ATA663211-GBQW [MICROCHIP]

LIN Transceiver;
ATA663211-GBQW
型号: ATA663211-GBQW
厂家: MICROCHIP    MICROCHIP
描述:

LIN Transceiver

文件: 总28页 (文件大小:541K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ATA663211  
LIN Transceiver  
Features  
Description  
• ISO 26262 Functional Safety Ready  
• Supply Voltage up to 40V  
The ATA663211 device is a fully integrated LIN  
transceiver designed in compliance with the LIN  
specification 2.0, 2.1, 2.2, 2.2A and SAEJ2602-2. It  
interfaces the LIN protocol handler and the physical  
layer. The device is designed to handle the low-speed  
data communication in convenience electronics, for  
example, in vehicles. Improved slope control at the LIN  
bus ensures data communication up to 20 Kbaud.  
Sleep mode guarantees minimal current consumption  
even in the case of a floating bus line or a short circuit  
on the LIN bus to GND.  
• Operating Voltage VVS = 5V to 28V  
• Very Low Supply Current  
- Sleep mode: Typically 9 A  
- Fail-Safe mode: Typically 80 A  
- Normal mode: Typically 250 A  
• Fully Compatible with 3.3V and 5V Devices  
• LIN Physical Layer according to LIN 2.0, 2.1, 2.2,  
2.2A and SAEJ2602-2  
Note:  
The current LIN standards use the  
terminology "Master" and "Slave”.  
• Wake-Up Capability through LIN bus (100 s  
Dominant)  
The LIN standard groups have decided  
that the terms "Commander" and  
"Responder" will be used in future.  
• External Wake Up through WKin pin (100 s Low  
Level)  
• INH Output to Control an External Voltage  
Regulator or to Switch the Commander Pull-Up  
Package Types  
• Wake-Up Source Recognition  
• TXD Time-Out Timer  
ATA663211  
8-Lead VDFN  
• Bus Pin is Overtemperature and Short-Circuit  
Protected vs. GND and Battery  
RXD  
EN  
INH  
VS  
1
8
• Advanced EMC and ESD Performance  
2
3
4
7
6
5
EP  
9
• Fulfills the OEM “Hardware Requirements for LIN  
in Automotive Applications Rev.1.3”  
LIN  
GND  
WKin  
TXD  
• Interference and Damage Protection according to  
ISO7637  
• Qualified according to AEC-Q100 and AEC-Q006  
ATA663211  
8-Lead SOIC  
• Package: 8-Lead VDFN, 8-Lead SOIC, with  
Wettable Flanks (Moisture Sensitivity Level 1)  
RXD  
EN  
INH  
VS  
1
2
8
7
WKin  
TXD  
LIN  
3
4
6
5
GND  
*Includes Exposed Thermal Pad (EP);  
see Table 1-4.  
2019-2021 Microchip Technology Inc.  
DS20006191D-page 1  
ATA663211  
ATA663211 Block Diagram  
7
VS  
ATA663211  
RXD  
1
Receiver  
-
+
6
LIN  
RF-Filter  
Wake-up bus timer  
Slew rate control  
Short-circuit and  
overtemperature  
protection  
TXD  
TXD  
Time-out  
Timer  
4
VS  
Normal/  
Control  
Fail-safe  
Unit  
VS  
Mode  
with  
5
GND  
Mode  
Selection  
Sleep  
Mode  
WKin  
3
Wake-up  
Timer  
2
8
EN  
INH  
DS20006191D-page 2  
2019-2021 Microchip Technology Inc.  
ATA663211  
1.0  
1.1  
FUNCTIONAL DESCRIPTION  
Physical Layer Compatibility  
Since the LIN physical layer is independent of higher  
LIN layers (for example, LIN protocol layer), all nodes  
with a LIN physical layer according to revision 2.x can  
be mixed with LIN physical layer nodes based on  
earlier versions (for instance, LIN 1.0, LIN 1.1,LIN 1.2,  
LIN 1.3) without any restrictions.  
1.2  
Operating Modes  
FIGURE 1-1:  
ATA663211 OPERATING MODES  
a: VVS > VVS_th_U_F_up (2.4V)  
b: VVS < VVS_th_U_)Bdown (1.9V)  
Unpowered Mode  
c: Bus wake-up event (LIN)  
d: -  
All circuitry OFF  
e: VVS < VVS_th_N_F_down (3.9V)ꢀꢀ  
f: VVS > VVS_th_F_N_up (4.9V)  
g: Local WAKE event (WKin)  
a
b
Fail-safe Mode  
(c + g) & f  
Communication: OFF  
Wake-up Signaling  
Undervoltage Signaling  
INH output switched ON  
EN = 0  
7;'ꢀ ꢀꢁ  
±
ꢂꢀIꢀꢃꢄꢅ  
EN = 1  
& f  
b
e
EN = 1  
& f  
Go to sleep  
Sleep Mode  
Normal Mode  
Communication: OFF  
INH output switched OFF  
Communication: ON  
command EN = 0 INH output switched ON  
Note 1: Condition f is valid for VS ramp up; at VS ramp down condition e is valid instead of f.  
TABLE 1-1:  
ATA663211 OPERATING MODES  
Operating Mode Transceiver  
INH  
LIN  
TXD  
RXD  
Fail-Safe  
OFF  
ON  
Recessive  
Signaling fail-safe sources  
(see Table 1-2)  
Normal  
ON  
ON  
TXD-dependent  
Recessive  
Follows data transmission  
Sleep/Unpowered  
OFF  
OFF  
Low  
High Ohmic  
2019-2021 Microchip Technology Inc.  
DS20006191D-page 3  
ATA663211  
1.2.1  
NORMAL MODE  
1.2.3  
FAIL-SAFE MODE  
This is the normal transmitting and receiving mode of  
the LIN Interface, in accordance with LIN specification  
2.x.  
The device automatically switches to Fail-Safe mode at  
system power-up or after a wake-up event. The INH  
output is switched on and the LIN transceiver is  
switched off. The IC stays in this mode until EN is  
switched to high. The IC then changes to Normal  
mode. During Fail-Safe mode the TXD pin is an output,  
and, together with the RXD output pin, signals the  
fail-safe source.  
1.2.2  
SLEEP MODE  
A falling edge at EN switches the IC into Sleep mode.  
While in Sleep mode, the transmission path is disabled  
and the device is in Low-Power mode. Supply current  
from VBAT is typically 9 A. In Sleep mode the INH pin  
is switched off. The internal termination resistor  
between the LIN pin and VS pin is disabled. Only a  
weak pull-up current (typical 10 A) between the LIN  
pin and VS pin is present. Sleep mode can be activated  
independently from the actual level on the LIN or WKin  
pin.  
If the device enters Fail-Safe mode coming from the  
Normal mode (EN = 1) due to a VS undervoltage  
condition (VVS < VVS_th_N_F_down), it is possible to  
switch into Sleep mode by a falling edge at the EN  
input. With this feature, the current consumption is  
further reduced.  
A wake-up event from Sleep mode is signaled to the  
microcontroller using the RXD pin and the TXD pin. A  
VS undervoltage condition is also signaled at these two  
pins. The coding is shown in Table 1-2.  
If the TXD pin is short-circuited to GND, it is possible to  
switch to Sleep mode though EN after t > tdom  
.
TABLE 1-2:  
Fail-Safe Sources  
LIN wake-up (LIN pin)  
SIGNALING IN FAIL-SAFE MODE  
TXD  
RXD  
Low  
Low  
High  
Low  
High  
Low  
Local wake-up (WKin pin)  
VSth (battery) undervoltage  
detection VVS < 3.9V  
Note 1: Assuming an external pull-up resistor (typical 5 k) has been added on pin TXD to the power supply of the  
microcontroller.  
1.3.2  
LOCAL WAKE UP THROUGH WKIN  
PIN  
1.3  
Wake-Up Scenarios from Sleep  
Mode  
A falling edge at the WKin pin followed by a low level  
maintained for a certain period of time (>tWKin) result in  
a local wake-up request and the device switches to  
Fail-Safe mode. The INH pin is activated (switches to  
VS) and the internal LIN termination resistor is  
switched on. The local wake-up request is indicated by  
a low level at the TXD pin and a high level at the RXD  
pin, generating an interrupt for the microcontroller.  
Even when the WKin pin is low, it is possible to switch  
to Sleep mode via the EN pin. In this case, the wake-up  
signal has to be switched to high >10 s before the  
negative edge at WKin starts a new local wake-up  
request.  
1.3.1  
REMOTE WAKE UP THROUGH LIN  
BUS  
1.3.1.1  
Remote Wake-up from Sleep Mode  
A voltage lower than the LIN pre-wake detection VLINL  
at the LIN pin activates the internal LIN receiver and  
starts the wake-up detection timer. A falling edge at the  
LIN pin, followed by a dominant bus level maintained  
for a certain period of time (>tbus) and following a rising  
edge at the LIN pin result in a remote wake-up request  
and the device switches to Fail-Safe mode. The INH  
pin is activated (switches to VS) and the internal LIN  
termination resistor is switched on. The remote  
wake-up request is indicated by a low level at pin RXD  
and interrupts the microcontroller.  
DS20006191D-page 4  
2019-2021 Microchip Technology Inc.  
ATA663211  
FIGURE 1-2:  
LIN WAKE-UP FROM SLEEP MODE  
Fail-safe Mode  
Normal Mode  
Bus wake-up filtering time  
(tBUS  
)
LIN bus  
High  
INH  
RXD  
TXD  
Low or floating  
Low  
Low (strong pull-down)  
External  
voltage  
regulator  
On state  
Off state  
Regulator wake-up time delay  
EN High  
EN  
Node in sleep state  
Microcontroller start-up  
delay time  
FIGURE 1-3:  
LOCAL WAKE-UP FROM WAKE-UP SWITCH  
Fail-safe Mode  
Normal Mode  
WKin  
INH  
State change  
High  
High  
Low or floating  
RXD  
TXD  
Low (strong pull-down)  
On state  
Wake filtering time  
WKin  
External  
voltage  
regulator  
Off state  
Regulator wake-up time delay  
EN High  
EN  
Node in sleep state  
Microcontroller start-up  
delay time  
2019-2021 Microchip Technology Inc.  
DS20006191D-page 5  
ATA663211  
added on pin TXD to the power supply of the  
microcontroller. These flags are reset immediately if the  
microcontroller sets pin EN to high and the IC is in  
Normal mode.  
1.3.3  
WAKE-UP SOURCE RECOGNITION  
The device can distinguish between different wake-up  
sources. The wake-up source can be read on the TXD  
and RXD pin in Fail-Safe mode according to Table 1-3,  
if an external pull-up resistor (typically 5 k) has been  
TABLE 1-3:  
SIGNALING IN FAIL-SAFE MODE  
Fail-Safe Sources  
TXD  
RXD  
LIN wake up (LIN pin)  
Low  
Low  
High  
Low  
High  
Low  
Local wake up (WKin pin)  
VSth (battery) undervoltage detection (VVS < 3.9V)  
Note 1: Assuming an external pull-up resistor (typical 5 k) has been added on pin TXD to the power supply of the  
microcontroller.  
1.4  
Behavior under Low Supply  
Voltage Condition  
After the battery voltage has been connected to the  
application circuit, the voltage at the VS pin increases  
according to the block capacitor used in the application  
(see Figure “ATA663211 Block Diagram”). If VVS is  
higher than the minimum VS operation threshold  
VVS_th_U_F_up, the IC mode changes from Unpowered  
mode to Fail-Safe mode, the INH output is switched on  
and the LIN transceiver can be activated.  
If, during Sleep mode, the voltage level of VVS drops  
below the under-voltage detection threshold  
VVS_th_N_F_down (typically 4.3V), the operation mode is  
not changed and no wake up is possible. Only if the  
supply voltage on the VS pin drops below the VS  
operation threshold VVS_th_U_F_down (typically 2.05V),  
does the IC switch to Unpowered mode.  
If, during Normal mode, the voltage level on the VS pin  
drops below the VS undervoltage detection threshold  
VVS_th_N_F_down (typically 4.3V), the IC switches to  
Fail-Safe mode. This means that the LIN transceiver is  
disabled in order to avoid malfunctions or false bus  
messages. If the supply voltage VVS drops further  
below the VS operation threshold VVS_th_U_F_down  
(typically 2.05V), the IC switches to Unpowered mode  
and the INH output switches off.  
DS20006191D-page 6  
2019-2021 Microchip Technology Inc.  
ATA663211  
1.5  
Pin Descriptions  
The descriptions of the pins are listed in Table 1-4.  
TABLE 1-4:  
Pin  
PIN FUNCTIONING TABLE  
Symbol  
RXD  
Function  
1
2
3
4
5
6
7
8
Receive data output  
Enables Normal mode if the input is high  
EN  
WKin  
TXD  
GND  
LIN  
High-voltage input for local wake-up request. If not needed, connect directly to VS  
Transmit data input  
Ground, heat slug  
LIN bus line input/output  
Supply voltage  
VS  
INH  
Battery-related high-side switch output for controlling an external voltage regulator or to  
switch off the LIN Commander pull-up resistor; switched on after a wake-up request  
Backside  
EP  
Heat slug, internally connected to the GND pin (only for the VDFN8 package)  
1.5.1  
OUTING PIN (RXD)  
1.5.4  
INPUT/OUTPUT (TXD)  
In Normal mode, this pin reports the state of the LIN  
bus to the microcontroller. LIN high (Recessive state) is  
indicated by a high level at RXD; LIN low (Dominant  
state) is indicated by a low level at RXD.  
In Normal mode, the TXD pin is the microcontroller  
interface for controlling the state of the LIN output. TXD  
must be pulled to ground in order to drive the LIN bus  
low. If TXD is high, the LIN output transistor is turned off  
and the bus is in the Recessive state. If the TXD pin  
stays at GND level while switching into Normal mode,  
it must be pulled to high level longer than 10 s before  
the LIN driver can be activated. This feature prevents  
the bus line from being accidentally driven to Dominant  
state after Normal mode has been activated (also in  
case of a short circuit at TXD to GND). During Fail-Safe  
mode, this pin is used as output and signals the  
fail-safe source.  
The output is an open drain; it is compatible with a 3.3V  
or 5V power supply. The AC characteristics are defined  
by an external pull-up resistor of 4.7 kto 5V and a  
load capacitor of 20 pF.  
In Unpowered mode, RXD is switched off.  
1.5.2  
ENABLE INPUT PIN (EN)  
The enable input pin controls the operating mode of the  
device. If EN is high, the circuit is in Normal mode, with  
transmission paths from TXD to LIN and from LIN to  
RXD both active.  
The TXD pin provides a pull-down resistor in order to  
have a defined level if TXD is disconnected.  
An internal timer prevents the bus line from being  
driven permanently in the Dominant state. If TXD is  
forced to low longer than tdom > 20 ms, the LIN bus  
driver is switched to the Recessive state. Nevertheless,  
when switching to Sleep mode, the actual level at the  
TXD pin is relevant.  
If EN is switched to low while TXD is still high, the  
device is forced to Sleep mode. This means that no  
data transmission is possible and current consumption  
is reduced to IVSsleep typical 9 A.  
The EN pin provides a pull-down resistor to force the  
transceiver into Recessive mode if EN is disconnected.  
To reactivate the LIN bus driver, switch TXD to high  
(>10 s).  
1.5.3  
WKIN PIN  
1.5.5  
GROUND PIN (GND)  
This pin is a high-voltage input used for waking up the  
device from Sleep mode. It is usually connected to an  
external switch in the application to generate a local  
wake up. A pull-up current source with typically 10 A  
is implemented. The voltage threshold for a wake-up  
signal is typically 2V below the VVS voltage.  
The IC does not affect the LIN bus in the event of GND  
disconnection. It is able to handle a ground shift of up  
to 11.5% of VVS  
.
If a local wake up is not needed in the application, the  
WKin pin can be connected directly to the VS pin.  
2019-2021 Microchip Technology Inc.  
DS20006191D-page 7  
ATA663211  
1.5.6  
BUS PIN (LIN)  
1.5.7  
SUPPLY PIN (VS)  
A low-side driver with internal current limitation and  
thermal shutdown as well as an internal pull-up resistor  
according to LIN specification 2.x is implemented. The  
voltage range is from -27V to +40V. This pin exhibits no  
reverse current from the LIN bus to VS, even in the  
event of a GND shift or VBat disconnection. The LIN  
receiver thresholds comply with the LIN protocol  
specification.  
LIN operating voltage is VS = 5V to 28V. Undervoltage  
detection is implemented to disable transmission if VS  
falls below typical 4.5V, in order to avoid false bus  
messages. After switching on VVS, the IC starts in  
Fail-Safe mode and the INH output is switched on.  
The supply current in Sleep mode is typically 9 A.  
1.5.8  
INHIBIT OUTPUT PIN (INH)  
The fall time (from recessive to dominant) and the rise  
time (from dominant to recessive) are slope-controlled.  
This pin is used to control an external voltage regulator  
or to switch the LIN Commander pull-up resistor  
ON/OFF in case the device is used in a Commander  
node. The inhibit pin provides an internal switch toward  
the VS pin which is protected by temperature monitor-  
ing. If the device is in normal or Fail-Safe mode, the  
inhibit high-side switch is turned on. When the device is  
in Sleep mode, the inhibit switch is turned off, thus dis-  
abling the voltage regulator or other connected external  
devices.  
During a short circuit at LIN to VBat, the output limits the  
output current to IBUS_LIM  
. Due to the power  
dissipation, the chip temperature exceeds Toff and the  
LIN output is switched off. The chip cools down and  
after a hysteresis of Thys, switches the output on again.  
RXD stays on high because LIN is high.  
During a short circuit from LIN to GND, the IC can be  
switched into Sleep mode and even in this case the  
current consumption is lower than 100 A. If the short  
circuit disappears, the IC starts with a remote wake up.  
A wake-up event on the LIN bus or at the WKin pin  
switches the INH pin to the VS level. After a system  
power-up (VVS rises from zero), the INH pin switches to  
the VVS level automatically.  
The reverse current is <2 A at pin LIN during loss of  
VBat. This is optimal behavior for bus systems where  
some nodes are supplied from battery or ignition.  
1.6  
Typical Applications  
FIGURE 1-4:  
ATA663211 TYPICAL APPLICATION CIRCUIT  
D1  
VBAT  
C1  
12V  
10μF/50V  
5V  
VCC  
C4  
2.2μF  
C5  
R7  
4.7kΩ  
R4  
10kΩ  
D2  
100nF  
&RPPDQGHU node  
pull up  
R2  
1kΩ  
VCC  
RXD  
EN  
INH  
VS  
ATA663211  
DFN8  
3 x 3  
C2  
100nF  
Microcontroller  
GND  
R3 WKin  
LIN  
GND  
LIN  
2.7kΩ  
C3  
220pF  
TXD  
GND  
(xternal  
wake-  
switch  
S1  
DS20006191D-page 8  
2019-2021 Microchip Technology Inc.  
ATA663211  
2.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Supply Voltage (VVS) ................................................................................................................................. -0.3V to +40V  
Logic Pins:  
Voltage Levels (RXD, TXD, EN, NRES) (VLogic)....................................................................................... -0.3V to +5.5V  
Output DC currents (ILogic)...................................................................................................................... -5 mA to +5 mA  
LIN  
DC Voltage.................................................................................................................................................. -27V to +40V  
Pulse time <500 ms .................................................................................................................................... -27V to +43V  
INH  
DC Voltage....................................................................................................................................... -0.3V to (VS + 0.3V)  
DC Voltage........................................................................................................................................ -100 mA to +30 mA  
WKin voltage levels  
DC Voltage (VWKIN).................................................................................................................................... -0.3V to +40V  
Transient voltage according to ISO7637 (coupling 1 nF, with 2.7K serial resistor)................................. -150V to +100V  
ESD according to IBEE LIN EMC; test specification 1.0 following IEC 61000-4-2  
Pin VS, LIN to GND, WKin (with external circuitry according to applications diagram) ...........................................±6 kV  
ESD HBM following STM5.1 with 1.5 k/100 pF  
Pin VS, LIN, INH to GND ........................................................................................................................................ ±6 kV  
Pin WKin to GND .................................................................................................................................................... ±5 kV  
HBM ESD ANSI/ESD-STM5.1 JESD22-A114 AEC-Q100 (002) ............................................................................. ±3 kV  
CDM ESD STM 5.3.1............................................................................................................................................. ±750V  
Machine Model ESD AEC-Q100-RevF(003).......................................................................................................... ±200V  
Virtual Junction Temperature (TVJ) ........................................................................................................ -40°C to +150°C  
Storage Temperature (TS).......................................................................................................................-55°C to +150°C  
† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indicated in  
the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
2019-2021 Microchip Technology Inc.  
DS20006191D-page 9  
ATA663211  
ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: Unless otherwise specified all values refer to GND pins, 5V < VVS < 28V, -40°C < TVJ < 150°C.  
No.  
Parameters  
VS Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Conditions  
1
Nominal DC  
Voltage Range  
VVS  
5
3
13.5  
9
28  
15  
V
1.1  
Supply Current  
in Sleep mode  
IVSsleep  
A  
Sleep mode  
V
V
LIN > VVS - 0.5V  
VS < 14V, T = 27°C (Note 1)  
IVSsleep  
3
11  
50  
18  
A  
A  
Sleep mode  
1.3  
V
V
LIN > VVS – 0.5V  
VS < 14V  
IVSsleep_short  
20  
100  
Sleep mode, VLIN = 0V  
bus shorted to GND  
VVVS < 14V  
Supply Current  
in Normal Mode  
IVSrec  
150  
200  
250  
700  
320  
950  
A  
A  
Bus recessive  
1.4  
1.5  
1.6  
1.7  
V
VS < 14V  
Supply Current  
in Normal Mode  
IVSdom  
Bus dominant  
(internal LIN pull-up resistor  
active)  
V
VS < 14V  
Bus recessive  
VVS < 14V  
Supply Current  
in Fail-Safe mode  
IVSfail  
40  
80  
110  
A  
VS Undervoltage  
Threshold (switching  
from Normal to  
VVS_th_N_F_down  
VVS_th_F_N_up  
3.9  
4.1  
4.3  
4.6  
4.7  
4.9  
V
V
Decreasing supply voltage  
Increasing supply voltage  
Fail-Safe mode)  
VS Undervoltage  
Hysteresis  
VVS_hys_F_N  
VVS_th_U_F_down  
VVS_th_U_F_up  
VVS_hys_U  
0.1  
1.9  
2.0  
0.1  
0.25  
2.05  
2.25  
0.2  
0.4  
2.3  
2.4  
0.3  
V
V
V
V
1.8  
1.9  
VS Operation  
Threshold (switching  
to Unpowered mode)  
Switch to Unpowered mode  
Switch from Unpowered  
to Fail-Safe mode  
VS Undervoltage  
Hysteresis  
1.10  
2
3
RXD Output Pin (Open Drain)  
Low-Level Output Sink  
Capability  
VRXDL  
-3  
0.2  
0.4  
+3  
V
Normal mode,  
2.1  
2.3  
V
LIN = 0V, IRXD = 2 mA  
High-Level  
IRXDH  
A  
Normal mode  
VLIN = VVS, VRXD = 5V  
Leakage Current  
TXD Input/Output Pin  
Low-Level Voltage  
Input  
VTXDL  
VTXDH  
-0.3  
2
+0.8  
5.5  
V
V
3.1  
3.2  
High-Level Voltage  
Input  
Pull-Down Resistor  
RTXD  
150  
-3  
200  
300  
+3  
k  
A  
VTXD = 5V  
VTXD = 0V  
3.5  
3.6  
Low-level  
ITXD  
Leakage Current  
Note 1: 100% correlation tested.  
2: Characterized on samples.  
3: Design parameter.  
DS20006191D-page 10  
2019-2021 Microchip Technology Inc.  
ATA663211  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise specified all values refer to GND pins, 5V < VVS < 28V, -40°C < TVJ < 150°C.  
No.  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Unit  
mA Fail-Safe mode  
TXD = 0.4V  
Conditions  
Low-Level Output Sink  
Current at Wake-Up  
Request  
ITXD  
2
2.5  
8
V
3.7  
4
EN Input Pin  
Low-Level  
Voltage Input  
VENL  
VENH  
-0.3  
2
+0.8  
5.5  
V
V
4.1  
High-Level  
Voltage Input  
4.2  
4.3  
4.4  
Pull-Down Resistor  
REN  
IEN  
50  
-3  
125  
200  
+3  
k  
A  
VEN = 5V  
VEN = 0V  
Low-Level  
Input Current  
6
WKin Input Pin  
High-Level Input  
Voltage  
VWKinH  
VWKinL  
VVS – 1V  
-1  
VVS + 0.3V  
V
V
6.1  
Low-Level Input  
Voltage  
V
VS – 3.3V  
Initializes a wake-up signal  
6.2  
6.3  
6.4  
WKin Pull-Up Current  
IWKIN  
-30  
-5  
-10  
A  
A  
VVS < 28V, VWKin = 0V  
VVS = 28V, VWKin = 28V  
High-Level Leakage  
Current  
IWKINL  
+5  
Debounce Time of  
Low Pulse for Wake  
up via WKin  
tWKin  
50  
100  
150  
s  
VWKin = 0V  
6.5  
7
INH Output Pin  
Switch on Resistance  
Between VS and INH  
RDSON,INH  
ILEAK,INH  
VINH  
-3  
12  
25  
+3  
A  
V
Normal or Fail-Safe mode  
IINH = -15 mA  
7.1  
7.2  
7.3  
Leakage Current  
Transceiver in Sleep mode,  
VINH = 0V/28V, VVS = 28V  
High-Level Voltage  
VVS  
0.375  
VVS  
Normal or Fail-Safe mode  
IINH = -15 mA  
10  
LIN Bus Driver: Bus Load Conditions:  
Load 1 (small): 1 nF, 1 k; Load 2 (large): 10 nF, 500; External Pull-up RRXD = 4.7 k; CRXD = 20 pF,  
Load 3 (medium): 6.8 nF, 660characterized on samples, 12.7 and 12.8 specifies the timing parameters for proper  
operation at 20 kb/s and 12.9 and 12.10 at 10.4 kb/s  
Driver Recessive  
Output Voltage  
VBUSrec  
V_LoSUP  
V_HISUP  
V_LoSUP_1k  
V_HISUP_1K  
RLIN  
0.9 * VVS  
30  
VVS  
1.2  
2
V
V
Load1/Load2  
10.1  
Driver Dominant  
Voltage  
VVS = 7V  
10.2  
10.3  
10.4  
10.5  
10.6  
Rload = 500  
Driver Dominant  
Voltage  
V
VVS = 18V  
Rload = 500  
Driver Dominant  
Voltage  
0.6  
0.8  
20  
V
VVS = 7V  
Rload = 1000  
Driver Dominant  
Voltage  
V
VVS = 18V  
Rload = 1000  
Pull-Up Resistor to VS  
47  
k  
The serial diode is mandatory  
Note 1: 100% correlation tested.  
2: Characterized on samples.  
3: Design parameter.  
2019-2021 Microchip Technology Inc.  
DS20006191D-page 11  
ATA663211  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise specified all values refer to GND pins, 5V < VVS < 28V, -40°C < TVJ < 150°C.  
No.  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Conditions  
Voltage Drop at the  
Serial Diodes  
VSerDiode  
0.4  
1.0  
V
In pull-up path with RLIN  
ISerDiode = 10 mA (Note 3)  
10.7  
LIN Current Limitation  
IBUS_LIM  
40  
-1  
120  
200  
mA  
10.8  
10.9  
V
BUS = VBAT_MAX  
Input leakage current  
at the receiver  
including pull-up  
IBUS_PAS_dom  
-0.35  
mA Input leakage current  
driver off  
V
V
BUS= 0V  
BAT = 12V  
resistor as specified  
Leakage Current  
LIN Recessive  
IBUS_PAS_rec  
10  
20  
A  
A  
Driver off  
8V < VBAT< 18V  
8V < VBUS < 18V  
10.10  
V
BUS VBAT  
Leakage current when  
control unit is  
IBUS_NO_gnd  
-10  
+0.5  
+10  
GNDDevice = VVS  
VBAT= 12V  
disconnected from  
0V < VBUS< 18V  
10.11 ground. Loss of local  
ground must not affect  
communication in the  
residual network  
Leakage current at  
disconnected battery.  
Node has to sustain  
IBUS_NO_bat  
0.1  
2
A  
VBAT disconnected  
V
SUP_device = GND  
0V < VBUS < 18V  
the current that can  
flow under this  
10.12  
condition. Bus must  
remain operational  
under this condition.  
Capacitance on LIN  
pin to GND  
CLIN  
20  
pF  
V
(Note 3)  
10.13  
11  
LIN Bus Receiver  
Center of Receiver  
Threshold  
VBUS_CNT  
0.475 * VVS 0.5 * VS 0.525 * VVS  
VBUS_CNT =  
(Vth_dom + Vth_rec)/2  
11.1  
Receiver Dominant  
State  
VBUSdom  
VBUSrec  
VBUShys  
-27  
0.4 * VS  
40  
V
V
V
VEN = 5V  
11.2  
11.3  
Receiver Recessive  
State  
0.6 * VVS  
VEN = 5V  
Receiver Input  
Hysteresis  
0.028 * VVS 0.1 * VS 0.175 * VVS  
Vhys  
=
11.4  
V
th_rec - Vth_dom  
Pre-Wake Detection  
11.5 LIN High-Level Input  
Voltage  
VLINH  
VVS – 2V  
-27  
VVS + 0.3V  
VVS – 3.3V  
V
V
Pre-Wake Detection  
11.6 LIN Low-Level Input  
Voltage  
VLINL  
Activates the LIN receiver  
Note 1: 100% correlation tested.  
2: Characterized on samples.  
3: Design parameter.  
DS20006191D-page 12  
2019-2021 Microchip Technology Inc.  
ATA663211  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise specified all values refer to GND pins, 5V < VVS < 28V, -40°C < TVJ < 150°C.  
No.  
12  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Conditions  
Internal timers  
Dominant time for  
wake up via LIN bus  
50  
5
100  
15  
150  
20  
VLIN = 0V  
VEN = 5V  
tbus  
s  
s  
12.1  
Time delay for mode  
change from Fail-Safe  
into Normal mode via  
EN pin  
tnorm  
12.2  
Time delay for mode  
change from Normal  
mode to Sleep mode  
via EN pin  
5
15  
20  
VEN = 0V  
VEN = 5V  
tsleep  
s  
s  
12.3  
Time delay for mode  
change from Sleep  
mode to Normal mode  
via EN pin  
150  
300  
ts_n  
12.4  
12.5  
TXD dominant  
time-out time  
20  
40  
60  
VTXD = 0V  
tdom  
D1  
ms  
Duty Cycle 1  
Duty Cycle 2  
Duty Cycle 3  
Duty Cycle 4  
0.396  
THRec(max) = 0.744 x VVS  
THDom(max) = 0.581 x VVS  
VVS = 7.0V to 18V  
12.7  
12.8  
12.9  
t
Bit = 50 s  
D1 = tbus_rec(min)/(2 x tBit  
)
0.417  
0.581  
THRec(min) = 0.422 x VVS  
THDom(min) = 0.284 x VVS  
VVS = 7.6V to 18V  
D2  
D3  
D4  
s  
t
Bit = 50 s  
D2 = tbus_rec(max)/(2 x tBit  
)
THRec(max) = 0.778 x VVS  
THDom(max) = 0.616 x VVS  
VVS = 7.0V to 18V  
t
Bit = 96 µs  
D3 = tbus_rec(min)/(2 x tBit  
)
0.590  
22.5  
THRec(min) = 0.389 x VVS  
THDom(min) = 0.251 x VVS  
VVS = 7.6V to 18V  
12.10  
12.11  
t
Bit = 96 µs  
D4 = tbus_rec(max)/(2 x tBit  
)
Slope time falling and  
rising edge at LIN  
3.5  
VVS = 7.0V to 18V  
tSLOPE_fall  
tSLOPE_rise  
13  
Receiver electrical AC parameters of the LIN physical layer  
LIN receiver, RXD load conditions: CRXD = 20 pF, RRXD = 4.7 k  
Propagation delay of  
receiver  
-2  
5
VVS = 7.0V to 18V  
trx_pd  
s  
s  
13.1  
13.2  
t
rx_pd = max(trx_pdr, trx_pdf  
)
Symmetry of receiver  
propagation delay  
rising edge minus  
falling edge  
+2  
VVS = 7.0V to 18V  
trx_sym  
t
rx_sym = trx_pdr - trx_pdf  
Note 1: 100% correlation tested.  
2: Characterized on samples.  
3: Design parameter.  
2019-2021 Microchip Technology Inc.  
DS20006191D-page 13  
ATA663211  
FIGURE 2-1:  
DEFINITION OF BUS TIMING CHARACTERISTICS  
tBit  
tBit  
tBit  
TXD  
(Input to transmitting node)  
tBus_dom(max)  
tBus_rec(min)  
Thresholds of  
receiving node1  
THRec(max)  
VS  
THDom(max)  
(Transceiver supply  
of transmitting node)  
LIN Bus Signal  
Thresholds of  
THRec(min)  
THDom(min)  
receiving node2  
tBus_dom(min)  
tBus_rec(max)  
RXD  
(Output of receiving node1)  
trx_pdf(1)  
trx_pdr(1)  
RXD  
(Output of receiving node2)  
trx_pdr(2)  
trx_pdf(2)  
TEMPERATURE SPECIFICATIONS 8-LEAD VDFN  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Unit  
Thermal resistance virtual junction to exposed  
thermal pad  
RthvJC  
10  
K/W  
Thermal resistance virtual junction to ambient,  
where exposed thermal pad is soldered to the PCB,  
according to JEDEC  
RthvJA  
50  
K/W  
Thermal shutdown  
Toff  
150  
165  
10  
180  
°C  
°C  
Thermal shutdown hysteresis  
Thys  
TEMPERATURE SPECIFICATIONS 8-LEAD SOIC  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Unit  
Thermal resistance virtual junction to ambient, with  
a heat sink at GND (pin 5) on PCB (fused lead frame  
to pin 5)  
RthvJA  
80  
K/W  
Thermal shutdown  
Toff  
150  
5
165  
10  
180  
20  
°C  
°C  
Thermal shutdown hysteresis  
Thys  
DS20006191D-page 14  
2019-2021 Microchip Technology Inc.  
ATA663211  
3.0  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead VDFN (3x3 mm)  
Example ATA663211  
XXXXXX  
NNN  
663211  
256  
PIN 1  
PIN 1  
8-Lead SOIC (3.90 mm)  
Example ATA663211  
Atmel YWW  
Atmel 841  
XXXXXX  
663211  
YYWWNNN  
1841256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
YY  
WW  
NNN  
3
e
*
)
e
3
, , Pin one index is identified by a dot, delta up, or delta down (triangle  
mark).  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information. Package may or may not include  
the corporate logo.  
Underbar (_) symbol may not be to scale.  
2019-2021 Microchip Technology Inc.  
DS20006191D-page 15  
ATA663211  
8-Lead Plastic Small Outline (OA) - Narrow, 3.90 mm (.150 In.) Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2X  
0.10 C A–B  
D
A
D
NOTE 5  
N
E
2
E1  
2
E1  
E
2X  
0.10 C A–B  
2X  
0.10 C A–B  
1
2
NOTE 1  
e
NX b  
0.25  
C A–B D  
B
NOTE 5  
TOP VIEW  
0.10 C  
0.10 C  
C
A2  
A
SEATING  
PLANE  
8X  
SIDE VIEW  
A1  
h
R0.13  
R0.13  
h
H
0.23  
L
SEE VIEW C  
(L1)  
VIEW A–A  
VIEW C  
Microchip Technology Drawing No. C04-057-OA Rev F Sheet 1 of 2  
DS20006191D-page 16  
2019-2021 Microchip Technology Inc.  
ATA663211  
8-Lead Plastic Small Outline (OA) - Narrow, 3.90 mm (.150 In.) Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
N
8
e
1.27 BSC  
A
-
-
-
-
1.75  
-
0.25  
A2  
A1  
E
1.25  
0.10  
§
Overall Width  
6.00 BSC  
Molded Package Width  
Overall Length  
Chamfer (Optional)  
Foot Length  
E1  
D
h
3.90 BSC  
4.90 BSC  
0.25  
0.40  
-
-
0.50  
1.27  
L
Footprint  
Foot Angle  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
L1  
1.04 REF  
0°  
0.17  
0.31  
5°  
-
-
-
-
-
8°  
c
b
0.25  
0.51  
15°  
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.15mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
5. Datums A & B to be determined at Datum H.  
Microchip Technology Drawing No. C04-057-OA Rev F Sheet 2 of 2  
2019-2021 Microchip Technology Inc.  
DS20006191D-page 17  
ATA663211  
8-Lead Plastic Small Outline (OA) - Narrow, 3.90 mm (.150 In.) Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
SILK SCREEN  
C
Y1  
X1  
E
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Contact Pitch  
E
C
X1  
Y1  
1.27 BSC  
5.40  
Contact Pad Spacing  
Contact Pad Width (X8)  
Contact Pad Length (X8)  
0.60  
1.55  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-2057-OA Rev F  
DS20006191D-page 18  
2019-2021 Microchip Technology Inc.  
ATA663211  
8-Lead Very Thin Plastic Dual Flat, No Lead Package (Q8B) - 3x3 mm Body [VDFN]  
With 2.40x1.60 mm Exposed Pad and Stepped Wettable Flanks; Atmel Legacy YCL  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
B
E
N
(DATUM A)  
(DATUM B)  
NOTE 1  
2X  
0.10 C  
1
2
2X  
TOP VIEW  
0.10 C  
0.10 C  
0.08 C  
C
A
A1  
SEATING  
PLANE  
8X  
SIDE VIEW  
(A3)  
0.10  
C A B  
D2  
2
A
A
1
NOTE 1  
0.10  
C A B  
E2  
K
N
L
8X b  
0.10  
0.05  
C A B  
C
e
BOTTOM VIEW  
Microchip Technology Drawing C04-21358 Rev C Sheet 1 of 2  
2019-2021 Microchip Technology Inc.  
DS20006191D-page 19  
ATA663211  
8-Lead Very Thin Plastic Dual Flat, No Lead Package (Q8B) - 3x3 mm Body [VDFN]  
With 2.40x1.60 mm Exposed Pad and Stepped Wettable Flanks; Atmel Legacy YCL  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
A4  
PARTIALLY  
PLATED  
E3  
SECTION A–A  
Units  
Dimension Limits  
MILLIMETERS  
MIN  
NOM  
MAX  
Number of Terminals  
Pitch  
Overall Height  
Standoff  
Terminal Thickness  
Overall Length  
Exposed Pad Length  
Overall Width  
Exposed Pad Width  
Terminal Width  
Terminal Length  
N
8
0.65 BSC  
0.90  
0.035  
0.203 REF  
3.00 BSC  
2.40  
3.00 BSC  
1.60  
0.30  
e
A
A1  
A3  
D
D2  
E
E2  
b
L
K
0.80  
0.00  
1.00  
0.05  
2.30  
2.50  
1.50  
0.25  
0.35  
0.20  
0.10  
-
1.70  
0.35  
0.45  
-
0.19  
0.085  
0.40  
-
-
-
Terminal-to-Exposed-Pad  
Wettable Flank Step Cut Depth  
Wettable Flank Step Cut Width  
A4  
E3  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-21358 Rev C Sheet 2 of 2  
DS20006191D-page 20  
2019-2021 Microchip Technology Inc.  
ATA663211  
8-Lead Very Thin Plastic Dual Flat, No Lead Package (Q8B) - 3x3 mm Body [VDFN]  
With 2.40x1.60 mm Exposed Pad and Stepped Wettable Flanks  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Y2  
EV  
8
ØV  
C X2  
EV  
CH  
G1  
Y1  
1
2
SILK SCREEN  
X1  
G2  
E
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
E
MILLIMETERS  
NOM  
0.65 BSC  
MIN  
MAX  
Contact Pitch  
Optional Center Pad Width  
Optional Center Pad Length  
Contact Pad Spacing  
X2  
Y2  
C
1.70  
2.50  
3.00  
Contact Pad Width (X8)  
Contact Pad Length (X8)  
Contact Pad to Center Pad (X8)  
Contact Pad to Contact Pad (X6)  
Pin 1 Index Chamfer  
Thermal Via Diameter  
Thermal Via Pitch  
X1  
Y1  
G1  
G2  
CH  
V
0.35  
0.80  
0.20  
0.20  
0.20  
0.33  
1.20  
EV  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during  
reflow process  
Microchip Technology Drawing C04-23358 Rev C  
2019-2021 Microchip Technology Inc.  
DS20006191D-page 21  
ATA663211  
NOTES:  
DS20006191D-page 22  
2019-2021 Microchip Technology Inc.  
ATA663211  
APPENDIX A: REVISION HISTORY  
Revision D (June 2021)  
The following is the list of modifications:  
• The current LIN standards use the terminology  
"Master" and "Slave”. The LIN standard groups  
have decided that the terms "Commander" and  
"Responder" will be used in future.  
• Updated the VDFN8 package drawing.  
• Minor text updates.  
Revision C (July 2020)  
• Parameter 13.1 in chapter 2.0 “Electrical  
Characteristics” updated  
• Updated the marking information for the SOIC  
package in the “Package Marking Information”  
section  
Revision B (April 2020)  
“Package Marking Information” updated  
• Minor editorial changes  
Revision A (April 2019)  
• Original release of this document  
• Minor text updates  
• This document replaces  
Atmel – 9359D-AUTO-10/16  
2019-2021 Microchip Technology Inc.  
DS20006191D-page 23  
ATA663211  
NOTES:  
DS20006191D-page 24  
2019-2021 Microchip Technology Inc.  
ATA663211  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
XX  
[X](1)  
[X]  
a) ATA663211-GAQW  
8-Lead SOIC,  
Tape and Reel package according  
to RoHS  
Device  
Package Tape and Reel Package Directives  
Classification  
Option  
b) ATA663211-GBQW  
8-Lead VDFN,  
Tape and Reel package according  
to RoHS  
Device:  
ATA663211  
Note 1: Tape and Reel identifier only appears in the catalog  
part number description. This identifier is used for  
ordering purposes and is not printed on the device  
package. Check with your Microchip Sales Office  
for package availability with the Tape and Reel  
option.  
Package:  
GA  
GB  
=
=
8-Lead SOIC  
8-Lead VDFN  
(1)  
Tape and Reel  
Option:  
Q
=
=
330 mm diameter Tape and Reel  
2: RoHS compliant; maximum concentration value of  
0.09% (900 ppm) for Bromine (Br) and Chlorine  
(Cl) and less than 0.15% (1500 ppm) total Bromine  
(Br) and Chlorine (Cl) in any homogeneous  
material. Maximum concentration value of 0.09%  
(900 ppm) for Antimony (Sb) in any homogeneous  
material.  
(1)  
Package Directives  
Classification:  
W
Package according to RoHS  
2019-2021 Microchip Technology Inc.  
DS20006191D-page 25  
ATA663211  
NOTES:  
DS20006191D-page 26  
2019-2021 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specifications contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip  
devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications  
contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished  
without violating Microchip's intellectual property rights.  
Microchip is willing to work with any customer who is concerned about the integrity of its code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not  
mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are  
committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection  
feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or  
other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication is provided for the sole  
purpose of designing with and using Microchip products. Infor-  
mation regarding device applications and the like is provided  
only for your convenience and may be superseded by updates.  
It is your responsibility to ensure that your application meets  
with your specifications.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,  
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,  
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,  
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,  
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,  
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,  
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,  
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A. and  
other countries.  
THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION INCLUDING BUT NOT  
LIMITED TO ANY IMPLIED WARRANTIES OF NON-  
INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A  
PARTICULAR PURPOSE OR WARRANTIES RELATED TO  
ITS CONDITION, QUALITY, OR PERFORMANCE.  
AgileSwitch, APT, ClockWorks, The Embedded Control Solutions  
Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight  
Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3,  
Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-  
Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, WinPath, and ZL are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-  
RECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUEN-  
TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND  
WHATSOEVER RELATED TO THE INFORMATION OR ITS  
USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS  
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES  
ARE FORESEEABLE. TO THE FULLEST EXTENT  
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON  
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION  
OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF  
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP  
FOR THE INFORMATION. Use of Microchip devices in life sup-  
port and/or safety applications is entirely at the buyer's risk, and  
the buyer agrees to defend, indemnify and hold harmless  
Microchip from any and all damages, claims, suits, or expenses  
resulting from such use. No licenses are conveyed, implicitly or  
otherwise, under any Microchip intellectual property rights  
unless otherwise stated.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky,  
BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive,  
CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net,  
Dynamic Average Matching, DAM, ECAN, Espresso T1S,  
EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP,  
INICnet, Intelligent Paralleling, Inter-Chip Connectivity,  
JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi,  
MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK,  
NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net,  
PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,  
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O,  
simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI,  
SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total  
Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,  
ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks  
of Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, and Symmcom are registered trademarks of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2019-2021, Microchip Technology Incorporated, All Rights  
Reserved.  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
ISBN: 978-1-5224-8328-1  
2019-2021 Microchip Technology Inc.  
DS20006191D-page 27  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4485-5910  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20006191D-page 28  
2019-2021 Microchip Technology Inc.  
02/28/20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY