DSPIC30F0010BT-30I/PF [MICROCHIP]

High-Performance, 16-Bit Digital Signal Controllers; 高性能16位数字信号控制器
DSPIC30F0010BT-30I/PF
型号: DSPIC30F0010BT-30I/PF
厂家: MICROCHIP    MICROCHIP
描述:

High-Performance, 16-Bit Digital Signal Controllers
高性能16位数字信号控制器

控制器
文件: 总232页 (文件大小:3491K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
dsPIC30F6010A/6015  
Data Sheet  
High-Performance, 16-bit  
Digital Signal Controllers  
© 2008 Microchip Technology Inc.  
DS70150D  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, rfPIC and SmartShunt are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2008, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS70150D-page ii  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
High-Performance, 16-bit Digital Signal Controllers  
Peripheral Features:  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “dsPIC30F/33F Programmers  
Reference Manual” (DS70157).  
• High-current sink/source I/O pins: 25 mA/25 mA  
• Timer module with programmable prescaler:  
- Five 16-bit timers/counters; optionally pair  
16-bit timers into 32-bit timer modules  
• 16-bit Capture input functions  
• 16-bit Compare/PWM output functions  
• 3-wire SPI modules (supports 4 Frame modes)  
• I2CTM module supports Multi-Master/Slave mode  
and 7-bit/10-bit addressing  
• 2 UART modules with FIFO Buffers  
High-Performance Modified RISC CPU:  
• 2 CAN modules, 2.0B compliant (dsPIC306010A)  
• 1 CAN module, 2.0B compliant (dsPIC306015)  
• Modified Harvard architecture  
• C compiler optimized instruction set architecture  
with flexible Addressing modes  
Motor Control PWM Module Features:  
• 83 base instructions  
• 8 PWM output channels:  
• 24-bit wide instructions, 16-bit wide data path  
- Complementary or Independent Output  
modes  
• 144 Kbytes on-chip Flash program space  
(Instruction words)  
- Edge and Center-Aligned modes  
• 4 duty cycle generators  
• 8 Kbytes of on-chip data RAM  
• 4 Kbytes of nonvolatile data EEPROM  
• Up to 30 MIPS operation:  
• Dedicated time base  
• Programmable output polarity  
• Dead-Time control for Complementary mode  
• Manual output control  
- DC to 40 MHz external clock input  
- 4 MHz-10 MHz oscillator input with  
PLL active (4x, 8x, 16x)  
• Trigger for A/D conversions  
- 7.37 MHz internal RC with PLL active  
(4x, 8x, 16x)  
Quadrature Encoder Interface Module  
Features:  
• 44 interrupt sources:  
- 5 external interrupt sources  
• Phase A, Phase B and Index Pulse input  
• 16-bit up/down position counter  
- 8 user selectable priority levels for each  
interrupt source  
- 4 processor trap sources  
• Count direction status  
• 16 x 16-bit working register array  
• Position Measurement (x2 and x4) mode  
• Programmable digital noise filters on inputs  
• Alternate 16-bit Timer/Counter mode  
• Interrupt on position counter rollover/underflow  
DSP Engine Features:  
• Dual data fetch  
• Accumulator write-back for DSP operations  
• Modulo and Bit-Reversed Addressing modes  
Analog Features:  
• 10-bit Analog-to-Digital Converter (ADC) with  
4 S/H Inputs:  
• Two, 40-bit wide accumulators with optional  
saturation logic  
- 1 Msps conversion rate  
• 17-bit x 17-bit single-cycle hardware fractional/  
integer multiplier  
- 16 input channels  
• All DSP instructions single cycle  
• ±16-bit single-cycle shift  
- Conversion available during Sleep and Idle  
• Programmable Brown-out Reset  
© 2008 Microchip Technology Inc.  
DS70150D-page 3  
dsPIC30F6010A/6015  
Special Microcontroller Features:  
CMOS Technology:  
• Enhanced Flash program memory:  
• Low-power, high-speed Flash technology  
• Wide operating voltage range (2.5V to 5.5V)  
• Industrial and Extended temperature ranges  
• Low-power consumption  
- 10,000 erase/write cycle (min.) for  
industrial temperature range, 100K (typical)  
• Data EEPROM memory:  
- 100,000 erase/write cycle (min.) for  
industrial temperature range, 1M (typical)  
• Self-reprogrammable under software control  
• Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
• Flexible Watchdog Timer (WDT) with on-chip,  
low-power RC oscillator for reliable operation  
• Fail-Safe Clock Monitor operation detects clock  
failure and switches to on-chip, low-power RC  
oscillator  
• Programmable code protection  
• In-Circuit Serial Programming™ (ICSP™)  
• Selectable Power Management modes  
- Sleep, Idle and Alternate Clock modes  
dsPIC30F Motor Control and Power Conversion Family  
Program  
Pins Mem. Bytes/  
Instructions  
Output  
Comp/Std Control  
PWM  
Motor  
SRAM EEPROM Timer Input  
A/D 10-bit Quad  
Device  
Bytes  
Bytes  
16-bit Cap  
1 Msps  
Enc  
PWM  
dsPIC30F6010A 80  
144K/48K  
144K/48K  
8192  
8192  
4096  
4096  
5
5
8
8
8
8
8 ch  
8 ch  
16 ch  
16 ch  
Yes  
Yes  
2
2
2
2
1
1
2
1
dsPIC30F6015  
64  
DS70150D-page 4  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
Pin Diagram  
80-Pin TQFP  
EMUC1/SOSCO/T1CK/CN0/RC14  
EMUD1/SOSCI/CN1/RC13  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
1
PWM3H/RE5  
PWM4L/RE6  
2
3
EMUC2/OC1/RD0  
IC4/RD11  
PWM4H/RE7  
T2CK/RC1  
4
IC3/RD10  
T4CK/RC3  
5
IC2/RD9  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
6
IC1/RD8  
7
INT4/RA15  
8
INT3/RA14  
VSS  
9
SS2/CN11/RG9  
VSS  
10  
11  
12  
dsPIC30F6010A  
OSC2/CLKO/RC15  
OSC1/CLKI  
VDD  
VDD  
FLTA/INT1/RE8  
13  
14  
15  
16  
17  
18  
19  
20  
SCL/RG2  
SDA/RG3  
FLTB/INT2/RE9  
AN5/QEB/CN7/RB5  
AN4/QEA/CN6/RB4  
AN3/INDX/CN5/RB3  
EMUC3/SCK1/INT0/RF6  
SDI1/RF7  
EMUD3/SDO1/RF8  
U1RX/RF2  
AN2/SS1/CN4/RB2  
PGC/EMUC/AN1/CN3/RB1  
PGD/EMUD/AN0/CN2/RB0  
U1TX/RF3  
Note: Pinout subject to change.  
© 2008 Microchip Technology Inc.  
DS70150D-page 5  
dsPIC30F6010A/6015  
Pin Diagram  
64-Pin TQFP  
PWM3H/RE5  
PWM4L/RE6  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
EMUC1/SOSCO/T1CK/CN0/RC14  
EMUD1/SOSCI/T4CK/CN1/RC13  
EMUC2/OC1/RD0  
IC4/INT4/RD11  
2
PWM4H/RE7  
3
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
MCLR  
4
5
IC3/INT3/RD10  
6
IC2/FLTB/INT2/RD9  
IC1/FLTA/INT1/RD8  
VSS  
7
SS2/CN11/RG9  
VSS  
8
dsPIC30F6015  
9
OSC2/CLKO/RC15  
OSC1/CLKI  
VDD  
10  
11  
12  
13  
14  
15  
16  
AN5/QEB/IC8/CN7/RB5  
AN4/QEA/IC7/CN6/RB4  
AN3/INDX/CN5/RB3  
AN2/SS1/CN4/RB2  
AN1/VREF-/CN3/RB1  
AN0/VREF+/CN2/RB0  
VDD  
SCL/RG2  
SDA/RG3  
EMUC3/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
EMUD3/U1TX/SDO1/RF3  
Note: Pinout subject to change.  
DS70150D-page 6  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 9  
2.0 CPU Architecture Overview........................................................................................................................................................ 15  
3.0 Memory Organization................................................................................................................................................................. 23  
4.0 Address Generator Units............................................................................................................................................................ 35  
5.0 Interrupts .................................................................................................................................................................................... 41  
6.0 Flash Program Memory.............................................................................................................................................................. 49  
7.0 Data EEPROM Memory ............................................................................................................................................................. 55  
8.0 I/O Ports ..................................................................................................................................................................................... 59  
9.0 Timer1 Module ........................................................................................................................................................................... 65  
10.0 Timer2/3 Module ........................................................................................................................................................................ 69  
11.0 Timer4/5 Module ....................................................................................................................................................................... 77  
12.0 Input Capture Module ................................................................................................................................................................ 81  
13.0 Output Compare Module............................................................................................................................................................ 85  
14.0 Quadrature Encoder Interface (QEI) Module ............................................................................................................................. 89  
15.0 Motor Control PWM Module....................................................................................................................................................... 95  
16.0 SPI Module............................................................................................................................................................................... 105  
17.0 I2C™ Module ........................................................................................................................................................................... 109  
18.0 Universal Asynchronous Receiver Transmitter (UART) Module .............................................................................................. 117  
19.0 CAN Module............................................................................................................................................................................. 125  
20.0 10-bit High-Speed Analog-to-Digital Converter (ADC) Module ................................................................................................ 137  
21.0 System Integration ................................................................................................................................................................... 149  
22.0 Instruction Set Summary.......................................................................................................................................................... 165  
23.0 Development Support............................................................................................................................................................... 173  
24.0 Electrical Characteristics.......................................................................................................................................................... 177  
25.0 Packaging Information.............................................................................................................................................................. 217  
Appendix A: ....................................................................................................................................................................................... 221  
Index ................................................................................................................................................................................................. 223  
The Microchip Web Site..................................................................................................................................................................... 229  
Customer Change Notification Service.............................................................................................................................................. 229  
Customer Support.............................................................................................................................................................................. 229  
Reader Response.............................................................................................................................................................................. 230  
Product Identification System ............................................................................................................................................................ 231  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Micro-  
chip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined  
and enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for  
current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the  
revision of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
© 2008 Microchip Technology Inc.  
DS70150D-page 7  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 8  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
1.0  
DEVICE OVERVIEW  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “dsPIC30F/33F Programmers  
Reference Manual” (DS70157).  
This document contains device-specific information for  
the dsPIC30F6010A and dsPIC30F6015 devices. The  
dsPIC30F devices contain extensive Digital Signal  
Processor  
(DSP)  
functionality  
within  
a
high-performance 16-bit microcontroller (MCU)  
architecture. Figure 1-1 shows a device block diagram  
for the dsPIC30F6010A device. Figure 1-2 shows a  
device block diagram for the dsPIC30F6015 device.  
© 2008 Microchip Technology Inc.  
DS70150D-page 9  
dsPIC30F6010A/6015  
FIGURE 1-1:  
dsPIC30F6010A BLOCK DIAGRAM  
Y Data Bus  
X Data Bus  
16  
16  
16  
16  
VREF-/RA9  
VREF+/RA10  
INT3/RA14  
INT4/RA15  
16  
Data Latch  
Data Latch  
Interrupt  
Controller  
PSV & Table  
Data Access  
Control Block  
Y Data  
RAM  
(4 Kbytes)  
Address  
Latch  
X Data  
RAM  
(4 Kbytes)  
Address  
Latch  
8
16  
24  
24  
PORTA  
24  
PGD/EMUD/AN0/CN2/RB0  
PGC/EMUC/AN1/CN3/RB1  
AN2/SS1/CN4/RB2  
16 16  
16  
X RAGU  
X WAGU  
Y AGU  
AN3/INDX/CN5/RB3  
PCH PCL  
PCU  
AN4/QEA/CN6/RB4  
AN5/QEB/CN7/RB5  
AN6/OCFA/RB6  
AN7/RB7  
Program Counter  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
Address Latch  
Program Memory  
(144 Kbytes)  
AN8/RB8  
AN9/RB9  
AN10/RB10  
AN11/RB11  
AN12/RB12  
Data EEPROM  
(4 Kbytes)  
Effective Address  
16  
Data Latch  
AN13/RB13  
AN14/RB14  
AN15/OCFB/CN12/RB15  
ROM Latch  
16  
24  
PORTB  
T2CK/RC1  
T4CK/RC3  
EMUD1/SOSCI/CN1/RC13  
EMUC1/SOSCO/T1CK/CN0/RC14  
OSC2/CLKO/RC15  
IR  
16  
16  
16 x 16  
W Reg Array  
Decode  
PORTC  
Instruction  
Decode &  
Control  
16 16  
EMUC2/OC1/RD0  
EMUD2/OC2/RD1  
OC3/RD2  
Control Signals  
to Various Blocks  
DSP  
Engine  
OC4/RD3  
Divide  
Unit  
Power-up  
Timer  
OC5/CN13/RD4  
OC6/CN14/RD5  
OC7/CN15/RD6  
OC8/UPDN/CN16/RD7  
IC1/RD8  
Timing  
Generation  
Oscillator  
Start-up Timer  
OSC1/CLKI  
ALU<16>  
16  
POR/BOR  
Reset  
IC2/RD9  
IC3/RD10  
IC4/RD11  
16  
Watchdog  
Timer  
MCLR  
IC5/RD12  
IC6/CN19/RD13  
IC7/CN20/RD14  
IC8/CN21/RD15  
Low-Voltage  
Detect  
VDD, VSS  
AVDD, AVSS  
PORTD  
PWM1L/RE0  
PWM1H/RE1  
PWM2L/RE2  
PWM2H/RE3  
PWM3L/RE4  
PWM3H/RE5  
PWM4L/RE6  
PWM4H/RE7  
FLTA/INT1/RE8  
FLTB/INT2/RE9  
Input  
Capture  
Module  
Output  
Compare  
Module  
CAN1,  
CAN2  
2
I C™  
10-bit ADC  
UART1,  
UART2  
SPI1,  
SPI2  
Motor Control  
PWM  
QEI  
Timers  
PORTE  
C1RX/RF0  
C1TX/RF1  
U1RX/RF2  
U1TX/RF3  
C2RX/RG0  
C2TX/RG1  
SCL/RG2  
SDA/RG3  
U2RX/CN17/RF4  
U2TX/CN18/RF5  
EMUC3/SCK1/INT0/RF6  
SDI1/RF7  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
SS2/CN11/RG9  
EMUD3/SDO1/RF8  
PORTG  
PORTF  
DS70150D-page 10  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 1-2:  
dsPIC30F6015 BLOCK DIAGRAM  
Y Data Bus  
X Data Bus  
16  
16  
16  
16  
16  
Data Latch  
Data Latch  
Interrupt  
Controller  
PSV & Table  
Data Access  
Control Block  
Y Data  
RAM  
(4 Kbytes)  
Address  
Latch  
X Data  
RAM  
(4 Kbytes)  
Address  
Latch  
8
16  
24  
24  
24  
AN0/VREF+/CN2/RB0  
AN1/VREF-/CN3/RB1  
AN2/SS1/CN4/RB2  
AN3/INDX/CN5/RB3  
16 16  
16  
X RAGU  
X WAGU  
Y AGU  
PCH PCL  
PCU  
AN4/QEA/IC7/CN6/RB4  
AN5/QEB/IC8/CN7/RB5  
PGC/EMUC/AN6/OCFA/RB6  
PGD/EMUD/AN7/RB7  
AN8/RB8  
Program Counter  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
Address Latch  
Program Memory  
(144 Kbytes)  
AN9/RB9  
AN10/RB10  
AN11/RB11  
AN12/RB12  
Data EEPROM  
(4 Kbytes)  
Effective Address  
16  
Data Latch  
AN13/RB13  
AN14/RB14  
AN15/OCFB/CN12/RB15  
ROM Latch  
16  
24  
PORTB  
IR  
EMUD1/SOSCI/T4CK/CN1/RC13  
EMUC1/SOSCO/T1CK/CN0/RC14  
OSC2/CLKO/RC15  
16  
16  
16 x 16  
W Reg Array  
Decode  
PORTC  
Instruction  
Decode &  
Control  
16 16  
EMUC2/OC1/RD0  
EMUD2/OC2/RD1  
OC3/RD2  
Control Signals  
to Various Blocks  
DSP  
Engine  
Divide  
Unit  
Power-up  
Timer  
OC4/RD3  
OC5/IC5/CN13/RD4  
OC6/IC6/CN14/RD5  
OC7/CN15/RD6  
OC8/UPDN/CN16/RD7  
IC1/FLTA/INT1/RD8  
IC2/FLTB/INT2/RD9  
IC3/INT3/RD10  
Oscillator  
Start-up Timer  
Timing  
Generation  
OSC1/CLKI  
ALU<16>  
16  
POR/BOR  
Reset  
16  
Watchdog  
Timer  
MCLR  
IC4/INT4/RD11  
Low-Voltage  
Detect  
VDD, VSS  
AVDD, AVSS  
PORTD  
Input  
Capture  
Module  
Output  
Compare  
Module  
PWM1L/RE0  
PWM1H/RE1  
PWM2L/RE2  
PWM2H/RE3  
PWM3L/RE4  
PWM3H/RE5  
PWM4L/RE6  
PWM4H/RE7  
2
I C™  
10-bit ADC  
CAN1  
UART1,  
UART2  
SPI1,  
SPI2  
Motor Control  
PWM  
QEI  
Timers  
PORTE  
SCL/RG2  
SDA/RG3  
SCK2/CN8/RG6  
SDI2/CN9/RG7  
SDO2/CN10/RG8  
SS2/CN11/RG9  
C1RX/RF0  
C1TX/RF1  
U1RX/SDI1/RF2  
EMUD3/U1TX/SDO1/RF3  
U2RX/CN17/RF4  
U2TX/CN18/RF5  
EMUC3/SCK1/INT0/RF6  
PORTG  
PORTF  
© 2008 Microchip Technology Inc.  
DS70150D-page 11  
dsPIC30F6010A/6015  
Table 1-1 provides a brief description of the device I/O  
pinout and the functions that are multiplexed to a port  
pin. Multiple functions may exist on one port pin. When  
multiplexing occurs, the peripheral module’s functional  
requirements may force an override of the data  
direction of the port pin.  
TABLE 1-1:  
Pin Name  
dsPIC30F6010A/6015 I/O PIN DESCRIPTIONS  
Pin  
Buffer  
Type  
Description  
Type  
AN0-AN15  
I
Analog Analog input channels. AN0 and AN1 are also used for device programming  
data and clock inputs, respectively.  
AVDD  
AVSS  
P
P
P
P
Positive supply for analog module. This pin must be connected at all times.  
Ground reference for analog module.  
CLKI  
I
ST/CMOS External clock source input. Always associated with OSC1 pin function.  
CLKO  
O
Oscillator crystal output. Connects to crystal or resonator in Crystal  
Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always  
associated with OSC2 pin function.  
CN0-CN23  
I
ST  
Input change notification inputs. Can be software programmed for internal weak  
pull-ups on all inputs.  
C1RX  
C1TX  
C2RX  
C2TX  
I
O
I
ST  
ST  
CAN1 bus receive pin.  
CAN1 bus transmit pin.  
CAN2 bus receive pin.  
CAN2 bus transmit pin.  
O
EMUD  
EMUC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ICD Primary Communication Channel data input/output pin.  
ICD Primary Communication Channel clock input/output pin.  
ICD Secondary Communication Channel data input/output pin.  
ICD Secondary Communication Channel clock input/output pin.  
ICD Tertiary Communication Channel data input/output pin.  
ICD Tertiary Communication Channel clock input/output pin.  
ICD Quaternary Communication Channel data input/output pin.  
ICD Quaternary Communication Channel clock input/output pin.  
EMUD1  
EMUC1  
EMUD2  
EMUC2  
EMUD3  
EMUC3  
IC1-IC8  
I
ST  
Capture inputs 1 through 8.  
INDX  
QEA  
I
I
ST  
ST  
Quadrature Encoder Index Pulse input.  
Quadrature Encoder Phase A input in QEI mode.  
Auxiliary Timer External Clock/Gate input in Timer mode.  
Quadrature Encoder Phase A input in QEI mode.  
Auxiliary Timer External Clock/Gate input in Timer mode.  
QEB  
I
ST  
UPDN  
O
CMOS Position Up/Down Counter Direction State.  
INT0  
INT1  
INT2  
INT3  
INT4  
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
External interrupt 0.  
External interrupt 1.  
External interrupt 2.  
External interrupt 3.  
External interrupt 4.  
Legend: CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
=
=
Schmitt Trigger input with CMOS levels  
Input  
O
P
=
=
Output  
Power  
DS70150D-page 12  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
TABLE 1-1:  
Pin Name  
dsPIC30F6010A/6015 I/O PIN DESCRIPTIONS (CONTINUED)  
Pin  
Buffer  
Type  
Description  
Type  
FLTA  
FLTB  
I
I
ST  
ST  
PWM Fault A input.  
PWM Fault B input.  
PWM 1 Low output.  
PWM 1 High output.  
PWM 2 Low output.  
PWM 2 High output.  
PWM 3 Low output.  
PWM 3 High output.  
PWM 4 Low output.  
PWM 4 High output.  
PWM1L  
PWM1H  
PWM2L  
PWM2H  
PWM3L  
PWM3H  
PWM4L  
PWM4H  
O
O
O
O
O
O
O
O
MCLR  
I/P  
ST  
Master Clear (Reset) input or programming voltage input. This pin is an  
active-low Reset to the device.  
OCFA  
OCFB  
OC1-OC8  
I
I
O
ST  
ST  
Compare Fault A input (for Compare channels 1, 2, 3 and 4).  
Compare Fault B input (for Compare channels 5, 6, 7 and 8).  
Compare outputs 1 through 8.  
OSC1  
I
ST/CMOS Oscillator crystal input. ST buffer when configured in RC mode; CMOS  
otherwise.  
OSC2  
I/O  
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator  
mode. Optionally functions as CLKO in RC and EC modes.  
PGD  
PGC  
I/O  
I
ST  
ST  
In-Circuit Serial Programming™ data input/output pin.  
In-Circuit Serial Programming clock input pin.  
RA9-RA10  
RA14-RA15  
I/O  
I/O  
ST  
ST  
PORTA is a bidirectional I/O port.  
RB0-RB15  
I/O  
ST  
PORTB is a bidirectional I/O port.  
PORTC is a bidirectional I/O port.  
RC1  
RC3  
RC13-RC15  
I/O  
I/O  
I/O  
ST  
ST  
ST  
RD0-RD15  
RE0-RE9  
RF0-RF8  
I/O  
I/O  
I/O  
ST  
ST  
ST  
PORTD is a bidirectional I/O port.  
PORTE is a bidirectional I/O port.  
PORTF is a bidirectional I/O port.  
PORTG is a bidirectional I/O port.  
RG0-RG3  
RG6-RG9  
I/O  
I/O  
ST  
ST  
SCK1  
SDI1  
SDO1  
SS1  
SCK2  
SDI2  
SDO2  
SS2  
I/O  
ST  
ST  
ST  
ST  
ST  
Synchronous serial clock input/output for SPI #1.  
SPI #1 Data In.  
SPI #1 Data Out.  
SPI #1 Slave Synchronization.  
Synchronous serial clock input/output for SPI #2.  
SPI #2 Data In.  
I
O
I
I/O  
I
O
I
SPI #2 Data Out.  
SPI #2 Slave Synchronization.  
ST  
SCL  
SDA  
I/O  
I/O  
ST  
ST  
Synchronous serial clock input/output for I2C™.  
Synchronous serial data input/output for I2C.  
SOSCO  
SOSCI  
O
I
32 kHz low-power oscillator crystal output.  
ST/CMOS 32 kHz low-power oscillator crystal input. ST buffer when configured in RC  
mode; CMOS otherwise.  
T1CK  
T2CK  
T4CK  
I
I
I
ST  
ST  
ST  
Timer1 external clock input.  
Timer2 external clock input.  
Timer4 external clock input.  
Legend: CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
=
=
Schmitt Trigger input with CMOS levels  
Input  
O
P
=
=
Output  
Power  
© 2008 Microchip Technology Inc.  
DS70150D-page 13  
dsPIC30F6010A/6015  
TABLE 1-1:  
Pin Name  
dsPIC30F6010A/6015 I/O PIN DESCRIPTIONS (CONTINUED)  
Pin  
Buffer  
Type  
Description  
Type  
U1RX  
U1TX  
U1ARX  
U1ATX  
U2RX  
U2TX  
I
O
I
O
I
ST  
ST  
ST  
UART1 Receive.  
UART1 Transmit.  
UART1 Alternate Receive.  
UART1 Alternate Transmit.  
UART2 Receive.  
O
UART2 Transmit.  
VDD  
P
P
I
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
VSS  
VREF+  
VREF-  
Analog Analog Voltage Reference (High) input.  
Analog Analog Voltage Reference (Low) input.  
I
Legend: CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
=
=
Schmitt Trigger input with CMOS levels  
Input  
O
P
=
=
Output  
Power  
DS70150D-page 14  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
• Linear indirect access of 32K word pages within  
program space is also possible using any working  
register, via table read and write instructions. Table  
read and write instructions can be used to access  
all 24 bits of an instruction word.  
2.0  
CPU ARCHITECTURE  
OVERVIEW  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “dsPIC30F/33F Programmers  
Reference Manual” (DS70157).  
Overhead-free circular buffers (Modulo Addressing) are  
supported in both X and Y address spaces. This is  
primarily intended to remove the loop overhead for DSP  
algorithms.  
The X AGU also supports Bit-Reversed Addressing on  
destination Effective Addresses, to greatly simplify input  
or output data reordering for radix-2 FFT algorithms.  
Refer to Section 4.0 “Address Generator Units” for  
details on Modulo and Bit-Reversed Addressing.  
This chapter summarizes the CPU and peripheral  
functions of the dsPIC30F6010A/6015.  
The core supports Inherent (no operand), Relative,  
Literal, Memory Direct, Register Direct, Register  
Indirect, