ATXMEGA128A4U-ANR [MICROCHIP]

IC MCU 8BIT 128KB FLASH 44TQFP;
ATXMEGA128A4U-ANR
型号: ATXMEGA128A4U-ANR
厂家: MICROCHIP    MICROCHIP
描述:

IC MCU 8BIT 128KB FLASH 44TQFP

时钟 ATM 异步传输模式 外围集成电路
文件: 总339页 (文件大小:24148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8/16-bit Atmel XMEGA Microcontroller  
ATxmega128A4U / ATxmega64A4U /  
ATxmega32A4U / ATxmega16A4U  
Features  
z
z
High-performance, low-power Atmel® AVR® XMEGA® 8/16-bit Microcontroller  
Nonvolatile program and data memories  
z
z
z
z
16K - 128KB of in-system self-programmable flash  
4K - 8KB boot section  
1K - 2KB EEPROM  
2K - 8KB internal SRAM  
z
Peripheral Features  
z
z
z
Four-channel DMA controller  
Eight-channel event system  
Five 16-bit timer/counters  
z
z
z
z
Three timer/counters with 4 output compare or input capture channels  
Two timer/counters with 2 output compare or input capture channels  
High-resolution extensions on all timer/counters  
Advanced waveform extension (AWeX) on one timer/counter  
z
One USB device interface  
z
USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant  
32 Endpoints with full configuration flexibility  
z
z
z
z
z
z
z
z
z
z
z
z
z
Five USARTs with IrDA support for one USART  
Two Two-wire interfaces with dual address match (I2C and SMBus compatible)  
Two serial peripheral interfaces (SPIs)  
AES and DES crypto engine  
CRC-16 (CRC-CCITT) and CRC-32 (IEEE® 802.3) generator  
16-bit real time counter (RTC) with separate oscillator  
One twelve-channel, 12-bit, 2msps Analog to Digital Converter  
One two-channel, 12-bit, 1msps Digital to Analog Converter  
Two Analog Comparators with window compare function, and current sources  
External interrupts on all general purpose I/O pins  
Programmable watchdog timer with separate on-chip ultra low power oscillator  
QTouch® library support  
z
Capacitive touch buttons, sliders and wheels  
z
z
Special microcontroller features  
z
z
z
z
z
Power-on reset and programmable brown-out detection  
Internal and external clock options with PLL and prescaler  
Programmable multilevel interrupt controller  
Five sleep modes  
Programming and debug interfaces  
z
PDI (program and debug interface)  
I/O and packages  
z
z
z
z
34 Programmable I/O pins  
44 - lead TQFP  
44 - pad VQFN/QFN  
49 - ball VFBGA  
z
z
Operating voltage  
1.6 – 3.6V  
Operating frequency  
z
z
0 – 12MHz from 1.6V  
0 – 32MHz from 2.7V  
z
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
1.  
Ordering Information  
Ordering code  
Flash (bytes)  
128K + 8K  
128K + 8K  
64K + 4K  
64K + 4K  
32K + 4K  
32K + 4K  
16K + 4K  
16K + 4K  
128K + 8K  
128K + 8K  
64K + 4K  
64K + 4K  
32K + 4K  
32K + 4K  
16K + 4K  
16K + 4K  
128K + 8K  
128K + 8K  
64K + 4K  
64K + 4K  
32K + 4K  
32K + 4K  
16K + 4K  
16K + 4K  
EEPROM (bytes)  
SRAM (bytes)  
Speed (MHz)  
Power supply  
Package (1)(2)(3)  
Temp.  
ATxmega128A4U-AU  
2K  
2K  
2K  
2K  
1K  
1K  
1K  
1K  
2K  
2K  
2K  
2K  
1K  
1K  
1K  
1K  
2K  
2K  
2K  
2K  
1K  
1K  
1K  
1K  
8K  
8K  
4K  
4K  
4K  
4K  
2K  
2K  
8K  
8K  
4K  
4K  
4K  
4K  
2K  
2K  
8K  
8K  
4K  
4K  
4K  
4K  
2K  
2K  
ATxmega128A4U-AUR(4)  
ATxmega64A4U-AU  
ATxmega64A4U-AUR(4)  
ATxmega32A4U-AU  
44A  
ATxmega32A4U-AUR(4)  
ATxmega16A4U-AU  
ATxmega16A4U-AUR(4)  
ATxmega128A4U-MH  
ATxmega128A4U-MHR(4)  
ATxmega64A4U-MH  
ATxmega64A4U-MHR(4)  
ATxmega32A4U-MH  
ATxmega32A4U-MHR(4)  
ATxmega16A4U-MH  
ATxmega16A4U-MHR(4)  
ATxmega128A4U-CU  
ATxmega128A4U-CUR(4)  
ATxmega64A4U-CU  
PW  
32  
1.6 - 3.6V  
-40°C - 85°C  
44M1  
ATxmega64A4U-CUR(4)  
ATxmega32A4U-CU  
49C2  
ATxmega32A4U-CUR(4)  
ATxmega16A4U-CU  
ATxmega16A4U-CUR(4)  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
2
Ordering code  
Flash (bytes)  
128K + 8K  
128K + 8K  
64K + 4K  
64K + 4K  
32K + 4K  
32K + 4K  
16K + 4K  
16K + 4K  
128K + 8K  
128K + 8K  
64K + 4K  
64K + 4K  
32K + 4K  
32K + 4K  
16K + 4K  
16K + 4K  
EEPROM (bytes)  
SRAM (bytes)  
Speed (MHz)  
Power supply  
Package (1)(2)(3)  
Temp.  
ATxmega128A4U-AN  
ATxmega128A4U-ANR(4)  
ATxmega64A4U-AN  
ATxmega64A4U-ANR(4)  
ATxmega32A4U-AN  
ATxmega32A4U-ANR(4)  
ATxmega16A4U-AN  
ATxmega16A4U-ANR(4)  
ATxmega128A4U-M7  
ATxmega128A4U-M7R(4)  
ATxmega64A4U-M7  
ATxmega64A4U-M7R(4)  
ATxmega32A4U-M7  
ATxmega32A4U-M7R(4)  
ATxmega16A4U-M7  
ATxmega16A4U-M7R(4)  
2K  
2K  
2K  
2K  
1K  
1K  
1K  
1K  
2K  
2K  
2K  
2K  
1K  
1K  
1K  
1K  
8K  
8K  
4K  
4K  
4K  
4K  
2K  
2K  
8K  
8K  
4K  
4K  
4K  
4K  
2K  
2K  
44A  
32  
1.6 - 3.6V  
0°C - 105°C  
PW  
44M1  
Notes:  
1.  
2.  
3.  
4.  
This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information.  
Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.  
For packaging information, see “Instruction Set Summary” on page 63.  
Tape and Reel  
Package Type  
44A  
44-Lead, 10 x 10mm body size, 1.0mm body thickness, 0.8mm lead pitch, thin profile plastic quad flat package (TQFP)  
44-Pad, 7x7x1mm body, lead pitch 0.50mm, 5.20mm exposed pad, thermally enhanced plastic very thin quad no lead package (VQFN)  
44-Pad, 7x7x1mm body, lead pitch 0.50mm, 5.20mm exposed pad, thermally enhanced plastic very thin quad no lead package (VQFN)  
49-Ball (7 x 7 Array), 0.65mm Pitch, 5.0 x 5.0 x 1.0mm, very thin, fine-pitch ball grid array package (VFBGA)  
44M1  
PW  
49C2  
Typical Applications  
Industrial control  
Climate control  
RF and ZigBee®  
USB connectivity  
Sensor control  
Optical  
Low power battery applications  
Power tools  
Factory automation  
Building control  
Board control  
HVAC  
Utility metering  
White goods  
Medical applications  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
3
2.  
Pinout/Block Diagram  
Figure 2-1. Block Diagram and QFN/TQFP pinout  
Power  
Programming, debug, test  
Ground  
Digital function  
Analog function / Oscillators  
External clock / Crystal pins  
General Purpose I /O  
Port R  
XOSC  
TOSC  
PA5  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
PE3  
PE2  
VCC  
GND  
PE1  
PE0  
PD7  
PD6  
PD5  
PD4  
PD3  
DATA BUS  
OSC/CLK  
Control  
Internal  
oscillators  
Power  
PA6  
PA7  
PB0  
PB1  
PB2  
PB3  
GND  
VCC  
PC0  
PC1  
Watchdog  
Supervision  
AREF  
ADC  
Sleep  
Controller  
Real Time  
Counter  
Watchdog  
Timer  
Reset  
Controller  
3
AC0:1  
4
Event System  
Controller  
Crypto /  
CRC  
Prog/Debug  
Interface  
OCD  
5
Interrupt  
Controller  
BUS  
matrix  
AREF  
DAC  
6
Internal  
references  
DMA  
Controller  
CPU  
7
FLASH  
EEPROM  
SRAM  
8
DATA BUS  
9
EVENT ROUTING NETWORK  
10  
11  
Port C  
Port D  
Port E  
Note:  
1. For full details on pinout and pin functions refer to “Pinout and Pin Functions” on page 55.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
4
Figure 2-2. BGA pinout  
Top view  
Bottom view  
1
2
3
4
5
6
7
7
6
5
4
3
2
1
A
B
C
D
E
F
A
B
C
D
E
F
G
G
Table 2-1. BGA pinout  
1
2
3
4
5
6
7
A
B
PA3  
AVCC  
PA1  
GND  
PA0  
PR1  
PR0  
PDI_DATA  
PE2  
PE3  
RESET/  
PA4  
GND  
VCC  
PDI_CLK  
GND  
C
D
E
F
PA5  
PB1  
GND  
VCC  
PC1  
PA2  
PB2  
GND  
PC0  
PC2  
PA6  
PB3  
PC3  
PC4  
PC5  
PA7  
PB0  
GND  
PC6  
PC7  
PE1  
PD7  
PD5  
PD1  
VCC  
GND  
PE0  
PD6  
PD3  
PD2  
GND  
PD4  
PD0  
G
GND  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
5
3.  
Overview  
The Atmel AVR XMEGA is a family of low power, high performance, and peripheral rich 8/16-bit microcontrollers  
based on the AVR enhanced RISC architecture. By executing instructions in a single clock cycle, the AVR XMEGA  
devices achieve CPU throughput approaching one million instructions per second (MIPS) per megahertz, allowing the  
system designer to optimize power consumption versus processing speed.  
The AVR CPU combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly  
connected to the arithmetic logic unit (ALU), allowing two independent registers to be accessed in a single instruction,  
executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs many times  
faster than conventional single-accumulator or CISC based microcontrollers.  
The AVR XMEGA A4U devices provide the following features: in-system programmable flash with read-while-write  
capabilities; internal EEPROM and SRAM; four-channel DMA controller, eight-channel event system and  
programmable multilevel interrupt controller, 34 general purpose I/O lines, 16-bit real-time counter (RTC); five flexible,  
16-bit timer/counters with compare and PWM channels; five USARTs; two two-wire serial interfaces (TWIs); one full  
speed USB 2.0 interface; two serial peripheral interfaces (SPIs); AES and DES cryptographic engine; one twelve-  
channel, 12-bit ADC with programmable gain; one 2-channel 12-bit DAC; two analog comparators (ACs) with window  
mode; programmable watchdog timer with separate internal oscillator; accurate internal oscillators with PLL and  
prescaler; and programmable brown-out detection.  
The program and debug interface (PDI), a fast, two-pin interface for programming and debugging, is available.  
The ATx devices have five software selectable power saving modes. The idle mode stops the CPU while allowing the  
SRAM, DMA controller, event system, interrupt controller, and all peripherals to continue functioning. The power-down  
mode saves the SRAM and register contents, but stops the oscillators, disabling all other functions until the next TWI,  
USB resume, or pin-change interrupt, or reset. In power-save mode, the asynchronous real-time counter continues to  
run, allowing the application to maintain a timer base while the rest of the device is sleeping. In standby mode, the  
external crystal oscillator keeps running while the rest of the device is sleeping. This allows very fast startup from the  
external crystal, combined with low power consumption. In extended standby mode, both the main oscillator and the  
asynchronous timer continue to run. To further reduce power consumption, the peripheral clock to each individual  
peripheral can optionally be stopped in active mode and idle sleep mode.  
Atmel offers a free QTouch library for embedding capacitive touch buttons, sliders and wheels functionality into AVR  
microcontrollers.  
The devices are manufactured using Atmel high-density, nonvolatile memory technology. The program flash memory  
can be reprogrammed in-system through the PDI. A boot loader running in the device can use any interface to  
download the application program to the flash memory. The boot loader software in the boot flash section will continue  
to run while the application flash section is updated, providing true read-while-write operation. By combining an 8/16-  
bit RISC CPU with in-system, self-programmable flash, the AVR XMEGA is a powerful microcontroller family that  
provides a highly flexible and cost effective solution for many embedded applications.  
All Atmel AVR XMEGA devices are supported with a full suite of program and system development tools, including C  
compilers, macro assemblers, program debugger/simulators, programmers, and evaluation kits.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
6
3.1  
Block Diagram  
Figure 3-1. XMEGA A4U Block Diagram  
PR[0..1]  
XTAL1/  
TOSC1  
Digital function  
Analog function  
Programming, debug, test  
Oscillator/Crystal/Clock  
General Purpose I/O  
XTAL2/  
TOSC2  
Oscillator  
Circuits/  
Clock  
Real Time  
Counter  
Watchdog  
Oscillator  
PORT R (2)  
Generation  
DATA BUS  
SRAM  
Watchdog  
Timer  
PA[0..7]  
PORT A (8)  
Event System  
Controller  
Oscillator  
Control  
VCC  
GND  
Power  
Supervision  
POR/BOD &  
RESET  
ACA  
DMA  
Controller  
Sleep  
Controller  
ADCA  
RESET/  
AREFA  
Int. Refs.  
Tempref  
AREFB  
Prog/Debug  
Controller  
PDI_CLK  
BUS Matrix  
PDI  
PDI_DATA  
AES  
DES  
CRC  
OCD  
Interrupt  
Controller  
CPU  
PB[0..7]  
PORT B (8)  
DACB  
NVM Controller  
Flash  
EEPROM  
IRCOM  
DATA BUS  
EVENT ROUTING NETWORK  
PORT C (8)  
PORT D (8)  
PORT E (4)  
TOSC1 (optional)  
TOSC2  
(optional)  
PC[0..7]  
PD[0..7]  
PE[0..3]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
7
4.  
Resources  
A comprehensive set of development tools, application notes and datasheets are available for download on  
http://www.atmel.com/avr.  
4.1  
Recommended reading  
z
Atmel AVR XMEGA AU manual  
z
XMEGA application notes  
This device data sheet only contains part specific information with a short description of each peripheral and module.  
The XMEGA AU manual describes the modules and peripherals in depth. The XMEGA application notes contain  
example code and show applied use of the modules and peripherals.  
All documentation are available from www.atmel.com/avr.  
5.  
Capacitive touch sensing  
The Atmel QTouch library provides a simple to use solution to realize touch sensitive interfaces on most Atmel AVR  
microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced  
reporting of touch keys and includes Adjacent Key Suppression® (AKS®) technology for unambiguous detection of key  
events. The QTouch library includes support for the QTouch and QMatrix acquisition methods.  
Touch sensing can be added to any application by linking the appropriate Atmel QTouch library for the AVR  
microcontroller. This is done by using a simple set of APIs to define the touch channels and sensors, and then calling  
the touch sensing API’s to retrieve the channel information and determine the touch sensor states.  
The QTouch library is FREE and downloadable from the Atmel website at the following location:  
www.atmel.com/qtouchlibrary. For implementation details and other information, refer to the QTouch library user  
guide - also available for download from the Atmel website.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
8
6.  
AVR CPU  
6.1  
Features  
z
8/16-bit, high-performance Atmel AVR RISC CPU  
z 142 instructions  
z Hardware multiplier  
z
z
z
z
z
z
z
32x8-bit registers directly connected to the ALU  
Stack in RAM  
Stack pointer accessible in I/O memory space  
Direct addressing of up to 16MB of program memory and 16MB of data memory  
True 16/24-bit access to 16/24-bit I/O registers  
Efficient support for 8-, 16-, and 32-bit arithmetic  
Configuration change protection of system-critical features  
6.2  
6.3  
Overview  
All Atmel AVR XMEGA devices use the 8/16-bit AVR CPU. The main function of the CPU is to execute the code and  
perform all calculations. The CPU is able to access memories, perform calculations, control peripherals, and execute  
the program in the flash memory. Interrupt handling is described in a separate section, refer to “Interrupts and  
Programmable Multilevel Interrupt Controller” on page 29.  
Architectural Overview  
In order to maximize performance and parallelism, the AVR CPU uses a Harvard architecture with separate memories  
and buses for program and data. Instructions in the program memory are executed with single-level pipelining. While  
one instruction is being executed, the next instruction is pre-fetched from the program memory. This enables  
instructions to be executed on every clock cycle. For details of all AVR instructions, refer to http://www.atmel.com/avr.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
9
Figure 6-1. Block diagram of the AVR CPU architecture.  
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and  
a register. Single-register operations can also be executed in the ALU. After an arithmetic operation, the status  
register is updated to reflect information about the result of the operation.  
The ALU is directly connected to the fast-access register file. The 32 x 8-bit general purpose working registers all  
have single clock cycle access time allowing single-cycle arithmetic logic unit (ALU) operation between registers or  
between a register and an immediate. Six of the 32 registers can be used as three 16-bit address pointers for program  
and data space addressing, enabling efficient address calculations.  
The memory spaces are linear. The data memory space and the program memory space are two different memory  
spaces.  
The data memory space is divided into I/O registers, SRAM, and external RAM. In addition, the EEPROM can be  
memory mapped in the data memory.  
All I/O status and control registers reside in the lowest 4KB addresses of the data memory. This is referred to as the  
I/O memory space. The lowest 64 addresses can be accessed directly, or as the data space locations from 0x00 to  
0x3F. The rest is the extended I/O memory space, ranging from 0x0040 to 0x0FFF. I/O registers here must be  
accessed as data space locations using load (LD/LDS/LDD) and store (ST/STS/STD) instructions.  
The SRAM holds data. Code execution from SRAM is not supported. It can easily be accessed through the five  
different addressing modes supported in the AVR architecture. The first SRAM address is 0x2000.  
Data addresses 0x1000 to 0x1FFF are reserved for memory mapping of EEPROM.  
The program memory is divided in two sections, the application program section and the boot program section. Both  
sections have dedicated lock bits for write and read/write protection. The SPM instruction that is used for self-  
programming of the application flash memory must reside in the boot program section. The application section  
contains an application table section with separate lock bits for write and read/write protection. The application table  
section can be used for safe storing of nonvolatile data in the program memory.  
6.4  
ALU - Arithmetic Logic Unit  
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or between a constant and  
a register. Single-register operations can also be executed. The ALU operates in direct connection with all 32 general  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
10  
purpose registers. In a single clock cycle, arithmetic operations between general purpose registers or between a  
register and an immediate are executed and the result is stored in the register file. After an arithmetic or logic  
operation, the status register is updated to reflect information about the result of the operation.  
ALU operations are divided into three main categories – arithmetic, logical, and bit functions. Both 8- and 16-bit  
arithmetic is supported, and the instruction set allows for efficient implementation of 32-bit aritmetic. The hardware  
multiplier supports signed and unsigned multiplication and fractional format.  
6.4.1 Hardware Multiplier  
The multiplier is capable of multiplying two 8-bit numbers into a 16-bit result. The hardware multiplier supports  
different variations of signed and unsigned integer and fractional numbers:  
z
z
z
z
z
z
Multiplication of unsigned integers  
Multiplication of signed integers  
Multiplication of a signed integer with an unsigned integer  
Multiplication of unsigned fractional numbers  
Multiplication of signed fractional numbers  
Multiplication of a signed fractional number with an unsigned one  
A multiplication takes two CPU clock cycles.  
6.5  
Program Flow  
After reset, the CPU starts to execute instructions from the lowest address in the flash programmemory ‘0.’ The  
program counter (PC) addresses the next instruction to be fetched.  
Program flow is provided by conditional and unconditional jump and call instructions capable of addressing the whole  
address space directly. Most AVR instructions use a 16-bit word format, while a limited number use a 32-bit format.  
During interrupts and subroutine calls, the return address PC is stored on the stack. The stack is allocated in the  
general data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the  
SRAM. After reset, the stack pointer (SP) points to the highest address in the internal SRAM. The SP is read/write  
accessible in the I/O memory space, enabling easy implementation of multiple stacks or stack areas. The data SRAM  
can easily be accessed through the five different addressing modes supported in the AVR CPU.  
6.6  
Status Register  
The status register (SREG) contains information about the result of the most recently executed arithmetic or logic  
instruction. This information can be used for altering program flow in order to perform conditional operations. Note that  
the status register is updated after all ALU operations, as specified in the instruction set reference. This will in many  
cases remove the need for using the dedicated compare instructions, resulting in faster and more compact code.  
The status register is not automatically stored when entering an interrupt routine nor restored when returning from an  
interrupt. This must be handled by software.  
The status register is accessible in the I/O memory space.  
6.7  
Stack and Stack Pointer  
The stack is used for storing return addresses after interrupts and subroutine calls. It can also be used for storing  
temporary data. The stack pointer (SP) register always points to the top of the stack. It is implemented as two 8-bit  
registers that are accessible in the I/O memory space. Data are pushed and popped from the stack using the PUSH  
and POP instructions. The stack grows from a higher memory location to a lower memory location. This implies that  
pushing data onto the stack decreases the SP, and popping data off the stack increases the SP. The SP is  
automatically loaded after reset, and the initial value is the highest address of the internal SRAM. If the SP is changed,  
it must be set to point above address 0x2000, and it must be defined before any subroutine calls are executed or  
before interrupts are enabled.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
11  
During interrupts or subroutine calls, the return address is automatically pushed on the stack. The return address can  
be two or three bytes, depending on program memory size of the device. For devices with 128KB or less of program  
memory, the return address is two bytes, and hence the stack pointer is decremented/incremented by two. For  
devices with more than 128KB of program memory, the return address is three bytes, and hence the SP is  
decremented/incremented by three. The return address is popped off the stack when returning from interrupts using  
the RETI instruction, and from subroutine calls using the RET instruction.  
The SP is decremented by one when data are pushed on the stack with the PUSH instruction, and incremented by  
one when data is popped off the stack using the POP instruction.  
To prevent corruption when updating the stack pointer from software, a write to SPL will automatically disable  
interrupts for up to four instructions or until the next I/O memory write.  
After reset the stack pointer is initialized to the highest address of the SRAM. See Figure 7-1 on page 16.  
6.8  
Register File  
The register file consists of 32 x 8-bit general purpose working registers with single clock cycle access time. The  
register file supports the following input/output schemes:  
z
z
z
z
One 8-bit output operand and one 8-bit result input  
Two 8-bit output operands and one 8-bit result input  
Two 8-bit output operands and one 16-bit result input  
One 16-bit output operand and one 16-bit result input  
Six of the 32 registers can be used as three 16-bit address register pointers for data space addressing, enabling  
efficient address calculations. One of these address pointers can also be used as an address pointer for lookup tables  
in flash program memory.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
12  
7.  
Memories  
7.1  
Features  
z
Flash program memory  
z One linear address space  
z In-system programmable  
z Self-programming and boot loader support  
z Application section for application code  
z Application table section for application code or data storage  
z Boot section for application code or boot loader code  
z Separate read/write protection lock bits for all sections  
z Built in fast CRC check of a selectable flash program memory section  
z
Data memory  
z One linear address space  
z Single-cycle access from CPU  
z SRAM  
z EEPROM  
z
Byte and page accessible  
z
Optional memory mapping for direct load and store  
z I/O memory  
z
Configuration and status registers for all peripherals and modules  
16 bit-accessible general purpose registers for global variables or flags  
z
z Bus arbitration  
z
Deterministic priority handling between CPU, DMA controller, and other bus masters  
z Separate buses for SRAM, EEPROM and I/O memory  
z
Simultaneous bus access for CPU and DMA controller  
z
z
Production signature row memory for factory programmed data  
z ID for each microcontroller device type  
z Serial number for each device  
z Calibration bytes for factory calibrated peripherals  
User signature row  
z One flash page in size  
z Can be read and written from software  
z Content is kept after chip erase  
7.2  
Overview  
The Atmel AVR architecture has two main memory spaces, the program memory and the data memory. Executable  
code can reside only in the program memory, while data can be stored in the program memory and the data memory.  
The data memory includes the internal SRAM, and EEPROM for nonvolatile data storage. All memory spaces are  
linear and require no memory bank switching. Nonvolatile memory (NVM) spaces can be locked for further write and  
read/write operations. This prevents unrestricted access to the application software.  
A separate memory section contains the fuse bytes. These are used for configuring important system functions, and  
can only be written by an external programmer.  
The available memory size configurations are shown in “Ordering Information” on page 2. In addition, each device has  
a Flash memory signature row for calibration data, device identification, serial number etc.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
13  
7.3  
Flash Program Memory  
The Atmel AVR XMEGA devices contain on-chip, in-system reprogrammable flash memory for program storage. The  
flash memory can be accessed for read and write from an external programmer through the PDI or from application  
software running in the device.  
All AVR CPU instructions are 16 or 32 bits wide, and each flash location is 16 bits wide. The flash memory is  
organized in two main sections, the application section and the boot loader section. The sizes of the different sections  
are fixed, but device-dependent. These two sections have separate lock bits, and can have different levels of  
protection. The store program memory (SPM) instruction, which is used to write to the flash from the application  
software, will only operate when executed from the boot loader section.  
The application section contains an application table section with separate lock settings. This enables safe storage of  
nonvolatile data in the program memory.  
Table 7-1. Flash Program Memory (Hexadecimal address).  
Word Address  
ATxmega128A4U  
ATxmega64A4U  
ATxmega32A4U  
ATxmega16A4U  
0
0
0
0
Application Section  
(128K/64K/32K/16K)  
...  
EFFF  
F000  
/
/
/
/
/
77FF  
7800  
7FFF  
8000  
87FF  
/
/
/
/
/
37FF  
3800  
3FFF  
4000  
47FF  
/
/
/
/
/
17FF  
1800  
1FFF  
2000  
27FF  
Application Table Section  
(8K/4K/4K/4K)  
FFFF  
10000  
10FFF  
Boot Section  
(8K/4K/4K/4K)  
7.3.1 Application Section  
The Application section is the section of the flash that is used for storing the executable application code. The  
protection level for the application section can be selected by the boot lock bits for this section. The application section  
can not store any boot loader code since the SPM instruction cannot be executed from the application section.  
7.3.2 Application Table Section  
The application table section is a part of the application section of the flash memory that can be used for storing data.  
The size is identical to the boot loader section. The protection level for the application table section can be selected by  
the boot lock bits for this section. The possibilities for different protection levels on the application section and the  
application table section enable safe parameter storage in the program memory. If this section is not used for data,  
application code can reside here.  
7.3.3 Boot Loader Section  
While the application section is used for storing the application code, the boot loader software must be located in the  
boot loader section because the SPM instruction can only initiate programming when executing from this section. The  
SPM instruction can access the entire flash, including the boot loader section itself. The protection level for the boot  
loader section can be selected by the boot loader lock bits. If this section is not used for boot loader software,  
application code can be stored here.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
14  
7.3.4 Production Signature Row  
The production signature row is a separate memory section for factory programmed data. It contains calibration data  
for functions such as oscillators and analog modules. Some of the calibration values will be automatically loaded to  
the corresponding module or peripheral unit during reset. Other values must be loaded from the signature row and  
written to the corresponding peripheral registers from software. For details on calibration conditions, refer to “Electrical  
Characteristics” on page 72.  
The production signature row also contains an ID that identifies each microcontroller device type and a serial number  
for each manufactured device. The serial number consists of the production lot number, wafer number, and wafer  
coordinates for the device. The device ID for the available devices is shown in Table 7-2.  
The production signature row cannot be written or erased, but it can be read from application software and external  
programmers.  
Table 7-2. Device ID bytes for Atmel AVR XMEGA A4U devices.  
Device  
Device ID bytes  
Byte 2  
41  
Byte 1  
94  
Byte 0  
1E  
ATxmega16A4U  
ATxmega32A4U  
ATxmega64A4U  
ATxmega128A4U  
41  
95  
1E  
46  
96  
1E  
46  
97  
1E  
7.3.5 User Signature Row  
The user signature row is a separate memory section that is fully accessible (read and write) from application software  
and external programmers. It is one flash page in size, and is meant for static user parameter storage, such as  
calibration data, custom serial number, identification numbers, random number seeds, etc. This section is not erased  
by chip erase commands that erase the flash, and requires a dedicated erase command. This ensures parameter  
storage during multiple program/erase operations and on-chip debug sessions.  
7.4  
Fuses and Lock bits  
The fuses are used to configure important system functions, and can only be written from an external programmer.  
The application software can read the fuses. The fuses are used to configure reset sources such as brownout detector  
and watchdog, and startup configuration.  
The lock bits are used to set protection levels for the different flash sections (that is, if read and/or write access should  
be blocked). Lock bits can be written by external programmers and application software, but only to stricter protection  
levels. Chip erase is the only way to erase the lock bits. To ensure that flash contents are protected even during chip  
erase, the lock bits are erased after the rest of the flash memory has been erased.  
An unprogrammed fuse or lock bit will have the value one, while a programmed fuse or lock bit will have the value  
zero.  
Both fuses and lock bits are reprogrammable like the flash program memory.  
7.5  
Data Memory  
The data memory contains the I/O memory, internal SRAM, optionally memory mapped EEPROM, and external  
memory if available. The data memory is organized as one continuous memory section, see Figure 7-1. To simplify  
development, I/O Memory, EEPROM and SRAM will always have the same start addresses for all Atmel AVR  
XMEGA devices.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
15  
Figure 7-1. Data memory map (Hexadecimal address).  
Byte Address  
ATxmega64A4U  
I/O Registers (4K)  
Byte Address  
ATxmega32A4U  
I/O Registers (4K)  
Byte Address  
ATxmega16A4U  
I/O Registers (4K)  
0
0
0
FFF  
1000  
17FF  
FFF  
1000  
13FF  
FFF  
1000  
13FF  
EEPROM (2K)  
RESERVED  
EEPROM (1K)  
RESERVED  
EEPROM (1K)  
RESERVED  
2000  
2FFF  
2000  
2FFF  
2000  
27FF  
Internal SRAM (4K)  
Internal SRAM (4K)  
Internal SRAM (2K)  
Byte Address  
ATxmega128A4U  
I/O Registers (4K)  
0
FFF  
1000  
17FF  
EEPROM (2K)  
RESERVED  
2000  
3FFF  
Internal SRAM (8K)  
7.6  
7.7  
EEPROM  
All devices have EEPROM for nonvolatile data storage. It is either addressable in a separate data space (default) or  
memory mapped and accessed in normal data space. The EEPROM supports both byte and page access. Memory  
mapped EEPROM allows highly efficient EEPROM reading and EEPROM buffer loading. When doing this, EEPROM  
is accessible using load and store instructions. Memory mapped EEPROM will always start at hexadecimal address  
0x1000.  
I/O Memory  
The status and configuration registers for peripherals and modules, including the CPU, are addressable through I/O  
memory locations. All I/O locations can be accessed by the load (LD/LDS/LDD) and store (ST/STS/STD) instructions,  
which are used to transfer data between the 32 registers in the register file and the I/O memory. The IN and OUT  
instructions can address I/O memory locations in the range of 0x00 to 0x3F directly. In the address range 0x00 - 0x1F,  
single-cycle instructions for manipulation and checking of individual bits are available.  
The I/O memory address for all peripherals and modules in XMEGA A4U is shown in the “Peripheral Module Address  
Map” on page 61.  
7.7.1 General Purpose I/O Registers  
The lowest 16 I/O memory addresses are reserved as general purpose I/O registers. These registers can be used for  
storing global variables and flags, as they are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
16  
7.8  
7.9  
Data Memory and Bus Arbitration  
Since the data memory is organized as four separate sets of memories, the different bus masters (CPU, DMA  
controller read and DMA controller write, etc.) can access different memory sections at the same time.  
Memory Timing  
Read and write access to the I/O memory takes one CPU clock cycle. A write to SRAM takes one cycle, and a read  
from SRAM takes two cycles. For burst read (DMA), new data are available every cycle. EEPROM page load (write)  
takes one cycle, and three cycles are required for read. For burst read, new data are available every second cycle.  
Refer to the instruction summary for more details on instructions and instruction timing.  
7.10 Device ID and Revision  
Each device has a three-byte device ID. This ID identifies Atmel as the manufacturer of the device and the device  
type. A separate register contains the revision number of the device.  
7.11 I/O Memory Protection  
Some features in the device are regarded as critical for safety in some applications. Due to this, it is possible to lock  
the I/O register related to the clock system, the event system, and the advanced waveform extensions. As long as the  
lock is enabled, all related I/O registers are locked and they can not be written from the application software. The lock  
registers themselves are protected by the configuration change protection mechanism.  
7.12 Flash and EEPROM Page Size  
The flash program memory and EEPROM data memory are organized in pages. The pages are word accessible for  
the flash and byte accessible for the EEPROM.  
Table 7-3 on page 17 shows the Flash Program Memory organization and Program Counter (PC) size. Flash write  
and erase operations are performed on one page at a time, while reading the Flash is done one byte at a time. For  
Flash access the Z-pointer (Z[m:n]) is used for addressing. The most significant bits in the address (FPAGE) give the  
page number and the least significant address bits (FWORD) give the word in the page.  
Table 7-3. Number of words and pages in the flash.  
Devices  
PC size  
Flash size  
Page Size  
FWORD  
FPAGE  
Application  
Boot  
No of  
pages  
No of  
pages  
bits  
bytes  
words  
Size  
Size  
ATxmega16A4U  
ATxmega32A4U  
ATxmega64A4U  
ATxmega128A4U  
14  
15  
16  
17  
16K + 4K  
32K + 4K  
64K + 4K  
128K + 8K  
128  
128  
128  
128  
Z[6:0]  
Z[6:0]  
Z[6:0]  
Z[6:0]  
Z[13:7]  
Z[14:7]  
Z[15:7]  
Z[16:7]  
16K  
64  
4K  
16  
32K  
64K  
128  
4K  
4K  
8K  
16  
256  
16  
128K  
512  
32  
Table 7-4 shows EEPROM memory organization for the Atmel AVR XMEGA A4U devices. EEEPROM write and  
erase operations can be performed one page or one byte at a time, while reading the EEPROM is done one byte at a  
time. For EEPROM access the NVM address register (ADDR[m:n]) is used for addressing. The most significant bits in  
the address (E2PAGE) give the page number and the least significant address bits (E2BYTE) give the byte in the  
page.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
17  
Table 7-4. Number of bytes and pages in the EEPROM.  
Devices  
EEPROM  
Page Size  
E2BYTE  
E2PAGE  
No of Pages  
Size  
bytes  
ATxmega16A4U  
ATxmega32A4U  
ATxmega64A4U  
ATxmega128A4U  
1K  
1K  
2K  
2K  
32  
32  
32  
32  
ADDR[4:0]  
ADDR[4:0]  
ADDR[4:0]  
ADDR[4:0]  
ADDR[10:5]  
ADDR[10:5]  
ADDR[10:5]  
ADDR[10:5]  
32  
32  
64  
64  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
18  
8.  
DMAC – Direct Memory Access Controller  
8.1  
Features  
z
Allows high speed data transfers with minimal CPU intervention  
z from data memory to data memory  
z from data memory to peripheral  
z from peripheral to data memory  
z from peripheral to peripheral  
z
Four DMA channels with separate  
z transfer triggers  
z interrupt vectors  
z addressing modes  
z
z
Programmable channel priority  
From 1 byte to 16MB of data in a single transaction  
z Up to 64KB block transfers with repeat  
z 1, 2, 4, or 8 byte burst transfers  
z
z
Multiple addressing modes  
z Static  
z Incremental  
z Decremental  
Optional reload of source and destination addresses at the end of each  
z Burst  
z Block  
z Transaction  
z
z
Optional interrupt on end of transaction  
Optional connection to CRC generator for CRC on DMA data  
8.2  
Overview  
The four-channel direct memory access (DMA) controller can transfer data between memories and peripherals, and  
thus offload these tasks from the CPU. It enables high data transfer rates with minimum CPU intervention, and frees  
up CPU time. The four DMA channels enable up to four independent and parallel transfers.  
The DMA controller can move data between SRAM and peripherals, between SRAM locations and directly between  
peripheral registers. With access to all peripherals, the DMA controller can handle automatic transfer of data to/from  
communication modules. The DMA controller can also read from memory mapped EEPROM.  
Data transfers are done in continuous bursts of 1, 2, 4, or 8 bytes. They build block transfers of configurable size from  
1 byte to 64KB. A repeat counter can be used to repeat each block transfer for single transactions up to 16MB. Source  
and destination addressing can be static, incremental or decremental. Automatic reload of source and/or destination  
addresses can be done after each burst or block transfer, or when a transaction is complete. Application software,  
peripherals, and events can trigger DMA transfers.  
The four DMA channels have individual configuration and control settings. This include source, destination, transfer  
triggers, and transaction sizes. They have individual interrupt settings. Interrupt requests can be generated when a  
transaction is complete or when the DMA controller detects an error on a DMA channel.  
To allow for continuous transfers, two channels can be interlinked so that the second takes over the transfer when the  
first is finished, and vice versa.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
19  
9.  
Event System  
9.1  
Features  
z
System for direct peripheral-to-peripheral communication and signaling  
z
Peripherals can directly send, receive, and react to peripheral events  
z CPU and DMA controller independent operation  
z 100% predictable signal timing  
z Short and guaranteed response time  
z
z
z
Eight event channels for up to eight different and parallel signal routing configurations  
Events can be sent and/or used by most peripherals, clock system, and software  
Additional functions include  
z Quadrature decoders  
z Digital filtering of I/O pin state  
z
Works in active mode and idle sleep mode  
9.2  
Overview  
The event system enables direct peripheral-to-peripheral communication and signaling. It allows a change in one  
peripheral’s state to automatically trigger actions in other peripherals. It is designed to provide a predictable system  
for short and predictable response times between peripherals. It allows for autonomous peripheral control and  
interaction without the use of interrupts, CPU, or DMA controller resources, and is thus a powerful tool for reducing the  
complexity, size and execution time of application code. It also allows for synchronized timing of actions in several  
peripheral modules.  
A change in a peripheral’s state is referred to as an event, and usually corresponds to the peripheral’s interrupt  
conditions. Events can be directly passed to other peripherals using a dedicated routing network called the event  
routing network. How events are routed and used by the peripherals is configured in software.  
Figure 9-1 on page 20 shows a basic diagram of all connected peripherals. The event system can directly connect  
together analog and digital converters, analog comparators, I/O port pins, the real-time counter, timer/counters, IR  
communication module (IRCOM), and USB interface. It can also be used to trigger DMA transactions (DMA  
controller). Events can also be generated from software and the peripheral clock.  
Figure 9-1. Event system overview and connected peripherals.  
CPU /  
Software  
DMA  
Controller  
Event Routing Network  
clkPER  
Prescaler  
ADC  
AC  
Real Time  
Counter  
Event  
System  
Controller  
Timer /  
Counters  
DAC  
USB  
Port pins  
IRCOM  
The event routing network consists of eight software-configurable multiplexers that control how events are routed and  
used. These are called event channels, and allow for up to eight parallel event routing configurations. The maximum  
routing latency is two peripheral clock cycles. The event system works in both active mode and idle sleep mode.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
20  
10. System Clock and Clock options  
10.1 Features  
z
z
z
Fast start-up time  
Safe run-time clock switching  
Internal oscillators:  
z 32MHz run-time calibrated and tuneable oscillator  
z 2MHz run-time calibrated oscillator  
z 32.768kHz calibrated oscillator  
z 32kHz ultra low power (ULP) oscillator with 1kHz output  
z
z
External clock options  
z 0.4MHz - 16MHz crystal oscillator  
z 32.768kHz crystal oscillator  
z External clock  
PLL with 20MHz - 128MHz output frequency  
z Internal and external clock options and 1x to 31x multiplication  
z Lock detector  
z
z
z
z
Clock prescalers with 1x to 2048x division  
Fast peripheral clocks running at two and four times the CPU clock  
Automatic run-time calibration of internal oscillators  
External oscillator and PLL lock failure detection with optional non-maskable interrupt  
10.2 Overview  
Atmel AVR XMEGA A4U devices have a flexible clock system supporting a large number of clock sources. It  
incorporates both accurate internal oscillators and external crystal oscillator and resonator support. A high-frequency  
phase locked loop (PLL) and clock prescalers can be used to generate a wide range of clock frequencies. A  
calibration feature (DFLL) is available, and can be used for automatic run-time calibration of the internal oscillators to  
remove frequency drift over voltage and temperature. An oscillator failure monitor can be enabled to issue a non-  
maskable interrupt and switch to the internal oscillator if the external oscillator or PLL fails.  
When a reset occurs, all clock sources except the 32kHz ultra low power oscillator are disabled. After reset, the  
device will always start up running from the 2MHz internal oscillator. During normal operation, the system clock  
source and prescalers can be changed from software at any time.  
Figure 10-1 on page 22 presents the principal clock system in the XMEGA A4U family of devices. Not all of the clocks  
need to be active at a given time. The clocks for the CPU and peripherals can be stopped using sleep modes and  
power reduction registers, as described in “Power Management and Sleep Modes” on page 24.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
21  
Figure 10-1. The clock system, clock sources and clock distribution.  
Real Time  
Counter  
Non-Volatile  
Memory  
Peripherals  
RAM  
AVR CPU  
clkPER  
clkPER2  
clkPER4  
clkCPU  
USB  
clkUSB  
System Clock Prescalers  
clkSYS  
Brown-out  
Detector  
Watchdog  
Timer  
Prescaler  
clkRTC  
System Clock Multiplexer  
(SCLKSEL)  
RTCSRC  
USBSRC  
PLL  
PLLSRC  
XOSCSEL  
32 kHz  
Int. ULP  
32.768 kHz  
Int. OSC  
32.768 kHz  
TOSC  
0.4 – 16 MHz  
XTAL  
32 MHz  
Int. Osc  
2 MHz  
Int. Osc  
10.3 Clock Sources  
The clock sources are divided in two main groups: internal oscillators and external clock sources. Most of the clock  
sources can be directly enabled and disabled from software, while others are automatically enabled or disabled,  
depending on peripheral settings. After reset, the device starts up running from the 2MHz internal oscillator. The other  
clock sources, DFLLs and PLL, are turned off by default.  
The internal oscillators do not require any external components to run. For details on characteristics and accuracy of  
the internal oscillators, refer to the device datasheet.  
10.3.1 32kHz Ultra Low Power Internal Oscillator  
This oscillator provides an approximate 32kHz clock. The 32kHz ultra low power (ULP) internal oscillator is a very low  
power clock source, and it is not designed for high accuracy. The oscillator employs a built-in prescaler that provides  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
22  
a 1kHz output. The oscillator is automatically enabled/disabled when it is used as clock source for any part of the  
device. This oscillator can be selected as the clock source for the RTC.  
10.3.2 32.768kHz Calibrated Internal Oscillator  
This oscillator provides an approximate 32.768kHz clock. It is calibrated during production to provide a default  
frequency close to its nominal frequency. The calibration register can also be written from software for run-time  
calibration of the oscillator frequency. The oscillator employs a built-in prescaler, which provides both a 32.768kHz  
output and a 1.024kHz output.  
10.3.3 32.768kHz Crystal Oscillator  
A 32.768kHz crystal oscillator can be connected between the TOSC1 and TOSC2 pins and enables a dedicated low  
frequency oscillator input circuit. A low power mode with reduced voltage swing on TOSC2 is available. This oscillator  
can be used as a clock source for the system clock and RTC, and as the DFLL reference clock.  
10.3.4 0.4 - 16MHz Crystal Oscillator  
This oscillator can operate in four different modes optimized for different frequency ranges, all within 0.4 - 16MHz.  
10.3.5 2MHz Run-time Calibrated Internal Oscillator  
The 2MHz run-time calibrated internal oscillator is the default system clock source after reset. It is calibrated during  
production to provide a default frequency close to its nominal frequency. A DFLL can be enabled for automatic run-  
time calibration of the oscillator to compensate for temperature and voltage drift and optimize the oscillator accuracy.  
10.3.6 32MHz Run-time Calibrated Internal Oscillator  
The 32MHz run-time calibrated internal oscillator is a high-frequency oscillator. It is calibrated during production to  
provide a default frequency close to its nominal frequency. A digital frequency looked loop (DFLL) can be enabled for  
automatic run-time calibration of the oscillator to compensate for temperature and voltage drift and optimize the  
oscillator accuracy. This oscillator can also be adjusted and calibrated to any frequency between 30MHz and 55MHz.  
The production signature row contains 48MHz calibration values intended used when the oscillator is used a full-  
speed USB clock source.  
10.3.7 External Clock Sources  
The XTAL1 and XTAL2 pins can be used to drive an external oscillator, either a quartz crystal or a ceramic resonator.  
XTAL1 can be used as input for an external clock signal. The TOSC1 and TOSC2 pins is dedicated to driving a  
32.768kHz crystal oscillator.  
10.3.8 PLL with 1x-31x Multiplication Factor  
The built-in phase locked loop (PLL) can be used to generate a high-frequency system clock. The PLL has a user-  
selectable multiplication factor of from 1 to 31. In combination with the prescalers, this gives a wide range of output  
frequencies from all clock sources.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
23  
11. Power Management and Sleep Modes  
11.1 Features  
z
Power management for adjusting power consumption and functions  
z
Five sleep modes  
z Idle  
z Power down  
z Power save  
z Standby  
z Extended standby  
z
Power reduction register to disable clock and turn off unused peripherals in active and idle modes  
11.2 Overview  
Various sleep modes and clock gating are provided in order to tailor power consumption to application requirements.  
This enables the Atmel AVR XMEGA microcontroller to stop unused modules to save power.  
All sleep modes are available and can be entered from active mode. In active mode, the CPU is executing application  
code. When the device enters sleep mode, program execution is stopped and interrupts or a reset is used to wake the  
device again. The application code decides which sleep mode to enter and when. Interrupts from enabled peripherals  
and all enabled reset sources can restore the microcontroller from sleep to active mode.  
In addition, power reduction registers provide a method to stop the clock to individual peripherals from software. When  
this is done, the current state of the peripheral is frozen, and there is no power consumption from that peripheral. This  
reduces the power consumption in active mode and idle sleep modes and enables much more fine-tuned power  
management than sleep modes alone.  
11.3 Sleep Modes  
Sleep modes are used to shut down modules and clock domains in the microcontroller in order to save power.  
XMEGA microcontrollers have five different sleep modes tuned to match the typical functional stages during  
application execution. A dedicated sleep instruction (SLEEP) is available to enter sleep mode. Interrupts are used to  
wake the device from sleep, and the available interrupt wake-up sources are dependent on the configured sleep  
mode. When an enabled interrupt occurs, the device will wake up and execute the interrupt service routine before  
continuing normal program execution from the first instruction after the SLEEP instruction. If other, higher priority  
interrupts are pending when the wake-up occurs, their interrupt service routines will be executed according to their  
priority before the interrupt service routine for the wake-up interrupt is executed. After wake-up, the CPU is halted for  
four cycles before execution starts.  
The content of the register file, SRAM and registers are kept during sleep. If a reset occurs during sleep, the device  
will reset, start up, and execute from the reset vector.  
11.3.1 Idle Mode  
In idle mode the CPU and nonvolatile memory are stopped (note that any ongoing programming will be completed),  
but all peripherals, including the interrupt controller, event system and DMA controller are kept running. Any enabled  
interrupt will wake the device.  
11.3.2 Power-down Mode  
In power-down mode, all clocks, including the real-time counter clock source, are stopped. This allows operation only  
of asynchronous modules that do not require a running clock. The only interrupts that can wake up the MCU are the  
two-wire interface address match interrupt, asynchronous port interrupts, and the USB resume interrupt.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
24  
11.3.3 Power-save Mode  
Power-save mode is identical to power down, with one exception. If the real-time counter (RTC) is enabled, it will keep  
running during sleep, and the device can also wake up from either an RTC overflow or compare match interrupt.  
11.3.4 Standby Mode  
Standby mode is identical to power down, with the exception that the enabled system clock sources are kept running  
while the CPU, peripheral, and RTC clocks are stopped. This reduces the wake-up time.  
11.3.5 Extended Standby Mode  
Extended standby mode is identical to power-save mode, with the exception that the enabled system clock sources  
are kept running while the CPU and peripheral clocks are stopped. This reduces the wake-up time.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
25  
12. System Control and Reset  
12.1 Features  
z
Reset the microcontroller and set it to initial state when a reset source goes active  
z
Multiple reset sources that cover different situations  
z Power-on reset  
z External reset  
z Watchdog reset  
z Brownout reset  
z PDI reset  
z Software reset  
z
z
Asynchronous operation  
z No running system clock in the device is required for reset  
Reset status register for reading the reset source from the application code  
12.2 Overview  
The reset system issues a microcontroller reset and sets the device to its initial state. This is for situations where  
operation should not start or continue, such as when the microcontroller operates below its power supply rating. If a  
reset source goes active, the device enters and is kept in reset until all reset sources have released their reset. The  
I/O pins are immediately tri-stated. The program counter is set to the reset vector location, and all I/O registers are set  
to their initial values. The SRAM content is kept. However, if the device accesses the SRAM when a reset occurs, the  
content of the accessed location can not be guaranteed.  
After reset is released from all reset sources, the default oscillator is started and calibrated before the device starts  
running from the reset vector address. By default, this is the lowest program memory address, 0, but it is possible to  
move the reset vector to the lowest address in the boot section.  
The reset functionality is asynchronous, and so no running system clock is required to reset the device. The software  
reset feature makes it possible to issue a controlled system reset from the user software.  
The reset status register has individual status flags for each reset source. It is cleared at power-on reset, and shows  
which sources have issued a reset since the last power-on.  
12.3 Reset Sequence  
A reset request from any reset source will immediately reset the device and keep it in reset as long as the request is  
active. When all reset requests are released, the device will go through three stages before the device starts running  
again:  
z
z
z
Reset counter delay  
Oscillator startup  
Oscillator calibration  
If another reset requests occurs during this process, the reset sequence will start over again.  
12.4 Reset Sources  
12.4.1 Power-on Reset  
A power-on reset (POR) is generated by an on-chip detection circuit. The POR is activated when the VCC rises and  
reaches the POR threshold voltage (VPOT), and this will start the reset sequence.  
The POR is also activated to power down the device properly when the VCC falls and drops below the VPOT level.  
The VPOT level is higher for falling VCC than for rising VCC. Consult the datasheet for POR characteristics data.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
26  
12.4.2 Brownout Detection  
The on-chip brownout detection (BOD) circuit monitors the VCC level during operation by comparing it to a fixed,  
programmable level that is selected by the BODLEVEL fuses. If disabled, BOD is forced on at the lowest level during  
chip erase and when the PDI is enabled.  
12.4.3 External Reset  
The external reset circuit is connected to the external RESET pin. The external reset will trigger when the RESET pin  
is driven below the RESET pin threshold voltage, VRST, for longer than the minimum pulse period, tEXT. The reset will  
be held as long as the pin is kept low. The RESET pin includes an internal pull-up resistor.  
12.4.4 Watchdog Reset  
The watchdog timer (WDT) is a system function for monitoring correct program operation. If the WDT is not reset from  
the software within a programmable timeout period, a watchdog reset will be given. The watchdog reset is active for  
one to two clock cycles of the 2MHz internal oscillator. For more details see “WDT – Watchdog Timer” on page 28.  
12.4.5 Software Reset  
The software reset makes it possible to issue a system reset from software by writing to the software reset bit in the  
reset control register.The reset will be issued within two CPU clock cycles after writing the bit. It is not possible to  
execute any instruction from when a software reset is requested until it is issued.  
12.4.6 Program and Debug Interface Reset  
The program and debug interface reset contains a separate reset source that is used to reset the device during  
external programming and debugging. This reset source is accessible only from external debuggers and  
programmers.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
27  
13. WDT – Watchdog Timer  
13.1 Features  
z
z
z
z
z
Issues a device reset if the timer is not reset before its timeout period  
Asynchronous operation from dedicated oscillator  
1kHz output of the 32kHz ultra low power oscillator  
11 selectable timeout periods, from 8ms to 8s  
Two operation modes:  
z Normal mode  
z Window mode  
z
Configuration lock to prevent unwanted changes  
13.2 Overview  
The watchdog timer (WDT) is a system function for monitoring correct program operation. It makes it possible to  
recover from error situations such as runaway or deadlocked code. The WDT is a timer, configured to a predefined  
timeout period, and is constantly running when enabled. If the WDT is not reset within the timeout period, it will issue  
a microcontroller reset. The WDT is reset by executing the WDR (watchdog timer reset) instruction from the  
application code.  
The window mode makes it possible to define a time slot or window inside the total timeout period during which WDT  
must be reset. If the WDT is reset outside this window, either too early or too late, a system reset will be issued.  
Compared to the normal mode, this can also catch situations where a code error causes constant WDR execution.  
The WDT will run in active mode and all sleep modes, if enabled. It is asynchronous, runs from a CPU-independent  
clock source, and will continue to operate to issue a system reset even if the main clocks fail.  
The configuration change protection mechanism ensures that the WDT settings cannot be changed by accident. For  
increased safety, a fuse for locking the WDT settings is also available.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
28  
14. Interrupts and Programmable Multilevel Interrupt Controller  
14.1 Features  
z
z
z
Short and predictable interrupt response time  
Separate interrupt configuration and vector address for each interrupt  
Programmable multilevel interrupt controller  
z Interrupt prioritizing according to level and vector address  
z Three selectable interrupt levels for all interrupts: low, medium and high  
z Selectable, round-robin priority scheme within low-level interrupts  
z Non-maskable interrupts for critical functions  
z
Interrupt vectors optionally placed in the application section or the boot loader section  
14.2 Overview  
Interrupts signal a change of state in peripherals, and this can be used to alter program execution. Peripherals can  
have one or more interrupts, and all are individually enabled and configured. When an interrupt is enabled and  
configured, it will generate an interrupt request when the interrupt condition is present. The programmable multilevel  
interrupt controller (PMIC) controls the handling and prioritizing of interrupt requests. When an interrupt request is  
acknowledged by the PMIC, the program counter is set to point to the interrupt vector, and the interrupt handler can  
be executed.  
All peripherals can select between three different priority levels for their interrupts: low, medium, and high. Interrupts  
are prioritized according to their level and their interrupt vector address. Medium-level interrupts will interrupt low-level  
interrupt handlers. High-level interrupts will interrupt both medium- and low-level interrupt handlers. Within each level,  
the interrupt priority is decided from the interrupt vector address, where the lowest interrupt vector address has the  
highest interrupt priority. Low-level interrupts have an optional round-robin scheduling scheme to ensure that all  
interrupts are serviced within a certain amount of time.  
Non-maskable interrupts (NMI) are also supported, and can be used for system critical functions.  
14.3 Interrupt vectors  
The interrupt vector is the sum of the peripheral’s base interrupt address and the offset address for specific interrupts  
in each peripheral. The base addresses for the Atmel AVR XMEGA A4U devices are shown in Table 14-1 on page 30.  
Offset addresses for each interrupt available in the peripheral are described for each peripheral in the XMEGA AU  
manual. For peripherals or modules that have only one interrupt, the interrupt vector is shown in Table 14-1 on page  
30. The program address is the word address.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
29  
Table 14-1. Reset and interrupt vectors  
Program address  
(base address)  
0x000  
0x002  
0x004  
0x008  
0x00C  
0x014  
0x018  
0x01C  
0x028  
0x030  
0x032  
0x038  
0x03E  
0x040  
0x044  
0x056  
0x05A  
0x05E  
0x06A  
0x074  
0x080  
0x084  
0x088  
0x08E  
0x09A  
0x0A6  
0x0AE  
0x0B0  
0x0B6  
0x0FA  
Source  
Interrupt description  
RESET  
OSCF_INT_vect  
PORTC_INT_base  
PORTR_INT_base  
DMA_INT_base  
RTC_INT_base  
TWIC_INT_base  
TCC0_INT_base  
TCC1_INT_base  
SPIC_INT_vect  
Crystal oscillator failure interrupt vector (NMI)  
Port C interrupt base  
Port R interrupt base  
DMA controller interrupt base  
Real time counter interrupt base  
Two-Wire Interface on Port C interrupt base  
Timer/counter 0 on port C interrupt base  
Timer/counter 1 on port C interrupt base  
SPI on port C interrupt vector  
USARTC0_INT_base  
USARTC1_INT_base  
AES_INT_vect  
USART 0 on port C interrupt base  
USART 1 on port C interrupt base  
AES interrupt vector  
NVM_INT_base  
PORTB_INT_base  
PORTE_INT_base  
TWIE_INT_base  
TCE0_INT_base  
TCE1_INT_base  
USARTE0_INT_base  
PORTD_INT_base  
PORTA_INT_base  
ACA_INT_base  
ADCA_INT_base  
TCD0_INT_base  
TCD1_INT_base  
SPID_INT_vector  
USARTD0_INT_base  
USARTD1_INT_base  
USB_INT_base  
Nonvolatile Memory interrupt base  
Port B interrupt base  
Port E interrupt base  
Two-wire Interface on Port E interrupt base  
Timer/counter 0 on port E interrupt base  
Timer/counter 1 on port E interrupt base  
USART 0 on port E interrupt base  
Port D interrupt base  
Port A interrupt base  
Analog Comparator on Port A interrupt base  
Analog to Digital Converter on Port A interrupt base  
Timer/counter 0 on port D interrupt base  
Timer/counter 1 on port D interrupt base  
SPI on port D interrupt vector  
USART 0 on port D interrupt base  
USART 1 on port D interrupt base  
USB on port D interrupt base  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
30  
15. I/O Ports  
15.1 Features  
z
34 general purpose input and output pins with individual configuration  
z
Output driver with configurable driver and pull settings:  
z Totem-pole  
z Wired-AND  
z Wired-OR  
z Bus-keeper  
z Inverted I/O  
z
Input with synchronous and/or asynchronous sensing with interrupts and events  
z Sense both edges  
z Sense rising edges  
z Sense falling edges  
z Sense low level  
z
z
z
z
z
Optional pull-up and pull-down resistor on input and Wired-OR/AND configurations  
Optional slew rate control  
Asynchronous pin change sensing that can wake the device from all sleep modes  
Two port interrupts with pin masking per I/O port  
Efficient and safe access to port pins  
z Hardware read-modify-write through dedicated toggle/clear/set registers  
z Configuration of multiple pins in a single operation  
z Mapping of port registers into bit-accessible I/O memory space  
z
z
z
z
Peripheral clocks output on port pin  
Real-time counter clock output to port pin  
Event channels can be output on port pin  
Remapping of digital peripheral pin functions  
z Selectable USART, SPI, and timer/counter input/output pin locations  
15.2 Overview  
One port consists of up to eight port pins: pin 0 to 7. Each port pin can be configured as input or output with  
configurable driver and pull settings. They also implement synchronous and asynchronous input sensing with  
interrupts and events for selectable pin change conditions. Asynchronous pin-change sensing means that a pin  
change can wake the device from all sleep modes, included the modes where no clocks are running.  
All functions are individual and configurable per pin, but several pins can be configured in a single operation. The pins  
have hardware read-modify-write (RMW) functionality for safe and correct change of drive value and/or pull resistor  
configuration. The direction of one port pin can be changed without unintentionally changing the direction of any other  
pin.  
The port pin configuration also controls input and output selection of other device functions. It is possible to have both  
the peripheral clock and the real-time clock output to a port pin, and available for external use. The same applies to  
events from the event system that can be used to synchronize and control external functions. Other digital  
peripherals, such as USART, SPI, and timer/counters, can be remapped to selectable pin locations in order to  
optimize pin-out versus application needs.  
The notation of the ports are PORTA, PORTB, PORTC, PORTD, PORTE, and PORTR.  
15.3 Output Driver  
All port pins (Pn) have programmable output configuration. The port pins also have configurable slew rate limitation to  
reduce electromagnetic emission.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
31  
15.3.1 Push-pull  
Figure 15-1. I/O configuration - Totem-pole.  
DIRn  
OUTn  
INn  
Pn  
15.3.2 Pull-down  
Figure 15-2. I/O configuration - Totem-pole with pull-down (on input).  
DIRn  
OUTn  
INn  
Pn  
15.3.3 Pull-up  
Figure 15-3. I/O configuration - Totem-pole with pull-up (on input).  
DIRn  
OUTn  
INn  
Pn  
15.3.4 Bus-keeper  
The bus-keeper’s weak output produces the same logical level as the last output level. It acts as a pull-up if the last  
level was ‘1’, and pull-down if the last level was ‘0’.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
32  
Figure 15-4. I/O configuration - Totem-pole with bus-keeper.  
DIRn  
OUTn  
INn  
Pn  
15.3.5 Others  
Figure 15-5. Output configuration - Wired-OR with optional pull-down.  
OUTn  
Pn  
INn  
Figure 15-6. I/O configuration - Wired-AND with optional pull-up.  
INn  
Pn  
OUTn  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
33  
15.4 Input sensing  
Input sensing is synchronous or asynchronous depending on the enabled clock for the ports, and the configuration is  
shown in Figure 15-7.  
Figure 15-7. Input sensing system overview.  
Asynchronous sensing  
EDGE  
DETECT  
Interrupt  
Control  
IREQ  
Event  
Synchronous sensing  
Pn  
Synchronizer  
INn  
EDGE  
DETECT  
Q
Q
D
D
INVERTED I/O  
R
R
When a pin is configured with inverted I/O, the pin value is inverted before the input sensing.  
15.5 Alternate Port Functions  
Most port pins have alternate pin functions in addition to being a general purpose I/O pin. When an alternate function  
is enabled, it might override the normal port pin function or pin value. This happens when other peripherals that  
require pins are enabled or configured to use pins. If and how a peripheral will override and use pins is described in  
the section for that peripheral. “Pinout and Pin Functions” on page 55 shows which modules on peripherals that  
enable alternate functions on a pin, and which alternate functions that are available on a pin.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
34  
16. TC0/1 – 16-bit Timer/Counter Type 0 and 1  
16.1 Features  
z
Five 16-bit timer/counters  
z Three timer/counters of type 0  
z Two timer/counters of type 1  
z Split-mode enabling two 8-bit timer/counter from each timer/counter type 0  
z
z
32-bit timer/counter support by cascading two timer/counters  
Up to four compare or capture (CC) channels  
z Four CC channels for timer/counters of type 0  
z Two CC channels for timer/counters of type 1  
z
z
z
Double buffered timer period setting  
Double buffered capture or compare channels  
Waveform generation:  
z Frequency generation  
z Single-slope pulse width modulation  
z Dual-slope pulse width modulation  
z
Input capture:  
z Input capture with noise cancelling  
z Frequency capture  
z Pulse width capture  
z 32-bit input capture  
z
z
z
Timer overflow and error interrupts/events  
One compare match or input capture interrupt/event per CC channel  
Can be used with event system for:  
z Quadrature decoding  
z Count and direction control  
z Capture  
z
z
Can be used with DMA and to trigger DMA transactions  
High-resolution extension  
z Increases frequency and waveform resolution by 4x (2-bit) or 8x (3-bit)  
z
z
Advanced waveform extension:  
z Low- and high-side output with programmable dead-time insertion (DTI)  
Event controlled fault protection for safe disabling of drivers  
16.2 Overview  
Atmel AVR XMEGA devices have a set of five flexible 16-bit Timer/Counters (TC). Their capabilities include accurate  
program execution timing, frequency and waveform generation, and input capture with time and frequency  
measurement of digital signals. Two timer/counters can be cascaded to create a 32-bit timer/counter with optional 32-  
bit capture.  
A timer/counter consists of a base counter and a set of compare or capture (CC) channels. The base counter can be  
used to count clock cycles or events. It has direction control and period setting that can be used for timing. The CC  
channels can be used together with the base counter to do compare match control, frequency generation, and pulse  
width waveform modulation, as well as various input capture operations. A timer/counter can be configured for either  
capture or compare functions, but cannot perform both at the same time.  
A timer/counter can be clocked and timed from the peripheral clock with optional prescaling or from the event system.  
The event system can also be used for direction control and capture trigger or to synchronize operations.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
35  
There are two differences between timer/counter type 0 and type 1. Timer/counter 0 has four CC channels, and  
timer/counter 1 has two CC channels. All information related to CC channels 3 and 4 is valid only for timer/counter 0.  
Only Timer/Counter 0 has the split mode feature that split it into two 8-bit Timer/Counters with four compare channels  
each.  
Some timer/counters have extensions to enable more specialized waveform and frequency generation. The advanced  
waveform extension (AWeX) is intended for motor control and other power control applications. It enables low- and  
high-side output with dead-time insertion, as well as fault protection for disabling and shutting down external drivers. It  
can also generate a synchronized bit pattern across the port pins.  
The advanced waveform extension can be enabled to provide extra and more advanced features for the  
Timer/Counter. This are only available for Timer/Counter 0. See “AWeX – Advanced Waveform Extension” on page  
38 for more details.  
The high-resolution (hi-res) extension can be used to increase the waveform output resolution by four or eight times  
by using an internal clock source running up to four times faster than the peripheral clock. See “Hi-Res – High  
Resolution Extension” on page 39 for more details.  
Figure 16-1. Overview of a Timer/Counter and closely related peripherals.  
Timer/Counter  
Base Counter  
Prescaler  
clkPER  
Timer Period  
Counter  
Control Logic  
Event  
System  
clkPER4  
Compare/Capture Channel D  
Compare/Capture Channel C  
Compare/Capture Channel B  
Compare/Capture Channel A  
AWeX  
Pattern  
Generation  
Fault  
Dead-Time  
Insertion  
Capture  
Comparator  
Control  
Protection  
Waveform  
Generation  
Buffer  
PORTC and PORTD each has one Timer/Counter 0 and one Timer/Counter1. PORTE has one Timer/Conter0.  
Notation of these are TCC0 (Time/Counter C0), TCC1, TCD0, TCD1 and TCE0, respectively.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
36  
17. TC2 - Timer/Counter Type 2  
17.1 Features  
z
z
z
Six eight-bit timer/counters  
z Three Low-byte timer/counter  
z Three High-byte timer/counter  
Up to eight compare channels in each Timer/Counter 2  
z Four compare channels for the low-byte timer/counter  
z Four compare channels for the high-byte timer/counter  
Waveform generation  
z Single slope pulse width modulation  
z
z
z
z
Timer underflow interrupts/events  
One compare match interrupt/event per compare channel for the low-byte timer/counter  
Can be used with the event system for count control  
Can be used to trigger DMA transactions  
17.2 Overview  
There are four Timer/Counter 2. These are realized when a Timer/Counter 0 is set in split mode. It is then a system of  
two eight-bit timer/counters, each with four compare channels. This results in eight configurable pulse width  
modulation (PWM) channels with individually controlled duty cycles, and is intended for applications that require a  
high number of PWM channels.  
The two eight-bit timer/counters in this system are referred to as the low-byte timer/counter and high-byte  
timer/counter, respectively. The difference between them is that only the low-byte timer/counter can be used to  
generate compare match interrupts, events and DMA triggers. The two eight-bit timer/counters have a shared clock  
source and separate period and compare settings. They can be clocked and timed from the peripheral clock, with  
optional prescaling, or from the event system. The counters are always counting down.  
PORTC, and PORTD each has one Timer/Counter 2.  
Notation of these are TCC2 (Time/Counter C2) and TCD2, respectively.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
37  
18. AWeX – Advanced Waveform Extension  
18.1 Features  
z
Waveform output with complementary output from each compare channel  
z
Four dead-time insertion (DTI) units  
z 8-bit resolution  
z Separate high and low side dead-time setting  
z Double buffered dead time  
z Optionally halts timer during dead-time insertion  
z
z
Pattern generation unit creating synchronised bit pattern across the port pins  
z Double buffered pattern generation  
z Optional distribution of one compare channel output across the port pins  
Event controlled fault protection for instant and predictable fault triggering  
18.2 Overview  
The advanced waveform extension (AWeX) provides extra functions to the timer/counter in waveform generation  
(WG) modes. It is primarily intended for use with different types of motor control and other power control applications.  
It enables low- and high side output with dead-time insertion and fault protection for disabling and shutting down  
external drivers. It can also generate a synchronized bit pattern across the port pins.  
Each of the waveform generator outputs from the timer/counter 0 are split into a complimentary pair of outputs when  
any AWeX features are enabled. These output pairs go through a dead-time insertion (DTI) unit that generates the  
non-inverted low side (LS) and inverted high side (HS) of the WG output with dead-time insertion between LS and HS  
switching. The DTI output will override the normal port value according to the port override setting.  
The pattern generation unit can be used to generate a synchronized bit pattern on the port it is connected to. In  
addition, the WG output from compare channel A can be distributed to and override all the port pins. When the pattern  
generator unit is enabled, the DTI unit is bypassed.  
The fault protection unit is connected to the event system, enabling any event to trigger a fault condition that will  
disable the AWeX output. The event system ensures predictable and instant fault reaction, and gives flexibility in the  
selection of fault triggers.  
The AWeX is available for TCC0. The notation of this is AWEXC.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
38  
19. Hi-Res – High Resolution Extension  
19.1 Features  
z
z
z
Increases waveform generator resolution up to 8x (three bits)  
Supports frequency, single-slope PWM, and dual-slope PWM generation  
Supports the AWeX when this is used for the same timer/counter  
19.2 Overview  
The high-resolution (hi-res) extension can be used to increase the resolution of the waveform generation output from  
a timer/counter by four or eight. It can be used for a timer/counter doing frequency, single-slope PWM, or dual-slope  
PWM generation. It can also be used with the AWeX if this is used for the same timer/counter.  
The hi-res extension uses the peripheral 4x clock (ClkPER4). The system clock prescalers must be configured so the  
peripheral 4x clock frequency is four times higher than the peripheral and CPU clock frequency when the hi-res  
extension is enabled.  
There are three hi-res extensions that each can be enabled for each timer/counters pair on PORTC, PORTD and  
PORTE. The notation of these are HIRESC, HIRESD and HIRESE, respectively.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
39  
20. RTC – 16-bit Real-Time Counter  
20.1 Features  
z
16-bit resolution  
z
Selectable clock source  
z 32.768kHz external crystal  
z External clock  
z 32.768kHz internal oscillator  
z 32kHz internal ULP oscillator  
z
z
z
z
z
Programmable 10-bit clock prescaling  
One compare register  
One period register  
Clear counter on period overflow  
Optional interrupt/event on overflow and compare match  
20.2 Overview  
The 16-bit real-time counter (RTC) is a counter that typically runs continuously, including in low-power sleep modes,  
to keep track of time. It can wake up the device from sleep modes and/or interrupt the device at regular intervals.  
The reference clock is typically the 1.024kHz output from a high-accuracy crystal of 32.768kHz, and this is the  
configuration most optimized for low power consumption. The faster 32.768kHz output can be selected if the RTC  
needs a resolution higher than 1ms. The RTC can also be clocked from an external clock signal, the 32.768kHz  
internal oscillator or the 32kHz internal ULP oscillator.  
The RTC includes a 10-bit programmable prescaler that can scale down the reference clock before it reaches the  
counter. A wide range of resolutions and time-out periods can be configured. With a 32.768kHz clock source, the  
maximum resolution is 30.5µs, and time-out periods can range up to 2000 seconds. With a resolution of 1s, the  
maximum timeout period is more than18 hours (65536 seconds). The RTC can give a compare interrupt and/or event  
when the counter equals the compare register value, and an overflow interrupt and/or event when it equals the period  
register value.  
Figure 20-1. Real-time counter overview.  
External Clock  
TOSC1  
32.768kHz Crystal Osc  
TOSC2  
32.768kHz Int. Osc  
32kHz int ULP (DIV32)  
PER  
RTCSRC  
TOP/  
clkRTC  
10-bit  
=
=
Overflow  
CNT  
prescaler  
”match”/  
Compare  
COMP  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
40  
21. USB – Universal Serial Bus Interface  
21.1 Features  
z
z
z
One USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant interface  
Integrated on-chip USB transceiver, no external components needed  
16 endpoint addresses with full endpoint flexibility for up to 31 endpoints  
z One input endpoint per endpoint address  
z One output endpoint per endpoint address  
z
Endpoint address transfer type selectable to  
z Control transfers  
z Interrupt transfers  
z Bulk transfers  
z Isochronous transfers  
z
z
Configurable data payload size per endpoint, up to 1023 bytes  
Endpoint configuration and data buffers located in internal SRAM  
z Configurable location for endpoint configuration data  
z Configurable location for each endpoint's data buffer  
z
z
z
z
Built-in direct memory access (DMA) to internal SRAM for:  
z Endpoint configurations  
z Reading and writing endpoint data  
Ping-pong operation for higher throughput and double buffered operation  
z Input and output endpoint data buffers used in a single direction  
z CPU/DMA controller can update data buffer during transfer  
Multipacket transfer for reduced interrupt load and software intervention  
z Data payload exceeding maximum packet size is transferred in one continuous transfer  
z No interrupts or software interaction on packet transaction level  
Transaction complete FIFO for workflow management when using multiple endpoints  
z Tracks all completed transactions in a first-come, first-served work queue  
z
z
z
z
z
Clock selection independent of system clock source and selection  
Minimum 1.5MHz CPU clock required for low speed USB operation  
Minimum 12MHz CPU clock required for full speed operation  
Connection to event system  
On chip debug possibilities during USB transactions  
21.2 Overview  
The USB module is a USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant interface.  
The USB supports 16 endpoint addresses. All endpoint addresses have one input and one output endpoint, for a total  
of 31 configurable endpoints and one control endpoint. Each endpoint address is fully configurable and can be  
configured for any of the four transfer types; control, interrupt, bulk, or isochronous. The data payload size is also  
selectable, and it supports data payloads up to 1023 bytes.  
No dedicated memory is allocated for or included in the USB module. Internal SRAM is used to keep the configuration  
for each endpoint address and the data buffer for each endpoint. The memory locations used for endpoint  
configurations and data buffers are fully configurable. The amount of memory allocated is fully dynamic, according to  
the number of endpoints in use and the configuration of these. The USB module has built-in direct memory access  
(DMA), and will read/write data from/to the SRAM when a USB transaction takes place.  
To maximize throughput, an endpoint address can be configured for ping-pong operation. When done, the input and  
output endpoints are both used in the same direction. The CPU or DMA controller can then read/write one data buffer  
while the USB module writes/reads the others, and vice versa. This gives double buffered communication.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
41  
Multipacket transfer enables a data payload exceeding the maximum packet size of an endpoint to be transferred as  
multiple packets without software intervention. This reduces the CPU intervention and the interrupts needed for USB  
transfers.  
For low-power operation, the USB module can put the microcontroller into any sleep mode when the USB bus is idle  
and a suspend condition is given. Upon bus resumes, the USB module can wake up the microcontroller from any  
sleep mode.  
PORTD has one USB. Notation of this is USB.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
42  
22. TWI – Two-Wire Interface  
22.1 Features  
z
Two Identical two-wire interface peripherals  
z
Bidirectional, two-wire communication interface  
z Phillips I2C compatible  
z System Management Bus (SMBus) compatible  
z
z
Bus master and slave operation supported  
z Slave operation  
z Single bus master operation  
z Bus master in multi-master bus environment  
z Multi-master arbitration  
Flexible slave address match functions  
z 7-bit and general call address recognition in hardware  
z 10-bit addressing supported  
z Address mask register for dual address match or address range masking  
z Optional software address recognition for unlimited number of addresses  
z
z
z
z
z
z
z
Slave can operate in all sleep modes, including power-down  
Slave address match can wake device from all sleep modes  
100kHz and 400kHz bus frequency support  
Slew-rate limited output drivers  
Input filter for bus noise and spike suppression  
Support arbitration between start/repeated start and data bit (SMBus)  
Slave arbitration allows support for address resolve protocol (ARP) (SMBus)  
22.2 Overview  
The two-wire interface (TWI) is a bidirectional, two-wire communication interface. It is I2C and System Management  
Bus (SMBus) compatible. The only external hardware needed to implement the bus is one pull-up resistor on each  
bus line.  
A device connected to the bus must act as a master or a slave. The master initiates a data transaction by addressing  
a slave on the bus and telling whether it wants to transmit or receive data. One bus can have many slaves and one or  
several masters that can take control of the bus. An arbitration process handles priority if more than one master tries  
to transmit data at the same time. Mechanisms for resolving bus contention are inherent in the protocol.  
The TWI module supports master and slave functionality. The master and slave functionality are separated from each  
other, and can be enabled and configured separately. The master module supports multi-master bus operation and  
arbitration. It contains the baud rate generator. Both 100kHz and 400kHz bus frequency is supported. Quick  
command and smart mode can be enabled to auto-trigger operations and reduce software complexity.  
The slave module implements 7-bit address match and general address call recognition in hardware. 10-bit  
addressing is also supported. A dedicated address mask register can act as a second address match register or as a  
register for address range masking. The slave continues to operate in all sleep modes, including power-down mode.  
This enables the slave to wake up the device from all sleep modes on TWI address match. It is possible to disable the  
address matching to let this be handled in software instead.  
The TWI module will detect START and STOP conditions, bus collisions, and bus errors. Arbitration lost, errors,  
collision, and clock hold on the bus are also detected and indicated in separate status flags available in both master  
and slave modes.  
It is possible to disable the TWI drivers in the device, and enable a four-wire digital interface for connecting to an  
external TWI bus driver. This can be used for applications where the device operates from a different VCC voltage than  
used by the TWI bus.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
43  
PORTC and PORTE each has one TWI. Notation of these peripherals are TWIC and TWIE.  
23. SPI – Serial Peripheral Interface  
23.1 Features  
z
z
z
z
z
z
z
z
z
Two Identical SPI peripherals  
Full-duplex, three-wire synchronous data transfer  
Master or slave operation  
Lsb first or msb first data transfer  
Eight programmable bit rates  
Interrupt flag at the end of transmission  
Write collision flag to indicate data collision  
Wake up from idle sleep mode  
Double speed master mode  
23.2 Overview  
The Serial Peripheral Interface (SPI) is a high-speed synchronous data transfer interface using three or four pins. It  
allows fast communication between an Atmel AVR XMEGA device and peripheral devices or between several  
microcontrollers. The SPI supports full-duplex communication.  
A device connected to the bus must act as a master or slave. The master initiates and controls all data transactions.  
PORTC and PORTD each has one SPI. Notation of these peripherals are SPIC and SPID.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
44  
24. USART  
24.1 Features  
z
z
z
Five identical USART peripherals  
Full-duplex operation  
Asynchronous or synchronous operation  
z Synchronous clock rates up to 1/2 of the device clock frequency  
z Asynchronous clock rates up to 1/8 of the device clock frequency  
z
z
Supports serial frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits  
Fractional baud rate generator  
z Can generate desired baud rate from any system clock frequency  
z No need for external oscillator with certain frequencies  
z
z
Built-in error detection and correction schemes  
z Odd or even parity generation and parity check  
z Data overrun and framing error detection  
z Noise filtering includes false start bit detection and digital low-pass filter  
Separate interrupts for  
z Transmit complete  
z Transmit data register empty  
z Receive complete  
z
z
z
Multiprocessor communication mode  
z Addressing scheme to address a specific devices on a multidevice bus  
z Enable unaddressed devices to automatically ignore all frames  
Master SPI mode  
z Double buffered operation  
z Operation up to 1/2 of the peripheral clock frequency  
IRCOM module for IrDA compliant pulse modulation/demodulation  
24.2 Overview  
The universal synchronous and asynchronous serial receiver and transmitter (USART) is a fast and flexible serial  
communication module. The USART supports full-duplex communication and asynchronous and synchronous  
operation. The USART can be configured to operate in SPI master mode and used for SPI communication.  
Communication is frame based, and the frame format can be customized to support a wide range of standards. The  
USART is buffered in both directions, enabling continued data transmission without any delay between frames.  
Separate interrupts for receive and transmit complete enable fully interrupt driven communication. Frame error and  
buffer overflow are detected in hardware and indicated with separate status flags. Even or odd parity generation and  
parity check can also be enabled.  
The clock generator includes a fractional baud rate generator that is able to generate a wide range of USART baud  
rates from any system clock frequencies. This removes the need to use an external crystal oscillator with a specific  
frequency to achieve a required baud rate. It also supports external clock input in synchronous slave operation.  
When the USART is set in master SPI mode, all USART-specific logic is disabled, leaving the transmit and receive  
buffers, shift registers, and baud rate generator enabled. Pin control and interrupt generation are identical in both  
modes. The registers are used in both modes, but their functionality differs for some control settings.  
An IRCOM module can be enabled for one USART to support IrDA 1.4 physical compliant pulse modulation and  
demodulation for baud rates up to 115.2Kbps.  
PORTC and PORTD each has two USARTs. PORTE has one USART. Notation of these peripherals are USARTC0,  
USARTC1, USARTD0, USARTD1 and USARTE0, respectively.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
45  
25. IRCOM – IR Communication Module  
25.1 Features  
z
z
z
Pulse modulation/demodulation for infrared communication  
IrDA compatible for baud rates up to 115.2Kbps  
Selectable pulse modulation scheme  
z 3/16 of the baud rate period  
z Fixed pulse period, 8-bit programmable  
z Pulse modulation disabled  
z
z
Built-in filtering  
Can be connected to and used by any USART  
25.2 Overview  
Atmel AVR XMEGA devices contain an infrared communication module (IRCOM) that is IrDA compatible for baud  
rates up to 115.2Kbps. It can be connected to any USART to enable infrared pulse encoding/decoding for that  
USART.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
46  
26. AES and DES Crypto Engine  
26.1 Features  
z
z
z
Data Encryption Standard (DES) CPU instruction  
Advanced Encryption Standard (AES) crypto module  
DES Instruction  
z Encryption and decryption  
z DES supported  
z Encryption/decryption in 16 CPU clock cycles per 8-byte block  
z
AES crypto module  
z Encryption and decryption  
z Supports 128-bit keys  
z Supports XOR data load mode to the state memory  
z Encryption/decryption in 375 clock cycles per 16-byte block  
26.2 Overview  
The Advanced Encryption Standard (AES) and Data Encryption Standard (DES) are two commonly used standards  
for cryptography. These are supported through an AES peripheral module and a DES CPU instruction, and the  
communication interfaces and the CPU can use these for fast, encrypted communication and secure data storage.  
DES is supported by an instruction in the AVR CPU. The 8-byte key and 8-byte data blocks must be loaded into the  
register file, and then the DES instruction must be executed 16 times to encrypt/decrypt the data block.  
The AES crypto module encrypts and decrypts 128-bit data blocks with the use of a 128-bit key. The key and data  
must be loaded into the key and state memory in the module before encryption/decryption is started. It takes 375  
peripheral clock cycles before the encryption/decryption is done. The encrypted/encrypted data can then be read out,  
and an optional interrupt can be generated. The AES crypto module also has DMA support with transfer triggers when  
encryption/decryption is done and optional auto-start of encryption/decryption when the state memory is fully loaded.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
47  
27. CRC – Cyclic Redundancy Check Generator  
27.1 Features  
z
Cyclic redundancy check (CRC) generation and checking for  
z Communication data  
z Program or data in flash memory  
z Data in SRAM and I/O memory space  
z
Integrated with flash memory, DMA controller and CPU  
z Continuous CRC on data going through a DMA channel  
z Automatic CRC of the complete or a selectable range of the flash memory  
z CPU can load data to the CRC generator through the I/O interface  
z
z
CRC polynomial software selectable to  
z CRC-16 (CRC-CCITT)  
z CRC-32 (IEEE 802.3)  
Zero remainder detection  
27.2 Overview  
A cyclic redundancy check (CRC) is an error detection technique test algorithm used to find accidental errors in data,  
and it is commonly used to determine the correctness of a data transmission, and data present in the data and  
program memories. A CRC takes a data stream or a block of data as input and generates a 16- or 32-bit output that  
can be appended to the data and used as a checksum. When the same data are later received or read, the device or  
application repeats the calculation. If the new CRC result does not match the one calculated earlier, the block contains  
a data error. The application will then detect this and may take a corrective action, such as requesting the data to be  
sent again or simply not using the incorrect data.  
Typically, an n-bit CRC applied to a data block of arbitrary length will detect any single error burst not longer than n  
bits (any single alteration that spans no more than n bits of the data), and will detect the fraction 1-2-n of all longer  
error bursts. The CRC module in Atmel AVR XMEGA devices supports two commonly used CRC polynomials; CRC-  
16 (CRC-CCITT) and CRC-32 (IEEE 802.3).  
z
z
CRC-16:  
Polynomial:  
Hex value:  
x16+x12+x5+1  
0x1021  
CRC-32:  
Polynomial:  
Hex value:  
x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1  
0x04C11DB7  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
48  
28. ADC – 12-bit Analog to Digital Converter  
28.1 Features  
z
z
z
One Analog to Digital Converter (ADC)  
12-bit resolution  
Up to two million samples per second  
z Two inputs can be sampled simultaneously using ADC and 1x gain stage  
z Four inputs can be sampled within 1.5µs  
z Down to 2.5µs conversion time with 8-bit resolution  
z Down to 3.5µs conversion time with 12-bit resolution  
z
z
Differential and single-ended input  
z Up to 12 single-ended inputs  
z 12x4 differential inputs without gain  
z 8x4 differential inputs with gain  
Built-in differential gain stage  
z
1/2x, 1x, 2x, 4x, 8x, 16x, 32x, and 64x gain options  
z
z
Single, continuous and scan conversion options  
Four internal inputs  
z Internal temperature sensor  
z DAC output  
z AVCC voltage divided by 10  
z 1.1V bandgap voltage  
z
Four conversion channels with individual input control and result registers  
z Enable four parallel configurations and results  
z
z
z
z
z
Internal and external reference options  
Compare function for accurate monitoring of user defined thresholds  
Optional event triggered conversion for accurate timing  
Optional DMA transfer of conversion results  
Optional interrupt/event on compare result  
28.2 Overview  
The ADC converts analog signals to digital values. The ADC has 12-bit resolution and is capable of converting up to  
two million samples per second (msps). The input selection is flexible, and both single-ended and differential  
measurements can be done. For differential measurements, an optional gain stage is available to increase the  
dynamic range. In addition, several internal signal inputs are available. The ADC can provide both signed and  
unsigned results.  
This is a pipelined ADC that consists of several consecutive stages. The pipelined design allows a high sample rate at  
a low system clock frequency. It also means that a new input can be sampled and a new ADC conversion started  
while other ADC conversions are still ongoing. This removes dependencies between sample rate and propagation  
delay.  
The ADC has four conversion channels (0-3) with individual input selection, result registers, and conversion start  
control. The ADC can then keep and use four parallel configurations and results, and this will ease use for  
applications with high data throughput or for multiple modules using the ADC independently. It is possible to use DMA  
to move ADC results directly to memory or peripherals when conversions are done.  
Both internal and external reference voltages can be used. An integrated temperature sensor is available for use with  
the ADC. The output from the DAC, AVCC/10 and the bandgap voltage can also be measured by the ADC.  
The ADC has a compare function for accurate monitoring of user defined thresholds with minimum software  
intervention required.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
49  
Figure 28-1. ADC overview.  
ADC0  
Compare  
ADC11  
Internal  
<
>
VINP  
signals  
ADC0  
CH0 Result  
CH1 Result  
CH2 Result  
CH3 Result  
Threshold  
(Int Req)  
ADC7  
½x - 64x  
ADC4  
ADC7  
Int. signals  
Internal  
signals  
VINN  
ADC0  
Internal 1.00V  
Internal AVCC/1.6V  
Internal AVCC/2  
AREFA  
Reference  
Voltage  
ADC3  
Int. signals  
AREFB  
Two inputs can be sampled simultaneously as both the ADC and the gain stage include sample and hold circuits, and  
the gain stage has 1x gain setting. Four inputs can be sampled within 1.5µs without any intervention by the  
application.  
The ADC may be configured for 8- or 12-bit result, reducing the minimum conversion time (propagation delay) from  
3.5µs for 12-bit to 2.5µs for 8-bit result.  
ADC conversion results are provided left- or right adjusted with optional ‘1’ or ‘0’ padding. This eases calculation when  
the result is represented as a signed integer (signed 16-bit number).  
PORTA has one ADC. Notation of this peripheral is ADCA.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
50  
29. DAC – 12-bit Digital to Analog Converter  
29.1 Features  
z
z
z
z
z
One Digital to Analog Converter (DAC)  
12-bit resolution  
Two independent, continuous-drive output channels  
Up to one million samples per second conversion rate per DAC channel  
Built-in calibration that removes:  
z
z
Offset error  
Gain error  
z
z
Multiple conversion trigger sources  
z
z
On new available data  
Events from the event system  
High drive capabilities and support for  
z
z
z
Resistive loads  
Capacitive loads  
Combined resistive and capacitive loads  
z
z
z
z
Internal and external reference options  
DAC output available as input to analog comparator and ADC  
Low-power mode, with reduced drive strength  
Optional DMA transfer of data  
29.2 Overview  
The digital-to-analog converter (DAC) converts digital values to voltages. The DAC has two channels, each with 12-bit  
resolution, and is capable of converting up to one million samples per second (msps) on each channel. The built-in  
calibration system can remove offset and gain error when loaded with calibration values from software.  
Figure 29-1. DAC overview.  
DMA req  
(Data Empty)  
D
A
T
12  
Output  
Driver  
CH0DATA  
DAC0  
A
To  
AC/ADC  
Int.  
driver  
Trigger  
Select  
Enable  
CTRLA  
Enable  
AVCC  
Internal 1.00V  
AREFA  
Reference  
selection  
CTRLB  
Internal Output  
enable  
AREFB  
Trigger  
Select  
D
A
T
12  
Output  
Driver  
CH1DATA  
DAC1  
A
DMA req  
(Data Empty)  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
51  
A DAC conversion is automatically started when new data to be converted are available. Events from the event  
system can also be used to trigger a conversion, and this enables synchronized and timed conversions between the  
DAC and other peripherals, such as a timer/counter. The DMA controller can be used to transfer data to the DAC.  
The DAC has high drive strength, and is capable of driving both resistive and capacitive loads, aswell as loads which  
combine both. A low-power mode is available, which will reduce the drive strength of the output. Internal and external  
voltage references can be used. The DAC output is also internally available for use as input to the analog comparator  
or ADC.  
PORTB has one DAC. Notation of this peripheral is DACB.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
52  
30. AC – Analog Comparator  
30.1 Features  
z
z
z
Two Analog Comparators (ACs)  
Selectable propagation delay versus current consumption  
Selectable hysteresis  
z No  
z Small  
z Large  
z
z
Analog comparator output available on pin  
Flexible input selection  
z All pins on the port  
z Output from the DAC  
z Bandgap reference voltage  
z A 64-level programmable voltage scaler of the internal AVCC voltage  
z
z
z
Interrupt and event generation on:  
z Rising edge  
z Falling edge  
z Toggle  
Window function interrupt and event generation on:  
z Signal above window  
z Signal inside window  
z Signal below window  
Constant current source with configurable output pin selection  
30.2 Overview  
The analog comparator (AC) compares the voltage levels on two inputs and gives a digital output based on this  
comparison. The analog comparator may be configured to generate interrupt requests and/or events upon several  
different combinations of input change.  
Two important properties of the analog comparator’s dynamic behavior are: hysteresis and propagation delay. Both of  
these parameters may be adjusted in order to achieve the optimal operation for each application.  
The input selection includes analog port pins, several internal signals, and a 64-level programmable voltage scaler.  
The analog comparator output state can also be output on a pin for use by external devices.  
A constant current source can be enabled and output on a selectable pin. This can be used to replace, for example,  
external resistors used to charge capacitors in capacitive touch sensing applications.  
The analog comparators are always grouped in pairs on each port. These are called analog comparator 0 (AC0) and  
analog comparator 1 (AC1). They have identical behavior, but separate control registers. Used as pair, they can be  
set in window mode to compare a signal to a voltage range instead of a voltage level.  
PORTA has one AC pair. Notation is ACA.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
53  
Figure 30-1. Analog comparator overview.  
Pin Input  
AC0OUT  
Pin Input  
Hysteresis  
DAC  
Enable  
Interrupt  
Interrupts  
Events  
Interrupt  
Mode  
Sensititivity  
Control  
&
Voltage  
Scaler  
ACnMUXCTRL  
ACnCTRL  
WINCTRL  
Window  
Function  
Enable  
Bandgap  
Hysteresis  
Pin Input  
AC1OUT  
Pin Input  
The window function is realized by connecting the external inputs of the two analog comparators in a pair as shown in  
Figure 30-2.  
Figure 30-2. Analog comparator window function.  
+
AC0  
Upper limit of window  
-
Interrupts  
Interrupt  
Input signal  
sensitivity  
Events  
control  
+
AC1  
Lower limit of window  
-
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
54  
31. Programming and Debugging  
31.1 Features  
z
Programming  
z External programming through PDI interface  
z
Minimal protocol overhead for fast operation  
z
Built-in error detection and handling for reliable operation  
z Boot loader support for programming through any communication interface  
z
Debugging  
z Nonintrusive, real-time, on-chip debug system  
z No software or hardware resources required from device except pin connection  
z Program flow control  
z
Go, Stop, Reset, Step Into, Step Over, Step Out, Run-to-Cursor  
z Unlimited number of user program breakpoints  
z Unlimited number of user data breakpoints, break on:  
z
z
z
z
Data location read, write, or both read and write  
Data location content equal or not equal to a value  
Data location content is greater or smaller than a value  
Data location content is within or outside a range  
z No limitation on device clock frequency  
z
Program and Debug Interface (PDI)  
z Two-pin interface for external programming and debugging  
z Uses the Reset pin and a dedicated pin  
z No I/O pins required during programming or debugging  
31.2 Overview  
The Program and Debug Interface (PDI) is an Atmel proprietary interface for external programming and on-chip  
debugging of a device.  
The PDI supports fast programming of nonvolatile memory (NVM) spaces; flash, EEPOM, fuses, lock bits, and the  
user signature row.  
Debug is supported through an on-chip debug system that offers nonintrusive, real-time debug. It does not require any  
software or hardware resources except for the device pin connection. Using the Atmel tool chain, it offers complete  
program flow control and support for an unlimited number of program and complex data breakpoints. Application  
debug can be done from a C or other high-level language source code level, as well as from an assembler and  
disassembler level.  
Programming and debugging can be done through the PDI physical layer. This is a two-pin interface that uses the  
Reset pin for the clock input (PDI_CLK) and one other dedicated pin for data input and output (PDI_DATA). Any  
external programmer or on-chip debugger/emulator can be directly connected to this interface.  
32. Pinout and Pin Functions  
The device pinout is shown in “Pinout/Block Diagram” on page 4. In addition to general purpose I/O functionality, each  
pin can have several alternate functions. This will depend on which peripheral is enabled and connected to the actual  
pin. Only one of the pin functions can be used at time.  
32.1 Alternate Pin Function Description  
The tables below show the notation for all pin functions available and describe its function.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
55  
32.1.1 Operation/Power Supply  
VCC  
Digital supply voltage  
AVCC  
GND  
Analog supply voltage  
Ground  
32.1.2 Port Interrupt functions  
SYNC  
Port pin with full synchronous and limited asynchronous interrupt function  
Port pin with full synchronous and full asynchronous interrupt function  
ASYNC  
32.1.3 Analog functions  
ACn  
Analog Comparator input pin n  
ACnOUT  
ADCn  
DACn  
AREF  
Analog Comparator n Output  
Analog to Digital Converter input pin n  
Digital to Analog Converter output pin n  
Analog Reference input pin  
32.1.4 Timer/Counter and AWEX functions  
OCnxLS  
OCnxHS  
Output Compare Channel x Low Side for Timer/Counter n  
Output Compare Channel x High Side for Timer/Counter n  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
56  
32.1.5 Communication functions  
SCL  
Serial Clock for TWI  
SDA  
Serial Data for TWI  
SCLIN  
SCLOUT  
SDAIN  
SDAOUT  
XCKn  
RXDn  
TXDn  
SS  
Serial Clock In for TWI when external driver interface is enabled  
Serial Clock Out for TWI when external driver interface is enabled  
Serial Data In for TWI when external driver interface is enabled  
Serial Data Out for TWI when external driver interface is enabled  
Transfer Clock for USART n  
Receiver Data for USART n  
Transmitter Data for USART n  
Slave Select for SPI  
MOSI  
MISO  
SCK  
Master Out Slave In for SPI  
Master In Slave Out for SPI  
Serial Clock for SPI  
D-  
Data- for USB  
D+  
Data+ for USB  
32.1.6 Oscillators, Clock and Event  
TOSCn  
XTALn  
Timer Oscillator pin n  
Input/Output for Oscillator pin n  
Peripheral Clock Output  
Event Channel Output  
CLKOUT  
EVOUT  
RTCOUT  
RTC Clock Source Output  
32.1.7 Debug/System functions  
RESET  
Reset pin  
PDI_CLK  
PDI_DATA  
Program and Debug Interface Clock pin  
Program and Debug Interface Data pin  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
57  
32.2 Alternate Pin Functions  
The tables below show the primary/default function for each pin on a port in the first column, the pin number in the  
second column, and then all alternate pin functions in the remaining columns. The head row shows what peripheral  
that enable and use the alternate pin functions.  
For better flexibility, some alternate functions also have selectable pin locations for their functions, this is noted under  
the first table where this apply.  
Table 32-1. Port A - alternate functions.  
PORT A  
PIN #  
INTERRUPT  
ADCA POS/  
GAINPOS  
ADCA NEG  
ADCA  
GAINNEG  
ACA POS  
ACA NEG  
ACAOUT  
REFA  
GND  
AVCC  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
38  
39  
40  
41  
42  
43  
44  
1
SYNC  
SYNC  
ADC0  
ADC1  
ADC2  
ADC3  
ADC4  
ADC5  
ADC6  
ADC7  
ADC0  
ADC1  
ADC2  
ADC3  
AC0  
AC1  
AC2  
AC3  
AC4  
AC5  
AC6  
AC0  
AC1  
AREF  
SYNC/ASYNC  
SYNC  
AC3  
AC5  
AC7  
SYNC  
ADC4  
ADC5  
ADC6  
ADC7  
SYNC  
2
SYNC  
AC1OUT  
AC0OUT  
3
SYNC  
Table 32-2. Port B - alternate functions.  
PORT B  
PB0  
PIN #  
INTERRUPT  
SYNC  
ADCA POS  
DACB  
REFB  
4
5
6
7
ADC8  
ADC9  
AREF  
PB1  
SYNC  
PB2  
SYNC/ASYNC  
SYNC  
ADC10  
ADC11  
DAC0  
DAC1  
PB3  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
58  
Table 32-3. Port C - alternate functions.  
PORT C  
PIN #  
INTERRUPT  
TCC0  
AWEXC  
TCC1  
USART  
C0(3)  
USART  
C1  
SPIC(4)  
TWIC  
TWIC  
w/ext  
driver  
CLOCKOUT  
EVENTOUT  
(1)(2)  
(5)  
(6)  
GND  
8
VCC  
PC0  
PC1  
9
10  
11  
SYNC  
SYNC  
OC0A  
OC0B  
OC0ALS  
OC0AHS  
SDA  
SCL  
SDAIN  
SCLIN  
XCK0  
RXD0  
TXD0  
SYNC/  
ASYNC  
PC2  
12  
OC0C  
OC0D  
OC0BLS  
SDAOUT  
SCLOUT  
PC3  
PC4  
PC5  
PC6  
PC7  
13  
14  
15  
16  
17  
SYNC  
SYNC  
SYNC  
SYNC  
SYNC  
OC0BHS  
OC0CLS  
OC0CHS  
OC0DLS  
OC0DHS  
OC1A  
OC1B  
SS  
XCK1  
RXD1  
TXD1  
MOSI  
MISO  
SCK  
clkRTC  
clkPER  
EVOUT  
Notes:  
1. Pin mapping of all TC0 can optionally be moved to high nibble of port  
2. If TC0 is configured as TC2 all eight pins can be used for PWM output.  
3. Pin mapping of all USART0 can optionally be moved to high nibble of port.  
4. Pins MOSI and SCK for all SPI can optionally be swapped.  
5. CLKOUT can optionally be moved between port C, D and E and between pin 4 and 7.  
6. EVOUT can optionally be moved between port C, D and E and between pin 4 and 7.  
Table 32-4. Port D - alternate functions.  
PORT D  
GND  
VCC  
PD0  
PIN #  
18  
INTERRUPT  
TCD0  
TCD1  
USB  
USARTD0  
USARTD1  
SPID  
CLOCKOUT  
EVENTOUT  
19  
20  
SYNC  
SYNC  
OC0A  
OC0B  
OC0C  
OC0D  
PD1  
21  
XCK0  
RXD0  
TXD0  
PD2  
22  
SYNC/ASYNC  
SYNC  
PD3  
23  
PD4  
24  
SYNC  
OC1A  
OC1B  
SS  
PD5  
25  
SYNC  
XCK1  
RXD1  
TXD1  
MOSI  
MISO  
SCK  
PD6  
26  
SYNC  
D-  
PD7  
27  
SYNC  
D+  
clkPER  
EVOUT  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
59  
Table 32-5. Port E - alternate functions.  
PORT E  
PE0  
PIN #  
28  
INTERRUPT  
SYNC  
TCE0  
OC0A  
OC0B  
USARTE0  
TWIE  
SDA  
SCL  
PE1  
29  
SYNC  
XCK0  
GND  
VCC  
PE2  
30  
31  
32  
SYNC/ASYNC  
SYNC  
OC0C  
OC0D  
RXD0  
TXD0  
PE3  
33  
Table 32-6. Port R - alternate functions.  
PORT R  
PDI  
PIN #  
34  
INTERRUPT  
PDI  
XTAL  
TOSC(1)  
PDI_DATA  
PDI_CLOCK  
RESET  
PR0  
35  
36  
SYNC  
SYNC  
XTAL2  
XTAL1  
TOSC2  
TOSC1  
PR1  
37  
Note:  
1. TOSC pins can optionally be moved to PE2/PE3.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
60  
33. Peripheral Module Address Map  
The address maps show the base address for each peripheral and module in Atmel AVR XMEGA A4U. For complete  
register description and summary for each peripheral module, refer to the XMEGA AU manual.  
Table 33-1. Peripheral module address map.  
Base address  
0x0000  
0x0010  
0x0014  
0x0018  
0x001C  
0x0030  
0x0040  
0x0048  
0x0050  
0x0060  
0x0068  
0x0070  
0x0078  
0x0080  
0x0090  
0x00A0  
0x00B0  
0x00C0  
0x00D0  
0x0100  
0x0180  
0x01C0  
0x0200  
0x0380  
0x0400  
0x0480  
0x04A0  
0x04C0  
0x0600  
Name  
GPIO  
Description  
General Purpose IO Registers  
Virtual Port 0  
VPORT0  
VPORT1  
VPORT2  
VPORT3  
CPU  
Virtual Port 1  
Virtual Port 2  
Virtual Port 2  
CPU  
CLK  
Clock Control  
SLEEP  
OSC  
Sleep Controller  
Oscillator Control  
DFLLRC32M  
DFLLRC2M  
PR  
DFLL for the 32MHz Internal RC Oscillator  
DFLL for the 2MHz RC Oscillator  
Power Reduction  
RST  
Reset Controller  
WDT  
Watch-Dog Timer  
MCU  
MCU Control  
PMIC  
Programmable MUltilevel Interrupt Controller  
Port Configuration  
PORTCFG  
AES  
AES Module  
CRC  
CRC Module  
DMA  
DMA Module  
EVSYS  
NVM  
Event System  
Non Volatile Memory (NVM) Controller  
Analog to Digital Converter on port A  
Analog Comparator pair on port A  
Real Time Counter  
ADCA  
ACA  
RTC  
TWIC  
Two Wire Interface on port C  
Two Wire Interface on port E  
Universal Serial Bus Interface  
Port A  
TWIE  
USB  
PORTA  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
61  
Base address  
0x0620  
0x0640  
0x0660  
0x0680  
0x07E0  
0x0800  
0x0840  
0x0880  
0x0890  
0x08A0  
0x08B0  
0x08C0  
0x08F8  
0x0900  
0x0940  
0x0990  
0x09A0  
0x09B0  
0x09C0  
0x0A00  
0x0A80  
0x0A90  
0x0AA0  
Name  
PORTB  
PORTC  
PORTD  
PORTE  
PORTR  
TCC0  
Description  
Port B  
Port C  
Port D  
Port E  
Port R  
Timer/Counter 0 on port C  
Timer/Counter 1 on port C  
Advanced Waveform Extension on port C  
High Resolution Extension on port C  
USART 0 on port C  
TCC1  
AWEXC  
HIRESC  
USARTC0  
USARTC1  
SPIC  
USART 1 on port C  
Serial Peripheral Interface on port C  
Infrared Communication Module  
Timer/Counter 0 on port D  
Timer/Counter 1 on port D  
High Resolution Extension on port D  
USART 0 on port D  
IRCOM  
TCD0  
TCD1  
HIRESD  
USARTD0  
USARTD1  
SPID  
USART 1 on port D  
Serial Peripheral Interface on port D  
Timer/Counter 0 on port E  
Advanced Waveform Extensionon port E  
High Resolution Extension on port E  
USART 0 on port E  
TCE0  
AWEXE  
HIRESE  
USARTE0  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
62  
34. Instruction Set Summary  
Mnemonic  
s
Operand  
s
#Clock  
s
Description  
Operation  
Flags  
Arithmetic and Logic Instructions  
ADD  
ADC  
ADIW  
SUB  
Rd, Rr  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd, K  
Rd, Rr  
Rd  
Add without Carry  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd  
Rd + Rr  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,C,N,V,S  
Z,C,N,V,S,H  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
Z,N,V,S  
None  
1
1
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
1/2  
Add with Carry  
Rd + Rr + C  
Rd + 1:Rd + K  
Rd - Rr  
Add Immediate to Word  
Subtract without Carry  
Subtract Immediate  
Subtract with Carry  
Subtract Immediate with Carry  
Subtract Immediate from Word  
Logical AND  
SUBI  
SBC  
Rd - K  
Rd - Rr - C  
Rd - K - C  
Rd + 1:Rd - K  
Rd Rr  
SBCI  
SBIW  
AND  
ANDI  
OR  
Rd + 1:Rd  
Rd  
Logical AND with Immediate  
Logical OR  
Rd  
Rd K  
Rd  
Rd v Rr  
ORI  
Logical OR with Immediate  
Exclusive OR  
Rd  
Rd v K  
EOR  
COM  
NEG  
SBR  
Rd  
Rd Rr  
One’s Complement  
Two’s Complement  
Set Bit(s) in Register  
Clear Bit(s) in Register  
Increment  
Rd  
$FF - Rd  
Rd  
Rd  
$00 - Rd  
Rd,K  
Rd,K  
Rd  
Rd  
Rd v K  
CBR  
INC  
Rd  
Rd ($FFh - K)  
Rd + 1  
Rd  
DEC  
TST  
Rd  
Decrement  
Rd  
Rd - 1  
Rd  
Test for Zero or Minus  
Clear Register  
Rd  
Rd Rd  
CLR  
Rd  
Rd  
Rd Rd  
SER  
Rd  
Set Register  
Rd  
$FF  
MUL  
MULS  
MULSU  
FMUL  
FMULS  
FMULSU  
DES  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
Rd,Rr  
K
Multiply Unsigned  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
R1:R0  
Rd x Rr (UU)  
Rd x Rr (SS)  
Rd x Rr (SU)  
Rd x Rr<<1 (UU)  
Rd x Rr<<1 (SS)  
Rd x Rr<<1 (SU)  
Z,C  
Multiply Signed  
Z,C  
Multiply Signed with Unsigned  
Fractional Multiply Unsigned  
Fractional Multiply Signed  
Fractional Multiply Signed with Unsigned  
Data Encryption  
Z,C  
Z,C  
Z,C  
Z,C  
if (H = 0) then R15:R0  
else if (H = 1) then R15:R0  
Encrypt(R15:R0, K)  
Decrypt(R15:R0, K)  
Branch instructions  
RJMP  
IJMP  
k
k
Relative Jump  
PC  
PC + k + 1  
None  
None  
2
2
Indirect Jump to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
0
EIJMP  
JMP  
Extended Indirect Jump to (Z)  
Jump  
PC(15:0)  
PC(21:16)  
Z,  
EIND  
None  
None  
2
3
PC  
k
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
63  
Mnemonic  
s
Operand  
s
#Clock  
s
Description  
Operation  
Flags  
None  
None  
RCALL  
ICALL  
k
Relative Call Subroutine  
Indirect Call to (Z)  
PC  
PC + k + 1  
2 / 3 (1)  
2 / 3 (1)  
PC(15:0)  
PC(21:16)  
Z,  
0
EICALL  
Extended Indirect Call to (Z)  
PC(15:0)  
PC(21:16)  
Z,  
EIND  
None  
3 (1)  
CALL  
RET  
k
call Subroutine  
PC  
PC  
k
None  
None  
I
3 / 4 (1)  
4 / 5 (1)  
4 / 5 (1)  
1 / 2 / 3  
1
Subroutine Return  
STACK  
STACK  
PC + 2 or 3  
RETI  
Interrupt Return  
PC  
CPSE  
CP  
Rd,Rr  
Compare, Skip if Equal  
Compare  
if (Rd = Rr) PC  
None  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
Z,C,N,V,S,H  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Rd,Rr  
Rd - Rr  
CPC  
Rd,Rr  
Compare with Carry  
Rd - Rr - C  
1
CPI  
Rd,K  
Compare with Immediate  
Skip if Bit in Register Cleared  
Skip if Bit in Register Set  
Skip if Bit in I/O Register Cleared  
Skip if Bit in I/O Register Set  
Branch if Status Flag Set  
Branch if Status Flag Cleared  
Branch if Equal  
Rd - K  
1
SBRC  
SBRS  
SBIC  
SBIS  
Rr, b  
if (Rr(b) = 0) PC  
if (Rr(b) = 1) PC  
if (I/O(A,b) = 0) PC  
If (I/O(A,b) =1) PC  
if (SREG(s) = 1) then PC  
if (SREG(s) = 0) then PC  
if (Z = 1) then PC  
if (Z = 0) then PC  
if (C = 1) then PC  
if (C = 0) then PC  
if (C = 0) then PC  
if (C = 1) then PC  
if (N = 1) then PC  
if (N = 0) then PC  
if (N V= 0) then PC  
if (N V= 1) then PC  
if (H = 1) then PC  
if (H = 0) then PC  
if (T = 1) then PC  
if (T = 0) then PC  
if (V = 1) then PC  
if (V = 0) then PC  
if (I = 1) then PC  
if (I = 0) then PC  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + 2 or 3  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
PC + k + 1  
1 / 2 / 3  
1 / 2 / 3  
2 / 3 / 4  
2 / 3 / 4  
1 / 2  
Rr, b  
A, b  
A, b  
s, k  
s, k  
k
BRBS  
BRBC  
BREQ  
BRNE  
BRCS  
BRCC  
BRSH  
BRLO  
BRMI  
BRPL  
BRGE  
BRLT  
BRHS  
BRHC  
BRTS  
BRTC  
BRVS  
BRVC  
BRIE  
BRID  
1 / 2  
1 / 2  
k
Branch if Not Equal  
1 / 2  
k
Branch if Carry Set  
1 / 2  
k
Branch if Carry Cleared  
Branch if Same or Higher  
Branch if Lower  
1 / 2  
k
1 / 2  
k
1 / 2  
k
Branch if Minus  
1 / 2  
k
Branch if Plus  
1 / 2  
k
Branch if Greater or Equal, Signed  
Branch if Less Than, Signed  
Branch if Half Carry Flag Set  
Branch if Half Carry Flag Cleared  
Branch if T Flag Set  
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
Branch if T Flag Cleared  
Branch if Overflow Flag is Set  
Branch if Overflow Flag is Cleared  
Branch if Interrupt Enabled  
Branch if Interrupt Disabled  
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
k
1 / 2  
Data transfer instructions  
MOV  
Rd, Rr  
Copy Register  
Rd  
Rr  
None  
1
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
64  
Mnemonic  
s
Operand  
s
#Clock  
s
Description  
Operation  
Flags  
None  
None  
None  
None  
None  
MOVW  
LDI  
Rd, Rr  
Rd, K  
Rd, k  
Copy Register Pair  
Load Immediate  
Rd+1:Rd  
Rr+1:Rr  
1
Rd  
Rd  
Rd  
K
1
LDS  
LD  
Load Direct from data space  
Load Indirect  
(k)  
(X)  
2 (1)(2)  
1 (1)(2)  
1 (1)(2)  
Rd, X  
Rd, X+  
LD  
Load Indirect and Post-Increment  
Rd  
X
(X)  
X + 1  
LD  
Rd, -X  
Load Indirect and Pre-Decrement  
X X - 1,  
Rd (X)  
X - 1  
(X)  
None  
2 (1)(2)  
LD  
LD  
Rd, Y  
Load Indirect  
Rd (Y)  
(Y)  
None  
None  
1 (1)(2)  
1 (1)(2)  
Rd, Y+  
Load Indirect and Post-Increment  
Rd  
Y
(Y)  
Y + 1  
LD  
Rd, -Y  
Load Indirect and Pre-Decrement  
Y
Rd  
Y - 1  
(Y)  
None  
2 (1)(2)  
LDD  
LD  
Rd, Y+q  
Rd, Z  
Load Indirect with Displacement  
Load Indirect  
Rd  
Rd  
(Y + q)  
(Z)  
None  
None  
None  
2 (1)(2)  
1 (1)(2)  
1 (1)(2)  
LD  
Rd, Z+  
Load Indirect and Post-Increment  
Rd  
Z
(Z),  
Z+1  
LD  
Rd, -Z  
Load Indirect and Pre-Decrement  
Z
Rd  
Z - 1,  
(Z)  
None  
2 (1)(2)  
LDD  
STS  
ST  
Rd, Z+q  
k, Rr  
Load Indirect with Displacement  
Store Direct to Data Space  
Store Indirect  
Rd  
(k)  
(X)  
(Z + q)  
Rd  
None  
None  
None  
None  
2 (1)(2)  
2 (1)  
X, Rr  
Rr  
1 (1)  
ST  
X+, Rr  
Store Indirect and Post-Increment  
(X)  
X
Rr,  
X + 1  
1 (1)  
ST  
-X, Rr  
Store Indirect and Pre-Decrement  
X
(X)  
X - 1,  
Rr  
None  
2 (1)  
ST  
ST  
Y, Rr  
Store Indirect  
(Y)  
Rr  
None  
None  
1 (1)  
1 (1)  
Y+, Rr  
Store Indirect and Post-Increment  
(Y)  
Y
Rr,  
Y + 1  
ST  
-Y, Rr  
Store Indirect and Pre-Decrement  
Y
(Y)  
Y - 1,  
Rr  
None  
2 (1)  
STD  
ST  
Y+q, Rr  
Z, Rr  
Store Indirect with Displacement  
Store Indirect  
(Y + q)  
(Z)  
Rr  
Rr  
None  
None  
None  
2 (1)  
1 (1)  
1 (1)  
ST  
Z+, Rr  
Store Indirect and Post-Increment  
(Z)  
Z
Rr  
Z + 1  
ST  
-Z, Rr  
Store Indirect and Pre-Decrement  
Store Indirect with Displacement  
Load Program Memory  
Z
(Z + q)  
R0  
Z - 1  
Rr  
None  
None  
None  
None  
None  
2 (1)  
2 (1)  
3
STD  
LPM  
LPM  
LPM  
Z+q,Rr  
(Z)  
Rd, Z  
Load Program Memory  
Rd  
(Z)  
3
Rd, Z+  
Load Program Memory and Post-Increment  
Rd  
Z
(Z),  
Z + 1  
3
ELPM  
ELPM  
Extended Load Program Memory  
Extended Load Program Memory  
R0  
Rd  
(RAMPZ:Z)  
(RAMPZ:Z)  
None  
None  
3
3
Rd, Z  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
65  
Mnemonic  
s
Operand  
s
#Clock  
s
Description  
Operation  
Flags  
ELPM  
Rd, Z+  
Extended Load Program Memory and Post-  
Increment  
Rd  
Z
(RAMPZ:Z),  
Z + 1  
None  
3
SPM  
SPM  
Store Program Memory  
(RAMPZ:Z)  
R1:R0  
None  
None  
-
-
Z+  
Store Program Memory and Post-Increment  
by 2  
(RAMPZ:Z)  
Z
R1:R0,  
Z + 2  
IN  
Rd, A  
A, Rr  
Rr  
In From I/O Location  
Out To I/O Location  
Rd  
I/O(A)  
STACK  
Rd  
I/O(A)  
Rr  
None  
None  
None  
None  
None  
1
1
OUT  
PUSH  
POP  
XCH  
Push Register on Stack  
Pop Register from Stack  
Exchange RAM location  
Rr  
1 (1)  
2 (1)  
2
Rd  
STACK  
Z, Rd  
Temp  
Rd  
(Z)  
Rd,  
(Z),  
Temp  
LAS  
LAC  
LAT  
Z, Rd  
Z, Rd  
Z, Rd  
Load and Set RAM location  
Load and Clear RAM location  
Load and Toggle RAM location  
Temp  
Rd  
(Z)  
Rd,  
(Z),  
Temp v (Z)  
None  
None  
None  
2
2
2
Temp  
Rd  
(Z)  
Rd,  
(Z),  
($FFh – Rd) z (Z)  
Temp  
Rd  
(Z)  
Rd,  
(Z),  
Temp (Z)  
Bit and bit-test instructions  
LSL  
Rd  
Rd  
Rd  
Rd  
Logical Shift Left  
Rd(n+1)  
Rd(0)  
C
Rd(n),  
0,  
Rd(7)  
Z,C,N,V,H  
Z,C,N,V  
1
1
1
1
LSR  
ROL  
ROR  
Logical Shift Right  
Rd(n)  
Rd(7)  
C
Rd(n+1),  
0,  
Rd(0)  
Rotate Left Through Carry  
Rotate Right Through Carry  
Rd(0)  
Rd(n+1)  
C
C,  
Rd(n),  
Rd(7)  
Z,C,N,V,H  
Z,C,N,V  
Rd(7)  
Rd(n)  
C
C,  
Rd(n+1),  
Rd(0)  
ASR  
SWAP  
BSET  
BCLR  
SBI  
Rd  
Arithmetic Shift Right  
Swap Nibbles  
Rd(n)  
Rd(n+1), n=0..6  
Z,C,N,V  
1
1
1
1
1
1
1
1
1
1
1
1
1
Rd  
Rd(3..0)  
Rd(7..4)  
None  
s
Flag Set  
SREG(s)  
1
SREG(s)  
s
Flag Clear  
SREG(s)  
0
SREG(s)  
A, b  
A, b  
Rr, b  
Rd, b  
Set Bit in I/O Register  
Clear Bit in I/O Register  
Bit Store from Register to T  
Bit load from T to Register  
Set Carry  
I/O(A, b)  
1
None  
None  
T
CBI  
I/O(A, b)  
0
BST  
BLD  
SEC  
CLC  
SEN  
CLN  
SEZ  
T
Rr(b)  
Rd(b)  
T
1
0
1
0
1
None  
C
C
C
N
N
Z
Clear Carry  
C
Set Negative Flag  
Clear Negative Flag  
Set Zero Flag  
N
N
Z
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
66  
Mnemonic  
s
Operand  
s
#Clock  
s
Description  
Operation  
Flags  
CLZ  
SEI  
Clear Zero Flag  
Z
I
0
1
0
1
0
1
0
1
0
1
0
Z
I
1
1
1
1
1
1
1
1
1
1
1
Global Interrupt Enable  
Global Interrupt Disable  
Set Signed Test Flag  
CLI  
I
I
SES  
CLS  
SEV  
CLV  
SET  
CLT  
SEH  
CLH  
S
S
V
V
T
T
H
H
S
S
V
V
T
T
H
H
Clear Signed Test Flag  
Set Two’s Complement Overflow  
Clear Two’s Complement Overflow  
Set T in SREG  
Clear T in SREG  
Set Half Carry Flag in SREG  
Clear Half Carry Flag in SREG  
MCU control instructions  
BREAK  
NOP  
Break  
(See specific descr. for BREAK)  
None  
None  
None  
None  
1
1
1
1
No Operation  
Sleep  
SLEEP  
WDR  
(see specific descr. for Sleep)  
(see specific descr. for WDR)  
Watchdog Reset  
Notes:  
1. Cycle times for Data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface.  
2. One extra cycle must be added when accessing Internal SRAM.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
67  
35. Packaging information  
35.1 44A  
PIN 1 IDENTIFIER  
PIN 1  
e
B
E1  
E
D1  
D
C
0°~7°  
A2  
A
A1  
L
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.20  
NOM  
NOTE  
SYMBOL  
A
A1  
A2  
D
0.05  
0.95  
11.75  
9.90  
11.75  
9.90  
0.30  
0.09  
0.45  
0.15  
1.00  
1.05  
12.00  
10.00  
12.00  
10.00  
0.37  
12.25  
D1  
E
10.10 Note 2  
12.25  
Notes:  
1. This package conforms to JEDEC reference MS-026, Variation ACB.  
2. Dimensions D1 and E1 do not include mold protrusion. Allowable  
protrusion is 0.25mm per side. Dimensions D1 and E1 are maximum  
plastic body size dimensions including mold mismatch.  
E1  
B
10.10 Note 2  
0.45  
C
(0.17)  
0.60  
0.20  
3. Lead coplanarity is 0.10mm maximum.  
L
0.75  
e
0.80 TYP  
06/02/2014  
44A, 44-lead, 10 x 10mm body size, 1.0mm body thickness,  
0.8 mm lead pitch, thin profile plastic quad flat package (TQFP)  
44A  
C
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
68  
35.2 PW  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
69  
35.3 44M1  
D
Marked Pin# 1 I D  
E
SE ATING PLAN  
E
A1  
A3  
TOP VIE W  
A
K
L
Pin #1 Co rner  
SIDE VIEW  
D2  
Pin #1  
Triangle  
Option A  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
1
2
3
MIN  
0.80  
MAX  
1.00  
0.05  
NOM  
0.90  
NOTE  
SYMBOL  
A
E2  
Option B  
Option C  
A1  
A3  
b
0.02  
Pin #1  
Cham fer  
(C 0.30)  
0.20 REF  
0.23  
0.18  
6.90  
5.00  
6.90  
0.30  
7.10  
5.40  
7.10  
D
7.00  
D2  
E
5.20  
K
Pin #1  
Notch  
(0.20 R)  
e
b
7.00  
E2  
e
5.00  
5.20  
0.50 BSC  
0.64  
5.40  
B OTTOM VIE W  
L
0.59  
0.20  
0.69  
0.41  
Note: JEDEC Standard MO-220, Fig  
. 1 (S AW Singulation) VKKD-3 .  
K
0.26  
02/13/2014  
GPC  
ZWS  
DRAWING NO.  
TITLE  
REV.  
44M1, 44-pad, 7 x 7 x 1.0mm body, lead  
pitch 0.50mm, 5.20mm exposed pad, thermally  
enhanced plastic very thin quad flat no  
lead package (VQFN)  
Package Drawing Contact:  
packagedrawings@atmel.com  
44M1  
H
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
70  
35.4 49C2  
E
A1 BALL ID  
0.10  
D
A1  
A2  
TOP VIEW  
A
SIDE VIEW  
E1  
G
F
e
E
D
C
B
A
D1  
COMMON DIMENSIONS  
(Unit of Measure = mm)  
MIN  
MAX  
1.00  
NOM  
NOTE  
SYMBOL  
A
1
2
3
4
5
6
7
A1  
A2  
D
0.20  
0.65  
4.90  
A1 BALL CORNER  
49 - Ø0.35 0.05  
b
e
5.00  
5.10  
BOTTOM VIEW  
D1  
E4.90  
E1  
b
3.90 BSC  
5.10  
5.00  
0.30  
3.90 BSC  
0.35  
0.40  
e
0.65 BSC  
3/14/08  
GPC  
CBD  
DRAWING NO.  
TITLE  
REV.  
49C2, 49-ball (7 x 7 array), 0.65mm pitch,  
5.0 x 5.0 x 1.0mm, very thin, fine-pitch  
ball grid array package (VFBGA)  
Package Drawing Contact:  
packagedrawings@atmel.com  
49C2  
A
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
71  
36. Electrical Characteristics  
All typical values are measured at T = 25°C unless other temperature condition is given. All minimum and maximum  
values are valid across operating temperature and voltage unless other conditions are given.  
36.1 ATxmega16A4U  
36.1.1 Absolute Maximum Ratings  
Stresses beyond those listed in Table 36-1 may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or other conditions beyond those indicated in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Table 36-1. Absolute maximum ratings.  
Symbol  
VCC  
IVCC  
IGND  
VPIN  
IPIN  
Parameter  
Condition  
Min.  
Typ.  
Max.  
4
Units  
V
Power supply voltage  
Current into a VCC pin  
Current out of a Gnd pin  
Pin voltage with respect to Gnd and VCC  
I/O pin sink/source current  
Storage temperature  
-0.3  
200  
mA  
mA  
V
200  
-0.5  
-25  
-65  
VCC+0.5  
25  
mA  
°C  
TA  
150  
Tj  
Junction temperature  
150  
°C  
36.1.2 General Operating Ratings  
The device must operate within the ratings listed in Table 36-2 in order for all other electrical characteristics and  
typical characteristics of the device to be valid.  
Table 36-2. General operating conditions.  
Symbol  
VCC  
Parameter  
Condition  
Min.  
1.60  
1.60  
-40  
Typ.  
Max.  
3.6  
Units  
V
Power supply voltage  
Analog supply voltage  
Temperature range  
Junction temperature  
AVCC  
TA  
3.6  
V
85  
°C  
°C  
Tj  
-40  
105  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
72  
Table 36-3. Operating voltage and frequency.  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
VCC = 1.8V  
VCC = 2.7V  
VCC = 3.6V  
Min.  
Typ.  
Max.  
12  
Units  
0
0
0
0
12  
ClkCPU  
CPU clock frequency  
MHz  
32  
32  
The maximum CPU clock frequency depends on VCC. As shown in Figure 36-1 the Frequency vs. VCC curve is linear  
between 1.8V < VCC < 2.7V.  
Figure 36-1. Maximum Frequency vs. VCC  
.
MHz  
32  
Safe Operating Area  
12  
V
1.6  
1.8  
2.7  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
73  
36.1.3 Current consumption  
Table 36-4. Current consumption for Active mode and sleep modes.  
Symbol Parameter  
Condition  
Min.  
Typ.  
40  
Max.  
Units  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
32kHz, Ext. Clk  
80  
230  
480  
430  
0.9  
9.6  
2.4  
3.9  
62  
µA  
1MHz, Ext. Clk  
Active power  
consumption (1)  
600  
1.4  
12  
2MHz, Ext. Clk  
32MHz, Ext. Clk  
32kHz, Ext. Clk  
VCC = 3.0V  
mA  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
1MHz, Ext. Clk  
2MHz, Ext. Clk  
µA  
Idle power  
118  
125  
240  
3.8  
0.1  
1.2  
3.5  
consumption (1)  
225  
350  
5.5  
1.0  
4.5  
6.0  
VCC = 3.0V  
32MHz, Ext. Clk  
T = 25°C  
mA  
ICC  
T = 85°C  
VCC = 3.0V  
T = 105°C  
WDT and Sampled BOD enabled,  
T = 25°C  
Power-down power  
consumption  
1.3  
2.4  
4.5  
3.0  
6.0  
8.0  
µA  
WDT and Sampled BOD enabled,  
T = 85°C  
VCC = 3.0V  
WDT and Sampled BOD enabled,  
T = 105°C  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 3.0V  
1.2  
1.3  
0.6  
0.7  
0.8  
1.0  
320  
RTC from ULP clock, WDT and sampled  
BOD enabled, T = 25°C  
2.0  
2.0  
3.0  
3.0  
Power-save power  
consumption (2)  
RTC from 1.024kHz low power  
32.768kHz TOSC, T = 25°C  
µA  
µA  
RTC from low power 32.768kHz TOSC,  
T = 25°C  
Reset power consumption Current through RESET pin substracted  
Notes:  
1. All Power Reduction Registers set.  
2. Maximum limits are based on characterization, and not tested in production.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
74  
Table 36-5. Current consumption for modules and peripherals.  
Symbol Parameter  
Condition (1)  
Min.  
Typ.  
1.0  
27  
Max.  
Units  
µA  
ULP oscillator  
32.768kHz int. oscillator  
µA  
85  
2MHz int. oscillator  
32MHz int. oscillator  
µA  
µA  
DFLL enabled with 32.768kHz int. osc. as reference  
DFLL enabled with 32.768kHz int. osc. as reference  
115  
270  
460  
20x multiplication factor,  
PLL  
220  
µA  
µA  
32MHz int. osc. DIV4 as reference  
Watchdog timer  
1.0  
138  
1.2  
100  
95  
Continuous mode  
BOD  
µA  
Sampled mode, includes ULP oscillator  
Internal 1.0V reference  
Temperature sensor  
µA  
µA  
ICC  
3.0  
2.6  
2.1  
1.6  
1.9  
CURRLIMIT = LOW  
250ksps  
ADC  
mA  
VREF = Ext ref  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
250ksps  
Normal mode  
DAC  
AC  
VREF = Ext ref  
No load  
mA  
µA  
Low Power mode  
1.1  
High speed mode  
Low power mode  
330  
130  
108  
16  
DMA  
615kbps between I/O registers and SRAM  
µA  
µA  
µA  
mA  
Timer/counter  
USART  
Rx and Tx enabled, 9600 BAUD  
2.5  
4.0  
Flash memory and EEPROM programming  
8.0  
Note:  
1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external  
clock without prescaling, T = 25°C unless other conditions are given.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
75  
36.1.4 Wake-up time from sleep modes  
Table 36-6. Device wake-up time from sleep modes with various system clock sources.  
Symbol Parameter  
Condition  
External 2MHz clock  
Min.  
Typ. (1)  
2.0  
Max.  
Units  
Wake-up time from idle,  
standby, and extended standby  
mode  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
120  
2.0  
0.2  
twakeup  
µs  
4.5  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
320  
9.0  
Wake-up time from power-save  
and power-down mode  
5.0  
Note:  
1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 36-2. All peripherals and modules  
start execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.  
Figure 36-2. Wake-up time definition.  
Wakeup time  
Wakeup request  
Clock output  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
76  
36.1.5 I/O Pin Characteristics  
The I/O pins comply with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output  
voltage limits reflect or exceed this specification.  
Table 36-7. I/O pin characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
(1)  
IOH  
IOL  
/
I/O pin source/sink current  
-20  
20  
mA  
(2)  
VCC = 2.7 - 3.6V  
2.0  
0.7*VCC  
0.8*VCC  
-0.3  
VCC+0.3  
VCC+0.3  
VCC+0.3  
0.8  
VIH  
High level input voltage  
VCC = 2.0 - 2.7V  
VCC = 1.6 - 2.0V  
VCC = 2.7- 3.6V  
VCC = 2.0 - 2.7V  
VCC = 1.6 - 2.0V  
VCC = 3.0 - 3.6V  
V
V
VIL  
Low level input voltage  
-0.3  
0.3*VCC  
0.2*VCC  
-0.3  
IOH = -2mA  
IOH = -1mA  
IOH = -2mA  
IOH = -8mA  
IOH = -6mA  
IOH = -2mA  
IOL = 2mA  
IOL = 1mA  
IOL = 2mA  
IOL = 15mA  
IOL = 10mA  
IOL = 5mA  
2.4  
0.94*VCC  
0.96*VCC  
0.92*VCC  
2.9  
2.0  
VCC = 2.3 - 2.7V  
1.7  
VOH  
High level output voltage  
V
VCC = 3.3V  
2.6  
VCC = 3.0V  
2.1  
2.6  
VCC = 1.8V  
1.4  
1.6  
VCC = 3.0 - 3.6V  
0.05*VCC  
0.03*VCC  
0.06*VCC  
0.4  
0.4  
0.4  
VCC = 2.3 - 2.7V  
0.7  
VOL  
Low level output voltage  
V
VCC = 3.3V  
VCC = 3.0V  
VCC = 1.8V  
T = 25°C  
0.76  
0.64  
0.46  
0.1  
0.3  
0.2  
IIN  
Input leakage current  
<0.01  
24  
µA  
RP  
Pull/buss keeper resistor  
kΩ  
4.0  
tr  
Rise time  
No load  
ns  
slew rate limitation  
7.0  
Notes:  
1. The sum of all IOH for PORTA and PORTB must not exceed 100mA.  
The sum of all IOH for PORTC must not exceed 200mA.  
The sum of all IOH for PORTD and pins PE[0-1] on PORTE must not exceed 200mA.  
The sum of all IOH for PE[2-3] on PORTE, PORTR and PDI must not exceed 100mA.  
2. The sum of all IOL for PORTA and PORTB must not exceed 100mA.  
The sum of all IOL for PORTC must not exceed 200mA.  
The sum of all IOL for PORTD and pins PE[0-1] on PORTE must not exceed 200mA.  
The sum of all IOL for PE[2-3] on PORTE, PORTR and PDI must not exceed 100mA.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
77  
36.1.6 ADC characteristics  
Table 36-8. Power supply, reference and input range.  
Symbol Parameter Condition  
Min.  
VCC- 0.3  
1.0  
Typ.  
Max.  
Units  
V
AVCC  
VREF  
Analog supply voltage  
Reference voltage  
VCC+ 0.3  
AVCC- 0.6  
V
Rin  
Csample  
RAREF  
CAREF  
VIN  
Input resistance  
Switched  
4.0  
4.4  
>10  
7.0  
kΩ  
pF  
MΩ  
pF  
V
Input capacitance  
Switched  
Reference input resistance  
(leakage only)  
Reference input capacitance Static load  
Input range  
-0.1  
-VREF  
-ΔV  
AVCC+0.1  
VREF  
Conversion range  
Conversion range  
Fixed offset voltage  
Differential mode, Vinp - Vinn  
V
Single ended unsigned mode, Vinp  
VREF-ΔV  
V
V  
190  
LSB  
Table 36-9. Clock and timing.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Maximum is 1/4 of peripheral clock  
frequency  
100  
2000  
ClkADC  
ADC Clock frequency  
kHz  
Measuring internal signals  
Current limitation (CURRLIMIT) off  
CURRLIMIT = LOW  
100  
100  
100  
100  
100  
0.25  
125  
2000  
1500  
1000  
500  
5
fADC  
Sample rate  
ksps  
µs  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
Sampling time  
1/2 ClkADC cycle  
(RES+2)/2+(GAIN !=0)  
RES (Resolution) = 8 or 12  
ClkADC  
cycles  
Conversion time (latency)  
5
8
ClkADC  
cycles  
Start-up time  
ADC clock cycles  
12  
24  
After changing reference or input mode  
After ADC flush  
7
1
7
1
ClkADC  
cycles  
ADC settling time  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
78  
Table 36-10. Accuracy characteristics.  
Symbol  
Parameter  
Condition (2)  
Min.  
Typ.  
12  
Max.  
12  
Units  
RES  
INL (1)  
DNL (1)  
Resolution  
Programmable to 8 or 12 bit  
8
Bits  
VCC-1.0V < VREF< VCC-0.6V  
±1.2  
±1.5  
±1.0  
±1.5  
<±0.8  
-1.0  
±2.0  
±3.0  
±2.0  
±3.0  
<±1.0  
500ksps  
All VREF  
VCC-1.0V < VREF< VCC-0.6V  
All VREF  
Integral non-linearity  
lsb  
2000ksps  
Differential non-linearity  
Offset error  
guaranteed monotonic  
lsb  
mV  
Temperature drift  
<0.01  
<0.6  
-1.0  
mV/K  
mV/V  
Operating voltage drift  
External reference  
AVCC/1.6  
AVCC/2.0  
Bandgap  
10  
Differential  
mode  
mV  
8.0  
Gain error  
±5.0  
<0.02  
<0.5  
Temperature drift  
mV/K  
mV/V  
Operating voltage drift  
Differential mode, shorted input  
2msps, VCC = 3.6V, ClkPER = 16MHz  
mV  
rms  
Noise  
0.4  
Notes:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
2. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.  
Table 36-11. Gain stage characteristics.  
Symbol  
Parameter  
Condition  
Switched in normal mode  
Switched in normal mode  
Gain stage output  
Min.  
Typ.  
4.0  
Max.  
Units  
kΩ  
pF  
Rin  
Input resistance  
Input capacitance  
Signal range  
Csample  
4.4  
0
VCC- 0.6  
V
ClkADC  
cycles  
Propagation delay  
Sample rate  
ADC conversion rate  
Same as ADC  
500ksps  
1.0  
100  
1000  
±4  
kHz  
lsb  
All gain  
settings  
INL (1)  
Integral non-linearity  
±1.5  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
-0.8  
-2.5  
-3.5  
Gain error  
%
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
79  
Symbol  
Parameter  
Condition  
1x gain, normal mode  
Min.  
Typ.  
-2  
Max.  
Units  
Offset error,  
input referred  
8x gain, normal mode  
64x gain, normal mode  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
-5  
mV  
-4  
0.5  
1.5  
11  
VCC = 3.6V  
Ext. VREF  
mV  
rms  
Noise  
Note:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
36.1.7 DAC Characteristics  
Table 36-12. Power supply, reference and output range.  
Symbol Parameter Condition  
Min.  
VCC  
Typ.  
Max.  
Units  
-
AVCC  
Analog supply voltage  
VCC+ 0.3  
V
0.3  
AVREF  
External reference voltage  
DC output impedance  
1.0  
VCC- 0.6  
50  
V
Ω
Rchannel  
Linear output voltage range  
Reference input resistance  
Reference input capacitance Static load  
Minimum resistance load  
0.15  
1.0  
AVCC-0.15  
V
RAREF  
>10  
7
MΩ  
pF  
kΩ  
pF  
nF  
CAREF  
100  
1.0  
Maximum capacitance load  
1000Ω serial resistance  
Operating within accuracy specification  
Safe operation  
AVCC/1000  
10  
Output sink/source  
mA  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
80  
Table 36-13. Clock and timing.  
Symbol  
Parameter  
Condition  
Normal mode  
Low power mode  
Min.  
Typ.  
Max.  
1000  
500  
Units  
0
Cload=100pF,  
maximum step size  
fDAC  
Conversion rate  
ksps  
Table 36-14. Accuracy characteristics.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
12  
Units  
RES  
Input resolution  
Bits  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
±2.0  
±1.5  
±2.0  
±1.5  
±5.0  
±5.0  
±1.5  
±0.6  
±1.0  
±0.6  
±4.5  
±4.5  
<4.0  
4.0  
±3  
VREF= Ext 1.0V  
VREF=AVCC  
±2.5  
±4  
INL (1)  
Integral non-linearity  
lsb  
±4  
VREF=INT1V  
VREF=Ext 1.0V  
VREF=AVCC  
3.0  
1.5  
3.5  
1.5  
DNL (1)  
Differential non-linearity  
lsb  
VREF=INT1V  
Gain error  
After calibration  
lsb  
lsb  
Gain calibration step size  
Gain calibration drift  
Offset error  
VREF= Ext 1.0V  
After calibration  
<0.2  
<1.0  
1.0  
mV/K  
lsb  
Offset calibration step size  
Note:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% output voltage range.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
81  
36.1.8 Analog Comparator Characteristics  
Table 36-15. Analog Comparator characteristics.  
Symbol  
Voff  
Parameter  
Condition  
Min.  
Typ.  
<±10  
<1.0  
Max.  
Units  
mV  
nA  
Input offset voltage  
Input leakage current  
Input voltage range  
AC startup time  
Ilk  
-0.1  
AVCC  
V
100  
0
µs  
Vhys1  
Hysteresis, none  
mV  
mode = High Speed (HS)  
mode = Low Power (LP)  
mode = HS  
13  
Vhys2  
Hysteresis, small  
Hysteresis, large  
mV  
mV  
30  
30  
Vhys3  
mode = LP  
60  
VCC = 3.0V, T= 85°C  
mode = HS  
VCC = 3.0V, T= 85°C  
mode = HS  
30  
90  
500  
0.5  
30  
tdelay  
Propagation delay  
ns  
mode = LP  
130  
130  
0.3  
mode = LP  
64-level voltage scaler  
Integral non-linearity (INL)  
lsb  
36.1.9 Bandgap and Internal 1.0V Reference Characteristics  
Table 36-16. Bandgap and Internal 1.0V reference characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
As reference for ADC or DAC  
As input voltage to ADC and AC  
1 ClkPER + 2.5µs  
Startup time  
µs  
1.5  
1.1  
Bandgap voltage  
V
V
INT1V  
Internal 1.00V reference  
Variation over voltage and temperature  
T= 85°C, after calibration  
0.99  
1.0  
1.01  
Relative to T= 85°C, VCC = 3.0V  
±1.5  
%
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
82  
36.1.10 Brownout Detection Characteristics  
Table 36-17. Brownout detection characteristics.  
Symbol Parameter  
BOD level 0 falling VCC  
BOD level 1 falling VCC  
BOD level 2 falling VCC  
Condition  
Min.  
Typ.  
1.62  
1.8  
Max.  
Units  
1.60  
1.72  
2.0  
BOD level 3 falling VCC  
VBOT  
2.2  
V
BOD level 4 falling VCC  
2.4  
BOD level 5 falling VCC  
BOD level 6 falling VCC  
BOD level 7 falling VCC  
2.6  
2.8  
3.0  
Continuous mode  
Sampled mode  
0.4  
tBOD  
Detection time  
Hysteresis  
µs  
%
1000  
1.2  
VHYST  
36.1.11 External Reset Characteristics  
Table 36-18. External reset characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
95  
Max.  
Units  
tEXT  
Minimum reset pulse width  
1000  
ns  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
0.60×VCC  
0.60×VCC  
0.50×VCC  
0.40×VCC  
25  
Reset threshold voltage (VIH)  
VRST  
V
Reset threshold voltage (VIL)  
Reset pin Pull-up Resistor  
RRST  
kΩ  
36.1.12 Power-on Reset Characteristics  
Table 36-19. Power-on reset characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
1.0  
Max.  
Units  
VCC falls faster than 1V/ms  
VCC falls at 1V/ms or slower  
0.4  
0.8  
(1)  
VPOT-  
POR threshold voltage falling VCC  
V
V
1.0  
VPOT+  
POR threshold voltage rising VCC  
1.3  
1.59  
Note:  
1. VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
83  
36.1.13 Flash and EEPROM Memory Characteristics  
Table 36-20. Endurance and data retention.  
Symbol Parameter  
Condition  
Min.  
10K  
10K  
2K  
Typ.  
Max.  
Units  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
Write/Erase cycles  
Cycle  
Flash  
100  
25  
Data retention  
Year  
Cycle  
Year  
10  
100K  
100K  
30K  
100  
25  
Write/Erase cycles  
Data retention  
EEPROM  
10  
Table 36-21. Programming time.  
Symbol Parameter  
Condition  
Min.  
Typ.(1)  
Max.  
Units  
ms  
16KB Flash, EEPROM(2) and  
SRAM Erase  
Chip Erase  
45  
Application Erase  
Section erase  
6
4
4
8
4
4
8
ms  
Page erase  
Flash  
Page write  
ms  
ms  
Atomic page erase and write  
Page erase  
EEPROM  
Page write  
Atomic page erase and write  
Notes:  
1. Programming is timed from the 2MHz internal oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
84  
36.1.14 Clock and Oscillator Characteristics  
36.1.14.1 Calibrated 32.768kHz Internal Oscillator characteristics  
Table 36-22. 32.768kHz internal oscillator characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
kHz  
%
Frequency  
32.768  
Factory calibration accuracy  
User calibration accuracy  
T = 85°C, VCC = 3.0V  
-0.5  
-0.5  
0.5  
0.5  
%
36.1.14.2 Calibrated 2MHz RC Internal Oscillator characteristics  
Table 36-23. 2MHz internal oscillator characteristics.  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
1.8  
2.2  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration stepsize  
2.0  
MHz  
%
T = 85°C, VCC= 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.21  
%
36.1.14.3 Calibrated and tunable 32MHz internal oscillator characteristics  
Table 36-24. 32MHz internal oscillator characteristics.  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
30  
55  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration step size  
32  
MHz  
%
T = 85°C, VCC= 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.22  
%
36.1.14.4 32kHz Internal ULP Oscillator characteristics  
Table 36-25. 32kHz internal ULP oscillator characteristics.  
Symbol Parameter  
Output frequency  
Accuracy  
Condition  
Min.  
Typ.  
Max.  
Units  
kHz  
%
32  
-30  
30  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
85  
36.1.14.5 Internal Phase Locked Loop (PLL) characteristics  
Table 36-26. Internal PLL characteristics.  
Symbo  
l
Parameter  
Condition  
Output frequency must be within fOUT  
VCC= 1.6 - 1.8V  
Min.  
0.4  
20  
Typ.  
Max.  
64  
Units  
fIN  
Input frequency  
MHz  
48  
fOUT  
Output frequency (1)  
MHz  
VCC= 2.7 - 3.6V  
20  
128  
Start-up time  
Re-lock time  
25  
25  
µs  
µs  
Note:  
1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.  
36.1.14.6 External clock characteristics  
Figure 36-3. External clock drive waveform  
tCH  
tCH  
tCR  
tCF  
VIH1  
VIL1  
tCL  
tCK  
Table 36-27. External clock used as system clock without prescaling.  
Symbol  
Parameter  
Condition  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
Min.  
0
Typ.  
Max.  
12  
Units  
1/tCK  
Clock Frequency (1)  
MHz  
0
32  
83.3  
31.5  
30.0  
12.5  
30.0  
12.5  
tCK  
tCH  
tCL  
tCR  
Clock Period  
ns  
ns  
ns  
ns  
Clock High Time  
Clock Low Time  
10  
3
Rise Time (for maximum frequency)  
10  
3
tCF  
Fall Time (for maximum frequency)  
ns  
%
ΔtCK  
Change in period from one clock cycle to the next  
10  
Note:  
1. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
86  
Table 36-28. External clock with prescaler (1)for system clock.  
Symbol Parameter Condition  
Clock Frequency (2)  
Min.  
0
Typ.  
Max.  
90  
Units  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
1/tCK  
MHz  
0
142  
11  
7
tCK  
Clock Period  
ns  
ns  
ns  
ns  
4.5  
2.4  
4.5  
2.4  
tCH  
Clock High Time  
tCL  
Clock Low Time  
1.5  
1.0  
1.5  
1.0  
10  
tCR  
Rise Time (for maximum frequency)  
tCF  
Fall Time (for maximum frequency)  
ns  
%
ΔtCK  
Change in period from one clock cycle to the next  
Notes:  
1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.  
2. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
36.1.14.7 External 16MHz crystal oscillator and XOSC characteristic  
Table 36-29. External 16MHz crystal oscillator and XOSC characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
<10  
Max.  
Units  
FRQRANGE=0  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
Cycle to cycle jitter  
FRQRANGE=1, 2, or 3  
<1.0  
ns  
<1.0  
FRQRANGE=0  
<6.0  
Long term jitter  
Frequency error  
FRQRANGE=1, 2, or 3  
<0.5  
ns  
%
<0.5  
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
<0.1  
XOSCPWR=0  
XOSCPWR=1  
<0.05  
<0.005  
<0.005  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
87  
Symbol Parameter  
Condition  
Min.  
Typ.  
40  
Max.  
Units  
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
XOSCPWR=0  
XOSCPWR=1  
42  
Duty cycle  
%
45  
48  
0.4MHz resonator,  
CL=100pF  
2.4k  
XOSCPWR=0,  
FRQRANGE=0  
1MHz crystal, CL=20pF  
2MHz crystal, CL=20pF  
2MHz crystal  
8.7k  
2.1k  
4.2k  
250  
195  
360  
285  
155  
365  
200  
105  
435  
235  
125  
495  
270  
145  
305  
XOSCPWR=0,  
FRQRANGE=1,  
CL=20pF  
8MHz crystal  
9MHz crystal  
8MHz crystal  
XOSCPWR=0,  
FRQRANGE=2,  
CL=20pF  
9MHz crystal  
12MHz crystal  
9MHz crystal  
XOSCPWR=0,  
FRQRANGE=3,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
Negative impedance (1)  
Ω
RQ  
XOSCPWR=1,  
FRQRANGE=0,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
XOSCPWR=1,  
FRQRANGE=1,  
CL=20pF  
12MHz crystal  
16MHz crystal  
12MHz crystal  
XOSCPWR=1,  
FRQRANGE=2,  
CL=20pF  
16MHz crystal  
12MHz crystal  
16MHz crystal  
160  
380  
205  
XOSCPWR=1,  
FRQRANGE=3,  
CL=20pF  
ESR  
SF = Safety factor  
min(RQ)/SF  
kΩ  
Parasitic capacitance  
XTAL1 pin  
CXTAL1  
CXTAL2  
CLOAD  
5.4  
7.1  
pF  
Parasitic capacitance  
XTAL2 pin  
pF  
pF  
Parasitic capacitance  
load  
3.07  
Note:  
1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
88  
36.1.14.8 External 32.768kHz crystal oscillator and TOSC characteristics  
Table 36-30. External 32.768kHz crystal oscillator and TOSC characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
60  
Units  
Crystal load capacitance 6.5pF  
Crystal load capacitance 9.0pF  
Recommended crystal equivalent  
ESR/R1  
CTOSC1  
CTOSC2  
kΩ  
series resistance (ESR)  
35  
5.4  
4.0  
7.1  
4.0  
Parasitic capacitance TOSC1 pin  
pF  
pF  
Alternate TOSC location  
Parasitic capacitance TOSC2 pin  
Recommended safety factor  
Alternate TOSC location  
capacitance load matched to  
crystal specification  
3
Note:  
1. See Figure 36-4 for definition.  
Figure 36-4. TOSC input capacitance.  
CL1  
CL2  
Device internal  
External  
TOSC1  
TOSC2  
32.768kHz crystal  
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating  
without external capacitors.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
89  
36.1.15 SPI Characteristics  
Figure 36-5. SPI timing requirements in master mode.  
SS  
tMOS  
tSCKR  
tSCKF  
SCK  
(CPOL = 0)  
tSCKW  
SCK  
(CPOL = 1)  
tSCKW  
tMIS  
tMIH  
tSCK  
MISO  
(Data input)  
MSB  
LSB  
tMOH  
tMOH  
MOSI  
(Data output)  
MSB  
LSB  
Figure 36-6. SPI timing requirements in slave mode.  
SS  
tSSS  
tSCKR  
tSCKF  
tSSH  
SCK  
(CPOL = 0)  
tSSCKW  
SCK  
(CPOL = 1)  
tSSCKW  
tSIS  
tSIH  
tSSCK  
MOSI  
(Data input)  
MSB  
LSB  
tSOSSS  
tSOS  
tSOSSH  
MISO  
(Data output)  
MSB  
LSB  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
90  
Table 36-31. SPI timing characteristics and requirements.  
Symbol Parameter Condition  
Min.  
Typ.  
Max.  
Units  
(See Table 21-4 in  
XMEGA AU Manual)  
tSCK  
SCK period  
Master  
tSCKW  
tSCKR  
tSCKF  
tMIS  
SCK high/low width  
SCK rise time  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
0.5*SCK  
2.7  
2.7  
SCK fall time  
MISO setup to SCK  
MISO hold after SCK  
MOSI setup SCK  
MOSI hold after SCK  
Slave SCK Period  
SCK high/low width  
SCK rise time  
10  
tMIH  
10  
tMOS  
tMOH  
tSSCK  
tSSCKW  
tSSCKR  
tSSCKF  
tSIS  
0.5*SCK  
1
4*t ClkPER  
2*t ClkPER  
ns  
1600  
1600  
SCK fall time  
MOSI setup to SCK  
MOSI hold after SCK  
SS setup to SCK  
SS hold after SCK  
MISO setup SCK  
MISO hold after SCK  
MISO setup after SS low  
MISO hold after SS high  
3
t ClkPER  
21  
tSIH  
tSSS  
tSSH  
20  
tSOS  
8
13  
11  
8
tSOH  
tSOSS  
tSOSH  
36.1.16 Two-Wire Interface Characteristics  
Table 36-32 on page 92 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel  
AVR XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols  
refer to Figure 36-7 on page 91.  
Figure 36-7. Two-wire interface bus timing.  
tof  
tHIGH  
tLOW  
tr  
SCL  
SDA  
tHD;DAT  
tSU;STA  
tSU;STO  
tSU;DAT  
tHD;STA  
tBUF  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
91  
Table 36-32. Two-wire interface characteristics.  
Symbol Parameter  
Condition  
Min.  
0.7*VCC  
0.5  
Typ.  
Max.  
Units  
V
VIH  
VIL  
Input high voltage  
VCC+0.5  
0.3*VCC  
Input low voltage  
V
(1)  
Vhys  
Hysteresis of Schmitt trigger inputs  
Output low voltage  
0.05*VCC  
0
V
VOL  
3mA, sink current  
0.4  
300  
250  
50  
V
(1)(2)  
tr  
tof  
Rise time for both SDA and SCL  
Output fall time from VIHmin to VILmax  
Spikes suppressed by input filter  
Input current for each I/O Pin  
Capacitance for each I/O Pin  
SCL clock frequency  
20+0.1Cb  
20+0.1Cb  
0
ns  
ns  
ns  
µA  
pF  
kHz  
(1)(2)  
10pF < Cb < 400pF (2)  
0.1VCC < VI < 0.9VCC  
tSP  
II  
-10  
10  
CI  
10  
fSCL  
fPER (3)>max(10fSCL, 250kHz)  
0
400  
fSCL 100kHz  
100ns  
Cb  
--------------  
VCC – 0.4V  
---------------------------  
3mA  
RP  
Value of pull-up resistor  
Ω
300ns  
fSCL > 100kHz  
--------------  
Cb  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
4.0  
0.6  
4.7  
1.3  
4.0  
0.6  
4.7  
0.6  
0
tHD;STA  
Hold time (repeated) START condition  
Low period of SCL clock  
µs  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
tLOW  
tHIGH  
High period of SCL clock  
Set-up time for a repeated START  
condition  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
3.45  
0.9  
Data hold time  
0
250  
100  
4.0  
0.6  
4.7  
1.3  
Data setup time  
Setup time for STOP condition  
Bus free time between a STOP and  
START condition  
Notes:  
1. Required only for fSCL > 100kHz.  
2. Cb = Capacitance of one bus line in pF.  
3.  
fPER = Peripheral clock frequency.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
92  
36.2 ATxmega32A4U  
36.2.1 Absolute Maximum Ratings  
Stresses beyond those listed in Table 36-33 may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or other conditions beyond those indicated in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Table 36-33. Absolute maximum ratings.  
Symbol  
VCC  
IVCC  
IGND  
VPIN  
IPIN  
Parameter  
Condition  
Min.  
Typ.  
Max.  
4
Units  
V
Power supply voltage  
Current into a VCC pin  
Current out of a Gnd pin  
Pin voltage with respect to Gnd and VCC  
I/O pin sink/source current  
Storage temperature  
-0.3  
200  
mA  
mA  
V
200  
-0.5  
-25  
-65  
VCC+0.5  
25  
mA  
°C  
TA  
150  
Tj  
Junction temperature  
150  
°C  
36.2.2 General Operating Ratings  
The device must operate within the ratings listed in Table 36-34 in order for all other electrical characteristics and  
typical characteristics of the device to be valid.  
Table 36-34. General operating conditions.  
Symbol  
VCC  
Parameter  
Condition  
Min.  
1.60  
1.60  
-40  
Typ.  
Max.  
3.6  
Units  
V
Power supply voltage  
Analog supply voltage  
Temperature range  
Junction temperature  
AVCC  
TA  
3.6  
V
85  
°C  
°C  
Tj  
-40  
105  
Table 36-35. Operating voltage and frequency.  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
VCC = 1.8V  
VCC = 2.7V  
VCC = 3.6V  
Min.  
Typ.  
Max.  
12  
Units  
0
0
0
0
12  
ClkCPU  
CPU clock frequency  
MHz  
32  
32  
The maximum CPU clock frequency depends on VCC. As shown in Figure 36-8 the Frequency vs. VCC curve is linear  
between 1.8V < VCC < 2.7V.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
93  
Figure 36-8. Maximum Frequency vs. VCC  
.
MHz  
32  
Safe Operating Area  
12  
V
1.6  
1.8  
2.7  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
94  
36.2.3 Current consumption  
Table 36-36. Current consumption for Active mode and sleep modes.  
Symbol Parameter  
Condition  
Min.  
Typ.  
40  
Max.  
Units  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
32kHz, Ext. Clk  
80  
230  
480  
430  
0.9  
9.6  
2.4  
3.9  
62  
µA  
1MHz, Ext. Clk  
Active power  
consumption(1)  
600  
1.4  
12  
2MHz, Ext. Clk  
32MHz, Ext. Clk  
32kHz, Ext. Clk  
VCC = 3.0V  
mA  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
1MHz, Ext. Clk  
2MHz, Ext. Clk  
µA  
Idle power  
consumption(1)  
118  
125  
240  
3.8  
0.1  
1.2  
3.5  
225  
350  
5.5  
1.0  
4.5  
6.0  
VCC = 3.0V  
32MHz, Ext. Clk  
T = 25°C  
mA  
ICC  
T = 85°C  
VCC = 3.0V  
T = 105°C  
WDT and sampled BOD enabled,  
T = 25°C  
Power-down power  
consumption  
1.3  
2.4  
4.5  
3.0  
6.0  
8.0  
µA  
WDT and sampled BOD enabled,  
T = 85°C  
VCC = 3.0V  
WDT and sampled BOD enabled,  
T = 105°C  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
1.2  
1.3  
0.6  
0.7  
0.8  
1.0  
RTC from ULP clock, WDT and  
sampled BOD enabled, T = 25°C  
2.0  
2.0  
3.0  
3.0  
Power-save power  
consumption(2)  
RTC from 1.024kHz low power  
32.768kHz TOSC, T = 25°C  
µA  
RTC from low power 32.768kHz  
TOSC, T = 25°C  
Current through RESET pin  
substracted  
Reset power consumption  
VCC = 3.0V  
320  
Notes:  
1. All Power Reduction Registers set.  
2. Maximum limits are based on characterization, and not tested in production.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
95  
Table 36-37. Current consumption for modules and peripherals.  
Symbol Parameter  
Condition (1)  
Min.  
Typ.  
1.0  
27  
Max.  
Units  
µA  
ULP oscillator  
32.768kHz int. oscillator  
µA  
85  
2MHz int. oscillator  
32MHz int. oscillator  
µA  
µA  
DFLL enabled with 32.768kHz int. osc. as reference  
DFLL enabled with 32.768kHz int. osc. as reference  
115  
270  
460  
20x multiplication factor,  
PLL  
220  
µA  
µA  
32MHz int. osc. DIV4 as reference  
Watchdog timer  
1.0  
138  
1.2  
100  
95  
Continuous mode  
BOD  
µA  
Sampled mode, includes ULP oscillator  
Internal 1.0V reference  
Temperature sensor  
µA  
µA  
ICC  
3.0  
2.6  
2.1  
1.6  
1.9  
CURRLIMIT = LOW  
250ksps  
ADC  
mA  
VREF = Ext ref  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
250ksps  
Normal mode  
DAC  
AC  
VREF = Ext ref  
No load  
mA  
µA  
Low power mode  
1.1  
High speed mode  
Low power mode  
330  
130  
108  
16  
DMA  
615kbps between I/O registers and SRAM  
µA  
µA  
µA  
mA  
Timer/counter  
USART  
Rx and Tx enabled, 9600 BAUD  
2.5  
4.0  
Flash memory and EEPROM programming  
8.0  
Note:  
1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external  
clock without prescaling, T = 25°C unless other conditions are given.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
96  
36.2.4 Wake-up time from sleep modes  
Table 36-38. Device wake-up time from sleep modes with various system clock sources.  
Symbol Parameter  
Condition  
External 2MHz clock  
Min.  
Typ. (1)  
2.0  
Max.  
Units  
Wake-up time from idle,  
standby, and extended standby  
mode  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
120  
2.0  
µs  
0.2  
twakeup  
4.5  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
320  
9.0  
Wake-up time from power-save  
and power-down mode  
µs  
5.0  
Note:  
1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 36-9. All peripherals and modules  
start execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.  
Figure 36-9. Wake-up time definition.  
Wakeup time  
Wakeup request  
Clock output  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
97  
36.2.5 I/O Pin Characteristics  
The I/O pins comply with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output  
voltage limits reflect or exceed this specification.  
Table 36-39. I/O pin characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
(1)  
IOH  
/
I/O pin source/sink current  
-20  
20  
mA  
(2)  
IOL  
VCC = 2.7 - 3.6V  
2.0  
0.7*VCC  
0.8*VCC  
-0.3  
VCC+0.3  
VCC+0.3  
VCC+0.3  
0.8  
VIH  
High level input voltage  
VCC = 2.0 - 2.7V  
VCC = 1.6 - 2.0V  
VCC = 2.7- 3.6V  
VCC = 2.0 - 2.7V  
VCC = 1.6 - 2.0V  
VCC = 3.0 - 3.6V  
V
V
VIL  
Low level input voltage  
-0.3  
0.3*VCC  
0.2*VCC  
-0.3  
IOH = -2mA  
IOH = -1mA  
IOH = -2mA  
IOH = -8mA  
IOH = -6mA  
IOH = -2mA  
IOL = 2mA  
IOL = 1mA  
IOL = 2mA  
IOL = 15mA  
IOL = 10mA  
IOL = 5mA  
2.4  
0.94*VCC  
0.96*VCC  
0.92*VCC  
2.9  
2.0  
VCC = 2.3 - 2.7V  
1.7  
VOH  
High level output voltage  
V
VCC = 3.3V  
2.6  
VCC = 3.0V  
2.1  
2.6  
VCC = 1.8V  
1.4  
1.6  
VCC = 3.0 - 3.6V  
0.05*VCC  
0.03*VCC  
0.06*VCC  
0.4  
0.4  
0.4  
VCC = 2.3 - 2.7V  
0.7  
VOL  
Low level output voltage  
V
VCC = 3.3V  
VCC = 3.0V  
VCC = 1.8V  
T = 25°C  
0.76  
0.64  
0.46  
0.1  
0.3  
0.2  
IIN  
Input leakage current  
<0.01  
24  
µA  
RP  
Pull/buss keeper resistor  
kΩ  
4.0  
tr  
Rise time  
No load  
ns  
slew rate limitation  
7.0  
Notes:  
1. The sum of all IOH for PORTA and PORTB must not exceed 100mA.  
The sum of all IOH for PORTC must not exceed 200mA.  
The sum of all IOH for PORTD and pins PE[0-1] on PORTE must not exceed 200mA.  
The sum of all IOH for PE[2-3] on PORTE, PORTR and PDI must not exceed 100mA.  
2. The sum of all IOL for PORTA and PORTB must not exceed 100mA.  
The sum of all IOL for PORTC must not exceed 200mA.  
The sum of all IOL for PORTD and pins PE[0-1] on PORTE must not exceed 200mA.  
The sum of all IOL for PE[2-3] on PORTE, PORTR and PDI must not exceed 100mA.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
98  
36.2.6 ADC characteristics  
Table 36-40. Power supply, reference and input range.  
Symbol Parameter Condition  
Min.  
VCC- 0.3  
1
Typ.  
Max.  
Units  
V
AVCC  
VREF  
Analog supply voltage  
Reference voltage  
VCC+ 0.3  
AVCC- 0.6  
V
Rin  
Csample  
RAREF  
CAREF  
VIN  
Input resistance  
Switched  
4.0  
4.4  
>10  
7
kΩ  
pF  
MΩ  
pF  
V
Input capacitance  
Switched  
Reference input resistance  
(leakage only)  
Reference input capacitance Static load  
Input range  
-0.1  
-VREF  
-ΔV  
AVCC+0.1  
VREF  
Conversion range  
Conversion range  
Fixed offset voltage  
Differential mode, Vinp - Vinn  
V
Single ended unsigned mode, Vinp  
VREF-ΔV  
V
V  
190  
LSB  
Table 36-41. Clock and timing.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Maximum is 1/4 of peripheral clock  
frequency  
100  
2000  
ClkADC  
ADC clock frequency  
kHz  
Measuring internal signals  
Current limitation (CURRLIMIT) off  
CURRLIMIT = LOW  
100  
100  
100  
100  
100  
0.25  
125  
2000  
1500  
1000  
500  
5
fADC  
Sample rate  
ksps  
µs  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
Sampling time  
1/2 ClkADC cycle  
(RES+2)/2+(GAIN !=0)  
RES (Resolution) = 8 or 12  
ClkADC  
cycles  
Conversion time (latency)  
5
8
ClkADC  
cycles  
Start-up time  
ADC clock cycles  
12  
24  
After changing reference or input mode  
After ADC flush  
7
1
7
1
ClkADC  
cycles  
ADC settling time  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
99  
Table 36-42. Accuracy characteristics.  
Symbol  
Parameter  
Condition (2)  
Min.  
Typ.  
12  
Max.  
12  
Units  
RES  
INL(1)  
DNL(1)  
Resolution  
Programmable to 8 or 12 bit  
8
Bits  
VCC-1.0V < VREF< VCC-0.6V  
±1.2  
±1.5  
±1.0  
±1.5  
<±0.8  
-1.0  
±2.0  
±3.0  
±2.0  
±3.0  
<±1.0  
500ksps  
All VREF  
VCC-1.0V < VREF< VCC-0.6V  
All VREF  
Integral non-linearity  
lsb  
2000ksps  
Differential non-linearity  
Offset error  
guaranteed monotonic  
lsb  
mV  
Temperature drift  
<0.01  
<0.6  
-1.0  
mV/K  
mV/V  
Operating voltage drift  
External reference  
AVCC/1.6  
AVCC/2.0  
Bandgap  
10  
Differential  
mode  
mV  
8.0  
Gain error  
±5.0  
<0.02  
<0.5  
Temperature drift  
mV/K  
mV/V  
Operating voltage drift  
Differential mode, shorted input  
2msps, VCC = 3.6V, ClkPER = 16MHz  
mV  
rms  
Noise  
0.4  
Notes:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
2. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.  
Table 36-43. Gain stage characteristics.  
Symbol  
Parameter  
Condition  
Switched in normal mode  
Switched in normal mode  
Gain stage output  
Min.  
Typ.  
4.0  
Max.  
Units  
kΩ  
pF  
Rin  
Input resistance  
Input capacitance  
Signal range  
Csample  
4.4  
0
VCC- 0.6  
V
ClkADC  
cycles  
Propagation delay  
Sample rate  
ADC conversion rate  
Same as ADC  
500ksps  
1.0  
100  
1000  
±4.0  
kHz  
lsb  
All gain  
settings  
INL (1)  
Integral non-linearity  
±1.5  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
-0.8  
-2.5  
-3.5  
Gain error  
%
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
100  
Symbol  
Parameter  
Condition  
1x gain, normal mode  
Min.  
Typ.  
-2.0  
-5.0  
-4.0  
0.5  
Max.  
Units  
Offset error,  
input referred  
8x gain, normal mode  
64x gain, normal mode  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
mV  
VCC = 3.6V  
Ext. VREF  
mV  
rms  
Noise  
1.5  
11  
Note:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
36.2.7 DAC Characteristics  
Table 36-44. Power supply, reference and output range.  
Symbol Parameter Condition  
Min.  
VCC- 0.3  
1.0  
Typ.  
Max.  
VCC+ 0.3  
VCC- 0.6  
50  
Units  
V
AVCC  
AVREF  
Rchannel  
Analog supply voltage  
External reference voltage  
DC output impedance  
V
Ω
Linear output voltage range  
Reference input resistance  
Reference input capacitance Static load  
Minimum Resistance load  
0.15  
1.0  
AVCC-0.15  
V
RAREF  
>10  
7.0  
MΩ  
pF  
kΩ  
pF  
nF  
CAREF  
100  
1.0  
Maximum capacitance load  
1000Ω serial resistance  
Operating within accuracy specification  
Safe operation  
AVCC/1000  
10  
Output sink/source  
mA  
Table 36-45. Clock and timing.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
1000  
500  
Units  
Normal mode  
0
Cload=100pF,  
maximum step size  
fDAC  
Conversion rate  
ksps  
Low power mode  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
101  
Table 36-46. Accuracy characteristics.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
12  
Units  
RES  
Input resolution  
Bits  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
±2.0  
±1.5  
±2.0  
±1.5  
±5.0  
±5.0  
±1.5  
±0.6  
±1.0  
±0.6  
±4.5  
±4.5  
<4.0  
4.0  
±3.0  
±2.5  
±4.0  
±4.0  
VREF= Ext 1.0V  
VREF=AVCC  
INL (1)  
Integral non-linearity  
lsb  
VREF=INT1V  
VREF=Ext 1.0V  
VREF=AVCC  
3.0  
1.5  
3.5  
1.5  
DNL (1)  
Differential non-linearity  
lsb  
VREF=INT1V  
Gain error  
After calibration  
lsb  
lsb  
Gain calibration step size  
Gain calibration drift  
Offset error  
VREF= Ext 1.0V  
After calibration  
<0.2  
<1.0  
1.0  
mV/K  
lsb  
Offset calibration step size  
Note:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% output voltage range.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
102  
36.2.8 Analog Comparator Characteristics  
Table 36-47. Analog Comparator characteristics.  
Symbol  
Voff  
Parameter  
Condition  
Min.  
Typ.  
<±10  
<1  
Max.  
Units  
mV  
nA  
Input offset voltage  
Input leakage current  
Input voltage range  
AC startup time  
Ilk  
-0.1  
AVCC  
V
100  
0
µs  
Vhys1  
Hysteresis, none  
mV  
mode = High Speed (HS)  
mode = Low Power (LP)  
mode = HS  
13  
Vhys2  
Hysteresis, small  
Hysteresis, large  
mV  
mV  
30  
30  
Vhys3  
mode = LP  
60  
VCC = 3.0V, T= 85°C  
mode = HS  
VCC = 3.0V, T= 85°C  
mode = HS  
30  
90  
500  
0.5  
30  
tdelay  
Propagation delay  
ns  
mode = LP  
130  
130  
0.3  
mode = LP  
64-level voltage scaler  
Integral non-linearity (INL)  
lsb  
36.2.9 Bandgap and Internal 1.0V Reference Characteristics  
Table 36-48. Bandgap and Internal 1.0V reference characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
As reference for ADC or DAC  
As input voltage to ADC and AC  
1 ClkPER + 2.5µs  
Startup time  
µs  
1.5  
1.1  
Bandgap voltage  
V
V
INT1V  
Internal 1.00V reference  
Variation over voltage and temperature  
T= 85°C, after calibration  
0.99  
1.0  
1.01  
Relative to T= 85°C, VCC = 3.0V  
±1.5  
%
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
103  
36.2.10 Brownout Detection Characteristics  
Table 36-49. Brownout detection characteristics.  
Symbol Parameter  
BOD level 0 falling VCC  
BOD level 1 falling VCC  
BOD level 2 falling VCC  
Condition  
Min.  
Typ.  
1.62  
1.8  
Max.  
Units  
1.60  
1.72  
2.0  
BOD level 3 falling VCC  
VBOT  
2.2  
V
BOD level 4 falling VCC  
2.4  
BOD level 5 falling VCC  
BOD level 6 falling VCC  
BOD level 7 falling VCC  
2.6  
2.8  
3.0  
Continuous mode  
Sampled mode  
0.4  
tBOD  
Detection time  
Hysteresis  
µs  
%
1000  
1.2  
VHYST  
36.2.11 External Reset Characteristics  
Table 36-50. External reset characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
95  
Max.  
Units  
tEXT  
Minimum reset pulse width  
1000  
ns  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
0.60*VCC  
0.60*VCC  
0.50*VCC  
0.40*VCC  
25  
Reset threshold voltage (VIH)  
VRST  
V
Reset threshold voltage (VIL)  
Reset pin Pull-up Resistor  
RRST  
kΩ  
36.2.12 Power-on Reset Characteristics  
Table 36-51. Power-on reset characteristics.  
Symbol Parameter  
Condition  
VCC falls faster than 1V/ms  
VCC falls at 1V/ms or slower  
Min.  
0.4  
Typ.  
1.0  
Max.  
Units  
(1)  
VPOT-  
POR threshold voltage falling VCC  
V
V
0.8  
1.0  
VPOT+  
POR threshold voltage rising VCC  
1.3  
1.59  
Note:  
1. VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
104  
36.2.13 Flash and EEPROM Memory Characteristics  
Table 36-52. Endurance and data retention.  
Symbol Parameter  
Condition  
Min.  
10K  
10K  
2K  
Typ.  
Max.  
Units  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
Write/Erase cycles  
Cycle  
Flash  
100  
25  
Data retention  
Year  
Cycle  
Year  
10  
100K  
100K  
30K  
100  
25  
Write/Erase cycles  
Data retention  
EEPROM  
10  
Table 36-53. Programming time.  
Symbol Parameter  
Condition  
Min.  
Typ.(1)  
Max.  
Units  
ms  
Chip Erase  
32KB Flash, EEPROM(2) and SRAM erase  
Section erase  
50  
6
Application Erase  
ms  
Page erase  
4
Flash  
Page write  
4
ms  
ms  
Atomic page erase and write  
Page erase  
8
4
EEPROM  
Page write  
4
Atomic page erase and write  
8
Notes:  
1. Programming is timed from the 2MHz internal oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
105  
36.2.14 Clock and Oscillator Characteristics  
36.2.14.1 Calibrated 32.768kHz Internal Oscillator characteristics  
Table 36-54. 32.768kHz internal oscillator characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
kHz  
%
Frequency  
32.768  
Factory calibration accuracy  
User calibration accuracy  
T = 85°C, VCC = 3.0V  
-0.5  
-0.5  
0.5  
0.5  
%
36.2.14.2 Calibrated 2MHz RC Internal Oscillator characteristics  
Table 36-55. 2MHz internal oscillator characteristics.  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
1.8  
2.2  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration stepsize  
2.0  
MHz  
%
T = 85°C, VCC= 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.21  
%
36.2.14.3 Calibrated and tunable 32MHz internal oscillator characteristics  
Table 36-56. 32MHz internal oscillator characteristics.  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
30  
55  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration step size  
32  
MHz  
%
T = 85°C, VCC= 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.22  
%
36.2.14.4 32kHz Internal ULP Oscillator characteristics  
Table 36-57. 32kHz internal ULP oscillator characteristics.  
Symbol Parameter  
Output frequency  
Accuracy  
Condition  
Min.  
Typ.  
Max.  
Units  
kHz  
%
32  
-30  
30  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
106  
36.2.14.5 Internal Phase Locked Loop (PLL) characteristics  
Table 36-58. Internal PLL characteristics.  
Symbo  
l
Parameter  
Condition  
Output frequency must be within fOUT  
VCC= 1.6 - 1.8V  
Min.  
0.4  
20  
Typ.  
Max.  
64  
Units  
fIN  
Input frequency  
MHz  
48  
fOUT  
Output frequency (1)  
MHz  
VCC= 2.7 - 3.6V  
20  
128  
Start-up time  
Re-lock time  
25  
25  
µs  
µs  
Note:  
1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.  
36.2.14.6 External clock characteristics  
Figure 36-10. External clock drive waveform  
tCH  
tCH  
tCR  
tCF  
VIH1  
VIL1  
tCL  
tCK  
Table 36-59. External clock used as system clock without prescaling.  
Symbol  
Parameter  
Condition  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
Min.  
0
Typ.  
Max.  
12  
Units  
1/tCK  
Clock Frequency (1)  
MHz  
0
32  
83.3  
31.5  
30.0  
12.5  
30.0  
12.5  
tCK  
tCH  
tCL  
tCR  
Clock Period  
ns  
ns  
ns  
ns  
Clock High Time  
Clock Low Time  
10  
3
Rise Time (for maximum frequency)  
10  
3
tCF  
Fall Time (for maximum frequency)  
ns  
%
ΔtCK  
Change in period from one clock cycle to the next  
10  
Note:  
1. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
107  
Table 36-60. External clock with prescaler (1)for system clock.  
Symbol Parameter Condition  
Clock Frequency (2)  
Min.  
0
Typ.  
Max.  
90  
Units  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
1/tCK  
MHz  
0
142  
11  
7
tCK  
Clock Period  
ns  
ns  
ns  
ns  
4.5  
2.4  
4.5  
2.4  
tCH  
Clock High Time  
tCL  
Clock Low Time  
1.5  
1.0  
1.5  
1.0  
10  
tCR  
Rise Time (for maximum frequency)  
tCF  
Fall Time (for maximum frequency)  
ns  
%
ΔtCK  
Change in period from one clock cycle to the next  
Notes:  
1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.  
2. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
36.2.14.7 External 16MHz crystal oscillator and XOSC characteristic  
Table 36-61. External 16MHz crystal oscillator and XOSC characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
<10  
<1  
Max.  
Units  
FRQRANGE=0  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
Cycle to cycle jitter  
FRQRANGE=1, 2, or 3  
ns  
<1  
FRQRANGE=0  
<6  
Long term jitter  
Frequency error  
FRQRANGE=1, 2, or 3  
<0.5  
<0.5  
<0.1  
<0.05  
<0.005  
<0.005  
40  
ns  
%
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
42  
Duty cycle  
%
45  
48  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
108  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
0.4MHz resonator,  
CL=100pF  
2.4k  
XOSCPWR=0,  
FRQRANGE=0  
1MHz crystal, CL=20pF  
2MHz crystal, CL=20pF  
2MHz crystal  
8.7k  
2.1k  
4.2k  
250  
195  
360  
285  
155  
365  
200  
105  
435  
235  
125  
495  
270  
145  
305  
XOSCPWR=0,  
FRQRANGE=1,  
CL=20pF  
8MHz crystal  
9MHz crystal  
8MHz crystal  
XOSCPWR=0,  
FRQRANGE=2,  
CL=20pF  
9MHz crystal  
12MHz crystal  
9MHz crystal  
XOSCPWR=0,  
FRQRANGE=3,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
Negative  
RQ  
Ω
impedance (1)  
XOSCPWR=1,  
FRQRANGE=0,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
XOSCPWR=1,  
FRQRANGE=1,  
CL=20pF  
12MHz crystal  
16MHz crystal  
12MHz crystal  
XOSCPWR=1,  
FRQRANGE=2,  
CL=20pF  
16MHz crystal  
12MHz crystal  
16MHz crystal  
160  
380  
205  
XOSCPWR=1,  
FRQRANGE=3,  
CL=20pF  
ESR  
SF = Safety factor  
min(RQ)/SF  
kΩ  
Parasitic  
CXTAL1  
capacitance XTAL1  
pin  
5.4  
pF  
Parasitic  
CXTAL2  
capacitance XTAL2  
pin  
7.1  
pF  
pF  
Parasitic  
capacitance load  
CLOAD  
3.07  
Note:  
1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
109  
36.2.14.8 External 32.768kHz crystal oscillator and TOSC characteristics  
Table 36-62. External 32.768kHz crystal oscillator and TOSC characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
60  
Units  
Crystal load capacitance 6.5pF  
Crystal load capacitance 9.0pF  
Recommended crystal equivalent  
ESR/R1  
CTOSC1  
CTOSC2  
kΩ  
series resistance (ESR)  
35  
5.4  
4.0  
7.1  
4.0  
Parasitic capacitance TOSC1 pin  
pF  
pF  
Alternate TOSC location  
Parasitic capacitance TOSC2 pin  
Recommended safety factor  
Alternate TOSC location  
capacitance load matched to  
crystal specification  
3.0  
Note:  
1. See Figure 36-11 for definition.  
Figure 36-11.TOSC input capacitance.  
CL1  
CL2  
Device internal  
External  
TOSC1  
TOSC2  
32.768kHz crystal  
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating  
without external capacitors.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
110  
36.2.15 SPI Characteristics  
Figure 36-12. SPI timing requirements in master mode.  
SS  
tMOS  
tSCKR  
tSCKF  
SCK  
(CPOL = 0)  
tSCKW  
SCK  
(CPOL = 1)  
tSCKW  
tMIS  
tMIH  
tSCK  
MISO  
(Data input)  
MSB  
LSB  
tMOH  
tMOH  
MOSI  
(Data output)  
MSB  
LSB  
Figure 36-13. SPI timing requirements in slave mode.  
SS  
tSSS  
tSCKR  
tSCKF  
tSSH  
SCK  
(CPOL = 0)  
tSSCKW  
SCK  
(CPOL = 1)  
tSSCKW  
tSIS  
tSIH  
tSSCK  
MOSI  
(Data input)  
MSB  
LSB  
tSOSSS  
tSOS  
tSOSSH  
MISO  
(Data output)  
MSB  
LSB  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
111  
Table 36-63. SPI timing characteristics and requirements.  
Symbol Parameter Condition  
Min.  
Typ.  
Max.  
Units  
(See Table 21-4 in  
XMEGA AU Manual)  
tSCK  
SCK period  
Master  
tSCKW  
tSCKR  
tSCKF  
tMIS  
SCK high/low width  
SCK rise time  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
0.5×SCK  
2.7  
SCK fall time  
2.7  
MISO setup to SCK  
MISO hold after SCK  
MOSI setup SCK  
MOSI hold after SCK  
Slave SCK Period  
SCK high/low width  
SCK rise time  
10  
tMIH  
10  
tMOS  
tMOH  
tSSCK  
tSSCKW  
tSSCKR  
tSSCKF  
tSIS  
0.5×SCK  
1.0  
4×t ClkPER  
2×t ClkPER  
ns  
1600  
1600  
SCK fall time  
MOSI setup to SCK  
MOSI hold after SCK  
SS setup to SCK  
SS hold after SCK  
MISO setup SCK  
MISO hold after SCK  
MISO setup after SS low  
MISO hold after SS high  
3.0  
t ClkPER  
21  
tSIH  
tSSS  
tSSH  
20  
tSOS  
8.0  
13  
tSOH  
tSOSS  
tSOSH  
11  
8.0  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
112  
36.2.16 Two-Wire Interface Characteristics  
Table 36-64 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel AVR  
XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols refer  
to Figure 36-14.  
Figure 36-14. Two-wire interface bus timing.  
tof  
tHIGH  
tLOW  
tr  
SCL  
SDA  
tHD;DAT  
tSU;STA  
tSU;STO  
tSU;DAT  
tHD;STA  
tBUF  
Table 36-64. Two-wire interface characteristics.  
Symbol Parameter  
Condition  
Min.  
0.7VCC  
0.5  
Typ.  
Max.  
Units  
V
VIH  
VIL  
Input high voltage  
VCC+0.5  
0.3×VCC  
Input low voltage  
V
(1)  
Vhys  
Hysteresis of Schmitt trigger inputs  
Output low voltage  
0.05VCC  
0
V
VOL  
3mA, sink current  
0.4  
300  
250  
50  
V
(1)(2)  
(1)(2)  
tr  
tof  
Rise time for both SDA and SCL  
Output fall time from VIHmin to VILmax  
Spikes suppressed by Input filter  
Input current for each I/O Pin  
Capacitance for each I/O Pin  
SCL clock frequency  
20+0.1Cb  
20+0.1Cb  
0
ns  
ns  
ns  
µA  
pF  
kHz  
10pF < Cb < 400pF (2)  
0.1VCC < VI < 0.9VCC  
tSP  
II  
-10  
10  
CI  
10  
fSCL  
fPER (3)>max(10fSCL, 250kHz)  
0
400  
fSCL 100kHz  
100ns  
Cb  
--------------  
VCC – 0.4V  
---------------------------  
3mA  
RP  
Value of pull-up resistor  
Ω
300ns  
fSCL > 100kHz  
--------------  
Cb  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
4.0  
0.6  
4.7  
1.3  
4.0  
0.6  
4.7  
0.6  
tHD;STA  
Hold time (repeated) START condition  
Low period of SCL Clock  
µs  
µs  
µs  
µs  
tLOW  
tHIGH  
High period of SCL Clock  
Set-up time for a repeated START  
condition  
tSU;STA  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
113  
Symbol Parameter  
Condition  
fSCL 100kHz  
Min.  
0
Typ.  
Max.  
3.45  
0.9  
Units  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Data hold time  
µs  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
0
250  
100  
4.0  
0.6  
4.7  
1.3  
Data setup time  
ns  
µs  
µs  
Setup time for STOP condition  
Bus free time between a STOP and  
START condition  
Notes:  
1. Required only for fSCL > 100kHz.  
2. Cb = Capacitance of one bus line in pF.  
3.  
fPER = Peripheral clock frequency.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
114  
36.3 ATxmega64A4U  
36.3.1 Absolute Maximum Ratings  
Stresses beyond those listed in Table 36-65 may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or other conditions beyond those indicated in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Table 36-65. Absolute maximum ratings.  
Symbol  
VCC  
IVCC  
IGND  
VPIN  
IPIN  
Parameter  
Condition  
Min.  
Typ.  
Max.  
4.0  
Units  
V
Power supply voltage  
Current into a VCC pin  
Current out of a Gnd pin  
Pin voltage with respect to Gnd and VCC  
I/O pin sink/source current  
Storage temperature  
-0.3  
200  
mA  
mA  
V
200  
-0.5  
-25  
-65  
VCC+0.5  
25  
mA  
°C  
TA  
150  
Tj  
Junction temperature  
150  
°C  
36.3.2 General Operating Ratings  
The device must operate within the ratings listed in Table 36-66 in order for all other electrical characteristics and  
typical characteristics of the device to be valid.  
Table 36-66. General operating conditions.  
Symbol  
VCC  
Parameter  
Condition  
Min.  
1.60  
1.60  
-40  
Typ.  
Max.  
3.6  
Units  
V
Power supply voltage  
Analog supply voltage  
Temperature range  
Junction temperature  
AVCC  
TA  
3.6  
V
85  
°C  
°C  
Tj  
-40  
105  
Table 36-67. Operating voltage and frequency.  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
VCC = 1.8V  
VCC = 2.7V  
VCC = 3.6V  
Min.  
Typ.  
Max.  
12  
Units  
0
0
0
0
12  
ClkCPU  
CPU clock frequency  
MHz  
32  
32  
The maximum CPU clock frequency depends on VCC. As shown in Figure 36-15 the Frequency vs. VCC curve is linear  
between 1.8V < VCC < 2.7V.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
115  
Figure 36-15.Maximum Frequency vs. VCC  
.
MHz  
32  
Safe Operating Area  
12  
V
1.6  
1.8  
2.7  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
116  
36.3.3 Current consumption  
Table 36-68. Current consumption for Active mode and sleep modes.  
Symbol Parameter  
Condition  
Min.  
Typ.  
52  
Max.  
Units  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
32kHz, Ext. Clk  
132  
223  
476  
400  
0.8  
8.2  
2.4  
3.5  
57  
µA  
1MHz, Ext. Clk  
Active power  
consumption (1)  
600  
1.4  
12  
2MHz, Ext. Clk  
32MHz, Ext. Clk  
32kHz, Ext. Clk  
VCC = 3.0V  
mA  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
1MHz, Ext. Clk  
2MHz, Ext. Clk  
µA  
Idle power  
110  
115  
216  
3.5  
0.1  
1.2  
2.4  
consumption (1)  
225  
350  
5.5  
1.0  
4.5  
6.0  
VCC = 3.0V  
32MHz, Ext. Clk  
T = 25°C  
mA  
ICC  
T = 85°C  
VCC = 3.0V  
T = 105°C  
WDT and Sampled BOD enabled,  
T = 25°C  
Power-down power  
consumption  
1.4  
2.4  
3.5  
3.0  
6.0  
8.0  
µA  
WDT and Sampled BOD enabled,  
T = 85°C  
VCC = 3.0V  
WDT and Sampled BOD enabled,  
T = 105°C  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
1.2  
1.5  
0.6  
0.7  
0.8  
1.0  
140  
RTC from ULP clock, WDT and  
sampled BOD enabled, T = 25°C  
2.0  
2.0  
3.0  
3.0  
Power-save power  
consumption (2)  
RTC from 1.024kHz low power  
32.768kHz TOSC, T = 25°C  
µA  
RTC from low power 32.768kHz TOSC,  
T = 25°C  
Reset power consumption Current through RESET pin substracted VCC = 3.0V  
Notes:  
1. All Power Reduction Registers set.  
2. Maximum limits are based on characterization, and not tested in production.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
117  
Table 36-69. Current consumption for modules and peripherals.  
Symbol Parameter  
Condition (1)  
Min.  
Typ.  
1.0  
29  
Max.  
Units  
µA  
ULP oscillator  
32.768kHz int. oscillator  
µA  
85  
2MHz int. oscillator  
32MHz int. oscillator  
µA  
µA  
DFLL enabled with 32.768kHz int. osc. as reference  
DFLL enabled with 32.768kHz int. osc. as reference  
120  
300  
465  
20x multiplication factor,  
PLL  
320  
µA  
µA  
32MHz int. osc. DIV4 as reference  
Watchdog timer  
1.0  
138  
1.0  
103  
100  
3.0  
2.6  
2.1  
1.6  
1.9  
Continuous mode  
BOD  
µA  
Sampled mode, includes ULP oscillator  
Internal 1.0V reference  
Temperature sensor  
µA  
µA  
ICC  
CURRLIMIT = LOW  
250ksps  
ADC  
mA  
VREF = Ext ref  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
250ksps  
Normal mode  
DAC  
AC  
VREF = Ext ref  
No load  
mA  
µA  
Low power mode  
1.1  
High speed mode  
Low pPower mode  
330  
130  
108  
16  
DMA  
615KBps between I/O registers and SRAM  
µA  
µA  
µA  
mA  
Timer/counter  
USART  
Rx and Tx enabled, 9600 BAUD  
2.5  
8.0  
Flash memory and EEPROM programming  
Note:  
1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external  
clock without prescaling, T = 25°C unless other conditions are given.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
118  
36.3.4 Wake-up time from sleep modes  
Table 36-70. Device wake-up time from sleep modes with various system clock sources.  
Symbol Parameter  
Condition  
External 2MHz clock  
Min.  
Typ. (1)  
2.0  
Max.  
Units  
Wake-up time from idle,  
standby, and extended standby  
mode  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
120  
2.0  
µs  
0.2  
twakeup  
4.5  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
320  
9.0  
Wake-up time from power-save  
and power-down mode  
µs  
4.0  
Note:  
1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 36-16. All peripherals and modules  
start execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.  
Figure 36-16.Wake-up time definition.  
Wakeup time  
Wakeup request  
Clock output  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
119  
36.3.5 I/O Pin Characteristics  
The I/O pins comply with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output  
voltage limits reflect or exceed this specification.  
Table 36-71. I/O pin characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
(1)  
IOH  
IOL  
/
I/O pin source/sink current  
-20  
20  
mA  
(2)  
VCC = 2.7- 3.6V  
2.0  
0.7*VCC  
0.8*VCC  
-0.3  
VCC+0.3  
VCC+0.3  
VCC+0.3  
0.8  
VIH  
High level input voltage  
VCC = 2.0 - 2.7V  
VCC = 1.6 - 2.0V  
VCC = 2.7- 3.6V  
VCC = 2.0 - 2.7V  
VCC = 1.6 - 2.0V  
VCC = 3.0 - 3.6V  
V
V
VIL  
Low level input voltage  
-0.3  
0.3*VCC  
0.2*VCC  
-0.3  
IOH = -2mA  
IOH = -1mA  
IOH = -2mA  
IOH = -8mA  
IOH = -6mA  
IOH = -2mA  
IOL = 2mA  
IOL = 1mA  
IOL = 2mA  
IOL = 15mA  
IOL = 10mA  
IOL = 5mA  
2.4  
0.94*VCC  
0.96*VCC  
0.92*VCC  
2.9  
2.0  
VCC = 2.3 - 2.7V  
1.7  
VOH  
High level output voltage  
V
VCC = 3.3V  
2.6  
VCC = 3.0V  
2.1  
2.6  
VCC = 1.8V  
1.4  
1.6  
VCC = 3.0 - 3.6V  
0.02*VCC  
0.01*VCC  
0.02*VCC  
0.4  
0.4  
0.4  
VCC = 2.3 - 2.7V  
0.7  
VOL  
Low level output voltage  
V
VCC = 3.3V  
VCC = 3.0V  
VCC = 1.8V  
T = 25°C  
0.76  
0.64  
0.46  
0.1  
0.3  
0.2  
<0.01  
IIN  
Input leakage current  
µA  
XOSC and  
TOSC pins  
<0.02  
1.1  
RP  
tr  
Pull/buss keeper resistor  
Rise time  
24  
4.0  
7.0  
kΩ  
No load  
ns  
slew rate limitation  
Notes:  
1. The sum of all IOH for PORTA and PORTB must not exceed 100mA.  
The sum of all IOH for PORTC must not exceed 200mA.  
The sum of all IOH for PORTD and pins PE[0-1] on PORTE must not exceed 200mA.  
The sum of all IOH for PE[2-3] on PORTE, PORTR and PDI must not exceed 100mA.  
2. The sum of all IOL for PORTA and PORTB must not exceed 100mA.  
The sum of all IOL for PORTC must not exceed 200mA.  
The sum of all IOL for PORTD and pins PE[0-1] on PORTE must not exceed 200mA.  
The sum of all IOL for PE[2-3] on PORTE, PORTR and PDI must not exceed 100mA.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
120  
36.3.6 ADC characteristics  
Table 36-72. Power supply, reference and input range.  
Symbol Parameter Condition  
Min.  
VCC- 0.3  
1.0  
Typ.  
Max.  
Units  
V
AVCC  
VREF  
Analog supply voltage  
Reference voltage  
VCC+ 0.3  
AVCC- 0.6  
V
Rin  
Csample  
RAREF  
CAREF  
VIN  
Input resistance  
Switched  
4.0  
4.4  
>10  
7.0  
kΩ  
pF  
MΩ  
pF  
V
Input capacitance  
Switched  
Reference input resistance  
(leakage only)  
Reference input capacitance Static load  
Input range  
-0.1  
-VREF  
-ΔV  
AVCC+0.1  
VREF  
Conversion range  
Conversion range  
Fixed offset voltage  
Differential mode, Vinp - Vinn  
V
Single ended unsigned mode, Vinp  
VREF-ΔV  
V
V  
190  
lsb  
Table 36-73. Clock and timing.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Maximum is 1/4 of peripheral clock  
frequency  
100  
2000  
ClkADC  
ADC clock frequency  
kHz  
Measuring internal signals  
Current limitation (CURRLIMIT) off  
CURRLIMIT = LOW  
100  
100  
100  
100  
100  
0.25  
125  
2000  
1500  
1000  
500  
5
fADC  
Sample rate  
ksps  
µs  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
Sampling time  
1/2 ClkADC cycle  
(RES+2)/2+(GAIN !=0)  
RES (Resolution) = 8 or 12  
ClkADC  
cycles  
Conversion time (latency)  
5
8
ClkADC  
cycles  
Start-up time  
ADC clock cycles  
12  
24  
After changing reference or input mode  
After ADC flush  
7
1
7
1
ClkADC  
cycles  
ADC settling time  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
121  
Table 36-74. Accuracy characteristics.  
Symbol  
Parameter  
Condition (2)  
Min.  
Typ.  
12  
Max.  
12  
Units  
RES  
INL (1)  
DNL (1)  
Resolution  
Programmable to 8 or 12 bit  
8
Bits  
VCC-1.0V < VREF< VCC-0.6V  
±1.2  
±1.5  
±1.0  
±1.5  
<±0.8  
-1  
±2  
500ksps  
All VREF  
VCC-1.0V < VREF< VCC-0.6V  
All VREF  
±3  
Integral non-linearity  
lsb  
±2  
2000ksps  
±3  
Differential non-linearity  
Offset error  
guaranteed monotonic  
<±1  
lsb  
mV  
Temperature drift  
<0.01  
<0.6  
-1  
mV/K  
mV/V  
Operating voltage drift  
External reference  
AVCC/1.6  
AVCC/2.0  
Bandgap  
10  
Differential  
mode  
mV  
8
Gain error  
±5  
Temperature drift  
<0.02  
<0.5  
mV/K  
mV/V  
Operating voltage drift  
Differential mode, shorted input  
2msps, VCC = 3.6V, ClkPER = 16MHz  
mV  
rms  
Noise  
0.4  
Notes:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
2. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.  
Table 36-75. Gain stage characteristics.  
Symbol  
Parameter  
Condition  
Switched in normal mode  
Switched in normal mode  
Gain stage output  
Min.  
Typ.  
4.0  
Max.  
Units  
kΩ  
pF  
Rin  
Input resistance  
Input capacitance  
Signal range  
Csample  
4.4  
0
VCC- 0.6  
V
ClkADC  
cycles  
Propagation delay  
Sample rate  
ADC conversion rate  
Same as ADC  
500ksps  
1.0  
100  
1000  
±4.0  
kHz  
lsb  
All gain  
settings  
INL (1)  
Integral non-linearity  
±1.5  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
-0.8  
-2.5  
-3.5  
Gain error  
%
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
122  
Symbol  
Parameter  
Condition  
1x gain, normal mode  
Min.  
Typ.  
-2  
Max.  
Units  
Offset error,  
input referred  
8x gain, normal mode  
64x gain, normal mode  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
-5  
mV  
-4  
0.5  
1.5  
11  
VCC = 3.6V  
Ext. VREF  
mV  
rms  
Noise  
Note:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
36.3.7 DAC Characteristics  
Table 36-76. Power supply, reference and output range.  
Symbol Parameter Condition  
Min.  
VCC- 0.3  
1.0  
Typ.  
Max.  
VCC+ 0.3  
VCC- 0.6  
50  
Units  
V
AVCC  
AVREF  
Rchannel  
Analog supply voltage  
External reference voltage  
DC output impedance  
V
Ω
Linear output voltage range  
Reference input resistance  
Reference input capacitance Static load  
Minimum resistance load  
0.15  
1.0  
AVCC-0.15  
V
RAREF  
>10  
7
MΩ  
pF  
kΩ  
pF  
nF  
CAREF  
100  
1.0  
Maximum capacitance load  
1000Ω serial resistance  
Operating within accuracy specification  
Safe operation  
AVCC/1000  
10  
Output sink/source  
mA  
Table 36-77. Clock and timing.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
1000  
500  
Units  
Normal mode  
0
Cload=100pF,  
maximum step size  
fDAC  
Conversion rate  
ksps  
Low power mode  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
123  
Table 36-78. Accuracy characteristics.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
12  
Units  
RES  
Input resolution  
Bits  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
±2.0  
±1.5  
±2.0  
±1.5  
±5.0  
±5.0  
±1.5  
±0.6  
±1.0  
±0.6  
±4.5  
±4.5  
<4.0  
4.0  
±3.0  
±2.5  
±4.0  
±4.0  
VREF= Ext 1.0V  
VREF=AVCC  
INL (1)  
Integral non-linearity  
lsb  
VREF=INT1V  
VREF=Ext 1.0V  
VREF=AVCC  
3.0  
1.5  
3.5  
1.5  
DNL (1)  
Differential non-linearity  
lsb  
VREF=INT1V  
Gain error  
After calibration  
lsb  
lsb  
Gain calibration step size  
Gain calibration drift  
Offset error  
VREF= Ext 1.0V  
After calibration  
<0.2  
<1.0  
1.0  
mV/K  
lsb  
Offset calibration step size  
Note:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% output voltage range.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
124  
36.3.8 Analog Comparator Characteristics  
Table 36-79. Analog Comparator characteristics.  
Symbol  
Voff  
Parameter  
Condition  
Min.  
Typ.  
<±10  
<1  
Max.  
Units  
mV  
nA  
Input offset voltage  
Input leakage current  
Input voltage range  
AC startup time  
Ilk  
-0.1  
AVCC  
V
100  
0
µs  
Vhys1  
Hysteresis, none  
mV  
mode = High Speed (HS)  
mode = Low Power (LP)  
mode = HS  
20  
Vhys2  
Hysteresis, small  
Hysteresis, large  
mV  
mV  
30  
35  
Vhys3  
mode = LP  
60  
VCC = 3.0V, T= 85°C  
mode = HS  
mode = HS  
mode = LP  
30  
90  
500  
0.5  
30  
tdelay  
Propagation delay  
ns  
VCC = 3.0V, T= 85°C  
mode = LP  
130  
130  
0.3  
Integral non-linearity (INL)  
64-level voltage scaler  
lsb  
36.3.9 Bandgap and Internal 1.0V Reference Characteristics  
Table 36-80. Bandgap and Internal 1.0V reference characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
As reference for ADC or DAC  
As input voltage to ADC and AC  
1 ClkPER + 2.5µs  
Startup time  
µs  
1.5  
1.1  
1
Bandgap voltage  
V
V
INT1V  
Internal 1.00V reference  
Variation over voltage and temperature  
T= 85°C, after calibration  
0.99  
1.01  
Relative to T= 85°C, VCC = 3.0V  
±1.5  
%
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
125  
36.3.10 Brownout Detection Characteristics  
Table 36-81. Brownout detection characteristics.  
Symbol Parameter  
BOD level 0 falling VCC  
BOD level 1 falling VCC  
BOD level 2 falling VCC  
Condition  
Min.  
Typ.  
1.62  
1.8  
Max.  
Units  
1.50  
1.72  
2.0  
BOD level 3 falling VCC  
VBOT  
2.2  
V
BOD level 4 falling VCC  
2.4  
BOD level 5 falling VCC  
BOD level 6 falling VCC  
BOD level 7 falling VCC  
2.6  
2.8  
3.0  
Continuous mode  
Sampled mode  
0.4  
tBOD  
Detection time  
Hysteresis  
µs  
%
1000  
1.2  
VHYST  
36.3.11 External Reset Characteristics  
Table 36-82. External reset characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
tEXT  
Minimum reset pulse width  
1000  
95  
ns  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
0.60×VCC  
0.60×VCC  
0.50×VCC  
0.40×VCC  
25  
Reset threshold voltage (VIH)  
VRST  
V
Reset threshold voltage (VIL)  
Reset pin Pull-up Resistor  
RRST  
kΩ  
36.3.12 Power-on Reset Characteristics  
Table 36-83. Power-on reset characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
1.0  
Max.  
Units  
VCC falls faster than 1V/ms  
VCC falls at 1V/ms or slower  
0.4  
0.8  
(1)  
VPOT-  
POR threshold voltage falling VCC  
V
1.0  
VPOT+  
POR threshold voltage rising VCC  
1.3  
1.59  
Note:  
1. VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
126  
36.3.13 Flash and EEPROM Memory Characteristics  
Table 36-84. Endurance and data retention.  
Symbol Parameter  
Condition  
Min.  
10K  
10K  
2K  
Typ.  
Max.  
Units  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
Write/Erase cycles  
Cycle  
Flash  
100  
25  
Data retention  
Year  
Cycle  
Year  
10  
100K  
100K  
30K  
100  
25  
Write/Erase cycles  
Data retention  
EEPROM  
10  
Table 36-85. Programming time.  
Symbol Parameter  
Chip Erase  
Condition  
Min.  
Typ.(1)  
Max.  
Units  
ms  
64KB Flash, EEPROM(2) and SRAM Erase  
Section erase  
55  
6
Application Erase  
ms  
Page erase  
4
Flash  
Page write  
4
ms  
ms  
Atomic page erase and write  
Page erase  
8
4
EEPROM  
Page write  
4
Atomic page erase and write  
8
Notes:  
1. Programming is timed from the 2MHz internal oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
127  
36.3.14 Clock and Oscillator Characteristics  
36.3.14.1 Calibrated 32.768kHz Internal Oscillator characteristics  
Table 36-86. 32.768kHz internal oscillator characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
kHz  
%
Frequency  
32.768  
Factory calibration accuracy  
User calibration accuracy  
T = 85°C, VCC = 3.0V  
-0.5  
-0.5  
0.5  
0.5  
%
36.3.14.2 Calibrated 2MHz RC Internal Oscillator characteristics  
Table 36-87. 2MHz internal oscillator characteristics.  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
1.8  
2.2  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration stepsize  
2.0  
MHz  
%
T = 85°C, VCC= 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.21  
%
36.3.14.3 Calibrated and tunable 32MHz internal oscillator characteristics  
Table 36-88. 32MHz internal oscillator characteristics.  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
30  
55  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration step size  
32  
MHz  
%
T = 85°C, VCC= 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.22  
%
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
128  
36.3.14.4 32kHz Internal ULP Oscillator characteristics  
Table 36-89. 32kHz internal ULP oscillator characteristics.  
Symbol Parameter  
Factory calibrated frequency  
Condition  
Min.  
Typ.  
Max.  
Units  
kHz  
%
32  
Factory calibrated accuracy  
Accuracy  
T = 85°C, VCC = 3.0V  
-12  
-30  
12  
30  
%
36.3.14.5 Internal Phase Locked Loop (PLL) characteristics  
Table 36-90. Internal PLL characteristics.  
Symbo  
l
Parameter  
Condition  
Output frequency must be within fOUT  
VCC= 1.6 - 1.8V  
Min.  
0.4  
20  
Typ.  
Max.  
64  
Units  
fIN  
Input frequency  
MHz  
48  
fOUT  
Output frequency (1)  
MHz  
VCC= 2.7 - 3.6V  
20  
128  
Start-up time  
Re-lock time  
25  
25  
µs  
µs  
Note:  
1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.  
36.3.14.6 External clock characteristics  
Figure 36-17. External clock drive waveform  
tCH  
tCH  
tCR  
tCF  
VIH1  
VIL1  
tCL  
tCK  
Table 36-91. External clock used as system clock without prescaling.  
Symbol  
Parameter  
Condition  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
Min.  
0
Typ.  
Max.  
12  
Units  
1/tCK  
Clock Frequency (1)  
MHz  
0
32  
83.3  
31.5  
30.0  
12.5  
tCK  
Clock Period  
ns  
ns  
tCH  
Clock High Time  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
129  
Symbol  
Parameter  
Condition  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
Min.  
30.0  
12.5  
Typ.  
Max.  
Units  
tCL  
Clock Low Time  
ns  
10  
3
tCR  
Rise Time (for maximum frequency)  
ns  
10  
3
tCF  
Fall Time (for maximum frequency)  
ns  
%
ΔtCK  
Change in period from one clock cycle to the next  
10  
Note:  
1. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
Table 36-92. External clock with prescaler (1)for system clock.  
Symbol Parameter  
Condition  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
Min.  
0
Typ.  
Max.  
90  
Units  
1/tCK  
Clock Frequency (2)  
Clock Period  
MHz  
0
142  
11  
7
tCK  
ns  
ns  
ns  
4.5  
2.4  
4.5  
2.4  
tCH  
Clock High Time  
tCL  
Clock Low Time  
1.5  
1.0  
1.5  
1.0  
10  
tCR  
Rise Time (for maximum frequency)  
ns  
ns  
tCF  
Fall Time (for maximum frequency)  
ΔtCK  
Change in period from one clock cycle to the next  
%
Notes:  
1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.  
2. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
36.3.14.7 External 16MHz crystal oscillator and XOSC characteristic  
Table 36-93. External 16MHz crystal oscillator and XOSC characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
<10  
<1  
Max.  
Units  
FRQRANGE=0  
XOSCPWR=0  
XOSCPWR=1  
Cycle to cycle jitter  
FRQRANGE=1, 2, or 3  
ns  
<1  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
130  
Symbol Parameter  
Condition  
Min.  
Typ.  
<6  
Max.  
Units  
FRQRANGE=0  
XOSCPWR=0  
XOSCPWR=1  
Long term jitter  
FRQRANGE=1, 2, or 3  
<0.5  
<0.5  
<0.1  
<0.05  
<0.005  
<0.005  
40  
ns  
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
Frequency error  
%
%
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
42  
Duty cycle  
45  
48  
0.4MHz resonator,  
CL=100pF  
2.4k  
XOSCPWR=0,  
FRQRANGE=0  
1MHz crystal, CL=20pF  
2MHz crystal, CL=20pF  
2MHz crystal  
8.7k  
2.1k  
4.2k  
250  
195  
360  
285  
155  
365  
200  
105  
435  
235  
125  
495  
270  
145  
305  
XOSCPWR=0,  
FRQRANGE=1,  
CL=20pF  
8MHz crystal  
9MHz crystal  
8MHz crystal  
XOSCPWR=0,  
FRQRANGE=2,  
CL=20pF  
9MHz crystal  
12MHz crystal  
9MHz crystal  
XOSCPWR=0,  
FRQRANGE=3,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
Negative impedance (1)  
Ω
RQ  
XOSCPWR=1,  
FRQRANGE=0,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
XOSCPWR=1,  
FRQRANGE=1,  
CL=20pF  
12MHz crystal  
16MHz crystal  
12MHz crystal  
XOSCPWR=1,  
FRQRANGE=2,  
CL=20pF  
16MHz crystal  
12MHz crystal  
16MHz crystal  
160  
380  
205  
XOSCPWR=1,  
FRQRANGE=3,  
CL=20pF  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
131  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
ESR  
SF = Safety factor  
min(RQ)/SF  
kΩ  
Parasitic capacitance  
XTAL1 pin  
CXTAL1  
CXTAL2  
CLOAD  
5.60  
7.62  
3.23  
pF  
pF  
pF  
Parasitic capacitance  
XTAL2 pin  
Parasitic capacitance  
load  
Note:  
1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization  
36.3.14.8 External 32.768kHz crystal oscillator and TOSC characteristics  
Table 36-94. External 32.768kHz crystal oscillator and TOSC characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
60  
Units  
Crystal load capacitance 6.5pF  
Crystal load capacitance 9.0pF  
Recommended crystal equivalent  
ESR/R1  
CTOSC1  
CTOSC2  
kΩ  
series resistance (ESR)  
35  
5.4  
4.0  
7.1  
4.0  
pF  
Parasitic capacitance TOSC1 pin  
Alternate TOSC location  
pF  
Parasitic capacitance TOSC2 pin  
Recommended safety factor  
Alternate TOSC location  
capacitance load matched to  
crystal specification  
3
Note:  
1. See Figure 36-18 for definition.  
Figure 36-18. TOSC input capacitance.  
CL1  
CL2  
Device internal  
External  
TOSC1  
TOSC2  
32.768kHz crystal  
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating  
without external capacitors.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
132  
36.3.15 SPI Characteristics  
Figure 36-19.SPI timing requirements in master mode.  
SS  
tMOS  
tSCKR  
tSCKF  
SCK  
(CPOL = 0)  
tSCKW  
SCK  
(CPOL = 1)  
tSCKW  
tMIS  
tMIH  
tSCK  
MISO  
(Data input)  
MSB  
LSB  
tMOH  
tMOH  
MOSI  
(Data output)  
MSB  
LSB  
Figure 36-20.SPI timing requirements in slave mode.  
SS  
tSSS  
tSCKR  
tSCKF  
tSSH  
SCK  
(CPOL = 0)  
tSSCKW  
SCK  
(CPOL = 1)  
tSSCKW  
tSIS  
tSIH  
tSSCK  
MOSI  
(Data input)  
MSB  
LSB  
tSOSSS  
tSOS  
tSOSSH  
MISO  
(Data output)  
MSB  
LSB  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
133  
Table 36-95. SPI timing characteristics and requirements.  
Symbol Parameter Condition  
Min.  
Typ.  
Max.  
Units  
(See Table 21-4 in  
XMEGA AU Manual)  
tSCK  
SCK period  
Master  
tSCKW  
tSCKR  
tSCKF  
tMIS  
SCK high/low width  
SCK rise time  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
0.5*SCK  
2.7  
SCK fall time  
2.7  
MISO setup to SCK  
MISO hold after SCK  
MOSI setup SCK  
MOSI hold after SCK  
Slave SCK Period  
SCK high/low width  
SCK rise time  
11  
tMIH  
0
tMOS  
tMOH  
tSSCK  
tSSCKW  
tSSCKR  
tSSCKF  
tSIS  
0.5*SCK  
1.0  
4*t ClkPER  
2*t ClkPER  
ns  
1600  
1600  
SCK fall time  
MOSI setup to SCK  
MOSI hold after SCK  
SS setup to SCK  
SS hold after SCK  
MISO setup SCK  
MISO hold after SCK  
MISO setup after SS low  
MISO hold after SS high  
3.0  
tPER  
20  
tSIH  
tSSS  
tSSH  
20  
tSOS  
8.0  
13.0  
11.0  
8.0  
tSOH  
tSOSS  
tSOSH  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
134  
36.3.16 Two-Wire Interface Characteristics  
Table 36-96 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel AVR  
XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols refer  
to Figure 36-21.  
Figure 36-21.Two-wire interface bus timing.  
tof  
tHIGH  
tLOW  
tr  
SCL  
SDA  
tHD;DAT  
tSU;STA  
tSU;STO  
tSU;DAT  
tHD;STA  
tBUF  
Table 36-96. Two-wire interface characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
VCC+0.5  
0.3*VCC  
0
Units  
V
VIH  
VIL  
Input high voltage  
0.7*VCC  
-0.5  
Input low voltage  
V
(1)  
Vhys  
Hysteresis of Schmitt trigger inputs  
Output low voltage  
0.05*VCC  
0
V
VOL  
3mA, sink current  
0.4  
V
(1)(2)  
tr  
tof  
Rise time for both SDA and SCL  
Output fall time from VIHmin to VILmax  
Spikes suppressed by input filter  
Input current for each I/O pin  
Capacitance for each I/O pin  
SCL clock frequency  
20+0.1Cb  
0
ns  
ns  
ns  
µA  
pF  
kHz  
(1)(2)  
10pF < Cb < 400pF (2)  
0.1VCC < VI < 0.9VCC  
20+0.1Cb  
300  
50  
tSP  
II  
0
-10  
0
10  
CI  
10  
fSCL  
fPER (3)>max(10fSCL, 250kHz)  
0
400  
fSCL 100kHz  
100ns  
Cb  
--------------  
VCC – 0.4V  
---------------------------  
3mA  
RP  
Value of pull-up resistor  
Ω
300ns  
fSCL > 100kHz  
--------------  
Cb  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
4.0  
0.6  
4.7  
1.3  
4.0  
0.6  
4.7  
0.6  
tHD;STA  
Hold time (repeated) START condition  
Low period of SCL clock  
µs  
µs  
µs  
µs  
tLOW  
tHIGH  
High period of SCL clock  
Set-up time for a repeated START  
condition  
tSU;STA  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
135  
Symbol Parameter  
Condition  
fSCL 100kHz  
Min.  
0
Typ.  
Max.  
3.45  
0.9  
Units  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Data hold time  
µs  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
0
250  
100  
4.0  
0.6  
4.7  
1.3  
Data setup time  
ns  
µs  
µs  
Setup time for STOP condition  
Bus free time between a STOP and  
START condition  
Notes:  
1. Required only for fSCL > 100kHz.  
2. Cb = Capacitance of one bus line in pF.  
3.  
fPER = Peripheral clock frequency.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
136  
36.4 ATxmega128A4U  
36.4.1 Absolute Maximum Ratings  
Stresses beyond those listed in Table 36-97 may cause permanent damage to the device. This is a stress rating only  
and functional operation of the device at these or other conditions beyond those indicated in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Table 36-97. Absolute maximum ratings.  
Symbol  
VCC  
IVCC  
IGND  
VPIN  
IPIN  
Parameter  
Condition  
Min.  
Typ.  
Max.  
4
Units  
V
Power supply voltage  
Current into a VCC pin  
Current out of a Gnd pin  
Pin voltage with respect to Gnd and VCC  
I/O pin sink/source current  
Storage temperature  
-0.3  
200  
mA  
mA  
V
200  
-0.5  
-25  
-65  
VCC+0.5  
25  
mA  
°C  
TA  
150  
Tj  
Junction temperature  
150  
°C  
36.4.2 General Operating Ratings  
The device must operate within the ratings listed in Table 36-98 in order for all other electrical characteristics and  
typical characteristics of the device to be valid.  
Table 36-98. General operating conditions.  
Symbol  
VCC  
Parameter  
Condition  
Min.  
1.60  
1.60  
-40  
Typ.  
Max.  
3.6  
Units  
V
Power supply voltage  
Analog supply voltage  
Temperature range  
Junction temperature  
AVCC  
TA  
3.6  
V
85  
°C  
°C  
Tj  
-40  
105  
Table 36-99. Operating voltage and frequency.  
Symbol  
Parameter  
Condition  
VCC = 1.6V  
VCC = 1.8V  
VCC = 2.7V  
VCC = 3.6V  
Min.  
Typ.  
Max.  
12  
Units  
0
0
0
0
12  
ClkCPU  
CPU clock frequency  
MHz  
32  
32  
The maximum CPU clock frequency depends on VCC. As shown in Figure 36-22 the Frequency vs. VCC curve is linear  
between 1.8V < VCC < 2.7V.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
137  
Figure 36-22.Maximum Frequency vs. VCC  
.
MHz  
32  
Safe Operating Area  
12  
V
1.6  
1.8  
2.7  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
138  
36.4.3 Current consumption  
Table 36-100.Current consumption for Active mode and sleep modes.  
Symbol Parameter  
Condition  
Min.  
Typ.  
55  
Max.  
Units  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
32kHz, Ext. Clk  
135  
255  
535  
460  
1.0  
9.5  
2.9  
3.9  
62  
µA  
1MHz, Ext. Clk  
Active power  
consumption (1)  
600  
1.4  
12  
2MHz, Ext. Clk  
32MHz, Ext. Clk  
32kHz, Ext. Clk  
VCC = 3.0V  
mA  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
1MHz, Ext. Clk  
2MHz, Ext. Clk  
µA  
Idle power  
118  
125  
240  
3.8  
0.1  
1.5  
0.1  
consumption (1)  
225  
350  
5.5  
1.0  
4.5  
8.6  
VCC = 3.0V  
VCC = 3.0V  
32MHz, Ext. Clk  
T = 25°C  
mA  
ICC  
T = 85°C  
T = 105°C  
µA  
WDT and Sampled BOD enabled,  
T = 25°C  
Power-down power  
consumption  
1.4  
2.8  
1.4  
3.0  
6.0  
8.8  
VCC = 3.0V  
WDT and Sampled BOD enabled,  
T = 85°C  
WDT and Sampled BOD enabled,  
T = 105°C  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
VCC = 1.8V  
VCC = 3.0V  
1.2  
1.5  
0.6  
0.7  
0.8  
1.0  
RTC from ULP clock, WDT and  
sampled BOD enabled, T = 25°C  
2.0  
2.0  
3.0  
3.0  
Power-save power  
consumption (2)  
RTC from 1.024kHz low power  
32.768kHz TOSC, T = 25°C  
µA  
µA  
RTC from low power 32.768kHz  
TOSC, T = 25°C  
Current through RESET pin  
substracted  
Reset power consumption  
VCC = 3.0V  
300  
Notes:  
1. All Power Reduction Registers set.  
2. Maximum limits are based on characterization, and not tested in production.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
139  
Table 36-101.Current consumption for modules and peripherals.  
Symbol Parameter  
Condition (1)  
Min.  
Typ.  
1.0  
29  
Max.  
Units  
µA  
ULP oscillator  
32.768kHz int. oscillator  
µA  
85  
2MHz int. oscillator  
32MHz int. oscillator  
µA  
µA  
DFLL enabled with 32.768kHz int. osc. as reference  
DFLL enabled with 32.768kHz int. osc. as reference  
115  
270  
440  
20x multiplication factor,  
PLL  
320  
µA  
µA  
32MHz int. osc. DIV4 as reference  
Watchdog timer  
1.0  
138  
1.2  
260  
250  
3.0  
2.6  
2.1  
1.6  
1.9  
Continuous mode  
BOD  
µA  
Sampled mode, includes ULP oscillator  
Internal 1.0V reference  
Temperature sensor  
µA  
µA  
ICC  
mA  
CURRLIMIT = LOW  
250ksps  
ADC  
VREF = Ext ref  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
250ksps  
Normal mode  
DAC  
AC  
VREF = Ext ref  
No load  
mA  
µA  
Low power mode  
1.1  
High speed mode  
Low power mode  
330  
130  
108  
16  
DMA  
615kbps between I/O registers and SRAM  
µA  
µA  
µA  
mA  
Timer/counter  
USART  
Rx and Tx enabled, 9600 BAUD  
2.5  
4.0  
Flash memory and EEPROM programming  
8.0  
Note:  
1. All parameters measured as the difference in current consumption between module enabled and disabled. All data at VCC = 3.0V, ClkSYS = 1MHz external  
clock without prescaling, T = 25°C unless other conditions are given.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
140  
36.4.4 Wake-up time from sleep modes  
Table 36-102. Device wake-up time from sleep modes with various system clock sources.  
Symbol Parameter  
Condition  
External 2MHz clock  
Min.  
Typ. (1)  
2.0  
Max.  
Units  
Wake-up time from idle,  
standby, and extended standby  
mode  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
External 2MHz clock  
120  
2.0  
µs  
0.2  
twakeup  
4.5  
32.768kHz internal oscillator  
2MHz internal oscillator  
32MHz internal oscillator  
320  
9.0  
Wake-up time from power-save  
and power-down mode  
µs  
5.0  
Note:  
1. The wake-up time is the time from the wake-up request is given until the peripheral clock is available on pin, see Figure 36-23. All peripherals and modules  
start execution from the first clock cycle, expect the CPU that is halted for four clock cycles before program execution starts.  
Figure 36-23.Wake-up time definition.  
Wakeup time  
Wakeup request  
Clock output  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
141  
36.4.5 I/O Pin Characteristics  
The I/O pins comply with the JEDEC LVTTL and LVCMOS specification and the high- and low level input and output  
voltage limits reflect or exceed this specification.  
Table 36-103.I/O pin characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
(1)  
IOH  
/
I/O pin source/sink current  
-20  
20  
mA  
(2)  
IOL  
VCC = 2.7 - 3.6V  
2.0  
0.7*VCC  
0.8*VCC  
-0.3  
VCC+0.3  
VCC+0.3  
VCC+0.3  
0.8  
VIH  
High level input voltage  
VCC = 2.0 - 2.7V  
VCC = 1.6 - 2.0V  
VCC = 2.7- 3.6V  
VCC = 2.0 - 2.7V  
VCC = 1.6 - 2.0V  
VCC = 3.0 - 3.6V  
V
V
VIL  
Low level input voltage  
-0.3  
0.3*VCC  
0.2*VCC  
-0.3  
IOH = -2mA  
IOH = -1mA  
IOH = -2mA  
IOH = -8mA  
IOH = -6mA  
IOH = -2mA  
IOL = 2mA  
IOL = 1mA  
IOL = 2mA  
IOL = 15mA  
IOL = 10mA  
IOL = 5mA  
2.4  
0.94*VCC  
0.96*VCC  
0.92*VCC  
2.9  
2.0  
VCC = 2.3 - 2.7V  
1.7  
VOH  
High level output voltage  
V
VCC = 3.3V  
2.6  
VCC = 3.0V  
2.1  
2.6  
VCC = 1.8V  
1.4  
1.6  
VCC = 3.0 - 3.6V  
0.05  
0.03  
0.06  
0.4  
0.4  
0.4  
VCC = 2.3 - 2.7V  
0.7  
VOL  
Low level output voltage  
V
VCC = 3.3V  
VCC = 3.0V  
VCC = 1.8V  
T = 25°C  
0.76  
0.64  
0.46  
0.1  
0.3  
0.2  
IIN  
Input leakage current  
<0.01  
24  
µA  
RP  
Pull/buss keeper resistor  
kΩ  
4.0  
tr  
Rise time  
No load  
ns  
slew rate limitation  
7.0  
Notes:  
1. The sum of all IOH for PORTA and PORTB must not exceed 100mA.  
The sum of all IOH for PORTC must not exceed 200mA.  
The sum of all IOH for PORTD and pins PE[0-1] on PORTE must not exceed 200mA.  
The sum of all IOH for PE[2-3] on PORTE, PORTR and PDI must not exceed 100mA.  
2. The sum of all IOL for PORTA and PORTB must not exceed 100mA.  
The sum of all IOL for PORTC must not exceed 200mA.  
The sum of all IOL for PORTD and pins PE[0-1] on PORTE must not exceed 200mA.  
The sum of all IOL for PE[2-3] on PORTE, PORTR and PDI must not exceed 100mA.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
142  
36.4.6 ADC characteristics  
Table 36-104.Power supply, reference and input range.  
Symbol Parameter Condition  
Min.  
VCC- 0.3  
1
Typ.  
Max.  
Units  
V
AVCC  
VREF  
Rin  
Analog supply voltage  
Reference voltage  
VCC+ 0.3  
AVCC- 0.6  
V
Input resistance  
Switched  
4.0  
4.4  
>10  
7
kΩ  
pF  
MΩ  
pF  
V
Csample  
RAREF  
CAREF  
VIN  
Input capacitance  
Switched  
Reference input resistance  
(leakage only)  
Reference input capacitance Static load  
Input range  
-0.1  
-VREF  
-ΔV  
AVCC+0.1  
VREF  
Conversion range  
Conversion range  
Fixed offset voltage  
Differential mode, Vinp - Vinn  
V
Single ended unsigned mode, Vinp  
VREF-ΔV  
V
V  
190  
lsb  
Table 36-105.Clock and timing.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Maximum is 1/4 of Peripheral clock  
frequency  
100  
2000  
ClkADC  
ADC Clock frequency  
kHz  
Measuring internal signals  
Current limitation (CURRLIMIT) off  
CURRLIMIT = LOW  
100  
100  
100  
100  
100  
0.25  
125  
2000  
1500  
1000  
500  
5
fADC  
Sample rate  
ksps  
µs  
CURRLIMIT = MEDIUM  
CURRLIMIT = HIGH  
Sampling time  
1/2 ClkADC cycle  
(RES+2)/2+(GAIN !=0)  
RES (Resolution) = 8 or 12  
ClkADC  
cycles  
Conversion time (latency)  
5
8
ClkADC  
cycles  
Start-up time  
ADC clock cycles  
12  
24  
After changing reference or input mode  
After ADC flush  
7
1
7
1
ClkADC  
cycles  
ADC settling time  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
143  
Table 36-106. Accuracy characteristics.  
Symbol  
Parameter  
Condition (2)  
Min.  
Typ.  
12  
Max.  
12  
Units  
Bits  
lsb  
RES  
INL (1)  
DNL (1)  
Resolution  
Programmable to 8 or 12 bit  
8
VCC-1.0V < VREF< VCC-0.6V  
±1.2  
±1.5  
±1.0  
±1.5  
<±0.8  
-1.0  
<0.01  
<0.6  
-1  
±2  
500ksps  
All VREF  
VCC-1.0V < VREF< VCC-0.6V  
All VREF  
±3  
Integral non-linearity  
±2  
2000ksps  
±3  
Differential non-linearity  
Offset error  
guaranteed monotonic  
<±1  
lsb  
mV  
Temperature drift  
mV/K  
mV/V  
Operating voltage drift  
External reference  
AVCC/1.6  
AVCC/2.0  
Bandgap  
10  
Differential  
mode  
mV  
8.0  
Gain error  
±5  
Temperature drift  
<0.02  
<0.5  
mV/K  
mV/V  
Operating voltage drift  
Differential mode, shorted input  
2msps, VCC = 3.6V, ClkPER = 16MHz  
mV  
rms  
Noise  
0.4  
Notes:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
2. Unless otherwise noted all linearity, offset and gain error numbers are valid under the condition that external VREF is used.  
Table 36-107. Gain stage characteristics.  
Symbol  
Parameter  
Condition  
Switched in normal mode  
Switched in normal mode  
Gain stage output  
Min.  
Typ.  
4.0  
Max.  
Units  
kΩ  
pF  
Rin  
Input resistance  
Input capacitance  
Signal range  
Csample  
4.4  
0
VCC- 0.6  
V
ClkADC  
cycles  
Propagation delay  
Sample rate  
ADC conversion rate  
Same as ADC  
500ksps  
1.0  
100  
1000  
±4.0  
kHz  
lsb  
All gain  
settings  
INL (1)  
Integral Non-Linearity  
±1.5  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
-0.8  
-2.5  
-3.5  
Gain error  
%
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
144  
Symbol  
Parameter  
Condition  
1x gain, normal mode  
Min.  
Typ.  
-2.0  
-5.0  
-4.0  
0.5  
Max.  
Units  
Offset error,  
input referred  
8x gain, normal mode  
64x gain, normal mode  
1x gain, normal mode  
8x gain, normal mode  
64x gain, normal mode  
mV  
VCC = 3.6V  
Ext. VREF  
mV  
rms  
Noise  
1.5  
11  
Note:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% input voltage range.  
36.4.7 DAC Characteristics  
Table 36-108. Power supply, reference and output range.  
Symbol Parameter Condition  
Min.  
VCC- 0.3  
1.0  
Typ.  
Max.  
VCC+ 0.3  
VCC- 0.6  
50  
Units  
AVCC  
AVREF  
Rchannel  
Analog supply voltage  
External reference voltage  
DC output impedance  
V
Ω
Linear output voltage range  
Reference input resistance  
Reference input capacitance Static load  
Minimum Resistance load  
0.15  
AVCC-0.15  
V
RAREF  
>10  
7.0  
MΩ  
pF  
kΩ  
pF  
nF  
CAREF  
1
100  
Maximum capacitance load  
1000Ω serial resistance  
1
AVCC/1000  
10  
Operating within accuracy specification  
Safe operation  
Output sink/source  
mA  
Table 36-109. Clock and timing.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
1000  
500  
Units  
Normal mode  
0
Cload=100pF,  
maximum step size  
fDAC  
Conversion rate  
ksps  
Low power mode  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
145  
Table 36-110.Accuracy characteristics.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
12  
Units  
RES  
Input resolution  
Bits  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
VCC = 1.6V  
VCC = 3.6V  
±2.0  
±1.5  
±2.0  
±1.5  
±5.0  
±5.0  
±1.5  
±0.6  
±1.0  
±0.6  
±4.5  
±4.5  
<4.0  
4.0  
±3.0  
±2.5  
±4.0  
±4.0  
VREF= Ext 1.0V  
VREF=AVCC  
INL (1)  
Integral non-linearity  
lsb  
VREF=INT1V  
VREF=Ext 1.0V  
VREF=AVCC  
3.0  
1.5  
3.5  
1.5  
DNL (1)  
Differential non-linearity  
lsb  
VREF=INT1V  
Gain error  
After calibration  
lsb  
lsb  
Gain calibration step size  
Gain calibration drift  
Offset error  
VREF= Ext 1.0V  
After calibration  
<0.2  
<1.0  
1.0  
mV/K  
lsb  
Offset calibration step size  
Note:  
1. Maximum numbers are based on characterisation and not tested in production, and valid for 5% to 95% output voltage range.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
146  
36.4.8 Analog Comparator Characteristics  
Table 36-111. Analog Comparator characteristics.  
Symbol  
Voff  
Parameter  
Condition  
Min.  
Typ.  
<±10  
<1  
Max.  
Units  
mV  
nA  
Input offset voltage  
Input leakage current  
Input voltage range  
AC startup time  
Ilk  
-0.1  
AVCC  
V
100  
0
µs  
Vhys1  
Hysteresis, none  
mV  
mode = High Speed (HS)  
mode = Low Power (LP)  
mode = HS  
13  
Vhys2  
Hysteresis, small  
Hysteresis, large  
mV  
mV  
30  
30  
Vhys3  
mode = LP  
60  
VCC = 3.0V, T= 85°C  
mode = HS  
VCC = 3.0V, T= 85°C  
mode = HS  
30  
90  
500  
0.5  
30  
tdelay  
Propagation delay  
ns  
mode = LP  
130  
130  
0.3  
mode = LP  
64-level voltage scaler  
Integral non-linearity (INL)  
lsb  
36.4.9 Bandgap and Internal 1.0V Reference Characteristics  
Table 36-112. Bandgap and Internal 1.0V reference characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
As reference for ADC or DAC  
As input voltage to ADC and AC  
1 ClkPER + 2.5µs  
Startup time  
µs  
1.5  
1.1  
Bandgap voltage  
V
V
INT1V  
Internal 1.00V reference  
Variation over voltage and temperature  
T= 85°C, after calibration  
0.99  
1.0  
1.01  
Relative to T= 85°C, VCC = 3.0V  
±1.5  
%
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
147  
36.4.10 Brownout Detection Characteristics  
Table 36-113. Brownout detection characteristics.  
Symbol Parameter  
BOD level 0 falling VCC  
BOD level 1 falling VCC  
BOD level 2 falling VCC  
Condition  
Min.  
Typ.  
1.62  
1.8  
Max.  
Units  
1.50  
1.72  
2.0  
BOD level 3 falling VCC  
VBOT  
2.2  
V
BOD level 4 falling VCC  
2.4  
BOD level 5 falling VCC  
BOD level 6 falling VCC  
BOD level 7 falling VCC  
2.6  
2.8  
3.0  
Continuous mode  
Sampled mode  
0.4  
tBOD  
Detection time  
Hysteresis  
µs  
%
1000  
1.2  
VHYST  
36.4.11 External Reset Characteristics  
Table 36-114. External reset characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
95  
Max.  
Units  
tEXT  
Minimum reset pulse width  
1000  
ns  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 2.7V  
0.60×VCC  
0.60×VCC  
Reset threshold voltage (VIH)  
VRST  
V
0.50×VCC  
0.40×VCC  
Reset threshold voltage (VIL)  
Reset pin Pull-up Resistor  
RRST  
25  
kΩ  
36.4.12 Power-on Reset Characteristics  
Table 36-115. Power-on reset characteristics.  
Symbol Parameter  
Condition  
Min.  
0.4  
Typ.  
1.0  
Max.  
Units  
V
VCC falls faster than 1V/ms  
VCC falls at 1V/ms or slower  
(1)  
VPOT-  
POR threshold voltage falling VCC  
0.8  
1.0  
VPOT+  
POR threshold voltage rising VCC  
1.3  
1.59  
mV  
Note:  
1. VPOT- values are only valid when BOD is disabled. When BOD is enabled VPOT- = VPOT+.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
148  
36.4.13 Flash and EEPROM Memory Characteristics  
Table 36-116. Endurance and data retention.  
Symbol Parameter  
Condition  
Min.  
10K  
10K  
2K  
Typ.  
Max.  
Units  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
25°C  
85°C  
105°C  
Write/Erase cycles  
Cycle  
Flash  
100  
25  
Data retention  
Year  
Cycle  
Year  
10  
100K  
100K  
30K  
100  
25  
Write/Erase cycles  
Data retention  
EEPROM  
10  
Table 36-117. Programming time.  
Symbol Parameter  
Chip Erase  
Condition  
Min.  
Typ.(1)  
Max.  
Units  
ms  
128KB Flash, EEPROM(2) and SRAM Erase  
Section erase  
75  
6
Application Erase  
ms  
Page erase  
4
Flash  
Page write  
4
ms  
ms  
Atomic page erase and write  
Page erase  
8
4
EEPROM  
Page write  
4
Atomic page erase and write  
8
Notes:  
1. Programming is timed from the 2MHz internal oscillator.  
2. EEPROM is not erased if the EESAVE fuse is programmed.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
149  
36.4.14 Clock and Oscillator Characteristics  
36.4.14.1 Calibrated 32.768kHz Internal Oscillator characteristics  
Table 36-118. 32.768kHz internal oscillator characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
kHz  
%
Frequency  
32.768  
Factory calibration accuracy T = 85°C, VCC = 3.0V  
-0.5  
-0.5  
0.5  
0.5  
User calibration accuracy  
%
36.4.14.2 Calibrated 2MHz RC Internal Oscillator characteristics  
Table 36-119. 2MHz internal oscillator characteristics.  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
1.8  
2.2  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration stepsize  
2.0  
MHz  
%
T = 85°C, VCC= 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.21  
%
36.4.14.3 Calibrated and tunable 32MHz internal oscillator characteristics  
Table 36-120. 32MHz internal oscillator characteristics.  
Symbol Parameter  
Frequency range  
Condition  
Min.  
Typ.  
Max.  
Units  
DFLL can tune to this frequency over  
voltage and temperature  
30  
55  
MHz  
Factory calibrated frequency  
Factory calibration accuracy  
User calibration accuracy  
DFLL calibration step size  
32  
MHz  
%
T = 85°C, VCC= 3.0V  
-1.5  
-0.2  
1.5  
0.2  
%
0.22  
%
36.4.14.4 32kHz Internal ULP Oscillator characteristics  
Table 36-121. 32kHz internal ULP oscillator characteristics.  
Symbol Parameter  
Output frequency  
Accuracy  
Condition  
Min.  
Typ.  
Max.  
Units  
kHz  
%
32  
-30  
30  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
150  
36.4.14.5 Internal Phase Locked Loop (PLL) characteristics  
Table 36-122. Internal PLL characteristics.  
Symbo  
l
Parameter  
Condition  
Output frequency must be within fOUT  
VCC= 1.6 - 1.8V  
Min.  
0.4  
20  
Typ.  
Max.  
64  
Units  
fIN  
Input frequency  
MHz  
48  
fOUT  
Output frequency (1)  
MHz  
VCC= 2.7 - 3.6V  
20  
128  
Start-up time  
Re-lock time  
25  
25  
µs  
µs  
Note:  
1. The maximum output frequency vs. supply voltage is linear between 1.8V and 2.7V, and can never be higher than four times the maximum CPU frequency.  
36.4.14.6 External clock characteristics  
Figure 36-24. External clock drive waveform  
tCH  
tCH  
tCR  
tCF  
VIH1  
VIL1  
tCL  
tCK  
Table 36-123.External clock used as system clock without prescaling.  
Symbol  
Parameter  
Condition  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
Min.  
0
Typ.  
Max.  
12  
Units  
1/tCK  
Clock Frequency (1)  
MHz  
0
32  
83.3  
31.5  
30.0  
12.5  
30.0  
12.5  
tCK  
tCH  
tCL  
tCR  
Clock Period  
ns  
ns  
ns  
ns  
Clock High Time  
Clock Low Time  
10  
3
Rise Time (for maximum frequency)  
10  
3
tCF  
Fall Time (for maximum frequency)  
ns  
%
ΔtCK  
Change in period from one clock cycle to the next  
10  
Note:  
1. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
151  
Table 36-124. External clock with prescaler (1)for system clock.  
Symbol Parameter Condition  
Clock Frequency (2)  
Min.  
0
Typ.  
Max.  
90  
Units  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
VCC = 1.6 - 1.8V  
VCC = 2.7 - 3.6V  
1/tCK  
MHz  
0
142  
11  
7
tCK  
Clock Period  
ns  
ns  
ns  
ns  
4.5  
2.4  
4.5  
2.4  
tCH  
Clock High Time  
tCL  
Clock Low Time  
1.5  
1.0  
1.5  
1.0  
10  
tCR  
Rise Time (for maximum frequency)  
tCF  
Fall Time (for maximum frequency)  
ns  
%
ΔtCK  
Change in period from one clock cycle to the next  
Notes:  
1. System Clock Prescalers must be set so that maximum CPU clock frequency for device is not exceeded.  
2. The maximum frequency vs. supply voltage is linear between 1.6V and 2.7V, and the same applies for all other parameters with supply voltage conditions.  
36.4.14.7 External 16MHz crystal oscillator and XOSC characteristic  
Table 36-125. External 16MHz crystal oscillator and XOSC characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
<10  
Max.  
Units  
FRQRANGE=0  
XOSCPWR=0  
XOSCPWR=1  
XOSCPWR=0  
XOSCPWR=1  
Cycle to cycle jitter  
FRQRANGE=1, 2, or 3  
<1  
ns  
<1  
FRQRANGE=0  
<6  
Long term jitter  
Frequency error  
FRQRANGE=1, 2, or 3  
<0.5  
<0.5  
<0.1  
<0.05  
<0.005  
<0.005  
ns  
%
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
XOSCPWR=0  
XOSCPWR=1  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
152  
Symbol Parameter  
Condition  
Min.  
Typ.  
40  
Max.  
Units  
FRQRANGE=0  
FRQRANGE=1  
FRQRANGE=2 or 3  
XOSCPWR=0  
XOSCPWR=1  
42  
Duty cycle  
%
45  
48  
0.4MHz resonator,  
CL=100pF  
2.4k  
XOSCPWR=0,  
FRQRANGE=0  
1MHz crystal, CL=20pF  
2MHz crystal, CL=20pF  
2MHz crystal  
8.7k  
2.1k  
4.2k  
250  
195  
360  
285  
155  
365  
200  
105  
435  
235  
125  
495  
270  
145  
305  
XOSCPWR=0,  
FRQRANGE=1,  
CL=20pF  
8MHz crystal  
9MHz crystal  
8MHz crystal  
XOSCPWR=0,  
FRQRANGE=2,  
CL=20pF  
9MHz crystal  
12MHz crystal  
9MHz crystal  
XOSCPWR=0,  
FRQRANGE=3,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
Negative impedance (1)  
Ω
RQ  
XOSCPWR=1,  
FRQRANGE=0,  
CL=20pF  
12MHz crystal  
16MHz crystal  
9MHz crystal  
XOSCPWR=1,  
FRQRANGE=1,  
CL=20pF  
12MHz crystal  
16MHz crystal  
12MHz crystal  
XOSCPWR=1,  
FRQRANGE=2,  
CL=20pF  
16MHz crystal  
12MHz crystal  
16MHz crystal  
160  
380  
205  
XOSCPWR=1,  
FRQRANGE=3,  
CL=20pF  
ESR  
SF = Safety factor  
min(RQ)/SF  
kΩ  
Parasitic capacitance  
XTAL1 pin  
CXTAL1  
CXTAL2  
CLOAD  
5.45  
7.51  
3.16  
pF  
Parasitic capacitance  
XTAL2 pin  
pF  
pF  
Parasitic capacitance  
load  
Note:  
1. Numbers for negative impedance are not tested in production but guaranteed from design and characterization.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
153  
36.4.14.8 External 32.768kHz crystal oscillator and TOSC characteristics  
Table 36-126. External 32.768kHz crystal oscillator and TOSC characteristics.  
Symbol Parameter  
Condition  
Min.  
Typ.  
Max.  
60  
Units  
Crystal load capacitance 6.5pF  
Crystal load capacitance 9.0pF  
Recommended crystal equivalent  
ESR/R1  
CTOSC1  
CTOSC2  
kΩ  
series resistance (ESR)  
35  
5.4  
4.0  
7.1  
4.0  
Parasitic capacitance TOSC1 pin  
pF  
pF  
Alternate TOSC location  
Parasitic capacitance TOSC2 pin  
Recommended safety factor  
Alternate TOSC location  
capacitance load matched to  
crystal specification  
3
Note:  
1. See Figure 36-25 for definition.  
Figure 36-25. TOSC input capacitance.  
CL1  
CL2  
Device internal  
External  
TOSC1  
TOSC2  
32.768kHz crystal  
The parasitic capacitance between the TOSC pins is CL1 + CL2 in series as seen from the crystal when oscillating  
without external capacitors.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
154  
36.4.15 SPI Characteristics  
Figure 36-26. SPI timing requirements in master mode.  
SS  
tMOS  
tSCKR  
tSCKF  
SCK  
(CPOL = 0)  
tSCKW  
SCK  
(CPOL = 1)  
tSCKW  
tMIS  
tMIH  
tSCK  
MISO  
(Data input)  
MSB  
LSB  
tMOH  
tMOH  
MOSI  
(Data output)  
MSB  
LSB  
Figure 36-27. SPI timing requirements in slave mode.  
SS  
tSSS  
tSCKR  
tSCKF  
tSSH  
SCK  
(CPOL = 0)  
tSSCKW  
SCK  
(CPOL = 1)  
tSSCKW  
tSIS  
tSIH  
tSSCK  
MOSI  
(Data input)  
MSB  
LSB  
tSOSSS  
tSOS  
tSOSSH  
MISO  
(Data output)  
MSB  
LSB  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
155  
Table 36-127. SPI timing characteristics and requirements.  
Symbol Parameter Condition  
Min.  
Typ.  
Max.  
Units  
(See Table 21-4 in  
XMEGA AU Manual)  
tSCK  
SCK Period  
Master  
tSCKW  
tSCKR  
tSCKF  
tMIS  
SCK high/low width  
SCK Rise time  
Master  
Master  
Master  
Master  
Master  
Master  
Master  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
Slave  
0.5×SCK  
2.7  
SCK Fall time  
2.7  
MISO setup to SCK  
MISO hold after SCK  
MOSI setup SCK  
MOSI hold after SCK  
Slave SCK Period  
SCK high/low width  
SCK Rise time  
10  
tMIH  
10  
0.5×SCK  
1
tMOS  
tMOH  
tSSCK  
tSSCKW  
tSSCKR  
tSSCKF  
tSIS  
4×t ClkPER  
2×t ClkPER  
ns  
1600  
1600  
SCK Fall time  
MOSI setup to SCK  
MOSI hold after SCK  
SS setup to SCK  
3
t ClkPER  
21  
tSIH  
tSSS  
tSSH  
SS hold after SCK  
MISO setup SCK  
MISO hold after SCK  
MISO setup after SS low  
MISO hold after SS high  
20  
tSOS  
8
13  
11  
8
tSOH  
tSOSS  
tSOSH  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
156  
36.4.16 Two-Wire Interface Characteristics  
Table 36-128 describes the requirements for devices connected to the Two-Wire Interface Bus. The Atmel AVR  
XMEGA Two-Wire Interface meets or exceeds these requirements under the noted conditions. Timing symbols refer  
to Figure 36-28.  
Figure 36-28. Two-wire interface bus timing.  
tof  
tHIGH  
tLOW  
tr  
SCL  
SDA  
tHD;DAT  
tSU;STA  
tSU;STO  
tSU;DAT  
tHD;STA  
tBUF  
Table 36-128. Two-wire interface characteristics.  
Symbol Parameter  
Condition  
Min.  
0.7VCC  
0.5  
Typ.  
Max.  
Units  
V
VIH  
VIL  
Input High Voltage  
VCC+0.5  
0.3×VCC  
Input Low Voltage  
V
(1)  
Vhys  
Hysteresis of Schmitt Trigger Inputs  
Output Low Voltage  
0.05VCC  
0
V
VOL  
3mA, sink current  
0.4  
300  
250  
50  
V
(1)(2)  
(1)(2)  
tr  
tof  
Rise Time for both SDA and SCL  
Output Fall Time from VIHmin to VILmax  
Spikes Suppressed by Input Filter  
Input Current for each I/O Pin  
Capacitance for each I/O Pin  
SCL Clock Frequency  
20+0.1Cb  
20+0.1Cb  
0
ns  
ns  
ns  
µA  
pF  
kHz  
10pF < Cb < 400pF (2)  
0.1VCC < VI < 0.9VCC  
tSP  
II  
-10  
10  
CI  
10  
fSCL  
fPER (3)>max(10fSCL, 250kHz)  
0
400  
fSCL 100kHz  
100ns  
Cb  
--------------  
VCC – 0.4V  
---------------------------  
3mA  
RP  
Value of Pull-up resistor  
Ω
300ns  
fSCL > 100kHz  
--------------  
Cb  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
4.0  
0.6  
4.7  
1.3  
4.0  
0.6  
4.7  
0.6  
tHD;STA  
Hold Time (repeated) START condition  
Low Period of SCL Clock  
µs  
µs  
µs  
µs  
tLOW  
tHIGH  
High Period of SCL Clock  
Set-up time for a repeated START  
condition  
tSU;STA  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
157  
Symbol Parameter  
Condition  
fSCL 100kHz  
Min.  
0
Typ.  
Max.  
3.45  
0.9  
Units  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Data hold time  
µs  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
fSCL 100kHz  
fSCL > 100kHz  
0
250  
100  
4.0  
0.6  
4.7  
1.3  
Data setup time  
ns  
µs  
µs  
Setup time for STOP condition  
Bus free time between a STOP and  
START condition  
Notes:  
1. Required only for fSCL > 100kHz.  
2. Cb = Capacitance of one bus line in pF.  
3.  
fPER = Peripheral clock frequency.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
158  
37. Typical Characteristics  
37.1 ATxmega16A4U  
37.1.1 Current consumption  
37.1.1.1 Active mode supply current  
Figure 37-1. Active supply current vs. frequency.  
fSYS = 0 - 1MHz external clock, T = 25°C.  
600  
540  
480  
420  
360  
300  
240  
180  
120  
60  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
Figure 37-2. Active supply current vs. frequency.  
fSYS = 1 - 32MHz external clock, T = 25°C.  
12  
10  
8
3.3V  
3.0V  
2.7V  
6
2.2V  
4
1.8V  
2
0
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
159  
Figure 37-3. Active mode supply current vs. VCC  
.
fSYS = 32.768kHz internal oscillator.  
270  
250  
230  
210  
190  
170  
150  
130  
110  
90  
-40 °C  
25 °C  
85 °C  
105 °C  
70  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-4. Active mode supply current vs. VCC  
.
fSYS = 1MHz external clock.  
800  
700  
600  
500  
400  
300  
200  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
160  
Figure 37-5. Active mode supply current vs. VCC  
.
fSYS = 2MHz internal oscillator.  
1600  
1400  
1200  
1000  
800  
-40 °C  
25 °C  
85 °C  
105 °C  
600  
400  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-6. Active mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator prescaled to 8MHz.  
5900  
-40 °C  
25 °C  
5400  
4900  
4400  
3900  
3400  
2900  
2400  
1900  
1400  
85 °C  
105 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
161  
Figure 37-7. Active mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator.  
5650  
5425  
5200  
4975  
4750  
4525  
4300  
4075  
3850  
3625  
3400  
-40 °C  
25 °C  
85 °C  
105 °C  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
37.1.1.2 Idle mode supply current  
Figure 37-8. Idle mode supply current vs. frequency.  
fSYS = 0 - 1MHz external clock, T = 25°C.  
140  
120  
100  
80  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
60  
40  
20  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
Frequency [MHz]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
162  
Figure 37-9. Idle mode supply current vs. frequency.  
fSYS = 1 - 32MHz external clock, T = 25°C.  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0.5  
0
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
Figure 37-10. Idle mode supply current vs. VCC  
.
fSYS = 32.768kHz internal oscillator.  
35  
34  
33  
32  
31  
30  
29  
28  
27  
105 °C  
-40 °C  
85 °C  
25 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3
3.2  
3.4  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
163  
Figure 37-11. Idle mode supply current vs. VCC  
.
fSYS = 1MHz external clock.  
158  
146  
134  
122  
110  
98  
105 °C  
85 °C  
25 °C  
-40 °C  
86  
74  
62  
50  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-12. Idle mode supply current vs. VCC  
.
fSYS = 2MHz internal oscillator.  
410  
385  
360  
335  
310  
285  
260  
235  
210  
185  
160  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
164  
Figure 37-13. Idle mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator prescaled to 8MHz.  
2000  
-40 °C  
25 °C  
1800  
1600  
1400  
1200  
1000  
800  
85 °C  
105 °C  
600  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-14. Idle mode current vs. VCC  
.
fSYS = 32MHz internal oscillator.  
5650  
5425  
5200  
4975  
4750  
4525  
4300  
4075  
3850  
3625  
3400  
-40 °C  
25 °C  
85 °C  
105 °C  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
165  
37.1.1.3 Power-down mode supply current  
Figure 37-15. Power-down mode supply current vs. temperature.  
All functions disabled.  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
Figure 37-16. Power-down mode supply current vs. VCC  
.
All functions disabled.  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
105 °C  
85 °C  
25 °C  
-
40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
166  
Figure 37-17. Power-down mode supply current vs. VCC  
.
Watchdog and sampled BOD enabled.  
5.1  
4.6  
4.1  
3.6  
3.1  
2.6  
2.1  
1.6  
1.1  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
37.1.1.4 Power-save mode supply current  
Figure 37-18. Power-save mode supply current vs.VCC  
.
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC.  
0.9  
Normal mode  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Low-power mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
167  
37.1.1.5 Standby mode supply current  
Figure 37-19. Standby supply current vs. VCC  
.
Standby, fSYS = 1MHz.  
12.5  
11.5  
10.5  
9.5  
105 °C  
85 °C  
8.5  
25 °C  
-40 °C  
7.5  
6.5  
5.5  
4.5  
3.5  
2.5  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-20. Standby supply current vs. VCC  
.
25°C, running from different crystal oscillators.  
480  
440  
400  
360  
320  
280  
240  
200  
160  
16MHz  
12MHz  
8MHz  
2MHz  
0.454MHz  
3.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.6  
VCC[V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
168  
37.1.2 I/O Pin Characteristics  
37.1.2.1 Pull-up  
Figure 37-21. I/O pin pull-up resistor current vs. input voltage.  
VCC = 1.8V.  
72  
64  
56  
48  
40  
32  
24  
16  
8
-40 °C  
25 °C  
85 °C  
105 °C  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VPIN [V]  
Figure 37-22. I/O pin pull-up resistor current vs. input voltage.  
VCC = 3.0V.  
120  
105  
90  
75  
60  
45  
30  
15  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VPIN [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
169  
Figure 37-23. I/O pin pull-up resistor current vs. input voltage.  
VCC = 3.3V.  
135  
120  
105  
90  
75  
60  
45  
30  
15  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VPIN [V]  
37.1.2.2 Output Voltage vs. Sink/Source Current  
Figure 37-24. I/O pin output voltage vs. source current.  
VCC = 1.8V.  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
-40 °C  
25 °C  
0.6  
0.4  
0.2  
0.0  
105 °C  
85 °C  
-10  
-9  
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
IPIN [mA]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
170  
Figure 37-25. I/O pin output voltage vs. source current.  
VCC = 3.0V.  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
-40°C  
0.9  
25 °C  
85 °C  
0.6  
105 °C  
0.3  
0.0  
-32  
-28  
-24  
-20  
-16  
-12  
-8  
-4  
0
IPIN [mA]  
Figure 37-26. I/O pin output voltage vs. source current.  
VCC = 3.3V.  
3.3  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
-40 °C  
1.2  
0.9  
0.6  
0.3  
0.0  
25 °C  
105 °C  
85 °C  
-32  
-28  
-24  
-20  
-16  
-12  
-8  
-4  
0
IPIN [mA]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
171  
Figure 37-27. I/O pin output voltage vs. source current.  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.6V  
3.3V  
3.0V  
2.7V  
2.3V  
1.8V  
-24  
-21  
-18  
-15  
-12  
-9  
-6  
-3  
0
IPIN [mA]  
Figure 37-28. I/O pin output voltage vs. sink current.  
VCC = 1.8V.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
IPIN [mA]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
172  
Figure 37-29. I/O pin output voltage vs. sink current.  
VCC = 3.0V.  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IPIN [mA]  
Figure 37-30. I/O pin output voltage vs. sink current.  
VCC = 3.3V.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
4
8
12  
16  
20  
24  
28  
32  
IPIN [mA]  
Figure 37-31. I/O pin output voltage vs. sink current.  
1.5  
1.8V  
1.2  
0.9  
0.6  
0.3  
0
2.3V  
2.7V  
3.0V  
3.3V  
3.6V  
0
5
10  
15  
20  
25  
30  
IPIN [mA]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
173  
37.1.2.3 Thresholds and Hysteresis  
Figure 37-32. I/O pin input threshold voltage vs. VCC.  
T = 25°C.  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VIH  
VIL  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Vcc [V]  
Figure 37-33. I/O pin input threshold voltage vs. VCC  
.
VIH I/O pin read as “1”.  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
174  
Figure 37-34. I/O pin input threshold voltage vs. VCC  
.
VIL I/O pin read as “0”.  
1.75  
1.60  
1.45  
1.30  
1.15  
1.00  
0.85  
0.70  
0.55  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-35. I/O pin input hysteresis vs. VCC  
.
0.32  
0.29  
0.26  
0.23  
-40 °C  
25 °C  
0.20  
0.17  
85 °C  
0.14  
0.11  
105 °C  
0.08  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
175  
37.1.3 ADC Characteristics  
Figure 37-36. INL error vs. external VREF  
.
T = 25°C, VCC = 3.6V, external reference.  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
Differential Signed  
Single-ended Unsigned  
0.9  
0.8  
0.7  
Single-ended Signed  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
Figure 37-37. INL error vs. sample rate.  
T = 25°C, VCC = 3.6V, VREF = 3.0V external.  
1.4  
1.35  
1.3  
Differential Mode  
1.25  
1.2  
Single-ended Unsigned  
1.15  
1.1  
1.05  
1
Single-ended Signed  
0.95  
0.9  
500  
650  
800  
950  
1100  
1250  
1400  
1550  
1700  
1850  
2000  
ADC Sample Rate [kSPS]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
176  
Figure 37-38. INL error vs. input code  
2.0  
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
Figure 37-39. DNL error vs. external VREF  
.
T = 25°C, VCC = 3.6V, external reference.  
0.9  
0.88  
0.86  
0.84  
0.82  
0.8  
Differential Mode  
Single-ended Signed  
0.78  
0.76  
0.74  
0.72  
Single-ended Unsigned  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
177  
Figure 37-40. DNL error vs. sample rate.  
T = 25°C, VCC = 3.6V, VREF = 3.0V external.  
0.9  
0.89  
0.88  
0.87  
0.86  
0.85  
0.84  
0.83  
0.82  
0.81  
0.8  
Differential Signed  
Single-ended Signed  
Single-ended Unsigned  
0.79  
500  
650  
800  
950  
1100  
1250  
1400  
1550  
1700  
1850  
2000  
ADC Sample Rate [kSPS]  
Figure 37-41. DNL error vs. input code.  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC Input Code  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
178  
Figure 37-42. Gain error vs. VREF  
.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.  
3
Single-ended Signed  
Differential Mode  
2
1
0
-1  
-2  
-3  
-4  
Single-ended Unsigned  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
REF [V]  
V
Figure 37-43. Gain error vs. VCC  
.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.  
2.2  
1.9  
1.6  
1.3  
1
Single-ended Signed  
Differential Mode  
0.7  
0.4  
0.1  
-0.2  
-0.5  
Single-ended Unsigned  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
179  
Figure 37-44. Offset error vs. VREF  
.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.  
-1  
-1.1  
-1.2  
-1.3  
-1.4  
-1.5  
-1.6  
-1.7  
-1.8  
-1.9  
-2  
Differential Mode  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
REF [V]  
V
Figure 37-45. Gain error vs. temperature.  
VCC = 3.0V, VREF = external 2.0V.  
4
3
2
1
0
Single-ended signed mode  
Differential mode  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
-1  
-2  
-3  
-4  
Single-ended unsigned mode  
Temperature [ºC]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
180  
Figure 37-46. Offset error vs. VCC  
.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
Differential Signed  
-1.1  
-1.2  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-47. Noise vs. VREF  
.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.  
1.3  
Single-ended Signed  
1.15  
1
Single-ended Unsigned  
0.85  
0.7  
0.55  
0.4  
Differential Signed  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
181  
Figure 37-48. Noise vs. VCC  
.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.  
1.3  
1.2  
1.1  
1
Single-ended Signed  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
Single-ended Unsigned  
Differential Signed  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
37.1.4 DAC Characteristics  
Figure 37-49. DAC INL error vs. VREF  
.
VCC = 3.6V.  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-40°C  
25°C  
85°C  
105°C  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
182  
Figure 37-50. DNL error vs. VREF  
.
VCC = 3.6V.  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
- 40°C  
25ºC  
85°C  
105°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
Figure 37-51. DAC noise vs. temperature.  
VCC = 3.0V, VREF = 2.4V .  
0.185  
0.180  
0.175  
0.170  
0.165  
0.160  
0.155  
0.150  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [ºC]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
183  
37.1.5 Analog Comparator Characteristics  
Figure 37-52. Analog comparator hysteresis vs. VCC  
.
High-speed, small hysteresis.  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
105 °C  
85 °C  
-40 C  
°
°
25 C  
8
7
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-53. Analog comparator hysteresis vs. VCC  
.
Low power, small hysteresis.  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
184  
Figure 37-54. Analog comparator hysteresis vs. VCC  
.
High-speed mode, large hysteresis.  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-55. Analog comparator hysteresis vs. VCC  
.
Low power, large hysteresis.  
77  
74  
71  
68  
65  
62  
59  
56  
53  
50  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
185  
Figure 37-56. Analog comparator current source vs. calibration value.  
Temperature = 25°C.  
7.4  
6.8  
6.2  
5.6  
5.0  
4.4  
3.8  
3.2  
2.6  
2.0  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
CURRCALIBA[3..0]  
Figure 37-57. Analog comparator current source vs. calibration value.  
VCC = 3.0V.  
CC  
7
6.5  
6
5.5  
5
-40 °C  
4.5  
4
25 °C  
85 °C  
105 °C  
3.5  
3
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
CURRCALIBA[3..0]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
186  
Figure 37-58. Voltage scaler INL vs. SCALEFAC.  
T = 25°C, VCC = 3.0V.  
0.050  
0.025  
0
-0.025  
-0.050  
-0.075  
-0.100  
-0.125  
-0.150  
25°C  
0
10  
20  
30  
40  
50  
60  
70  
SCALEFAC  
37.1.6 Internal 1.0V reference Characteristics  
Figure 37-59. ADC/DAC Internal 1.0V reference vs. temperature.  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
0.990  
0.988  
0.986  
1.6 V  
1.8 V  
2.2 V  
2.7 V  
3.0 V  
3.6 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
187  
37.1.7 BOD Characteristics  
Figure 37-60. BOD thresholds vs. temperature.  
BOD level = 1.6V.  
1.635  
Rising Vcc  
Falling Vcc  
1.630  
1.625  
1.620  
1.615  
1.610  
1.605  
1.600  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
Figure 37-61. BOD thresholds vs. temperature.  
BOD level = 3.0V.  
3.06  
3.05  
3.04  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
Rising Vcc  
Falling Vcc  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
188  
37.1.8 External Reset Characteristics  
Figure 37-62. Minimum Reset pin pulse width vs. VCC  
.
130  
125  
120  
115  
110  
105  
100  
95  
105 °C  
85 °C  
90  
25 °C  
-40 °C  
85  
80  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
Figure 37-63. Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 1.8V.  
72  
64  
56  
48  
40  
32  
24  
16  
8
-40 °C  
25 °C  
85 °C  
105 °C  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VRESET [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
189  
Figure 37-64. Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 3.0V.  
120  
105  
90  
75  
60  
45  
30  
15  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VRESET [V]  
Figure 37-65. Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 3.3V.  
140  
120  
100  
80  
60  
40  
-40 °C  
25 °C  
85 °C  
105 °C  
20  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VRESET [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
190  
Figure 37-66. Reset pin input threshold voltage vs. VCC.  
VIH - Reset pin read as “1”.  
2.20  
2.05  
1.90  
1.75  
1.60  
1.45  
1.30  
1.15  
1.00  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-67. Reset pin input threshold voltage vs. VCC.  
VIL - Reset pin read as “0”.  
1.75  
1.60  
1.45  
1.30  
1.15  
1.00  
0.85  
0.70  
0.55  
0.40  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
191  
37.1.9 Power-on Reset Characteristics  
Figure 37-68. Power-on reset current consumption vs. VCC  
.
BOD level = 3.0V, enabled in continuous mode.  
700  
600  
500  
400  
300  
200  
100  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.4  
0.7  
1.0  
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
VCC [V]  
Figure 37-69. Power-on reset current consumption vs. VCC  
.
BOD level = 3.0V, enabled in sampled mode.  
650  
585  
520  
455  
390  
325  
260  
195  
130  
65  
-40 °C  
25 °C  
85°C  
°
105°°C  
0
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
192  
37.1.10 Oscillator Characteristics  
37.1.10.1 Ultra Low-Power internal oscillator  
Figure 37-70. Ultra Low-Power internal oscillator frequency vs. temperature.  
32.8  
32.4  
32.0  
31.6  
31.2  
30.8  
30.4  
30.0  
29.6  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
37.1.10.2 32.768kHz Internal Oscillator  
Figure 37-71. 32.768kHz internal oscillator frequency vs. temperature.  
32.875  
32.850  
32.825  
32.800  
32.775  
32.750  
32.725  
32.700  
32.675  
32.650  
3.6 V  
3.0 V  
2.2 V  
2.7 V  
1.8 V  
1.6 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
193  
Figure 37-72. 32.768kHz internal oscillator frequency vs. calibration value.  
VCC = 3.0V, T = 25°C.  
55  
50  
45  
40  
35  
30  
25  
20  
0
26  
52  
78  
104  
130  
156  
182  
208  
234  
260  
RC32KCAL[7..0]  
37.1.10.3 2MHz Internal Oscillator  
Figure 37-73. 2MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
2.16  
2.14  
2.12  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
1.96  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
194  
Figure 37-74. 2MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator .  
2.0085  
2.0070  
2.0055  
2.0040  
2.0025  
2.0010  
1.9995  
1.9980  
1.9965  
1.9950  
3.6 V  
1.6 V  
2.2 V  
1.8 V  
3.0 V  
2.7 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
Figure 37-75. 2MHz internal oscillator CALA calibration step size.  
VCC = 3V.  
0.31 %  
0.29 %  
0.27 %  
0.25 %  
0.23 %  
0.21 %  
0.19 %  
0.17 %  
0.15 %  
-40 °C  
25 °C  
85 °C  
105 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
195  
37.1.10.4 32MHz Internal Oscillator  
Figure 37-76. 32MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
36.0  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
Figure 37-77. 32MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator.  
32.145  
32.120  
32.095  
32.070  
32.045  
32.020  
31.995  
31.970  
31.945  
31.920  
3.6 V  
1.6 V  
1.6 V  
1.8 V  
2.2 V  
2.7 V  
3.0 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
196  
Figure 37-78. 32MHz internal oscillator CALA calibration step size.  
VCC = 3.0V.  
0.38 %  
0.34 %  
0.30 %  
0.26 %  
0.22 %  
0.18 %  
0.14 %  
0.10 %  
85°C  
105°C  
25°C  
-40°C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
Figure 37-79. 32MHz internal oscillator frequency vs. CALB calibration value.  
VCC = 3.0V.  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
- 40°C  
25°C  
85°C  
105°C  
0
8
16  
24  
32  
40  
48  
56  
64  
CALB  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
197  
37.1.10.5 32MHz internal oscillator calibrated to 48MHz  
Figure 37-80. 48MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
54  
53  
52  
51  
50  
49  
48  
47  
46  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
Figure 37-81. 48MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator.  
48.25  
48.20  
48.15  
48.10  
48.05  
48.00  
47.95  
47.90  
47.85  
47.80  
3.6 V  
1.6 V  
1.8 V  
2.7 V  
2.2 V  
3.0 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
198  
Figure 37-82. 48MHz internal oscillator CALA calibration step size.  
VCC = 3.0V.  
CC  
0.34 %  
0.31 %  
0.28 %  
0.25 %  
0.22 %  
0.19 %  
0.16 %  
0.13 %  
0.10 %  
-40 °C  
25 °C  
85 °C  
105 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
37.1.11 Two-Wire Interface characteristics  
Figure 37-83. SDA hold time vs. supply voltage.  
300  
295  
290  
285  
280  
275  
270  
265  
260  
105°C  
85°C  
25°C  
- 40°C  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
Vcc [V]  
3.2  
3.3  
3.4  
3.5  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
199  
37.1.12 PDI characteristics  
Figure 37-84. Maximum PDI frequency vs. VCC  
.
34  
31  
28  
25  
22  
19  
16  
13  
10  
25 °C  
105 °C  
-40 °C  
85 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3
3.2  
3.4  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
200  
37.2 ATxmega32A4U  
37.2.1 Current consumption  
37.2.1.1 Active mode supply current  
Figure 37-85.Active supply current vs. frequency.  
fSYS = 0 - 1MHz external clock, T = 25°C.  
600  
540  
480  
420  
360  
300  
240  
180  
120  
60  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
Figure 37-86.Active supply current vs. frequency.  
fSYS = 1 - 32MHz external clock, T = 25°C.  
12  
10  
8
3.3V  
3.0V  
2.7V  
6
2.2V  
4
1.8V  
2
0
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
201  
Figure 37-87.Active mode supply current vs. VCC  
.
fSYS = 32.768kHz internal oscillator.  
270  
250  
230  
210  
190  
170  
150  
130  
110  
90  
-40 °C  
25 °C  
85 °C  
105 °C  
70  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-88.Active mode supply current vs. VCC  
.
fSYS = 1MHz external clock.  
800  
700  
600  
500  
400  
300  
200  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
202  
Figure 37-89.Active mode supply current vs. VCC  
.
fSYS = 2MHz internal oscillator.  
1600  
1400  
1200  
1000  
800  
-40 °C  
25 °C  
85 °C  
105 °C  
600  
400  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-90.Active mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator prescaled to 8MHz.  
5900  
-40 °C  
25 °C  
5400  
4900  
4400  
3900  
3400  
2900  
2400  
1900  
1400  
85 °C  
105 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
203  
Figure 37-91.Active mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator.  
5650  
5425  
5200  
4975  
4750  
4525  
4300  
4075  
3850  
3625  
3400  
-40 °C  
25 °C  
85 °C  
105 °C  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
37.2.1.2 Idle mode supply current  
Figure 37-92.Idle mode supply current vs. frequency.  
fSYS = 0 - 1MHz external clock, T = 25°C.  
140  
120  
100  
80  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
60  
40  
20  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
Frequency [MHz]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
204  
Figure 37-93.Idle mode supply current vs. frequency.  
fSYS = 1 - 32MHz external clock, T = 25°C.  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.3V  
3.0V  
2.7V  
2.2V  
1.8V  
0.5  
0
0
4
8
12  
16  
20  
24  
28  
32  
Frequency [MHz]  
Figure 37-94. Idle mode supply current vs. VCC  
.
fSYS = 32.768kHz internal oscillator.  
35  
34  
33  
32  
31  
30  
29  
28  
27  
105 °C  
-40 °C  
85 °C  
25 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3
3.2  
3.4  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
205  
Figure 37-95. Idle mode supply current vs. VCC  
.
fSYS = 1MHz external clock.  
158  
146  
134  
122  
110  
98  
105 °C  
85 °C  
25 °C  
-40 °C  
86  
74  
62  
50  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-96. Idle mode supply current vs. VCC  
.
fSYS = 2MHz internal oscillator.  
410  
385  
360  
335  
310  
285  
260  
235  
210  
185  
160  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
206  
Figure 37-97. Idle mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator prescaled to 8MHz.  
2000  
-40 °C  
25 °C  
1800  
1600  
1400  
1200  
1000  
800  
85 °C  
105 °C  
600  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-98. Idle mode current vs. VCC  
.
fSYS = 32MHz internal oscillator.  
5650  
5425  
5200  
4975  
4750  
4525  
4300  
4075  
3850  
3625  
3400  
-40 °C  
25 °C  
85 °C  
105 °C  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
207  
37.2.1.3 Power-down mode supply current  
Figure 37-99. Power-down mode supply current vs. temperature.  
All functions disabled.  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
Figure 37-100. Power-down mode supply current vs. VCC  
.
All functions disabled.  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
105 °C  
85 °C  
25 °C  
-
40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
208  
Figure 37-101. Power-down mode supply current vs. VCC  
.
Watchdog and sampled BOD enabled.  
5.1  
4.6  
4.1  
3.6  
3.1  
2.6  
2.1  
1.6  
1.1  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
37.2.1.4 Power-save mode supply current  
Figure 37-102. Power-save mode supply current vs.VCC  
.
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC.  
0.9  
Normal mode  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Low-power mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
209  
37.2.1.5 Standby mode supply current  
Figure 37-103. Standby supply current vs. VCC  
.
Standby, fSYS = 1MHz.  
12.5  
11.5  
10.5  
9.5  
105 °C  
85 °C  
8.5  
25 °C  
-40 °C  
7.5  
6.5  
5.5  
4.5  
3.5  
2.5  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-104. Standby supply current vs. VCC  
.
25°C, running from different crystal oscillators.  
480  
440  
400  
360  
320  
280  
240  
200  
160  
16MHz  
12MHz  
8MHz  
2MHz  
0.454MHz  
3.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.6  
VCC[V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
210  
37.2.2 I/O Pin Characteristics  
37.2.2.1 Pull-up  
Figure 37-105. I/O pin pull-up resistor current vs. input voltage.  
VCC = 1.8V.  
72  
64  
56  
48  
40  
32  
24  
16  
8
-40 °C  
25 °C  
85 °C  
105 °C  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VPIN [V]  
Figure 37-106. I/O pin pull-up resistor current vs. input voltage.  
VCC = 3.0V.  
120  
105  
90  
75  
60  
45  
30  
15  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VPIN [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
211  
Figure 37-107. I/O pin pull-up resistor current vs. input voltage.  
VCC = 3.3V.  
135  
120  
105  
90  
75  
60  
45  
30  
15  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VPIN [V]  
37.2.2.2 Output Voltage vs. Sink/Source Current  
Figure 37-108. I/O pin output voltage vs. source current.  
VCC = 1.8V.  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
-40 °C  
25 °C  
0.6  
0.4  
0.2  
0.0  
105 °C  
85 °C  
-10  
-9  
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
IPIN [mA]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
212  
Figure 37-109. I/O pin output voltage vs. source current.  
VCC = 3.0V.  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
-40°C  
0.9  
25 °C  
85 °C  
0.6  
105 °C  
0.3  
0.0  
-32  
-28  
-24  
-20  
-16  
-12  
-8  
-4  
0
IPIN [mA]  
Figure 37-110. I/O pin output voltage vs. source current.  
VCC = 3.3V.  
3.3  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
-40 °C  
1.2  
0.9  
0.6  
0.3  
0.0  
25 °C  
105 °C  
85 °C  
-32  
-28  
-24  
-20  
-16  
-12  
-8  
-4  
0
IPIN [mA]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
213  
Figure 37-111. I/O pin output voltage vs. source current.  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.6V  
3.3V  
3.0V  
2.7V  
2.3V  
1.8V  
-24  
-21  
-18  
-15  
-12  
-9  
-6  
-3  
0
IPIN [mA]  
Figure 37-112. I/O pin output voltage vs. sink current.  
VCC = 1.8V.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
IPIN [mA]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
214  
Figure 37-113. I/O pin output voltage vs. sink current.  
VCC = 3.0V.  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IPIN [mA]  
Figure 37-114. I/O pin output voltage vs. sink current.  
VCC = 3.3V.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
4
8
12  
16  
20  
24  
28  
32  
IPIN [mA]  
Figure 37-115. I/O pin output voltage vs. sink current.  
1.5  
1.8V  
1.2  
0.9  
0.6  
0.3  
0
2.3V  
2.7V  
3.0V  
3.3V  
3.6V  
0
5
10  
15  
20  
25  
30  
IPIN [mA]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
215  
37.2.2.3 Thresholds and Hysteresis  
Figure 37-116. I/O pin input threshold voltage vs. VCC.  
T = 25°C.  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VIH  
VIL  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Vcc [V]  
Figure 37-117. I/O pin input threshold voltage vs. VCC  
.
VIH I/O pin read as “1”.  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
216  
Figure 37-118. I/O pin input threshold voltage vs. VCC  
.
VIL I/O pin read as “0”.  
1.75  
1.60  
1.45  
1.30  
1.15  
1.00  
0.85  
0.70  
0.55  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-119. I/O pin input hysteresis vs. VCC  
.
0.32  
0.29  
0.26  
0.23  
-40 °C  
25 °C  
0.20  
0.17  
85 °C  
0.14  
0.11  
105 °C  
0.08  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
217  
37.2.3 ADC Characteristics  
Figure 37-120. INL error vs. external VREF  
.
T = 25°C, VCC = 3.6V, external reference.  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
Differential Signed  
Single-ended Unsigned  
0.9  
0.8  
0.7  
Single-ended Signed  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
Figure 37-121. INL error vs. sample rate.  
T = 25°C, VCC = 3.6V, VREF = 3.0V external.  
1.4  
1.35  
1.3  
Differential Mode  
1.25  
1.2  
Single-ended Unsigned  
1.15  
1.1  
1.05  
1
Single-ended Signed  
0.95  
0.9  
500  
650  
800  
950  
1100  
1250  
1400  
1550  
1700  
1850  
2000  
ADC Sample Rate [kSPS]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
218  
Figure 37-122. INL error vs. input code  
2.0  
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
Figure 37-123. DNL error vs. external VREF  
.
T = 25°C, VCC = 3.6V, external reference.  
0.9  
0.88  
0.86  
0.84  
0.82  
0.8  
Differential Mode  
Single-ended Signed  
0.78  
0.76  
0.74  
0.72  
Single-ended Unsigned  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
219  
Figure 37-124. DNL error vs. sample rate.  
T = 25°C, VCC = 3.6V, VREF = 3.0V external.  
0.9  
0.89  
0.88  
0.87  
0.86  
0.85  
Differential Signed  
Single-ended Signed  
0.84  
0.83  
0.82  
0.81  
0.8  
Single-ended Unsigned  
0.79  
500  
650  
800  
950  
1100  
1250  
1400  
1550  
1700  
1850  
2000  
ADC Sample Rate [kSPS]  
Figure 37-125. DNL error vs. input code.  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC Input Code  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
220  
Figure 37-126. Gain error vs. VREF  
.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.  
3
Single-ended Signed  
Differential Mode  
2
1
0
-1  
-2  
-3  
-4  
Single-ended Unsigned  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
REF [V]  
V
Figure 37-127. Gain error vs. VCC  
.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.  
2.2  
1.9  
1.6  
1.3  
1
Single-ended Signed  
Differential Mode  
0.7  
0.4  
0.1  
-0.2  
-0.5  
Single-ended Unsigned  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
221  
Figure 37-128. Offset error vs. VREF  
.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.  
-1  
-1.1  
-1.2  
-1.3  
-1.4  
-1.5  
-1.6  
-1.7  
-1.8  
-1.9  
-2  
Differential Mode  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
REF [V]  
V
Figure 37-129. Gain error vs. temperature.  
VCC = 3.0V, VREF = external 2.0V.  
4
3
2
1
0
Single-ended signed mode  
Differential mode  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
-1  
-2  
-3  
-4  
Single-ended unsigned mode  
Temperature [ºC]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
222  
Figure 37-130. Offset error vs. VCC  
.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
Differential Signed  
-1.1  
-1.2  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-131. Noise vs. VREF  
.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.  
1.3  
Single-ended Signed  
1.15  
1
Single-ended Unsigned  
0.85  
0.7  
0.55  
0.4  
Differential Signed  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
223  
Figure 37-132. Noise vs. VCC  
.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.  
1.3  
1.2  
1.1  
1
Single-ended Signed  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
Single-ended Unsigned  
Differential Signed  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
37.2.4 DAC Characteristics  
Figure 37-133. DAC INL error vs. VREF  
.
VCC = 3.6V.  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-40°C  
25°C  
85°C  
105°C  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
224  
Figure 37-134. DNL error vs. VREF  
.
VCC = 3.6V.  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
- 40°C  
25ºC  
85°C  
105°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
Figure 37-135. DAC noise vs. temperature.  
VCC = 3.0V, VREF = 2.4V .  
0.185  
0.180  
0.175  
0.170  
0.165  
0.160  
0.155  
0.150  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [ºC]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
225  
37.2.5 Analog Comparator Characteristics  
Figure 37-136. Analog comparator hysteresis vs. VCC  
.
High-speed, small hysteresis.  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
105 °C  
85 °C  
-40 C  
°
°
25 C  
8
7
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-137. Analog comparator hysteresis vs. VCC  
.
Low power, small hysteresis.  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
226  
Figure 37-138. Analog comparator hysteresis vs. VCC  
.
High-speed mode, large hysteresis.  
42  
40  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-139. Analog comparator hysteresis vs. VCC  
.
Low power, large hysteresis.  
77  
74  
71  
68  
65  
62  
59  
56  
53  
50  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
227  
Figure 37-140. Analog comparator current source vs. calibration value.  
Temperature = 25°C.  
7.4  
6.8  
6.2  
5.6  
5.0  
4.4  
3.8  
3.2  
2.6  
2.0  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
CURRCALIBA[3..0]  
Figure 37-141. Analog comparator current source vs. calibration value.  
VCC = 3.0V.  
CC  
7
6.5  
6
5.5  
5
-40 °C  
4.5  
4
25 °C  
85 °C  
105 °C  
3.5  
3
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
CURRCALIBA[3..0]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
228  
Figure 37-142. Voltage scaler INL vs. SCALEFAC.  
T = 25°C, VCC = 3.0V.  
0.050  
0.025  
0
-0.025  
-0.050  
-0.075  
-0.100  
-0.125  
-0.150  
25°C  
0
10  
20  
30  
40  
50  
60  
70  
SCALEFAC  
37.2.6 Internal 1.0V reference Characteristics  
Figure 37-143. ADC/DAC Internal 1.0V reference vs. temperature.  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
0.990  
0.988  
0.986  
1.6 V  
1.8 V  
2.2 V  
2.7 V  
3.0 V  
3.6 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
229  
37.2.7 BOD Characteristics  
Figure 37-144. BOD thresholds vs. temperature.  
BOD level = 1.6V.  
1.635  
Rising Vcc  
Falling Vcc  
1.630  
1.625  
1.620  
1.615  
1.610  
1.605  
1.600  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
Figure 37-145. BOD thresholds vs. temperature.  
BOD level = 3.0V.  
3.06  
3.05  
3.04  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
Rising Vcc  
Falling Vcc  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
230  
37.2.8 External Reset Characteristics  
Figure 37-146. Minimum Reset pin pulse width vs. VCC  
.
130  
125  
120  
115  
110  
105  
100  
95  
105 °C  
85 °C  
90  
25 °C  
-40 °C  
85  
80  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
Figure 37-147. Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 1.8V.  
72  
64  
56  
48  
40  
32  
24  
16  
8
-40 °C  
25 °C  
85 °C  
105 °C  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VRESET [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
231  
Figure 37-148. Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 3.0V.  
120  
105  
90  
75  
60  
45  
30  
15  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VRESET [V]  
Figure 37-149. Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 3.3V.  
140  
120  
100  
80  
60  
40  
-40 °C  
25 °C  
85 °C  
105 °C  
20  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VRESET [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
232  
Figure 37-150. Reset pin input threshold voltage vs. VCC.  
VIH - Reset pin read as “1”.  
2.20  
2.05  
1.90  
1.75  
1.60  
1.45  
1.30  
1.15  
1.00  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-151. Reset pin input threshold voltage vs. VCC.  
VIL - Reset pin read as “0”.  
1.75  
1.60  
1.45  
1.30  
1.15  
1.00  
0.85  
0.70  
0.55  
0.40  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
233  
37.2.9 Power-on Reset Characteristics  
Figure 37-152. Power-on reset current consumption vs. VCC  
.
BOD level = 3.0V, enabled in continuous mode.  
700  
600  
500  
400  
300  
200  
100  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.4  
0.7  
1.0  
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
VCC [V]  
Figure 37-153. Power-on reset current consumption vs. VCC  
.
BOD level = 3.0V, enabled in sampled mode.  
650  
585  
520  
455  
390  
325  
260  
195  
130  
65  
-40 °C  
25 °C  
85°C  
°
105°°C  
0
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
234  
37.2.10 Oscillator Characteristics  
37.2.10.1 Ultra Low-Power internal oscillator  
Figure 37-154. Ultra Low-Power internal oscillator frequency vs. temperature.  
32.8  
32.4  
32.0  
31.6  
31.2  
30.8  
30.4  
30.0  
29.6  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
37.2.10.2 32.768kHz Internal Oscillator  
Figure 37-155. 32.768kHz internal oscillator frequency vs. temperature.  
32.875  
32.850  
32.825  
32.800  
32.775  
32.750  
32.725  
32.700  
32.675  
32.650  
3.6 V  
3.0 V  
2.2 V  
2.7 V  
1.8 V  
1.6 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
235  
Figure 37-156. 32.768kHz internal oscillator frequency vs. calibration value.  
VCC = 3.0V, T = 25°C.  
55  
50  
45  
40  
35  
30  
25  
20  
0
26  
52  
78  
104  
130  
156  
182  
208  
234  
260  
RC32KCAL[7..0]  
37.2.10.3 2MHz Internal Oscillator  
Figure 37-157. 2MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
2.16  
2.14  
2.12  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
1.96  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
236  
Figure 37-158. 2MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator .  
2.0085  
2.0070  
2.0055  
2.0040  
2.0025  
2.0010  
1.9995  
1.9980  
1.9965  
1.9950  
3.6 V  
1.6 V  
2.2 V  
1.8 V  
3.0 V  
2.7 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
Figure 37-159. 2MHz internal oscillator CALA calibration step size.  
VCC = 3V.  
0.31 %  
0.29 %  
0.27 %  
0.25 %  
0.23 %  
0.21 %  
0.19 %  
0.17 %  
0.15 %  
-40 °C  
25 °C  
85 °C  
105 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
237  
37.2.10.4 32MHz Internal Oscillator  
Figure 37-160. 32MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
36.0  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
Figure 37-161. 32MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator.  
32.145  
32.120  
32.095  
32.070  
32.045  
32.020  
31.995  
31.970  
31.945  
31.920  
3.6 V  
1.6 V  
1.6 V  
1.8 V  
2.2 V  
2.7 V  
3.0 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
238  
Figure 37-162. 32MHz internal oscillator CALA calibration step size.  
VCC = 3.0V.  
0.38 %  
0.34 %  
0.30 %  
0.26 %  
0.22 %  
0.18 %  
0.14 %  
0.10 %  
85°C  
105°C  
25°C  
-40°C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
Figure 37-163. 32MHz internal oscillator frequency vs. CALB calibration value.  
VCC = 3.0V.  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
- 40°C  
25°C  
85°C  
105°C  
0
8
16  
24  
32  
40  
48  
56  
64  
CALB  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
239  
37.2.10.5 32MHz internal oscillator calibrated to 48MHz  
Figure 37-164. 48MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
54  
53  
52  
51  
50  
49  
48  
47  
46  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
Figure 37-165. 48MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator.  
48.25  
48.20  
48.15  
48.10  
48.05  
48.00  
47.95  
47.90  
47.85  
47.80  
3.6 V  
1.6 V  
1.8 V  
2.7 V  
2.2 V  
3.0 V  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
240  
Figure 37-166. 48MHz internal oscillator CALA calibration step size.  
VCC = 3.0V.  
0.34 %  
0.31 %  
0.28 %  
0.25 %  
0.22 %  
0.19 %  
0.16 %  
0.13 %  
0.10 %  
-40 °C  
25 °C  
85 °C  
105 °C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
37.2.11 Two-Wire Interface characteristics  
Figure 37-167. SDA hold time vs. supply voltage.  
300  
295  
290  
285  
280  
275  
270  
265  
260  
105°C  
85°C  
25°C  
- 40°C  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Vcc [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
241  
37.2.12 PDI characteristics  
Figure 37-168. Maximum PDI frequency vs. VCC  
.
34  
31  
28  
25  
22  
19  
16  
13  
10  
25 °C  
105 °C  
-40 °C  
85 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3
3.2  
3.4  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
242  
37.3 ATxmega64A4U  
37.3.1 Current consumption  
37.3.1.1 Active mode supply current  
Figure 37-169. Active supply current vs. frequency.  
fSYS = 0 - 1MHz external clock, T = 25°C.  
700  
600  
500  
400  
300  
200  
100  
0
3.6V  
3.0V  
2.7V  
2.2V  
1.8V  
1.6V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
Figure 37-170. Active supply current vs. frequency.  
fSYS = 1 - 32MHz external clock, T = 25°C.  
12  
10  
8
3.6V  
3.0V  
2.7V  
6
4
2.2V  
2
1.8V  
1.6V  
0
0
4
8
12  
16  
Frequency [MHz]  
20  
24  
28  
32  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
243  
Figure 37-171. Active mode supply current vs. VCC  
.
fSYS = 32.768kHz internal oscillator.  
250  
230  
210  
190  
170  
150  
130  
110  
90  
- 40°C  
25°C  
85°C  
105°C  
70  
50  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-172. Active mode supply current vs. VCC  
.
fSYS = 1MHz external clock.  
680  
630  
580  
530  
480  
430  
380  
330  
280  
230  
180  
- 40°C  
25°C  
85°C  
105°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
244  
Figure 37-173. Active mode supply current vs. VCC  
.
fSYS = 2MHz internal oscillator.  
1300  
1200  
1100  
1000  
900  
- 40°C  
25°C  
85°C  
105°C  
800  
700  
600  
500  
400  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-174. Active mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator prescaled to 8MHz.  
4.8  
4.4  
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
- 40°C  
25°C  
85°C  
105°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
245  
Figure 37-175. Active mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator.  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
- 40°C  
25°C  
85°C  
105°C  
9.0  
8.5  
8.0  
7.5  
7.0  
2.7  
2.8  
2.9  
3.0  
3.1  
VCC [V]  
3.2  
3.3  
3.4  
3.5  
3.6  
37.3.1.2 Idle mode supply current  
Figure 37-176. Idle mode supply current vs. frequency.  
fSYS = 0 - 1MHz external clock, T = 25°C.  
150  
135  
120  
105  
90  
3.6 V  
3.0 V  
2.7 V  
75  
2.2 V  
60  
1.8 V  
1.6 V  
45  
30  
15  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
246  
Figure 37-177. Idle mode supply current vs. frequency.  
fSYS = 1 - 32MHz external clock, T = 25°C.  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.0  
1.8 V  
0.5  
0.0  
1.6 V  
0
4
8
12  
16  
20  
24  
28  
32  
Figure 37-178. Idle mode supply current vs. VCC  
.
fSYS = 32.768kHz internal oscillator.  
SYS  
34.75  
34.00  
33.25  
32.50  
31.75  
31.00  
30.25  
29.50  
28.75  
28.00  
105°C  
- 40°C  
85°C  
25°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
247  
Figure 37-179. Idle mode supply current vs. VCC  
.
fSYS = 1MHz external clock.  
153  
141  
129  
117  
105  
93  
105°C  
85°C  
25°C  
- 40°C  
81  
69  
57  
45  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
Figure 37-180. Idle mode supply current vs. VCC  
.
fSYS = 2MHz internal oscillator.  
400  
375  
350  
325  
300  
275  
250  
225  
200  
175  
150  
- 40°C  
25°C  
85°C  
105°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
248  
Figure 37-181. Idle mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator prescaled to 8MHz.  
1850  
- 40°C  
25°C  
1700  
1550  
1400  
1250  
1100  
950  
85°C  
105°C  
800  
650  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-182. Idle mode current vs. VCC  
.
fSYS = 32MHz internal oscillator.  
5.1  
- 40°C  
25°C  
85°C  
105°C  
4.9  
4.7  
4.5  
4.3  
4.1  
3.9  
3.7  
3.5  
3.3  
3.1  
2.7  
2.8  
2.9  
3.0  
3.1  
VCC [V]  
3.2  
3.3  
3.4  
3.5  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
249  
37.3.1.3 Power-down mode supply current  
Figure 37-183. Power-down mode supply current vs. temperature.  
All functions disabled.  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
Figure 37-184. Power-down mode supply current vs. VCC  
.
All functions disabled.  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
105°C  
85°C  
25°C  
- 40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
250  
Figure 37-185. Power-down mode supply current vs. VCC  
.
Watchdog and sampled BOD enabled.  
4.10  
3.80  
3.50  
3.20  
2.90  
2.60  
2.30  
2.00  
1.70  
1.40  
1.10  
105°C  
85°C  
25°C  
- 40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
37.3.1.4 Power-save mode supply current  
Figure 37-186. Power-save mode supply current vs.VCC  
.
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC.  
0.9  
Normal mode  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Low-power mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
251  
37.3.1.5 Standby mode supply current  
Figure 37-187. Standby supply current vs. VCC  
.
Standby, fSYS = 1MHz.  
12.5  
11.5  
10.5  
9.5  
105 °C  
85 °C  
8.5  
25 °C  
-40 °C  
7.5  
6.5  
5.5  
4.5  
3.5  
2.5  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-188. Standby supply current vs. VCC  
.
25°C, running from different crystal oscillators.  
480  
16MHz  
12MHz  
440  
400  
360  
320  
280  
240  
200  
160  
8MHz  
2MHz  
0.454MHz  
3.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
252  
37.3.2 I/O Pin Characteristics  
37.3.2.1 Pull-up  
Figure 37-189. I/O pin pull-up resistor current vs. input voltage.  
VCC = 1.8V.  
70  
60  
50  
40  
30  
20  
10  
0
- 40°C  
25°C  
85°C  
105°C  
0.0  
0.2  
0.4  
0.6  
0.8  
VPIN [V]  
1.0  
1.2  
1.4  
1.6  
1.8  
Figure 37-190. I/O pin pull-up resistor current vs. input voltage.  
VCC = 3.0V.  
120  
105  
90  
75  
60  
45  
30  
15  
0
- 40°C  
25°C  
85°C  
105°C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VPIN [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
253  
Figure 37-191. I/O pin pull-up resistor current vs. input voltage.  
VCC = 3.3V.  
135  
120  
105  
90  
75  
60  
45  
30  
15  
0
- 40°C  
25°C  
85°C  
105°C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VPIN [V]  
37.3.2.2 Output Voltage vs. Sink/Source Current  
Figure 37-192. I/O pin output voltage vs. source current.  
VCC = 1.8V.  
1.9  
1.7  
1.5  
1.3  
- 40°C  
1.1  
25°C  
0.9  
105°C  
85°C  
0.7  
0.5  
-9  
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
IPIN [mA]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
254  
Figure 37-193. I/O pin output voltage vs. source current.  
VCC = 3.0V.  
3.2  
2.8  
2.4  
2.0  
1.6  
- 40°C  
1.2  
25°C  
85°C  
0.8  
0.4  
0.0  
105°C  
-30  
-27  
-24  
-21  
-18  
-15  
-12  
-9  
-6  
-3  
0
IPIN [mA]  
Figure 37-194. I/O pin output voltage vs. source current.  
VCC = 3.3V.  
3.6  
3.2  
2.8  
2.4  
- 40°C  
2.0  
1.6  
25°C  
1.2  
105°C  
0.8  
85°C  
0.4  
0.0  
-30  
-27  
-24  
-21  
-18  
-15  
-12  
-9  
-6  
-3  
0
IPIN [mA]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
255  
Figure 37-195. I/O pin output voltage vs. source current.  
3.7  
3.3  
2.9  
2.5  
2.1  
1.7  
1.3  
0.9  
0.5  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
1.8 V  
1.6 V  
-24  
-21  
-18  
-15  
-12  
-9  
-6  
-3  
0
IPIN [mA]  
Figure 37-196. I/O pin output voltage vs. sink current.  
VCC = 1.8V.  
1.0  
0.9  
0.8  
0.7  
85°C  
25°C  
- 40°C  
105°C  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
IPIN [mA]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
256  
Figure 37-197. I/O pin output voltage vs. sink current.  
VCC = 3.0V.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105°C  
85°C  
25°C  
- 40°C  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
IPIN [mA]  
Figure 37-198. I/O pin output voltage vs. sink current.  
VCC = 3.3V.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105°C  
85°C  
25°C  
- 40°C  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
IPIN [mA]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
257  
Figure 37-199. I/O pin output voltage vs. sink current.  
1.50  
1.6 V  
1.8 V  
1.35  
1.20  
1.05  
0.90  
0.75  
0.60  
0.45  
0.30  
0.15  
0.00  
2.7 V  
3.0 V  
3.3 V  
3.6 V  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
IPIN [mA]  
37.3.2.3 Thresholds and Hysteresis  
Figure 37-200. I/O pin input threshold voltage vs. VCC.  
T = 25°C.  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VIH  
VIL  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
258  
Figure 37-201. I/O pin input threshold voltage vs. VCC  
.
VIH I/O pin read as “1”.  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
Figure 37-202. I/O pin input threshold voltage vs. VCC  
.
VIL I/O pin read as “0”.  
1.75  
1.60  
1.45  
1.30  
1.15  
1.00  
0.85  
0.70  
0.55  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
259  
Figure 37-203. I/O pin input hysteresis vs. VCC  
.
0.32  
0.29  
0.26  
0.23  
-40 °C  
25 °C  
0.20  
0.17  
85 °C  
0.14  
0.11  
105 °C  
0.08  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
37.3.3 ADC Characteristics  
Figure 37-204. INL error vs. external VREF  
.
T = 25°C, VCC = 3.6V, external reference.  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
Single-ended unsigned mode  
Differential mode  
Single-ended signed mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
260  
Figure 37-205. INL error vs. sample rate.  
T = 25°C, VCC = 2.7V, VREF = 1.0V external.  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Single-ended signed mode  
Differential mode  
Single-ended signed mode  
500  
650  
800  
950  
1100  
1250  
1400  
1550  
1700  
1850  
2000  
ADC sample rate [kSps]  
Figure 37-206. INL error vs. input code  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
261  
Figure 37-207. DNL error vs. external VREF  
.
T = 25°C, VCC = 3.6V, external reference.  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
Single-ended unsigned mode  
Differential mode  
Single-ended signed mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
Figure 37-208. DNL error vs. sample rate.  
T = 25°C, VCC = 2.7V, VREF = 1.0V external.  
0.43  
0.41  
0.38  
0.36  
0.33  
0.31  
0.28  
0.26  
0.23  
Single-ended unsigned mode  
Differential mode  
Single-ended signed mode  
500  
650  
800  
950  
1100  
1250  
1400  
1550  
1700  
1850  
2000  
ADC sample rate [kSps]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
262  
Figure 37-209. DNL error vs. input code.  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
Figure 37-210. Gain error vs. VREF  
.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.  
12  
10  
8
Single-ended signed mode  
Single-ended unsigned mode  
6
4
2
Differential mode  
0
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
263  
Figure 37-211. Gain error vs. VCC  
.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.  
7
6
5
4
3
2
1
0
Single-ended signed mode  
Single-ended unsigned mode  
Differential mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
Figure 37-212. Offset error vs. VREF  
.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.  
-1.0  
-1.1  
-1.1  
-1.2  
-1.2  
-1.3  
-1.3  
-1.4  
-1.4  
-1.5  
-1.5  
Differential mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
264  
Figure 37-213. Gain error vs. temperature.  
VCC = 2.7V, VREF = external 1.0V.  
8
7
Single-ended signed mode  
6
5
4
3
2
1
0
Single-ended unsigned mode  
Differential mode  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [oC]  
Figure 37-214. Offset error vs. VCC  
.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1.0  
-1.1  
Differential mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
265  
Figure 37-215. Noise vs. VREF  
.
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps.  
0.9  
Single-ended signed mode  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Single-ended unsigend mode  
Differential mode  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
Figure 37-216. Noise vs. VCC  
.
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps.  
0.8  
Single-ended signed mode  
Single-ended unsigned mode  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Differential mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
266  
37.3.4 DAC Characteristics  
Figure 37-217. DAC INL error vs. VREF  
.
VCC = 3.6V.  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
- 40°C  
25°C  
85°C  
105°C  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
Figure 37-218. DNL error vs. VREF  
.
VCC = 3.6V.  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
- 40°C  
25°C  
85°C  
105°C  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
Vref [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
267  
Figure 37-219. DAC noise vs. temperature.  
VCC = 2.7V, VREF = 1.0V .  
0.178  
0.176  
0.174  
0.172  
0.170  
0.168  
0.166  
0.164  
0.162  
0.160  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [oC]  
37.3.5 Analog Comparator Characteristics  
Figure 37-220. Analog comparator hysteresis vs. VCC  
.
High-speed, small hysteresis.  
25  
105°C  
85°C  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
25°C  
- 40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
268  
Figure 37-221. Analog comparator hysteresis vs. VCC  
.
Low power, small hysteresis.  
36  
34  
32  
30  
28  
26  
24  
22  
20  
105°C  
85°C  
25°C  
- 40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-222. Analog comparator hysteresis vs. VCC  
.
High-speed mode, large hysteresis.  
47  
45  
43  
41  
39  
37  
35  
33  
31  
29  
27  
105°C  
85°C  
25°C  
- 40°C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
269  
Figure 37-223. Analog comparator hysteresis vs. VCC  
.
Low power, large hysteresis.  
76  
73  
70  
67  
64  
61  
58  
55  
52  
49  
46  
105°C  
85°C  
25°C  
- 40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-224. Analog comparator current source vs. calibration value.  
Temperature = 25°C.  
8
7
6
5
4
3
2
3.6V  
3.0V  
2.7V  
2.2V  
1.8V  
1.6V  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
CURRCALIBA[3..0]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
270  
Figure 37-225. Analog comparator current source vs. calibration value.  
VCC = 3.0V.  
7.2  
6.8  
6.4  
6.0  
5.6  
5.2  
4.8  
4.4  
4.0  
3.6  
- 40°C  
25°C  
85°C  
105°C  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CURRCALIBA[3..0]  
Figure 37-226. Voltage scaler INL vs. SCALEFAC.  
T = 25°C, VCC = 3.0V.  
0.15  
0.12  
0.09  
0.06  
0.03  
0.00  
-0.03  
-0.06  
-0.09  
-0.12  
-0.15  
0
8
16  
24  
32  
40  
48  
56  
64  
SCALEFAC  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
271  
37.3.6 Internal 1.0V reference Characteristics  
Figure 37-227. ADC/DAC Internal 1.0V reference vs. temperature.  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
1.6 V  
1.8 V  
2.2 V  
2.7 V  
3.0 V  
3.6 V  
-45  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
37.3.7 BOD Characteristics  
Figure 37-228. BOD thresholds vs. temperature.  
BOD level = 1.6V.  
1.644  
1.641  
1.638  
1.635  
1.632  
1.629  
1.626  
1.623  
1.620  
1.617  
Rising Vcc  
Falling Vcc  
-45  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
272  
Figure 37-229. BOD thresholds vs. temperature.  
BOD level = 3.0V.  
3.08  
3.07  
3.06  
3.05  
3.04  
3.03  
3.02  
3.01  
3.00  
Rising Vcc  
Falling Vcc  
-45  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
37.3.8 External Reset Characteristics  
Figure 37-230. Minimum Reset pin pulse width vs. VCC  
.
135  
130  
125  
120  
115  
110  
105  
100  
95  
105°C  
85°C  
90  
25°C  
- 40°C  
85  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
273  
Figure 37-231. Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 1.8V.  
80  
70  
60  
50  
40  
30  
20  
10  
0
- 40°C  
25°C  
85°C  
105°C  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
VRESET [V]  
Figure 37-232. Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 3.0V.  
120  
105  
90  
75  
60  
45  
30  
15  
0
- 40°C  
25°C  
85°C  
105°C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
VRESET [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
274  
Figure 37-233. Reset pin pull-up resistor current vs. reset pin voltage.  
VCC = 3.3V.  
150  
135  
120  
105  
90  
75  
60  
45  
- 40°C  
25°C  
30  
15  
85°C  
105°C  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
VRESET [V]  
Figure 37-234. Reset pin input threshold voltage vs. VCC.  
VIH - Reset pin read as “1”.  
2.2  
2.1  
1.9  
1.8  
1.6  
1.5  
- 40°C  
25°C  
85°C  
105°C  
1.3  
-
1.2  
1.0  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
275  
Figure 37-235. Reset pin input threshold voltage vs. VCC.  
VIL - Reset pin read as “0”.  
1.75  
1.60  
1.45  
1.30  
1.15  
1.00  
0.85  
0.70  
0.55  
0.40  
- 40°C  
25°C  
85°C  
105°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
37.3.9 Power-on Reset Characteristics  
Figure 37-236. Power-on reset current consumption vs. VCC  
.
BOD level = 3.0V, enabled in continuous mode.  
300  
250  
200  
150  
100  
50  
105°C  
85°C  
25°C  
- 40°C  
0
0.4  
0.7  
1.0  
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
V
[V]  
CC  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
276  
Figure 37-237. Power-on reset current consumption vs. VCC  
.
BOD level = 3.0V, enabled in sampled mode.  
300  
250  
200  
150  
100  
50  
105°C  
85°C  
25°C  
- 40°C  
0
0.4  
0.7  
1.0  
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
V
[V]  
CC  
37.3.10 Oscillator Characteristics  
37.3.10.1 Ultra Low-Power internal oscillator  
Figure 37-238. Ultra Low-Power internal oscillator frequency vs. temperature.  
34.0  
33.7  
33.4  
33.1  
32.8  
32.5  
32.2  
31.9  
31.6  
31.3  
31.0  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
277  
37.3.10.2 32.768kHz Internal Oscillator  
Figure 37-239. 32.768kHz internal oscillator frequency vs. temperature.  
32.85  
32.82  
32.79  
32.76  
32.73  
32.70  
32.67  
32.64  
32.61  
32.58  
32.55  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
Figure 37-240. 32.768kHz internal oscillator frequency vs. calibration value.  
VCC = 3.0V, T = 25°C.  
53  
50  
47  
44  
41  
38  
35  
32  
29  
26  
23  
0
30  
60  
90  
120  
150  
180  
210  
240  
270  
RC32KCAL[7..0]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
278  
37.3.10.3 2MHz Internal Oscillator  
Figure 37-241. 2MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
2.12  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
1.96  
1.94  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
Figure 37-242. 2MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator .  
2.010  
2.008  
2.006  
2.004  
2.002  
2.000  
1.998  
1.996  
1.994  
1.992  
1.990  
1.988  
3.6 V  
1.8 V  
2.2 V  
3.0 V  
1.6 V  
2.7 V  
-45  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
279  
Figure 37-243. 2MHz internal oscillator CALA calibration step size.  
VCC = 3V.  
0.28 %  
0.26 %  
0.24 %  
0.22 %  
0.20 %  
0.18 %  
0.16 %  
0.14 %  
0.12 %  
- 40°C  
25°C  
105°C  
85°C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
37.3.10.4 32MHz Internal Oscillator  
Figure 37-244. 32MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
35.5  
35.0  
34.5  
34.0  
33.5  
33.0  
32.5  
32.0  
31.5  
31.0  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
280  
Figure 37-245. 32MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator.  
32.12  
32.08  
32.04  
32.00  
3.6 V  
31.96  
31.92  
3.0 V  
31.88  
31.84  
31.80  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-30  
-45  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
Figure 37-246. 32MHz internal oscillator CALA calibration step size.  
VCC = 3.0V.  
0.34 %  
0.31 %  
0.28 %  
0.25 %  
0.22 %  
0.19 %  
0.16 %  
0.13 %  
0.10 %  
- 40°C  
85°C  
105°C  
25°C  
0
15  
30  
45  
60  
CALA  
75  
90  
105  
120  
135  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
281  
Figure 37-247. 32MHz internal oscillator CALB calibration step size.  
VCC = 3.0V  
2.80 %  
2.60 %  
2.40 %  
2.20 %  
2.00 %  
1.80 %  
1.60 %  
1.40 %  
1.20 %  
1.00 %  
0.80 %  
- 40°C  
25°C  
85°C  
105°C  
0
8
16  
24  
32  
40  
48  
56  
64  
CALB  
37.3.10.5 32MHz internal oscillator calibrated to 48MHz  
Figure 37-248. 48MHz internal oscillator frequency vs. temperature.  
DFLL disabled.  
53.4  
52.6  
51.8  
51.0  
50.2  
49.4  
48.6  
47.8  
47.0  
46.2  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
282  
Figure 37-249. 48MHz internal oscillator frequency vs. temperature.  
DFLL enabled, from the 32.768kHz internal oscillator.  
48.15  
48.10  
48.05  
48.00  
47.95  
47.90  
47.85  
47.80  
47.75  
47.70  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45  
-30  
-15  
0
15  
30  
45  
60  
75  
90  
105  
Temperature [°C]  
Figure 37-250. 48MHz internal oscillator CALA calibration step size.  
VCC = 3.0V  
0.30 %  
0.28 %  
0.26 %  
0.24 %  
0.22 %  
0.20 %  
0.18 %  
0.16 %  
0.14 %  
0.12 %  
0.10 %  
- 40°C  
105°C  
25°C  
85°C  
0
16  
32  
48  
64  
80  
96  
112  
128  
CALA  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
283  
37.3.11 Two-Wire Interface characteristics  
Figure 37-251. SDA hold time vs. supply voltage.  
300  
295  
290  
285  
280  
275  
270  
265  
260  
105°C  
85°C  
25°C  
- 40°C  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Vcc [V]  
37.3.12 PDI characteristics  
Figure 37-252. Maximum PDI frequency vs. VCC  
.
30  
28  
26  
24  
-
- 40°C  
85°C  
22  
20  
18  
16  
14  
12  
10  
25°C  
105°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
284  
37.4 ATxmega128A4U  
37.4.1 Current consumption  
37.4.1.1 Active mode supply current  
Figure 37-253. Active supply current vs. frequency.  
fSYS = 0 - 1MHz external clock, T = 25°C.  
800  
700  
600  
500  
400  
300  
200  
100  
0
3.6V  
3.0V  
2.7V  
2.2V  
1.8V  
1.6V  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
Figure 37-254. Active supply current vs. frequency.  
fSYS = 1 - 32MHz external clock, T = 25°C.  
13.5  
12.0  
10.5  
9.0  
3.6V  
3.0V  
2.7V  
7.5  
6.0  
4.5  
2.2V  
3.0  
1.8V  
1.5  
0
0
4
8
12  
16  
Frequency [MHz]  
20  
24  
28  
32  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
285  
Figure 37-255. Active mode supply current vs. VCC  
.
fSYS = 32.768kHz internal oscillator  
270  
240  
210  
180  
150  
120  
90  
- 40 °C  
25 °C  
85 °C  
105 °C  
60  
30  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-256. Active mode supply current vs. VCC  
.
fSYS = 1MHz external clock.  
800  
700  
600  
500  
400  
300  
200  
100  
0
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
286  
Figure 37-257. Active mode supply current vs. VCC  
.
fSYS = 2MHz internal oscillator  
-40 °C  
25 °C  
85 °C  
1400  
1225  
1050  
875  
700  
525  
350  
175  
0
105 °C  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Vcc [V]  
Figure 37-258. Active mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator prescaled to 8MHz.  
5800  
-40 °C  
5200  
4600  
4000  
3400  
2800  
2200  
1600  
1000  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
287  
Figure 37-259. Active mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator.  
13.4  
12.6  
11.8  
11.0  
10.2  
9.4  
-40 °C  
25 °C  
85 °C  
105 °C  
8.6  
7.8  
7.0  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
VCC [V]  
37.4.1.2 Idle mode supply current  
Figure 37-260. Idle mode supply current vs. frequency.  
fSYS = 0 - 1MHz external clock, T = 25°C  
160  
140  
120  
100  
80  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
60  
40  
20  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
Frequency [MHz]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
288  
Figure 37-261. Idle mode supply current vs. frequency.  
fSYS = 1 - 32MHz external clock, T = 25°C  
5.4  
4.8  
4.2  
3.6  
3.0  
2.4  
1.8  
1.2  
3.6V  
3.0V  
2.7V  
2.2V  
1.8V  
0.6  
0
0
4
8
12  
16  
20  
24  
28  
32  
Frenquecy [MHz]  
Figure 37-262. Idle mode supply current vs. VCC  
.
fSYS = 32.768kHz internal oscillator.  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
105 °C  
-40 °C  
85 °C  
25 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
Vcc [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
289  
Figure 37-263. Idle mode supply current vs. VCC  
.
fSYS = 1MHz external clock  
160  
150  
140  
130  
120  
110  
100  
90  
105 °C  
85 °C  
25 °C  
-40 °C  
80  
70  
60  
50  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-264. Idle mode supply current vs. VCC  
.
fSYS = 2MHz internal oscillator  
105 °C  
85 °C  
25 °C  
-40 °C  
330  
310  
290  
270  
250  
230  
210  
190  
170  
150  
130  
110  
90  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
290  
Figure 37-265. Idle mode supply current vs. VCC  
.
fSYS = 32MHz internal oscillator prescaled to 8MHz  
2000  
-40 °C  
25 °C  
1800  
1600  
1400  
1200  
1000  
800  
85 °C  
105 °C  
600  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
Figure 37-266. Idle mode current vs. VCC  
.
fSYS = 32MHz internal oscillator  
5000  
-40 °C  
25 °C  
4750  
4500  
4250  
4000  
3750  
3500  
3250  
3000  
85 °C  
105 °C  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Vcc [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
291  
37.4.1.3 Power-down mode supply current  
Figure 37-267. Power-down mode supply current vs. temperature.  
All functions disabled  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.6 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
1.6 V  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
Figure 37-268. Power-down mode supply current vs. VCC  
.
All functions disabled  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
292  
Figure 37-269. Power-down mode supply current vs. VCC  
.
Watchdog and sampled BOD enabled  
7.3  
6.8  
6.3  
5.8  
5.3  
4.8  
4.3  
3.8  
3.3  
2.8  
2.3  
1.8  
1.3  
0.8  
105 °C  
85 °C  
25 °C  
-40 °C  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
37.4.1.4 Power-save mode supply current  
Figure 37-270. Power-save mode supply current vs.VCC  
.
Real Time Counter enabled and running from 1.024kHz output of 32.768kHz TOSC.  
0.9  
Normal mode  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Low-power mode  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
293  
37.4.1.5 Standby mode supply current  
Figure 37-271. Standby supply current vs. VCC  
.
Standby, fSYS = 1MHz  
12.5  
11.5  
10.5  
9.5  
105 °C  
85 °C  
8.5  
25 °C  
-40 °C  
7.5  
6.5  
5.5  
4.5  
3.5  
2.5  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-272. Standby supply current vs. VCC  
.
T = 25°C, running from different crystal oscillators  
480  
440  
400  
360  
320  
280  
240  
200  
160  
16MHz  
12MHz  
8MHz  
2MHz  
0.454MHz  
3.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.6  
VCC[V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
294  
37.4.2 I/O Pin Characteristics  
37.4.2.1 Pull-up  
Figure 37-273. I/O pin pull-up resistor current vs. input voltage.  
VCC = 1.8V  
72  
64  
56  
48  
40  
32  
24  
16  
8
-40 °C  
25 °C  
85 °C  
105 °C  
0
0.1  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
Vpin [V]  
Figure 37-274. I/O pin pull-up resistor current vs. input voltage.  
VCC = 3.0V  
120  
105  
90  
75  
60  
45  
30  
15  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.1  
0.4  
0.7  
1.0  
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vpin [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
295  
Figure 37-275. I/O pin pull-up resistor current vs. input voltage.  
VCC = 3.3V.  
135  
120  
105  
90  
75  
60  
45  
30  
15  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.1  
0.4  
0.7  
1.0  
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
3.4  
Vpin [V]  
37.4.2.2 Output Voltage vs. Sink/Source Current  
Figure 37-276. I/O pin output voltage vs. source current.  
VCC = 1.8V  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
-40 °C  
25 °C 85 °C 105 °C  
-10  
-9  
-8  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
0
Ipin [mA]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
296  
Figure 37-277. I/O pin output voltage vs. source current.  
VCC = 3.0V  
3.30  
2.95  
2.60  
2.25  
1.90  
1.55  
-40 °C  
-27  
85 °C  
-21  
105 °C  
25 °C  
-24  
1.20  
0.85  
0.50  
-30  
-18  
-15  
Ipin [mA]  
-12  
-9  
-6  
-3  
0
Figure 37-278. I/O pin output voltage vs. source current.  
VCC = 3.3V  
3.5  
3.2  
2.9  
2.6  
2.3  
2.0  
-40 °C  
1.7  
1.4  
25 °C  
1.1  
105 °C  
85 °C  
-27  
0.8  
0.5  
-30  
-24  
-21  
-18  
-15  
-12  
-9  
-6  
-3  
0
Ipin [mA]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
297  
Figure 37-279. I/O pin output voltage vs. source current  
3.65  
3.30  
2.95  
2.60  
2.25  
1.90  
1.55  
1.20  
0.85  
0.50  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
1.8 V  
1.6 V  
-24  
-21  
-18  
-15  
-12  
-9  
-6  
-3  
0
Ipin [mA]  
Figure 37-280. I/O pin output voltage vs. sink current.  
VCC = 1.8V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
85 °C  
105 °C  
25 °C  
-40 °C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Ipin [mA]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
298  
Figure 37-281. I/O pin output voltage vs. sink current.  
VCC = 3.0V  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
Ipin [mA]  
Figure 37-282. I/O pin output voltage vs. sink current.  
VCC = 3.3V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
Ipin [mA]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
299  
Figure 37-283. I/O pin output voltage vs. sink current  
1.50  
1.35  
1.20  
1.05  
1.8 V  
2.7 V  
3.0 V  
3.3 V  
3.6 V  
1.6 V  
0.90  
0.75  
0.60  
0.45  
0.30  
0.15  
0.00  
0
3
6
9
12  
15  
18  
21  
24  
27  
30  
Ipin [mA]  
37.4.2.3 Thresholds and Hysteresis  
Figure 37-284. I/O pin input threshold voltage vs. VCC.  
T = 25°C  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VIH  
VIL  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
300  
Figure 37-285. I/O pin input threshold voltage vs. VCC  
.
VIH I/O pin read as “1”  
105 °C  
85 °C  
25 °C  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
Vcc [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
Figure 37-286. I/O pin input threshold voltage vs. VCC  
.
VIL I/O pin read as “0”  
1.75  
1.60  
1.45  
1.30  
1.15  
1.00  
0.85  
0.70  
0.55  
0.40  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
301  
Figure 37-287. I/O pin input hysteresis vs. VCC  
0.41  
0.39  
0.37  
0.35  
0.33  
-40 °C  
0.31  
25 °C  
0.29  
0.27  
0.25  
85 °C  
0.23  
0.21  
105 °C  
0.19  
0.17  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
37.4.3 ADC Characteristics  
Figure 37-288. INL error vs. external VREF  
T = 25°C, VCC = 3.6V, external reference  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
Differential Signed  
Single-ended Unsigned  
0.9  
0.8  
0.7  
Single-ended Signed  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
302  
Figure 37-289. INL error vs. sample rate  
T = 25°C, VCC = 3.6V, VREF = 3.0V external  
1.4  
1.35  
1.3  
Differential Mode  
1.25  
1.2  
Single-ended Unsigned  
1.15  
1.1  
1.05  
1
Single-ended Signed  
0.95  
0.9  
500  
650  
800  
950  
1100  
1250  
1400  
1550  
1700  
1850  
2000  
ADC Sample Rate [kSPS]  
Figure 37-290. INL error vs. input code  
2.0  
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC input code  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
303  
Figure 37-291. DNL error vs. external VREF  
T = 25°C, VCC = 3.6V, external reference  
0.9  
0.88  
0.86  
Differential Mode  
0.84  
0.82  
0.8  
Single-ended Signed  
0.78  
0.76  
0.74  
0.72  
Single-ended Unsigned  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
Figure 37-292. DNL error vs. sample rate  
T = 25°C, VCC = 3.6V, VREF = 3.0V external  
0.9  
0.89  
0.88  
0.87  
0.86  
0.85  
0.84  
0.83  
0.82  
0.81  
0.8  
Differential Signed  
Single-ended Signed  
Single-ended Unsigned  
0.79  
500  
650  
800  
950  
1100  
1250  
1400  
1550  
1700  
1850  
2000  
ADC Sample Rate [kSPS]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
304  
Figure 37-293. DNL error vs. input code  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
ADC Input Code  
Figure 37-294. Gain error vs. VREF  
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps  
3
Single-ended Signed  
Differential Mode  
2
1
0
-1  
-2  
-3  
-4  
Single-ended Unsigned  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
REF [V]  
V
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
305  
Figure 37-295. Gain error vs. VCC  
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps  
2.2  
1.9  
1.6  
1.3  
1
Single-ended Signed  
Differential Mode  
0.7  
0.4  
0.1  
-0.2  
-0.5  
Single-ended Unsigned  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
Figure 37-296. Offset error vs. VREF  
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps  
-1  
-1.1  
-1.2  
-1.3  
-1.4  
-1.5  
-1.6  
-1.7  
-1.8  
-1.9  
-2  
Differential Mode  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
REF [V]  
V
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
306  
Figure 37-297. Gain error vs. temperature  
VCC = 3.0V, VREF = external 2.0V  
3
2
Single-ended Signed  
1
Differential Signed  
0
-1  
-2  
-3  
-4  
Single-ended Unsigned  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
Temperature [ºC]  
Figure 37-298. Offset error vs. VCC  
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
-0.9  
-1  
Differential Signed  
-1.1  
-1.2  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
307  
Figure 37-299. Noise vs. VREF  
T = 25°C, VCC = 3.6V, ADC sampling speed = 500ksps  
1.3  
1.15  
1
Single-ended Signed  
Single-ended Unsigned  
0.85  
0.7  
0.55  
0.4  
Differential Signed  
1
1.2  
1.4  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
Figure 37-300. Noise vs. VCC  
T = 25°C, VREF = external 1.0V, ADC sampling speed = 500ksps  
1.3  
1.2  
1.1  
1
Single-ended Signed  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
Single-ended Unsigned  
Differential Signed  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
308  
37.4.4 DAC Characteristics  
Figure 37-301. DAC INL error vs. VREF  
VCC = 3.6V  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
25°C  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
VREF [V]  
Figure 37-302. DNL error vs. VREF  
.
T = 25°C, VCC = 3.6V.  
0.9  
0.85  
0.8  
0.75  
0.7  
0.65  
0.6  
25ºC  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VREF [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
309  
Figure 37-303. DAC noise vs. temperature  
VCC = 3.0V, VREF = 2.4V  
0.185  
0.180  
0.175  
0.170  
0.165  
0.160  
0.155  
0.150  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [ºC]  
37.4.5 Analog Comparator Characteristics  
Figure 37-304. Analog comparator hysteresis vs. VCC  
.
High-speed, small hysteresis  
14  
13  
12  
11  
10  
9
105°  
C
85°C  
25°C  
-40°  
8
7
6
5
4
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
310  
Figure 37-305. Analog comparator hysteresis vs. VCC  
.
Low power, small hysteresis  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
105°C  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
Figure 37-306. Analog comparator hysteresis vs. VCC  
.
High-speed mode, large hysteresis  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
105°C  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
311  
Figure 37-307. Analog comparator hysteresis vs. VCC  
.
Low power, large hysteresis  
68  
64  
60  
56  
52  
48  
44  
40  
36  
32  
105°C  
85°C  
25°C  
-40°C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
VCC [V]  
2.8  
3.0  
3.2  
3.4  
3.6  
Figure 37-308. Analog comparator current source vs. calibration value.  
Temperature = 25°C  
8
7.5  
7
6.5  
6
5.5  
5
3.6V  
4.5  
4
3.0V  
3.5  
3
2.2V  
1.8V  
2.5  
2
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CURRCALIBA[3..0]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
312  
Figure 37-309. Analog comparator current source vs. calibration value.  
VCC = 3.0V.  
7
6.5  
6
5.5  
5
4.5  
4
-40°C  
25°C  
85°C  
3.5  
3
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
CURRCALIBA[3..0]  
Figure 37-310. Voltage scaler INL vs. SCALEFAC.  
T = 25°C, VCC = 3.0V.  
0.050  
0.025  
0
-0.025  
-0.050  
-0.075  
-0.100  
-0.125  
-0.150  
25°C  
0
10  
20  
30  
40  
50  
60  
70  
SCALEFAC  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
313  
37.4.6 Internal 1.0V reference Characteristics  
Figure 37-311. ADC/DAC Internal 1.0V reference vs. temperature  
1.0024  
1.0020  
1.0016  
1.0012  
1.0008  
1.0004  
1.0000  
0.9996  
0.9992  
0.9988  
1.6V  
1.8V  
2.7V  
3.0V  
3.6V  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Temperature [°C]  
37.4.7 BOD Characteristics  
Figure 37-312. BOD thresholds vs. temperature.  
BOD level = 1.6V  
1.596  
1.593  
1.590  
1.587  
1.584  
1.581  
1.578  
1.575  
1.572  
Rising Vcc  
Falling Vcc  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
314  
Figure 37-313. BOD thresholds vs. temperature.  
BOD level = 3.0V  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
2.96  
2.95  
2.94  
Rising Vcc  
Falling Vcc  
-45  
-35  
-25  
-15  
-5  
5
15  
25  
35  
45  
55  
65  
75  
85  
95  
105  
Temperature [°C]  
37.4.8 External Reset Characteristics  
Figure 37-314. Minimum Reset pin pulse width vs. VCC  
135  
130  
125  
120  
115  
110  
105  
100  
95  
105 °C  
85 °C  
90  
25 °C  
85  
-40 °C  
80  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
315  
Figure 37-315. Reset pin pull-up resistor current vs. reset pin voltage  
VCC = 1.8V  
80  
72  
64  
56  
48  
40  
32  
24  
16  
8
-40 °C  
25 °C  
85 °C  
105 °C  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
Vreset [V]  
Figure 37-316. Reset pin pull-up resistor current vs. reset pin voltage  
VCC = 3.0V  
135  
120  
105  
90  
75  
60  
45  
30  
15  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
Vreset [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
316  
Figure 37-317. Reset pin pull-up resistor current vs. reset pin voltage  
VCC = 3.3V  
150  
135  
120  
105  
90  
75  
60  
45  
30  
-40 °C  
25 °C  
15  
85 °C  
0
105 °C  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
Vreset [V]  
Figure 37-318. Reset pin input threshold voltage vs. VCC  
VIH - Reset pin read as “1”  
2.20  
2.05  
1.90  
1.75  
1.60  
1.45  
1.30  
1.15  
1.00  
-40 °C  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
317  
Figure 37-319. Reset pin input threshold voltage vs. VCC  
VIL - Reset pin read as “0”  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
105 °C  
85 °C  
25 °C  
-40 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
VCC [V]  
37.4.9 Power-on Reset Characteristics  
Figure 37-320. Power-on reset current consumption vs. VCC  
BOD level = 3.0V, enabled in continuous mode  
700  
600  
500  
400  
300  
200  
100  
0
-40 °C  
25 °C  
85 °C  
105 °C  
0.4  
0.7  
1.0  
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
VCC [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
318  
Figure 37-321. Power-on reset current consumption vs. VCC  
BOD level = 3.0V, enabled in sampled mode  
650  
585  
520  
455  
390  
325  
260  
195  
130  
65  
-40 °C  
25 °C  
85°C  
°
105°°C  
0
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
VCC [V]  
37.4.10 Oscillator Characteristics  
37.4.10.1 Ultra Low-Power internal oscillator  
Figure 37-322. Ultra Low-Power internal oscillator frequency vs. temperature.  
33.75  
33.50  
33.25  
33.00  
32.75  
32.50  
32.25  
32.00  
31.75  
31.50  
31.25  
31.00  
30.75  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
1.8 V  
1.6 V  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
319  
37.4.10.2 32.768kHz Internal Oscillator  
Figure 37-323. 32.768kHz internal oscillator frequency vs. temperature  
32.82  
32.79  
32.76  
32.73  
32.70  
32.67  
32.64  
32.61  
32.58  
32.55  
32.52  
32.49  
32.46  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Temperature [°C]  
Figure 37-324. 32.768kHz internal oscillator frequency vs. calibration value  
VCC = 3.0V, T = 25°C  
52  
49  
46  
43  
40  
37  
34  
31  
28  
25  
22  
3.0 V  
0
24  
48  
72  
96  
120  
144  
168  
192  
216  
240  
264  
RC32KCAL[7..0]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
320  
37.4.10.3 2MHz Internal Oscillator  
Figure 37-325. 2MHz internal oscillator frequency vs. temperature  
DFLL disabled  
2.16  
2.14  
2.12  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
1.98  
1.96  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Temperature [°C]  
Figure 37-326. 2MHz internal oscillator frequency vs. temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
2.006  
2.004  
2.002  
2.000  
1.998  
1.996  
1.994  
1.992  
1.990  
1.988  
1.986  
1.984  
1.982  
1.980  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
321  
Figure 37-327. 2MHz internal oscillator CALA calibration step size  
VCC = 3V  
0.30  
0.28  
0.26  
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
-40 °C  
25 °C  
85 °C  
105 °C  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
CALA  
37.4.10.4 32MHz Internal Oscillator  
Figure 37-328. 32MHz internal oscillator frequency vs. temperature  
DFLL disabled  
36.00  
35.55  
35.10  
34.65  
34.20  
33.75  
33.30  
32.85  
32.40  
31.95  
31.50  
31.05  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
322  
Figure 37-329. 32MHz internal oscillator frequency vs. temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
32.05  
32.02  
31.99  
31.96  
31.93  
31.90  
31.87  
31.84  
31.81  
31.78  
31.75  
31.72  
31.69  
31.66  
1.8 V  
2.2 V  
2.7 V  
3.0 V  
3.3 V  
3.6 V  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Temperature [°C]  
Figure 37-330. 32MHz internal oscillator CALA calibration step size  
VCC = 3.0V  
0.32  
0.29  
0.26  
0.23  
0.20  
0.17  
0.14  
-40 °C  
105 °C  
85 °C  
25 °C  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
CALA  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
323  
37.4.10.5 32MHz internal oscillator calibrated to 48MHz  
Figure 37-331. 48MHz internal oscillator frequency vs. temperature  
DFLL disabled  
53.9  
53.2  
52.5  
51.8  
51.1  
50.4  
49.7  
49.0  
48.3  
47.6  
46.9  
46.2  
3.6 V  
3.3 V  
3.0 V  
2.7 V  
2.2 V  
1.8 V  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Temperature [°C]  
Figure 37-332. 48MHz internal oscillator frequency vs. temperature  
DFLL enabled, from the 32.768kHz internal oscillator  
48.3  
48.2  
48.1  
48.0  
47.9  
47.8  
47.7  
47.6  
47.5  
1.8 V  
2.2 V  
2.7 V  
3.0 V  
3.3 V  
3.6 V  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Temperature [°C]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
324  
Figure 37-333. 48MHz internal oscillator CALA calibration step size  
VCC = 3V  
0.28  
0.26  
0.24  
0.22  
0.2  
-40 °C  
105 °C  
85 C  
25 °C  
0.18  
0.16  
0.14  
°
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
CALA  
37.4.11 Two-Wire Interface characteristics  
Figure 37-334. SDA hold time vs. supply voltage  
300  
295  
290  
285  
280  
275  
270  
265  
260  
105°C  
85°C  
25°C  
- 40°C  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
Vcc [V]  
3.2  
3.3  
3.4  
3.5  
3.6  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
325  
37.4.12 PDI characteristics  
Figure 37-335. Maximum PDI frequency vs. VCC  
-40 °C  
31  
28  
25  
22  
19  
16  
13  
10  
25 °C  
85 °C  
105 °C  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
Vcc [V]  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
326  
38. Errata  
38.1 ATxmega16A4U  
38.1.1 Rev. E  
z
z
z
ADC may have missing codes in SE unsigned mode at low temp and low Vcc  
CRC fails for Range CRC when end address is the last word address of a flash section  
AWeX fault protection restore is not done correct in Pattern Generation Mode  
1. ADC may have missing codes in SE unsigned mode at low temp and low Vcc  
The ADC may have missing codes i single ended (SE) unsigned mode below 0C when Vcc is below 1.8V.  
Problem fix/Workaround  
Use the ADC in SE signed mode.  
2. CRC fails for Range CRC when end address is the last word address of a flash section  
If boot read lock is enabled, the range CRC cannot end on the last address of the application section. If applica-  
tion table read lock is enabled, the range CRC cannot end on the last address before the application table.  
Problem fix/Workaround  
Ensure that the end address used in Range CRC does not end at the last address before a section with read lock  
enabled. Instead, use the dedicated CRC commands for complete applications sections.  
3. AWeX fault protection restore is not done correct in Pattern Generation Mode  
When a fault is detected the OUTOVEN register is cleared, and when fault condition is cleared, OUTOVEN  
is restored according to the corresponding enabled DTI channels. For Common Waveform Channel Mode  
(CWCM), this has no effect as the OUTOVEN is correct after restoring from fault. For Pattern Generation  
Mode (PGM), OUTOVEN should instead have been restored according to the DTLSBUF register.  
Problem fix/Workaround  
For CWCM no workaround is required.  
For PGM in latched mode, disable the DTI channels before returning from the fault condition. Then, set cor-  
rect OUTOVEN value and enable the DTI channels, before the direction (DIR) register is written to enable  
the correct outputs again.  
38.1.2 Rev. A - D  
Not sampled.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
327  
38.2 ATxmega32A4U  
38.2.1 Rev. E  
z
z
z
ADC may have missing codes in SE unsigned mode at low temp and low Vcc  
CRC fails for Range CRC when end address is the last word address of a flash section  
AWeX fault protection restore is not done correct in Pattern Generation Mode  
1. ADC may have missing codes in SE unsigned mode at low temp and low Vcc  
The ADC may have missing codes i single ended (SE) unsigned mode below 0C when Vcc is below 1.8V.  
Problem fix/Workaround  
Use the ADC in SE signed mode.  
2. CRC fails for Range CRC when end address is the last word address of a flash section  
If boot read lock is enabled, the range CRC cannot end on the last address of the application section. If applica-  
tion table read lock is enabled, the range CRC cannot end on the last address before the application table.  
Problem fix/Workaround  
Ensure that the end address used in Range CRC does not end at the last address before a section with read lock  
enabled. Instead, use the dedicated CRC commands for complete applications sections.  
3. AWeX fault protection restore is not done correct in Pattern Generation Mode  
When a fault is detected the OUTOVEN register is cleared, and when fault condition is cleared, OUTOVEN  
is restored according to the corresponding enabled DTI channels. For Common Waveform Channel Mode  
(CWCM), this has no effect as the OUTOVEN is correct after restoring from fault. For Pattern Generation  
Mode (PGM), OUTOVEN should instead have been restored according to the DTLSBUF register.  
Problem fix/Workaround  
For CWCM no workaround is required.  
For PGM in latched mode, disable the DTI channels before returning from the fault condition. Then, set cor-  
rect OUTOVEN value and enable the DTI channels, before the direction (DIR) register is written to enable  
the correct outputs again.  
38.2.2 Rev. A - D  
Not sampled.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
328  
38.3 ATxmega64A4U  
38.3.1 Rev. D  
z
z
ADC may have missing codes in SE unsigned mode at low temp and low Vcc  
CRC fails for Range CRC when end address is the last word address of a flash section  
1. ADC may have missing codes in SE unsigned mode at low temp and low Vcc  
The ADC may have missing codes i single ended (SE) unsigned mode below 0C when Vcc is below 1.8V.  
Problem fix/Workaround  
Use the ADC in SE signed mode.  
2. CRC fails for Range CRC when end address is the last word address of a flash section  
If boot read lock is enabled, the range CRC cannot end on the last address of the application section. If applica-  
tion table read lock is enabled, the range CRC cannot end on the last address before the application table.  
Problem fix/Workaround  
Ensure that the end address used in Range CRC does not end at the last address before a section with read lock  
enabled. Instead, use the dedicated CRC commands for complete applications sections.  
38.3.2 Rev. C  
ADC may have missing codes in SE unsigned mode at low temp and low Vcc  
z
z
z
CRC fails for Range CRC when end address is the last word address of a flash section  
AWeX fault protection restore is not done correct in Pattern Generation Mode  
1. ADC may have missing codes in SE unsigned mode at low temp and low Vcc  
The ADC may have missing codes i single ended (SE) unsigned mode below 0C when Vcc is below 1.8V.  
Problem fix/Workaround  
Use the ADC in SE signed mode.  
2. CRC fails for Range CRC when end address is the last word address of a flash section  
If boot read lock is enabled, the range CRC cannot end on the last address of the application section. If applica-  
tion table read lock is enabled, the range CRC cannot end on the last address before the application table.  
Problem fix/Workaround  
Ensure that the end address used in Range CRC does not end at the last address before a section with read lock  
enabled. Instead, use the dedicated CRC commands for complete applications sections.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
329  
3. AWeX fault protection restore is not done correct in Pattern Generation Mode  
When a fault is detected the OUTOVEN register is cleared, and when fault condition is cleared, OUTOVEN  
is restored according to the corresponding enabled DTI channels. For Common Waveform Channel Mode  
(CWCM), this has no effect as the OUTOVEN is correct after restoring from fault. For Pattern Generation  
Mode (PGM), OUTOVEN should instead have been restored according to the DTLSBUF register.  
Problem fix/Workaround  
For CWCM no workaround is required.  
For PGM in latched mode, disable the DTI channels before returning from the fault condition. Then, set cor-  
rect OUTOVEN value and enable the DTI channels, before the direction (DIR) register is written to enable  
the correct outputs again.  
38.3.3 Rev. A - B  
Not sampled.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
330  
38.4 ATxmega128A4U  
38.4.1 rev. A  
z
ADC may have missing codes in SE unsigned mode at low temp and low Vcc  
1. ADC may have missing codes in SE unsigned mode at low temp and low Vcc  
The ADC may have missing codes i single ended (SE) unsigned mode below 0C when Vcc is below 1.8V.  
Problem fix/Workaround  
Use the ADC in SE signed mode.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
331  
39. Datasheet Revision History  
Please note that the referring page numbers in this section are referred to this document. The referring revision in this  
section are referring to the document revision.  
39.1 8387H –09/2014  
Updated “Ordering Information” on page 2. Added ordering information for ATxmega16A4U/32A4U/64A4U/128A4U @  
105°C  
1.  
2.  
3.  
Updated the Application Table Section from 4K/4K/4K/4K to 8K/4K/4K/4K in the Figure 7-1 on page 14  
Updated Table 36-4 on page 74, Table 36-36 on page 95, Table 36-68 on page 117 and Table 36-100 on page 139. Added  
Icc Power-down power consumption for T=105°C for all functions disabled and for WDT and sampled BOD enabled  
Updated Table 36-20 on page 84, Table 36-52 on page 105, Table 36-84 on page 127 and Table 36-116 on page 149.  
Updated all tables to include values for T=85°C and T=105°C. Removed T=55°C  
4.  
5.  
Added 105°C Typical Characterization plots for:  
ATxmega16A4U  
ATxmega32A4U  
ATxmega64A4U  
ATxmega128A4U  
Changed Vcc to AVcc in Figure 28-1 on page 50 and in the text in Section 28. “ADC – 12-bit Analog to Digital Converter” on  
page 49 andSection 30. “AC – Analog Comparator” on page 53.  
6.  
7.  
8.  
Changed values for 128A4U in Table 7-3 on page 17. Page size = 128, FWORD = Z(6:0)  
Changed unit notation for parameter tSU;DAT to ns in Table 36-32 on page 92, Table 36-64 on page 113, and Table 36-128  
on page 157.  
39.2 8387G – 03/2014  
1.  
2.  
Removed “Preliminary” from the datasheet  
Updated “Errata” on page 327: added ERRATA “Rev. D” and “Rev. C” for “ATxmega64A4U” on page 329  
39.3 8387F – 01/2014  
1.  
2.  
Removed JTAG references from the datasheet  
Updated Figure 30-1 on page 54. The positive Mux has two “Input” while the negative Mux has four “Input”  
39.4 8387E – 11/2013  
Updated Flash size column in “Ordering Information” on page 2 for:  
ATxmega128A4U-AU, ATxmega128A4U-AUR, ATxmega128A4U-MH and ATxmega128A4U-MHR  
1.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
332  
39.5 8387D – 02/2013  
1.  
2.  
3.  
4.  
5.  
6.  
7.  
Updated typos in “Ordering Information” on page 2.  
Updated PE2 and PE3 pins in “Pinout/Block Diagram” on page 4 to indicate that these can be used as TOSC pins.  
Renamed pin 19 from VDD to VCC in Figure 2-1 on page 4.  
Updated page size for ATxmega128A4U in Table 7-3 on page 17.  
Added column for TWI using external driver interface in Table 32-3 on page 59.  
Updated ATxmega16A4U leakage current in Table 36-7 on page 77.  
Added application erase time for ATxmega16A4U in Table 36-21 on page 84.  
Updated limits for VIH and VIL:  
ATxmega16A4U: Table 36-7 on page 77  
ATxmega32A4U: Table 36-39 on page 98  
ATxmega64A4U: Table 36-71 on page 120  
ATxmega128A4U:Table 36-103 on page 142  
8.  
Updated DAC clock and timing characteristics:  
ATxmega16A4U: Table 36-13 on page 81  
ATxmega32A4U: Table 36-45 on page 101  
ATxmega64A4U: Table 36-77 on page 123  
ATxmega128A4U: Table 36-109 on page 145.  
9.  
10.  
11.  
Updated ATxmega16A4U “ External clock characteristics” on page 86.  
Added ESR parameter to the External 16MHz crystal oscillator and XOSC characteristics:  
ATxmega16A4U: Table 36-29 on page 87  
ATxmega32A4U: Table 36-61 on page 108  
ATxmega64A4U: Table 36-93 on page 130  
ATxmega128A4U: Table 36-125 on page 152.  
12.  
13.  
14.  
Updated ATxmega32A4U leakage current in Table 36-39 on page 98.  
Added application erase time for ATxmega32A4U in Table 36-53 on page 105.  
Updated ATxmega32A4U “ External clock characteristics” on page 107.  
Updated ATxmega32A4U current consumption in electrical characteristics section, see “Current consumption” on  
page 117.  
15.  
16.  
17.  
18.  
19.  
Updated electrical characteristics for “ATxmega64A4U” on page 115.  
Updated typical characteristics for “ATxmega64A4U” on page 243.  
Added application erase time for ATxmega128A4U in Table 36-117 on page 149.  
Updated ATxmega128A4U “ External clock characteristics” on page 151.  
39.6 8387C – 03/2012  
1.  
2.  
3.  
4.  
Updated “Ordering Information” on page 2. Added a new package PW.  
Updated “Packaging information” on page 68. A new package PW added.  
Updated the Table 36-4 on page 74 with new values for ICC active power consumption.  
Updated all typical characteristics in “ Active mode supply current” on page 159.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
333  
5.  
Updated all typical characteristics in “Power-down mode supply current” on page 166.  
Added electrical characteristics for “ATxmega32A4U” on page 93.  
Added electrical characteristics for “ATxmega64A4U” on page 115.  
Added electrical characteristics for “ATxmega128A4U” on page 137.  
Added typical characteristics for “ATxmega64A4U” on page 243  
Added typical characteristics for “ATxmega64A4U” on page 243.  
Added typical characteristics for “ATxmega128A4U” on page 285.  
Updated “Errata” on page 327.  
6.  
7.  
8.  
9.  
10.  
12.  
13.  
14.  
Used Atmel new datasheet template that includes Atmel new addresses on the last page.  
39.7 8387B – 12/2011  
1.  
Updated Figure 2-1 on page 4: “Block Diagram and QFN/TQFP pinout”  
2.  
Updated Figure 3-1 on page 7: “XMEGA A4U Block Diagram”  
Updated “Overview” on page 13.  
3.  
4.  
Updated “ADC – 12-bit Analog to Digital Converter” on page 49.  
Updated Figure 28-1 on page 50: “ADC overview.”  
5.  
6.  
Updated “Instruction Set Summary” on page 63.  
7.  
Updated “Electrical Characteristics” on page 72.  
8.  
Updated “Typical Characteristics” on page 159.  
9.  
The order of several figures in the chapter “Typical Characteristics” has been changed  
Several new figures have been added to and some figures have been removed from chapter “Typical Characteristics”  
Several minor changes/corrections in text and figures have been performed  
Table 32-2 on page 59 has been corrected  
10.  
11.  
12.  
13.  
14.  
15.  
16.  
Table 32-4 on page 60 has been corrected  
Table 36-29 on page 85 has been corrected  
Table 36-30 on page 86 has been corrected  
The heading ”I/O Pin Characteristics” on page 164 has been corrected (the text “and Reset” has been removed)  
39.8 8387A – 07/2011  
1.  
Initial revision.  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
334  
Table of Contents  
1. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Pinout/Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1  
Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4. Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.1  
Recommended reading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
5. Capacitive touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
6. AVR CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
ALU - Arithmetic Logic Unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Stack and Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Register File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
7. Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Flash Program Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Fuses and Lock bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Data Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
I/O Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Data Memory and Bus Arbitration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Memory Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.10 Device ID and Revision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.11 I/O Memory Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
7.12 Flash and EEPROM Page Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
8. DMAC – Direct Memory Access Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8.2  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
9. Event System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
9.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
9.2  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
10. System Clock and Clock options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
10.3 Clock Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
11. Power Management and Sleep Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
11.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
i
11.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
11.3 Sleep Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
12. System Control and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
12.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
12.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
12.3 Reset Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
12.4 Reset Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
13. WDT – Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
13.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
13.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
14. Interrupts and Programmable Multilevel Interrupt Controller . . . . . . . . . . . . . . . . 29  
14.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
14.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
14.3 Interrupt vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
15. I/O Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
15.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
15.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
15.3 Output Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
15.4 Input sensing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
15.5 Alternate Port Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
16. TC0/1 – 16-bit Timer/Counter Type 0 and 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
16.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
16.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
17. TC2 - Timer/Counter Type 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
17.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
17.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
18. AWeX – Advanced Waveform Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
18.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
18.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
19. Hi-Res – High Resolution Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
19.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
19.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
20. RTC – 16-bit Real-Time Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
20.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
20.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
21. USB – Universal Serial Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
21.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
21.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
22. TWI – Two-Wire Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
22.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
22.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
23. SPI – Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
ii  
23.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
23.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
24. USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
24.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
24.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
25. IRCOM – IR Communication Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
25.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
25.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
26. AES and DES Crypto Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
26.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
26.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
27. CRC – Cyclic Redundancy Check Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
27.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
27.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
28. ADC – 12-bit Analog to Digital Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
28.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
28.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
29. DAC – 12-bit Digital to Analog Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
29.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
29.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
30. AC – Analog Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
30.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
30.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
31. Programming and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
31.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
31.2 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
32. Pinout and Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
32.1 Alternate Pin Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
32.2 Alternate Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
33. Peripheral Module Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
34. Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
35. Packaging information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
35.1 44A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
35.2 PW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
35.3 44M1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
35.4 49C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
36. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
36.1 ATxmega16A4U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
36.2 ATxmega32A4U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
36.3 ATxmega64A4U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
36.4 ATxmega128A4U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
iii  
37. Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
37.1 ATxmega16A4U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159  
37.2 ATxmega32A4U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201  
37.3 ATxmega64A4U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  
37.4 ATxmega128A4U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285  
38. Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327  
38.1 ATxmega16A4U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327  
38.2 ATxmega32A4U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328  
38.3 ATxmega64A4U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329  
38.4 ATxmega128A4U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331  
39. Datasheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332  
39.1 8387H – 05/2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332  
39.2 8387G – 03/2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332  
39.3 8387F – 01/2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332  
39.4 8387E – 11/2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332  
39.5 8387D – 02/2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332  
39.6 8387C – 03/2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333  
39.7 8387B – 12/2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334  
39.8 8387A – 07/2011. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334  
XMEGA A4U [DATASHEET]  
Atmel-8387H-AVR-ATxmega16A4U-34A4U-64A4U-128A4U-Datasheet_09/2014  
iv  
X
X X X X  
X
Atmel Corporation  
1600 Technology Drive, San Jose, CA 95110 USA  
T: (+1)(408) 441.0311  
F: (+1)(408) 436.4200  
|
www.atmel.com  
© 2014 Atmel Corporation. / Rev.: Atmel-8387H-AVR-ATxmega16A4U-32A4U-64A4U-128A4U-Datasheet_09/2014.  
Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and  
other countries. Other terms and product names may be trademarks of others.  
DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right  
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE  
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS  
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT  
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES  
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS  
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this  
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information  
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,  
authorized, or warranted for use as components in applications intended to support or sustain life.  
SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where  
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written  
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.  
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are  
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.  

相关型号:

ATXMEGA128A4U-AU

8/16-bit Atmel XMEGA A4U Microcontroller
ATMEL

ATxmega128A4U-CU

8/16-bit Atmel XMEGA A4U Microcontroller
ATMEL

ATxmega128A4U-MH

8/16-bit Atmel XMEGA A4U Microcontroller
ATMEL

ATXMEGA128A4U-MN

IC MCU 8BIT 128KB FLASH 44QFN
MICROCHIP

ATXMEGA128A4U-MNR

IC MCU 8BIT 128KB FLASH 44QFN
MICROCHIP

ATXMEGA128A4U-W

IC MCU 8BIT 128KB FLASH WAFER
MICROCHIP

ATXMEGA128A4_0808

8/16-bit XMEGA A1 Microcontroller
ATMEL

ATXMEGA128A4_09

8/16-bit XMEGA A4 Microcontroller
ATMEL

ATXMEGA128A4_10

8/16-bit XMEGA A4 Microcontroller
ATMEL

ATXMEGA128A4_1012

8/16-bit XMEGA A4 Microcontroller
ATMEL

ATXMEGA128A4_14

Non-volatile Program and Data Memories
ATMEL

ATXMEGA128B1

8/16-bit Atmel XMEGA B1 Microcontroller
ATMEL