ATWINC3400-MR210CA [MICROCHIP]

SMART MODULE ATWINC3400A-MU;
ATWINC3400-MR210CA
型号: ATWINC3400-MR210CA
厂家: MICROCHIP    MICROCHIP
描述:

SMART MODULE ATWINC3400A-MU

文件: 总37页 (文件大小:1027K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ATWINC3400-MR210  
IEEE 802.11 b/g/n Link Controller with Integrated Low  
Energy Bluetooth 4.0  
PRELIMINARY DATASHEET  
Description  
Atmel® ATWINC3400-MR210 is an IEEE® 802.11 b/g/n RF/Baseband/MAC link  
controller and Low Energy Bluetooth® 4.0 compliant module optimized for low-power  
mobile applications. The ATWINC3400-MR210 supports single stream 1x1 802.11n  
mode providing up to 72Mbps PHY rate. The ATWINC3400-MR210 module features  
small form factor while fully integrating Power Amplifier, LNA, Switch, Power  
Management, and Chip Antenna. It also feature an on-chip microcontroller and  
integrated flash memory for system software. Implemented in 65nm CMOS  
technology, the ATWINC3400-MR210 offers very low power consumption while  
simultaneously providing high performance and minimal bill of materials.  
The ATWINC3400-MR210 utilizes highly optimized 802.11-Bluetooth coexistence  
protocols. The ATWINC3400-MR210 provides multiple peripheral interfaces including  
UART, SPI, and I2C. The only external clock sources needed for the ATWINC3400-  
MR210 is a 32.768kHz clock for sleep operation.  
Features  
IEEE 802.11  
IEEE 802.11 b/g/n RF/PHY/MAC SOC  
IEEE 802.11 b/g/n (1x1) for up to 72Mbps PHY rate  
Single spatial stream in 2.4GHz ISM band  
Integrated PA and T/R switch  
Integrated chip antenna  
Superior sensitivity and range via advanced PHY signal processing  
Advanced equalization and channel estimation  
Advanced carrier and timing synchronization  
Wi-Fi Direct® and Soft-AP support  
Supports IEEE 802.11 WEP, WPA, WPA2 security  
Supports China WAPI security  
Superior MAC throughput via hardware accelerated two-level A-MSDU/A-MPDU  
frame aggregation and block acknowledgement  
On-chip memory management engine to reduce host load  
SPI, I2C, and UART host interfaces  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
Operating temperature range of -40 to +85°C fast boot options:  
Integrated flash memory for system software  
SPI flash boot (firmware patches and state variables)  
Low-leakage on-chip memory for state variables  
Fast AP re-association (150ms)  
On-Chip Network Stack to offload MCU:  
Integrated network IP stack to minimize host CPU requirements  
Network features: TCP, UDP, DHCP, ARP, HTTP, SSL, and DNS  
Bluetooth Low Energy  
Bluetooth 4.0 (BLE)  
Bluetooth Certification  
QD ID Controller (see declaration D029496)  
QD ID Host (see declaration D029497)  
High Speed  
Class 1 and 2 transmission  
Adaptive Frequency Hopping  
HCI (Host Control Interface) via high speed UART  
Integrated PA and T/R Switch  
Superior sensitivity and range  
UART host and audio interfaces  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
2
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
Table of Contents  
1
2
3
4
5
Ordering Information................................................................................................... 5  
Package Information ................................................................................................... 5  
Block Diagram ............................................................................................................. 6  
Pinout Information....................................................................................................... 7  
Power Management................................................................................................... 10  
5.1 Power Consumption............................................................................................................................10  
5.1.1 Description of Device States...................................................................................................10  
5.1.2 Controlling the Device States .................................................................................................10  
5.2 Power-up/down Sequence ..................................................................................................................11  
5.3 Digital I/O Pin Behavior During Power-up Sequences.........................................................................12  
6
7
Clocking ................................................................................................................... 13  
6.1 Crystal Oscillation................................................................................................................................13  
6.2 Low Power Oscillator...........................................................................................................................13  
CPU and Memory Subsystem................................................................................... 14  
7.1 Processor............................................................................................................................................14  
7.2 Memory Subsystem.............................................................................................................................14  
7.3 Non-Volatile Memory...........................................................................................................................14  
8
9
WLAN Subsystem...................................................................................................... 16  
8.1 MAC  
..............................................................................................................................................16  
8.1.1 Features .................................................................................................................................16  
8.1.2 Description..............................................................................................................................16  
8.2 PHY  
..............................................................................................................................................17  
8.2.1 Features .................................................................................................................................17  
8.2.2 Description..............................................................................................................................17  
Electrical Characteristics.......................................................................................... 18  
9.1 Absolute Maximum Ratings.................................................................................................................18  
9.2 Recommended Operating Conditions .................................................................................................18  
9.3 DC Characteristics ..............................................................................................................................19  
9.4 802.11 b/g/n Radio Performance ........................................................................................................20  
9.4.1 Receiver Performance............................................................................................................20  
9.4.2 Transmitter Performance........................................................................................................21  
9.5 Bluetooth Low Energy (BLE) 4.0.........................................................................................................21  
9.5.1 Receiver Performance............................................................................................................21  
9.5.2 Transmitter Performance........................................................................................................22  
10 External Interfaces .................................................................................................... 23  
10.1 I2C Slave Interface ..............................................................................................................................24  
10.1.1 Description..............................................................................................................................24  
10.1.2 I2C Slave Timing.....................................................................................................................24  
10.2 I2C Master Interface ............................................................................................................................25  
10.2.1 Description..............................................................................................................................25  
10.2.2 I2C Master Timing...................................................................................................................25  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
3
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
10.3 SPI Slave Interface..............................................................................................................................26  
10.3.1 Description..............................................................................................................................26  
10.3.2 SPI Slave Modes....................................................................................................................26  
10.3.3 SPI Slave Timing....................................................................................................................27  
10.4 SPI Master Interface............................................................................................................................28  
10.4.1 Description..............................................................................................................................28  
10.4.2 SPI Master Timing..................................................................................................................28  
10.5 UART Interface ...................................................................................................................................29  
10.6 GPIOs ..............................................................................................................................................29  
11 Reference Design ...................................................................................................... 31  
12 Package Drawing....................................................................................................... 33  
13 Reflow Profile Information........................................................................................ 34  
13.1 Storage Condition................................................................................................................................34  
13.1.1 Moisture Barrier Bag Before Opened .....................................................................................34  
13.1.2 Moisture Barrier Bag Open.....................................................................................................34  
13.2 Stencil Design .....................................................................................................................................34  
13.3 Baking Conditions ...............................................................................................................................34  
13.4 Soldering and Reflow Condition ..........................................................................................................34  
13.4.1 Reflow Oven...........................................................................................................................34  
14 Revision History ........................................................................................................ 36  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
4
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
1
2
Ordering Information  
Ordering code  
Package  
Description  
ATWINC3400-MR210CA  
22 x 15mm  
With chip antenna  
Package Information  
Table 2-1.  
ATWINC3400-MR210 Package Information (1)  
Parameter  
Value  
22.3774 x 14.7320  
36  
Units  
Tolerance  
Package Size  
Pad Count  
mm  
Total Thickness  
Pad Pitch  
2.0874  
mm  
mm  
mm  
mm  
1.2040  
Pad Width  
0.8128  
Ground Paddle Size  
4.4 x 4.4  
Note:  
1. For details, see Chapter 12 - Package Drawing on page 33.  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
5
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
3
Block Diagram  
Figure 3-1.  
ATWINC3400-MR210 Block Diagram  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
6
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
4
Pinout Information  
This package has an exposed paddle that must be connected to the system board ground. The module pin  
assignment is shown in Figure 4-1. The ATWINC3400-MR210 pins are described in Table 4-1.  
Figure 4-1.  
ATWINC3400-MR210 Pin Assignment  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
7
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
Table 4-1.  
ATWINC3400-MR210 Pin Description  
Pin #  
Pin name  
GND  
Pin type  
Description  
1
GND  
Ground  
2
SPI CFG  
N/C  
Digital Input  
None  
Tie to VDDIO for SPI  
3
No connect  
4
N/C  
None  
No connect  
5
N/C  
None  
No connect  
6
N/C  
None  
No connect  
7
RESETN  
BT_TXD  
BT_RXD  
BT_RTS  
Digital Input  
Active-Low Hard Reset  
GPIO_16/BLE UART Transmit Data Output  
GPIO_15/BLE UART Receive Data Input  
GPIO_14/BLE UART RTS output/I2C Slave Data  
8
Digital I/O, Programmable Pull-Up  
Digital I/O, Programmable Pull-Up  
Digital I/O, Programmable Pull-Up  
9
10  
GPIO_13/BLE UART CTS Input/I2C Slave Clock/Wi-  
Fi® UART TXD Output  
11  
BT_CTS  
Digital I/O, Programmable Pull-Up  
12  
13  
14  
15  
VDDIO  
GND  
Power  
Digital I/O Power Supply  
Ground  
GND  
GPIO3  
GPIO4  
Digital I/O, Programmable Pull-Up  
Digital I/O, Programmable Pull-Up  
GPIO_3/SPI Flash Clock Output  
GPIO_4/SPI Flash SSN Output  
GPIO_5/Wi-Fi UART TXD Output/SPI Flash TX  
Output (MOSI)  
16  
17  
UART_TXD  
UART_RXD  
Digital I/O, Programmable Pull-Up  
Digital I/O, Programmable Pull-Up  
GPIO_6/Wi-Fi UART RXD Input/SPI Flash RX Input  
(MISO)  
18  
19  
VBAT  
Power  
Battery Supply for DC/DC Converter AND PA  
PMU Enable  
CHIP_EN  
Analog  
RTC Clock Input/GPIO_1/Wi-Fi UART RXD In-  
put/Wi-Fi UART TXD Output/BT UART CTS Input  
20  
21  
22  
RTC_CLK  
GND  
Digital I/O, Programmable Pull-Up  
GND  
Ground  
GPIO_8/Wi-Fi UART RXD Input/BT UART CTS In-  
put  
GPIO8  
Digital I/O, Programmable Pull-Up  
23  
24  
25  
26  
SPI_SCK  
SPI_MISO  
SPI_SSN  
SPI_MOSI  
Digital I/O, Programmable Pull-Up  
Digital I/O, Programmable Pull-Up  
Digital I/O, Programmable Pull-Up  
Digital I/O, Programmable Pull-Up  
SPI Clock  
SPI TX Data  
SPI Slave Select  
SPI RX Data  
GPIO_7/Wi-Fi UART TXD output/BT UART RTS  
Output  
27  
GPIO7  
Digital I/O, Programmable Pull-Up  
28  
29  
30  
31  
GND  
GND  
Ground  
GPIO17  
GPIO18  
GPIO19  
Digital I/O, Programmable Pull-Down  
Digital I/O, Programmable Pull-Down  
Digital I/O, Programmable Pull-Down  
GPIO_17/  
GPIO_18  
GPIO_19  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
8
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
Pin #  
Pin name  
GPIO20  
Pin type  
Description  
32  
Digital I/O, Programmable Pull-Down  
GPIO_20  
Host Interrupt Request Output/Wi-Fi UART RXD In-  
put/BT UART RTS Output  
33  
34  
IRQN  
Digital I/O, Programmable Pull-Up  
Digital I/O, Programmable Pull-Up  
GPIO_21/RTC Clock/Wi-Fi UART RXD Input/Wi-Fi  
UART TXD Output/BT UART RTS Output  
I2C_SDA_M  
35  
36  
49  
I2C_SDL_M  
GND  
Digital I/O, Programmable Pull-Up  
SLEEP Mode Control/Wi-Fi UART TXD output  
Ground  
GND  
PADDLE VSS  
Power  
Connect to System Board Ground  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
9
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
5
Power Management  
5.1  
Power Consumption  
5.1.1 Description of Device States  
ATWINC3400-MR210 has multiple device states, depending on the state of the 802.11 and BLE subsystems. It is  
possible for both subsystems to be active at the same time. To simplify the device power consumption breakdown,  
the following basic states are defined, for which only one subsystem can be active at a time:  
WiFi_ON_Transmit  
WiFi_ON_Receive  
BT_ON_Transmit  
BT_ON_Receive  
Doze  
-
-
-
-
-
-
Device is actively transmitting an 802.11 signal  
Device is actively receiving an 802.11 signal  
Device is actively transmitting a BLE signal  
Device is actively receiving a BLE signal  
Device is neither transmitting nor receiving (device state is retained)  
Device is powered down with CHIP_EN low and supplies connected  
Power_Down  
5.1.2 Controlling the Device States  
Table 5-1 shows how to switch between the device states using the following:  
CHIP_EN  
VDDIO  
-
-
Module pad #19 used to enable DC/DC Converter  
I/O supply voltage from external supply  
Table 5-1.  
ATWINC3400-MR210 Device States  
Power consumption  
Device state  
WiFi_ON_Transmit  
CHIP_EN  
VDDIO  
VDDIO  
Remarks  
IVBATT  
<350mA  
<92mA  
IVDDIO  
On  
On  
On  
On  
On  
On  
<2.7mA  
<2.5mA  
Output power = 14 - 15dBm  
WiFi_ON_Receive  
BT_ON_Transmit  
BT_ON_Receive  
Doze  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
GND  
<45mA  
<0.65mA  
<0.5µA  
<2.5mA  
<7µA  
Power_Down  
<0.1µA  
When no power is supplied to the device (the DC/DC Converter output and VDDIO are both off and at ground  
potential) a voltage cannot be applied to the ATWINC3400-MR210 pins because each pin contains an ESD diode  
from the pin to supply. This diode will turn on when voltage higher than one diode-drop is supplied to the pin.  
If a voltage must be applied to the signal pads while the chip is in a low power state, the VDDIO supply must be  
on, so the Power_Down state must be used. Similarly, to prevent the pin-to-ground diode from turning on, do not  
apply a voltage that is more than one diode-drop below ground to any pin.  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
10  
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
5.2  
Power-up/down Sequence  
The power-up/down sequence for ATWINC3400-MR210 is shown in Figure 5-1. The timing parameters are  
provided in Table 5-2.  
Figure 5-1.  
ATWINC3400-MR210 Power-up/down Sequence  
VBATT  
tA  
tB  
t C  
tA'  
VDDIO  
tB'  
CHIP_EN  
RESETN  
XO Clock  
tC'  
Table 5-2.  
ATWINC3400-MR210 Power-up/down Sequence Timing  
Parameter Min. Max. Unit  
Description  
Notes  
VBATT and VDDIO can rise simultaneously or can  
be tied together. VDDIO must not rise before  
VBATT.  
VBATT rise to VDDIO  
rise  
tA  
tB  
tC  
0
0
5
ms  
ms  
ms  
VDDIO rise to CHIP_EN  
rise  
CHIP_EN must not rise before VDDIO. CHIP_EN  
must be driven high or low, not left floating.  
This delay is needed because XO clock must stabi-  
lize before RESETN removal. RESETN must be  
driven high or low, not left floating.  
CHIP_EN rise to  
RESETN rise  
VBATT and VDDIO can fall simultaneously or can be  
tied together. VBATT must not fall before VDDIO.  
tA’  
tB’  
tC’  
0
0
0
ms  
ms  
ms  
VDDIO fall to VBATT fall  
CHIP_EN fall to VDDIO  
fall  
VDDIO must not fall before CHIP_EN. CHIP_EN and  
RESETN can fall simultaneously.  
RESETN fall to VDDIO  
fall  
VDDIO must not fall before RESETN. RESETN and  
CHIP_EN can fall simultaneously.  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
11  
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
 
5.3  
Digital I/O Pin Behavior During Power-up Sequences  
Table 5-3 represents digital I/O Pin states corresponding to device power modes.  
Table 5-3.  
Digital I/O Pin Behavior in Different Device States  
Pull up/down  
resistor (96kΩ)  
Device state  
VDDIO  
CHIP_EN  
RESETN  
Output driver  
Input driver  
Power_Down:  
core supply off  
High  
Low  
Low  
Disabled (Hi-Z)  
Disabled  
Disabled  
Enabled  
Power-On Reset:  
core supply on, hard  
High  
High  
High  
High  
Low  
Disabled (Hi-Z)  
Disabled (Hi-Z)  
Disabled  
Enabled  
reset on  
Power-On Default:  
core supply on, device  
out of reset but not  
High  
Enabled  
programmed yet  
On_Doze/  
Programmed by  
firmware for each  
pin: Enabled or  
On_Transmit/  
On_Receive:  
Opposite of  
Output Driver  
state  
Programmed by firm-  
ware for each pin:  
Enabled or Disabled  
High  
High  
High  
core supply on, device  
programmed by firmware  
Disabled  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
12  
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
6
Clocking  
6.1  
Crystal Oscillation  
Table 6-1.  
ATWINC3400-MR210 Crystal Oscillator Parameters  
Parameter  
Min.  
Typ.  
26  
Max.  
Unit  
MHz  
Crystal Resonant Frequency  
Crystal Equivalent Series Resistance  
Stability - Initial Offset (1)  
50  
150  
100  
25  
-100  
-25  
ppm  
ppm  
Stability - Temperature and Aging  
Note:  
1. Initial offset must be calibrated to maintain ±25ppm in all operating conditions. This calibration is performed  
during final production testing.  
The block diagram in Figure 6-1 shows the internal Crystal Oscillator circuit that is contained within the module.  
Figure 6-1.  
Internal Crystal Oscillator Circuit, block diagram  
XO_N  
XO_P  
ATWILC3000  
6.2  
Low Power Oscillator  
ATWINC3400-MR210 requires an external 32.768kHz clock to be used for sleep operation, which is provided  
through Pin J20. The frequency accuracy of the external clock has to be within ±200ppm.  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
13  
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
7
CPU and Memory Subsystem  
7.1  
Processor  
ATWINC3400-MR210 has a Cortus APS3 32-bit processor. In 802.11 mode the processor performs many of the  
MAC functions, including but not limited to association, authentication, power management, security key  
management, and MSDU aggregation/de-aggregation. In addition, the processor provides flexibility for various  
modes of operation, such as STA and AP modes. In BLE mode the processor handles multiple tasks of the BLE  
protocol stack.  
7.2  
7.3  
Memory Subsystem  
The APS3 core uses a 256KB instruction/boot ROM (160KB for 802.11 and 96KB for BLE) along with a 420KB  
instruction RAM (128KB for 802.11 and 292KB for BLE), and a 128KB data RAM (64KB for 802.11 and 64KB for  
BLE). ATWINC3400 also has 8Mb of flash memory, which can be used for system software. In addition, the device  
uses a 160KB shared/exchange RAM (128KB for 802.11 and 32KB for BLE), accessible by the processor and  
MAC, which allows the processor to perform various data management tasks on the TX and RX data packets  
Non-Volatile Memory  
ATWINC3400-MR210 has 768 bits of non-volatile eFuse memory that can be read by the CPU after device reset.  
This non-volatile one-time-programmable memory can be used to store customer-specific parameters, such as  
802.11 MAC address, BLE address, various calibration information, such as TX power, crystal frequency offset,  
etc., as well as other software-specific configuration parameters. The eFuse is partitioned into six 128-bit banks.  
The bit map of the first and last banks is shown in Figure 7-1. The purpose of the first 80 bits in bank 0 and the first  
56 bits in bank 5 is fixed, and the remaining bits are general-purpose software dependent bits, or reserved for  
future use. Since each bank and each bit can be programmed independently, this allows for several updates of the  
device parameters following the initial programming, e.g. updating 802.11 MAC address or BLE address (this can  
be done by invalidating the last programmed bank and programming a new bank). Refer to ATWINC3400-MR210  
Programming Guide for the eFuse programming instructions.  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
14  
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
Figure 7-1.  
1 1  
ATWINC3400-MR210 eFuse Bit Map  
3
4
1
1
7
1
15  
48  
8
8
F
16  
FO  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Bank 4  
Bank 5  
MAC ADDR  
G
8
F
48  
BT ADDR  
128 Bits  
1
1
2
3
1
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
15  
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
8
WLAN Subsystem  
The WLAN subsystem is composed of the Media Access Controller (MAC) and the Physical Layer (PHY). Sections  
8.1 and 8.2 describe the MAC and PHY in detail.  
8.1  
MAC  
8.1.1 Features  
The ATWINC3400-MR210 IEEE802.11 MAC supports the following functions:  
IEEE 802.11b/g/n  
IEEE 802.11e WMM® QoS EDCA/HCCA/PCF multiple access categories traffic scheduling  
Advanced IEEE 802.11n features:  
Transmission and reception of aggregated MPDUs (A-MPDU)  
Transmission and reception of aggregated MSDUs (A-MSDU)  
Immediate Block Acknowledgement  
Reduced Interframe Spacing (RIFS)  
Support for IEEE 802.11i and WFA security with key management  
WEP 64/128  
WPA-TKIP  
128-bit WPA2 CCMP (AES)  
Support for WAPI security  
Advanced power management  
Standard 802.11 Power Save Mode  
Wi-Fi Alliance® WMM-PS (U-APSD)  
RTS-CTS and CTS-self support  
Supports either STA or AP mode in the infrastructure basic service set mode  
Supports independent basic service set (IBSS)  
8.1.2 Description  
The ATWINC3400-MR210 MAC is designed to operate at low power while providing high data throughput. The  
IEEE 802.11 MAC functions are implemented with a combination of dedicated datapath engines, hardwired control  
logic, and a low-power, high-efficiency microprocessor. The combination of dedicated logic with a programmable  
processor provides optimal power efficiency and real-time response while providing the flexibility to accommodate  
evolving standards and future feature enhancements.  
Dedicated datapath engines are used to implement data path functions with heavy computational functions. For  
example, an FCS engine checks the CRC of the transmitting and receiving packets, and a cipher engine performs  
all the required encryption and decryption operations for the WEP, WPA-TKIP, WPA2 CCMP-AES, and WAPI  
security requirements.  
Control functions, which have real-time requirements are implemented using hardwired control logic modules.  
These logic modules offer real-time response while maintaining configurability via the processor. Examples of  
hardwired control logic modules are the channel access control module (implements EDCA/HCCA, Beacon TX  
control, interframe spacing, etc.), protocol timer module (responsible for the Network Access Vector, back-off  
timing, timing synchronization function, and slot management), MPDU handling module, aggregation/de-  
aggregation module, block ACK controller (implements the protocol requirements for burst block communication),  
and TX/RX control FSMs (coordinate data movement between PHY-MAC interface, cipher engine, and the DMA  
interface to the TX/RX FIFOs).  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
16  
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
The MAC functions implemented solely in software on the microprocessor have the following characteristics:  
Functions with high memory requirements or complex data structures. Examples are association table  
management and power save queuing.  
Functions with low computational load or without critical real-time requirements. Examples are authentication  
and association.  
Functions which need flexibility and upgradeability. Examples are beacon frame processing and QoS  
scheduling.  
8.2  
PHY  
8.2.1 Features  
The ATWINC3400-MR210 IEEE 802.11 PHY supports the following functions:  
Single antenna 1x1 stream in 20MHz channels  
Supports IEEE 802.11b DSSS-CCK modulation: 1, 2, 5.5, 11Mbps  
Supports IEEE 802.11g OFDM modulation: 6, 9, 12,18, 24, 36, 48, 54Mbps  
Supports IEEE 802.11n HT modulations MCS0-7, 20MHz, 800 and 400ns guard interval: 6.5, 7.2, 13.0, 14.4,  
19.5, 21.7, 26.0, 28.9, 39.0, 43.3, 52.0, 57.8, 58.5, 65.0, 72.2Mbps  
IEEE 802.11n mixed mode operation  
Per packet TX power control  
Advanced channel estimation/equalization, automatic gain control, CCA, carrier/symbol recovery, and frame  
detection  
8.2.2 Description  
The ATWINC3400-MR210 WLAN PHY is designed to achieve reliable and power-efficient physical layer  
communication specified by IEEE 802.11 b/g/n in single stream mode with 20MHz bandwidth. Advanced  
algorithms have been employed to achieve maximum throughput in a real world communication environment with  
impairments and interference. The PHY implements all the required functions such as FFT, filtering, FEC (Viterbi  
decoder), frequency and timing acquisition and tracking, channel estimation and equalization, carrier sensing and  
clear channel assessment, as well as the automatic gain control.  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
17  
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
9
Electrical Characteristics  
9.1  
Absolute Maximum Ratings  
Table 9-1.  
Symbol  
ATWINC3400-MR210 Absolute Maximum Ratings  
Characteristics  
Digital I/O Supply Voltage  
Min.  
-0.3  
-0.3  
-0.3  
-0.3  
Max.  
5.0  
Unit  
VDDIO  
VBATT  
Battery Supply Voltage  
Digital Input Voltage  
Analog Input Voltage  
5.0  
(1)  
VIN  
VDDIO  
1.5  
V
(2)  
VAIN  
-1000, -2000  
(see notes below)  
+1000, +2000  
(see notes below)  
(3)  
VESDHBM  
TA  
ESD Human Body Model  
Storage Temperature  
Junction Temperature  
RF input power max.  
-65  
150  
125  
23  
ºC  
dBm  
Notes: 1. VIN corresponds to all the digital pins.  
2. VAIN corresponds to the following analog pins:  
3. For VESDHBM, each pin is classified as Class 1, or Class 2, or both:  
The Class 1 pins include all the pins (both analog and digital)  
The Class 2 pins include all digital pins only  
VESDHBM is ±1kV for Class1 pins. VESDHBM is ±2kV for Class2 pins  
9.2  
Recommended Operating Conditions  
Table 9-2.  
ATWINC3400-MR210 Recommended Operating Conditions  
Characteristic  
Symbol  
Min.  
2.7  
Typ.  
3.3  
Max.  
3.6  
Unit  
V
I/O Supply Voltage (1)  
VDDIO  
VBATT  
Battery Supply Voltage (2)  
Operating Temperature  
3.0  
3.6  
4.2  
-40  
85  
ºC  
Notes: 1. Battery supply voltage is applied to following pins: VBAT.  
2. ATWINC3400-MR210 is functional across this range of voltages; however, optimal RF performance is guaranteed  
for VBATT in the range 3.0V < VBATT < 4.2V.  
3. Refer to Chapter 11 for the details of the power connections.  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
18  
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
9.3  
DC Characteristics  
Table 9-3 provides the DC characteristics for the ATWINC3400-MR210 digital pads.  
Table 9-3.  
ATWINC3400-MR210 DC Electrical Characteristics  
Characteristic  
Min.  
-0.30  
Typ.  
Max.  
0.60  
Unit  
Input Low Voltage VIL  
Input High Voltage VIH  
Output Low Voltage VOL  
Output High Voltage VOH  
Output Loading  
VDDIO-0.60  
VDDIO+0.30  
0.45  
V
VDDIO-0.50  
20  
6
pF  
Digital Input Load  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
19  
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
9.4  
802.11 b/g/n Radio Performance  
9.4.1 Receiver Performance  
Radio performance under typical conditions: VBATT = 3.3V; VDDIO = 3.3V; temp.: 25°C  
Table 9-4.  
ATWINC3400-MR210 802.11 Conducted Receiver Performance Nominal Conditions, 50Ω load/source  
Parameter  
Description  
Min.  
Typ.  
Max.  
Unit  
Frequency  
2,412  
2,484  
MHz  
1Mbps DSS  
2Mbps DSS  
5.5Mbps DSS  
11Mbps DSS  
6Mbps OFDM  
9Mbps OFDM  
-98  
-95  
-93  
-89  
-90  
-89  
-87  
-86  
-83  
-79  
-76  
-74  
-89  
-86  
-84  
-82  
-79  
-75  
-73  
-71  
5
Sensitivity 802.11b  
12Mbps OFDM  
18Mbps OFDM  
24Mbps OFDM  
36Mbps OFDM  
48Mbps OFDM  
54Mbps OFDM  
MCS 0  
Sensitivity 802.11g  
dBm  
MCS 1  
MCS 2  
MCS 3  
Sensitivity 802.11n  
(BW=20MHz)  
MCS 4  
MCS 5  
MCS 6  
MCS 7  
1-11Mbps DSS  
-10  
-10  
-10  
Maximum Receive Signal Level 6-54Mbps OFDM  
MCS 0 - 7  
-3  
-3  
1Mbps DSS (30MHz offset)  
50  
11Mbps DSS (25MHz offset)  
43  
6Mbps OFDM (25MHz offset)  
54Mbps OFDM (25MHz offset)  
MCS 0 20MHz BW (25MHz offset)  
MCS 7 20MHz BW (25MHz offset)  
40  
Adjacent Channel Rejection  
dB  
25  
40  
20  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
20  
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
9.4.2 Transmitter Performance  
Radio performance under typical conditions: VBATT = 3.3V; VDDIO = 3.3V; temp.: 25°C  
Table 9-5.  
ATWINC3400-MR210 802.11 Transmitter Performance Nominal Conditions, 50Ω load/source  
Parameter  
Description  
Min.  
Typ.  
Max.  
Unit  
Frequency  
2.412  
2,484  
MHz  
Output Power  
802.11b DSSS 1-11Mbps  
802.11g OFDM 6-54Mbps  
802.11n HT20 MCS 0-7  
20 (1)  
17.0 (1)  
16 (1)  
±1.5 (2)  
30.0  
dBm  
TX Power Accuracy  
Carrier Suppression  
dB  
dBc  
Harmonic Output Power 2nd  
3rd  
-33  
dBm/MHz  
-38  
Notes: 1. Measured at 802.11 spec. compliant EVM/Spectral Mask.  
2. Without calibration.  
9.5  
Bluetooth Low Energy (BLE) 4.0  
The Bluetooth subsystem implements all the mission critical real-time functions. It encodes/decodes HCI packets,  
constructs baseband data packages, manages, and monitors the connection status, slot usage, data flow, routing,  
segmentation, and buffer control. The Bluetooth subsystem supports Bluetooth Low Energy (BLE) modes of  
operation.  
Supports BLE profiles allowing connection to advanced low energy application such as:  
Smart Energy  
Consumer Wellness  
Home Automation  
Security  
Proximity Detection  
Entertainment  
Sports and Fitness  
Automotive  
9.5.1 Receiver Performance  
Radio performance under typical conditions: VBATT = 3.3V; VDDIO = 3.3V; Temp.: 25°C  
Table 9-6.  
ATWINC3400-MR210 BLE Receiver Performance Nominal Conditions, 50load/source  
Parameter  
Description  
Min.  
Typ.  
Max.  
Unit  
MHz  
dBm  
dBm  
Frequency  
2,402  
2,480  
Sensitivity Ideal TX  
BLE (GFSK)  
BLE (GFSK)  
-96  
0
Maximum Receive Signal Level  
-10  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
21  
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
9.5.2 Transmitter Performance  
Radio performance under typical conditions: VBATT = 3.3V; VDDIO = 3.3V; temp.: 25°C  
Table 9-7.  
ATWINC3400-MR210 BLE Transmitter Performance Nominal Conditions, 50Ω load/source  
Parameter  
Description  
Min.  
Typ.  
Max.  
2,480  
4
Unit  
MHz  
dBm  
Frequency  
2,402  
Output Power  
Note:  
BLE (GFSK)  
1. The maximum output power may require board filtering to meet spurious emission limits.  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
22  
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
10 External Interfaces  
ATWINC3400-MR210 external interfaces include: SPI Slave, and UART for 802.11 control and data transfer;  
UART for BLE control, and data transfer; SPI Master for external Flash; I2C Master for external EEPROM, and  
General Purpose Input/Output (GPIO) pins. With the exception of the SPI Slave interface, which are selected using  
the dedicated SDIO_SPI_CFG pin, the other interfaces can be assigned to various pins by programming the  
corresponding pin MUXing control register for each pin to a specific value between 0 and 6.The default values of  
these registers are 0, which is GPIO mode. Each digital I/O pin also has a programmable pull-up or pull-down. The  
summary of the available interfaces and their corresponding pin MUX settings is shown in Table 10-1. For specific  
programming instructions, refer to ATWINC3400-MR210 Programming Guide.  
Table 10-1. ATWINC3400-MR210 Pin-MUX Matrix of External Interfaces  
Pin name  
GPIO16  
Pin # Pull  
Mux0  
GPIO_16  
GPIO_15  
GPIO_14  
GPIO_13  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_1  
GPIO_8  
MUX1  
MUX2  
MUX3  
MUX4  
MUX5  
MUX6  
8
Up  
Up  
Up  
Up  
Up  
Up  
Up  
Up  
Up  
Up  
Up  
Up  
Up  
Up  
Up  
O_BT_UART1_TXD  
I_BT_UART1_RXD  
O_BT_UART1_RTS  
I_BT_UART1_CTS  
O_SPI_SCK_FLASH  
O_SPI_SSN_FLASH  
O_SPI_TXD_FLASH  
I_SPI_RXD_FLASH  
I_RTC_CLK  
GPIO15  
9
GPIO14  
10  
11  
23  
25  
24  
25  
20  
22  
23  
24  
25  
IO_I2C_SDA  
IO_I2C_SCL  
I_WAKEUP  
GPIO13  
O_WIFI_UART_TXD  
I_WAKEUP  
GPIO3  
O_BT_UART2_TXD  
I_BT_UART2_RXD  
I_WAKEUP  
GPIO4  
GPIO5  
O_WIFI_UART_TXD  
I_WIFI_UART_RXD  
I_WIFI_UART_RXD  
I_WIFI_UART_RXD  
GPIO6  
I_WAKEUP  
RTC_CLK  
SD_CLK  
O_WIFI_UART_TXD  
I_BT_UART1_CTS  
I_BT_UART1_CTS  
I_SD_CLK  
SD_CMD/SPI_SCK  
SD_DAT0/SPI_TXD  
SD_DAT1/SPI_SSN  
IO_SD_CMD  
IO_SPI_SCK  
O_SPI_TXD  
IO_SPI_SSN  
I_SPI_RXD  
IO_SD_DAT0  
IO_SD_DAT1  
SD_DAT2/SPI_RXD 26  
IO_SD_DAT2  
SD_DAT3  
GPIO17  
27  
GPIO_7  
IO_SD_DAT3  
O_WIFI_UART_TXD  
O_BT_UART1_RTS  
29 Down GPIO_17  
30 Down GPIO_18  
31 Down GPIO_19  
32 Down GPIO_20  
IO_BT_PCM_CLK  
IO_BT_PCM_SYNC  
I_BT_PCM_D_IN  
O_BT_PCM_D_OUT  
O_IRQN  
I_WAKEUP  
I_WAKEUP  
I_WAKEUP  
I_WAKEUP  
GPIO18  
GPIO19  
GPIO20  
IRQN  
33  
34  
35  
Up  
Up  
Up  
GPIO_2  
GPIO_21  
GPIO_0  
I_WIFI_UART_RXD  
I_WIFI_UART_RXD  
O_WIFI_UART_TXD  
O_BT_UART1_RTS  
O_WIFI_UART_TXD  
GPIO21  
I_RTC_CLK  
O_BT_UART1_RTS  
IO_I2C_MASTER_SCL  
IO_I2C_MASTER_SDA  
HOST_WAKEUP  
I_WAKEUP  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
23  
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
10.1 I2C Slave Interface  
10.1.1 Description  
The I2C Slave interface, used primarily for control by the host processor, is a two-wire serial interface consisting of  
a serial data line (SDA) on Pin 16 (GPIO14) and a serial clock line (SCL) on Pin 17 (GPIO13). I2C Slave responds  
to the seven bit address value 0x60. The ATWINC3400-MR210 I2C supports I2C bus Version 2.1 - 2000 and can  
operate in standard mode (with data rates up to 100Kb/s) and fast mode (with data rates up to 400Kb/s).  
The I2C Slave is a synchronous serial interface. The SDA line is a bidirectional signal and changes only while the  
SCL line is low, except for STOP, START, and RESTART conditions. The output drivers are open-drain to perform  
wire-AND functions on the bus. The maximum number of devices on the bus is limited by only the maximum  
capacitance specification of 400pF. Data is transmitted in byte packages.  
For specific information, refer to the Philips Specification entitled “The I2C -Bus Specification, Version 2.1”.  
10.1.2 I2C Slave Timing  
The I2C Slave timing is provided in Figure 10-1 and Table 10-2.  
Figure 10-1. ATWINC3400-MR210 I2C Slave Timing Diagram  
tPR  
tHDDAT  
tSUDAT  
tBUF  
tSUSTO  
SDA  
SCL  
tHL  
tLH  
tLH  
tHL  
tWL  
tHDSTA  
tWH  
tPR  
tPR  
fSCL  
tSUSTA  
Table 10-2.  
ATWINC3400-MR210 I2C Slave Timing Parameters  
Parameter  
Symbol  
fSCL  
Min.  
Max.  
Unit  
Remarks  
SCL Clock Frequency  
SCL Low Pulse Width  
SCL High Pulse Width  
SCL, SDA Fall Time  
0
400  
kHz  
µs  
tWL  
tWH  
tHL  
1.3  
0.6  
µs  
300  
300  
ns  
This is dictated by external  
components  
SCL, SDA Rise Time  
tLH  
ns  
START Setup Time  
START Hold Time  
SDA Setup Time  
tSUSTA  
tHDSTA  
tSUDAT  
0.6  
0.6  
µs  
µs  
ns  
100  
0
40  
ns  
µs  
Slave and Master Default  
Master Programming Option  
SDA Hold Time  
tHDDAT  
STOP Setup Time  
tSUSTO  
tBUF  
0.6  
1.3  
0
µs  
µs  
ns  
Bus Free Time Between STOP and START  
Glitch Pulse Reject  
tPR  
50  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
24  
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
 
10.2 I2C Master Interface  
10.2.1 Description  
ATWINC3400-MR210 provides an I2C bus master, which is intended primarily for accessing an external EEPROM  
memory through a software-defined protocol. The I2C Master is a two-wire serial interface consisting of a serial  
data line (SDA) and a serial clock line (SCL). SDA can be configured on pin 42 (HOST_WAKEUP) and SCL can be  
configured on pin 41 (GPIO21).  
10.2.2 I2C Master Timing  
The I2C Master interface supports three speeds:  
Standard mode (100kb/s)  
Fast mode (400kb/s)  
High-speed mode (3.4Mb/s)  
The timing diagram of the I2C Master interface is the same as that of the I2C Slave interface (see Figure 10-1). The  
timing parameters of I2C Master are shown in Table 10-3.  
Table 10-3.  
ATWINC3400-MR210 I2C Master Timing Parameters  
Standard  
mode  
High-speed  
mode  
Fast mode  
Parameter  
Symbol  
Unit  
Min.  
Max.  
Min.  
Max.  
400  
Min.  
0
Max.  
SCL Clock Frequency  
SCL Low Pulse Width  
SCL High Pulse Width  
SCL Fall Time  
fSCL  
0
4.7  
4
100  
0
3400  
kHz  
µs  
tWL  
1.3  
0.6  
0.16  
0.06  
10  
tWH  
tHLSCL  
tHLSDA  
tLHSCL  
tLHSDA  
tSUSTA  
tHDSTA  
tSUDAT  
tHDDAT  
tSUSTO  
tBUF  
300  
300  
300  
300  
300  
300  
40  
80  
40  
80  
SDA Fall Time  
10  
ns  
SCL Rise Time  
1000  
1000  
10  
SDA Rise Time  
10  
START Setup Time  
START Hold Time  
SDA Setup Time  
4.7  
4
0.6  
0.6  
100  
40  
0.16  
0.16  
10  
µs  
ns  
250  
5
SDA Hold Time  
0
70  
STOP Setup time  
4
0.6  
1.3  
0
0.16  
µs  
ns  
Bus Free Time Between STOP and START  
Glitch Pulse Reject  
4.7  
tPR  
50  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
25  
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
10.3 SPI Slave Interface  
10.3.1 Description  
ATWINC3400-MR210 provides a Serial Peripheral Interface (SPI) that operates as a SPI slave. The SPI Slave  
interface can be used for control and for serial I/O of 802.11 data. The SPI Slave pins are mapped as shown in  
Table 10-4. The RXD pin is the same as Master Output, Slave Input (MOSI), and the TXD pin is the same as  
Master Input, Slave Output (MISO). The SPI Slave is a full-duplex slave-synchronous serial interface that is  
available immediately following reset when Pin 12 (DVDDIO) is tied to VDDIO.  
Table 10-4.  
ATWINC3400-MR210 SPI Slave Interface Pin Mapping  
SPI function  
Pin #  
J2  
CFG: Must be tied to VDDIO  
SSN: Active Low Slave Select  
SCK: Serial Clock  
J25  
J23  
J26  
RXD: Serial Data Receive (MOSI)  
TXD: Serial Data Transmit (MISO)  
J24  
When the SPI is not selected, i.e., when SSN is high, the SPI interface will not interfere with data transfers  
between the serial-master and other serial-slave devices. When the serial slave is not selected, its transmitted data  
output is buffered, resulting in a high impedance drive onto the serial master receive line.  
The SPI Slave interface responds to a protocol that allows an external host to read or write any register in the chip  
as well as initiate DMA transfers. For the details of the SPI protocol and more specific instructions, refer to  
ATWINC3400-MR210 Programming Guide.  
10.3.2 SPI Slave Modes  
The SPI Slave interface supports four standard modes as determined by the Clock Polarity (CPOL) and Clock  
Phase (CPHA) settings. These modes are illustrated in Table 10-5 and Figure 10-2. The red lines in Figure 10-2  
correspond to Clock Phase = 0 and the blue lines correspond to Clock Phase = 1.  
Table 10-5.  
ATWINC3400-MR210 SPI Slave Modes  
Mode  
CPOL  
CPHA  
0
1
2
3
0
0
1
1
0
1
0
1
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
26  
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
 
10.3.3 SPI Slave Timing  
The SPI Slave timing is provided in Figure 10-2, Figure 10-3, and Table 10-6.  
Figure 10-2. ATWINC3400-MR210 SPI Slave Clock Polarity and Clock Phase Timing  
CPOL = 0  
SCK  
CPOL = 1  
SSN  
CPHA = 0  
CPHA = 1  
z
1
2
3
4
5
6
7
8
z
RXD/TXD  
(MOSI/MISO)  
z
1
2
3
4
5
6
7
8
z
Figure 10-3. ATWINC3400-MR210 SPI Slave Timing Diagram  
Table 10-6.  
ATWINC3400-MR210 SPI Slave Timing Parameters  
Parameter  
Symbol  
fSCK  
Min.  
Max.  
Unit  
MHz  
ns  
Clock Input Frequency  
Clock Low Pulse Width  
48  
tWL  
5
5
Clock High Pulse Width  
Clock Rise Time  
tWH  
ns  
tLH  
5
5
ns  
Clock Fall Time  
tHL  
ns  
Input Setup Time  
Input Hold Time  
tISU  
5
5
0
5
5
ns  
tIHD  
ns  
Output Delay  
tODLY  
tSUSSN  
tHDSSN  
20  
ns  
Slave Select Setup Time  
Slave Select Hold Time  
ns  
ns  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
27  
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
 
 
10.4 SPI Master Interface  
10.4.1 Description  
ATWINC3400-MR210 provides a SPI Master interface for accessing external flash memory. The SPI Master pins  
are mapped as shown in Table 10-7. The TXD pin is the same as Master Output, Slave Input (MOSI), and the RXD  
pin is the same as Master Input, Slave Output (MISO). The SPI Master interface supports all four standard modes  
of clock polarity and clock phase shown in Table 10-5. External SPI flash memory is accessed by a processor  
programming commands to the SPI Master interface, which in turn initiates a SPI master access to the flash. For  
more specific instructions, refer to ATWINC3400-MR210 Programming Guide.  
Table 10-7.  
ATWINC3400-MR210 SPI Master Interface Pin Mapping  
Pin name  
Pin #  
J23  
SPI function  
SPI_SCK  
SPI_SSN  
SPI_RXD  
SPI_TXD  
Serial Clock Output  
J25  
Active Low Slave Select Output  
J26  
RXD: Serial Data Transmit Output (MISO)  
TXD: Serial Data Receive Input (MOSI)  
J24  
10.4.2 SPI Master Timing  
The SPI Master timing is provided in Figure 10-4 and Table 10-8.  
Figure 10-4. ATWINC3400-MR210 SPI Master Timing Diagram  
fSCK  
tLH  
tWH  
tWL  
SCK  
tHL  
SSN,  
TXD  
tODLY  
tISU  
tIHD  
RXD  
Table 10-8.  
ATWINC3400-MR210 SPI Master Timing Parameters  
Parameter  
Symbol  
fSCK  
tWL  
tWH  
tLH  
Min.  
Max.  
Unit  
Clock Output Frequency  
Clock Low Pulse Width  
Clock High Pulse Width  
Clock Rise Time  
48  
MHz  
5
5
5
5
Clock Fall Time  
tHL  
ns  
Input Setup Time  
Input Hold Time  
tISU  
tIHD  
tODLY  
5
5
0
Output Delay  
5
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
28  
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
 
 
10.5 UART Interface  
ATWINC3400-MR210 provides Universal Asynchronous Receiver/Transmitter (UART) interfaces for serial  
communication. The BLE subsystem has two UART interfaces: a 4-pin interface for control, data transfer, and  
audio (BT UART1), and a 2-pin interface for debugging (BT UART2). The 802.11 subsystem has one 2-pin UART  
interface (Wi-Fi UART), which can be used for control, data transfer, or debugging. The UART interfaces are  
compatible with the RS-232 standard, where ATWINC3400-MR210 operates as Data Terminal Equipment (DTE).  
The 2-pin UART has the receive and transmit pins (RXD and TXD), and the 4-pin UART has two additional pins  
used for flow control/handshaking; Request To Send (RTS) and Clear To Send (CTS).  
The RTS and CTS are used for hardware flow control; they MUST be connected to the  
host MCU UART and enabled for the UART interface to be functional.  
The pins associated with each UART interfaces can be enabled on several alternative pins by programming their  
corresponding pin MUX control registers (see Table 10-1 for available options).  
The UART features programmable baud rate generation with fractional clock division, which allows transmission  
and reception at a wide variety of standard and non-standard baud rates. The BLE UART input clock is selectable  
between 104MHz, 52MHz, 26MHz, and 13MHz. The clock divider value is programmable as 13 integer bits and  
three fractional bits (with 8.0 being the smallest recommended value for normal operation). This results in the  
maximum supported baud rate of 10MHz/8.0 = 13MBd. The 802.11 UART input clock is selectable between  
10MHz, 5MHz, 2.5MHz, and 1.25MHz. The clock divider value is programmable as 13 integer bits and three  
fractional bits (with 8.0 being the smallest recommended value for normal operation). This results in the maximum  
supported baud rate of 10MHz/8.0 = 1.25MBd.  
The UART can be configured for seven or eight bit operation, with or without parity, with four different parity types  
(odd, even, mark, or space), and with one or two stop bits. It also has RX and TX FIFOs, which ensure reliable  
high speed reception and low software overhead transmission. FIFO size is 4 x 8 for both RX and TX direction.  
The UART also has status registers showing the number of received characters available in the FIFO and various  
error conditions, as well the ability to generate interrupts based on these status bits.  
An example of UART receiving or transmitting a single packet is shown in Figure 10-5. This example shows 7-bit  
data (0x45), odd parity, and two stop bits.  
For more specific instructions, refer to ATWINC3400-MR210 Programming Guide.  
Figure 10-5. Example of UART RX or TX Packet  
10.6 GPIOs  
18 General Purpose Input/Output (GPIO) pins, labeled GPIO 0-8 and 13-21, are available to allow for application  
specific functions. Each GPIO pin can be programmed as an input (the value of the pin can be read by the host or  
internal processor) or as an output (the output values can be programmed by the host or internal processor),  
where the default mode after power-up is input.  
ATWINC3400-MR210 provides programmable pull-up resistors on various pins (see Table 4-1). The purpose of  
these resistors is to keep any unused input pins from floating, which can cause excess current to flow through the  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
29  
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
 
input buffer from the VDDIO supply. Any unused pin on the device should leave these pull-up resistors enabled so  
the pin will not float. The default state at power up is for the pull-up resistor to be enabled. However, any pin which  
is used should have the pull-up resistor disabled. The reason for this is that if any pins are driven to a low level  
while the device is in the low power sleep state, current will flow from the VDDIO supply through the pull-up  
resistors, increasing the current consumption of the module. Since the value of the pull-up resistor is approximately  
100kΩ, the current through any pull-up resistor that is being driven low will be VDDIO/100K. For VDDIO = 3.3V,  
the current would be approximately 33µA. Pins which are used and have had the programmable pull-up resistor  
disabled should always be actively driven to either a high or low level and not be allowed to float. Refer to  
ATWINC3400-MR210 Programming Guide for information on enabling/disabling the programmable pull-up  
resistors.  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
30  
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
11 Reference Design  
The ATWINC3400-MR210 application schematics are shown in Figure 11-1.  
Module design information such as module schematics can be obtained under an NDA from Atmel.  
Figure 11-1. ATWINC3400-MR210 Application Schematic for SPI Operation  
R T C  
2 J 0  
A D _ P D G N  
4 J 9  
5 D G N  
3 J 6  
2 J 8  
2 J 2  
1 J 3  
J 1  
4 D G N  
3 D G N  
2 D G N  
1 D G N  
O I D V D  
V B A T  
1 J 2  
1 J 8  
O E  
V D  
3
4
N C 4  
D
V S S  
J 6  
J 5  
J 4  
J 3  
2
N C 3  
N C 2  
N C 1  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
31  
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
 
Table 11-1.  
SPI Application Bill of Material  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
32  
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
12 Package Drawing  
The ATWINC3400-MR210 module with Chip Antenna package details are shown in Figure 12-1.  
Figure 12-1. ATWINC3400-MR210 Module with CA Connector Package Dimensions  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
33  
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
13 Reflow Profile Information  
This chapter provides guidelines for reflow processes in getting the Atmel module soldered to the customer’s  
design.  
13.1 Storage Condition  
13.1.1 Moisture Barrier Bag Before Opened  
A moisture barrier bag must be stored in a temperature of less than 30°C with humidity under 85% RH.  
The calculated shelf life for the dry-packed product shall be 12 months from the date the bag is sealed.  
13.1.2 Moisture Barrier Bag Open  
Humidity indicator cards must be blue, <30%.  
13.2 Stencil Design  
The recommended stencil is laser-cut, stainless-steel type with thickness of 100µm to 130µm and approximately a  
1:1 ratio of stencil opening to pad dimension. To improve paste release, a positive taper with bottom opening 25µm  
larger than the top can be utilized. Local manufacturing experience may find other combinations of stencil  
thickness and aperture size to get good results.  
13.3 Baking Conditions  
This module is rated at MSL level 3. After sealed bag is opened, no baking is required within 168 hours so long as  
the devices are held at <= 30oC/60% RH or stored at <10% RH.  
The module will require baking before mounting if:  
The sealed bag has been open for >168 hours  
Humidity Indicator Card reads >10%  
SIPs need to be baked for 8 hours at 125oC  
13.4 Soldering and Reflow Condition  
13.4.1 Reflow Oven  
It is strongly recommended that a reflow oven equipped with more heating zones and Nitrogen atmosphere be  
used for lead-free assembly. Nitrogen atmosphere has shown to improve the wet-ability and reduce temperature  
gradient across the board. It can also enhance the appearance of the solder joints by reducing the effects of  
oxidation.  
The following bullet items should also be observed in the reflow process:  
Some recommended pastes include NC-SMQ® 230 flux and Indalloy® 241 solder paste made up of 95.5  
Sn/3.8 Ag/0.7 Cu or SENJU N705-GRN3360-K2-V Type 3, no clean paste  
Allowable reflow soldering times: 2 times based on the following reflow soldering profile (see Figure 13-1).  
Temperature profile: Reflow soldering shall be done according to the following temperature profile (see  
Figure 13-1).  
Peak temp: 250°C.  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
34  
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
 
Figure 13-1. Solder Reflow Profile  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
35  
[PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
14 Revision History  
Doc Rev.  
42535B  
42535A  
Date  
Comments  
1. Removed references to uFL as it is not yet supported.  
2. Revised Ground Paddle size in Table 2-1.  
3. Revised Block Diagram Figure 3-1.  
4. Updated Pin Assignments Figure 4-1.  
5. Revised Pin Description table Table 4-1.  
6. Globally replaced Bluetooth with BLE.  
7. Revised values in Table 5-1.  
8. Simplified table Table 9-2 and added note 3.  
9. Corrected VDDIO typo in Table 9-3.  
03/2016  
10. Revised values in Table 10-8.  
11. Added notation about the using Flow Control pins in section 10.5.  
12. Removed SDIO and PCM as they are not supported.  
13. Revised Table 9-3 layout to be clearer.  
14. Clarified the schematics for easier reading in section 11.  
15. Revised Module drawings for easier reading in Figure 12-1.  
16. Revised Reflow Profile content in section 13.  
10/2015  
Initial document release.  
ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0  
36  
PRELIMINARY DATASHEET]  
Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016  
Atmel Corporation  
1600 Technology Drive, San Jose, CA 95110 USA  
T: (+1)(408) 441.0311  
F: (+1)(408) 436.4200  
www.atmel.com  
© 2016 Atmel Corporation. / Rev.: Atmel-42535B-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-s4.0_Datasheet_032016.  
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and  
other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be  
trademarks of others.  
DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right  
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE  
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS  
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT  
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES  
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT , EVEN IF ATMEL  
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this  
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information  
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,  
authorized, or warranted for use as components in applications intended to support or sustain life.  
SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where  
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written consent.  
Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel  
products are not designed nor intended for use in military or aerospace applications or environments unless specifically desi gnated by Atmel as military-grade. Atmel products are not  
designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.  

相关型号:

ATWINC3400-MR210CA122

Microprocessor Circuit
MICROCHIP

ATWINC3400-MR210CA122-T

Microprocessor Circuit, CMOS
MICROCHIP

ATWINC3400-MR210CA131

Microprocessor Circuit
MICROCHIP

ATWINC3400-MR210CA131-T

Microprocessor Circuit, CMOS
MICROCHIP

ATWINC3400-MR210CAXXX

IEEE® 802.11 b/g/n Network Controller with Integrated Bluetooth® Low Energy Module
MICROCHIP

ATWINC3400-MR210UA

SMART MODULE ATWINC3400-MR210UA
MICROCHIP

ATWINC3400-MR210UAXXX

IEEE® 802.11 b/g/n Network Controller with Integrated Bluetooth® Low Energy Module
MICROCHIP

ATWINC3400-MR210XA

IEEE® 802.11 b/g/n Network Controller with Integrated Bluetooth® Low Energy Module
MICROCHIP

ATWINC3400-WING

Wireless Network Controller
MICROCHIP

ATWINC3400-XPRO

WINC3400-XPRO XPLAINED PRO KIT
MICROCHIP

ATWINC3400-XSTK

WILC3400 XPLAINED PRO STARTER KI
MICROCHIP

ATWINC3400A-MU

Wireless Network Controller
MICROCHIP