ATR4252C-RAQW-1 [MICROCHIP]

IC ANTENNA AMP AM/FM 28QFN;
ATR4252C-RAQW-1
型号: ATR4252C-RAQW-1
厂家: MICROCHIP    MICROCHIP
描述:

IC ANTENNA AMP AM/FM 28QFN

文件: 总20页 (文件大小:1090K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Atmel ATR4252C  
All-in-one IC Solution for Active Antennas  
DATASHEET  
Features  
Highly integrated - All-in-one active antenna IC  
Integrated AGC for AM and FM  
Integrated driver for AM and FM pin diodes  
Integrated power supply regulator  
Integrated antenna sensor  
Separated AM LNA, AM buffer and FM amplifier  
High dynamic range for AM and FM  
Excellent noise performance  
High intercept point 3rd order for FM  
FM amplifier adjustable to various cable impedances  
High intercept point 2nd and 3rd order for AM  
Low noise output voltage  
Low power consumption  
Low output impedance AM  
Only small capacitor values necessary at AM AGC  
Large AM frequency range to cover DRM broadcast signals  
9264B–AUDR–01/14  
1.  
Description  
The Atmel® ATR4252C is a highly integrated high performance AM/FM antenna amplification IC with several features. The  
device has built-in AGC's for both AM and FM, antenna detection, a power supply regulator as well as additional pre-integrated  
peripherals.  
The Atmel ATR4252C is based on BICMOS technology. The device is designed in particular for car application and is suitable  
for active antennas located in several positions on the car such as bumpers, windscreen, mirrors or windows.  
Figure 1-1. Block Diagram  
AM LNA  
BIAS  
FM  
REF  
21  
AMPD GND2 BIAS  
FMB  
17  
FME  
16  
FMPD  
15  
22  
20  
19  
18  
FM  
Amplifier  
AM  
23  
24  
25  
26  
27  
28  
14  
13  
12  
11  
10  
9
AM LNA IN  
FMC  
LNA  
AM LNA  
SOURCE  
Voltage  
Supply  
AGC  
(FM)  
FMDET  
FMTC  
VS  
CASCODE  
FILTER  
AM LNA OUT  
AMBIAS  
Antenna  
Detect  
Over  
Voltage  
AGC  
(AM)  
AMOUT  
GND1  
AM  
Buffer  
AMBUF IN  
1
2
3
4
5
6
7
8
ANTENNA  
VS VSTART OVDET VREGO AMTC1 AMTC2 AMDET  
SENSE FILTER  
Atmel ATR4252C [DATASHEET]  
2
9264B–AUDR–01/14  
2.  
Pin Configuration  
Figure 2-1. Pinning VQFN 4x5 / 28L  
22 21 20 19 18 17 16 15  
AM LNA IN  
23  
24  
25  
14  
13  
12  
11  
10  
9
FMC  
AM LNA SOURCE  
CASCODE FILTER  
FMDET  
FMTC  
VS  
ATR4252  
AM LNA OUT 26  
AMBIAS  
27  
28  
AMOUT  
GND1  
AMBUF IN  
1
2
3
4
5
6
7
8
Table 2-1. Pin Description  
Pin  
1
Symbol  
ANTENNA SENSE  
Function  
Antenna sense input  
Supply voltage filter input  
2
VS FILTER  
VSTART  
OVDET  
VREGO  
AMTC1  
AMTC2  
AMDET  
GND1  
3
Comparator input of voltage detector  
Overvoltage detection input  
Output of voltage regulator  
AM AGC time-constant capacitance 1  
AM AGC time-constant capacitance 2  
Level detector input of AM-AGC  
Ground AM  
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
AMOUT  
VS  
AM output, impedance matching  
Supply voltage  
FMTC  
FM AGC time constant  
FMDET  
FMC  
Level detector input of FM-AGC  
Collector of FM amplifier (NPN)  
FM AGC output for pin diode  
FM amplifier emitter(NPN)  
FM amplifier base (NPN)  
Reference voltage 2.7V FM  
Ground FM  
FMPD  
FME  
FMB  
FMBIAS  
GND2  
AMPD  
AM AGC output for pin diode  
Atmel ATR4252C [DATASHEET]  
3
9264B–AUDR–01/14  
Table 2-1. Pin Description (Continued)  
Pin  
21  
Symbol  
REF  
Function  
Reference voltage 6V  
22  
AM LNA BIAS  
AM LNA IN  
AM LNA SOURCE  
CASCODE FILTER  
AM LNA OUT  
AMBIAS  
Reference voltage for AM LNA IN  
AM LNA input terminal  
23  
24  
AM LNA source terminal  
AM Cascode filter terminal  
AM LNA output terminal  
Reference voltage for AMBUF IN  
AM Buffer amplifier input, impedance matching  
Ground paddle  
25  
26  
27  
28  
AMBUF IN  
Paddle  
GND  
Atmel ATR4252C [DATASHEET]  
4
9264B–AUDR–01/14  
3.  
Functional Description  
The Atmel® ATR4252C is a highly integrated AM/FM antenna IC with lots of features and functions. In fact the most important  
feature is the impedance matching on both the antenna input and the cable. The Atmel ATR4252C compensates cable losses  
between the antenna (for example, windscreen, roof or bumper antennas) and the car radio, which is usually placed far away  
from the antenna.  
AM means long wave (LW), medium wave (MW) and short wave (SW) frequency bands (150kHz to 30MHz) that are usually  
used for AM as well as for DRM transmissions, and FM means any of the world wide used frequency bands for FM radio  
broadcast (70MHz to 110MHz).  
Two separate amplifier chains are used for AM and FM due to the different operation frequencies and requirements in the AM  
and FM band. This allows the use of separate antennas (e.g., windscreen antennas) for AM and FM. Of course, both amplifier  
chain inputs can also be connected to one antenna (e.g., roof antenna).  
The AM amplifier chain is separated into two amplifiers. The first one is an LNA that is optimized for low noise figure and low  
input capacitance. The second amplifier (AM buffer) is optimized to drive a possibly long antenna cable with high parasitic  
capacitance. Both amplifiers have outstanding large signal performance. All input and output terminals of these two amplifiers  
are accessible from outside so they can be connected together according to the application needs. Additionally, a filter can be  
inserted between LNA output and buffer amplifier input.  
For AM and FM amplifier chain, two separate automatic gain control (AGC) circuits have been integrated in order to avoid  
overdriving the amplifiers in large signal conditions. The two separate AGC loops prevent strong AM signals from blocking FM  
stations and vice versa.  
The integrated PIN diode drivers reduce the external component cost and board space.  
A voltage regulation stage is integrated in order to further reduce the external component costs. This stage provides  
overvoltage protection and current limitation. An external transistor is used as power driver for this stage.  
3.1  
AM Amplifier  
Due to the long wavelength in AM bands, the antennas used for AM reception in automotive applications are short compared to  
the wavelength. Therefore, these antennas do not provide 50Ω output impedance, but have an output impedance of some pF. If  
these (passive) antennas are connected to the car radio by a long cable, the capacitive load of this cable (some 100pF)  
dramatically reduces the signal level at the tuner input.  
In order to overcome this problem, Atmel ATR4252C provides two AM amplifiers, one LNA and one AM buffer amplifier. These  
two amplifiers can be used independently because all input/output terminals and bias inputs are externally accessible for the  
application.  
The AM LNA has low input capacitance (12pF typically) to reduce the capacitive load at the antenna and provides a voltage  
gain of typically 9dB that can be varied from 0 to 15dB depending on external application.  
The AM buffer amplifier has a very low input capacitance of typically 2.45pF and can also be connected directly to the car  
antenna if no additional gain is required. Due to the low output impedance of 8Ω, the buffer amplifier is perfectly suited to drive  
the capacitive load of long antenna cables. The voltage gain of this amplifier is close to 1 (0dB), but the insertion gain that is  
achieved when the buffer amplifier is inserted between antenna output and antenna cable may be much higher (up to 35dB).  
The actual value, of course, depends on antenna and cable capacitances.  
The input of the buffer amplifier is connected by an external 4.7MΩ resistor to the bias voltage in order to maintain high input  
impedance and low noise voltage.  
AM tuners in car radios usually use PIN diode attenuators at their input. These PIN diode attenuators attenuate the signal by  
reducing the input impedance of the tuner. Therefore, a series resistor is used at the AM amplifier output in the standard  
application. This series resistor guarantees well-defined source impedance for the radio tuner and protects the output of the AM  
amplifier from short circuit by the PIN diode attenuator in the car radio.  
Atmel ATR4252C [DATASHEET]  
5
9264B–AUDR–01/14  
3.2  
AM AGC  
The IC is equipped with an AM AGC capability to prevent overdriving of the amplifier in case the amplifier operates near strong  
signal sources, e.g., transmitters.  
The AM amplifier output AMOUT is applied to a resistive voltage divider. This divided signal feeds the AGC level detector input  
pin AMDET. The rectified signal is compared against an internal reference. The threshold of the AGC can be adjusted by  
modification of the divider ratio of the external voltage divider. If the threshold is reached ,the pin AMPD opens an internal  
transistor, which controls the pin diode current and limits the antenna signal to prevent an overdriving of the AM amplifier.  
As the AM AGC has to react very slowly, large capacitors are usually needed for this time delay. To reduce the cost of the  
external components, a current control for the time delay is integrated, so that only small external capacitor values are needed.  
The necessary driver for the external pin diode is already incorporated in the Atmel® ATR4252C IC, which reduces the BOM  
cost and the application size.  
3.3  
FM Amplifier  
The FM amplifier is realized with a high performance single NPN transistor. This allows the use of an amplifier configuration,  
which is optimized for the desired requirements. For low cost application, the common emitter configuration provides good  
performance at reasonable BOM cost. For high end application, common base configuration with lossless transformer feedback  
provides high IP3 and low noise figure at reasonable current consumption. In both configurations, gain, input and output  
impedance can be adjusted by modification of external components.  
The temperature compensated bias voltage (FMBIAS) for the base of the NPN transistor is derived from an integrated voltage  
reference. The bias current of the FM amplifier is defined by an external resistor.  
3.4  
FM AGC  
The IC is equipped with an AGC capability to prevent overdriving of the amplifier in case the amplifier is operated at strong  
antenna signals, e.g., near transmitters. It is possible to realize an additional antenna amplifier path with integrated AGC and  
external RF transistor. The bandwidth of the integrated AGC circuit is 900MHz.  
FM amplifier output FMC is connected to a capacitive voltage divider and the divided signal is applied to the AGC level detector  
at pin FMDET. This level detector input is optimized for low distortion. The rectified signal is compared against an internal  
reference. The threshold of the AGC can be adjusted by tuning the divider ratio of the external voltage divider. If the threshold is  
reached, pin FMPD opens an internal transistor, which controls the pin-diode current. By these means, the amplifier input signal  
is limited and therefore the FM amplifier is prevented from signal overdrive.  
The necessary driver for the external pin diode is already incorporated in the Atmel ATR4252C IC, which reduces the BOM cost  
and the application size.  
3.5  
3.6  
Supply Voltage Regulator  
The driving voltage for an external power transistor is provided by an integrated regulator circuit.  
An overvoltage protection circuit recognizes overvoltage condition and switches off the amplifier and AGC circuits in order to  
reduce current consumption and avoid thermal overload.  
Antenna Sensor  
In addition, an antenna sensor has been integrated in order to recognize if the antenna is properly connected to the amplifier  
module. If no antenna is detected, the amplifier and AGC circuits are switched off in order to signal this error via reduction of  
supply current consumption to the unit that provides and monitors the supply current for the antenna amplifier (e.g., the car  
radio).  
Atmel ATR4252C [DATASHEET]  
6
9264B–AUDR–01/14  
4.  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Reference point is ground.  
Parameters  
Pin  
Symbol  
Min.  
Max.  
Unit  
Supply voltage  
11  
VS  
–0.3  
+12  
V
ANTENNA  
SENSE  
Antenna sense current  
1
–500  
+500  
µA  
Comparator input current  
Overvoltage detector  
Collector of FM amplifier  
AM LNA input terminal  
AM LNA output terminal  
Power dissipation  
3
VSTART  
OVDET  
FMC  
0
–0.3  
3
2
mA  
V
4
+3.3  
16  
14  
23  
26  
V
AM LNA IN  
AM LNA OUT  
Ptot  
0
2
V
7
12  
V
1200  
150  
+105  
+150  
+2  
mW  
°C  
°C  
°C  
kV  
Junction temperature  
Ambient temperature  
Storage temperature  
ESD HBM  
Tj  
Tamb  
–40  
–50  
–2  
Tstg  
all  
VHBM  
5.  
Thermal Resistance  
Parameters  
Symbol  
Value  
Unit  
Junction ambient, soldered on PCB, dependent on PCB layout  
RthJA  
40  
K/W  
6.  
Operating Range  
Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
10  
Max.  
Unit  
Supply voltage  
Supply voltage  
Normal operation  
11  
Vs  
7.5  
11  
V
No malfunction,  
performance may be  
reduced  
11  
Vs  
7
11  
V
Atmel ATR4252C [DATASHEET]  
7
9264B–AUDR–01/14  
7.  
Electrical Characteristics  
See test circuit Figure 8-2 on page 13, VS = 10V, Tamb = 25°C, unless otherwise specified  
No. Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
VS, FMC,  
AM LNA OUT  
AGC OFF  
Is  
77  
mA  
B
VS, FMC,  
AM LNA OUT  
FMAGC ON  
Is  
Is  
85  
20  
12  
95  
25  
mA  
mA  
mA  
mA  
V
B
A
A
C
A
B
Antenna sense error  
detected  
VS, FMC,  
AM LNA OUT  
1.1 Supply current  
15  
VS, FMC,  
AM LNA OUT  
Over voltage  
Is  
14.9  
99  
Tamb = –40 to +105°C;  
FMAGC ON  
VS, FMC,  
AM LNA OUT  
Is  
Reference voltage  
output  
1.2  
Includes an Ube-Drift  
FM BIAS  
FM BIAS  
VFMBIAS  
IFMBIAS  
2.2  
0
2.7  
3.2  
3
Output current of  
1.3  
mA  
reference voltage  
1.4  
AM BIAS  
REF  
VAMBIAS  
VREF  
0.32 Vs  
V
V
V
A
A
A
Reference voltage  
output  
1.5  
1kΩ load resistor  
5.7  
6
6.3  
40  
1.6  
AM LNA BIAS  
VAMLNABIAS  
2.8  
2
AM LNA+ Buffer(2)  
2.1 Input capacitance  
f = 1MHz  
AM LNA IN  
AM LNA IN  
CAMLNAIN  
IAMLNAIN  
12  
pF  
nA  
C
C
2.2 Input leakage current Tamb = 105°C  
Supply current AM-  
LNA  
2.3  
AM LNA OUT  
AM/FM-OUT  
IAMLNAOUT  
18  
9
mA  
dB  
A
B
2.4 Voltage gain  
f = 1 MHz  
Buffer OUT,  
RBIAS = 4.7MΩ, B = 9kHz,  
f = 500kHz,  
Antenna  
Dummy  
Input  
2.5 Input noise voltage  
VN1  
VN2  
–9  
dBµV  
dBµV  
C
C
f = 1MHz  
–12  
Maximum operating  
frequency  
2.7  
3dB corner  
AM/FM-OUT  
30  
MHz  
C
AM/FM Out;  
finp = 1MHz + 1.1MHz,  
Vout = 110dBµV,  
1K II 500pF load,  
Vs = 10V  
2.8 OIP3(1)  
144  
140  
dBµV  
dBµV  
C
C
Vs = 7.5V  
AM/FM Out;  
finp = 1MHz + 1.1MHz,  
Vout = 110dBµV,  
1K II 500pF load,  
Vs = 10V  
2.9 OIP2(1)  
170  
157  
dBµV  
dBµV  
C
C
Vs = 7.5V  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. AGC Loop deactivated (PIN Diode removed)  
2. Measured with antenna dummy (see Figure 8-3 on page 14).  
3. Current defined by R17 = 56Ω  
Atmel ATR4252C [DATASHEET]  
8
9264B–AUDR–01/14  
7.  
Electrical Characteristics (Continued)  
See test circuit Figure 8-2 on page 13, VS = 10V, Tamb = 25°C, unless otherwise specified  
No. Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
3
AM Buffer Amplifier (2)  
3.1 Input capacitance  
f = 1MHz  
AM BUF IN  
AM BUF IN  
AM OUT  
CAMIN  
2.2  
2.45  
2.7  
40  
pF  
nA  
Ω
C
C
C
A
3.2 Input leakage current Tamb = 85°C  
3.3 Output resistance  
ROUT  
6
8
10  
3.4 Voltage gain  
f = 1MHz  
0.85  
0.90  
0.96  
AMOUT,  
RBIA S = 4.7MΩ,  
B = 9kHz,  
3.5 Output noise voltage 150kHz  
AM OUT  
VNOISE  
–8  
–9  
–11  
–12  
–6  
–7  
–9  
dBµV  
d B µ V  
dBµV  
dBµV  
200kHz  
500kHz  
1MHz  
C
–10  
AM/FM Out;  
inp = 1MHz + 1.1MHz,  
f
Vout = 110dBµV,  
1K II 500pF load,  
Vs = 10V  
3.6 OIP3(1)  
145  
142  
dBµV  
dBµV  
C
C
Vs = 7.5V  
AM/FM Out;  
finp = 1MHz + 1.1MHz,  
Vout = 110dBµV,  
1K II 500pF load,  
Vs = 10V  
3.7 OIP2(1)  
173  
162  
dBµV  
dBµV  
C
C
Vs = 7.5V  
Maximum operating  
frequency  
3.8  
4
0.5dB corner  
AM OUT  
30  
MHz  
C
AM AGC  
4.1 Input resistance  
4.2 Input capacitance  
AM DET  
AM DET  
RAMDET  
CAMDET  
40  
50  
kΩ  
A
C
f = 1MHz  
f = 1MHz  
2.6  
3.2  
3.8  
92  
pF  
AGC input voltage  
threshold  
4.3  
AM DET  
AM PD  
VAMth  
86  
30  
89  
dBµV  
MHz  
B
C
AGC threshold increased  
by 3dB  
4.4 3dB corner frequency  
4.5 Saturation voltage  
4.6 Leakage current  
10mA  
AM PD  
AM PD  
VS – 1.9  
V
B
B
4
µA  
Maximum PIN Diode  
current  
4.7  
AGC active  
AM PD  
AM PD  
22  
35  
–1.7  
60  
mA  
µA  
A
A
B
C
Maximum AGC sink  
current  
4.8  
V(AMTC1) = 2V Rfoff  
diamtc1 / duamdet  
IAMsink  
–2.0  
–1.4  
Transconductance of  
level detector  
am det,  
am tc1  
µA  
----------  
4.9  
diamtc / duamdet  
Vrms  
IP3 at level detector 1MHz + 1.1MHz,  
input  
4.10  
AM DET  
150  
170  
dBµV  
120dBµV  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. AGC Loop deactivated (PIN Diode removed)  
2. Measured with antenna dummy (see Figure 8-3 on page 14).  
3. Current defined by R17 = 56Ω  
Atmel ATR4252C [DATASHEET]  
9
9264B–AUDR–01/14  
7.  
Electrical Characteristics (Continued)  
See test circuit Figure 8-2 on page 13, VS = 10V, Tamb = 25°C, unless otherwise specified  
No. Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
5
FM Amplifier (see Figure 8-1 on page 12)  
5.1 Emitter voltage  
5.2 Emitter voltage  
5.3 Supply current  
5.4 Supply current (3)  
T = 25°C  
FME  
FME  
FMC  
FMC  
1.85  
1.7  
1.95  
2.3  
2.3  
V
V
A
C
B
A
T = –40°C to +105°C  
Common base  
Common emitter  
IFMC  
IFMC  
29  
35  
mA  
mA  
Maximum output  
voltage  
5.5  
Vs = 10V  
FMC  
12  
Vpp  
Ω
C
C
C
C
5.6 Input resistance  
f = 100MHz  
FM IN  
RFMIN  
50  
Maximum operating 3dB corner,  
frequency  
5.7  
FM OUT  
FM OUT  
450  
MHz  
Ω
common emitter  
5.8 Output resistance  
5.9 Power gain  
f = 100MHz  
RFMOUT  
G
50  
f = 100MHz,  
common base circuit (see  
Figure 8-2 on page 13)  
5.2  
dB  
C
5.10 OIP3 at FMOUT  
5.11 NF  
Common base circuit  
Common base circuit  
FM OUT  
145  
1.9  
dBµV  
dB  
C
C
f = 100MHz, common  
emitter circuit (see Figure  
8-1 on page 12)  
5.12 Power gain  
G
13.5  
dB  
B
5.13 OIP3 at FMOUT  
5.14 NF  
Common emitter circuit  
Common emitter circuit  
FM OUT  
FM OUT  
140  
3.5  
dBµV  
dB  
B
C
6
FM AGC  
AGC input voltage  
threshold  
FM range: f = 100MHz  
Extended: f = 900MHz  
Vth1,100  
Vthl,900  
83  
81  
85  
85  
87  
89  
dBµV  
dBµV  
B
C
6.1  
FM DET  
6.2 Saturation voltage  
6.3 Leakage current  
10mA  
FMPD  
FMPD  
VS – 1.9  
V
B
B
1
µA  
Maximum PIN Diode  
current  
6.4  
AGC active  
f = 100MHz  
FMPD  
12  
14  
mA  
A
6.5 Input resistance  
6.6 Input capacitance  
FM DET  
FM DET  
RFMDET  
CFMDET  
17  
21  
25  
kΩ  
C
C
1.5  
1.75  
2.0  
pF  
100MHz + 105MHz,  
VFMDET = 120dBµV  
6.7 IP3 Pin 13 FM  
FM DET  
150  
–9  
dBµV  
C
C
B
6.8 Current Pin FMTC  
6.9 Transconductance  
RFoff  
FMTC  
IFMTC  
–13  
–7.2  
0.8  
µA  
FMTC  
FM DET  
dIFMTC  
dUFMDET  
/
mA/V  
(rms)  
dIFMTC / dUFMDET  
0.35  
0.5  
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. AGC Loop deactivated (PIN Diode removed)  
2. Measured with antenna dummy (see Figure 8-3 on page 14).  
3. Current defined by R17 = 56Ω  
Atmel ATR4252C [DATASHEET]  
10  
9264B–AUDR–01/14  
7.  
Electrical Characteristics (Continued)  
See test circuit Figure 8-2 on page 13, VS = 10V, Tamb = 25°C, unless otherwise specified  
No. Parameters  
Test Conditions  
Pin  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Type*  
7
Voltage Regulator / Monitor  
Output voltage of  
regulator  
Battery voltage  
VB = 14V  
7.1  
VS  
VB, AM/FM-Out  
OVDET  
9.5  
40  
10  
50  
10.5  
V
dB  
V
A
C
A
C
Ripple rejection of  
regulator  
7.2  
7.3  
100Hz, VB > VS + 1V  
Threshold for over-  
voltage detection  
1.6  
1.8  
Hysteresis of over  
voltage detection  
7.4  
8
OVDET  
4
%
Antenna Sensor  
Antenna monitor  
range  
Rsense = 22kΩ,  
antenna detected  
8.1  
ANT SENS  
0 to 3  
6 to 16  
V
C
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter  
Notes: 1. AGC Loop deactivated (PIN Diode removed)  
2. Measured with antenna dummy (see Figure 8-3 on page 14).  
3. Current defined by R17 = 56Ω  
Atmel ATR4252C [DATASHEET]  
11  
9264B–AUDR–01/14  
8.  
Test Circuits  
Figure 8-1. Common Emitter Configuration  
AMIN  
L5  
3.3µH  
C24  
C20  
R14  
10kΩ  
R24  
R13  
0Ω  
15Ω  
470pF  
220nF  
BA779-2  
C18  
C16  
100nF  
2.2nF  
C15  
R12  
10kΩ  
R17  
R20  
1.8kΩ  
C23  
C22  
10nF  
56Ω  
R15  
2.2nF  
220nF  
R19  
+VS  
1kΩ  
L2  
R25  
39kΩ  
C21  
220nF  
D1  
C5  
4.7MΩ  
FMIN  
2.2nF  
C4  
2.2nF  
1SV262  
R22  
0Ω  
C13  
C14  
2.2nF  
C30  
220nF  
R21  
180Ω  
22 21 20 19 18 17 16 15  
R11  
2.2pF  
23  
24  
25  
26  
27  
28  
14  
13  
12  
11  
10  
9
AM/FM_OUT  
C19  
560Ω  
R10  
R16  
220Ω  
L4  
C12  
100Ω  
1.2pF  
C9  
33pF  
L1  
120nH  
ATR4252  
C25  
220nF  
100nF  
C31 1nF  
C10  
L3  
470nH  
R9  
220nF  
C27  
33Ω  
470 nF  
C28  
2.2nF  
R27  
4.7MΩ  
1
2
3
4
5
6
7
8
R23  
0Ω  
R8  
3.3kΩ  
slug  
R18  
470Ω  
R4  
R1  
R2  
C26  
C8 10nF  
C2  
C6 C7  
220nF  
R7  
560Ω  
2
1
R3  
Jumper2  
J1  
C29  
220nF  
R5  
22kΩ  
R26  
10Ω  
R28  
R6  
4.7Ω  
VB  
GND  
+VS  
T1  
2SB1122  
0Ω  
C1  
C11  
+
10µF  
100nF  
Atmel ATR4252C [DATASHEET]  
12  
9264B–AUDR–01/14  
Figure 8-2. Common Base Configuration  
AMIN  
L5  
3.3µH  
C24  
C20  
C17  
22pF  
R13  
nc  
R14  
10kΩ  
470pF  
220nF  
BA779-2  
C16  
nc  
L6  
nc  
C15  
L2  
R12  
10kΩ  
R20  
1.8kΩ  
R17  
10nF  
C23  
C22  
120nH  
R15  
68Ω  
C32  
100nF  
2.2nF  
220nF  
120nH  
R19  
1kΩ  
+VS  
R25  
D1  
C21  
L7  
1
C5A  
C5B  
2.2nF  
C18  
1nF  
39kΩ  
4.7MΩ  
FMIN  
220nF  
2.2nF  
C4  
3
4
T3  
6
2.2nF  
R22  
C13  
1SV264  
C30  
R24  
R21  
180Ω  
0Ω  
220nF  
22 21 20 19 18 17 16 15  
10Ω  
C3  
2.2nF  
C9A  
27pF  
R11  
1kΩ  
2.2pF  
C14  
1pF  
23  
24  
25  
26  
27  
28  
14  
AM/FM_OUT  
C9C  
nc  
C9D  
nc  
C9E  
C19  
R10  
R16  
R29  
220Ω  
C25  
nc  
13  
12  
11  
10  
9
6
4
3
C12  
100Ω  
L1  
120nH  
nc  
L10  
nc  
1.2pF  
220nF  
T2  
C9B  
15pF  
ATR4252  
L8  
nc  
L9  
nc  
100nF  
1
C31 1 nF  
R9  
220nF  
C27  
L3  
470nH  
R9  
33Ω  
C10  
C28  
470nF  
2.2nF  
R27  
4.7MΩ  
1
2
3
4
5
6
7
8
R23  
0Ω  
R8  
3.3kΩ  
slug  
R4  
R18  
470Ω  
R1  
R2  
C8 10nF  
C2  
C6 C7  
C26  
R7  
560Ω  
220nF  
2
1
R3  
Jumper2  
J1  
C29  
R5  
22kΩ  
R26  
+
10Ω  
R6  
220nF  
R28  
VB  
+VS  
T1  
2SB1122  
0Ω  
4.7W  
C1  
C11  
100nF  
+
GND  
10µF  
Atmel ATR4252C [DATASHEET]  
13  
9264B–AUDR–01/14  
Figure 8-3. Antenna Dummy for Test Purposes  
Antenna  
Dummy  
Input  
Capacitor  
(Representing  
Antenna  
Connect directly  
to Amplifier  
(no Cable!)  
Capacitance)  
56pF  
50Ω  
Signal Source  
Termination  
Coaxial  
Connector  
(50Ω)  
Figure 8-4. Recommended Footprint  
0.3  
0.5  
PIN 1  
2.7  
4.4  
Atmel ATR4252C [DATASHEET]  
14  
9264B–AUDR–01/14  
9.  
Internal Cicuitry  
Table 9-1. Equivalent Pin Circuits (ESD Protection Circuits not Shown)  
Pin  
Symbol  
Function  
1
1
ANTENNA SENSE  
2, 13  
2, 13  
VSFILTER; FMDET  
3
3
VSTART  
4
4
5
OVDET  
VREGO  
5
6, 12  
6, 12  
AMTC1; FMTC  
Atmel ATR4252C [DATASHEET]  
15  
9264B–AUDR–01/14  
Table 9-1. Equivalent Pin Circuits (ESD Protection Circuits not Shown) (Continued)  
Pin  
Symbol  
Function  
7
AMTC2  
7
8
8
AMDET  
9, 19  
9, 19  
GND1, GND2  
10  
10  
AMOUT  
11  
VS  
11  
VS  
14, 26  
14, 26  
FMC, AMLNAOUT  
15, 20  
16, 18  
FMPD, AMPD  
FME, FMBIAS  
15, 20  
16, 18  
Atmel ATR4252C [DATASHEET]  
16  
9264B–AUDR–01/14  
Table 9-1. Equivalent Pin Circuits (ESD Protection Circuits not Shown) (Continued)  
Pin  
Symbol  
Function  
17  
17  
FMB  
21  
REF  
21  
22, 27  
22, 27  
AMLNABIAS; AMBIAS  
AMLNAIN, AMLNASOURCE,  
AMBUFIN  
23, 24, 28  
23, 24, 28  
25  
CASCODEFILTER  
25  
Atmel ATR4252C [DATASHEET]  
17  
9264B–AUDR–01/14  
10. Ordering Information  
Extended Type Number  
ATR4252C-RAPW  
Package  
Remarks  
VQFN 4x5 / 28L  
VQFN 4x5 / 28L  
Taped on reel, 1.5k volume  
Taped on reel, 6k volume  
ATR4252C-RAQW  
11. Package Information  
Top View  
D
28  
1
PIN 1 ID  
technical drawings  
according to DIN  
specifications  
8
Dimensions in mm  
Side View  
Bottom View  
D2  
9
14  
15  
22  
8
1
COMMON DIMENSIONS  
(Unit of Measure = mm)  
Symbol MIN  
NOM  
0.85  
0.035  
0.21  
4
MAX NOTE  
A
A1  
A3  
D
0.8  
0.9  
0.05  
0.26  
4.1  
0
0.16  
3.9  
2.5  
4.9  
3.5  
0.35  
0.2  
28  
23  
Z
e
D2  
E
2.6  
2.7  
5
5.1  
E2  
L
3.6  
3.7  
Z 10:1  
0.4  
0.45  
0.3  
b
e
0.25  
0.5  
b
10/18/13  
TITLE  
DRAWING NO.  
REV.  
GPC  
Package Drawing Contact:  
packagedrawings@atmel.com  
Package: VQFN_4x5_28L  
Exposed pad 2.6x3.6  
6.543-5143.02-4  
1
Atmel ATR4252C [DATASHEET]  
18  
9264B–AUDR–01/14  
12. Revision History  
Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this  
document.  
Revision No.  
9264B-AUDR-01/14  
History  
Section 11 “Package Information” on page 18 updated  
Atmel ATR4252C [DATASHEET]  
19  
9264B–AUDR–01/14  
Atmel Corporation  
Atmel Asia Limited  
Atmel Munich GmbH  
Atmel Japan G.K.  
1600 Technology Drive  
Unit 01-5 & 16, 19F  
Business Campus  
16F Shin-Osaki Kangyo Building  
San Jose, CA 95110  
USA  
BEA Tower, Millennium City 5  
418 Kwun Tong Roa  
Kwun Tong, Kowloon  
HONG KONG  
Parkring 4  
1-6-4 Osaki  
D-85748 Garching b. Munich  
GERMANY  
Shinagawa-ku, Tokyo 141-0032  
JAPAN  
Tel: (+1) (408) 441-0311  
Fax: (+1) (408) 487-2600  
www.atmel.com  
Tel: (+49) 89-31970-0  
Fax: (+49) 89-3194621  
Tel: (+81) (3) 6417-0300  
Fax: (+81) (3) 6417-0370  
Tel: (+852) 2245-6100  
Fax: (+852) 2722-1369  
© 2014 Atmel Corporation. All rights reserved. / Rev.: 9264B–AUDR–01/14  
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its  
subsidiaries. Other terms and product names may be trademarks of others.  
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this  
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES  
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED  
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,  
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF  
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no  
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time  
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,  
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.  

相关型号:

ATR4253

Highly Integrated - All-in-one Active Antenna IC Integrated AGC
ATMEL

ATR4253-PVPW

Telecom Circuit, 1-Func, BICMOS, 3 X 3 MM, VQFN-16
ATMEL

ATR4253C-PVQW

Telecom Circuit, 1-Func, BICMOS, 3 X 3 MM, VQFN-16
ATMEL

ATR4253C-PVQW

Telecom Circuit, 1-Func, BICMOS
MICROCHIP

ATR4254-PEQY

Consumer Circuit, BICMOS, PQCC16, 4 X 4 MM, LEAD FREE, MO-220, QFN-16
ATMEL

ATR4254-TBJY

Consumer Circuit, BICMOS, PDSO16, LEAD FREE, SO-16
ATMEL

ATR4254-TBQY

Consumer Circuit, BICMOS, PDSO16, LEAD FREE, SO-16
ATMEL

ATR4255

AM/FM RECEIVER IC
ATMEL

ATR4255-ILQH

AM/FM RECEIVER IC
ATMEL

ATR4255-ILSH

AM/FM RECEIVER IC
ATMEL

ATR4255P

FM Double-conversion System
ATMEL

ATR4255P-ILQY

FM Double-conversion System
ATMEL