Mode”).  
2. Enable the UART.  
17.7 Infrared Support  
3. Set the UTXEN bit (causes a transmit interrupt  
2 cycles after being set).  
The UART module provides two types of infrared UART  
support: one is the IrDA clock output to support exter-  
nal IrDA encoder and decoder device (legacy module  
support), and the other is the full implementation of the  
IrDA encoder and decoder. Note that because the IrDA  
modes require a 16x baud clock, they will only work  
when the BRGH bit (UxMODE<3>) is ‘0’.  
4. Write UxTXREG as a 16-bit value only.  
5. A word write to UxTXREG triggers the transfer  
of the 9-bit data to the TSR. Serial bit stream will  
start shifting out with the first rising edge of the  
baud clock.  
6. A transmit interrupt will be generated as per the  
setting of control bit, UTXISELx.  
17.7.1  
EXTERNAL IrDA SUPPORT – IrDA  
CLOCK OUTPUT  
17.4 Break and Sync Transmit  
Sequence  
To support external IrDA encoder and decoder devices,  
the BCLKx pin (same as the UxRTS pin) can be  
configured to generate the 16x baud clock. With  
UEN<1:0> = 11, the BCLKx pin will output the 16x  
baud clock if the UART module is enabled. It can be  
used to support the IrDA codec chip.  
The following sequence will send a message frame  
header made up of a Break, followed by an auto-baud  
Sync byte.  
1. Configure the UART for the desired mode.  
17.7.2  
BUILT-IN IrDA ENCODER AND  
DECODER  
2. Set UTXEN and UTXBRK – sets up the Break  
character.  
The UART has full implementation of the IrDA encoder  
and decoder as part of the UART module. The built-in  
IrDA encoder and decoder functionality is enabled  
using the IREN bit (UxMODE<12>). When enabled  
(IREN = 1), the receive pin (UxRX) acts as the input  
from the infrared receiver. The transmit pin (UxTX) acts  
as the output to the infrared transmitter.  
3. Load the UxTXREG with a dummy character to  
initiate transmission (value is ignored).  
4. Write ‘55h’ to UxTXREG – loads the Sync  
character into the transmit FIFO.  
5. After the Break has been sent, the UTXBRK bit  
is reset by hardware. The Sync character now  
transmits.  
2010 Microchip Technology Inc.  
DS39881D-page 161  
PIC24FJ64GA004 FAMILY  
REGISTER 17-1: UxMODE: UARTx MODE REGISTER  
R/W-0  
UARTEN(1)  
bit 15  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN(2)  
R/W-0  
U-0  
R/W-0(3)  
UEN1  
R/W-0(3)  
UEN0  
RTSMD  
bit 8  
R/C-0, HC  
WAKE  
R/W-0  
R/W-0, HC  
ABAUD  
R/W-0  
RXINV  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
LPBACK  
PDSEL1  
PDSEL0  
STSEL  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HC = Hardware Clearable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
bit 15  
UARTEN: UARTx Enable bit(1)  
1= UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>  
0= UARTx is disabled; all UARTx pins are controlled by PORT latches; UARTx power consumption is  
minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA® Encoder and Decoder Enable bit(2)  
1= IrDA encoder and decoder enabled  
0= IrDA encoder and decoder disabled  
RTSMD: Mode Selection for UxRTS Pin bit  
1= UxRTS pin in Simplex mode  
0= UxRTS pin in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
bit 9-8  
UEN1:UEN0: UARTx Enable bits(3)  
11= UxTX, UxRX and BCLKx pins are enabled and used; UxCTS pin controlled by PORT latches  
10= UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01= UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by PORT latches  
00= UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLKx pins controlled by PORT  
latches  
bit 7  
WAKE: Wake-up on Start Bit Detect During Sleep Mode Enable bit  
1= UARTx will continue to sample the UxRX pin; interrupt generated on falling edge, bit cleared in  
hardware on following rising edge  
0= No wake-up enabled  
bit 6  
bit 5  
LPBACK: UARTx Loopback Mode Select bit  
1= Enable Loopback mode  
0= Loopback mode is disabled  
ABAUD: Auto-Baud Enable bit  
1= Enable baud rate measurement on the next character – requires reception of a Sync field (55h);  
cleared in hardware upon completion  
0= Baud rate measurement disabled or completed  
Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See  
Section 10.4 “Peripheral Pin Select” for more information.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
3: Bit availability depends on pin availability.  
DS39881D-page 162  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 17-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
bit 4  
RXINV: Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
bit 3  
BRGH: High Baud Rate Enable bit  
1= BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)  
0= BRG generates 16 clocks per bit period (16x baud clock, Standard mode)  
bit 2-1  
PDSEL1:PDSEL0: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit  
1= Two Stop bits  
0= One Stop bit  
Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See  
Section 10.4 “Peripheral Pin Select” for more information.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
3: Bit availability depends on pin availability.  
2010 Microchip Technology Inc.  
DS39881D-page 163  
PIC24FJ64GA004 FAMILY  
REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
R/W-0  
UTXISEL1  
bit 15  
R/W-0  
R/W-0  
U-0  
R/W-0, HC  
UTXBRK  
R/W-0  
UTXEN(1)  
R-0  
R-1  
UTXINV  
UTXISEL0  
UTXBF  
TRMT  
bit 8  
R/W-0  
URXISEL1  
bit 7  
R/W-0  
R/W-0  
R-1  
R-0  
R-0  
R/C-0  
R-0  
URXISEL0  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HC = Hardware Clearable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
bit 15,13  
UTXISEL1:UTXISEL0: Transmission Interrupt Mode Selection bits  
11= Reserved; do not use  
10= Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the  
transmit buffer becomes empty  
01= Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit  
operations are completed  
00= Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at  
least one character open in the transmit buffer)  
bit 14  
UTXINV: IrDA® Encoder Transmit Polarity Inversion bit  
If IREN = 0:  
1= UxTX Idle ‘0’  
0= UxTX Idle ‘1’  
If IREN = 1:  
1= UxTX Idle ‘1’  
0= UxTX Idle ‘0’  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: Transmit Break bit  
1= Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;  
cleared by hardware upon completion  
0= Sync Break transmission disabled or completed  
bit 10  
UTXEN: Transmit Enable bit(1)  
1= Transmit enabled, UxTX pin controlled by UARTx  
0= Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by  
the PORT register.  
bit 9  
UTXBF: Transmit Buffer Full Status bit (read-only)  
1= Transmit buffer is full  
0= Transmit buffer is not full, at least one more character can be written  
bit 8  
TRMT: Transmit Shift Register Empty bit (read-only)  
1= Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift Register is not empty, a transmission is in progress or queued  
bit 7-6  
URXISEL1:URXISEL0: Receive Interrupt Mode Selection bits  
11= Interrupt is set on RSR transfer, making the receive buffer full (i.e., has 4 data characters)  
10= Interrupt is set on RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)  
0x= Interrupt is set when any character is received and transferred from the RSR to the receive buffer.  
Receive buffer has one or more characters.  
Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See  
Section 10.4 “Peripheral Pin Select” for more information.  
DS39881D-page 164  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)  
1= Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect.  
0= Address Detect mode disabled  
RIDLE: Receiver Idle bit (read-only)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (read-only)  
1= Parity error has been detected for the current character (character at the top of the receive FIFO)  
0= Parity error has not been detected  
FERR: Framing Error Status bit (read-only)  
1= Framing error has been detected for the current character (character at the top of the receive FIFO)  
0= Framing error has not been detected  
OERR: Receive Buffer Overrun Error Status bit (clear/read-only)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed (clearing a previously set OERR bit (10transition) will reset  
the receiver buffer and the RSR to the empty state)  
bit 0  
URXDA: Receive Buffer Data Available bit (read-only)  
1= Receive buffer has data; at least one more character can be read  
0= Receive buffer is empty  
Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See  
Section 10.4 “Peripheral Pin Select” for more information.  
2010 Microchip Technology Inc.  
DS39881D-page 165  
PIC24FJ64GA004 FAMILY  
REGISTER 17-3: UxTXREG: UARTx TRANSMIT REGISTER  
U-x  
U-x  
U-x  
U-x  
U-x  
U-x  
U-x  
W-x  
UTX8  
bit 15  
bit 8  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
W-x  
UTX7  
UTX6  
UTX5  
UTX4  
UTX3  
UTX2  
UTX1  
UTX0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
UTX8: Data of the Transmitted Character bit (in 9-bit mode)  
UTX7:UTX0: Data of the Transmitted Character bits  
bit 7-0  
REGISTER 17-4: UxRXREG: UARTx RECEIVE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
URX8  
bit 15  
bit 8  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
URX7  
URX6  
URX5  
URX4  
URX3  
URX2  
URX1  
URX0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
URX8: Data of the Received Character bit (in 9-bit mode)  
URX7:URX0: Data of the Received Character bits  
bit 7-0  
DS39881D-page 166  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
Key features of the PMP module include:  
18.0 PARALLEL MASTER PORT  
(PMP)  
• Up to 16 Programmable Address Lines  
• One Chip Select Line  
Note:  
This data sheet summarizes the features  
• Programmable Strobe Options:  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 13. Parallel Master Port  
(PMP)” (DS39713).  
- Individual Read and Write Strobes or;  
- Read/Write Strobe with Enable Strobe  
• Address Auto-Increment/Auto-Decrement  
• Programmable Address/Data Multiplexing  
• Programmable Polarity on Control Signals  
• Legacy Parallel Slave Port Support  
• Enhanced Parallel Slave Support:  
- Address Support  
The Parallel Master Port (PMP) module is a parallel  
8-bit I/O module, specifically designed to communicate  
with a wide variety of parallel devices, such as commu-  
nication peripherals, LCDs, external memory devices  
and microcontrollers. Because the interface to parallel  
peripherals varies significantly, the PMP is highly  
configurable.  
- 4-Byte Deep Auto-Incrementing Buffer  
• Programmable Wait States  
• Selectable Input Voltage Levels  
Note:  
A number of the pins for the PMP are not  
present on PIC24FJ64GA004 devices.  
Refer to the specific device’s pinout to  
determine which pins are available.  
FIGURE 18-1:  
PMP MODULE OVERVIEW  
Address Bus  
Data Bus  
Control Lines  
PMA<0>  
PMALL  
PIC24F  
Parallel Master Port  
PMA<1>  
PMALH  
Up to 11-Bit Address  
(1)  
PMA<10:2>  
PMCS1  
EEPROM  
PMBE  
PMRD  
PMRD/PMWR  
FIFO  
Buffer  
Microcontroller  
LCD  
PMWR  
PMENB  
PMD<7:0>  
PMA<7:0>  
PMA<15:8>  
8-Bit Data  
Note 1: PMA<10:2> are not available on 28-pin devices.  
2010 Microchip Technology Inc.  
DS39881D-page 167  
PIC24FJ64GA004 FAMILY  
REGISTER 18-1: PMCON: PARALLEL PORT CONTROL REGISTER  
R/W-0  
U-0  
R/W-0  
PSIDL  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
(1)  
(1)  
PMPEN  
ADRMUX1  
ADRMUX0  
PTBEEN  
PTWREN  
PTRDEN  
bit 15  
bit 8  
R/W-0  
CSF1  
R/W-0  
CSF0  
R/W-0(2)  
ALP  
U-0  
R/W-0(2)  
CS1P  
R/W-0  
BEP  
R/W-0  
WRSP  
R/W-0  
RDSP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PMPEN: Parallel Master Port Enable bit  
1= PMP enabled  
0= PMP disabled, no off-chip access performed  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
PSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-11  
ADRMUX1:ADRMUX0: Address/Data Multiplexing Selection bits(1)  
11= Reserved  
10= All 16 bits of address are multiplexed on PMD<7:0> pins  
01= Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 3 bits are multiplexed on  
PMA<10:8>  
00= Address and data appear on separate pins  
bit 10  
bit 9  
PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode)  
1= PMBE port enabled  
0= PMBE port disabled  
PTWREN: Write Enable Strobe Port Enable bit  
1= PMWR/PMENB port enabled  
0= PMWR/PMENB port disabled  
bit 8  
PTRDEN: Read/Write Strobe Port Enable bit  
1= PMRD/PMWR port enabled  
0= PMRD/PMWR port disabled  
bit 7-6  
CSF1:CSF0: Chip Select Function bits  
11= Reserved  
10= PMCS1 functions as chip set  
01= Reserved  
00= Reserved  
bit 5  
ALP: Address Latch Polarity bit(2)  
1= Active-high (PMALL and PMALH)  
0= Active-low (PMALL and PMALH)  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CS1P: Chip Select 1 Polarity bit(2)  
1= Active-high (PMCS1/PMCS1)  
0= Active-low (PMCS1/PMCS1)  
Note 1: PMA<10:2> are not available on 28-pin devices.  
2: These bits have no effect when their corresponding pins are used as address lines.  
DS39881D-page 168  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 18-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)  
bit 2  
BEP: Byte Enable Polarity bit  
1= Byte enable active-high (PMBE)  
0= Byte enable active-low (PMBE)  
bit 1  
WRSP: Write Strobe Polarity bit  
For Slave modes and Master Mode 2 (PMMODE<9:8> = 00,01,10):  
1= Write strobe active-high (PMWR)  
0= Write strobe active-low (PMWR)  
For Master Mode 1 (PMMODE<9:8> = 11):  
1= Enable strobe active-high (PMENB)  
0= Enable strobe active-low (PMENB)  
bit 0  
RDSP: Read Strobe Polarity bit  
For Slave modes and Master Mode 2 (PMMODE<9:8> = 00,01,10):  
1= Read strobe active-high (PMRD)  
0= Read strobe active-low (PMRD)  
For Master Mode 1 (PMMODE<9:8> = 11):  
1= Read/write strobe active-high (PMRD/PMWR)  
0= Read/write strobe active-low (PMRD/PMWR)  
Note 1: PMA<10:2> are not available on 28-pin devices.  
2: These bits have no effect when their corresponding pins are used as address lines.  
2010 Microchip Technology Inc.  
DS39881D-page 169  
PIC24FJ64GA004 FAMILY  
REGISTER 18-2: PMMODE: Parallel Port Mode Register  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BUSY  
IRQM1  
IRQM0  
INCM1  
INCM0  
MODE16  
MODE1  
MODE0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAITB1(1)  
WAITB0(1)  
WAITM3  
WAITM2  
WAITM1  
WAITM0  
WAITE1(1)  
WAITE0(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
BUSY: Busy bit (Master mode only)  
1= Port is busy (not useful when the processor stall is active)  
0= Port is not busy  
bit 14-13  
IRQM1:IRQM0: Interrupt Request Mode bits  
11= Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode)  
or on a read or write operation when PMA<1:0> = 11(Addressable PSP mode only)  
10= No interrupt generated, processor stall activated  
01= Interrupt generated at the end of the read/write cycle  
00= No interrupt generated  
bit 12-11  
INCM1:INCM0: Increment Mode bits  
11= PSP read and write buffers auto-increment (Legacy PSP mode only)  
10= Decrement ADDR<10:0> by 1 every read/write cycle  
01= Increment ADDR<10:0> by 1 every read/write cycle  
00= No increment or decrement of address  
bit 10  
MODE16: 8/16-Bit Mode bit  
1= 16-bit mode: Data register is 16 bits, a read or write to the Data register invokes two 8-bit transfers  
0= 8-bit mode: Data register is 8 bits, a read or write to the Data register invokes one 8-bit transfer  
bit 9-8  
MODE1:MODE0: Parallel Port Mode Select bits  
11= Master Mode 1 (PMCS1, PMRD/PMWR, PMENB, PMBE, PMA<x:0> and PMD<7:0>)  
10= Master Mode 2 (PMCS1, PMRD, PMWR, PMBE, PMA<x:0> and PMD<7:0>)  
01= Enhanced PSP, control signals (PMRD, PMWR, PMCS1, PMD<7:0> and PMA<1:0>)  
00= Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS1 and PMD<7:0>)  
bit 7-6  
bit 5-2  
bit 1-0  
WAITB1:WAITB0: Data Setup to Read/Write Wait State Configuration bits(1)  
11= Data wait of 4 TCY; multiplexed address phase of 4 TCY  
10= Data wait of 3 TCY; multiplexed address phase of 3 TCY  
01= Data wait of 2 TCY; multiplexed address phase of 2 TCY  
00= Data wait of 1 TCY; multiplexed address phase of 1 TCY  
WAITM3:WAITM0: Read to Byte Enable Strobe Wait State Configuration bits  
1111= Wait of additional 15 TCY  
...  
0001= Wait of additional 1 TCY  
0000= No additional wait cycles (operation forced into one TCY)  
WAITE1:WAITE0: Data Hold After Strobe Wait State Configuration bits(1)  
11= Wait of 4 TCY  
10= Wait of 3 TCY  
01= Wait of 2 TCY  
00= Wait of 1 TCY  
Note 1: WAITB and WAITE bits are ignored whenever WAITM3:WAITM0 = 0000.  
DS39881D-page 170  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 18-3: PMADDR: PARALLEL PORT ADDRESS REGISTER  
U-0  
R/W-0  
CS1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
ADDR<10:8>(1)  
R/W-0  
bit 8  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
ADDR<7:0>(1)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
CS1: Chip Select 1 bit  
1= Chip select 1 is active  
0= Chip select 1 is inactive  
bit 13-11  
bit 10-0  
Unimplemented: Read as ‘0’  
ADDR10:ADDR0: Parallel Port Destination Address bits(1)  
Note 1: PMA<10:2> are not available on 28-pin devices.  
REGISTER 18-4: PMAEN: PARALLEL PORT ENABLE REGISTER  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
PTEN10(1)  
R/W-0  
PTEN9(1)  
R/W-0  
PTEN8(1)  
PTEN14  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTEN7(1)  
PTEN6(1)  
PTEN5(1)  
PTEN4(1)  
PTEN3(1)  
PTEN2(1)  
PTEN1  
PTEN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
PTEN14: PMCS1 Strobe Enable bit  
1= PMCS1 functions as chip select  
0= PMCS1 pin functions as port I/O  
bit 13-11  
bit 10-2  
Unimplemented: Read as ‘0’  
PTEN10:PTEN2: PMP Address Port Enable bits(1)  
1= PMA<10:2> function as PMP address lines  
0= PMA<10:2> function as port I/O  
bit 1-0  
PTEN1:PTEN0: PMALH/PMALL Strobe Enable bits  
1= PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL  
0= PMA1 and PMA0 pads functions as port I/O  
Note 1: PMA<10:2> are not available on 28-pin devices.  
2010 Microchip Technology Inc.  
DS39881D-page 171  
PIC24FJ64GA004 FAMILY  
REGISTER 18-5: PMSTAT: PARALLEL PORT STATUS REGISTER  
R-0  
IBF  
R/W-0, HS  
IBOV  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
IB3F  
IB2F  
IB1F  
IB0F  
bit 15  
bit 8  
R-1  
R/W-0, HS  
OBUF  
U-0  
U-0  
R-1  
R-1  
R-1  
R-1  
OBE  
OB3E  
OB2E  
OB1E  
OB0E  
bit 0  
bit 7  
Legend:  
HS = Hardware Set bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
IBF: Input Buffer Full Status bit  
1= All writable input buffer registers are full  
0= Some or all of the writable input buffer registers are empty  
IBOV: Input Buffer Overflow Status bit  
1= A write attempt to a full input byte register occurred (must be cleared in software)  
0= No overflow occurred  
bit 13-12  
bit 11-8  
Unimplemented: Read as ‘0’  
IB3F:IB0F Input Buffer x Status Full bits  
1= Input buffer contains data that has not been read (reading buffer will clear this bit)  
0= Input buffer does not contain any unread data  
bit 7  
bit 6  
OBE: Output Buffer Empty Status bit  
1= All readable output buffer registers are empty  
0= Some or all of the readable output buffer registers are full  
OBUF: Output Buffer Underflow Status bits  
1= A read occurred from an empty output byte register (must be cleared in software)  
0= No underflow occurred  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
OB3E:OB0E Output Buffer x Status Empty bits  
1= Output buffer is empty (writing data to the buffer will clear this bit)  
0= Output buffer contains data that has not been transmitted  
DS39881D-page 172  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 18-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
(1)  
RTSECSEL  
PMPTTL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-2  
bit 1  
Unimplemented: Read as ‘0’  
RTSECSEL: RTCC Seconds Clock Output Select bit(1)  
1= RTCC seconds clock is selected for the RTCC pin  
0= RTCC alarm pulse is selected for the RTCC pin  
bit 0  
PMPTTL: PMP Module TTL Input Buffer Select bit  
1= PMP module uses TTL input buffers  
0= PMP module uses Schmitt Trigger input buffers  
Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.  
2010 Microchip Technology Inc.  
DS39881D-page 173  
PIC24FJ64GA004 FAMILY  
FIGURE 18-2:  
LEGACY PARALLEL SLAVE PORT EXAMPLE  
Address Bus  
Data Bus  
Master  
PMD<7:0>  
PIC24F Slave  
PMD<7:0>  
Control Lines  
PMCS1  
PMRD  
PMWR  
PMCS1  
PMRD  
PMWR  
FIGURE 18-3:  
ADDRESSABLE PARALLEL SLAVE PORT EXAMPLE  
PIC24F Slave  
Master  
PMA<1:0>  
PMA<1:0>  
Write  
Address  
Decode  
Read  
Address  
Decode  
PMD<7:0>  
PMD<7:0>  
PMDOUT1L (0)  
PMDIN1L (0)  
PMDIN1H (1)  
PMDIN2L (2)  
PMDIN2H (3)  
PMCS1  
PMRD  
PMWR  
PMCS1  
PMRD  
PMWR  
PMDOUT1H (1)  
PMDOUT2L (2)  
PMDOUT2H (3)  
Address Bus  
Data Bus  
Control Lines  
TABLE 18-1: SLAVE MODE ADDRESS RESOLUTION  
PMA<1:0>  
Output Register (Buffer)  
Input Register (Buffer)  
00  
01  
10  
11  
PMDOUT1<7:0> (0)  
PMDOUT1<15:8> (1)  
PMDOUT2<7:0> (2)  
PMDOUT2<15:8> (3)  
PMDIN1<7:0> (0)  
PMDIN1<15:8> (1)  
PMDIN2<7:0> (2)  
PMDIN2<15:8> (3)  
FIGURE 18-4:  
MASTER MODE, DEMULTIPLEXED ADDRESSING (SEPARATE READ AND  
WRITE STROBES, SINGLE CHIP SELECT)  
PIC24F  
PMA<10:0>  
PMD<7:0>  
PMCS1  
PMRD  
PMWR  
Address Bus  
Data Bus  
Control Lines  
DS39881D-page 174  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
FIGURE 18-5:  
MASTER MODE, PARTIALLY MULTIPLEXED ADDRESSING (SEPARATE READ  
AND WRITE STROBES, SINGLE CHIP SELECT)  
PIC24F  
PMA<10:8>  
PMD<7:0>  
PMA<7:0>  
PMCS1  
PMALL  
PMRD  
PMWR  
Address Bus  
Multiplexed  
Data and  
Address Bus  
Control Lines  
FIGURE 18-6:  
MASTER MODE, FULLY MULTIPLEXED ADDRESSING (SEPARATE READ AND  
WRITE STROBES, SINGLE CHIP SELECT)  
PMD<7:0>  
PMA<7:0>  
PMA<15:8>  
PIC24F  
PMCS1  
PMALL  
PMALH  
PMRD  
PMWR  
Multiplexed  
Data and  
Address Bus  
Control Lines  
FIGURE 18-7:  
EXAMPLE OF A MULTIPLEXED ADDRESSING APPLICATION  
PIC24F  
A<7:0>  
PMD<7:0>  
PMALL  
373  
A<15:0>  
D<7:0>  
D<7:0>  
CE  
A<15:8>  
373  
OE  
WR  
PMALH  
PMCS1  
PMRD  
PMWR  
Address Bus  
Data Bus  
Control Lines  
FIGURE 18-8:  
EXAMPLE OF A PARTIALLY MULTIPLEXED ADDRESSING APPLICATION  
PIC24F  
A<7:0>  
373  
PMD<7:0>  
PMALL  
A<10:0>  
D<7:0>  
D<7:0>  
CE  
A<10:8>  
PMA<10:8>  
OE  
WR  
Address Bus  
Data Bus  
PMCS1  
PMRD  
PMWR  
Control Lines  
2010 Microchip Technology Inc.  
DS39881D-page 175  
PIC24FJ64GA004 FAMILY  
FIGURE 18-9:  
EXAMPLE OF AN 8-BIT MULTIPLEXED ADDRESS AND DATA APPLICATION  
PIC24F  
PMD<7:0>  
Parallel Peripheral  
AD<7:0>  
PMALL  
PMCS1  
PMRD  
ALE  
CS  
Address Bus  
Data Bus  
RD  
PMWR  
WR  
Control Lines  
FIGURE 18-10:  
PARALLEL EEPROM EXAMPLE (UP TO 11-BIT ADDRESS, 8-BIT DATA)  
PIC24F  
Parallel EEPROM  
PMA<n:0>  
A<n:0>  
PMD<7:0>  
D<7:0>  
PMCS1  
PMRD  
PMWR  
CE  
OE  
WR  
Address Bus  
Data Bus  
Control Lines  
FIGURE 18-11:  
PARALLEL EEPROM EXAMPLE (UP TO 11-BIT ADDRESS, 16-BIT DATA)  
PIC24F  
Parallel EEPROM  
A<n:1>  
D<7:0>  
PMA<n:0>  
PMD<7:0>  
PMBE  
PMCS1  
PMRD  
A0  
CE  
OE  
WR  
Address Bus  
Data Bus  
PMWR  
Control Lines  
FIGURE 18-12:  
LCD CONTROL EXAMPLE (BYTE MODE OPERATION)  
PIC24F  
LCD Controller  
PM<7:0>  
PMA0  
D<7:0>  
RS  
PMRD/PMWR  
PMCS1  
R/W  
E
Address Bus  
Data Bus  
Control Lines  
DS39881D-page 176  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
19.0 REAL-TIME CLOCK AND  
CALENDAR (RTCC)  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 29. Real-Time Clock and  
Calendar (RTCC)” (DS39696).  
FIGURE 19-1:  
RTCC BLOCK DIAGRAM  
CPU Clock Domain  
RTCC Clock Domain  
32.768 kHz Input  
from SOSC Oscillator  
RCFGCAL  
RTCC Prescalers  
0.5s  
ALCFGRPT  
YEAR  
MTHDY  
WKDYHR  
MINSEC  
RTCVAL  
RTCC Timer  
Alarm  
Event  
Comparator  
ALMTHDY  
ALWDHR  
Compare Registers  
with Masks  
ALRMVAL  
ALMINSEC  
Repeat Counter  
RTCC Interrupt  
RTCC Interrupt Logic  
Alarm Pulse  
RTCC Pin  
RTCOE  
2010 Microchip Technology Inc.  
DS39881D-page 177  
PIC24FJ64GA004 FAMILY  
TABLE 19-2: ALRMVAL REGISTER  
19.1 RTCC Module Registers  
MAPPING  
The RTCC module registers are organized into three  
categories:  
Alarm Value Register Window  
ALRMPTR  
<1:0>  
• RTCC Control Registers  
• RTCC Value Registers  
• Alarm Value Registers  
ALRMVAL<15:8> ALRMVAL<7:0>  
00  
01  
10  
11  
ALRMMIN  
ALRMWD  
ALRMMNTH  
ALRMSEC  
ALRMHR  
ALRMDAY  
19.1.1  
REGISTER MAPPING  
To limit the register interface, the RTCC Timer and  
Alarm Time registers are accessed through corre-  
sponding register pointers. The RTCC Value register  
window (RTCVALH and RTCVALL) uses the RTCPTR  
bits (RCFGCAL<9:8>) to select the desired Timer  
register pair (see Table 19-1).  
Considering that the 16-bit core does not distinguish  
between 8-bit and 16-bit read operations, the user must  
be aware that when reading either the ALRMVALH or  
ALRMVALL bytes will decrement the ALRMPTR<1:0>  
value. The same applies to the RTCVALH or RTCVALL  
bytes with the RTCPTR<1:0> being decremented.  
By writing the RTCVALH byte, the RTCC Pointer value,  
RTCPTR<1:0> bits, decrement by one until they reach  
00’. Once they reach ‘00’, the MINUTES and SEC-  
ONDS value will be accessible through RTCVALH and  
RTCVALL until the pointer value is manually changed.  
Note:  
This only applies to read operations and  
not write operations.  
19.1.2  
WRITE LOCK  
In order to perform a write to any of the RTCC Timer  
registers, the RTCWREN bit (RCFGCAL<13>) must be  
set (refer to Example 19-1).  
TABLE 19-1: RTCVAL REGISTER MAPPING  
RTCC Value Register Window  
RTCPTR  
<1:0>  
Note:  
To avoid accidental writes to the timer, it is  
recommended that the RTCWREN bit  
(RCFGCAL<13>) is kept clear at any  
other time. For the RTCWREN bit to be  
set, there is only 1 instruction cycle time  
window allowed between the 55h/AA  
sequence and the setting of RTCWREN;  
therefore, it is recommended that code  
follow the procedure in Example 19-1.  
RTCVAL<15:8> RTCVAL<7:0>  
00  
01  
10  
11  
MINUTES  
WEEKDAY  
MONTH  
SECONDS  
HOURS  
DAY  
YEAR  
The Alarm Value register window (ALRMVALH and  
ALRMVALL) uses the ALRMPTR bits  
(ALCFGRPT<9:8>) to select the desired Alarm register  
pair (see Table 19-2).  
By writing the ALRMVALH byte, the Alarm Pointer  
value, ALRMPTR<1:0> bits, decrement by one until  
they reach ‘00’. Once they reach ‘00’, the ALRMMIN  
and ALRMSEC value will be accessible through  
ALRMVALH and ALRMVALL until the pointer value is  
manually changed.  
EXAMPLE 19-1:  
SETTING THE RTCWREN BIT  
asm volatile("push w7");  
asm volatile("push w8");  
asm volatile("disi #5");  
asm volatile("mov #0x55, w7");  
asm volatile("mov w7, _NVMKEY");  
asm volatile("mov #0xAA, w8");  
asm volatile("mov w8, _NVMKEY");  
asm volatile("bset _RCFGCAL, #13"); //set the RTCWREN bit  
asm volatile("pop w8");  
asm volatile("pop w7");  
DS39881D-page 178  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
19.1.3  
RTCC CONTROL REGISTERS  
REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER(1)  
R/W-0  
RTCEN(2)  
U-0  
R/W-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
RTCWREN  
RTCSYNC HALFSEC(3)  
RTCOE  
RTCPTR1  
RTCPTR0  
bit 15  
bit 8  
R/W-0  
CAL7  
R/W-0  
CAL6  
R/W-0  
CAL5  
R/W-0  
CAL4  
R/W-0  
CAL3  
R/W-0  
CAL2  
R/W-0  
CAL1  
R/W-0  
CAL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
RTCEN: RTCC Enable bit(2)  
1= RTCC module is enabled  
0= RTCC module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
RTCWREN: RTCC Value Registers Write Enable bit  
1= RTCVALH and RTCVALL registers can be written to by the user  
0= RTCVALH and RTCVALL registers are locked out from being written to by the user  
bit 12  
RTCSYNC: RTCC Value Registers Read Synchronization bit  
1= RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple  
resulting in an invalid data read. If the register is read twice and results in the same data, the data  
can be assumed to be valid.  
0= RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover ripple  
bit 11  
bit 10  
bit 9-8  
HALFSEC: Half-Second Status bit(3)  
1= Second half period of a second  
0= First half period of a second  
RTCOE: RTCC Output Enable bit  
1= RTCC output enabled  
0= RTCC output disabled  
RTCPTR1:RTCPTR0: RTCC Value Register Window Pointer bits  
Points to the corresponding RTCC Value registers when reading the RTCVALH and RTCVALL regis-  
ters; the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches ‘00’.  
RTCVAL<15:8>:  
00= MINUTES  
01= WEEKDAY  
10= MONTH  
11= Reserved  
RTCVAL<7:0>:  
00= SECONDS  
01= HOURS  
10= DAY  
11= YEAR  
Note 1: The RCFGCAL register is only affected by a POR.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
3: This bit is read-only. It is cleared to ‘0’ on a write to the lower half of the MINSEC register.  
2010 Microchip Technology Inc.  
DS39881D-page 179  
PIC24FJ64GA004 FAMILY  
REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER(1)  
bit 7-0  
CAL7:CAL0: RTC Drift Calibration bits  
01111111= Maximum positive adjustment; adds 508 RTC clock pulses every one minute  
...  
01111111= Minimum positive adjustment; adds 4 RTC clock pulses every one minute  
00000000= No adjustment  
11111111= Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute  
...  
10000000= Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute  
Note 1: The RCFGCAL register is only affected by a POR.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
3: This bit is read-only. It is cleared to ‘0’ on a write to the lower half of the MINSEC register.  
REGISTER 19-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
(1)  
RTSECSEL  
PMPTTL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-2  
bit 1  
Unimplemented: Read as ‘0’  
RTSECSEL: RTCC Seconds Clock Output Select bit(1)  
1= RTCC seconds clock is selected for the RTCC pin  
0= RTCC alarm pulse is selected for the RTCC pin  
bit 0  
PMPTTL: PMP Module TTL Input Buffer Select bit  
1= PMP module uses TTL input buffers  
0= PMP module uses Schmitt Trigger input buffers  
Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.  
DS39881D-page 180  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 19-3:  
ALCFGRPT: ALARM CONFIGURATION REGISTER  
R/W-0  
ALRMEN  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CHIME  
AMASK3  
AMASK2  
AMASK1  
AMASK0  
ALRMPTR1 ALRMPTR0  
bit 8  
R/W-0  
ARPT7  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ARPT6  
ARPT5  
ARPT4  
ARPT3  
ARPT2  
ARPT1  
ARPT0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
ALRMEN: Alarm Enable bit  
1= Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 00h and  
CHIME = 0)  
0= Alarm is disabled  
bit 14  
CHIME: Chime Enable bit  
1= Chime is enabled; ARPT<7:0> bits are allowed to roll over from 00h to FFh  
0= Chime is disabled; ARPT<7:0> bits stop once they reach 00h  
bit 13-10  
AMASK3:AMASK0: Alarm Mask Configuration bits  
0000= Every half second  
0001= Every second  
0010= Every 10 seconds  
0011= Every minute  
0100= Every 10 minutes  
0101= Every hour  
0110= Once a day  
0111= Once a week  
1000= Once a month  
1001= Once a year (except when configured for February 29th, once every 4 years)  
101x= Reserved – do not use  
11xx= Reserved – do not use  
bit 9-8  
ALRMPTR1:ALRMPTR0: Alarm Value Register Window Pointer bits  
Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL registers;  
the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches ‘00’.  
ALRMVAL<15:8>:  
00= ALRMMIN  
01= ALRMWD  
10= ALRMMNTH  
11= Unimplemented  
ALRMVAL<7:0>:  
00= ALRMSEC  
01= ALRMHR  
10= ALRMDAY  
11= Unimplemented  
bit 7-0  
ARPT7:ARPT0: Alarm Repeat Counter Value bits  
11111111= Alarm will repeat 255 more times  
...  
00000000= Alarm will not repeat  
The counter decrements on any alarm event. The counter is prevented from rolling over from 00h to  
FFh unless CHIME = 1.  
2010 Microchip Technology Inc.  
DS39881D-page 181  
PIC24FJ64GA004 FAMILY  
19.1.4  
RTCVAL REGISTER MAPPINGS  
REGISTER 19-4:  
YEAR: YEAR VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
YRTEN3  
bit 7  
YRTEN2  
YRTEN1  
YRTEN0  
YRONE3  
YRONE2  
YRONE1  
YRONE0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
YRTEN3:YRTEN0: Binary Coded Decimal Value of Year’s Tens Digit; Contains a value from 0 to 9  
YRONE3:YRONE0: Binary Coded Decimal Value of Year’s Ones Digit; Contains a value from 0 to 9  
Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.  
REGISTER 19-5:  
MTHDY: MONTH AND DAY VALUE REGISTER(1)  
U-0  
U-0  
U-0  
R-x  
R-x  
R-x  
R-x  
R-x  
MTHTEN0  
MTHONE3  
MTHONE2  
MTHONE1  
MTHONE0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYTEN1  
DAYTEN0  
DAYONE3  
DAYONE2  
DAYONE1  
DAYONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit; Contains a value of ‘0’ or ‘1’  
bit 11-8  
bit 7-6  
bit 5-4  
bit 3-0  
MTHONE3:MTHONE0: Binary Coded Decimal Value of Month’s Ones Digit; Contains a value from 0 to 9  
Unimplemented: Read as ‘0’  
DAYTEN1:DAYTEN0: Binary Coded Decimal Value of Day’s Tens Digit; Contains a value from 0 to 3  
DAYONE3:DAYONE0: Binary Coded Decimal Value of Day’s Ones Digit; Contains a value from 0 to 9  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
DS39881D-page 182  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 19-6:  
WKDYHR: WEEKDAY AND HOURS VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WDAY2  
WDAY1  
WDAY0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
HRTEN1  
HRTEN0  
HRONE3  
HRONE2  
HRONE1  
HRONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
bit 7-6  
Unimplemented: Read as ‘0’  
WDAY2:WDAY0: Binary Coded Decimal Value of Weekday Digit; Contains a value from 0 to 6  
Unimplemented: Read as ‘0’  
bit 5-4  
HRTEN1:HRTEN0: Binary Coded Decimal Value of Hour’s Tens Digit; Contains a value from 0 to 2  
HRONE3:HRONE0: Binary Coded Decimal Value of Hour’s Ones Digit; Contains a value from 0 to 9  
bit 3-0  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 19-7:  
MINSEC: MINUTES AND SECONDS VALUE REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MINTEN2  
MINTEN1  
MINTEN0  
MINONE3  
MINONE2  
MINONE1  
MINONE0  
bit 15  
bit 8  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SECTEN2  
SECTEN1  
SECTEN0  
SECONE3  
SECONE2  
SECONE1  
SECONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
bit 11-8  
bit 7  
MINTEN2:MINTEN0: Binary Coded Decimal Value of Minute’s Tens Digit; Contains a value from 0 to 5  
MINONE3:MINONE0: Binary Coded Decimal Value of Minute’s Ones Digit; Contains a value from 0 to 9  
Unimplemented: Read as ‘0’  
bit 6-4  
bit 3-0  
SECTEN2:SECTEN0: Binary Coded Decimal Value of Second’s Tens Digit; Contains a value from 0 to 5  
SECONE3:SECONE0: Binary Coded Decimal Value of Second’s Ones Digit; Contains a value from 0 to 9  
2010 Microchip Technology Inc.  
DS39881D-page 183  
PIC24FJ64GA004 FAMILY  
19.1.5  
ALRMVAL REGISTER MAPPINGS  
REGISTER 19-8:  
ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER(1)  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MTHTEN0  
MTHONE3  
MTHONE2  
MTHONE1  
MTHONE0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYTEN1  
DAYTEN0  
DAYONE3  
DAYONE2  
DAYONE1  
DAYONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit; Contains a value of ‘0’ or ‘1’  
bit 11-8  
bit 7-6  
bit 5-4  
bit 3-0  
MTHONE3:MTHONE0: Binary Coded Decimal Value of Month’s Ones Digit; Contains a value from 0 to 9  
Unimplemented: Read as ‘0’  
DAYTEN1:DAYTEN0: Binary Coded Decimal Value of Day’s Tens Digit; Contains a value from 0 to 3  
DAYONE3:DAYONE0: Binary Coded Decimal Value of Day’s Ones Digit; Contains a value from 0 to 9  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 19-9:  
ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WDAY2  
WDAY1  
WDAY0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
HRTEN1  
HRTEN0  
HRONE3  
HRONE2  
HRONE1  
HRONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
bit 7-6  
Unimplemented: Read as ‘0’  
WDAY2:WDAY0: Binary Coded Decimal Value of Weekday Digit; Contains a value from 0 to 6  
Unimplemented: Read as ‘0’  
bit 5-4  
HRTEN1:HRTEN0: Binary Coded Decimal Value of Hour’s Tens Digit; Contains a value from 0 to 2  
HRONE3:HRONE0: Binary Coded Decimal Value of Hour’s Ones Digit; Contains a value from 0 to 9  
bit 3-0  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
DS39881D-page 184  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 19-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MINTEN2  
MINTEN1  
MINTEN0  
MINONE3  
MINONE2  
MINONE1  
MINONE0  
bit 15  
bit 8  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SECTEN2  
SECTEN1  
SECTEN0  
SECONE3  
SECONE2  
SECONE1  
SECONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
bit 11-8  
bit 7  
MINTEN2:MINTEN0: Binary Coded Decimal Value of Minute’s Tens Digit; Contains a value from 0 to 5  
MINONE3:MINONE0: Binary Coded Decimal Value of Minute’s Ones Digit; Contains a value from 0 to 9  
Unimplemented: Read as ‘0’  
bit 6-4  
bit 3-0  
SECTEN2:SECTEN0: Binary Coded Decimal Value of Second’s Tens Digit; Contains a value from 0 to 5  
SECONE3:SECONE0: Binary Coded Decimal Value of Second’s Ones Digit; Contains a value from 0 to 9  
3. a) If the oscillator is faster then ideal (negative  
19.2 Calibration  
result form step 2), the RCFGCAL register value  
needs to be negative. This causes the specified  
number of clock pulses to be subtracted from  
the timer counter once every minute.  
The real-time crystal input can be calibrated using the  
periodic auto-adjust feature. When properly calibrated,  
the RTCC can provide an error of less than 3 seconds  
per month. This is accomplished by finding the number  
of error clock pulses and storing the value into the  
lower half of the RCFGCAL register. The 8-bit signed  
value loaded into the lower half of RCFGCAL is multi-  
plied by four and will be either added or subtracted from  
the RTCC timer, once every minute. Refer to the steps  
below for RTCC calibration:  
b) If the oscillator is slower then ideal (positive  
result from step 2) the RCFGCAL register value  
needs to be positive. This causes the specified  
number of clock pulses to be subtracted from  
the timer counter once every minute.  
4. Divide the number of error clocks per minute by  
4 to get the correct CAL value and load the  
RCFGCAL register with the correct value.  
1. Using another timer resource on the device, the  
user must find the error of the 32.768 kHz  
crystal.  
(Each 1-bit increment in CAL adds or subtracts  
4 pulses).  
2. Once the error is known, it must be converted to  
the number of error clock pulses per minute.  
Writes to the lower half of the RCFGCAL register  
should only occur when the timer is turned off, or  
immediately after the rising edge of the seconds pulse.  
EQUATION 19-1:  
Note:  
It is up to the user to include in the error  
value the initial error of the crystal, drift  
due to temperature and drift due to crystal  
aging.  
(Ideal Frequency– Measured Frequency) * 60 = Clocks  
per Minute  
Ideal frequency = 32,768 Hz  
2010 Microchip Technology Inc.  
DS39881D-page 185  
PIC24FJ64GA004 FAMILY  
After each alarm is issued, the value of the ARPT bits  
19.3 Alarm  
is decremented by one. Once the value has reached  
00h, the alarm will be issued one last time, after which  
the ALRMEN bit will be cleared automatically and the  
alarm will turn off.  
• Configurable from half second to one year  
• Enabled using the ALRMEN bit  
(ALCFGRPT<15>, Register 19-3)  
• One-time alarm and repeat alarm options  
available  
Indefinite repetition of the alarm can occur if the CHIME  
bit = 1. Instead of the alarm being disabled when the  
value of the ARPT bits reaches 00h, it rolls over to FFh  
and continues counting indefinitely while CHIME is set.  
19.3.1  
CONFIGURING THE ALARM  
The alarm feature is enabled using the ALRMEN bit.  
This bit is cleared when an alarm is issued. Writes to  
ALRMVAL should only take place when ALRMEN = 0.  
19.3.2  
ALARM INTERRUPT  
At every alarm event, an interrupt is generated. In addi-  
tion, an alarm pulse output is provided that operates at  
half the frequency of the alarm. This output is  
completely synchronous to the RTCC clock and can be  
used as a trigger clock to other peripherals.  
As shown in Figure 19-2, the interval selection of the  
alarm is configured through the AMASK bits  
(ALCFGRPT<13:10>). These bits determine which and  
how many digits of the alarm must match the clock  
value for the alarm to occur.  
Note:  
Changing any of the registers, other then  
the RCFGCAL and ALCFGRPT registers  
and the CHIME bit while the alarm is  
enabled (ALRMEN = 1), can result in a  
false alarm event leading to a false alarm  
interrupt. To avoid a false alarm event, the  
timer and alarm values should only be  
changed while the alarm is disabled  
(ALRMEN = 0). It is recommended that the  
ALCFGRPT register and CHIME bit be  
changed when RTCSYNC = 0.  
The alarm can also be configured to repeat based on a  
preconfigured interval. The amount of times this occurs  
once the alarm is enabled is stored in the ARPT bits,  
ARPT7:ARPT0 (ALCFGRPT<7:0>). When the value of  
the ARPT bits equals 00h and the CHIME bit  
(ALCFGRPT<14>) is cleared, the repeat function is  
disabled and only a single alarm will occur. The alarm  
can be repeated up to 255 times by loading  
ARPT7:ARPT0 with FFh.  
FIGURE 19-2:  
ALARM MASK SETTINGS  
Day of  
the  
Week  
Alarm Mask Setting  
(AMASK3:AMASK0)  
Month  
Day  
Hours  
Minutes  
Seconds  
0000– Every half second  
0001– Every second  
0010– Every 10 seconds  
0011– Every minute  
0100– Every 10 minutes  
0101– Every hour  
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
m
m
m
m
m
m
m
m
m
m
m
0110– Every day  
h
h
h
h
h
h
h
h
0111– Every week  
1000– Every month  
d
d
d
d
(1)  
1001– Every year  
m
m
d
Note 1: Annually, except when configured for February 29.  
DS39881D-page 186  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
Consider the CRC equation:  
20.0 PROGRAMMABLE CYCLIC  
REDUNDANCY CHECK (CRC)  
GENERATOR  
x
16 + x12 + x5 + 1  
To program this polynomial into the CRC generator,  
the CRC register bits should be set as shown in  
Table 20-1.  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 30. Programmable Cyclic  
Redundancy Check (CRC)” (DS39714).  
TABLE 20-1: EXAMPLE CRC SETUP  
Bit Name  
Bit Value  
PLEN3:PLEN0  
X<15:1>  
1111  
000100000010000  
The programmable CRC generator offers the following  
features:  
Note that for the value of X<15:1>, the 12th bit and the  
5th bit are set to ‘1’, as required by the equation. The 0  
bit required by the equation is always XORed. For a  
16-bit polynomial, the 16th bit is also always assumed  
to be XORed; therefore, the X<15:1> bits do not have  
the 0 bit or the 16th bit.  
• User-programmable polynomial CRC equation  
• Interrupt output  
• Data FIFO  
The module implements a software configurable CRC  
generator. The terms of the polynomial and its length  
can be programmed using the CRCXOR (X<15:1>) bits  
and the CRCCON (PLEN3:PLEN0) bits, respectively.  
The topology of a standard CRC generator is shown in  
Figure 20-2.  
FIGURE 20-1:  
CRC SHIFTER DETAILS  
PLEN<3:0>  
0
1
2
15  
CRC Shift Register  
Hold  
Hold  
X2  
Hold  
Hold  
X1  
X3  
X15  
0
0
0
0
XOR  
OUT  
OUT  
OUT  
OUT  
IN  
BIT 0  
IN  
BIT 1  
IN  
BIT 2  
IN  
BIT 15  
DOUT  
1
1
1
1
p_clk  
p_clk  
p_clk  
p_clk  
CRC Read Bus  
CRC Write Bus  
2010 Microchip Technology Inc.  
DS39881D-page 187  
PIC24FJ64GA004 FAMILY  
FIGURE 20-2:  
CRC GENERATOR RECONFIGURED FOR x16 + x12 + x5 + 1  
XOR  
D
Q
D
Q
D
Q
D
Q
D
Q
SDOx  
BIT 0  
BIT 4  
BIT 5  
BIT 12  
BIT 15  
p_clk  
p_clk  
p_clk  
p_clk  
p_clk  
CRC Read Bus  
CRC Write Bus  
To empty words already written into a FIFO, the  
CRCGO bit must be set to ‘1’ and the CRC shifter  
allowed to run until the CRCMPT bit is set.  
20.1 User Interface  
20.1.1  
DATA INTERFACE  
Also, to get the correct CRC reading, it will be  
necessary to wait for the CRCMPT bit to go high before  
reading the CRCWDAT register.  
To start serial shifting, a ‘1’ must be written to the  
CRCGO bit.  
The module incorporates a FIFO that is 8 deep when  
PLEN (PLEN<3:0>) > 7, and 16 deep, otherwise. The  
data for which the CRC is to be calculated must first be  
written into the FIFO. The smallest data element that  
can be written into the FIFO is one byte. For example,  
if PLEN = 5, then the size of the data is PLEN + 1 = 6.  
The data must be written as follows:  
If a word is written when the CRCFUL bit is set, the  
VWORD Pointer will roll over to 0. The hardware will  
then behave as if the FIFO is empty. However, the con-  
dition to generate an interrupt will not be met; therefore,  
no interrupt will be generated (See Section 20.1.2  
“Interrupt Operation”).  
At least one instruction cycle must pass after a write to  
CRCWDAT before a read of the VWORD bits is done.  
data[5:0] = crc_input[5:0]  
data[7:6] = ‘bxx  
Once data is written into the CRCWDAT MSb (as  
defined by PLEN), the value of the VWORD bits  
(CRCCON<12:8>) increments by one. The serial  
shifter starts shifting data into the CRC engine when  
CRCGO = 1 and VWORD > 0. When the MSb is  
shifted out, VWORD decrements by one. The serial  
shifter continues shifting until the VWORD reaches 0.  
Therefore, for a given value of PLEN, it will take  
(PLEN + 1) * VWORD number of clock cycles to  
complete the CRC calculations.  
20.1.2  
INTERRUPT OPERATION  
When the VWORD4:VWORD0 bits make a transition  
from a value of ‘1’ to ‘0’, an interrupt will be generated.  
20.2 Operation in Power Save Modes  
20.2.1  
SLEEP MODE  
If Sleep mode is entered while the module is operating,  
the module will be suspended in its current state until  
clock execution resumes.  
When VWORD reaches 8 (or 16), the CRCFUL bit will  
be set. When VWORD reaches 0, the CRCMPT bit will  
be set.  
20.2.2  
IDLE MODE  
To continue full module operation in Idle mode, the  
CSIDL bit must be cleared prior to entry into the mode.  
To continually feed data into the CRC engine, the rec-  
ommended mode of operation is to initially “prime” the  
FIFO with a sufficient number of words so no interrupt  
is generated before the next word can be written. Once  
that is done, start the CRC by setting the CRCGO bit to  
1’. From that point onward, the VWORD bits should be  
polled. If they read less than 8 or 16, another word can  
be written into the FIFO.  
If CSIDL = 1, the module will behave the same way as  
it does in Sleep mode; pending interrupt events will be  
passed on, even though the module clocks are not  
available.  
DS39881D-page 188  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
20.3 Registers  
There are four registers used to control programmable  
CRC operation:  
• CRCCON  
• CRCXOR  
• CRCDAT  
• CRCWDAT  
REGISTER 20-1:  
CRCCON: CRC CONTROL REGISTER  
U-0  
U-0  
R/W-0  
CSIDL  
R-0  
R-0  
R-0  
R-0  
R-0  
VWORD4  
VWORD3  
VWORD2  
VWORD1  
VWORD0  
bit 15  
bit 8  
R-0  
R-1  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CRCFUL  
bit 7  
CRCMPT  
CRCGO  
PLEN3  
PLEN2  
PLEN1  
PLEN0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CSIDL: CRC Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-8  
bit 7  
VWORD4:VWORD0: Pointer Value bits  
Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN3:PLEN0 > 7,  
or 16 when PLEN3:PLEN0 7.  
CRCFUL: FIFO Full bit  
1= FIFO is full  
0= FIFO is not full  
bit 6  
CRCMPT: FIFO Empty Bit  
1= FIFO is empty  
0= FIFO is not empty  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
CRCGO: Start CRC bit  
1= Start CRC serial shifter  
0= CRC serial shifter turned off  
bit 3-0  
PLEN3:PLEN0: Polynomial Length bits  
Denotes the length of the polynomial to be generated minus 1.  
2010 Microchip Technology Inc.  
DS39881D-page 189  
PIC24FJ64GA004 FAMILY  
REGISTER 20-2: CRCXOR: CRC XOR POLYNOMIAL REGISTER  
R/W-0  
X15  
R/W-0  
X14  
R/W-0  
X13  
R/W-0  
X12  
R/W-0  
X11  
R/W-0  
X10  
R/W-0  
X9  
R/W-0  
X8  
bit 15  
bit 8  
R/W-0  
X7  
R/W-0  
X6  
R/W-0  
X5  
R/W-0  
X4  
R/W-0  
X3  
R/W-0  
X2  
R/W-0  
X1  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-1  
bit 0  
X15:X1: XOR of Polynomial Term Xn Enable bits  
Unimplemented: Read as ‘0’  
DS39881D-page 190  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
A block diagram of the A/D Converter is shown in  
Figure 21-1.  
21.0 10-BIT HIGH-SPEED A/D  
CONVERTER  
To perform an A/D conversion:  
Note:  
This data sheet summarizes the features  
1. Configure the A/D module:  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 17. 10-Bit A/D Converter”  
(DS39705).  
a) Select port pins as analog inputs  
(AD1PCFG<15:0>).  
b) Select voltage reference source to match  
expected range on analog inputs  
(AD1CON2<15:13>).  
c) Select the analog conversion clock to  
match desired data rate with processor  
clock (AD1CON3<7:0>).  
The 10-bit A/D Converter has the following key  
features:  
• Successive Approximation (SAR) conversion  
• Conversion speeds of up to 500 ksps  
• Up to 13 analog input pins  
d) Select the appropriate sample/conversion  
sequence  
(AD1CON1<7:5>  
and  
AD1CON3<12:8>).  
e) Select how conversion results are  
presented in the buffer (AD1CON1<9:8>).  
• External voltage reference input pins  
• Automatic Channel Scan mode  
f) Select interrupt rate (AD1CON2<5:2>).  
g) Turn on A/D module (AD1CON1<15>).  
2. Configure A/D interrupt (if required):  
a) Clear the AD1IF bit.  
• Selectable conversion trigger source  
• 16-word conversion result buffer  
• Selectable Buffer Fill modes  
• Four result alignment options  
b) Select A/D interrupt priority.  
• Operation during CPU Sleep and Idle modes  
Depending on the particular device pinout, the 10-bit  
A/D Converter can have up to three analog input pins,  
designated AN0 through AN12. In addition, there are  
two analog input pins for external voltage reference  
connections. These voltage reference inputs may be  
shared with other analog input pins. The actual number  
of analog input pins and external voltage reference  
input configuration will depend on the specific device.  
2010 Microchip Technology Inc.  
DS39881D-page 191  
PIC24FJ64GA004 FAMILY  
FIGURE 21-1:  
10-BIT HIGH-SPEED A/D CONVERTER BLOCK DIAGRAM  
Internal Data Bus  
16  
AVDD  
AVSS  
VR+  
VR-  
VREF+  
VREF-  
Comparator  
VINH  
VINL  
VR- VR+  
DAC  
S/H  
AN0  
VINH  
AN1  
AN2  
10-Bit SAR  
Conversion Logic  
Data Formatting  
AN3  
AN4  
AN5  
VINL  
ADC1BUF0:  
ADC1BUFF  
(1)  
AN6  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS  
(1)  
AN7  
(1)  
VINH  
AN8  
AD1PCFG  
AD1CSSL  
AN9  
VINL  
AN10  
AN11  
AN12  
Sample Control  
Control Logic  
Conversion Control  
Input MUX Control  
Pin Config. Control  
(2)  
VBG  
Note 1: Analog channels AN6 through AN8 are available on 44-pin devices only.  
2: Band gap voltage reference (VBG) is internally connected to analog channel AN15, which does not appear on any pin.  
DS39881D-page 192  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 21-1: AD1CON1: A/D CONTROL REGISTER 1  
R/W-0  
ADON  
U-0  
R/C-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
ADSIDL  
FORM1  
FORM0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
ASAM  
R/W-0, HCS R/W-0, HCS  
SAMP DONE  
bit 0  
SSRC2  
SSRC1  
SSRC0  
bit 7  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HCS = Hardware Clearable/Settable bit  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
ADON: A/D Operating Mode bit  
1= A/D Converter module is operating  
0= A/D Converter is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-10  
bit 9-8  
Unimplemented: Read as ‘0’  
FORM1:FORM0: Data Output Format bits  
11= Signed fractional (sddd dddd dd00 0000)  
10= Fractional (dddd dddd dd00 0000)  
01= Signed integer (ssss sssd dddd dddd)  
00= Integer (0000 00dd dddd dddd)  
bit 7-5  
SSRC2:SSRC0: Conversion Trigger Source Select bits  
111= Internal counter ends sampling and starts conversion (auto-convert)  
110= Reserved  
10x= Reserved  
011= Reserved  
010= Timer3 compare ends sampling and starts conversion  
001= Active transition on INT0 pin ends sampling and starts conversion  
000= Clearing SAMP bit ends sampling and starts conversion  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
ASAM: A/D Sample Auto-Start bit  
1= Sampling begins immediately after last conversion completes. SAMP bit is auto-set.  
0= Sampling begins when SAMP bit is set  
bit 1  
bit 0  
SAMP: A/D Sample Enable bit  
1= A/D sample/hold amplifier is sampling input  
0= A/D sample/hold amplifier is holding  
DONE: A/D Conversion Status bit  
1= A/D conversion is done  
0= A/D conversion is NOT done  
2010 Microchip Technology Inc.  
DS39881D-page 193  
PIC24FJ64GA004 FAMILY  
REGISTER 21-2: AD1CON2: A/D CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
U-0  
U-0  
VCFG2  
VCFG1  
VCFG0  
CSCNA  
bit 15  
bit 8  
R-0  
U-0  
R/W-0  
SMPI3  
R/W-0  
SMPI2  
R/W-0  
SMPI1  
R/W-0  
SMPI0  
R/W-0  
BUFM  
R/W-0  
ALTS  
BUFS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-13  
VCFG2:VCFG0: Voltage Reference Configuration bits  
VCFG2:VCFG0  
VR+  
VR-  
000  
001  
010  
011  
1xx  
AVDD*  
External VREF+ pin  
AVDD*  
AVSS*  
AVSS*  
External VREF- pin  
External VREF- pin  
AVSS*  
External VREF+ pin  
AVDD*  
*
AVDD and AVSS inputs are tied to VDD and VSS on 28-pin devices.  
bit 12-11  
bit 10  
Unimplemented: Read as ‘0’  
CSCNA: Scan Input Selections for CH0+ S/H Input for MUX A Input Multiplexer Setting bit  
1= Scan inputs  
0= Do not scan inputs  
bit 9-8  
bit 7  
Unimplemented: Read as ‘0’  
BUFS: Buffer Fill Status bit (valid only when BUFM = 1)  
1= A/D is currently filling buffer 08-0F, user should access data in 00-07  
0= A/D is currently filling buffer 00-07, user should access data in 08-0F  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-2  
SMPI3:SMPI0: Sample/Convert Sequences Per Interrupt Selection bits  
1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence  
1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence  
.....  
0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence  
0000 = Interrupts at the completion of conversion for each sample/convert sequence  
bit 1  
bit 0  
BUFM: Buffer Mode Select bit  
1 = Buffer configured as two 8-word buffers (ADC1BUFn<15:8> and ADC1BUFn<7:0>)  
0 = Buffer configured as one 16-word buffer (ADC1BUFn<15:0>)  
ALTS: Alternate Input Sample Mode Select bit  
1= Uses MUX A input multiplexer settings for first sample, then alternates between MUX B and  
MUX A input multiplexer settings for all subsequent samples  
0= Always uses MUX A input multiplexer settings  
DS39881D-page 194  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 21-3: AD1CON3: A/D CONTROL REGISTER 3  
R/W-0  
ADRC  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SAMC4  
SAMC3  
SAMC2  
SAMC1  
SAMC0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADCS7  
ADCS6  
ADCS5  
ADCS4  
ADCS3  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
ADRC: A/D Conversion Clock Source bit  
1= A/D internal RC clock  
0= Clock derived from system clock  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
SAMC4:SAMC0: Auto-Sample Time bits  
11111= 31 TAD  
·····  
00001= 1 TAD  
00000= 0 TAD (not recommended)  
bit 7-0  
ADCS7:ADCS0: A/D Conversion Clock Select bits  
11111111  
······ = Reserved  
01000000  
00111111= 64 • TCY  
······  
00000001= 2 • TCY  
00000000= TCY  
2010 Microchip Technology Inc.  
DS39881D-page 195  
PIC24FJ64GA004 FAMILY  
REGISTER 21-4: AD1CHS: A/D INPUT SELECT REGISTER  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH0NB  
CH0SB3(1,2) CH0SB2(1,2) CH0SB1(1,2) CH0SB0(1,2)  
bit 15  
bit 8  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH0NA  
CH0SA3(1,2) CH0SA2(1,2) CH0SA1(1,2) CH0SA0(1,2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
CH0NB: Channel 0 Negative Input Select for MUX B Multiplexer Setting bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VR-  
bit 14-12  
bit 11-8  
Unimplemented: Read as ‘0’  
CH0SB3:CH0SB0: Channel 0 Positive Input Select for MUX B Multiplexer Setting bits(1,2)  
1111= Channel 0 positive input is AN15 (band gap voltage reference)  
1100= Channel 0 positive input is AN12  
1011= Channel 0 positive input is AN11  
·····  
0001= Channel 0 positive input is AN1  
0000= Channel 0 positive input is AN0  
bit 7  
CH0NA: Channel 0 Negative Input Select for MUX A Multiplexer Setting bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VR-  
bit 6-4  
bit 3-0  
Unimplemented: Read as ‘0’  
CH0SA3:CH0SA0: Channel 0 Positive Input Select for MUX A Multiplexer Setting bits(1,2)  
1111= Channel 0 positive input is AN15 (band gap voltage reference)  
1100= Channel 0 positive input is AN12  
1011= Channel 0 positive input is AN11  
·····  
0001= Channel 0 positive input is AN1  
0000= Channel 0 positive input is AN0  
Note 1: Combinations ‘1101’ and ‘1110’ are unimplemented; do not use.  
2: Analog channels AN6, AN7 and AN8 are unavailable on 28-pin devices; do not use.  
DS39881D-page 196  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 21-5: AD1PCFG: A/D PORT CONFIGURATION REGISTER  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG8(1)  
PCFG15  
PCFG12  
PCFG11  
PCFG10  
PCFG9  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG7(1)  
PCFG6(1)  
PCFG5  
PCFG4  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
PCFG15: Analog Input Pin Configuration Control bits  
1= Band gap voltage reference is disabled  
0= Band gap voltage reference enabled  
bit 14-13  
bit 12-0  
Unimplemented: Read as ‘0’  
PCFG12:PCFG0: Analog Input Pin Configuration Control bits(1)  
1= Pin for corresponding analog channel is configured in Digital mode; I/O port read enabled  
0= Pin configured in Analog mode; I/O port read disabled, A/D samples pin voltage  
Note 1: Analog channels AN6, AN7 and AN8 are unavailable on 28-pin devices; leave these corresponding bits  
set.  
REGISTER 21-6: AD1CSSL: A/D INPUT SCAN SELECT REGISTER  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSSL8(1)  
CSSL15  
CSSL12  
CSSL11  
CSSL10  
CSSL9  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSSL7(1)  
CSSL6(1)  
CSSL5  
CSSL4  
CSSL3  
CSSL2  
CSSL1  
CSSL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
CSSL15: Band Gap Reference Input Pin Scan Selection bits  
1=Band gap voltage reference channel selected for input scan  
0=Band gap voltage reference channel omitted from input scan  
bit 14-13  
bit 12-0  
Unimplemented: Read as ‘0’  
CSSL12:CSSL0: A/D Input Pin Scan Selection bits(1)  
1=Corresponding analog channel selected for input scan  
0=Analog channel omitted from input scan  
Note 1: Analog channels AN6, AN7 and AN8 are unavailable on 28-pin devices; leave these corresponding bits  
cleared.  
2010 Microchip Technology Inc.  
DS39881D-page 197  
PIC24FJ64GA004 FAMILY  
EQUATION 21-1: A/D CONVERSION CLOCK PERIOD(1)  
TAD = TCY • (ADCS +1)  
TAD  
TCY  
– 1  
ADCS =  
Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.  
FIGURE 21-2:  
10-BIT A/D CONVERTER ANALOG INPUT MODEL  
VDD  
RIC 250  
RSS 5 k(Typical)  
Sampling  
Switch  
VT = 0.6V  
VT = 0.6V  
ANx  
RSS  
Rs  
CHOLD  
= DAC capacitance  
= 4.4 pF (Typical)  
VA  
CPIN  
ILEAKAGE  
500 nA  
6-11 pF  
(Typical)  
VSS  
Legend: CPIN  
VT  
= Input Capacitance  
= Threshold Voltage  
ILEAKAGE = Leakage Current at the pin due to  
various junctions  
RIC  
= Interconnect Resistance  
RSS  
CHOLD  
= Sampling Switch Resistance  
= Sample/Hold Capacitance (from DAC)  
Note: CPIN value depends on device package and is not tested. Effect of CPIN negligible if Rs 5 k.  
DS39881D-page 198  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
FIGURE 21-3:  
A/D TRANSFER FUNCTION  
Output Code  
(Binary (Decimal))  
11 1111 1111(1023)  
11 1111 1110(1022)  
10 0000 0011(515)  
10 0000 0010(514)  
10 0000 0001(513)  
10 0000 0000(512)  
01 1111 1111(511)  
01 1111 1110(510)  
01 1111 1101(509)  
00 0000 0001(1)  
00 0000 0000(0)  
Voltage Level  
2010 Microchip Technology Inc.  
DS39881D-page 199  
PIC24FJ64GA004 FAMILY  
NOTES:  
DS39881D-page 200  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
22.0 COMPARATOR MODULE  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section  
16.  
Output  
Compare”  
(DS39706).  
FIGURE 22-1:  
COMPARATOR I/O OPERATING MODES  
C1NEG  
C1EN  
CMCON<6>  
C1INV  
C1IN+  
C1IN-  
VIN-  
C1OUT(1)  
C1POS  
C1  
C1IN+  
CVREF  
VIN+  
C1OUTEN  
C2NEG  
C2POS  
CMCON<7>  
C2EN  
C2  
C2INV  
C2IN+  
C2IN-  
VIN-  
VIN+  
C2OUT(1)  
C2IN+  
CVREF  
C2OUTEN  
Note 1: This peripheral’s outputs must be assigned to an available RPn pin before use. Please see  
Section 10.4 “Peripheral Pin Select” for more information.  
2010 Microchip Technology Inc.  
DS39881D-page 201  
PIC24FJ64GA004 FAMILY  
REGISTER 22-1:  
CMCON: COMPARATOR CONTROL REGISTER  
R/W-0  
CMIDL  
bit 15  
U-0  
R/C-0  
R/C-0  
R/W-0  
C2EN  
R/W-0  
C1EN  
R/W-0  
R/W-0  
C2EVT  
C1EVT  
C2OUTEN(1) C1OUTEN(2)  
bit 8  
R-0  
C2OUT  
bit 7  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
C1OUT  
C2NEG  
C2POS  
C1NEG  
C1POS  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
CMIDL: Stop in Idle Mode bit  
1= When device enters Idle mode, module does not generate interrupts; module is still enabled  
0= Continue normal module operation in Idle mode  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
C2EVT: Comparator 2 Event  
1= Comparator output changed states  
0= Comparator output did not change states  
bit 12  
bit 11  
bit 10  
bit 9  
C1EVT: Comparator 1 Event  
1= Comparator output changed states  
0= Comparator output did not change states  
C2EN: Comparator 2 Enable  
1= Comparator is enabled  
0= Comparator is disabled  
C1EN: Comparator 1 Enable  
1= Comparator is enabled  
0= Comparator is disabled  
C2OUTEN: Comparator 2 Output Enable(1)  
1= Comparator output is driven on the output pad  
0= Comparator output is not driven on the output pad  
bit 8  
C1OUTEN: Comparator 1 Output Enable(2)  
1= Comparator output is driven on the output pad  
0= Comparator output is not driven on the output pad  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
0= C2 VIN+ > C2 VIN-  
1= C2 VIN+ < C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
0= C1 VIN+ > C1 VIN-  
1= C1 VIN+ < C1 VIN-  
DS39881D-page 202  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 22-1:  
CMCON: COMPARATOR CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 output inverted  
0= C1 output not inverted  
C2NEG: Comparator 2 Negative Input Configure bit  
1= Input is connected to VIN+  
0= Input is connected to VIN-  
See Figure 22-1 for the Comparator modes.  
bit 2  
bit 1  
bit 0  
C2POS: Comparator 2 Positive Input Configure bit  
1= Input is connected to VIN+  
0= Input is connected to CVREF  
See Figure 22-1 for the Comparator modes.  
C1NEG: Comparator 1 Negative Input Configure bit  
1= Input is connected to VIN+  
0= Input is connected to VIN-  
See Figure 22-1 for the Comparator modes.  
C1POS: Comparator 1 Positive Input Configure bit  
1= Input is connected to VIN+  
0= Input is connected to CVREF  
See Figure 22-1 for the Comparator modes.  
Note 1: If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPn pin. See  
Section 10.4 “Peripheral Pin Select” for more information.  
2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPn pin. See  
Section 10.4 “Peripheral Pin Select” for more information.  
2010 Microchip Technology Inc.  
DS39881D-page 203  
PIC24FJ64GA004 FAMILY  
NOTES:  
DS39881D-page 204  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
voltage, each with 16 distinct levels. The range to be  
used is selected by the CVRR bit (CVRCON<5>). The  
primary difference between the ranges is the size of the  
steps selected by the CVREF Selection bits  
23.0 COMPARATOR VOLTAGE  
REFERENCE  
Note:  
This data sheet summarizes the features  
(CVR3:CVR0), with one range offering finer resolution.  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
“PIC24F Family Reference Manual”,  
”Section 20. Comparator Voltage  
Reference Module” (DS39709).  
The comparator reference supply voltage can come  
from either VDD and VSS, or the external VREF+ and  
VREF-. The voltage source is selected by the CVRSS  
bit (CVRCON<4>).  
The settling time of the comparator voltage reference  
must be considered when changing the CVREF  
output.  
23.1 Configuring the Comparator  
Voltage Reference  
The voltage reference module is controlled through the  
CVRCON register (Register 23-1). The comparator  
voltage reference provides two ranges of output  
FIGURE 23-1:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
CVRSS = 1  
CVRSS = 0  
VREF+  
AVDD  
8R  
CVR3:CVR0  
R
CVREN  
R
R
R
16 Steps  
CVREF  
R
R
R
CVRR  
VREF-  
8R  
CVRSS = 1  
CVRSS = 0  
AVSS  
2010 Microchip Technology Inc.  
DS39881D-page 205  
PIC24FJ64GA004 FAMILY  
REGISTER 23-1:  
CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
CVREN  
bit 7  
R/W-0  
R/W-0  
CVRR  
R/W-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVROE  
CVRSS  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
bit 6  
CVROE: Comparator VREF Output Enable bit  
1= CVREF voltage level is output on CVREF pin  
0= CVREF voltage level is disconnected from CVREF pin  
bit 5  
CVRR: Comparator VREF Range Selection bit  
1= CVRSRC range should be 0 to 0.625 CVRSRC with CVRSRC/24 step size  
0= CVRSRC range should be 0.25 to 0.719 CVRSRC with CVRSRC/32 step size  
bit 4  
CVRSS: Comparator VREF Source Selection bit  
1= Comparator reference source CVRSRC = VREF+ – VREF-  
0= Comparator reference source CVRSRC = AVDD – AVSS  
bit 3-0  
CVR3:CVR0: Comparator VREF Value Selection 0 CVR3:CVR0 15 bits  
When CVRR = 1:  
CVREF = (CVR<3:0>/ 24) (CVRSRC)  
When CVRR = 0:  
CVREF = 1/4 (CVRSRC) + (CVR<3:0>/32) (CVRSRC)  
DS39881D-page 206  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
24.1.1  
CONSIDERATIONS FOR  
CONFIGURING PIC24FJ64GA004  
FAMILY DEVICES  
24.0 SPECIAL FEATURES  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. For more information, refer to the  
following sections of the “PIC24F Family  
Reference Manual”:  
In PIC24FJ64GA004 family devices, the configuration  
bytes are implemented as volatile memory. This means  
that configuration data must be programmed each time  
the device is powered up. Configuration data is stored  
in the two words at the top of the on-chip program  
memory space, known as the Flash Configuration  
Words. Their specific locations are shown in  
Table 24-1. These are packed representations of the  
actual device Configuration bits, whose actual  
locations are distributed among five locations in config-  
uration space. The configuration data is automatically  
loaded from the Flash Configuration Words to the  
proper Configuration registers during device Resets.  
Section 9. “Watchdog Timer (WDT)”  
(DS39697)  
Section 32. “High-Level Device  
Integration” (DS39719)  
Section 33. “Programming and  
Diagnostics” (DS39716)  
PIC24FJ64GA004 family devices include several  
features intended to maximize application flexibility and  
reliability, and minimize cost through elimination of  
external components. These are:  
Note:  
Configuration data is reloaded on all types  
of device Resets.  
• Flexible Configuration  
• Watchdog Timer (WDT)  
• Code Protection  
TABLE 24-1: FLASH CONFIGURATION  
WORD LOCATIONS FOR  
PIC24FJ64GA004 FAMILY  
DEVICES  
• JTAG Boundary Scan Interface  
• In-Circuit Serial Programming  
• In-Circuit Emulation  
Configuration Word  
Addresses  
Device  
24.1 Configuration Bits  
1
2
The Configuration bits can be programmed (read as ‘0’),  
or left unprogrammed (read as ‘1’), to select various  
device configurations. These bits are mapped starting at  
program memory location F80000h. A complete list is  
shown in Table 24-1. A detailed explanation of the vari-  
ous bit functions is provided in Register 24-1 through  
Register 24-4.  
PIC24FJ16GA  
PIC24FJ32GA  
PIC24FJ48GA  
PIC24FJ64GA  
002BFEh  
0057FEh  
0083FEh  
00ABFEh  
002BFCh  
0057FCh  
0083FCh  
00ABFCh  
When creating applications for these devices, users  
should always specifically allocate the location of the  
Flash Configuration Word for configuration data. This is  
to make certain that program code is not stored in this  
address when the code is compiled.  
Note that address F80000h is beyond the user program  
memory space. In fact, it belongs to the configuration  
memory space (800000h-FFFFFFh) which can only be  
accessed using table reads and table writes.  
The Configuration bits are reloaded from the Flash  
Configuration Word on any device Reset.  
The upper byte of both Flash Configuration Words in  
program memory should always be ‘1111 1111’. This  
makes them appear to be NOP instructions in the  
remote event that their locations are ever executed by  
accident. Since Configuration bits are not implemented  
in the corresponding locations, writing ‘1’s to these  
locations has no effect on device operation.  
2010 Microchip Technology Inc.  
DS39881D-page 207  
PIC24FJ64GA004 FAMILY  
REGISTER 24-1: CW1: FLASH CONFIGURATION WORD 1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
bit 23  
bit 16  
r-x  
r
R/PO-1  
R/PO-1  
GCP  
R/PO-1  
GWRP  
R/PO-1  
DEBUG  
r-1  
r
R/PO-1  
ICS1  
R/PO-1  
ICS0  
JTAGEN  
bit 15  
bit 8  
R/PO-1  
R/PO-1  
WINDIS  
U-1  
R/PO-1  
FWPSA  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
FWDTEN  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
bit 7  
bit 0  
Legend:  
r = Reserved bit  
R = Readable bit  
PO = Program Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 23-16  
bit 15  
Unimplemented: Read as ‘1’  
Reserved: The value is unknown; program as ‘0’  
JTAGEN: JTAG Port Enable bit  
bit 14  
1= JTAG port is enabled  
0= JTAG port is disabled  
bit 13  
bit 12  
bit 11  
GCP: General Segment Program Memory Code Protection bit  
1= Code protection is disabled  
0= Code protection is enabled for the entire program memory space  
GWRP: General Segment Code Flash Write Protection bit  
1= Writes to program memory are allowed  
0= Writes to program memory are disabled  
DEBUG: Background Debugger Enable bit  
1= Device resets into Operational mode  
0= Device resets into Debug mode  
bit 10  
Reserved: Always maintain as ‘1’  
bit 9-8  
ICS1:ICS0: Emulator Pin Placement Select bits  
11= Emulator EMUC1/EMUD1 pins are shared with PGC1/PGD1  
10= Emulator EMUC2/EMUD2 pins are shared with PGC2/PGD2  
01= Emulator EMUC3/EMUD3 pins are shared with PGC3/PGD3  
00= Reserved; do not use  
bit 7  
bit 6  
FWDTEN: Watchdog Timer Enable bit  
1= Watchdog Timer is enabled  
0= Watchdog Timer is disabled  
WINDIS: Windowed Watchdog Timer Disable bit  
1= Standard Watchdog Timer enabled  
0= Windowed Watchdog Timer enabled; FWDTEN must be ‘1’  
bit 5  
bit 4  
Unimplemented: Read as ‘1’  
FWPSA: WDT Prescaler Ratio Select bit  
1= Prescaler ratio of 1:128  
0= Prescaler ratio of 1:32  
DS39881D-page 208  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 24-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)  
bit 3-0 WDTPS3:WDTPS0: Watchdog Timer Postscaler Select bits  
1111= 1:32,768  
1110= 1:16,384  
1101= 1:8,192  
1100= 1:4,096  
1011= 1:2,048  
1010= 1:1,024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
2010 Microchip Technology Inc.  
DS39881D-page 209  
PIC24FJ64GA004 FAMILY  
REGISTER 24-2: CW2: FLASH CONFIGURATION WORD 2  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
bit 23  
bit 16  
R/PO-1  
IESO  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
WUTSEL1(1) WUTSEL0(1) SOSCSEL1(1) SOSCSEL0(1)  
FNOSC2  
FNOSC1  
FNOSC0  
bit 15  
bit 8  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
U-1  
R/PO-1  
R/PO-1  
R/PO-1  
FCKSM1  
FCKSM0  
OSCIOFCN  
IOL1WAY  
I2C1SEL  
POSCMD1 POSCMD0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value when device is unprogrammed  
r = Reserved bit  
PO = Program Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
bit 23-16  
bit 15  
Unimplemented: Read as ‘1’  
IESO: Internal External Switchover bit  
1= IESO mode (Two-Speed Start-up) enabled  
0= IESO mode (Two-Speed Start-up) disabled  
bit 14-13  
bit 12-11  
bit 10-8  
WUTSEL1:WUTSEL0: Voltage Regulator Standby Mode Wake-up Time Select bits(1)  
11= Default regulator start-up time used  
01= Fast regulator start-up time used  
x0= Reserved; do not use  
SOSCSEL1:SOSCSEL0: Secondary Oscillator Power Mode Select bits(1)  
11= Default (High Drive Strength) mode  
01= Low-Power (Low Drive Strength) mode  
x0= Reserved; do not use  
FNOSC2:FNOSC0: Initial Oscillator Select bits  
111= Fast RC Oscillator with Postscaler (FRCDIV)  
110= Reserved  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator with postscaler and PLL module (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 7-6  
bit 5  
FCKSM1:FCKSM0: Clock Switching and Fail-Safe Clock Monitor Configuration bits  
1x= Clock switching and Fail-Safe Clock Monitor are disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
OSCIOFCN: OSCO Pin Configuration bit  
If POSCMD1:POSCMD0 = 11or 00:  
1= OSCO/CLKO/RA3 functions as CLKO (FOSC/2)  
0= OSCO/CLKO/RA3 functions as port I/O (RA3)  
If POSCMD1:POSCMD0 = 10 or 01:  
OSCIOFCN has no effect on OSCO/CLKO/RA3.  
bit 4  
bit 3  
IOL1WAY: IOLOCK One-Way Set Enable bit  
1= The OSCCON<IOLOCK> bit can be set once, provided the unlock sequence has been completed.  
Once set, the Peripheral Pin Select registers cannot be written to a second time.  
0= The OSCCON<IOLOCK> bit can be set and cleared as needed, provided the unlock sequence has  
been completed  
Unimplemented: Read as ‘1’  
DS39881D-page 210  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
REGISTER 24-2: CW2: FLASH CONFIGURATION WORD 2 (CONTINUED)  
bit 2  
I2C1SEL: I2C1 Pin Select bit  
1= Use default SCL1/SDA1 pins  
0= Use alternate SCL1/SDA1 pins  
bit 1-0  
POSCMD1:POSCMD0: Primary Oscillator Configuration bits  
11= Primary oscillator disabled  
10= HS Oscillator mode selected  
01= XT Oscillator mode selected  
00= EC Oscillator mode selected  
Note 1: These bits are implemented only in devices with a major silicon revision level of B or later (DEVREV regis-  
ter value is 3042h or greater). Refer to Section 28.0 “Packaging Information” in the device data sheet  
for the location and interpretation of product date codes.  
REGISTER 24-3: DEVID: DEVICE ID REGISTER  
U
U
U
U
U
U
U
U
bit 23  
bit 16  
U
U
R
R
R
R
R
R
FAMID7  
FAMID6  
FAMID5  
FAMID4  
FAMID3  
FAMID2  
bit 8  
bit 15  
R
R
R
R
R
R
R
R
FAMID1  
bit 7  
FAMID0  
DEV5  
DEV4  
DEV3  
DEV2  
DEV1  
DEV0  
bit 0  
Legend: R = Read-only bit  
U = Unimplemented bit  
bit 23-14  
bit 13-6  
Unimplemented: Read as ‘1’  
FAMID7:FAMID0: Device Family Identifier bits  
00010001= PIC24FJ64GA004 family  
bit 5-0  
DEV5:DEV0: Individual Device Identifier bits  
000100= PIC24FJ16GA002  
000101= PIC24FJ32GA002  
000110= PIC24FJ48GA002  
000111= PIC24FJ64GA002  
001100= PIC24FJ16GA004  
001101= PIC24FJ32GA004  
001110= PIC24FJ48GA004  
001111= PIC24FJ64GA004  
2010 Microchip Technology Inc.  
DS39881D-page 211  
PIC24FJ64GA004 FAMILY  
REGISTER 24-4: DEVREV: DEVICE REVISION REGISTER  
U
U
U
U
U
U
U
U
bit 23  
bit 15  
bit 16  
U
U
U
U
U
U
U
R
MAJRV2  
bit 8  
R
R
U
U
U
R
R
R
MAJRV1  
bit 7  
MAJRV0  
DOT2  
DOT1  
DOT0  
bit 0  
Legend: R = Read-only bit  
U = Unimplemented bit  
bit 23-9  
bit 8-6  
bit 5-3  
bit 2-0  
Unimplemented: Read as ‘0’  
MAJRV2:MAJRV0: Major Revision Identifier bits  
Unimplemented: Read as ‘0’  
DOT2:DOT0: Minor Revision Identifier bits  
DS39881D-page 212  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
FIGURE 24-1:  
CONNECTIONS FOR THE  
ON-CHIP REGULATOR  
24.2 On-Chip Voltage Regulator  
All of the PIC24FJ64GA004 family of devices power  
their core digital logic at a nominal 2.5V. This may  
create an issue for designs that are required to operate  
at a higher typical voltage, such as 3.3V. To simplify  
system design, all devices in the PIC24FJ64GA004  
family incorporate an on-chip regulator that allows the  
device to run its core logic from VDD.  
Regulator Enabled (DISVREG tied to VSS):  
3.3V  
PIC24FJ64GA  
VDD  
DISVREG  
The regulator is controlled by the DISVREG pin. Tying  
VSS to the pin enables the regulator, which in turn, pro-  
vides power to the core from the other VDD pins. When  
the regulator is enabled, a low-ESR capacitor (such as  
ceramic) must be connected to the VDDCORE/VCAP pin  
(Figure 24-1). This helps to maintain the stability of the  
regulator. The recommended value for the filter capacitor  
is provided in Section 27.1 “DC Characteristics”.  
VDDCORE/VCAP  
CEFC  
(10 F typ)  
VSS  
Regulator Disabled (DISVREG tied to VDD):  
(1)  
(1)  
2.5V  
3.3V  
If DISVREG is tied to VDD, the regulator is disabled. In  
this case, separate power for the core logic at a nomi-  
nal 2.5V must be supplied to the device on the  
VDDCORE/VCAP pin to run the I/O pins at higher voltage  
levels, typically 3.3V. Alternatively, the VDDCORE/VCAP  
and VDD pins can be tied together to operate at a lower  
nominal voltage. Refer to Figure 24-1 for possible  
configurations.  
PIC24FJ64GA  
VDD  
DISVREG  
VDDCORE/VCAP  
VSS  
24.2.1  
VOLTAGE REGULATOR TRACKING  
MODE AND LOW-VOLTAGE  
DETECTION  
Regulator Disabled (VDD tied to VDDCORE):  
(1)  
2.5V  
When it is enabled, the on-chip regulator provides a  
constant voltage of 2.5V nominal to the digital core  
logic.  
PIC24FJ64GA  
VDD  
DISVREG  
The regulator can provide this level from a VDD of about  
2.5V, all the way up to the device’s VDDMAX. It does not  
have the capability to boost VDD levels below 2.5V. In  
order to prevent “brown out” conditions when the volt-  
age drops too low for the regulator, the regulator enters  
Tracking mode. In Tracking mode, the regulator output  
follows VDD, with a typical voltage drop of 100 mV.  
VDDCORE/VCAP  
VSS  
Note 1: These are typical operating voltages. Refer  
to Section 27.1 “DC Characteristics” for  
the full operating ranges of VDD and  
VDDCORE.  
When the device enters Tracking mode, it is no longer  
possible to operate at full speed. To provide information  
about when the device enters Tracking mode, the  
on-chip regulator includes a simple, Low-Voltage  
Detect circuit. When VDD drops below full-speed oper-  
ating voltage, the circuit sets the Low-Voltage Detect  
Interrupt Flag, LVDIF (IFS4<8>). This can be used to  
generate an interrupt and put the application into a  
low-power operational mode, or trigger an orderly  
shutdown.  
24.2.2  
ON-CHIP REGULATOR AND POR  
When the voltage regulator is enabled, it takes approxi-  
mately 20 s for it to generate output. During this time,  
designated as TSTARTUP, code execution is disabled.  
TSTARTUP is applied every time the device resumes  
operation after any power-down, including Sleep mode.  
Low-Voltage Detection is only available when the  
regulator is enabled.  
If the regulator is disabled, a separate Power-up Timer  
(PWRT) is automatically enabled. The PWRT adds a  
fixed delay of 64 ms nominal delay at device start-up.  
2010 Microchip Technology Inc.  
DS39881D-page 213  
PIC24FJ64GA004 FAMILY  
24.2.3  
When  
ON-CHIP REGULATOR AND BOR  
the on-chip regulator is enabled,  
24.3 Watchdog Timer (WDT)  
For PIC24FJ64GA004 family devices, the WDT is  
driven by the LPRC oscillator. When the WDT is  
enabled, the clock source is also enabled.  
PIC24FJ64GA004 family devices also have a simple  
brown-out capability. If the voltage supplied to the reg-  
ulator is inadequate to maintain the tracking level, the  
regulator Reset circuitry will generate a Brown-out  
Reset. This event is captured by the BOR flag bit  
(RCON<1>). The brown-out voltage levels are speci-  
fied in Section 27.1 “DC Characteristics”.  
The nominal WDT clock source from LPRC is 31 kHz.  
This feeds a prescaler that can be configured for either  
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.  
The prescaler is set by the FWPSA Configuration bit.  
With a 31 kHz input, the prescaler yields a nominal  
WDT time-out period (TWDT) of 1 ms in 5-bit mode, or  
4 ms in 7-bit mode.  
24.2.4  
POWER-UP REQUIREMENTS  
The on-chip regulator is designed to meet the power-up  
requirements for the device. If the application does not  
use the regulator, then strict power-up conditions must  
be adhered to. While powering up, VDDCORE must  
never exceed VDD by 0.3 volts.  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the WDTPS3:WDTPS0  
Configuration bits (Flash Configuration Word 1<3:0>),  
which allow the selection of a total of 16 settings, from  
1:1 to 1:32,768. Using the prescaler and postscaler,  
time-out periods ranging from 1 ms to 131 seconds can  
be achieved.  
Note:  
For more information, see Section 27.0  
“Electrical Characteristics”.  
24.2.5  
VOLTAGE REGULATOR STANDBY  
MODE  
The WDT, prescaler and postscaler are reset:  
• On any device Reset  
When enabled, the on-chip regulator always consumes  
a small incremental amount of current over IDD/IPD,  
including when the device is in Sleep mode, even  
though the core digital logic does not require power. To  
provide additional savings in applications where power  
resources are critical, the regulator automatically  
places itself into Standby mode whenever the device  
goes into Sleep mode. This feature is controlled by the  
VREGS bit (RCON<8>). By default, this bit is cleared,  
which enables Standby mode.  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSC bits), or by hardware  
(i.e., Fail-Safe Clock Monitor)  
• When a PWRSAVinstruction is executed  
(i.e., Sleep or Idle mode is entered)  
• When the device exits Sleep or Idle mode to  
resume normal operation  
• By a CLRWDTinstruction during normal execution  
For select PIC24FJ64GA004 family devices, the time  
required for regulator wake-up from Standby mode is  
controlled by the WUTSEL<1:0> Configuration bits  
(CW2<14:13>). The default wake-up time for all  
devices is 190 s. Where the WUTSEL Configuration  
bits are implemented, a fast wake-up option is also  
available. When WUTSEL<1:0> = 01, the regulator  
wake-up time is 25 s.  
If the WDT is enabled, it will continue to run during  
Sleep or Idle modes. When the WDT time-out occurs,  
the device will wake the device and code execution will  
continue from where the PWRSAVinstruction was exe-  
cuted. The corresponding SLEEP or IDLE bits  
(RCON<3:2>) will need to be cleared in software after  
the device wakes up.  
The WDT Flag bit, WDTO (RCON<4>), is not auto-  
matically cleared following a WDT time-out. To detect  
subsequent WDT events, the flag must be cleared in  
software.  
Note:  
This feature is implemented only on  
PIC24FJ64GA004 family devices with a  
major silicon revision level of B or later  
(DEVREV register value is 3042h or  
greater).  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
When the regulator’s Standby mode is turned off  
(VREGS = 1), Flash program memory stays powered  
in Sleep mode and the device can wake-up in less than  
10 s. When VREGS is set, the power consumption  
while in Sleep mode will be approximately 40 A higher  
than power consumption when the regulator is allowed  
to enter Standby mode.  
DS39881D-page 214  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
24.3.1  
WINDOWED OPERATION  
24.3.2  
CONTROL REGISTER  
The Watchdog Timer has an optional Fixed Window  
mode of operation. In this Windowed mode, CLRWDT  
instructions can only reset the WDT during the last 1/4  
of the programmed WDT period. A CLRWDTinstruction  
executed before that window causes a WDT Reset,  
similar to a WDT time-out.  
The WDT is enabled or disabled by the FWDTEN  
Configuration bit. When the FWDTEN Configuration bit  
is set, the WDT is always enabled.  
The WDT can be optionally controlled in software when  
the FWDTEN Configuration bit has been programmed  
to ‘0’. The WDT is enabled in software by setting the  
SWDTEN control bit (RCON<5>). The SWDTEN  
control bit is cleared on any device Reset. The software  
WDT option allows the user to enable the WDT for  
critical code segments and disable the WDT during  
non-critical segments for maximum power savings.  
Windowed WDT mode is enabled by programming the  
WINDIS Configuration bit (CW1<6>) to ‘0’.  
FIGURE 24-2:  
WDT BLOCK DIAGRAM  
SWDTEN  
FWDTEN  
LPRC Control  
Wake from Sleep  
FWPSA  
WDTPS3:WDTPS0  
Prescaler  
(5-bit/7-bit)  
WDT  
Counter  
Postscaler  
WDT Overflow  
1:1 to 1:32.768  
LPRC Input  
Reset  
31 kHz  
1 ms/4 ms  
All Device Resets  
Transition to  
New Clock Source  
Exit Sleep or  
Idle Mode  
CLRWDTInstr.  
PWRSAVInstr.  
Sleep or Idle Mode  
24.5.1  
CONFIGURATION REGISTER  
PROTECTION  
24.4 JTAG Interface  
PIC24FJ64GA004 family devices implement a JTAG  
interface, which supports boundary scan device  
testing.  
The Configuration registers are protected against  
inadvertent or unwanted changes or reads in two ways.  
The primary protection method is the same as that of  
the RP registers – shadow registers contain a compli-  
mentary value which is constantly compared with the  
actual value.  
24.5 Program Verification and  
Code Protection  
For all devices in the PIC24FJ64GA004 family of  
devices, the on-chip program memory space is treated  
as a single block. Code protection for this block is  
controlled by one Configuration bit, GCP. This bit  
inhibits external reads and writes to the program  
memory space. It has no direct effect in normal  
execution mode.  
To safeguard against unpredictable events, Configura-  
tion bit changes resulting from individual cell level  
disruptions (such as ESD events) will cause a parity  
error and trigger a device Reset.  
The data for the Configuration registers is derived from  
the Flash Configuration Words in program memory.  
When the GCP bit is set, the source data for device  
configuration is also protected as a consequence.  
Write protection is controlled by the GWRP bit in the  
Configuration Word. When GWRP is programmed to  
0’, internal write and erase operations to program  
memory are blocked.  
2010 Microchip Technology Inc.  
DS39881D-page 215  
PIC24FJ64GA004 FAMILY  
24.6  
In-Circuit Serial Programming  
24.7 In-Circuit Debugger  
PIC24FJ64GA004 family microcontrollers can be seri-  
ally programmed while in the end application circuit.  
This is simply done with two lines for clock (PGCx) and  
data (PGDx) and three other lines for power, ground  
and the programming voltage. This allows customers to  
manufacture boards with unprogrammed devices and  
then program the microcontroller just before shipping  
the product. This also allows the most recent firmware  
or a custom firmware to be programmed.  
When MPLAB® ICD 2 is selected as a debugger, the  
in-circuit debugging functionality is enabled. This func-  
tion allows simple debugging functions when used with  
MPLAB IDE. Debugging functionality is controlled  
through the EMUCx (Emulation/Debug Clock) and  
EMUDx (Emulation/Debug Data) pins.  
To use the in-circuit debugger function of the device,  
the design must implement ICSP connections to  
MCLR, VDD, VSS, PGCx, PGDx and the  
EMUDx/EMUCx pin pair. In addition, when the feature  
is enabled, some of the resources are not available for  
general use. These resources include the first 80 bytes  
of data RAM and two I/O pins.  
DS39881D-page 216  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
25.1 MPLAB Integrated Development  
Environment Software  
25.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2010 Microchip Technology Inc.  
DS39881D-page 217  
PIC24FJ64GA004 FAMILY  
25.2 MPASM Assembler  
25.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
25.6 MPLAB SIM Software Simulator  
25.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 and PIC24 families of microcontrol-  
lers and the dsPIC30 and dsPIC33 family of digital sig-  
nal controllers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
25.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS39881D-page 218  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
25.7 MPLAB ICE 2000  
High-Performance  
25.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers cost-  
effective, in-circuit Flash debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by setting breakpoints, single step-  
ping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
25.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
25.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high-speed, noise tolerant, Low-  
Voltage Differential Signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
2010 Microchip Technology Inc.  
DS39881D-page 219  
PIC24FJ64GA004 FAMILY  
25.11 PICSTART Plus Development  
Programmer  
25.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
25.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS39881D-page 220  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
The literal instructions that involve data movement may  
use some of the following operands:  
26.0 INSTRUCTION SET SUMMARY  
Note:  
This chapter is a brief summary of the  
PIC24F instruction set architecture, and is  
not intended to be a comprehensive  
reference source.  
• A literal value to be loaded into a W register or file  
register (specified by the value of ‘k’)  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
The PIC24F instruction set adds many enhancements  
to the previous PIC® MCU instruction sets, while main-  
taining an easy migration from previous PIC MCU  
instruction sets. Most instructions are a single program  
memory word. Only three instructions require two  
program memory locations.  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
• The first source operand which is a register ‘Wb’  
without any address modifier  
• The second source operand which is a literal  
value  
Each single-word instruction is a 24-bit word divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction. The instruction set is  
highly orthogonal and is grouped into four basic  
categories:  
• The destination of the result (only if not the same  
as the first source operand) which is typically a  
register ‘Wd’ with or without an address modifier  
The control instructions may use some of the following  
operands:  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• A program memory address  
• The mode of the table read and table write  
instructions  
• Control operations  
All instructions are a single word, except for certain  
double-word instructions, which were made dou-  
ble-word instructions so that all the required informa-  
tion is available in these 48 bits. In the second word, the  
8 MSbs are ‘0’s. If this second word is executed as an  
instruction (by itself), it will execute as a NOP.  
Table 26-1 shows the general symbols used in  
describing the instructions. The PIC24F instruction set  
summary in Table 26-2 lists all the instructions, along  
with the status flags affected by each instruction.  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles, with the additional instruction cycle(s) executed  
as a NOP. Notable exceptions are the BRA (uncondi-  
tional/computed branch), indirect CALL/GOTO, all table  
reads and writes, and RETURN/RETFIE instructions,  
which are single-word instructions but take two or three  
cycles.  
• The first source operand which is typically a  
register ‘Wb’ without any address modifier  
• The second source operand which is typically a  
register ‘Ws’ with or without an address modifier  
• The destination of the result which is typically a  
register ‘Wd’ with or without an address modifier  
However, word or byte-oriented file register instructions  
have two operands:  
Certain instructions that involve skipping over the sub-  
sequent instruction require either two or three cycles if  
the skip is performed, depending on whether the  
instruction being skipped is a single-word or two-word  
instruction. Moreover, double-word moves require two  
cycles. The double-word instructions execute in two  
instruction cycles.  
• The file register specified by the value ‘f’  
• The destination, which could either be the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
Most bit-oriented instructions (including simple  
rotate/shift instructions) have two operands:  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register  
(specified by a literal value or indirectly by the  
contents of register ‘Wb’)  
2010 Microchip Technology Inc.  
DS39881D-page 221  
PIC24FJ64GA004 FAMILY  
TABLE 26-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
<n:m>  
.b  
Register bit field  
Byte mode selection  
.d  
Double-Word mode selection  
.S  
Shadow register select  
.w  
Word mode selection (default)  
bit4  
4-bit bit selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0000h...1FFFh}  
1-bit unsigned literal {0,1}  
C, DC, N, OV, Z  
Expr  
f
lit1  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
lit14  
lit16  
lit23  
None  
PC  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
16-bit unsigned literal {0...65535}  
23-bit unsigned literal {0...8388608}; LSB must be ‘0’  
Field does not require an entry, may be blank  
Program Counter  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register   
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Wn  
Dividend, Divisor working register pair (direct addressing)  
One of 16 working registers {W0..W15}  
Wnd  
Wns  
One of 16 destination working registers {W0..W15}  
One of 16 source working registers {W0..W15}  
WREG  
Ws  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Source W register { Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
Wso  
DS39881D-page 222  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 26-2: INSTRUCTION SET OVERVIEW  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
ADD  
ADDC  
AND  
ASR  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
ASR  
ASR  
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
BTG  
BTG  
BTSC  
f
f = f + WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
N, Z  
f,WREG  
WREG = f + WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
f = f + WREG + (C)  
1
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
Wd = Wb + lit5 + (C)  
f = f .AND. WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
1
1
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
Wd = Wb .AND. Ws  
1
N, Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N, Z  
1
N, Z  
Wd = Wb .AND. lit5  
1
N, Z  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
f,WREG  
1
Ws,Wd  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
1
N, Z  
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if Greater than or Equal  
Branch if Unsigned Greater than or Equal  
Branch if Greater than  
Branch if Unsigned Greater than  
Branch if Less than or Equal  
Branch if Unsigned Less than or Equal  
Branch if Less than  
None  
None  
None  
None  
None  
None  
None  
Branch if Unsigned Less than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OV,Expr  
Expr  
Branch if Not Carry  
None  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Overflow  
None  
Branch Unconditionally  
Branch if Zero  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
BSET  
BSW  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
Bit Toggle f  
1
None  
Ws,Wb  
1
None  
BTG  
f,#bit4  
Ws,#bit4  
f,#bit4  
1
None  
Bit Toggle Ws  
1
None  
BTSC  
Bit Test f, Skip if Clear  
1
None  
(2 or 3)  
BTSC  
Ws,#bit4  
Bit Test Ws, Skip if Clear  
1
1
None  
(2 or 3)  
2010 Microchip Technology Inc.  
DS39881D-page 223  
PIC24FJ64GA004 FAMILY  
TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
f,#bit4  
Description  
Bit Test f, Skip if Set  
Words Cycles  
BTSS  
BTSS  
BTSS  
1
1
1
None  
(2 or 3)  
Ws,#bit4  
Bit Test Ws, Skip if Set  
1
None  
(2 or 3)  
BTST  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
C
Bit Test Ws to Z  
Z
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call Subroutine  
C
Ws,Wb  
Z
BTSTS  
f,#bit4  
Z
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
C
Z
CALL  
CLR  
CALL  
CALL  
CLR  
lit23  
Wn  
None  
Call Indirect Subroutine  
f = 0x0000  
None  
f
None  
CLR  
WREG  
Ws  
WREG = 0x0000  
Ws = 0x0000  
None  
CLR  
None  
CLRWDT  
COM  
CLRWDT  
Clear Watchdog Timer  
WDTO, Sleep  
COM  
COM  
COM  
CP  
f
f = f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N, Z  
f,WREG  
Ws,Wd  
f
WREG = f  
N, Z  
Wd = Ws  
N, Z  
CP  
Compare f with WREG  
Compare Wb with lit5  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb,Wn  
Wb,Wn  
Wb,Wn  
Wb,Wn  
Compare Wb with Wn, Skip if =  
Compare Wb with Wn, Skip if >  
Compare Wb with Wn, Skip if <  
Compare Wb with Wn, Skip if   
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
DAW  
DEC  
DAW  
Wn  
Wn = Decimal Adjust Wn  
f = f –1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
DEC  
f
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f –1  
1
DEC  
Wd = Ws – 1  
1
DEC2  
DEC2  
DEC2  
DEC2  
DISI  
DIV.SW  
DIV.SD  
DIV.UW  
DIV.UD  
EXCH  
FF1L  
FF1R  
f = f – 2  
1
f,WREG  
Ws,Wd  
#lit14  
Wm,Wn  
Wm,Wn  
Wm,Wn  
Wm,Wn  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
WREG = f – 2  
1
Wd = Ws – 2  
1
DISI  
DIV  
Disable Interrupts for k Instruction Cycles  
Signed 16/16-bit Integer Divide  
Signed 32/16-bit Integer Divide  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Swap Wns with Wnd  
1
18  
18  
18  
18  
1
N, Z, C, OV  
N, Z, C, OV  
N, Z, C, OV  
N, Z, C, OV  
None  
EXCH  
FF1L  
FF1R  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
1
C
1
C
DS39881D-page 224  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
GOTO  
GOTO  
GOTO  
INC  
Expr  
Go to Address  
Go to Indirect  
f = f + 1  
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
None  
Wn  
None  
INC  
f
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
N, Z  
INC  
f,WREG  
WREG = f + 1  
Wd = Ws + 1  
f = f + 2  
INC  
Ws,Wd  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f,WREG  
WREG = f + 2  
Wd = Ws + 2  
f = f .IOR. WREG  
Ws,Wd  
f
IOR  
f,WREG  
WREG = f .IOR. WREG  
N, Z  
IOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
#lit14  
Wd = lit10 .IOR. Wd  
N, Z  
IOR  
Wd = Wb .IOR. Ws  
N, Z  
IOR  
Wd = Wb .IOR. lit5  
N, Z  
LNK  
LSR  
LNK  
Link Frame Pointer  
None  
LSR  
f
f = Logical Right Shift f  
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
LSR  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Move f to Wn  
LSR  
Ws,Wd  
LSR  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,Wn  
LSR  
N, Z  
MOV  
MOV  
None  
MOV  
[Wns+Slit10],Wnd  
f
Move [Wns+Slit10] to Wnd  
Move f to f  
None  
MOV  
N, Z  
MOV  
f,WREG  
Move f to WREG  
N, Z  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-bit Literal to Wn  
None  
MOV.b  
MOV  
Move 8-bit Literal to Wn  
None  
Move Wn to f  
None  
MOV  
Wns,[Wns+Slit10]  
Wso,Wdo  
WREG,f  
Move Wns to [Wns+Slit10]  
Move Ws to Wd  
MOV  
None  
N, Z  
MOV  
Move WREG to f  
MOV.D  
MOV.D  
MUL.SS  
MUL.SU  
MUL.US  
MUL.UU  
MUL.SU  
MUL.UU  
MUL  
Wns,Wd  
Move Double from W(ns):W(ns+1) to Wd  
Move Double from Ws to W(nd+1):W(nd)  
{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)  
{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)  
{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)  
{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)  
{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)  
{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)  
W3:W2 = f * WREG  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Ws,Wnd  
MUL  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
f
NEG  
NEG  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)  
Pop Shadow Registers  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
POP.S  
None  
All  
PUSH  
PUSH  
f
Push f to Top-of-Stack (TOS)  
1
1
1
1
1
1
2
1
None  
None  
None  
None  
PUSH  
Wso  
Wns  
Push Wso to Top-of-Stack (TOS)  
Push W(ns):W(ns+1) to Top-of-Stack (TOS)  
Push Shadow Registers  
PUSH.D  
PUSH.S  
2010 Microchip Technology Inc.  
DS39881D-page 225  
PIC24FJ64GA004 FAMILY  
TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
PWRSAV  
RCALL  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
#lit1  
Expr  
Wn  
Go into Sleep or Idle mode  
Relative Call  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
WDTO, Sleep  
None  
Computed Call  
2
None  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software Device Reset  
Return from Interrupt  
1
None  
1
None  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
None  
3 (2)  
3 (2)  
3 (2)  
1
None  
#lit10,Wn  
Return with Literal in Wn  
Return from Subroutine  
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Wnd = Sign-Extended Ws  
f = FFFFh  
None  
None  
f
C, N, Z  
RLC  
f,WREG  
Ws,Wd  
f
1
C, N, Z  
RLC  
1
C, N, Z  
RLNC  
RRC  
RLNC  
RLNC  
RLNC  
RRC  
1
N, Z  
f,WREG  
Ws,Wd  
f
1
N, Z  
1
N, Z  
1
C, N, Z  
RRC  
f,WREG  
Ws,Wd  
f
1
C, N, Z  
RRC  
1
C, N, Z  
RRNC  
RRNC  
RRNC  
RRNC  
SE  
1
N, Z  
f,WREG  
Ws,Wd  
Ws,Wnd  
f
1
N, Z  
1
N, Z  
SE  
1
C, N, Z  
SETM  
SETM  
SETM  
SETM  
SL  
1
None  
WREG  
WREG = FFFFh  
1
None  
Ws  
Ws = FFFFh  
1
None  
SL  
f
f = Left Shift f  
1
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
SL  
f,WREG  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f
WREG = Left Shift f  
1
SL  
Wd = Left Shift Ws  
1
SL  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
f = f – WREG  
1
SL  
1
N, Z  
SUB  
SUB  
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
SUB  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f – WREG  
1
SUB  
Wn = Wn – lit10  
1
SUB  
Wd = Wb – Ws  
1
SUB  
Wd = Wb – lit5  
1
SUBB  
SUBB  
SUBB  
f = f – WREG – (C)  
1
f,WREG  
WREG = f – WREG – (C)  
1
SUBB  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
Wn = Wn – lit10 – (C)  
Wd = Wb – Ws – (C)  
Wd = Wb – lit5 – (C)  
f = WREG – f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
SUBR  
f,WREG  
WREG = WREG – f  
Wd = Ws – Wb  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wd = lit5 – Wb  
SUBBR  
SUBBR  
SUBBR  
f
f = WREG – f – (C)  
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
f,WREG  
WREG = WREG – f – (C)  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
Wd = Ws – Wb – (C)  
1
1
1
1
1
1
1
1
1
2
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
Wd = lit5 – Wb – (C)  
SWAP  
Wn = Nibble Swap Wn  
Wn = Byte Swap Wn  
Wn  
None  
TBLRDH  
TBLRDH  
Ws,Wd  
Read Prog<23:16> to Wd<7:0>  
None  
DS39881D-page 226  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 26-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Read Prog<15:0> to Wd  
1
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
1
1
None  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
None  
None  
None  
N, Z  
XOR  
f
XOR  
f,WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
N, Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N, Z  
XOR  
N, Z  
XOR  
Wd = Wb .XOR. lit5  
N, Z  
ZE  
ZE  
Wnd = Zero-Extend Ws  
C, Z, N  
2010 Microchip Technology Inc.  
DS39881D-page 227  
PIC24FJ64GA004 FAMILY  
NOTES:  
DS39881D-page 228  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
27.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of the PIC24FJ64GA004 family electrical characteristics. Additional information will  
be provided in future revisions of this document as it becomes available.  
Absolute maximum ratings for the PIC24FJ64GA004 family are listed below. Exposure to these maximum rating  
conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other  
conditions above the parameters indicated in the operation listings of this specification, is not implied.  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +135°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any combined analog and digital pin and MCLR, with respect to VSS ......................... -0.3V to (VDD + 0.3V)  
Voltage on any digital only pin with respect to VSS .................................................................................. -0.3V to +6.0V  
Voltage on VDDCORE with respect to VSS ................................................................................................. -0.3V to +3.0V  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin (Note 1)................................................................................................................250 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports (Note 1)....................................................................................................200 mA  
Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 27-1).  
†NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2010 Microchip Technology Inc.  
DS39881D-page 229  
PIC24FJ64GA004 FAMILY  
27.1 DC Characteristics  
FIGURE 27-1:  
3.00V  
PIC24FJ64GA004 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
2.75V  
2.50V  
2.75V  
2.35V  
PIC24FJ64GA004/32GA004/64GA002/32GA002  
2.25V  
2.00V  
32 MHz  
16 MHz  
Frequency  
For frequencies between 16 MHz and 32 MHz, FMAX = (45.7 MHz/V) * (VDDCORE – 2V) + 16 MHz.  
Note 1: WHEN the voltage regulator is disabled, VDD and VDDCORE must be maintained so that  
VDDCOREVDD3.6V.  
FIGURE 27-2:  
PIC24FJ64GA004 FAMILY VOLTAGE-FREQUENCY GRAPH  
(EXTENDED TEMPERATURE)  
3.00V  
2.75V  
2.50V  
2.75V  
2.35V  
PIC24FJ64GA004/32GA004/64GA002/32GA002  
2.25V  
2.00V  
16 MHz  
Frequency  
24 MHz  
For frequencies between 16 MHz and 24 MHz, FMAX = (22.9 MHz/V) * (VDDCORE – 2V) + 16 MHz.  
Note 1: WHEN the voltage regulator is disabled, VDD and VDDCORE must be maintained so that  
VDDCOREVDD3.6V.  
DS39881D-page 230  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 27-1: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
PIC24FJ64GA004 Family:  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+140  
+125  
°C  
°C  
Power Dissipation:  
Internal Chip Power Dissipation:  
PINT = VDD x (IDD IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
PI/O = ({VDD VOH} x IOH) + (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/JA  
TABLE 27-2: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
Package Thermal Resistance, 300 mil SOIC  
Package Thermal Resistance, 6x6x0.9 mm QFN  
Package Thermal Resistance, 8x8x1 mm QFN  
Package Thermal Resistance, 10x10x1 mm TQFP  
JA  
JA  
JA  
JA  
49  
33.7  
28  
°C/W (Note 1)  
°C/W (Note 1)  
°C/W (Note 1)  
°C/W (Note 1)  
39.3  
Note 1: Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations.  
2010 Microchip Technology Inc.  
DS39881D-page 231  
PIC24FJ64GA004 FAMILY  
TABLE 27-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
Operating Voltage  
DC10 Supply Voltage  
VDD  
2.2  
VDDCORE  
2.0  
3.6  
3.6  
2.75  
V
V
V
V
Regulator enabled  
Regulator disabled  
Regulator disabled  
VDD  
VDDCORE  
DC12 VDR  
RAM Data Retention  
1.5  
Voltage(2)  
DC16 VPOR  
VDD Start Voltage  
to ensure internal  
Power-on Reset signal  
VSS  
V
DC17 SVDD  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
0.05  
V/ms 0-3.3V in 0.1s  
0-2.5V in 60 ms  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: This is the limit to which VDD can be lowered without losing RAM data.  
DS39881D-page 232  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 27-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
(1)  
Parameter No. Typical  
Max  
Units  
Conditions  
(2)  
Operating Current (IDD): PMD Bits are Set  
DC20  
0.650  
0.650  
0.650  
0.650  
1.2  
1.2  
1.2  
1.2  
2.6  
2.6  
2.6  
2.6  
4.1  
4.1  
4.1  
4.1  
13.5  
13.5  
13.5  
13.5  
15  
0.850  
0.850  
0.850  
0.850  
1.6  
1.6  
1.6  
1.6  
3.4  
3.4  
3.4  
3.4  
5.4  
5.4  
5.4  
5.4  
17.6  
17.6  
17.6  
17.6  
20  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
A  
-40°C  
DC20a  
DC20b  
DC20c  
DC20d  
DC20e  
DC20f  
DC20g  
DC23  
+25°C  
+85°C  
+125°C  
-40°C  
(3)  
(4)  
(3)  
(4)  
(3)  
(4)  
(3)  
(4)  
2.0V  
3.3V  
2.0V  
3.3V  
2.5V  
3.3V  
2.0V  
3.3V  
1 MIPS  
+25°C  
+85°C  
+125°C  
-40°C  
DC23a  
DC23b  
DC23c  
DC23d  
DC23e  
DC23f  
DC23g  
DC24  
+25°C  
+85°C  
+125°C  
-40°C  
4 MIPS  
+25°C  
+85°C  
+125°C  
-40°C  
DC24a  
DC24b  
DC24c  
DC24d  
DC24e  
DC24f  
DC24g  
DC31  
+25°C  
+85°C  
+125°C  
-40°C  
16 MIPS  
15  
20  
+25°C  
+85°C  
+125°C  
-40°C  
15  
20  
15  
20  
13  
17  
DC31a  
DC31b  
DC31c  
DC31d  
DC31e  
DC31f  
DC31g  
13  
17  
A  
+25°C  
+85°C  
+125°C  
-40°C  
20  
26  
A  
40  
50  
A  
LPRC (31 kHz)  
54  
70  
A  
54  
70  
A  
+25°C  
+85°C  
+125°C  
95  
124  
260  
A  
120  
A  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the  
current consumption. The test conditions for all IDD measurements are as follows: OSCI driven with external square  
wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD.  
MCLR = VDD; WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No  
peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set.  
3: On-chip voltage regulator disabled (DISVREG tied to VDD).  
4: On-chip voltage regulator enabled (DISVREG tied to VSS). Low-Voltage Detect (LVD) and Brown-out Detect  
(BOD) are enabled.  
2010 Microchip Technology Inc.  
DS39881D-page 233  
PIC24FJ64GA004 FAMILY  
TABLE 27-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Parameter  
No.  
(1)  
Typical  
Max  
Units  
Conditions  
(2)  
Idle Current (IIDLE): Core Off, Clock On Base Current, PMD Bits are Set  
DC40  
150  
150  
150  
165  
250  
250  
250  
275  
0.55  
0.55  
0.55  
0.60  
0.82  
0.82  
0.82  
0.91  
3
200  
200  
200  
220  
325  
325  
325  
360  
0.72  
0.72  
0.72  
0.8  
1.1  
1.1  
1.1  
1.2  
4
A  
A  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
DC40a  
DC40b  
DC40c  
DC40d  
DC40e  
DC40f  
DC40g  
DC43  
(3)  
(4)  
(3)  
(4)  
(3)  
(4)  
(3)  
(4)  
2.0V  
3.3V  
2.0V  
3.3V  
2.5V  
3.3V  
2.0V  
3.3V  
A  
A  
1 MIPS  
A  
A  
+25°C  
+85°C  
+125°C  
-40°C  
A  
A  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DC43a  
DC43b  
DC43c  
DC43d  
DC43e  
DC43f  
DC43g  
DC47  
+25°C  
+85°C  
+125°C  
-40°C  
4 MIPS  
+25°C  
+85°C  
+125°C  
-40°C  
DC47a  
DC47b  
DC47c  
DC47d  
DC47e  
DC47f  
DC47g  
DC50  
3
4
+25°C  
+85°C  
+125°C  
-40°C  
3
4
3.3  
4.4  
4.6  
4.6  
4.6  
5.1  
1.1  
1.1  
1.1  
1.2  
1.6  
1.6  
1.6  
1.8  
16 MIPS  
3.5  
3.5  
+25°C  
+85°C  
+125°C  
-40°C  
3.5  
3.9  
0.85  
0.85  
0.85  
0.94  
1.2  
DC50a  
DC50b  
DC50c  
DC50d  
DC50e  
DC50f  
DC50g  
+25°C  
+85°C  
+125°C  
-40°C  
FRC (4 MIPS)  
1.2  
+25°C  
+85°C  
+125°C  
1.2  
1.3  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: The test conditions for all IIDLE measurements are as follows: OSCI driven with external square wave from rail to  
rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. CPU,  
SRAM, program memory and data memory are operational. No peripheral modules are operating and all of the  
Peripheral Module Disable (PMD) bits are set.  
3: On-chip voltage regulator disabled (DISVREG tied to VDD).  
4: On-chip voltage regulator enabled (DISVREG tied to VSS). Low-Voltage Detect (LVD) and Brown-out Detect  
(BOD) are enabled.  
DS39881D-page 234  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 27-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE) (CONTINUED)  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Parameter  
No.  
(1)  
Typical  
Max  
Units  
Conditions  
(2)  
Idle Current (IIDLE): Core Off, Clock On Base Current, PMD Bits are Set  
DC51  
4
4
6
6
A  
A  
A  
A  
A  
A  
A  
A  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
DC51a  
DC51b  
DC51c  
DC51d  
DC51e  
DC51f  
DC51g  
(3)  
(4)  
2.0V  
3.3V  
8
16  
50  
55  
55  
91  
180  
20  
42  
42  
70  
100  
LPRC (31 kHz)  
+25°C  
+85°C  
+125°C  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: The test conditions for all IIDLE measurements are as follows: OSCI driven with external square wave from rail to  
rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. CPU,  
SRAM, program memory and data memory are operational. No peripheral modules are operating and all of the  
Peripheral Module Disable (PMD) bits are set.  
3: On-chip voltage regulator disabled (DISVREG tied to VDD).  
4: On-chip voltage regulator enabled (DISVREG tied to VSS). Low-Voltage Detect (LVD) and Brown-out Detect  
(BOD) are enabled.  
2010 Microchip Technology Inc.  
DS39881D-page 235  
PIC24FJ64GA004 FAMILY  
TABLE 27-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Parameter  
Typical  
No.  
(1)  
Max  
Units  
Conditions  
(2)  
Power-Down Current (IPD): PMD Bits are Set, VREGS Bit is ‘0’  
DC60  
0.1  
0.15  
2.2  
3.7  
15  
1
1
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
-40°C  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
DC60a  
DC60m  
DC60b  
DC60j  
DC60c  
DC60d  
DC60n  
DC60e  
DC60k  
DC60f  
DC60g  
DC60o  
DC60h  
DC60l  
DC61  
(3)  
7.4  
12  
50  
1
2.0V  
0.2  
0.25  
2.6  
4.2  
16  
1
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
(3)  
(5)  
15  
25  
100  
9
2.5V  
3.3V  
2.0V  
2.5V  
3.3V  
Base Power-Down Current  
3.3  
3.5  
6.7  
9
10  
22  
30  
120  
3
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
(4)  
(3)  
(3)  
(4)  
36  
1.75  
1.75  
1.75  
1.75  
3.5  
2.4  
2.4  
2.4  
2.4  
4.8  
2.8  
2.8  
2.8  
2.8  
5.6  
DC61a  
DC61m  
DC61b  
DC61j  
DC61c  
DC61d  
DC61n  
DC61e  
DC61k  
DC61f  
DC61g  
DC61o  
DC61h  
DC61l  
3
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
3
3
6
4
4
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
(5)  
4
Watchdog Timer Current: IWDT  
4
8
5
5
+25°C  
+60°C  
+85°C  
+125°C  
5
5
10  
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled  
high. WDT, etc., are all switched off.  
3: On-chip voltage regulator disabled (DISVREG tied to VDD).  
4: On-chip voltage regulator enabled (DISVREG tied to VSS). Low-Voltage Detect (LVD) and Brown-out Detect  
(BOD) are enabled.  
5: The current is the additional current consumed when the module is enabled. This current should be added to  
the base IPD current.  
DS39881D-page 236  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 27-6: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Parameter  
Typical  
No.  
(1)  
Max  
Units  
Conditions  
(2)  
Power-Down Current (IPD): PMD Bits are Set, VREGS Bit is ‘0’  
DC62  
8
12  
12  
12  
18  
9
16  
16  
16  
16  
23  
16  
16  
16  
16  
25  
18  
18  
18  
18  
28  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
-40°C  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
DC62a  
DC62m  
DC62b  
DC62j  
(3)  
2.0V  
DC62c  
DC62d  
DC62n  
DC62e  
DC62k  
DC62f  
DC62g  
DC62o  
DC62h  
DC62l  
12  
12  
12.5  
20  
10.3  
13.4  
14.0  
14.2  
23  
2
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
RTCC + Timer1 w/32 kHz Crystal:  
RTCC ITI32  
(3)  
2.5V  
3.3V  
(5)  
+25°C  
+60°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
(4)  
DC63  
DC63a  
DC63b  
DC63c  
DC63d  
DC63e  
DC63f  
DC63g  
DC63h  
2
2.0V(3)  
2.5V(3)  
3.3V(4)  
6
2
RTCC + Timer1 w/Low-Power  
32 kHz Crystal (SOCSEL<1:0> =  
01): RTCC ITI32  
2
(5)  
7
2
3
7
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled  
high. WDT, etc., are all switched off.  
3: On-chip voltage regulator disabled (DISVREG tied to VDD).  
4: On-chip voltage regulator enabled (DISVREG tied to VSS). Low-Voltage Detect (LVD) and Brown-out Detect  
(BOD) are enabled.  
5: The current is the additional current consumed when the module is enabled. This current should be added to  
the base IPD current.  
2010 Microchip Technology Inc.  
DS39881D-page 237  
PIC24FJ64GA004 FAMILY  
TABLE 27-7: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
VIL  
Input Low Voltage(4)  
I/O Pins  
DI10  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.8  
V
V
V
V
V
V
V
DI11  
DI15  
DI16  
DI17  
DI18  
DI19  
PMP Pins  
PMPTTL = 1  
MCLR  
OSCI (XT mode)  
OSCI (HS mode)  
I/O Pins with I2C™ Buffer  
SMBus disabled  
SMBus enabled  
I/O Pins with SMBus  
Buffer  
VIH  
Input High Voltage(4)  
DI20  
DI21  
I/O Pins:  
with Analog Functions  
Digital Only  
0.8 VDD  
0.8 VDD  
VDD  
5.5  
V
V
PMP Pins:  
with Analog Functions  
Digital Only  
0.25 VDD + 0.8  
0.25 VDD + 0.8  
VDD  
5.5  
V
V
PMPTTL = 1  
DI25  
DI26  
DI27  
DI28  
MCLR  
0.8 VDD  
0.7 VDD  
0.7 VDD  
VDD  
VDD  
VDD  
V
V
V
OSCI (XT mode)  
OSCI (HS mode)  
I/O Pins with I2C Buffer:  
with Analog Functions  
Digital Only  
0.7 VDD  
0.7 VDD  
VDD  
5.5  
V
V
DI29  
I/O Pins with SMBus  
Buffer:  
with Analog Functions  
Digital Only  
2.1  
2.1  
VDD  
5.5  
V
v
2.5V VPIN VDD  
DI30  
ICNPU CNxx Pull-up Current  
50  
250  
400  
A  
VDD = 3.3V, VPIN = VSS  
IIL  
Input Leakage Current(2,3)  
DI50  
DI51  
I/O Ports  
+1  
+1  
A  
A  
VSS VPIN VDD,  
Pin at high-impedance  
Analog Input Pins  
VSS VPIN VDD,  
Pin at high-impedance  
DI55  
DI56  
MCLR  
OSCI  
+1  
+1  
A  
A  
VSS VPIN VDD  
VSS VPIN VDD,  
XT and HS modes  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Refer to Table 1-2 for I/O pin buffer types.  
DS39881D-page 238  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 27-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
(1)  
Sym  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
VOL  
Output Low Voltage  
DO10  
DO16  
All I/O pins  
0.4  
0.4  
0.4  
0.4  
V
V
V
V
IOL = 8.5 mA, VDD = 3.6V  
IOL = 5.0 mA, VDD = 2.0V  
All I/O pins  
IOL = 8.0 mA, VDD = 3.6V, 125°C  
IOL = 4.5 mA, VDD = 2.0V, 125°C  
VOH  
Output High Voltage  
DO20  
DO26  
All I/O pins  
3
V
V
V
V
IOH = -3.0 mA, VDD = 3.6V  
1.65  
3
IOH = -1.0 mA, VDD = 2.0V  
All I/O pins  
IOH = -2.5 mA, VDD = 3.6V, 125°C  
IOH = -0.5 mA, VDD = 2.0V, 125°C  
1.65  
Note 1: Data in “Typ” column is at 25°C unless otherwise stated. Parameters are for design guidance only and are not  
tested.  
TABLE 27-9: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Sym  
No.  
(1)  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
D132B  
EP  
10000  
VMIN  
2.25  
3.6  
E/W -40C to +125C  
VPR  
VDD for Read  
V
V
VMIN = Minimum operating voltage  
VPEW VDDCORE for Self-Timed  
Write  
2.75  
D133A  
D134  
D135  
TIW  
Self-Timed Write Cycle  
Time  
20  
3
7
ms  
TRETD Characteristic Retention  
Year Provided no other specifications are  
violated  
IDDP  
Supply Current during  
Programming  
mA  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2010 Microchip Technology Inc.  
DS39881D-page 239  
PIC24FJ64GA004 FAMILY  
TABLE 27-10: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Operating Conditions: -40°C < TA < +125°C (unless otherwise stated)  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
VRGOUT  
VBG  
Regulator Output Voltage  
2.5  
1.23  
10  
V
V
Band Gap Reference Voltage  
External Filter Capacitor Value  
CEFC  
4.7  
F  
Series resistance < 3 Ohm  
recommended;  
< 5 Ohm required.  
TVREG  
Voltage Regulator Start-up  
Time  
10  
25  
s  
s  
s  
ms  
POR, BOR or when  
VREGS = 1  
VREGS = 0,  
WUTSEL<1:0> = 01(1)  
190  
VREGS = 0,  
WUTSEL<1:0> = 11(2)  
TPWRT  
64  
DISVREG = VDD  
Note 1: Available only in devices with a major silicon revision level of B or later (DEVREV register value is 3042h  
or greater).  
2: WUTSEL Configuration bits setting is applicable only in devices with a major silicon revision level of B or  
later. This specification also applies to all devices prior to revision level B whenever VREGS = 0.  
DS39881D-page 240  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
27.2 AC Characteristics and Timing Parameters  
The information contained in this section defines the PIC24FJ64GA004 family AC characteristics and timing  
parameters.  
TABLE 27-11: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Operating voltage VDD range as described in Section 27.1 “DC Characteristics”.  
FIGURE 27-3:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSCO  
VDD/2  
Load Condition 2 – for OSCO  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSCO  
15 pF for OSCO output  
VSS  
TABLE 27-12: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param  
Symbol  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
No.  
DO50 COSC2  
OSCO/CLKO pin  
15  
pF In XT and HS modes when  
external clock is used to drive  
OSCI.  
DO56 CIO  
DO58 CB  
All I/O Pins and OSCO  
SCLx, SDAx  
50  
pF EC mode.  
pF In I2C™ mode.  
400  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2010 Microchip Technology Inc.  
DS39881D-page 241  
PIC24FJ64GA004 FAMILY  
FIGURE 27-4:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q3  
Q2  
OSCI  
OS20  
OS25  
OS30 OS30  
OS31 OS31  
CLKO  
OS40  
OS41  
TABLE 27-13: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.0 to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10 FOSC External CLKI Frequency  
(External clocks allowed  
DC  
4
DC  
4
32  
8
24  
6
MHz EC, -40°C TA +85°C  
MHz ECPLL, -40°C TA +85°C  
MHz EC, -40°C TA +125°C  
MHz ECPLL, -40°C TA +125°C  
only in EC mode)  
Oscillator Frequency  
3
3
10  
31  
3
10  
8
32  
33  
6
MHz XT  
MHz XTPLL, -40°C TA +85°C  
MHz HS, -40°C TA +85°C  
kHz SOSC  
MHz XTPLL, -40°C TA +125°C  
MHz HS, -40°C TA +125°C  
10  
24  
OS20 TOSC TOSC = 1/FOSC  
See parameter OS10  
for FOSC value  
OS25 TCY  
Instruction Cycle Time(2)  
62.5  
DC  
ns  
ns  
OS30 TosL, External Clock in (OSCI)  
TosH High or Low Time  
0.45 x TOSC  
EC  
EC  
OS31 TosR, External Clock in (OSCI)  
TosF Rise or Fall Time  
20  
ns  
OS40 TckR CLKO Rise Time(3)  
OS41 TckF CLKO Fall Time(3)  
6
6
10  
10  
ns  
ns  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with  
the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption. All devices are tested to operate at “Min.” values with an  
external clock applied to the OSCI/CLKI pin. When an external clock input is used, the “Max.” cycle time  
limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the  
Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).  
DS39881D-page 242  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 27-14: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.0V TO 3.6V)  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic(1)  
Min  
3
Typ(2)  
Max  
8
Units  
Conditions  
OS50 FPLLI PLL Input Frequency  
Range  
MHz ECPLL, HSPLL, XTPLL  
modes, -40°C TA +85°C  
MHz ECPLL, HSPLL, XTPLL  
modes, -40°C TA +125°C  
3
6
OS51 FSYS PLL Output Frequency  
Range  
8
8
32  
24  
MHz -40°C TA +85°C  
MHz -40°C TA +125°C  
OS52 TLOCK PLL Start-up Time  
(Lock Time)  
2
ms  
OS53 DCLK CLKO Stability (Jitter)  
-2  
1
2
%
Measured over 100 ms period  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
TABLE 27-15: AC CHARACTERISTICS: INTERNAL RC ACCURACY  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Internal FRC Accuracy @ 8 MHz(1)  
F20  
FRC  
-2  
-5  
2
5
%
%
25°C  
-40°C TA +125°C  
3.0V VDD 3.6V  
Note 1: Frequency calibrated at 25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.  
TABLE 27-16: INTERNAL RC ACCURACY  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ 31 kHz(1)  
F21  
-15  
-15  
-20  
15  
15  
20  
%
%
%
25°C  
-40°C TA +85°C  
3.0V VDD 3.6V  
125°C  
Note 1: Change of LPRC frequency as VDD changes.  
2010 Microchip Technology Inc.  
DS39881D-page 243  
PIC24FJ64GA004 FAMILY  
FIGURE 27-5:  
CLKO AND I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note: Refer to Figure 27-3 for load conditions.  
TABLE 27-17: CLKO AND I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
DO31 TIOR Port Output Rise Time  
DO32 TIOF Port Output Fall Time  
20  
10  
10  
25  
25  
ns  
ns  
ns  
DI35  
TINP  
INTx pin High or Low  
Time (output)  
DI40  
TRBP CNx High or Low Time  
(input)  
2
TCY  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
DS39881D-page 244  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
TABLE 27-18: ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 2.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Device Supply  
AD01 AVDD  
AD02 AVSS  
Module VDD Supply  
Module VSS Supply  
Greater of  
VDD – 0.3  
or 2.0  
Lesser of  
VDD + 0.3  
or 3.6  
V
V
VSS – 0.3  
VSS + 0.3  
Reference Inputs  
AD05 VREFH  
AD06 VREFL  
AD07 VREF  
Reference Voltage High  
Reference Voltage Low  
AVSS + 1.7  
AVSS  
AVDD  
V
V
V
AVDD – 1.7  
AVDD + 0.3  
Absolute Reference  
Voltage  
AVSS – 0.3  
Analog Input  
AD10 VINH-VINL Full-Scale Input Span  
VREFL  
VREFH  
AVDD + 0.3  
AVDD/2  
V
V
V
(Note 2)  
AD11 VIN  
AD12 VINL  
Absolute Input Voltage  
AVSS – 0.3  
AVSS – 0.3  
Absolute VINL Input  
Voltage  
AD17 RIN  
RecommendedImpedance  
of Analog Voltage Source  
2.5K  
10-bit  
ADC Accuracy  
AD20b Nr  
Resolution  
10  
±1  
bits  
AD21b INL  
Integral Nonlinearity  
<±2  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
AD22b DNL  
AD23b GERR  
AD24b EOFF  
AD25b —  
Differential Nonlinearity  
Gain Error  
±1  
±1  
±1  
<±1.25  
±3  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
Offset Error  
±2  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
Monotonicity(1)  
Guaranteed  
Note 1: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.  
2: Measurements taken with external VREF+ and VREF- used as the ADC voltage reference.  
2010 Microchip Technology Inc.  
DS39881D-page 245  
PIC24FJ64GA004 FAMILY  
TABLE 27-19: ADC CONVERSION TIMING REQUIREMENTS(1)  
Standard Operating Conditions: 2.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Clock Parameters  
AD50  
AD51  
TAD  
tRC  
ADC Clock Period  
75  
ns  
ns  
TCY = 75 ns, AD1CON3  
in default state  
ADC Internal RC Oscillator  
Period  
250  
Conversion Rate  
AD55  
AD56  
AD57  
tCONV  
FCNV  
tSAMP  
Conversion Time  
Throughput Rate  
Sample Time  
12  
1
500  
TAD  
ksps  
TAD  
AVDD 2.7V  
Clock Parameters  
AD61  
tPSS  
Sample Start Delay from setting  
Sample bit (SAMP)  
2
3
TAD  
Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
DS39881D-page 246  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
28.0 PACKAGING INFORMATION  
28.1 Package Marking Information  
28-Lead SPDIP  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
PIC24FJ16GA002  
e
3
-I/SP  
YYWWNNN  
0810017  
28-Lead SSOP  
Example  
24FJ16GA002  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
e
3
/SS  
YYWWNNN  
0810017  
28-Lead SOIC (.300”)  
Example  
e
3
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
PIC24FJ16GA002/SO  
0810017  
YYWWNNN  
28-Lead QFN  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
24FJ48GA  
002/ML  
0810017  
e
3
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2010 Microchip Technology Inc.  
DS39881D-page 247  
PIC24FJ64GA004 FAMILY  
44-Lead QFN  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
24FJ32GA  
e
3
004-I/ML  
0810017  
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
24FJ32GA  
004-I/PT  
0810017  
e
3
DS39881D-page 248  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
28.2 Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢊꢋꢋꢌꢇꢍꢎꢅꢏꢐꢊꢑꢇꢒꢓꢅꢎꢇꢔꢋꢂꢃꢊꢋꢄꢇꢕꢈꢍꢖꢇMꢇꢗꢘꢘꢇꢙꢊꢎꢇꢚꢛꢆꢌꢇꢜꢈꢍꢒꢔꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
6ꢄꢃ&!  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢚ7,8.ꢐ  
7:ꢔ  
ꢎ<  
ꢁꢀꢕꢕꢅ1ꢐ,  
M
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
M
ꢁꢎꢕꢕ  
ꢁꢀꢘꢕ  
M
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
1ꢆ!ꢈꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢐꢍꢋ"ꢇ#ꢈꢉꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
ꢙꢃꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
6ꢓꢓꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
)ꢀ  
)
ꢈ1  
ꢁꢀꢎꢕ  
ꢁꢕꢀꢘ  
ꢁꢎꢛꢕ  
ꢁꢎꢖꢕ  
ꢀꢁ-ꢖꢘ  
ꢁꢀꢀꢕ  
ꢁꢕꢕ<  
ꢁꢕꢖꢕ  
ꢁꢕꢀꢖ  
M
ꢁꢀ-ꢘ  
M
ꢁ-ꢀꢕ  
ꢁꢎ<ꢘ  
ꢀꢁ-?ꢘ  
ꢁꢀ-ꢕ  
ꢁꢕꢀꢕ  
ꢁꢕꢘꢕ  
ꢁꢕꢀ<  
M
ꢁ--ꢘ  
ꢁꢎꢛꢘ  
ꢀꢁꢖꢕꢕ  
ꢁꢀꢘꢕ  
ꢁꢕꢀꢘ  
ꢁꢕꢜꢕ  
ꢁꢕꢎꢎ  
ꢁꢖ-ꢕ  
9ꢋ*ꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅꢝꢋ*ꢅꢐꢓꢆꢌꢃꢄꢑꢅꢅꢏ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢕꢀꢕ/ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢜꢕ1  
2010 Microchip Technology Inc.  
DS39881D-page 249  
PIC24FJ64GA004 FAMILY  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇꢈ#$ꢊꢋꢉꢇꢈꢙꢅꢎꢎꢇ%ꢓꢐꢎꢊꢋꢄꢇꢕꢈꢈꢖꢇMꢇ&'ꢗꢘꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜꢈꢈ%ꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
N
E
E1  
1
2
b
NOTE 1  
e
c
A2  
A
φ
A1  
L
L1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢎ<  
ꢕꢁ?ꢘꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
3ꢋꢋ&ꢓꢉꢃꢄ&  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
M
M
ꢀꢁꢜꢘ  
M
ꢜꢁ<ꢕ  
ꢘꢁ-ꢕ  
ꢀꢕꢁꢎꢕ  
ꢕꢁꢜꢘ  
ꢀꢁꢎꢘꢅꢝ.3  
M
ꢎꢁꢕꢕ  
ꢀꢁ<ꢘ  
M
<ꢁꢎꢕ  
ꢘꢁ?ꢕ  
ꢀꢕꢁꢘꢕ  
ꢕꢁꢛꢘ  
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
9ꢀ  
ꢀꢁ?ꢘ  
ꢕꢁꢕꢘ  
ꢜꢁꢖꢕ  
ꢘꢁꢕꢕ  
ꢛꢁꢛꢕ  
ꢕꢁꢘꢘ  
ꢕꢁꢕꢛ  
ꢕꢟ  
ꢕꢁꢎꢘ  
<ꢟ  
ꢖꢟ  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
)
ꢕꢁꢎꢎ  
M
ꢕꢁ-<  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢎꢕꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢜ-1  
DS39881D-page 250  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇꢈꢙꢅꢎꢎꢇ%ꢓꢐꢎꢊꢋꢄꢇꢕꢈ%ꢖꢇMꢇ(ꢊꢆꢄ)ꢇ*'&ꢘꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜꢈ%ꢔ+  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
N
E
E1  
NOTE 1  
1
2
3
e
b
h
α
h
c
φ
A2  
A
L
A1  
L1  
β
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢎ<  
ꢀꢁꢎꢜꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅꢏ  
M
ꢎꢁꢕꢘ  
ꢕꢁꢀꢕ  
M
M
M
ꢎꢁ?ꢘ  
M
ꢕꢁ-ꢕ  
ꢗꢎ  
ꢗꢀ  
.
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
ꢀꢕꢁ-ꢕꢅ1ꢐ,  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
,ꢍꢆ'%ꢈꢉꢅAꢋꢓ&ꢃꢋꢄꢆꢇB  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
.ꢀ  
ꢜꢁꢘꢕꢅ1ꢐ,  
ꢀꢜꢁꢛꢕꢅ1ꢐ,  
ꢕꢁꢎꢘ  
ꢕꢁꢖꢕ  
M
M
ꢕꢁꢜꢘ  
ꢀꢁꢎꢜ  
9
3ꢋꢋ&ꢓꢉꢃꢄ&  
9ꢀ  
ꢀꢁꢖꢕꢅꢝ.3  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈꢅ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ1ꢋ&&ꢋ'  
ꢕꢟ  
ꢕꢁꢀ<  
ꢕꢁ-ꢀ  
ꢘꢟ  
M
M
M
M
M
<ꢟ  
)
ꢕꢁ--  
ꢕꢁꢘꢀ  
ꢀꢘꢟ  
ꢘꢟ  
ꢀꢘꢟ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢀꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢘꢎ1  
2010 Microchip Technology Inc.  
DS39881D-page 251  
PIC24FJ64GA004 FAMILY  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ,ꢓꢅꢆꢇ-ꢎꢅꢐ)ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ.ꢄꢇꢕ/ꢃꢖꢇMꢇ010ꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ,-!  
2ꢊꢐ#ꢇꢘ'&&ꢇꢙꢙꢇ+ꢛꢋꢐꢅꢑꢐꢇꢃꢄꢋ.ꢐ#  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
D2  
EXPOSED  
PAD  
e
E
b
E2  
2
1
2
1
K
N
N
NOTE 1  
L
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
6ꢄꢃ&!  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
7:ꢔ  
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
7
ꢗꢀ  
ꢗ-  
.
.ꢎ  
ꢎ<  
ꢕꢁ?ꢘꢅ1ꢐ,  
ꢕꢁꢛꢕ  
ꢕꢁ<ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕꢘ  
ꢕꢁꢕꢎ  
ꢕꢁꢎꢕꢅꢝ.3  
?ꢁꢕꢕꢅ1ꢐ,  
-ꢁꢜꢕ  
?ꢁꢕꢕꢅ1ꢐ,  
-ꢁꢜꢕ  
ꢕꢁ-ꢕ  
ꢕꢁꢘꢘ  
M
-ꢁ?ꢘ  
ꢖꢁꢎꢕ  
ꢒꢎ  
)
9
-ꢁ?ꢘ  
ꢕꢁꢎ-  
ꢕꢁꢘꢕ  
ꢕꢁꢎꢕ  
ꢖꢁꢎꢕ  
ꢕꢁ-ꢘ  
ꢕꢁꢜꢕ  
M
C
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ4ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢕꢘ1  
DS39881D-page 252  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ,ꢓꢅꢆꢇ-ꢎꢅꢐ)ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ.ꢄꢇꢕ/ꢃꢖꢇMꢇ010ꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ,-!  
2ꢊꢐ#ꢇꢘ'&&ꢇꢙꢙꢇ+ꢛꢋꢐꢅꢑꢐꢇꢃꢄꢋ.ꢐ#  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
2010 Microchip Technology Inc.  
DS39881D-page 253  
PIC24FJ64GA004 FAMILY  
33ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ,ꢓꢅꢆꢇ-ꢎꢅꢐ)ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ.ꢄꢇꢕ/ꢃꢖꢇMꢇꢁ1ꢁꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ,-!  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D2  
D
EXPOSED  
PAD  
e
b
K
E
E2  
2
1
2
1
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢖꢖ  
ꢕꢁ?ꢘꢅ1ꢐ,  
ꢕꢁꢛꢕ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
7
ꢗꢀ  
ꢗ-  
.
.ꢎ  
ꢕꢁ<ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕꢘ  
ꢕꢁꢕꢎ  
ꢕꢁꢎꢕꢅꢝ.3  
<ꢁꢕꢕꢅ1ꢐ,  
?ꢁꢖꢘ  
<ꢁꢕꢕꢅ1ꢐ,  
?ꢁꢖꢘ  
ꢕꢁ-ꢕ  
ꢕꢁꢖꢕ  
M
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
?ꢁ-ꢕ  
?ꢁ<ꢕ  
ꢒꢎ  
)
9
?ꢁ-ꢕ  
ꢕꢁꢎꢘ  
ꢕꢁ-ꢕ  
ꢕꢁꢎꢕ  
?ꢁ<ꢕ  
ꢕꢁ-<  
ꢕꢁꢘꢕ  
M
C
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ4ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢕ-1  
DS39881D-page 254  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
33ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ,ꢓꢅꢆꢇ-ꢎꢅꢐ)ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ.ꢄꢇꢕ/ꢃꢖꢇMꢇꢁ1ꢁꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ,-!  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
2010 Microchip Technology Inc.  
DS39881D-page 255  
PIC24FJ64GA004 FAMILY  
33ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ4#ꢊꢋꢇ,ꢓꢅꢆꢇ-ꢎꢅꢐ5ꢅꢑꢉꢇꢕꢍ4ꢖꢇMꢇ6ꢘ16ꢘ16ꢇꢙꢙꢇꢚꢛꢆꢌ)ꢇꢀ'ꢘꢘꢇꢙꢙꢇꢜ4,-ꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
β
A1  
L
L1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢖꢖ  
ꢕꢁ<ꢕꢅ1ꢐ,  
M
ꢀꢁꢕꢕ  
M
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅ9ꢈꢆ#!  
9ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
7
ꢗꢎ  
ꢗꢀ  
9
M
ꢀꢁꢎꢕ  
ꢀꢁꢕꢘ  
ꢕꢁꢀꢘ  
ꢕꢁꢜꢘ  
ꢕꢁꢛꢘ  
ꢕꢁꢕꢘ  
ꢕꢁꢖꢘ  
ꢕꢁ?ꢕ  
3ꢋꢋ&ꢓꢉꢃꢄ&  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢀ  
ꢀꢁꢕꢕꢅꢝ.3  
-ꢁꢘꢟ  
ꢕꢟ  
ꢜꢟ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.
.ꢀ  
ꢒꢀ  
ꢀꢎꢁꢕꢕꢅ1ꢐ,  
ꢀꢎꢁꢕꢕꢅ1ꢐ,  
ꢀꢕꢁꢕꢕꢅ1ꢐ,  
ꢀꢕꢁꢕꢕꢅ1ꢐ,  
M
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ9ꢈꢄꢑ&ꢍ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ1ꢋ&&ꢋ'  
ꢕꢁꢕꢛ  
ꢕꢁ-ꢕ  
ꢀꢀꢟ  
ꢕꢁꢎꢕ  
ꢕꢁꢖꢘ  
ꢀ-ꢟ  
)
ꢕꢁ-ꢜ  
ꢀꢎꢟ  
ꢀꢎꢟ  
ꢀꢀꢟ  
ꢀ-ꢟ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ,ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢓ&ꢃꢋꢄꢆꢇDꢅ!ꢃEꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢎꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢜ?1  
DS39881D-page 256  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
33ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ4#ꢊꢋꢇ,ꢓꢅꢆꢇ-ꢎꢅꢐ5ꢅꢑꢉꢇꢕꢍ4ꢖꢇMꢇ6ꢘ16ꢘ16ꢇꢙꢙꢇꢚꢛꢆꢌ)ꢇꢀ'ꢘꢘꢇꢙꢙꢇꢜ4,-ꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
2010 Microchip Technology Inc.  
DS39881D-page 257  
PIC24FJ64GA004 FAMILY  
NOTES:  
DS39881D-page 258  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
APPENDIX A: REVISION HISTORY  
Revision A (March 2007)  
Original data sheet for the PIC24FJ64GA004 family of  
devices.  
Revision B (March 2007)  
Changes to Table 26-8; packaging diagrams updated.  
Revision C (January 2008)  
• Update of electrical specifications to include DC  
characteristics for Extended Temperature  
devices.  
• Update for A/D converter chapter to include  
information on internal band gap voltage  
reference.  
• Added Appendix B: “Additional Guidance for  
PIC24FJ64GA004 Family Applications”.  
• General revisions to incorporate corrections  
included in document errata to date (DS80333).  
Revision D (January 2010)  
• Update of electrical specifications to include 60°C  
specifications for power-down current to DC  
characteristics.  
• Removes references to JTAG programming  
throughout the document.  
• Other minor typographic corrections throughout.  
2010 Microchip Technology Inc.  
DS39881D-page 259  
PIC24FJ64GA004 FAMILY  
FIGURE B-1: POWER REDUCTION  
APPENDIX B: ADDITIONAL  
GUIDANCE FOR  
PIC24FJ64GA004  
FAMILY  
EXAMPLE FOR CONSTANT  
VOLTAGE SUPPLIES  
PIC24FJ64GA  
APPLICATIONS  
VDD  
B.1  
Additional Methods for Power  
Reduction  
DISVREG  
D1  
3.0V  
Coin Cell  
2.3V  
VDDCORE  
Devices in the PIC24FJ64GA004 family include a num-  
ber of core features to significantly reduce the applica-  
tion’s power requirements. For truly power-sensitive  
applications, it is possible to further reduce the  
application’s power demands by taking advantage of  
the device’s regulator architecture. These methods  
help decrease power in two ways: by disabling the  
internal voltage regulator to eliminate its power con-  
sumption, and by reducing the voltage on VDDCORE to  
lower the device’s dynamic current requirements.  
Using these methods, it is possible to reduce Sleep  
currents (IPD) from 3.5 A to 250 nA (typical values,  
refer to specifications DC60d and DC60g in  
Table 27-6). For dynamic power consumption, the  
reduction in VDDCORE from 2.5V, provided by the  
regulator, to 2.0V can provide a power reduction of  
about 30%.  
VSS  
A similar method can be used for non-regulated  
sources (Figure B-2). In this case, it can be beneficial  
to use a low quiescent current external voltage regula-  
tor. Devices such as the MCP1700 consume only 1 A  
to regulate to 2V or 2.5V, which is lower than the  
current required to power the internal voltage regulator.  
FIGURE B-2: POWER REDUCTION  
EXAMPLE FOR  
NON-REGULATED SUPPLIES  
When using a regulated power source or a battery with  
a constant output voltage, it is possible to decrease  
power consumption by disabling the regulator. In this  
case (Figure B-1), a simple diode can be used to  
reduce the voltage from 3V or greater to the 2V-2.5V  
required for VDDCORE. This method is only advised on  
power supplies, such as Lithium Coin cells, which  
maintain a constant voltage over the life of the battery.  
PIC24FJ64GA  
VDD  
DISVREG  
3.3V  
2.0V  
MCP1700  
VDDCORE  
VSS  
‘AA’  
DS39881D-page 260  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
INDEX  
A
C
A/D Converter  
C Compilers  
Analog Input Model................................................... 198  
Transfer Function...................................................... 199  
MPLAB C18.............................................................. 218  
MPLAB C30.............................................................. 218  
Additional Guidance for Family Applications..................... 260  
Assembler  
Code Examples  
Basic Clock Switching Example ............................... 101  
Configuring UART 1 Input and Output  
MPASM Assembler................................................... 218  
Functions (PPS) ............................................... 110  
Erasing a Program Memory Block.............................. 52  
I/O Port Read/Write .................................................. 106  
Initiating a Programming Sequence ........................... 53  
Loading the Write Buffers........................................... 53  
Single-Word Flash Programming ............................... 54  
Code Protection................................................................ 214  
Configuration Bits ............................................................. 207  
Core Features....................................................................... 9  
CPU  
ALU............................................................................. 29  
Control Registers........................................................ 28  
Core Registers............................................................ 27  
Programmer’s Model .................................................. 25  
CRC  
B
Block Diagrams  
10-Bit High-Speed A/D Converter............................. 192  
Accessing Program Memory with  
Table Instructions ............................................... 47  
Addressable PMP Example ...................................... 174  
CALL Stack Frame...................................................... 45  
Comparator Operating Modes .................................. 201  
Comparator Voltage Reference ................................ 205  
CPU Programmer’s Model.......................................... 27  
CRC Reconfigured for Polynomial............................ 188  
CRC Shifter Details................................................... 187  
Data Access From Program Space  
Address Generation............................................ 46  
I C Module................................................................ 152  
2
CRCXOR Register.................................................... 190  
Operation in Power Save Modes.............................. 188  
User Interface........................................................... 188  
Customer Change Notification Service............................. 265  
Customer Notification Service .......................................... 265  
Customer Support............................................................. 265  
Input Capture ............................................................ 133  
Legacy PMP Example............................................... 174  
On-Chip Regulator Connections............................... 212  
Output Compare ....................................................... 138  
PIC24F CPU Core ...................................................... 26  
PIC24FJ64GA004 Family (General)........................... 12  
PMP  
D
Master Port Examples .............................. 174–176  
PMP Module Overview ............................................. 167  
PSV Operation............................................................ 48  
Reset System.............................................................. 55  
RTCC........................................................................ 177  
Shared I/O Port Structure ......................................... 105  
Simplified UART........................................................ 159  
SPI Master/Frame Master Connection...................... 149  
SPI Master/Frame Slave Connection........................ 149  
SPI Master/Slave Connection (Enhanced  
Buffer Mode)..................................................... 148  
SPI Master/Slave Connection (Standard Mode)....... 148  
SPI Slave/Frame Master Connection........................ 149  
SPI Slave/Frame Slave Connection.......................... 149  
SPIx Module (Enhanced Mode)................................ 143  
SPIx Module (Standard Mode).................................. 142  
System Clock Diagram ............................................... 95  
Timer1....................................................................... 125  
Timer2 and Timer4 (16-Bit Modes)........................... 129  
Timer2/3 and Timer4/5 (32-Bit Mode)....................... 128  
Timer3 and Timer5 (16-Bit Modes)........................... 129  
Watchdog Timer (WDT)............................................ 214  
Data Memory  
Address Space ........................................................... 33  
Memory Map............................................................... 33  
Near Data Space........................................................ 34  
Organization ............................................................... 34  
SFR Space ................................................................. 34  
Software Stack ........................................................... 45  
Development Support....................................................... 217  
Device Features (Summary)............................................... 11  
DISVREG Pin ................................................................... 212  
Doze Mode ....................................................................... 104  
E
Electrical Characteristics  
A/D Specifications .................................................... 244  
Absolute Maximum Ratings...................................... 229  
Current Specifications ...................................... 233–237  
I/O Pin Specifications ....................................... 238–239  
Internal Clock Specifications .................................... 242  
Load Conditions and Requirements for  
AC Characteristics............................................ 240  
Program Memory Specifications............................... 239  
Thermal Operating Conditions.................................. 231  
V/F Graphs ............................................................... 230  
Voltage Ratings ........................................................ 232  
Voltage Regulator Specifications.............................. 239  
2010 Microchip Technology Inc.  
DS39881D-page 261  
PIC24FJ64GA004 FAMILY  
Equations  
N
A/D Clock Conversion Period ...................................198  
Near Data Space ................................................................ 34  
Baud Rate Reload Calculation..................................153  
Calculating the PWM Period .....................................136  
Calculation for Maximum PWM Resolution...............136  
Device and SPI Clock Speed Relationship ...............150  
UART Baud Rate with BRGH = 0 .............................160  
UART Baud Rate with BRGH = 1 .............................160  
Errata ....................................................................................8  
O
Oscillator Configuration  
Clock Switching ........................................................ 100  
Sequence ......................................................... 101  
Initial Configuration on POR ....................................... 96  
Oscillator Modes......................................................... 96  
Output Compare  
F
PWM Mode............................................................... 136  
Period and Duty Cycle Calculation................... 137  
Single Output Pulse Generation ............................... 135  
Flash Configuration Words.................................. 32, 207–210  
Flash Program Memory  
and Table Instructions.................................................49  
Enhanced ICSP Operation..........................................50  
Programming Algorithm ..............................................52  
RTSP Operation..........................................................50  
Single-Word Programming..........................................54  
P
Packaging  
Details....................................................................... 249  
Marking..................................................................... 247  
Parallel Master Port. See PMP......................................... 167  
Peripheral Enable Bits ...................................................... 104  
Peripheral Module Disable (PMD) bits.............................. 104  
Peripheral Pin Select (PPS).............................................. 107  
Available Peripherals and Pins................................. 107  
Configuration Control................................................ 109  
Considerations for Use ............................................. 110  
Input Mapping........................................................... 107  
Mapping Exceptions ................................................. 109  
Output Mapping ........................................................ 108  
Peripheral Priority ..................................................... 107  
Registers .......................................................... 111–124  
PICSTART Plus Development Programmer..................... 220  
Pinout Descriptions....................................................... 13–18  
PMP  
Master Port Examples ...................................... 174–176  
Power-Saving Features .................................................... 103  
Power-up Requirements................................................... 213  
Product Identification System ........................................... 267  
Program Memory  
Access Using Table Instructions................................. 47  
Address Construction ................................................. 45  
Address Space ........................................................... 31  
Flash Configuration Words ......................................... 32  
Memory Map............................................................... 31  
Organization ............................................................... 32  
Program Space Visibility............................................. 48  
Pulse-Width Modulation. See PWM.................................. 136  
I
I/O Ports  
Analog Port Configuration.........................................106  
Input Change Notification..........................................106  
Open-Drain Configuration .........................................106  
Parallel (PIO) ............................................................105  
Peripheral Pin Select ................................................107  
Pull-ups.....................................................................106  
2
I C  
Clock Rates...............................................................153  
Peripheral Remapping Options.................................151  
Reserved Addresses.................................................153  
Slave Address Masking ............................................153  
Idle Mode ..........................................................................104  
Instruction Set  
Overview ...................................................................223  
Summary...................................................................221  
Instruction-Based Power-Saving Modes...........................103  
2
Inter-Integrated Circuit. See I C........................................151  
Internet Address................................................................265  
Interrupts  
Alternate Interrupt Vector Table (AIVT) ......................61  
and Reset Sequence ..................................................61  
Implemented Vectors..................................................63  
Interrupt Vector Table (IVT) ........................................61  
Registers............................................................... 64–92  
Setup and Service Procedures ...................................93  
Trap Vectors ...............................................................62  
Vector Table................................................................62  
R
Reader Response............................................................. 266  
Register Maps  
J
JTAG Interface..................................................................214  
A/D Converter (ADC).................................................. 41  
Clock Control .............................................................. 44  
CPU ............................................................................ 35  
CRC............................................................................ 42  
Dual Comparator ........................................................ 42  
M
Microchip Internet Web Site..............................................265  
MPLAB ASM30 Assembler, Linker, Librarian ...................218  
MPLAB ICD 2 In-Circuit Debugger....................................219  
MPLAB ICE 2000 High-Performance Universal  
2
I C .............................................................................. 38  
ICN ............................................................................. 35  
Input Capture.............................................................. 37  
Interrupt Controller...................................................... 36  
NVM............................................................................ 44  
Output Compare ......................................................... 38  
Pad Configuration....................................................... 40  
Parallel Master/Slave Port.......................................... 41  
Peripheral Pin Select .................................................. 43  
PMD............................................................................ 44  
In-Circuit Emulator ....................................................219  
MPLAB Integrated Development Environment  
Software....................................................................217  
MPLAB PM3 Device Programmer.....................................219  
MPLAB REAL ICE In-Circuit Emulator System.................219  
MPLINK Object Linker/MPLIB Object Librarian ................218  
DS39881D-page 262  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
PORTA........................................................................ 40  
UxRXREG (UARTx Receive) ................................... 166  
UxSTA (UARTx Status and Control) ........................ 164  
UxTXREG (UARTx Transmit)................................... 166  
WKDYHR (RTCC Weekday and Hours Value) ........ 183  
YEAR (RTCC Year Value)........................................ 182  
PORTB........................................................................ 40  
PORTC ....................................................................... 40  
Real-Time Clock and Calendar (RTCC) ..................... 42  
SPI .............................................................................. 39  
Timers......................................................................... 37  
UART .......................................................................... 39  
Resets  
Clock Source Selection .............................................. 57  
Delay Times................................................................ 58  
RCON Flags Operation .............................................. 57  
SFR States ................................................................. 59  
Revision History................................................................ 259  
RTCC  
Registers  
AD1CHS (A/D Input Select)...................................... 196  
AD1CON1 (A/D Control 1)........................................ 193  
AD1CON2 (A/D Control 2)........................................ 194  
AD1CON3 (A/D Control 3)........................................ 195  
AD1CSSL (A/D Input Scan Select)........................... 197  
AD1PCFG (A/D Port Configuration).......................... 197  
ALCFGRPT (Alarm Configuration)............................ 181  
ALMINSEC (Alarm Minutes and  
Seconds Value) ................................................ 185  
ALMTHDY (Alarm Month and Day Value) ................ 184  
ALWDHR (Alarm Weekday and Hours Value).......... 184  
CLKDIV (Clock Divider) .............................................. 99  
CMCON (Comparator Control) ................................. 202  
CORCON (Core Control) ............................................ 65  
CORCON (CPU Control) ............................................ 29  
CRCCON (CRC Control) .......................................... 189  
CRCXOR (CRC XOR Polynomial)............................ 190  
CVRCON (Comparator Voltage  
Reference Control) ........................................... 206  
CW1 (Flash Configuration Word 1)........................... 208  
CW2 (Flash Configuration Word 2)........................... 210  
DEVID (Device ID).................................................... 211  
DEVREV (Device Revision)...................................... 211  
I2CxCON (I2Cx Control) ........................................... 154  
I2CxMSK (I2Cx Slave Mode Address Mask) ............ 158  
I2CxSTAT (I2Cx Status) ........................................... 156  
ICxCON (Input Capture x Control)............................ 134  
IECn (Interrupt Enable Control 0-4) ...................... 73–77  
IFSn (Interrupt Flag Status 0-4) ............................ 68–72  
INTCON1 (Interrupt Control 1).................................... 66  
INTCON2 (Interrupt Control 2).................................... 67  
IPCn (Interrupt Priority Control 0-18) .................... 78–92  
MINSEC (RTCC Minutes and Seconds Value)......... 183  
MTHDY (RTCC Month and Day Value) .................... 182  
NVMCON (Flash Memory Control) ............................. 51  
OCxCON (Output Compare x Control) ..................... 139  
OSCCON (Oscillator Control) ..................................... 97  
OSCTUN (FRC Oscillator Tune)............................... 100  
PADCFG1 (Pad Configuration Control) ............ 173, 180  
PMADDR (PMP Address)......................................... 171  
PMAEN (PMP Enable).............................................. 171  
PMCON (PMP Control)............................................. 168  
PMMODE (PMP Mode)............................................. 170  
PMPSTAT (PMP Status)........................................... 172  
RCFGCAL (RTCC Calibration  
Alarm Configuration.................................................. 186  
Calibration ................................................................ 185  
Register Mapping ..................................................... 178  
S
Serial Peripheral Interface. See SPI................................. 141  
SFR Space ......................................................................... 34  
Slective Peripheral Power Control.................................... 104  
Sleep Mode ...................................................................... 103  
Software Simulator (MPLAB SIM) .................................... 218  
Software Stack ................................................................... 45  
T
Timer1 .............................................................................. 125  
Timer2/3 and Timer4/5 ..................................................... 127  
Timing Diagrams  
CLKO and I/O Timing ............................................... 243  
External Clock Timing............................................... 241  
U
UART  
Baud Rate Generator (BRG) .................................... 160  
Break and Sync Sequence....................................... 161  
IrDA Support............................................................. 161  
Operation of UxCTS and UxRTS Control Pins......... 161  
Receiving.................................................................. 161  
Transmitting.............................................................. 161  
V
VDDCORE/VCAP pin............................................................ 212  
Voltage Regulator (On-Chip) ............................................ 212  
and BOR................................................................... 213  
and POR................................................................... 212  
Standby Mode .......................................................... 213  
Tracking Mode.......................................................... 212  
W
Watchdog Timer (WDT).................................................... 213  
Winowed Operation.................................................. 214  
WWW Address ................................................................. 265  
WWW, On-Line Support ....................................................... 8  
and Configuration) ............................................ 179  
RCON (Reset Control)................................................ 56  
RPINRn (PPS Input Mapping 0-23) .................. 111–117  
RPORn (PPS Output Mapping 0-12) ................ 118–124  
SPIxCON1 (SPIx Control 1)...................................... 146  
SPIxCON2 (SPIx Control 2)...................................... 147  
SPIxSTAT (SPIx Status and Control) ....................... 144  
SR (ALU STATUS) ............................................... 28, 65  
T1CON (Timer1 Control)........................................... 126  
TxCON (Timer2 and Timer4 Control)........................ 130  
TyCON (Timer3 amd Timer5 Control)....................... 131  
UxMODE (UARTx Mode).......................................... 162  
2010 Microchip Technology Inc.  
DS39881D-page 263  
PIC24FJ64GA004 FAMILY  
NOTES:  
DS39881D-page 264  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
2010 Microchip Technology Inc.  
DS39881D-page 265  
PIC24FJ64GA004 FAMILY  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC24FJ64GA004 Family  
DS39881D  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39881D-page 266  
2010 Microchip Technology Inc.  
PIC24FJ64GA004 FAMILY  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PIC 24 FJ 64 GA0 04 T - I / PT - XXX  
a)  
b)  
PIC24FJ32GA002-I/ML:  
General purpose PIC24F, 32-Kbyte program  
memory, 28-pin, Industrial temp.,  
QFN package.  
Microchip Trademark  
Architecture  
PIC24FJ64GA004-E/PT:  
Flash Memory Family  
General purpose PIC24F, 64-Kbyte program  
memory, 44-pin, Extended temp.,  
TQFP package.  
Program Memory Size (KB)  
Product Group  
Pin Count  
Tape and Reel Flag (if applicable)  
Temperature Range  
Package  
Pattern  
Architecture  
24 = 16-bit modified Harvard without DSP  
Flash Memory Family FJ = Flash program memory  
Product Group  
Pin Count  
GA0 = General purpose microcontrollers  
02 = 28-pin  
04 = 44-pin  
Temperature Range  
Package  
E
I
=
=
-40C to +125C (Extended)  
-40C to +85C (Industrial)  
SP = SPDIP  
SO = SOIC  
SS = SSOP  
ML = QFN  
PT = TQFP  
Pattern  
Three-digit QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
ES = Engineering Sample  
2010 Microchip Technology Inc.  
DS39881D-page 267  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/05/10  
DS39881D-page 268  
2010 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY