ATA6564-GBQW1 [MICROCHIP]

High-Speed CAN Transceiver with Silent Mode - CAN FD Ready;
ATA6564-GBQW1
型号: ATA6564-GBQW1
厂家: MICROCHIP    MICROCHIP
描述:

High-Speed CAN Transceiver with Silent Mode - CAN FD Ready

文件: 总28页 (文件大小:1239K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ATA6564  
High-Speed CAN Transceiver  
with Silent Mode - CAN FD Ready  
Features  
General Description  
• Fully ISO 11898-2, ISO 11898-2: 2016 and SAE  
J2962-2 Compliant  
The ATA6564 is a high-speed CAN transceiver that  
provides an interface between a Controller Area  
Network (CAN) protocol controller and the physical  
Two-Wire CAN bus. The transceiver is designed for  
high-speed (up to 5 Mbit/s) CAN applications in the  
automotive industry, providing differential transmit and  
receive capability to (a microcontroller with) a CAN  
protocol controller.  
• CAN FD Ready  
• Communication Speed up to 5 Mbit/s  
• ISO 26262 Functional Safety Ready  
• Low Electromagnetic Emission (EME) and High  
Electromagnetic Immunity (EMI)  
• Differential Receiver with Wide Common-Mode  
Range  
It offers improved electromagnetic compatibility (EMC)  
and ESD performance as well as features such as:  
• Compatible to 3.3V and 5V Microcontrollers  
• Ideal passive behavior to the CAN bus when the  
supply voltage is off  
• Functional Behavior Predictable under all Supply  
Conditions  
• Direct interfacing to microcontrollers with supply  
voltages from 3V to 5V  
• Transceiver Disengages from the Bus When Not  
Powered Up  
Two operating modes together with the dedicated  
fail-safe features make the ATA6564 an excellent  
choice for all types of high-speed CAN networks  
especially in nodes which do not require a Standby  
mode with wake-up capability via the bus.  
• RXD Recessive Clamping Detection  
• High Electrostatic Discharge (ESD) Handling  
Capability on the Bus Pins  
• Bus Pins Protected Against Transients in  
Automotive Environments  
• Transmit Data (TXD) Dominant Time-Out  
Function  
Package Types  
• Undervoltage Detection on VCC and VIO Pins  
ATA6564  
8-pin SOIC  
• CANH/CANL Short-Circuit and Overtemperature  
Protected  
• Fulfills the OEM “Hardware Requirements for LIN,  
CAN and FlexRay Interfaces in Automotive  
Applications”, Rev. 1.3  
TXD  
GND  
VCC  
RXD  
1
2
3
4
8
7
6
5
S
CANH  
CANL  
VIO  
• AEC-Q100 and AEC-Q006 Qualified  
ATA6564  
• Two Ambient Temperature Grades Available:  
- ATA6564-GAQW1 and ATA6564-GBQW1 up  
to Tamb = +125°C  
- ATA6564-GAQW0 and ATA6564-GBQW0 up  
to Tamb = +150°C  
• Packages: 8-pin SOIC, 8-pin VDFN with Wettable  
Flanks (Moisture Sensitivity Level 1)  
ATA6564  
8-pin VDFN  
Applications  
TXD  
S
GND  
VCC  
RXD  
CANH  
CANL  
VIO  
Classical CAN and CAN FD networks in Automotive,  
Industrial, Aerospace, Medical and Consumer  
applications.  
ATA6564  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005784D-page 1  
ATA6564  
ATA6564 Family Members  
Device  
Grade 0 Grade 1  
VDFN8  
SOIC8 Description  
ATA6564-GAQW0  
x
x
Silent mode, VIO - pin for compatibility  
with 3,3V and 5V microcontroller  
ATA6564-GBQW0  
ATA6564-GAQW1  
ATA6564-GBQW1  
x
x
Silent mode, VIO - pin for compatibility  
with 3,3V and 5V microcontroller  
x
x
x
Silent mode, VIO - pin for compatibility  
with 3,3V and 5V microcontroller  
x
Silent mode, VIO - pin for compatibility  
with 3,3V and 5V microcontroller  
Functional Block Diagram  
VIO  
VCC  
5
3
ATA6564  
VCC  
Temperature  
Protection  
VIO  
7
6
CANH  
CANL  
Slope  
Control  
and  
TXD  
Time-Out-  
Timer  
1
TXD  
Driver  
8
Control  
Unit  
S
HSC(1)  
VIO  
MUX  
4
RXD  
2
GND  
Note 1: HSC: High-Speed Comparator.  
DS20005784D-page 2  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6564  
The slope of the output signals on the bus lines is con-  
trolled and optimized in a way that ensures the lowest  
possible electromagnetic emission (EME).  
1.0  
FUNCTIONAL DESCRIPTION  
The ATA6564 is a stand-alone high-speed CAN  
transceiver compliant with the ISO 11898-2, ISO  
11898-2: 2016 and SAE J2962-2 CAN standards. It  
provides very low current consumption in Silent mode.  
To switch the device in normal operating mode, set the  
S pin to low and the TXD pin to high. See Table 1-1 and  
Figure 1-2. The S pin provides a pull-down resistor to  
GND, thus ensuring a defined level if the pin is open.  
1.1  
Operating Modes  
Please note that the device cannot enter Normal mode  
as long as TXD is at ground level.  
The ATA6564 supports two operating modes: Silent  
and Normal. These modes can be selected via the S  
pin. See Figure 1-1 and Table 1-1 for a description of  
the operating modes.  
1.1.2  
SILENT MODE  
A high level on the S pin selects Silent mode. This  
receive-only mode can be used to test the connection  
of the bus medium. In Silent mode the ATA6564 can  
still receive data from the bus, but the transmitter is  
disabled and therefore no data can be sent to the CAN  
bus. The bus pins are released to recessive state. All  
other IC functions, including the high-speed compara-  
tor (HSC), continue to operate as they do in Normal  
mode. Silent mode can be used to prevent a faulty CAN  
controller from disrupting all network communications.  
1.1.1  
NORMAL MODE  
A low level on the S pin together with a high level on pin  
TXD selects the Normal mode. In this mode, the trans-  
ceiver is able to transmit and receive data via the  
CANH and CANL bus lines (see Section “Functional  
Block Diagram”). The output driver stage is active and  
drives data from the TXD input to the CAN bus. The  
High-Speed Comparator (HSC) converts the analog  
data on the bus lines into digital data which is output to  
pin RXD. The bus biasing is set to VVCC/2 and the  
undervoltage monitoring of VCC is active.  
FIGURE 1-1:  
OPERATING MODES  
VCC < V  
or  
VCC < V  
or  
uvd(VCC)  
uvd(VIO)  
uvd(VCC)  
VIO < V  
uvd(VIO)  
VIO < V  
Unpowered  
Mode  
VCC > V  
and  
VCC > V  
and  
uvd(VCC)  
uvd(VCC)  
VIO > V  
S = 1  
and  
VIO > V  
and  
uvd(VIO)  
uvd(VIO)  
S = 0  
S = 0 and  
TXD = 1 and  
Error = 0  
Silent  
Mode  
Normal  
Mode  
S = 1 or  
Error = 1  
TABLE 1-1:  
OPERATING MODES  
S
Inputs  
Outputs  
Mode  
Pin TXD  
CAN Driver  
Pin RXD  
Unpowered  
Silent  
x(2)  
x(2)  
x(2)  
Recessive  
Recessive  
Dominant  
Recessive  
Recessive  
Active(1)  
LOW  
HIGH  
LOW  
LOW  
Normal  
LOW  
HIGH  
HIGH  
Note 1: LOW if the CAN bus is dominant, HIGH if the CAN bus is recessive.  
