ATA6563-GBQW0 [MICROCHIP]

High-Speed CAN Transceiver with Standby Mode;
ATA6563-GBQW0
型号: ATA6563-GBQW0
厂家: MICROCHIP    MICROCHIP
描述:

High-Speed CAN Transceiver with Standby Mode

文件: 总32页 (文件大小:1484K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ATA6562/3  
High-Speed CAN Transceiver with Standby Mode  
Features  
General Description  
• Fully ISO 11898-2, ISO 11898-2: 2016 and  
SAE J2962-2 Compliant  
The ATA6562/3 is a high-speed CAN transceiver that  
provides an interface between a Controller Area Net-  
work (CAN) protocol controller and the physical  
Two-Wire CAN bus. The transceiver is designed for  
high-speed (up to 5 Mbps) CAN applications in the  
automotive industry, providing differential transmit and  
receive capability to (a microcontroller with) a CAN pro-  
tocol controller.  
• CAN FD Ready  
• Communication Speed up to 5 Mbps  
• ISO 26262 Functional Safety Ready  
• Low Electromagnetic Emission (EME) and High  
Electromagnetic Immunity (EMI)  
• Differential Receiver with Wide Common-Mode  
Range  
It offers improved electromagnetic compatibility (EMC)  
and ESD performance as well as features such as:  
• ATA6562: Silent Mode  
• Ideal passive behavior to the CAN bus when the  
supply voltage is off  
• Remote Wake-Up Capability via CAN Bus -  
Wake-Up on Pattern (WUP), as Specified in  
ISO 11898-2: 2016, 3.8 µs Activity Filter Time  
• Direct interfacing to microcontrollers with supply  
voltages from 3V to 5V (ATA6563)  
• Functional Behavior Predictable under All Supply  
Conditions  
Three operating modes together with the dedicated  
fail-safe features make the ATA6562/3 an excellent  
choice for all types of high-speed CAN networks, espe-  
cially in nodes requiring Low-Power mode with  
wake-up capability via the CAN bus.  
• Transceiver Disengages from the Bus When Not  
Powered Up  
• RXD Recessive Clamping Detection  
• High Electrostatic Discharge (ESD) Handling  
Capability on the Bus Pins  
Package Types  
• Bus Pins Protected Against Transients in  
Automotive Environments  
ATA6562  
SOIC  
ATA6563  
SOIC  
• Transmit Data (TXD) Dominant Time-Out  
Function  
• Undervoltage Detection on VCC and VIO Pins  
TXD  
STBY  
CANH  
TXD  
STBY  
CANH  
1
2
8
7
1
2
8
7
• CANH/CANL Short-Circuit and Overtemperature  
Protected  
GND  
GND  
VCC 3  
6
5
CANL  
NSIL  
VCC 3  
6
5
CANL  
VIO  
• Fulfills the OEM “Hardware Requirements for LIN,  
CAN and FlexRay Interfaces in Automotive Appli-  
cations”, Rev. 1.3  
4
4
RXD  
RXD  
• AEC-Q100 and AEC-Q006 Qualified  
ATA6563  
3 x 3 VDFN* with  
wettable flanks  
• Two Ambient Temperature Grades Available:  
ATA6562  
3 x 3 VDFN* with  
wettable flanks  
- ATA6562-GAQW1, ATA6563-GAQW1,  
ATA6562-GBQW1 and ATA6563-GBQW1 up  
to Tamb = +125°C  
TXD  
STBY  
TXD  
STBY  
1
2
8
7
1
2
8
7
- ATA6562-GAQW0, ATA6563-GAQW0,  
ATA6562-GBQW0 and ATA6563-GBQW0 up  
to Tamb = +150°C  
GND  
GND  
CANH  
CANL  
VIO  
CANH  
CANL  
NSIL  
VCC  
RXD  
VCC  
RXD  
3
4
6
5
3
4
6
5
• Packages: 8-pin SOIC, 8-pin VDFN with Wettable  
Flanks (Moisture Sensitivity Level 1)  
Applications  
*Includes Exposed Thermal Pad (EP); see Table 1-2.  
Classical CAN and CAN FD networks in Automotive,  
Industrial, Aerospace, Medical and Consumer  
applications.  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005790E-page 1  
ATA6562/3  
ATA6562/3 Family Members  
Device  
VIO Pin  
NSIL Grade 0 Grade 1 VDFN8 SOIC8  
Description  
ATA6562-GAQW0  
ATA6562-GAQW1  
ATA6562-GBQW0  
ATA6562-GBQW1  
ATA6563-GAQW0  
X
X
X
X
X
X
X
X
X
Standby mode and Silent mode  
Standby mode and Silent mode  
Standby mode and Silent mode  
Standby mode and Silent mode  
X
X
X
X
X
X
X
X
X
X
Standby mode, VIO - pin for  
compatibility with 3.3V and 5V  
microcontroller  
ATA6563-GAQW1  
ATA6563-GBQW0  
ATA6563-GBQW1  
X
Standby mode, VIO - pin for  
compatibility with 3.3V and 5V  
microcontroller  
X
X
X
Standby mode, VIO-pin for com-  
patibility with 3.3V and 5V micro-  
controller  
X
Standby mode, VIO - pin for  
compatibility with 3.3V and 5V  
microcontroller  
Note:  
For ordering information, see the Product Identification System section.  
DS20005790E-page 2  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6562/3  
Functional Block Diagram  
V,2  
5(1)  
V&&  
3
VCC  
Temperature  
Protection  
VIO(1)  
VIO(1)  
VIO(1)  
7
Slope Control  
and  
CANH  
TXD  
Time-Out-  
Timer  
1
8
TXD  
STBY  
NSIL  
Driver  
6
CANL  
Control Unit  
5(1)  
VIO(ꢀꢁ  
HSC(2)  
4
MUX  
RXD  
Wake-up  
Filter  
WUC(3)  
2
GND  
Notes: 1. Pin 5: ATA6563: VIO  
ATA6562: NSIL (the VIO line and the VCC line are internally connected)  
2. HSC: High-Speed comparator  
3. WUC: Wake-Up comparator  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005790E-page 3  
ATA6562/3  
• ATA6563: The pin 5 is the VIO pin and should be  
connected to the microcontroller supply voltage.  
This allows direct interfacing to microcontrollers  
with supply voltages down to 3V and adjusts the  
signal levels of the TXD, RXD, and STBY pins to  
the I/O levels of the microcontroller. The I/O ports  
are supplied by the VIO pin.  
1.0  
FUNCTIONAL DESCRIPTION  
The ATA6562/3 is a stand-alone dual high-speed CAN  
transceiver compliant with the ISO 11898-2, ISO  
11898-2: 2016, ISO 11898-5 and SAE J2962-2 CAN  
standards. It provides a very low current consumption  
in Standby mode and wake-up capability via the CAN  
bus. There are two versions available, only differing in  
the function of pin 5:  
1.1  
Operating Modes  
• ATA6562: The pin 5 is the control input for Silent  
mode NSIL, allowing the ATA6562 to only receive  
data but not send data via the bus. The output  
driver stage is disabled. The VIO line and the  
VCC line are internally connected, this sets the  
signal levels of the TXD, RXD, STBY, and NSIL  
pins to levels compatible with 5V microcontrollers.  
Each of the transceivers supports three operating  
modes: Unpowered, Standby and Normal. The  
ATA6562 additionally has the Silent mode. These  
modes can be selected via the STBY and NSIL pin.  
See Figure 1-1 and Table 1-1 for a description of the  
operating modes.  
FIGURE 1-1:  
OPERATING MODES  
ATA6562  
ATA6563  
VCC < Vuvd(VCC) or  
VIO < Vuvd(VIO)  
VCC < Vuvd(VCC) or  
VIO < Vuvd(VIO)  
VCC < Vuvd(VCC)  
VCC < Vuvd(VCC)  
Unpowered  
Mode  
Unpowered  
Mode  
VCC < Vuvd(VCC) or  
IO < Vuvd(VIO)  
VCC > Vuvd(VCC) or  
IO > Vuvd(VIO)  
VCC < Vuvd(VCC)  
VCC > Vuvd(VCC)  
STBY = 1  
V
V
STBY = 1  
STBY = 1  
STBY = 1  
Standby  
Mode  
Standby  
Mode  
STBY = 0 and  
(NSIL = 0 or  
TXD = 0)  
STBY = 0 and  
NSIL = 1 and  
TXD = 1 and  
Error = 0  
STBY = 0 and  
TXD = 0  
STBY = 0 and  
TXD = 1 and  
Error = 0  
NSIL = 1 and TXD = 1 and Error = 0  
NSIL = 0 or Error = 1  
TXD = 1 and Error = 0  
Error = 1  
Silent  
Mode  
Normal  
Mode  
Silent  
Mode *  
Normal  
Mode  
* Silent Pode is externally not accessible  
Note: For the ATA6563 NSIL is internally set to “1”.  
TABLE 1-1:  
OPERATING MODES  
STBY  
Inputs  
NSIL  
Outputs  
CAN Driver  
Mode  
Pin TXD  
Pin RXD  
Unpowered  
Standby  
X(3)  
X(3)  
X(3)  
X(3)  
X(3)  
X(3)  
Recessive  
Recessive  
Recessive  
Dominant  
Recessive  
Recessive  
Active(4)  
Active(1)  
LOW  
HIGH  
LOW  
LOW  
LOW  
Silent (only for ATA6562)  
Normal  
LOW  
HIGH(2)  
HIGH(2)  
LOW  
HIGH  
HIGH  
Note 1: LOW if the CAN bus is dominant, HIGH if the CAN bus is recessive.  
2: Internally pulled up if not bonded out.  
3: Irrelevant  
4: Reflects the bus only for wake-up  
DS20005790E-page 4  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6562/3  
To switch the device in normal operating mode, set the  
STBY pin to low and the TXD pin to high (see Table 1-1  
and Figure 1-2). The STBY pin provides a pull-up  
resistor to VIO, thus ensuring a defined level if the pin  
is open.  
1.1.1  
NORMAL MODE  
A low level on the STBY pin together with a high level  
on pin TXD selects the Normal mode. In this mode, the  
transceiver is able to transmit and receive data via the  
CANH and CANL bus lines (see Functional Block  
Diagram). The output driver stage is active and drives  
data from the TXD input to the CAN bus. The  
High-Speed Comparator (HSC) converts the analog  
data on the bus lines into digital data which is output to  
pin RXD. The bus biasing is set to VVCC/2 and the  
undervoltage monitoring of VCC is active.  
Please note that the device cannot enter Normal mode  
as long as TXD is at ground level.  
The switching into Normal mode is depicted in the  
following two figures, Figure 1-2 and Figure 1-3.  
The slope of the output signals on the bus lines is  
controlled and optimized in a way that guarantees the  
lowest possible electromagnetic emission (EME).  
FIGURE 1-2:  
SWITCHING FROM STANDBY MODE TO NORMAL MODE (NSIL = HIGH)  
ꢁ ꢁ  
ꢀꢁꢂꢃ/  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢘ/  
ꢀꢁ  
)
ꢎ/ ꢏꢐꢑꢒ'*ꢓ,ꢔ "%ꢕꢖ/ꢗ/  
ꢄꢂ  
ꢀꢁꢂ  
ꢃꢂ  
ꢀꢁ  
ꢀꢁ  
ꢙꢚ.(/ꢛꢆ+/  
ꢄ#ꢅ$ꢆ)ꢇ!ꢈ/  
ꢉ!ꢊꢅ/  
ꢀ)ꢆꢋꢊꢌ-/ꢉ!ꢍꢅ/  
ꢜ!&ꢝꢆꢞ/!ꢊꢅ/  
ꢀꢁ  
FIGURE 1-3:  
SWITCHING FROM SILENT MODE TO NORMAL MODE  
ꢀꢁꢂꢃ0  
ꢀꢁ  
ꢀꢁ  
ꢄꢀꢅꢆ0  
ꢀꢁꢂꢃ  
ꢀꢁ  
-
ꢀꢁ  
ꢏ0  
ꢐꢑꢒꢓ+ꢔꢕꢖ$&) ꢗ0ꢘ0  
ꢂ  
ꢚ0/,0"ꢉ.0 ꢇ  
ꢃ  
ꢉꢊꢃ  
ꢀꢁ ꢄꢅꢃ  
ꢝ0  
ꢇ'ꢈ(ꢉ-ꢊ%#0  
ꢋ%ꢌꢈ0  
ꢀꢊꢍꢈ#-0ꢋ%ꢌꢎ0  
ꢄ%*"ꢉꢞ0%ꢌꢈ0  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005790E-page 5  
ATA6562/3  
1.1.2  
SILENT MODE (ONLY WITH THE  
ATA6562)  
1.1.3.1  
Remote Wake-up via the CAN Bus  
In Standby mode the bus lines are biased to ground to  
reduce current consumption to a minimum. The  
ATA6562/3 monitors the bus lines for a valid wake-up  
pattern as specified in the ISO 11898-2: 2016. This  
filtering helps to avoid spurious wake-up events, which  
would be triggered by scenarios such as a dominant  
clamped bus or by a dominant phase due to noise,  
spikes on the bus, automotive transients or EMI.  
A low level on the NSIL pin (available on Pin 5) and on  
the STBY pin selects Silent mode. This receive-only  
mode can be used to test the connection of the bus  
medium. In Silent mode, the ATA6562 can still receive  
data from the bus, but the transmitter is disabled and  
therefore no data can be sent to the CAN bus. The bus  
pins are released to recessive state. All other IC  
functions, including the high-speed comparator (HSC),  
continue to operate as they do in Normal mode. Silent  
mode can be used to prevent a faulty CAN controller  
from disrupting all network communications.  
The wake-up pattern consists of at least two  
consecutive dominant bus levels for a duration of at  
least tFilter, each separated by a recessive bus level  
with a duration of at least tFilter. Dominant or recessive  
bus levels shorter than tFilter are always being ignored.  
The complete dominant-recessive-dominant pattern  
(as shown in Figure 1-4) must be received within the  
bus wake-up time-out time tWake to be recognized as a  
valid wake-up pattern. Otherwise, the internal wake-up  
logic is reset and then the complete wake-up pattern  
must be retransmitted to trigger a wake-up event. Pin  
RXD remains at high level until a valid wake-up event  
has been detected.  
1.1.3  
STANDBY MODE  
A high level on the STBY pin selects Standby mode. In  
this mode, the transceiver is not able to transmit or  
correctly receive data via the bus lines. The transmitter  
and the high-speed comparator (HSC) are switched off  
to reduce current consumption.  
For ATA6562 only: In the event the NSIL input pin is  
set to low in Standby mode, the internal pull-up resistor  
causes an additional quiescent current from VIO to  
GND. Microchip recommends setting the NSIL pin to  
high in Standby mode.  
During Normal mode, at a VCC undervoltage condition  
or when the complete wake-up pattern is not received  
within tWake, no wake-up is signalled at the RXD pin.  
When a valid CAN wake-up pattern is detected on the  
bus, the RXD pin switches to low to signal a wake-up  
request. A transition to Normal mode is not triggered  
until the STBY pin is forced back to low by the micro-  
controller.  
FIGURE 1-4:  
TIMING OF THE BUS WAKE-UP PATTERN (WUP) IN STANDBY MODE  
ꢀꢁꢁꢁꢁꢁꢁꢁꢂꢃꢃꢃꢄꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢑꢄ  
ꢅꢆꢇꢈꢉꢊꢉꢋꢄ  
ꢌꢍꢎꢍꢏꢏꢈꢐꢍꢄ  
ꢅꢆꢇꢈꢉꢊꢉꢋꢄ  
ꢀꢁꢁꢁꢁꢁꢁꢁꢂꢃꢃꢃꢄꢄ  
ꢀꢁꢂꢃꢄꢅꢄꢀꢆꢇꢉꢂꢊꢄ  
ꢋꢌꢍꢎꢈꢉꢂꢊꢄ  
ꢂꢁ  
ꢀꢁ  
ꢃꢄꢅꢆꢇ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢉꢊꢃ ꢀꢁ  
ꢋꢂꢃꢂꢌꢍꢎꢏꢏꢇꢐꢃ  
DS20005790E-page 6  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6562/3  
1.2.5  
The  
OVERTEMPERATURE  
PROTECTION  
1.2  
Fail-safe Features  
1.2.1  
TXD DOMINANT TIME-OUT  
FUNCTION  
output  
drivers  
are  
protected  
against  
overtemperature conditions. If the junction temperature  
exceeds the shutdown junction temperature, TJsd, the  
output drivers are disabled until the junction  
temperature drops below TJsd and pin TXD is at high  
level again. The TXD condition ensures that output  
driver oscillations due to temperature drift are avoided.  
See Figure 1-5.  
A TXD dominant time-out timer is started when the  
TXD pin is set to low. If the low state on the TXD pin  
persists for longer than tto(dom)TXD, the transmitter is  
disabled, releasing the bus lines to recessive state.  
This function prevents a hardware and/or software  
application failure from driving the bus lines to a  
permanent dominant state (blocking all network  
communications). The TXD dominant time-out timer is  
reset when the TXD pin is set to high. If the low state on  
the TXD pin was longer than tto(dom)TXD, then the TXD  
pin has to be set to high longer 4 µs in order to reset the  
TXD dominant time-out timer.  
1.2.6  
SHORT-CIRCUIT PROTECTION OF  
THE BUS PINS  
The CANH and CANL bus outputs are short-circuit  
protected, either against GND or a positive supply  
voltage.  
A
current-limiting circuit protects the  
transceiver against damage. If the device is heating up  
due to a continuous short on CANH or CANL, the  
internal overtemperature protection switches off the  
bus transmitter.  
1.2.2  
INTERNAL PULL-UP STRUCTURE  
AT THE TXD AND STBY INPUT PINS  
The TXD and STBY pins have an internal pull-up  
resistor to VIO. This ensures a safe, defined state in  
case one or both pins are left floating. Pull-up currents  
flow in these pins in all states, meaning all pins should  
be in high state during Standby mode to minimize the  
current consumption.  
1.2.7  
RXD RECESSIVE CLAMPING  
This fail-safe feature prevents the controller from  
sending data on the bus if its RXD line is clamped to  
HIGH (e.g., recessive). That is, if the RXD pin cannot  
signalize a dominant bus condition because it is e.g,  
shorted to VCC, the transmitter within ATA6562/3 is  
disabled to avoid possible data collisions on the bus. In  
Normal and Silent mode (only ATA6562), the device  
permanently compares the state of the high-speed  
comparator (HSC) with the state of the RXD pin. If the  
HSC indicates a dominant bus state for more than  
tRC_det without the RXD pin doing the same, a  
recessive clamping situation is detected and the  
transceiver is forced into Silent mode. This Fail-safe  
mode is released by either entering Standby or  
Unpowered mode or if the RXD pin is showing a  
dominant (e.g., low) level again. See Figure 1-6.  
1.2.3  
UNDERVOLTAGE DETECTION ON  
PIN VCC  
If VVCC or VVIO drops below its undervoltage detection  
levels (Vuvd(VCC) and Vuvd(VIO))(see Section 2.0,  
Electrical Characteristics), the transceiver switches off  
and disengages from the bus until VVCC and VVIO has  
recovered. The low-power wake-up comparator is only  
switched off during a VCC and VIO undervoltage. The  
logic state of the STBY pin is ignored until the VVCC  
voltage or VVIO voltage has recovered.  
1.2.4  
BUS WAKE UP ONLY AT  
DEDICATED WAKE-UP PATTERN  
Due to the implementation of the wake-up filtering the  
ATA6562/3 does not wake-up when the bus is in a long  
dominant phase, it only wakes up at a dedicated  
wake-up pattern as specified in the ISO 11898-2: 2016.  
This means for  
a valid wake-up at least two  
consecutive dominant bus levels for a duration of at  
least tFilter, each separated by a recessive bus level  
with a duration of at least tFilter must be received via the  
bus. Dominant or recessive bus levels shorter than  
tFilter are always being ignored. The complete  
dominant-recessive-dominant pattern as shown in  
Figure 1-4, must be received within the bus wake-up  
time-out time tWake to be recognized as a valid wake-up  
pattern. This filtering leads to a higher robustness  
against EMI and transients and reduces therefore the  
risk of an unwanted bus wake- up significantly.  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005790E-page 7  
ATA6562/3  
FIGURE 1-5:  
RELEASE OF TRANSMISSION AFTER OVERTEMPERATURE CONDITION  
Failure  
Overtemp  
OT  
Overtemperature  
t
t
TXD  
VIO  
GND  
BUS VDIFF  
(CANH-CANL)  
D
R
D
R
D
R
t
t
RXD  
VIO  
GND  
t
FIGURE 1-6:  
RXD RECESSIVE CLAMPING DETECTION  
DS20005790E-page 8  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6562/3  
1.3  
Pin Description  
The descriptions of the pins are listed in Table 1-2.  
TABLE 1-2:  
ATA6562  
PIN FUNCTION TABLE  
ATA6563  
Pin Name  
Description  
SOIC8 VDFN8 SOIC8 VDFN8  
Transmit data input  
1
2
1
2
1
2
1
2
TXD  
GND  
VCC  
RXD  
VIO  
Ground  
3
3
3
3
Supply voltage  
4
4
4
4
Receive data output; reads out data from the bus lines  
Supply voltage for I/O level adapter  
Silent mode control input (low active);  
Low-level CAN bus line  
5
5
5
5
6
6
NSIL  
CANL  
CANH  
STBY  
EP  
6
6
7
7
7
7
High-level CAN bus line  
8
8
8
8
Standby mode control input  
9
9
Exposed Thermal Pad: Heat slug, internally connected to the  
GND pin.  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005790E-page 9  
ATA6562/3  
1.4  
Typical Application  
Typical Application ATA6562  
5V  
12V  
BAT  
+
22 µF(1)  
100 nF  
VCC  
7
3
VDD  
Microcontroller  
GND  
STBY  
NSIL  
TXD  
CANH  
CANL  
8
5
1
4
CANH  
ATA6562  
2
RXD  
6
CANL  
GND  
GND  
(1) The size of this capacitor depends on the used external voltage regulator  
Note: For VDFN8 package: EP (heatslug) must always be connected to GND.  
Typical Application ATA6563  
3.3V  
12V  
BAT  
5V  
12V  
22 µF(1)  
+
100 nF  
100 nF  
VIO  
VCC  
5
3
VDD  
Microcontroller  
GND  
CANH  
CANL  
7
6
CANH  
STBY  
TXD  
8
1
4
ATA6563  
2
RXD  
CANL  
GND  
GND  
(1) The size of this capacitor depends on the used external voltage regulator  
Note: For VDFN8 package: EP (heatslug) must always be connected to GND.  
DS20005790E-page 10  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6562/3  
2.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings (†)  
DC Voltage at CANH, CANL (VCANH, VCANL) ................................................................................................–27 to +42V  
Transient Voltage at CANH, CANL (according to ISO 7637 part 2) (VCANH, VCANL) .................................–150 to +100V  
Max. Differential Bus Voltage (VDiff).................................................................................................................–5 to +18V  
DC Voltage on all other Pins (VX) ................................................................................................................–0.3 to +5.5V  
ESD according to IBEE CAN EMC - Test Specification Following IEC 61000-4-2 - Pin CANH, CANL ..................±8 kV  
ESD (HBM Following STM5.1 with 1.5 kΩ/100 pF) - Pins CANH, CANL to GND....................................................±6 kV  
Component Level ESD (HBM according to ANSI/ESD STM5.1, JESD22-A114, AEC-Q100 (002) ........................±4 kV  
CDM ESD STM 5.3.1..............................................................................................................................................±750V  
ESD Machine Model AEC-Q100-RevF(003)...........................................................................................................±200V  
Virtual Junction Temperature (TvJ)............................................................................................................. –40 to +175°C  
Storage Temperature Range (Tstg).........................................................................................................-55°C to +150°C  
† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indicated in  
the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: The values below are valid for each of the two identical integrated CAN transceivers.  
Grade 1: Tamb = -40°C to +125°C and Grade 0: Tamb = -40°C to +150°C; TvJ 170°C; VVCC = 4.5V to 5.5V; RL = 60Ω,  
CL = 100 pF unless specified otherwise; all voltages are defined in relation to ground; positive currents flow into the IC.  
Parameters  
Supply, Pin VCC  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Supply Voltage  
VVCC  
IVCC_sil  
IVCC_rec  
IVCC_dom  
4.5  
1.9  
2
2.5  
5.5  
3.2  
5
V
Supply Current in Silent Mode  
mA  
mA  
mA  
Silent mode, VTXD = VVIO  
Recessive, VTXD = VVIO  
Dominant, VTXD = 0V  
Supply Current in Normal  
Mode  
30  
50  
70  
Short between CANH and CANL  
(Note 1)  
IVCC_short  
IVCC_STBY  
Vuvd(VCC)  
85  
mA  
VCC = VIO,  
7
12  
µA  
µA  
V
Supply Current in Standby  
Mode  
VTXD = VNSIL = VVIO  
Ta = 25°C (Note 3)  
Undervoltage Detection  
Threshold on Pin VCC  
2.75  
4.5  
I/O Level Adapter Supply, Pin VIO (only with the ATA6563)  
Supply Voltage on Pin VIO  
VVIO  
2.8  
5.5  
V
Normal and Silent mode  
Recessive, VTXD = VVIO  
IVIO_rec  
10  
80  
250  
µA  
Supply Current on Pin VIO  
Normal and Silent mode  
Dominant, VTXD = 0V  
IVIO_dom  
IVIO_STBY  
Vuvd(VIO)  
50  
350  
500  
1
µA  
µA  
V
Standby mode  
Undervoltage Detection  
Threshold on Pin VIO  
1.3  
2.7  
Note 1: 100% correlation tested  
2: Characterized on samples  
3: Design parameter  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005790E-page 11  
ATA6562/3  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: The values below are valid for each of the two identical integrated CAN transceivers.  
Grade 1: Tamb = -40°C to +125°C and Grade 0: Tamb = -40°C to +150°C; TvJ 170°C; VVCC = 4.5V to 5.5V; RL = 60Ω,  
CL = 100 pF unless specified otherwise; all voltages are defined in relation to ground; positive currents flow into the IC.  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Mode Control Input, Pin NSIL and STBY  
0.7  
VVIO  
VVIO  
+0.3  
V
V
High-Level Input Voltage  
Low-Level Input Voltage  
VIH  
VIL  
0.3  
VVIO  
–0.3  
Pull-Up Resistor to VCC  
Rpu  
IL  
75  
–2  
125  
175  
+2  
kΩ  
µA  
VSTBY = 0V, VNSIL = 0V  
High-Level Leakage Current  
CAN Transmit Data Input, Pin TXD  
VSTBY = VVIO, VNSIL = VVIO  
0.7  
VVIO  
VVIO  
+0.3  
High-Level Input Voltage  
Low-Level Input Voltage  
VIH  
VIL  
V
V
0.3  
VVIO  
–0.3  
Pull-Up Resistor to VCC  
High-Level Leakage Current  
Input Capacitance  
RTXD  
ITXD  
20  
–2  
35  
5
50  
+2  
10  
kΩ  
µA  
pF  
VTXD = 0V  
Normal mode, VTXD = VVIO  
Note 3  
CTXD  
CAN Receive Data Output, Pin RXD  
Normal mode,  
High-Level Output Current  
IOH  
IOL  
–8  
2
–1  
12  
mA  
mA  
V
RXD = VVIO – 0.4V, VVIO = VVCC  
Normal mode,  
RXD = 0.4V, Bus Dominant  
Low-Level Output Current,  
Bus Dominant  
V
Bus Lines, Pins CANH and CANL  
VTXD = 0V, t < tto(dom)TXD  
RL = 50Ω to 65Ω  
pin CANH (Note 1)  
2.75  
0.5  
3.5  
1.5  
4.5  
V
V
Single Ended Dominant  
Output Voltage  
VO(dom)  
VTXD = 0V, t < tto(dom)TXD  
RL = 50Ω to 65Ω  
2.25  
pin CANL (Note 1)  
VSym = (VCANH + VCANL) / VVCC  
,
Transmitter Voltage Symmetry  
VSym  
0.9  
1.5  
1.0  
1.1  
3
V
Split Termination, RL = 2 x 30,  
CSplit = 4.7 nF (Note 3)  
VTXD = 0V, t < tto(dom)TXD  
RL = 45Ω to 65Ω  
1.5  
1.5  
3.3  
5
V
V
RL = 70Ω (Note 3)  
RL = 2240Ω (Note 3)  
Bus Differential Output  
Voltage  
Normal and Silent mode:  
VVCC = 4.75V to 5.25V  
VDiff  
–50  
+50  
mV  
mV  
VTXD = VVIO, recessive, no load  
Standby mode:  
VVCC = 4.75V to 5.25V  
–200  
+200  
VTXD = VVIO, recessive, no load  
Note 1: 100% correlation tested  
2: Characterized on samples  
3: Design parameter  
DS20005790E-page 12  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6562/3  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: The values below are valid for each of the two identical integrated CAN transceivers.  
Grade 1: Tamb = -40°C to +125°C and Grade 0: Tamb = -40°C to +150°C; TvJ 170°C; VVCC = 4.5V to 5.5V; RL = 60Ω,  
CL = 100 pF unless specified otherwise; all voltages are defined in relation to ground; positive currents flow into the IC.  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
0.5   
VVCC  
Normal and Silent mode,  
VTXD = VVIO, no load  
2
3
V
Single Ended Recessive  
Output Voltage  
VO(rec)  
Standby mode,  
VTXD = VVIO, no load  
–0.1  
0.5  
0.4  
50  
0.7  
0.7  
120  
+0.1  
0.9  
V
V
Normal and Silent mode (HSC),  
Vcm(CAN) = –27V to +27V  
Differential Receiver  
Threshold Voltage  
Vth(RX)dif  
Standby mode (WUC),  
Vcm(CAN) = –27V to +27V (Note 1)  
1.1  
V
Differential Receiver  
Hysteresis Voltage  
Normal and Silent mode (HSC),  
Vhys(RX)dif  
200  
mV  
Vcm(CAN) = –27V to +27V (Note 1)  
VTXD = 0V, t < tto(dom)TXD  
,
–75  
35  
–35  
75  
mA  
mA  
V
VCC = 5V  
pin CANH, VCANH = –5V  
Dominant Output Current  
IIO(dom)  
VTXD = 0V, t < tto(dom)TXD  
,
VVCC = 5V  
pin CANL, VCANL = +40V  
Normal and Silent mode,  
VTXD = VVIO, no load,  
Recessive Output Current  
Leakage Current  
IIO(rec)  
–5  
–5  
–5  
0
+5  
+5  
+5  
mA  
µA  
µA  
V
CANH = VCANL = –27V to +32V  
VVCC = VVIO = 0V,  
CANH = VCANL = 5V  
V
IIO(leak)  
VCC = VIO connected to GND  
with R = 47kΩ  
0
VCANH = VCANL = 5V (Note 3)  
9
9
15  
15  
28  
28  
kΩ  
kΩ  
VCANH = VCANL = 4V  
Input Resistance  
Ri  
–2V ≤ VCANH ≤ +7V,  
–2V ≤ VCANL ≤ +7V (Note 3)  
Between CANH and CANL  
–1  
–1  
0
0
+1  
+1  
%
%
VCANH = VCANL = 4V (Note 1)  
Input Resistance Deviation  
Differential Input Resistance  
ΔRi  
Between CANH and CANL  
–2V ≤ VCANH ≤ +7V,  
–2V ≤ VCANL ≤ +7V (Note 3)  
18  
18  
30  
30  
56  
56  
kΩ  
kΩ  
VCANH = VCANL = 4V (Note 1)  
Ri(dif)  
–2V ≤ VCANH ≤ +7V,  
–2V ≤ VCANL ≤ +7V (Note 3)  
Common-mode Input  
Capacitance  
f = 500 kHz, CANH and CANL  
referred to GND (Note 3)  
Ci(cm)  
Ci(dif)  
20  
10  
pF  
pF  
f = 500kHz, between CANH and  
CANL (Note 3)  
Differential Input Capacitance  
Note 1: 100% correlation tested  
2: Characterized on samples  
3: Design parameter  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005790E-page 13  
ATA6562/3  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: The values below are valid for each of the two identical integrated CAN transceivers.  
Grade 1: Tamb = -40°C to +125°C and Grade 0: Tamb = -40°C to +150°C; TvJ 170°C; VVCC = 4.5V to 5.5V; RL = 60Ω,  
CL = 100 pF unless specified otherwise; all voltages are defined in relation to ground; positive currents flow into the IC.  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Normal and Silent mode (HSC)  
–27V ≤ VCANH ≤ +27V,  
–27V ≤ VCANL ≤ +27V (Note 3)  
–3  
+0.5  
V
Differential Bus Voltage  
Range for RECESSIVE State  
Detection  
VDiff_rec  
Standby mode (WUC)  
–27V ≤ VCANH ≤ +27V,  
–27V ≤ VCANL ≤ +27V(Note 3)  
–3  
0.9  
+0.4  
8.0  
V
V
V
Normal and Silent mode (HSC)  
–27V ≤ VCANH ≤ +27V,  
–27V ≤ VCANL ≤ +27V (Note 3)  
Differential Bus Voltage  
Range for DOMINANT State  
Detection  
VDiff_dom  
Standby mode (WUC)  
–27V ≤ VCANH ≤ +27V,  
1.15  
8.0  
–27V ≤ VCANL ≤ +27V (Note 3)  
Transceiver Timing, Pins CANH, CANL, TXD, and RXD, see Figure 2-1 and Figure 2-3  
Delay Time from TXD to Bus  
td(TXD-busdom)  
40  
40  
20  
20  
130  
130  
100  
100  
ns  
ns  
ns  
ns  
Normal mode (Note 2)  
Normal mode (Note 2)  
Normal mode (Note 2)  
Normal mode (Note 2)  
Dominant  
Delay Time from TXD to Bus  
Recessive  
td(TXD-busrec)  
Delay Time from Bus  
Dominant to RXD  
td(busdom-RXD  
)
Delay Time from Bus  
Recessive to RXD  
td(busrec-RXD)  
Normal mode, Rising edge at pin  
TXD  
RL = 60Ω, CL = 100 pF  
40  
40  
210  
200  
300  
300  
ns  
ns  
ns  
ns  
Normal mode, Falling edge at pin  
TXD  
RL = 60Ω, CL = 100 pF  
Propagation Delay from TXD  
to RXD  
tPD(TXD-RXD)  
Normal mode, Rising edge at pin  
TXD  
RL = 150Ω, CL = 100 pF (Note 3)  
Normal mode, Falling edge at pin  
TXD  
RL = 150Ω, CL = 100pF (Note 3)  
TXD Dominant Time-Out Time tto(dom)TXD  
0.8  
0.8  
3
3
ms  
ms  
VTXD = 0V, Normal mode  
Standby mode  
Bus Wake-up Time-Out Time  
tWake  
Min. Dominant/Recessive Bus  
Wake-up Time  
tFilter  
0.5  
3
3.8  
47  
5
µs  
µs  
µs  
µs  
µs  
Standby mode  
Delay Time for Standby Mode  
to Normal Mode Transition  
tdel(stby-norm)  
tdel(norm-stby)  
tdel(norm-sil)  
tdel(sil-norm)  
Falling edge at pin STBY  
Rising edge at pin STBY (Note 3)  
Delay Time for Normal Mode  
to Standby Mode Transition  
Delay Time for Normal Mode  
to Silent Mode Transition  
Falling edge at pin NSIL  
STBY = LOW (Note 3)  
10  
10  
Delay time for Silent Mode to  
Normal Mode Transition  
Rising edge at pin NSIL  
STBY = LOW (Note 3)  
Note 1: 100% correlation tested  
2: Characterized on samples  
3: Design parameter  
DS20005790E-page 14  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6562/3  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: The values below are valid for each of the two identical integrated CAN transceivers.  
Grade 1: Tamb = -40°C to +125°C and Grade 0: Tamb = -40°C to +150°C; TvJ 170°C; VVCC = 4.5V to 5.5V; RL = 60Ω,  
CL = 100 pF unless specified otherwise; all voltages are defined in relation to ground; positive currents flow into the IC.  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Delay Time for Silent Mode to  
Standby Mode Transition  
Rising edge at pin STBY  
NSIL = LOW (Note 3)  
tdel(sil-stby)  
5
µs  
Delay Time for Standby Mode  
to Silent Mode Transition  
Rising edge at pin STBY  
NSIL = LOW (Note 3)  
tdel(stby-sil)  
47  
µs  
ns  
Debouncing Time for  
Recessive Clamping State  
Detection  
V(CANH-CANL) > 900mV  
RXD = high (Note 3)  
tRC_det  
90  
Transceiver Timing for higher Bit Rates, Pins CANH, CANL, TXD, and RXD, see Figure 2-1 and Figure 2-3  
Normal mode, tBit(TXD) = 500 ns  
400  
120  
435  
155  
550  
220  
530  
210  
ns  
ns  
ns  
ns  
RL = 60, CL = 100 pF (Note 1)  
Recessive Bit Time on Pin  
RXD  
tBit(RXD)  
Normal mode, tBit(TXD) = 200 ns  
RL = 60, CL = 100 pF  
Normal mode, tBit(TXD) = 500 ns  
RL = 60, CL = 100 pF (Note 1)  
Recessive Bit Time on the  
Bus  
tBit(Bus)  
Normal mode, tBit(TXD) = 200 ns  
RL = 60, CL = 100 pF  
Normal mode, tBit(TXD) = 500 ns  
ΔtRec = tBit(RXD)–tBit(Bus)  
RL = 60, CL = 100 pF (Note 1)  
–65  
–45  
+40  
+15  
ns  
ns  
Receiver Timing Symmetry  
ΔtRec  
Normal mode, tBit(TXD) = 200 ns  
ΔtRec = tBit(RXD)–tBit(Bus)  
RL = 60, CL = 100 pF  
Note 1: 100% correlation tested  
2: Characterized on samples  
3: Design parameter  
TABLE 2-1:  
TEMPERATURE SPECIFICATIONS  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Thermal Characteristics SOIC8 Package  
Thermal Resistance Virtual Junction to Ambient  
RthvJA  
TVJsd  
145  
K/W  
°C  
Thermal Shutdown of the Bus Drivers for  
150  
195  
ATA6562-GAQW1, ATA6563-GAQW1 (Grade 1)  
Thermal Shutdown of the Bus Drivers for  
ATA6562-GAQW0, ATA6563-GAQW0 (Grade 0)  
TVJsd  
170  
195  
°C  
°C  
Thermal Shutdown Hysteresis  
TvJsd_hys  
15  
Thermal Characteristics VDFN8 Package  
Thermal Resistance Virtual Junction to  
Heat Slug  
RthvJC  
10  
K/W  
Thermal Resistance Virtual Junction to Ambient,  
where Heat Slug is soldered to PCB according  
to JEDEC  
RthvJA  
TVJsd  
50  
K/W  
°C  
Thermal Shutdown of the Bus Drivers for  
150  
195  
ATA6562-GBQW1, ATA6563-GBQW1 (Grade 1)  
Thermal Shutdown of the Bus Drivers  
ATA6562-GBQW0, ATA6563-GBQW0 (Grade 0)  
TVJsd  
170  
195  
°C  
°C  
Thermal Shutdown Hysteresis  
TvJsd_hys  
15  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005790E-page 15  
ATA6562/3  
FIGURE 2-1:  
TIMING TEST CIRCUIT FOR THE ATA6562/3 CAN TRANSCEIVER  
FIGURE 2-2:  
CAN TRANSCEIVER TIMING DIAGRAM 1  
HIGH  
LOW  
TXD  
CANH  
CANL  
dominant  
0.9V  
0.5V  
VDiff  
recessive  
HIGH  
0.7 VIO  
RXD  
0.3 V,2  
LOW  
td(TXD-busdom)  
td(TXD-busrec)  
td(busdom-RXD)  
td(busrec-RXD)  
tPD(TXD-RXD)  
tPD(TXD-RXD)  
DS20005790E-page 16  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6562/3  
FIGURE 2-3:  
CAN TRANSCEIVER TIMING DIAGRAM 2  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005790E-page 17  
ATA6562/3  
NOTES:  
DS20005790E-page 18  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6562/3  
3.0  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead SOIC  
Example  
ATA6562 Grade 0  
Example  
ATA6562 Grade 1  
721  
721  
ATA6562  
1729256  
ATA6562H  
1729256  
Example  
ATA6563 Grade 0  
Example  
ATA6563 Grade 1  
721  
ATA6563H  
1729256  
721  
ATA6563  
1729256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005790E-page 19  
ATA6562/3  
8-Lead 3 X 3 mm VDFN  
Example  
Example  
ATA6562 Grade 0  
ATA6562 Grade 1  
6562  
256  
6562H  
256  
Example  
Example  
ATA6563 Grade 0  
ATA6563 Grade 1  
6563H  
256  
6563  
256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS20005790E-page 20  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6562/3  
8-Lead Plastic Small Outline (OA) - Narrow, 3.90 mm (.150 In.) Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2X  
0.10 C A–B  
D
A
D
NOTE 5  
N
E
2
E1  
2
E1  
E
2X  
0.10 C A–B  
2X  
0.10 C A–B  
1
2
NOTE 1  
e
NX b  
0.25  
C A–B D  
B
NOTE 5  
TOP VIEW  
0.10 C  
0.10 C  
C
A2  
A
SEATING  
PLANE  
8X  
SIDE VIEW  
A1  
h
R0.13  
R0.13  
h
H
0.23  
L
SEE VIEW C  
(L1)  
VIEW A–A  
VIEW C  
Microchip Technology Drawing No. C04-057-OA Rev F Sheet 1 of 2  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005790E-page 21  
ATA6562/3  
8-Lead Plastic Small Outline (OA) - Narrow, 3.90 mm (.150 In.) Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
N
8
e
1.27 BSC  
A
-
-
-
-
1.75  
-
0.25  
A2  
A1  
E
1.25  
0.10  
§
Overall Width  
6.00 BSC  
Molded Package Width  
Overall Length  
Chamfer (Optional)  
Foot Length  
E1  
D
h
3.90 BSC  
4.90 BSC  
0.25  
0.40  
-
-
0.50  
1.27  
L
Footprint  
Foot Angle  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
L1  
1.04 REF  
0°  
0.17  
0.31  
5°  
-
-
-
-
-
8°  
c
b
0.25  
0.51  
15°  
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.15mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
5. Datums A & B to be determined at Datum H.  
Microchip Technology Drawing No. C04-057-OA Rev F Sheet 2 of 2  
DS20005790E-page 22  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6562/3  
8-Lead Plastic Small Outline (OA) - Narrow, 3.90 mm (.150 In.) Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
SILK SCREEN  
C
Y1  
X1  
E
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Contact Pitch  
E
C
X1  
Y1  
1.27 BSC  
5.40  
Contact Pad Spacing  
Contact Pad Width (X8)  
Contact Pad Length (X8)  
0.60  
1.55  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-2057-OA Rev F  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005790E-page 23  
ATA6562/3  
'ꢀGrhqꢁWrꢂ’ꢁUuvꢁQyh†‡vpꢁ9ˆhyꢁAyh‡ꢃꢁI‚ꢁGrhqꢁQhpxhtrꢁꢄR'7ꢅꢁꢀꢁ"‘"‘ ꢁ€€ꢁ7‚q’ꢁbW9AId  
Xv‡uꢁ!ꢆ#ꢇ‘ ꢆ%ꢇꢁ€€ꢁ@‘ƒ‚†rqꢁQhqꢁhqꢁT‡rƒƒrqꢁXr‡‡hiyrꢁAyhx†0ꢁ6‡€ryꢁGrthp’ꢁ`8G  
I‚‡r) 1 ꢝꢌ/!#ꢌ2 3/ꢌꢜ4ꢝꢝ#$/ꢌ"(ꢜ5(&#ꢌ6ꢝ()ꢛ$&37ꢌ"%#(3#ꢌ3##ꢌ/!#ꢌꢋꢛꢜꢝ ꢜ!ꢛ"ꢌꢓ(ꢜ5(&ꢛ$&ꢌꢎ"#ꢜꢛ0ꢛꢜ(/ꢛ $ꢌ% ꢜ(/#6ꢌ(/  
!//"899)))ꢃ2ꢛꢜꢝ ꢜ!ꢛ"ꢃꢜ 29"(ꢜ5(&ꢛ$&  
ꢇꢈꢁꢉꢊꢋꢌꢁꢍ  
ꢇꢈꢁꢉꢊꢋꢌꢀꢍ  
ꢑꢗꢉꢏꢌꢄ  
ꢕꢖ  
ꢂꢃꢄꢂ   
ꢕꢖ  
ꢉꢗꢓꢌꢘꢐꢏꢙ  
ꢂꢃꢄꢂ   
ꢂꢃꢄꢂ   
ꢂꢃꢂꢚ   
ꢁꢄ  
ꢎꢏꢁꢉꢐꢑꢒ  
ꢓꢔꢁꢑꢏ  
ꢚꢖ  
ꢎꢐꢈꢏꢌꢘꢐꢏꢙ  
ꢇꢁ,ꢍ  
ꢂꢃꢄꢂ  
    
ꢈꢕ  
ꢑꢗꢉꢏꢌꢄ  
ꢂꢃꢄꢂ  
    
ꢏꢕ  
:
ꢚꢖꢌ;  
ꢂꢃꢄꢂ  
ꢂꢃꢂꢆ  
    
#
ꢀꢗꢉꢉꢗꢋꢌꢘꢐꢏꢙ  
ꢋꢛꢜꢝ ꢜ!ꢛ"ꢌꢉ#ꢜ!$ % &'ꢌꢈꢝ()ꢛ$&ꢌꢌꢅꢂ*+ꢕꢄ,ꢆꢚꢌ-#.ꢌꢈꢌꢎ!##/ꢌꢄꢌ 0ꢌꢕ  
DS20005790E-page 24  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6562/3  
'ꢀGrhqꢁWrꢂ’ꢁUuvꢁQyh†‡vpꢁ9ˆhyꢁAyh‡ꢃꢁI‚ꢁGrhqꢁQhpxhtrꢁꢄR'7ꢅꢁꢀꢁ"‘"‘ ꢁ€€ꢁ7‚q’ꢁbW9AId  
Xv‡uꢁ!ꢆ#ꢇ‘ ꢆ%ꢇꢁ€€ꢁ@‘ƒ‚†rqꢁQhqꢁhqꢁT‡rƒƒrqꢁXr‡‡hiyrꢁAyhx†0ꢁ6‡€ryꢁGrthp’ꢁ`8G  
I‚‡r) 1 ꢝꢌ/!#ꢌ2 3/ꢌꢜ4ꢝꢝ#$/ꢌ"(ꢜ5(&#ꢌ6ꢝ()ꢛ$&37ꢌ"%#(3#ꢌ3##ꢌ/!#ꢌꢋꢛꢜꢝ ꢜ!ꢛ"ꢌꢓ(ꢜ5(&ꢛ$&ꢌꢎ"#ꢜꢛ0ꢛꢜ(/ꢛ $ꢌ% ꢜ(/#6ꢌ(/  
!//"899)))ꢃ2ꢛꢜꢝ ꢜ!ꢛ"ꢃꢜ 29"(ꢜ5(&ꢛ$&  
ꢁ*  
ꢓꢁ-ꢉꢐꢁꢔꢔA  
ꢓꢔꢁꢉꢏꢈ  
ꢏ,  
ꢎꢏꢅꢉꢐꢗꢑꢌꢁMꢁ  
ꢊ$ꢛ/3  
ꢈꢛ2#$3ꢛ $ꢌꢔꢛ2ꢛ/3  
ꢋꢐꢔꢔꢐꢋꢏꢉꢏ-ꢎ  
ꢋꢐꢑ  
ꢑꢗꢋ  
ꢋꢁꢖ  
ꢑ42;#ꢝꢌ 0ꢌꢉ#ꢝ2ꢛ$(%3  
ꢓꢛ/ꢜ!  
ꢗ.#ꢝ(%%ꢌ<#ꢛ&!/  
ꢎ/($6 00  
ꢉ#ꢝ2ꢛ$(%ꢌꢉ!ꢛꢜ5$#33  
ꢗ.#ꢝ(%%ꢌꢔ#$&/!  
ꢏ=" 3#6ꢌꢓ(6ꢌꢔ#$&/!  
ꢗ.#ꢝ(%%ꢌꢙꢛ6/!  
ꢏ=" 3#6ꢌꢓ(6ꢌꢙꢛ6/!  
ꢉ#ꢝ2ꢛ$(%ꢌꢙꢛ6/!  
ꢉ#ꢝ2ꢛ$(%ꢌꢔ#$&/!  
ꢂꢃ>ꢆꢌꢀꢎꢅ  
ꢂꢃ?ꢂ  
ꢂꢃꢂ,ꢆ  
ꢂꢃꢕꢂ,ꢌ-ꢏ1  
,ꢃꢂꢂꢌꢀꢎꢅ  
ꢕꢃ*ꢂ  
,ꢃꢂꢂꢌꢀꢎꢅ  
ꢄꢃ>ꢂ  
ꢂꢃ,ꢂ  
#
ꢁꢄ  
ꢁ,  
ꢈꢕ  
ꢏꢕ  
;
:
ꢂꢃꢚꢂ  
ꢂꢃꢂꢂ  
ꢄꢃꢂꢂ  
ꢂꢃꢂꢆ  
ꢕꢃ,ꢂ  
ꢕꢃꢆꢂ  
ꢄꢃꢆꢂ  
ꢂꢃꢕꢆ  
ꢂꢃ,ꢆ  
ꢂꢃꢕꢂ  
ꢂꢃꢄꢂ  
+
ꢄꢃ@ꢂ  
ꢂꢃ,ꢆ  
ꢂꢃ*ꢆ  
+
ꢂꢃꢄ?  
ꢂꢃꢂꢚꢆ  
ꢂꢃ*ꢂ  
+
+
+
ꢉ#ꢝ2ꢛ$(%+/ +ꢏ=" 3#6+ꢓ(6  
ꢙ#//(;%#ꢌ1%($5ꢌꢎ/#"ꢌꢅ4/ꢌꢈ#"/!  
ꢙ#//(;%#ꢌ1%($5ꢌꢎ/#"ꢌꢅ4/ꢌꢙꢛ6/!  
ꢁ*  
ꢏ,  
ꢀꢁꢂꢃꢄꢅ  
ꢄꢃ ꢓꢛ$ꢌꢄꢌ.ꢛ34(%ꢌꢛ$6#=ꢌ0#(/4ꢝ#ꢌ2('ꢌ.(ꢝ'7ꢌ;4/ꢌ243/ꢌ;#ꢌ% ꢜ(/#6ꢌ)ꢛ/!ꢛ$ꢌ/!#ꢌ!(/ꢜ!#6ꢌ(ꢝ#(ꢃ  
ꢕꢃ ꢓ(ꢜ5(&#ꢌꢛ3ꢌ3()ꢌ3ꢛ$&4%(/#6  
,ꢃ ꢈꢛ2#$3ꢛ $ꢛ$&ꢌ($6ꢌ/ %#ꢝ($ꢜꢛ$&ꢌ"#ꢝꢌꢁꢎꢋꢏꢌAꢄ*ꢃꢆꢋ  
ꢀꢎꢅ8ꢌꢀ(3ꢛꢜꢌꢈꢛ2#$3ꢛ $ꢃꢌꢉ!# ꢝ#/ꢛꢜ(%%'ꢌ#=(ꢜ/ꢌ.(%4#ꢌ3! )$ꢌ)ꢛ/! 4/ꢌ/ %#ꢝ($ꢜ#3ꢃ  
-ꢏ18ꢌ-#0#ꢝ#$ꢜ#ꢌꢈꢛ2#$3ꢛ $7ꢌ434(%%'ꢌ)ꢛ/! 4/ꢌ/ %#ꢝ($ꢜ#7ꢌ0 ꢝꢌꢛ$0 ꢝ2(/ꢛ $ꢌ"4ꢝ" 3#3ꢌ $%'ꢃ  
ꢋꢛꢜꢝ ꢜ!ꢛ"ꢌꢉ#ꢜ!$ % &'ꢌꢈꢝ()ꢛ$&ꢌꢌꢅꢂ*+ꢕꢄ,ꢆꢚꢌ-#.ꢌꢈꢌꢎ!##/ꢌꢕꢌ 0ꢌꢕ  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005790E-page 25  
ATA6562/3  
'ꢀGrhqꢁWrꢂ’ꢁUuvꢁQyh†‡vpꢁ9ˆhyꢁAyh‡ꢃꢁI‚ꢁGrhqꢁQhpxhtrꢁꢄR'7ꢅꢁꢀꢁ"‘"‘ ꢁ€€ꢁ7‚q’ꢁbW9AId  
Xv‡uꢁ!ꢆ#ꢇ‘ ꢆ%ꢇꢁ€€ꢁ@‘ƒ‚†rqꢁQhqꢁhqꢁT‡rƒƒrqꢁXr‡‡hiyrꢁAyhx†  
I‚‡r) 1 ꢝꢌ/!#ꢌ2 3/ꢌꢜ4ꢝꢝ#$/ꢌ"(ꢜ5(&#ꢌ6ꢝ()ꢛ$&37ꢌ"%#(3#ꢌ3##ꢌ/!#ꢌꢋꢛꢜꢝ ꢜ!ꢛ"ꢌꢓ(ꢜ5(&ꢛ$&ꢌꢎ"#ꢜꢛ0ꢛꢜ(/ꢛ $ꢌ% ꢜ(/#6ꢌ(/  
!//"899)))ꢃ2ꢛꢜꢝ ꢜ!ꢛ"ꢃꢜ 29"(ꢜ5(&ꢛ$&  
Aꢕ  
ꢏꢘ  
ꢞꢘ  
ꢖꢕ  
ꢏꢘ  
ꢅ<  
ꢒꢄ  
Aꢄ  
ꢎꢐꢔ:ꢌꢎꢅ-ꢏꢏꢑ  
ꢖꢄ  
ꢒꢕ  
-ꢏꢅꢗꢋꢋꢏꢑꢈꢏꢈꢌꢔꢁꢑꢈꢌꢓꢁꢉꢉꢏ-ꢑ  
ꢊ$ꢛ/3  
ꢈꢛ2#$3ꢛ $ꢌꢔꢛ2ꢛ/3  
ꢋꢐꢔꢔꢐꢋꢏꢉꢏ-ꢎ  
ꢑꢗꢋ  
ꢂꢃ>ꢆꢌꢀꢎꢅ  
ꢋꢐꢑ  
ꢋꢁꢖ  
ꢅ $/(ꢜ/ꢌꢓꢛ/ꢜ!  
ꢗ"/ꢛ $(%ꢌꢅ#$/#ꢝꢌꢓ(6ꢌꢙꢛ6/!  
ꢗ"/ꢛ $(%ꢌꢅ#$/#ꢝꢌꢓ(6ꢌꢔ#$&/!  
ꢅ $/(ꢜ/ꢌꢓ(6ꢌꢎ"(ꢜꢛ$&  
ꢖꢕ  
Aꢕ  
ꢄꢃ@ꢂ  
ꢕꢃꢆꢂ  
,ꢃꢂꢂ  
ꢅ $/(ꢜ/ꢌꢓ(6ꢌꢙꢛ6/!ꢌꢇꢖꢚꢍ  
ꢅ $/(ꢜ/ꢌꢓ(6ꢌꢔ#$&/!ꢌꢇꢖꢚꢍ  
ꢅ $/(ꢜ/ꢌꢓ(6ꢌ/ ꢌꢅ#$/#ꢝꢌꢓ(6ꢌꢇꢖꢚꢍ  
ꢅ $/(ꢜ/ꢌꢓ(6ꢌ/ ꢌꢅ $/(ꢜ/ꢌꢓ(6ꢌꢇꢖ>ꢍ  
ꢓꢛ$ꢌꢄꢌꢐ$6#=ꢌꢅ!(20#ꢝ  
ꢉ!#ꢝ2(%ꢌꢘꢛ(ꢌꢈꢛ(2#/#ꢝ  
ꢉ!#ꢝ2(%ꢌꢘꢛ(ꢌꢓꢛ/ꢜ!  
ꢖꢄ  
Aꢄ  
ꢒꢄ  
ꢒꢕ  
ꢅ<  
ꢂꢃ,ꢆ  
ꢂꢃꢚꢂ  
ꢂꢃꢕꢂ  
ꢂꢃꢕꢂ  
ꢂꢃꢕꢂ  
ꢂꢃ,,  
ꢄꢃꢕꢂ  
ꢏꢘ  
ꢑ /#38  
ꢄꢃ ꢈꢛ2#$3ꢛ $ꢛ$&ꢌ($6ꢌ/ %#ꢝ($ꢜꢛ$&ꢌ"#ꢝꢌꢁꢎꢋꢏꢌAꢄ*ꢃꢆꢋ  
ꢀꢎꢅ8ꢌꢀ(3ꢛꢜꢌꢈꢛ2#$3ꢛ $ꢃꢌꢉ!# ꢝ#/ꢛꢜ(%%'ꢌ#=(ꢜ/ꢌ.(%4#ꢌ3! )$ꢌ)ꢛ/! 4/ꢌ/ %#ꢝ($ꢜ#3ꢃ  
ꢕꢃ 1 ꢝꢌ;#3/ꢌ3 %6#ꢝꢛ$&ꢌꢝ#34%/37ꢌ/!#ꢝ2(%ꢌ.ꢛ(37ꢌꢛ0ꢌ43#67ꢌ3! 4%6ꢌ;#ꢌ0ꢛ%%#6ꢌ ꢝꢌ/#$/#6ꢌ/ ꢌ(. ꢛ6ꢌ3 %6#ꢝꢌ% 33ꢌ64ꢝꢛ$&  
ꢝ#0% )ꢌ"ꢝ ꢜ#33  
ꢋꢛꢜꢝ ꢜ!ꢛ"ꢌꢉ#ꢜ!$ % &'ꢌꢈꢝ()ꢛ$&ꢌꢅꢂ*+ꢕ,,ꢆꢚꢌ-#.ꢌꢈ  
DS20005790E-page 26  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6562/3  
APPENDIX A: REVISION HISTORY  
Revision E (December 2021)  
The following is the list of modifications:  
• Updated the SOIC and VDFN package drawings  
in Section 3.0 “Packaging Information”  
• Minor typographical edits  
Revision D (June 2020)  
The following is the list of modifications:  
• Updated parameter “Supply Current in Silent  
Mode” in Table : Electrical Characteristics  
• Added test conditions at several parameters in  
Table : Electrical Characteristics  
• Added parameter “Bus Differential Output Volt-  
age” in Standby mode in Table : Electrical Charac-  
teristics  
• Updated Package Marking Information  
Revision C (August 2019)  
The following is the list of modifications:  
• Updated Table 2-1: Temperature Specifications  
• Added test conditions at several parameters in  
Table : Electrical Characteristics  
Revision B (August 2017)  
The following is the list of modifications:  
• Added new devices ATA6562-GBQW0 and  
ATA6563-GBQW0 and updated the related infor-  
mation across the document  
• Updated Features section  
• Updated ATA6562/3 Family Members section  
• Updated Table 2-1: Temperature Specifications  
• Updated Package Marking Information  
• Updated Product Identification System section  
• Various typographical edits  
Revision A (June 2017)  
• Original release of this document  
• This document replaces Atmel – 9389C-  
11/16ATA6562/3  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005790E-page 27  
ATA6562/3  
NOTES:  
DS20005790E-page 28  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6562/3  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
[X](1)  
XX  
Device Package  
PART NO.  
X
X
a) ATA6562-GAQW0:  
b) ATA6562-GAQW1:  
c) ATA6562-GBQW0:  
d) ATA6562-GBQW1:  
e) ATA6563-GAQW0:  
f) ATA6563-GAQW1:  
f) ATA6563-GBQW0:  
ATA6562, 8-Lead SOIC,  
Tape and Reel, Package  
according to RoHS,  
Tape and Reel  
Option  
Package directives  
classification  
Temperature  
Range  
Temperature Grade 0  
Device:  
ATA6562:  
ATA6563:  
High-speed CAN Transceiver with Standby  
and Silent Mode CAN FD Ready  
High-speed CAN Transceiver with Standby  
Mode and VIO-pin CAN FD Ready  
ATA6562, 8-Lead SOIC,  
Tape and Reel, Package  
according to RoHS,  
Temperature Grade 1  
ATA6562, 8-Lead VDFN,  
Tape and Reel, Package  
according to RoHS,  
Package:  
GA  
GB  
=
=
8-Lead SOIC  
8-Lead VDFN  
Temperature Grade 0  
Tape and Reel  
Option:  
Q
=
=
330 mm diameter Tape and Reel  
ATA6562, 8-Lead VDFN,  
Tape and Reel, Package  
according to RoHS,  
Temperature Grade 1  
Package  
W
Package according to RoHS(2)  
directives  
classification:  
ATA6563, 8-Lead SOIC,  
Tape and Reel, Package  
according to RoHS,  
Temperature  
Range:  
0
1
=
=
Temperature Grade 0 (-40°C to +150°C)  
Temperature Grade 1 (-40°C to +125°C)  
Temperature Grade 0  
ATA6563, 8-Lead SOIC,  
Tape and Reel, Package  
according to RoHS,  
Temperature Grade 1  
ATA6563, 8-Lead VDFN,  
Tape and Reel, Package  
according to RoHS,  
Temperature Grade 0  
g
ATA6563-GBQW1:  
ATA6563, 8-Lead VDFN,  
Tape and Reel, Package  
according to RoHS,  
Temperature Grade 1  
Note 1: Tape and Reel identifier only appears in the  
catalog part number description. This  
identifier is used for ordering purposes and is  
not printed on the device package. Check with  
your Microchip Sales Office for package  
availability with the Tape and Reel option.  
2: RoHS compliant, Maximum concentration  
value of 0.09% (900 ppm) for Bromine (Br)  
and Chlorine (Cl) and less than 0.15% (1500  
ppm) total Bromine (Br) and Chlorine (Cl) in  
any homogeneous material. Maximum  
concentration value of 0.09% (900 ppm) for  
Antimony (Sb) in any homogeneous material.  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005790E-page 29  
ATA6562/3  
NOTES:  
DS20005790E-page 30  
2017-2021 Microchip Technology Inc. and its subsidiaries  
Note the following details of the code protection feature on Microchip products:  
Microchip products meet the specifications contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and  
under normal conditions.  
Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of  
Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not  
mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly evolving. Microchip is committed to  
continuously improving the code protection features of our products.  
This publication and the information herein may be used only  
with Microchip products, including to design, test, and integrate  
Microchip products with your application. Use of this informa-  
tion in any other manner violates these terms. Information  
regarding device applications is provided only for your conve-  
nience and may be superseded by updates. It is your responsi-  
bility to ensure that your application meets with your  
specifications. Contact your local Microchip sales office for  
additional support or, obtain additional support at https://  
www.microchip.com/en-us/support/design-help/client-support-  
services.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud,  
CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO,  
JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus,  
maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,  
MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower,  
PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch,  
SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash,  
Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O,  
Vectron, and XMEGA are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AgileSwitch, APT, ClockWorks, The Embedded Control Solutions  
Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight  
Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3,  
Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-  
Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, TrueTime, WinPath, and ZL are  
registered trademarks of Microchip Technology Incorporated in the  
U.S.A.  
THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION INCLUDING BUT NOT  
LIMITED TO ANY IMPLIED WARRANTIES OF NON-  
INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A  
PARTICULAR PURPOSE, OR WARRANTIES RELATED TO  
ITS CONDITION, QUALITY, OR PERFORMANCE.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky,  
BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive,  
CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net,  
Dynamic Average Matching, DAM, ECAN, Espresso T1S,  
EtherGREEN, GridTime, IdealBridge, In-Circuit Serial  
Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip  
Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView,  
memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo,  
MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple  
Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP,  
SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI,  
SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total  
Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,  
ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks  
of Microchip Technology Incorporated in the U.S.A. and other  
countries.  
IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-  
RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-  
QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY  
KIND WHATSOEVER RELATED TO THE INFORMATION OR  
ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS  
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES  
ARE FORESEEABLE. TO THE FULLEST EXTENT  
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON  
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION  
OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF  
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP  
FOR THE INFORMATION.  
Use of Microchip devices in life support and/or safety applica-  
tions is entirely at the buyer's risk, and the buyer agrees to  
defend, indemnify and hold harmless Microchip from any and  
all damages, claims, suits, or expenses resulting from such  
use. No licenses are conveyed, implicitly or otherwise, under  
any Microchip intellectual property rights unless otherwise  
stated.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, Symmcom, and Trusted Time are registered  
trademarks of Microchip Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2017-2021, Microchip Technology Incorporated and its subsidiar-  
ies.  
All Rights Reserved.  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
ISBN: 978-1-5224-9513-0  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005790E-page 31  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4485-5910  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Korea - Seoul  
Germany - Haan  
Tel: 49-2129-3766400  
Tel: 86-571-8792-8115  
Tel: 82-2-554-7200  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Malaysia - Kuala Lumpur  
Germany - Heilbronn  
Tel: 49-7131-72400  
Tel: 852-2943-5100  
Tel: 60-3-7651-7906  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Los Angeles  
Tel: 48-22-3325737  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
Fax: 44-118-921-5820  
DS20005790E-page 32  
2017-2021 Microchip Technology Inc. and its subsidiaries  
09/14/21  

相关型号:

ATA6563-GBQW1

High-Speed CAN Transceiver with Standby Mode
MICROCHIP

ATA6564

High-Speed CAN Transceiver with Silent Mode - CAN FD Ready
MICROCHIP

ATA6564-GAQW0

High-Speed CAN Transceiver with Silent Mode - CAN FD Ready
MICROCHIP

ATA6564-GAQW1

High-Speed CAN Transceiver with Silent Mode - CAN FD Ready
MICROCHIP

ATA6564-GBQW0

High-Speed CAN Transceiver with Silent Mode - CAN FD Ready
MICROCHIP

ATA6564-GBQW1

High-Speed CAN Transceiver with Silent Mode - CAN FD Ready
MICROCHIP

ATA6602

Microcontroller with LIN Transceiver, 5V Regulator and Watchdog
ATMEL

ATA6602-PLQW

Microcontroller with LIN Transceiver, 5V Regulator and Watchdog
ATMEL

ATA6602P-PLQW

RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 16MHz, CMOS, 7 X 7 MM, QFN-48
ATMEL

ATA6603

Microcontroller with LIN Transceiver, 5V Regulator and Watchdog
ATMEL

ATA6603-PLQW

Microcontroller with LIN Transceiver, 5V Regulator and Watchdog
ATMEL

ATA6603P-PLQW

RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 16MHz, CMOS, 7 X 7 MM, QFN-48
ATMEL