2: Irrelevant  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005784D-page 3  
ATA6564  
FIGURE 1-2:  
SWITCHING FROM SILENT MODE TO NORMAL MODE  
S
t
t
t
TXD  
t
=
del(sil-norm)  
10μs max  
Operation  
Mode  
Silent Mode  
Normal Mode  
1.2.4  
The  
OVERTEMPERATURE  
PROTECTION  
1.2  
Fail-Safe Features  
1.2.1  
TXD DOMINANT TIME-OUT  
FUNCTION  
output  
drivers  
are  
protected  
against  
overtemperature conditions. If the junction temperature  
exceeds the shutdown junction temperature, TJsd, the  
output drivers are disabled until the junction  
temperature drops below TJsd and pin TXD is at high  
level again. This ensures that output driver oscillations  
due to temperature drift are avoided. See Figure 1-3.  
A TXD dominant time-out timer is started when the  
TXD pin is set to low. If the low state on the TXD pin  
persists for longer than tto(dom)TXD, the transmitter is  
disabled, releasing the bus lines to recessive state.  
This function prevents a hardware and/or software  
application failure from driving the bus lines to a perma-  
nent dominant state (blocking all network communica-  
tions). The TXD dominant time-out timer is reset when  
the TXD pin is set to high. If the low state on the TXD  
pin was longer than tto(dom)TXD, then the TXD pin has  
to be set to high longer 4 µs in order to reset the TXD  
dominant time-out timer.  
1.2.5  
SHORT-CIRCUIT PROTECTION OF  
THE BUS PINS  
The CANH and CANL bus outputs are short-circuit pro-  
tected, either against GND or a positive supply voltage.  
A current-limiting circuit protects the transceiver  
against damage. If the device is heating up due to a  
continuous short on CANH or CANL, the internal  
overtemperature protection switches off the bus  
transmitter.  
1.2.2  
INTERNAL PULL-UP/PULL-DOWN  
STRUCTURE AT THE TXD AND S  
INPUT PINS  
1.2.6  
RXD RECESSIVE CLAMPING  
The TXD pin has an internal pull-up resistor to VIO and  
the S pin an internal pull-down resistor to GND. This  
ensures a safe, defined state in case one or all of these  
pins are left floating.  
This fail-safe feature prevents the controller from  
sending data on the bus if its RXD line is clamped to  
HIGH (e.g., recessive). That is, if the RXD pin cannot  
signalize a dominant bus condition because it is e.g,  
shorted to VCC, the transmitter within ATA6564 is  
disabled to avoid possible data collisions on the bus. In  
Normal and Silent mode, the device permanently com-  
pares the state of the high-speed comparator (HSC)  
with the state of the RXD pin. If the HSC indicates a  
dominant bus state for more than tRC_det without the  
RXD pin doing the same, a recessive clamping situa-  
tion is detected and the device is forced into Silent  
mode. This Fail-safe mode is released by either  
entering Unpowered mode or if the RXD pin is showing  
a dominant (e.g., LOW) level again. See Figure 1-4.  
1.2.3  
UNDERVOLTAGE DETECTION ON  
PINS VCC AND VIO  
If VVCC or VVIO drop below their respective  
undervoltage detection levels (Vuvd(VCC) and Vuvd(VIO)  
(see Section , Electrical Characteristics), the  
transceiver switches off and disengages from the bus  
until VVCC and VVIO have recovered. The logic state of  
the S pin is ignored until the VCC voltage or the VIO  
voltage has recovered.  
DS20005784D-page 4  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6564  
FIGURE 1-3:  
RELEASE OF TRANSMISSION AFTER OVERTEMPERATURE CONDITION  
Failure  
Overtemp  
OT  
Overtemperature  
t
t
TXD  
9,2  
GND  
BUS VDIFF  
(CANH-CANL)  
D
R
D
R
D
R
t
t
RXD  
9,2  
GND  
t
FIGURE 1-4:  
RXD RECESSIVE CLAMPING DETECTION  
CAN  
TXD  
RXD  
Operation  
Mode  
Normal  
Silent  
Normal  
If the clamping condition is removed and a  
dominant bus is detected, the transceiver  
goes back to normal mode.  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005784D-page 5  
ATA6564  
1.3  
Pin Descriptions  
The descriptions of the pins are listed in Table 1-2.  
TABLE 1-2:  
PIN FUNCTION TABLE  
Pin Name  
Pin Number  
Description  
1
2
3
4
5
6
7
8
9
TXD  
GND  
VCC  
RXD  
VIO  
Transmit data input  
Ground  
Supply voltage  
Receive data output; reads out data from the bus lines  
Supply voltage for I/O level adapter  
Low-level CAN bus line  
CANL  
CANH  
S
High-level CAN bus line  
Silent mode control input  
EP(1)  
Exposed Thermal Pad: Heat slug, internally connected to the GND pin.  
Note 1: Only for the VDFN package.  
DS20005784D-page 6  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6564  
1.4  
Typical Application  
3.3V  
12V  
BAT  
5V  
12V  
+
(1)  
22μF  
100nF  
100nF  
VIO  
VCC  
5
3
VDD  
CANH  
CANL  
7
6
CANH  
S
TXD  
RXD  
8
1
4
Microcontroller  
GND  
ATA6564  
CANL  
GND  
2
GND  
(1) The size of this capacitor depends on the used external voltage regulator.  
Note 1: For VDFN package: Heat slug must always be connected to GND.  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005784D-page 7  
ATA6564  
2.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings(†)  
DC Voltage at CANH and CANL ................................................................................................................ –27V to +42V  
Transient Voltage on CANH and CANL (ISO 7637 part 2)..................................................................... –150V to +100V  
Max. Differential Bus Voltage ....................................................................................................................... –5V to +18V  
DC Voltage on all other Pins .................................................................................................................... –0.3V to +5.5V  
ESD on CANH and CANL Pins (IEC 61000-4-2) .....................................................................................................±8 kV  
ESD (HBM following STM 5.1 with 1.5 k/100 pF) (Pins CANH, CANL to GND)................................................... ±6 kV  
Component Level ESD (HBM according to ANSI/ESD STM 5.1) JESD22-A114, AEC-Q 100 (002) ...................... ±4 kV  
CDM ESD STM 5.3.1 ............................................................................................................................................. ±750V  
ESD Machine Model AEC-Q100-RevF(003) .......................................................................................................... ±200V  
Virtual Junction Temperature................................................................................................................. –40°C to +175°C  
Storage Temperature..............................................................................................................................55°C to +150°C  
† Notice: Stresses beyond those listed below may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or any other conditions beyond those indicated in the operational sec-  
tions of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may  
affect device reliability.  
DS20005784D-page 8  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6564  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Grade 1: Tamb = –40°C to +125°C, Grade 0: Tamb = –40°C to +150°C, TvJ 170°C,  
VCC= 4.5V to 5.5V; VVIO = 2.8V to 5.5V; RL = 60, CL = 100 pF, unless otherwise specified. All voltages are defined  
in relation to ground; positive currents flow into the IC.  
V
Parameters  
Supply, Pin VCC  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Supply Voltage  
VVCC  
IVCC_sil  
IVCC_rec  
IVCC_dom  
4.5  
1.9  
2
2.5  
5.5  
3.2  
5
V
Supply Current in Silent Mode  
mA  
mA  
mA  
Silent mode, VTXD = VVIO  
Recessive, VTXD = VVIO  
Dominant, VTXD = 0V  
Supply Current in Normal  
Mode  
30  
50  
70  
Short between CANH and CANL  
(Note 1)  
IVCC_short  
Vuvd(VCC)  
85  
mA  
V
Undervoltage Detection  
Threshold on Pin VCC  
2.75  
4.5  
I/O Level Adapter Supply, Pin VIO  
Supply Voltage on Pin VIO  
VVIO  
2.8  
10  
5.5  
V
Normal and Silent mode  
Recessive, VTXD = VVIO  
IVIO_rec  
IVIO_dom  
Vuvd(VIO)  
80  
250  
µA  
Supply Current on Pin VIO  
Normal and Silent mode  
Dominant, VTXD = 0V  
50  
350  
500  
2.7  
µA  
V
Undervoltage Detection  
Threshold on Pin VIO  
1.3  
Mode Control Input, Pin S  
0.7   
VVIO  
VVIO  
+ 0.3  
High-Level Input Voltage  
VIH  
VIL  
V
V
0.3   
VVIO  
Low-Level Input Voltage  
–0.3  
Pull-Down Resistor to GND  
Low-Level Leakage Current  
Rpd  
IL  
75  
–2  
125  
175  
+2  
kΩ  
µA  
VS = VVIO  
VS = 0V  
CAN Transmit Data Input, Pin TXD  
0.7   
VVIO  
VVIO  
+ 0.3  
High-Level Input Voltage  
VIH  
VIL  
V
V
0.3   
VVIO  
Low-Level Input Voltage  
–0.3  
Pull-Up Resistor to VIO  
High-Level Leakage Current  
Input Capacitance  
RTXD  
ITDX  
20  
–2  
35  
5
50  
+2  
10  
kΩ  
µA  
pF  
VTXD = 0V  
Normal mode, VTXD = VVIO  
Note 3  
CTXD  
CAN Receive Data Output, Pin RXD  
High-Level Output Current  
IOH  
IOL  
–8  
2
-1  
mA  
mA  
VRXD = VVIO – 0.4V, VVIO = VVCC  
VRXD = 0.4V, Bus Dominant  
Low-Level Output Current  
12  
Note 1: 100% correlation tested.  
2: Characterized on samples.  
3: Design parameter.  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005784D-page 9  
ATA6564  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Grade 1: Tamb = –40°C to +125°C, Grade 0: Tamb = –40°C to +150°C, TvJ 170°C,  
VVCC= 4.5V to 5.5V; VVIO = 2.8V to 5.5V; RL = 60, CL = 100 pF, unless otherwise specified. All voltages are defined  
in relation to ground; positive currents flow into the IC.  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
Bus Lines, Pins CANH and CANL  
VTXD = 0V, t < tto(dom)TXD  
RL = 50to 65  
pin CANH (Note 1)  
Single Ended Dominant  
Output Voltage  
VO(dom)  
2.75  
0.5  
3.5  
1.5  
4.5  
V
V
VTXD = 0V, t < tto(dom)TXD  
RL = 50to 65  
pin CANL (Note 1)  
Single Ended Dominant  
Output Voltage  
VO(dom)  
2.25  
Transmitter Voltage  
Symmetry  
VSym = (VCANH + VCANL)  
/VVCC (Note 3)  
VSym  
0.9  
1.5  
1.5  
1.5  
–50  
2
1
1.1  
3
V
VTXD = 0V, t < tto(dom)TXD  
RL = 45to 65  
VTXD = 0V, t < tto(dom)TXD  
RL = 70(Note 3)  
3.3  
5
V
Bus Differential Output  
Voltage  
VDiff  
VTXD = 0V, t < tto(dom)TXD  
RL = 2240(Note 3)  
V
VVCC = 4.75V to 5.25V  
+50  
3
mV  
V
V
TXD = VVIO, receive, no load  
Normal and Silent mode,  
TXD = VVIO, no load  
Normal and Silent mode,  
cm(CAN) = –27V to +27V  
Normal and Silent mode,  
Vcm(CAN) = –27V to +27V  
0.5 x  
VVCC  
Recessive Output Voltage  
VO(rec)  
Vth(RX)dif  
Vhys(RX)dif  
V
Differential Receiver  
Threshold Voltage (HSC)  
0.5  
50  
0.7  
0.9  
200  
V
V
Differential Receiver  
Hysteresis Voltage (HSC)  
120  
mV  
VTXD = 0V, t < tto(dom)TXD,  
VVCC = 5V  
pin CANH, VCANH = –5V  
–75  
35  
–35  
75  
mA  
mA  
Dominant Output Current  
IIO(dom)  
VTXD = 0V, t < tto(dom)TXD,  
VVCC = 5V  
pin CANL, VCANL = +40V  
Normal and Silent mode,  
VTXD = VVIO, no load,  
Recessive Output Current  
Leakage Current  
IIO(rec)  
–5  
–5  
–5  
0
+5  
+5  
+5  
mA  
µA  
µA  
V
CANH = VCANL = –27V to +32V  
VVCC = VVIO = 0V,  
CANH = VCANL = 5V  
V
IIO(leak)  
VCC = VIO connected to GND  
with 47k  
0
VCANH = VCANL = 5V (Note 3)  
9
9
15  
15  
28  
28  
kΩ  
kΩ  
VCANH = VCANL = 4V  
Input Resistance  
Ri  
–2V ≤ VCANH ≤ +7V,  
–2V ≤ VCANL ≤ +7V (Note 3)  
Between CANH and CANL  
–1  
–1  
0
0
+1  
+1  
%
%
VCANH = VCANL = 4V  
Input Resistance Deviation  
ΔRi  
–2V ≤ VCANH ≤ +7V,  
–2V ≤ VCANL ≤ +7V (Note 3)  
Note 1: 100% correlation tested.  
2: Characterized on samples.  
3: Design parameter.  
DS20005784D-page 10  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6564  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Grade 1: Tamb = –40°C to +125°C, Grade 0: Tamb = –40°C to +150°C, TvJ 170°C,  
VCC= 4.5V to 5.5V; VVIO = 2.8V to 5.5V; RL = 60, CL = 100 pF, unless otherwise specified. All voltages are defined  
in relation to ground; positive currents flow into the IC.  
V
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Conditions  
18  
30  
56  
kΩ  
VCANH = VCANL = 4V  
Differential Input Resistance  
Ri(dif)  
–2V ≤ VCANH ≤ +7V,  
–2V ≤ VCANL ≤ +7V (Note 3)  
18  
30  
56  
20  
10  
kΩ  
pF  
pF  
Common-Mode Input  
Capacitance  
f = 500 kHz, CANH and CANL  
referred to GND (Note 3)  
Ci(cm)  
Ci(dif)  
f = 500 kHz, between CANH and  
CANL (Note 3)  
Differential Input Capacitance  
Differential Bus Voltage  
Range for RECESSIVE State  
Detection  
Normal and Silent mode (Note 3)  
–27V ≤ VCANH ≤ +27V,  
–27V ≤ VCANL ≤ +27V  
VDiff_rec  
–3  
+0.5  
8
V
V
Differential Bus Voltage  
Range for DOMINANT State  
Detection  
Normal and Silent mode (Note 3)  
-27V ≤ VCANH ≤ +27V,  
-27V ≤ VCANL ≤ +27V  
VDiff_dom  
0.9  
Transceiver Timing, Pins CANH, CANL, TXD, and RXD, see Figure Figure 2-1 and Figure 2-2  
Delay Time from TXD to Bus  
Dominant  
td(TXD-busdom)  
td(TXD-busrec)  
td(busdom-RXD)  
td(busrec-RXD)  
40  
40  
20  
20  
130  
130  
100  
100  
ns  
ns  
ns  
ns  
Normal mode (Note 2)  
Delay Time from TXD to Bus  
Recessive  
Normal mode (Note 2)  
Delay Time from Bus  
Dominant to RXD  
Normal and Silent mode (Note 2)  
Normal and Silent mode (Note 2)  
Delay Time from Bus  
Recessive to RXD  
Normal mode, Rising edge at pin  
TXD  
RL = 60, CL = 100 pF  
40  
40  
210  
200  
300  
300  
ns  
ns  
ns  
ns  
Normal mode, Falling edge at pin  
TXD  
RL = 60, CL = 100 pF  
Propagation Delay from TXD  
to RXD  
tPD(TXD-RXD)  
Normal mode, Rising edge at pin  
TXD  
RL = 150, CL = 100 pF (Note 3)  
Normal mode, Falling edge at pin  
TXD  
RL = 150, CL = 100 pF (Note 3)  
TXD Dominant Time-out Time  
tto(dom)TXD  
tdel(norm-sil)  
tdel(sil-norm)  
0.8  
3
ms  
µs  
VTXD = 0V, Normal mode  
Delay Time for Normal Mode  
to Silent Mode Transition  
10  
Rising edge at pin S (Note 3)  
Delay Time for Silent Mode to  
Normal Mode Transition  
10  
µs  
ns  
Falling edge at pin S (Note 3)  
Debouncing Time for  
Recessive Clamping State  
Detection  
V(CANH-CANL) > 900 mV  
RXD = HIGH (Note 3)  
tRC_det  
90  
Note 1: 100% correlation tested.  
2: Characterized on samples.  
3: Design parameter.  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005784D-page 11  
ATA6564  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Grade 1: Tamb = –40°C to +125°C, Grade 0: Tamb = –40°C to +150°C, TvJ 170°C,  
VVCC= 4.5V to 5.5V; VVIO = 2.8V to 5.5V; RL = 60, CL = 100 pF, unless otherwise specified. All voltages are defined  
in relation to ground; positive currents flow into the IC.  
Parameters Symbol Min.  
Typ.  
Max.  
Units  
Conditions  
Transceiver Timing for Higher Bit Rates, Pins CANH, CANL, TXD, and RXD, see Figure 2-1 and Figure 2-3,  
External Capacitor on the RXD Pin CRXD ≤ 20 pF  
Normal mode, tBit(TXD) = 500 ns  
400  
120  
435  
155  
–65  
550  
220  
530  
210  
+40  
ns  
ns  
ns  
ns  
ns  
(Note 1)  
RL = 60, CL = 100 pF  
Recessive Bit Time on Pin  
RXD  
tBit(RXD)  
Normal mode, tBit(TXD) = 200 ns  
RL = 60, CL = 100 pF  
Normal mode, tBit(TXD) = 500 ns  
(Note 1)  
RL = 60, CL = 100 pF  
Recessive Bit Time on the  
Bus  
tBit(Bus)  
Normal mode, tBit(TXD) = 200 ns  
RL = 60, CL = 100 pF  
Normal mode, tBit(TXD) = 500ns  
tRec = tBit(RXD)– Bit(Bus)  
RL = 60, CL = 100 pF  
Normal mode, tBit(TXD) = 200ns  
tRec = tBit(RXD)– Bit(Bus)  
RL = 60, CL = 100 pF  
t
(Note 1)  
Receiver Timing Symmetry  
tRec  
–45  
+15  
ns  
t
Note 1: 100% correlation tested.  
2: Characterized on samples.  
3: Design parameter.  
TABLE 2-1:  
TEMPERATURE SPECIFICATIONS  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Thermal Characteristics SOIC8 Package  
Thermal Resistance Virtual Junction to Ambient  
RthvJA  
TvJsd  
145  
K/W  
°C  
Thermal Shutdown of the Bus Drivers for  
ATA6564-GAQW1 (Grade 1)  
150  
195  
Thermal Shutdown of the Bus Drivers for  
ATA6564-GAQW0 (Grade 0)  
TvJsd  
170  
195  
°C  
°C  
Thermal Shutdown Hysteresis  
TvJsd_hys  
15  
Thermal Characteristics VDFN8 Package  
Thermal Resistance Virtual Junction to  
Heat Slug  
RthvJC  
RthvJA  
TvJsd  
10  
50  
K/W  
K/W  
°C  
Thermal Resistance Virtual Junction to Ambient,  
where Heat Slug is soldered to PCB according  
to JEDEC  
Thermal Shutdown of the Bus Drivers for  
ATA6564-GBQW1 (Grade 1)  
150  
195  
Thermal Shutdown of the Bus Drivers for  
ATA6564-GBQW0 (Grade 0)  
TvJsd  
170  
195  
°C  
°C  
Thermal Shutdown Hysteresis  
TvJsd_hys  
15  
DS20005784D-page 12  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6564  
FIGURE 2-1:  
TIMING TEST CIRCUIT FOR THE ATA6564 CAN TRANSCEIVER  
+5V  
+
22μF  
100nF  
5
3
VIO  
VCC  
1
4
7
6
TXD  
CANH  
R
C
L
L
RXD  
CANL  
GND  
S
8
15pF  
2
FIGURE 2-2:  
CAN TRANSCEIVER TIMING DIAGRAM 1  
HIGH  
LOW  
TXD  
CANH  
CANL  
dominant  
0.9V  
0.5V  
VDiff  
recessive  
HIGH  
0.7VIO  
RXD  
0.3VIO  
LOW  
td(TXD-busdom)  
td(TXD-busrec)  
td(busdom-RXD)  
td(busrec-RXD)  
tPD(TXD-RXD)  
tPD(TXD-RXD)  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005784D-page 13  
ATA6564  
FIGURE 2-3:  
CAN TRANSCEIVER TIMING DIAGRAM 2  
70%  
TXD  
30%  
5 x t  
t
Bit(TXD)  
Bit(TXD)  
VDiff  
900mV  
500mV  
t
Bit(Bus)  
70%  
RXD  
30%  
t
Bit(RXD)  
DS20005784D-page 14  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6564  
3.0  
3.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead SOIC  
Example  
Grade 0  
Grade 1  
Atmel 721  
Atmel 721  
ATA6564  
1729256  
ATA6564H  
1729256  
Example  
Grade 0  
8-Lead VDFN 3 X 3 mm  
Grade 1  
6564H  
256  
6564  
256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005784D-page 15  
ATA6564  
8-Lead Plastic Small Outline (OA) - Narrow, 3.90 mm (.150 In.) Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2X  
0.10 C A–B  
D
A
D
NOTE 5  
N
E
2
E1  
2
E1  
E
2X  
0.10 C A–B  
2X  
0.10 C A–B  
1
2
NOTE 1  
e
NX b  
0.25  
C A–B D  
B
NOTE 5  
TOP VIEW  
0.10 C  
0.10 C  
C
A2  
A
SEATING  
PLANE  
8X  
SIDE VIEW  
A1  
h
R0.13  
R0.13  
h
H
0.23  
L
SEE VIEW C  
(L1)  
VIEW A–A  
VIEW C  
Microchip Technology Drawing No. C04-057-OA Rev F Sheet 1 of 2  
DS20005784D-page 16  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6564  
8-Lead Plastic Small Outline (OA) - Narrow, 3.90 mm (.150 In.) Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
8
1.27 BSC  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
A
-
-
-
-
1.75  
-
0.25  
A2  
A1  
E
1.25  
0.10  
§
6.00 BSC  
Molded Package Width  
Overall Length  
E1  
D
3.90 BSC  
4.90 BSC  
Chamfer (Optional)  
Foot Length  
h
L
0.25  
0.40  
-
-
0.50  
1.27  
Footprint  
L1  
1.04 REF  
Foot Angle  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0°  
0.17  
0.31  
5°  
-
-
-
-
-
8°  
c
b
0.25  
0.51  
15°  
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.15mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
5. Datums A & B to be determined at Datum H.  
Microchip Technology Drawing No. C04-057-OA Rev F Sheet 2 of 2  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005784D-page 17  
ATA6564  
8-Lead Plastic Small Outline (OA) - Narrow, 3.90 mm (.150 In.) Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
SILK SCREEN  
C
Y1  
X1  
E
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Contact Pitch  
E
C
X1  
Y1  
1.27 BSC  
5.40  
Contact Pad Spacing  
Contact Pad Width (X8)  
Contact Pad Length (X8)  
0.60  
1.55  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-2057-OA Rev F  
DS20005784D-page 18  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6564  
ꢅꢆꢇꢃꢈꢉꢊꢋꢃꢌꢍꢊꢎꢏꢐꢑꢊꢒꢓꢈꢔꢂꢐꢕꢊꢖꢗꢈꢓꢊꢘꢓꢈꢂꢙꢊꢀꢁꢊꢇꢃꢈꢉꢊꢒꢈꢕꢚꢈꢛꢃꢊꢜꢝꢅꢞꢟꢊꢆꢊꢠꢡꢠꢡꢢꢊꢣꢣꢊꢞꢁꢉꢍꢊꢤꢋꢖꢘꢀꢥ  
ꢦꢐꢂꢏꢊꢧꢨꢩꢪꢡꢢꢨꢫꢪꢊꢣꢣꢊꢬꢡꢭꢁꢔꢃꢉꢊꢒꢈꢉꢊꢈꢑꢉꢊꢮꢂꢃꢭꢭꢃꢉꢊꢦꢃꢂꢂꢈꢯꢓꢃꢊꢘꢓꢈꢑꢚꢔꢰꢊꢱꢂꢣꢃꢓꢊꢇꢃꢛꢈꢕꢍꢊꢲꢳꢇ  
ꢀꢁꢂꢃꢄ ꢯꢞꢝꢌꢭꢟꢡꢌꢰꢞꢱꢭꢌꢜꢲꢝꢝꢡꢢꢭꢌꢠꢦꢜꢳꢦꢤꢡꢌꢴꢝꢦꢧꢛꢢꢤꢱꢵꢌꢠꢣꢡꢦꢱꢡꢌꢱꢡꢡꢌꢭꢟꢡꢌꢋꢛꢜꢝꢞꢜꢟꢛꢠꢌꢓꢦꢜꢳꢦꢤꢛꢢꢤꢌꢎꢠꢡꢜꢛꢮꢛꢜꢦꢭꢛꢞꢢꢌꢣꢞꢜꢦꢭꢡꢴꢌꢦꢭ  
ꢟꢭꢭꢠꢶꢷꢷꢧꢧꢧꢃꢰꢛꢜꢝꢞꢜꢟꢛꢠꢃꢜꢞꢰꢷꢠꢦꢜꢳꢦꢤꢛꢢꢤ  
ꢇꢈꢁꢉꢊꢋꢌꢁꢍ  
ꢇꢈꢁꢉꢊꢋꢌꢀꢍ  
ꢑꢗꢉꢏꢌꢄ  
ꢕꢖ  
ꢂꢃꢄꢂ ꢅ  
ꢕꢖ  
ꢉꢗꢓꢌꢘꢐꢏꢙ  
ꢂꢃꢄꢂ ꢅ  
ꢂꢃꢄꢂ ꢅ  
ꢂꢃꢂꢚ ꢅ  
ꢁꢄ  
ꢎꢏꢁꢉꢐꢑꢒ  
ꢓꢔꢁꢑꢏ  
ꢚꢖ  
ꢎꢐꢈꢏꢌꢘꢐꢏꢙ  
ꢇꢁꢪꢍ  
ꢂꢃꢄꢂ  
ꢅ ꢁ ꢀ  
ꢈꢕ  
ꢑꢗꢉꢏꢌꢄ  
ꢂꢃꢄꢂ  
ꢅ ꢁ ꢀ  
ꢏꢕ  
ꢚꢖꢌꢹ  
ꢂꢃꢄꢂ  
ꢂꢃꢂꢆ  
ꢅ ꢁ ꢀ  
ꢀꢗꢉꢉꢗꢋꢌꢘꢐꢏꢙ  
ꢋꢛꢜꢝꢞꢜꢟꢛꢠꢌꢉꢡꢜꢟꢢꢞꢣꢞꢤꢥꢌꢈꢝꢦꢧꢛꢢꢤꢌꢌꢅꢂꢨꢩꢕꢄꢪꢆꢚꢌꢫꢡꢬꢌꢈꢌꢎꢟꢡꢡꢭꢌꢄꢌꢞꢮꢌꢕ  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005784D-page 19  
ATA6564  
ꢅꢆꢇꢃꢈꢉꢊꢋꢃꢌꢍꢊꢎꢏꢐꢑꢊꢒꢓꢈꢔꢂꢐꢕꢊꢖꢗꢈꢓꢊꢘꢓꢈꢂꢙꢊꢀꢁꢊꢇꢃꢈꢉꢊꢒꢈꢕꢚꢈꢛꢃꢊꢜꢝꢅꢞꢟꢊꢆꢊꢠꢡꢠꢡꢢꢊꢣꢣꢊꢞꢁꢉꢍꢊꢤꢋꢖꢘꢀꢥ  
ꢦꢐꢂꢏꢊꢧꢨꢩꢪꢡꢢꢨꢫꢪꢊꢣꢣꢊꢬꢡꢭꢁꢔꢃꢉꢊꢒꢈꢉꢊꢈꢑꢉꢊꢮꢂꢃꢭꢭꢃꢉꢊꢦꢃꢂꢂꢈꢯꢓꢃꢊꢘꢓꢈꢑꢚꢔꢰꢊꢱꢂꢣꢃꢓꢊꢇꢃꢛꢈꢕꢍꢊꢲꢳꢇ  
ꢀꢁꢂꢃꢄ ꢯꢞꢝꢌꢭꢟꢡꢌꢰꢞꢱꢭꢌꢜꢲꢝꢝꢡꢢꢭꢌꢠꢦꢜꢳꢦꢤꢡꢌꢴꢝꢦꢧꢛꢢꢤꢱꢵꢌꢠꢣꢡꢦꢱꢡꢌꢱꢡꢡꢌꢭꢟꢡꢌꢋꢛꢜꢝꢞꢜꢟꢛꢠꢌꢓꢦꢜꢳꢦꢤꢛꢢꢤꢌꢎꢠꢡꢜꢛꢮꢛꢜꢦꢭꢛꢞꢢꢌꢣꢞꢜꢦꢭꢡꢴꢌꢦꢭ  
ꢟꢭꢭꢠꢶꢷꢷꢧꢧꢧꢃꢰꢛꢜꢝꢞꢜꢟꢛꢠꢃꢜꢞꢰꢷꢠꢦꢜꢳꢦꢤꢛꢢꢤ  
ꢁꢨ  
ꢓꢁꢫꢉꢐꢁꢔꢔꢿ  
ꢓꢔꢁꢉꢏꢈ  
ꢏꢪ  
ꢎꢏꢅꢉꢐꢗꢑꢌꢁꣀꢁ  
ꢊꢢꢛꢭꢱ  
ꢋꢐꢔꢔꢐꢋꢏꢉꢏꢫꢎ  
ꢈꢛꢰꢡꢢꢱꢛꢞꢢꢌꢔꢛꢰꢛꢭꢱ  
ꢋꢐꢑ  
ꢑꢗꢋ  
ꢋꢁꢖ  
ꢑꢲꢰꢹꢡꢝꢌꢞꢮꢌꢉꢡꢝꢰꢛꢢꢦꢣꢱ  
ꢓꢛꢭꢜꢟ  
ꢗꢬꢡꢝꢦꢣꢣꢌꢺꢡꢛꢤꢟꢭ  
ꢎꢭꢦꢢꢴꢞꢮꢮ  
ꢉꢡꢝꢰꢛꢢꢦꢣꢌꢉꢟꢛꢜꢳꢢꢡꢱꢱ  
ꢗꢬꢡꢝꢦꢣꢣꢌꢔꢡꢢꢤꢭꢟ  
ꢏꢻꢠꢞꢱꢡꢴꢌꢓꢦꢴꢌꢔꢡꢢꢤꢭꢟ  
ꢗꢬꢡꢝꢦꢣꢣꢌꢙꢛꢴꢭꢟ  
ꢏꢻꢠꢞꢱꢡꢴꢌꢓꢦꢴꢌꢙꢛꢴꢭꢟ  
ꢉꢡꢝꢰꢛꢢꢦꢣꢌꢙꢛꢴꢭꢟ  
ꢉꢡꢝꢰꢛꢢꢦꢣꢌꢔꢡꢢꢤꢭꢟ  
ꢂꢃꢼꢆꢌꢀꢎꢅ  
ꢂꢃꢽꢂ  
ꢂꢃꢂꢪꢆ  
ꢂꢃꢕꢂꢪꢌꢫꢏꢯ  
ꢪꢃꢂꢂꢌꢀꢎꢅ  
ꢕꢃꢨꢂ  
ꢪꢃꢂꢂꢌꢀꢎꢅ  
ꢄꢃꢼꢂ  
ꢂꢃꢪꢂ  
ꢁꢄ  
ꢁꢪ  
ꢈꢕ  
ꢏꢕ  
ꢂꢃꢚꢂ  
ꢂꢃꢂꢂ  
ꢄꢃꢂꢂ  
ꢂꢃꢂꢆ  
ꢕꢃꢪꢂ  
ꢕꢃꢆꢂ  
ꢄꢃꢆꢂ  
ꢂꢃꢕꢆ  
ꢂꢃꢪꢆ  
ꢂꢃꢕꢂ  
ꢂꢃꢄꢂ  
ꢄꢃꢾꢂ  
ꢂꢃꢪꢆ  
ꢂꢃꢨꢆ  
ꢂꢃꢨꢂ  
ꢉꢡꢝꢰꢛꢢꢦꢣꢩꢭꢞꢩꢏꢻꢠꢞꢱꢡꢴꢩꢓꢦꢴ  
ꢙꢡꢭꢭꢦꢹꢣꢡꢌꢯꢣꢦꢢꢳꢌꢎꢭꢡꢠꢌꢅꢲꢭꢌꢈꢡꢠꢭꢟ  
ꢙꢡꢭꢭꢦꢹꢣꢡꢌꢯꢣꢦꢢꢳꢌꢎꢭꢡꢠꢌꢅꢲꢭꢌꢙꢛꢴꢭꢟ  
ꢁꢨ  
ꢏꢪ  
ꢂꢃꢄꢽ  
ꢂꢃꢂꢚꢆ  
ꢀꢁꢂꢃꢄꢅ  
ꢄꢃ ꢓꢛꢢꢌꢄꢌꢬꢛꢱꢲꢦꢣꢌꢛꢢꢴꢡꢻꢌꢮꢡꢦꢭꢲꢝꢡꢌꢰꢦꢥꢌꢬꢦꢝꢥꢵꢌꢹꢲꢭꢌꢰꢲꢱꢭꢌꢹꢡꢌꢣꢞꢜꢦꢭꢡꢴꢌꢧꢛꢭꢟꢛꢢꢌꢭꢟꢡꢌꢟꢦꢭꢜꢟꢡꢴꢌꢦꢝꢡꢦꢃ  
ꢕꢃ ꢓꢦꢜꢳꢦꢤꢡꢌꢛꢱꢌꢱꢦꢧꢌꢱꢛꢢꢤꢲꢣꢦꢭꢡꢴ  
ꢪꢃ ꢈꢛꢰꢡꢢꢱꢛꢞꢢꢛꢢꢤꢌꢦꢢꢴꢌꢭꢞꢣꢡꢝꢦꢢꢜꢛꢢꢤꢌꢠꢡꢝꢌꢁꢎꢋꢏꢌꢿꢄꢨꢃꢆꢋ  
ꢀꢎꢅꢶꢌꢀꢦꢱꢛꢜꢌꢈꢛꢰꢡꢢꢱꢛꢞꢢꢃꢌꢉꢟꢡꢞꢝꢡꢭꢛꢜꢦꢣꢣꢥꢌꢡꢻꢦꢜꢭꢌꢬꢦꢣꢲꢡꢌꢱꢟꢞꢧꢢꢌꢧꢛꢭꢟꢞꢲꢭꢌꢭꢞꢣꢡꢝꢦꢢꢜꢡꢱꢃ  
ꢫꢏꢯꢶꢌꢫꢡꢮꢡꢝꢡꢢꢜꢡꢌꢈꢛꢰꢡꢢꢱꢛꢞꢢꢵꢌꢲꢱꢲꢦꢣꢣꢥꢌꢧꢛꢭꢟꢞꢲꢭꢌꢭꢞꢣꢡꢝꢦꢢꢜꢡꢵꢌꢮꢞꢝꢌꢛꢢꢮꢞꢝꢰꢦꢭꢛꢞꢢꢌꢠꢲꢝꢠꢞꢱꢡꢱꢌꢞꢢꢣꢥꢃ  
ꢋꢛꢜꢝꢞꢜꢟꢛꢠꢌꢉꢡꢜꢟꢢꢞꢣꢞꢤꢥꢌꢈꢝꢦꢧꢛꢢꢤꢌꢌꢅꢂꢨꢩꢕꢄꢪꢆꢚꢌꢫꢡꢬꢌꢈꢌꢎꢟꢡꢡꢭꢌꢕꢌꢞꢮꢌꢕ  
DS20005784D-page 20  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6564  
ꢅꢆꢇꢃꢈꢉꢊꢋꢃꢌꢍꢊꢎꢏꢐꢑꢊꢒꢓꢈꢔꢂꢐꢕꢊꢖꢗꢈꢓꢊꢘꢓꢈꢂꢙꢊꢀꢁꢊꢇꢃꢈꢉꢊꢒꢈꢕꢚꢈꢛꢃꢊꢜꢝꢅꢞꢟꢊꢆꢊꢠꢡꢠꢡꢢꢊꢣꢣꢊꢞꢁꢉꢍꢊꢤꢋꢖꢘꢀꢥ  
ꢦꢐꢂꢏꢊꢧꢨꢩꢪꢡꢢꢨꢫꢪꢊꢣꢣꢊꢬꢡꢭꢁꢔꢃꢉꢊꢒꢈꢉꢊꢈꢑꢉꢊꢮꢂꢃꢭꢭꢃꢉꢊꢦꢃꢂꢂꢈꢯꢓꢃꢊꢘꢓꢈꢑꢚꢔ  
ꢀꢁꢂꢃꢄ ꢯꢞꢝꢌꢭꢟꢡꢌꢰꢞꢱꢭꢌꢜꢲꢝꢝꢡꢢꢭꢌꢠꢦꢜꢳꢦꢤꢡꢌꢴꢝꢦꢧꢛꢢꢤꢱꢵꢌꢠꢣꢡꢦꢱꢡꢌꢱꢡꢡꢌꢭꢟꢡꢌꢋꢛꢜꢝꢞꢜꢟꢛꢠꢌꢓꢦꢜꢳꢦꢤꢛꢢꢤꢌꢎꢠꢡꢜꢛꢮꢛꢜꢦꢭꢛꢞꢢꢌꢣꢞꢜꢦꢭꢡꢴꢌꢦꢭ  
ꢟꢭꢭꢠꢶꢷꢷꢧꢧꢧꢃꢰꢛꢜꢝꢞꢜꢟꢛꢠꢃꢜꢞꢰꢷꢠꢦꢜꢳꢦꢤꢛꢢꢤ  
ꢿꢕ  
ꢏꢘ  
ꣁꢘ  
ꢖꢕ  
ꢏꢘ  
ꢅꢺ  
ꢒꢄ  
ꢿꢄ  
ꢎꢐꢔꢸꢌꢎꢅꢫꢏꢏꢑ  
ꢖꢄ  
ꢒꢕ  
ꢫꢏꢅꢗꢋꢋꢏꢑꢈꢏꢈꢌꢔꢁꢑꢈꢌꢓꢁꢉꢉꢏꢫꢑ  
ꢊꢢꢛꢭꢱ  
ꢈꢛꢰꢡꢢꢱꢛꢞꢢꢌꢔꢛꢰꢛꢭꢱ  
ꢋꢐꢔꢔꢐꢋꢏꢉꢏꢫꢎ  
ꢑꢗꢋ  
ꢂꢃꢼꢆꢌꢀꢎꢅ  
ꢋꢐꢑ  
ꢋꢁꢖ  
ꢅꢞꢢꢭꢦꢜꢭꢌꢓꢛꢭꢜꢟ  
ꢗꢠꢭꢛꢞꢢꢦꢣꢌꢅꢡꢢꢭꢡꢝꢌꢓꢦꢴꢌꢙꢛꢴꢭꢟ  
ꢗꢠꢭꢛꢞꢢꢦꢣꢌꢅꢡꢢꢭꢡꢝꢌꢓꢦꢴꢌꢔꢡꢢꢤꢭꢟ  
ꢅꢞꢢꢭꢦꢜꢭꢌꢓꢦꢴꢌꢎꢠꢦꢜꢛꢢꢤ  
ꢖꢕ  
ꢿꢕ  
ꢄꢃꢾꢂ  
ꢕꢃꢆꢂ  
ꢪꢃꢂꢂ  
ꢅꢞꢢꢭꢦꢜꢭꢌꢓꢦꢴꢌꢙꢛꢴꢭꢟꢌꢇꢖꢚꢍ  
ꢅꢞꢢꢭꢦꢜꢭꢌꢓꢦꢴꢌꢔꢡꢢꢤꢭꢟꢌꢇꢖꢚꢍ  
ꢅꢞꢢꢭꢦꢜꢭꢌꢓꢦꢴꢌꢭꢞꢌꢅꢡꢢꢭꢡꢝꢌꢓꢦꢴꢌꢇꢖꢚꢍ  
ꢅꢞꢢꢭꢦꢜꢭꢌꢓꢦꢴꢌꢭꢞꢌꢅꢞꢢꢭꢦꢜꢭꢌꢓꢦꢴꢌꢇꢖꢼꢍ  
ꢓꢛꢢꢌꢄꢌꢐꢢꢴꢡꢻꢌꢅꢟꢦꢰꢮꢡꢝ  
ꢖꢄ  
ꢿꢄ  
ꢒꢄ  
ꢒꢕ  
ꢅꢺ  
ꢂꢃꢪꢆ  
ꢂꢃꢚꢂ  
ꢂꢃꢕꢂ  
ꢂꢃꢕꢂ  
ꢂꢃꢕꢂ  
ꢉꢟꢡꢝꢰꢦꢣꢌꢘꢛꢦꢌꢈꢛꢦꢰꢡꢭꢡꢝ  
ꢉꢟꢡꢝꢰꢦꢣꢌꢘꢛꢦꢌꢓꢛꢭꢜꢟ  
ꢂꢃꢪꢪ  
ꢄꢃꢕꢂ  
ꢏꢘ  
ꢑꢞꢭꢡꢱꢶ  
ꢄꢃ ꢈꢛꢰꢡꢢꢱꢛꢞꢢꢛꢢꢤꢌꢦꢢꢴꢌꢭꢞꢣꢡꢝꢦꢢꢜꢛꢢꢤꢌꢠꢡꢝꢌꢁꢎꢋꢏꢌꢿꢄꢨꢃꢆꢋ  
ꢀꢎꢅꢶꢌꢀꢦꢱꢛꢜꢌꢈꢛꢰꢡꢢꢱꢛꢞꢢꢃꢌꢉꢟꢡꢞꢝꢡꢭꢛꢜꢦꢣꢣꢥꢌꢡꢻꢦꢜꢭꢌꢬꢦꢣꢲꢡꢌꢱꢟꢞꢧꢢꢌꢧꢛꢭꢟꢞꢲꢭꢌꢭꢞꢣꢡꢝꢦꢢꢜꢡꢱꢃ  
ꢕꢃ ꢯꢞꢝꢌꢹꢡꢱꢭꢌꢱꢞꢣꢴꢡꢝꢛꢢꢤꢌꢝꢡꢱꢲꢣꢭꢱꢵꢌꢭꢟꢡꢝꢰꢦꢣꢌꢬꢛꢦꢱꢵꢌꢛꢮꢌꢲꢱꢡꢴꢵꢌꢱꢟꢞꢲꢣꢴꢌꢹꢡꢌꢮꢛꢣꢣꢡꢴꢌꢞꢝꢌꢭꢡꢢꢭꢡꢴꢌꢭꢞꢌꢦꢬꢞꢛꢴꢌꢱꢞꢣꢴꢡꢝꢌꢣꢞꢱꢱꢌꢴꢲꢝꢛꢢꢤ  
ꢝꢡꢮꢣꢞꢧꢌꢠꢝꢞꢜꢡꢱꢱ  
ꢋꢛꢜꢝꢞꢜꢟꢛꢠꢌꢉꢡꢜꢟꢢꢞꢣꢞꢤꢥꢌꢈꢝꢦꢧꢛꢢꢤꢌꢅꢂꢨꢩꢕꢪꢪꢆꢚꢌꢫꢡꢬꢌꢈ  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005784D-page 21  
ATA6564  
NOTES:  
DS20005784D-page 22  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6564  
APPENDIX A: REVISION HISTORY  
Revision D (December 2021)  
The following is the list of modifications:  
• Updated the SOIC and VDFN package drawings  
in Section 3.0, Packaging Information  
• Updated parameter “Supply Current in Silent  
Mode” in “Electrical Characteristics”  
• Minor typographical edits  
Revision C (August 2019)  
The following is the list of modifications:  
• Updated TABLE 2-1: “Temperature Specifica-  
tions”  
• Added test conditions at several parameters in  
“Electrical Characteristics”  
Revision B (July 2017)  
The following is the list of modifications:  
• Added the new device ATA6564-GBQW0 and  
updated the related information across the  
document  
• Updated ATA6564 Family Members Table.  
• Corrected “Electrical Characteristics”  
• Updated TABLE 2-1: Temperature Specifica-  
tions  
• Updated the VDFN8 package drawing and added  
a Grade 0 package example to Section 3.1,  
Package Marking Information  
• Added a ATA6564-GBQW0 example to “Product  
Identification System” section  
• Various typographical edits  
Revision A (June 2017)  
• Original release of this document  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005784D-page 23  
ATA6564  
NOTES:  
DS20005784D-page 24  
2017-2021 Microchip Technology Inc. and its subsidiaries  
ATA6564  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.  
Examples:  
PART NO.  
Device  
[X](1)  
XX  
X
X
a) ATA6564-GAQW0:  
b) ATA6564-GBQW0:  
c) ATA6564-GAQW1:  
d) ATA6564-GBQW1:  
ATA6564, 8-Lead SOIC,  
Tape and Reel, package  
according to RoHS,  
Tape and Reel  
Option  
Package  
Package directives  
classification  
Temperature  
Range  
Temperature Grade 0  
Device:  
ATA6564:  
High-speed CAN Transceiver with Silent  
Mode CAN FD Ready  
ATA6564, 8-Lead VDFN,  
Tape and Reel, package  
according to RoHS,  
Temperature Grade 0  
Package:  
GA  
GB  
=
=
8-Lead SOIC  
8-Lead VDFN  
ATA6564, 8-Lead SOIC,  
Tape and Reel, package  
according to RoHS,  
Tape and Reel  
Option:  
Q
=
=
330 mm diameter Tape and Reel  
Temperature Grade 1  
ATA6564, 8-Lead VDFN,  
Tape and Reel, package  
according to RoHS,  
Package  
W
Package according to RoHS(2)  
directives  
classification:  
Temperature Grade 1  
Temperature  
Range:  
0
1
=
=
Temperature Grade 0 (-40°C to +150°C)  
Temperature Grade 1 (-40°C to +125°C)  
Note 1: Tape and Reel identifier only appears in the  
catalog part number description. This  
identifier is used for ordering purposes and is  
not printed on the device package. Check with  
your Microchip Sales Office for package  
availability with the Tape and Reel option.  
2: RoHS compliant, Maximum concentration  
value of 0.09% (900 ppm) for Bromine (Br)  
and Chlorine (Cl) and less than 0.15% (1500  
ppm) total Bromine (Br) and Chlorine (Cl) in  
any homogeneous material. Maximum  
concentration value of 0.09% (900 ppm) for  
Antimony (Sb) in any homogeneous material.  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005784D-page 25  
ATA6564  
NOTES:  
DS20005784D-page 26  
2017-2021 Microchip Technology Inc. and its subsidiaries  
Note the following details of the code protection feature on Microchip products:  
Microchip products meet the specifications contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and  
under normal conditions.  
Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of  
Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not  
mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly evolving. Microchip is committed to  
continuously improving the code protection features of our products.  
This publication and the information herein may be used only  
with Microchip products, including to design, test, and integrate  
Microchip products with your application. Use of this informa-  
tion in any other manner violates these terms. Information  
regarding device applications is provided only for your conve-  
nience and may be superseded by updates. It is your responsi-  
bility to ensure that your application meets with your  
specifications. Contact your local Microchip sales office for  
additional support or, obtain additional support at https://  
www.microchip.com/en-us/support/design-help/client-support-  
services.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud,  
CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO,  
JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus,  
maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,  
MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower,  
PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch,  
SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash,  
Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O,  
Vectron, and XMEGA are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AgileSwitch, APT, ClockWorks, The Embedded Control Solutions  
Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight  
Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3,  
Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-  
Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, TrueTime, WinPath, and ZL are  
registered trademarks of Microchip Technology Incorporated in the  
U.S.A.  
THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION INCLUDING BUT NOT  
LIMITED TO ANY IMPLIED WARRANTIES OF NON-  
INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A  
PARTICULAR PURPOSE, OR WARRANTIES RELATED TO  
ITS CONDITION, QUALITY, OR PERFORMANCE.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky,  
BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive,  
CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net,  
Dynamic Average Matching, DAM, ECAN, Espresso T1S,  
EtherGREEN, GridTime, IdealBridge, In-Circuit Serial  
Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip  
Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView,  
memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo,  
MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple  
Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP,  
SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI,  
SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total  
Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,  
ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks  
of Microchip Technology Incorporated in the U.S.A. and other  
countries.  
IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-  
RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-  
QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY  
KIND WHATSOEVER RELATED TO THE INFORMATION OR  
ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS  
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES  
ARE FORESEEABLE. TO THE FULLEST EXTENT  
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON  
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION  
OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF  
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP  
FOR THE INFORMATION.  
Use of Microchip devices in life support and/or safety applica-  
tions is entirely at the buyer's risk, and the buyer agrees to  
defend, indemnify and hold harmless Microchip from any and  
all damages, claims, suits, or expenses resulting from such  
use. No licenses are conveyed, implicitly or otherwise, under  
any Microchip intellectual property rights unless otherwise  
stated.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, Symmcom, and Trusted Time are registered  
trademarks of Microchip Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2017-2021, Microchip Technology Incorporated and its subsidiar-  
ies.  
All Rights Reserved.  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
ISBN: 978-1-5224-9512-3  
2017-2021 Microchip Technology Inc. and its subsidiaries  
DS20005784D-page 27  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4485-5910  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Korea - Seoul  
Germany - Haan  
Tel: 49-2129-3766400  
Tel: 86-571-8792-8115  
Tel: 82-2-554-7200  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Malaysia - Kuala Lumpur  
Germany - Heilbronn  
Tel: 49-7131-72400  
Tel: 852-2943-5100  
Tel: 60-3-7651-7906  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Los Angeles  
Tel: 48-22-3325737  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
Fax: 44-118-921-5820  
DS20005784D-page 28  
2017-2021 Microchip Technology Inc. and its subsidiaries  
09/14/21  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY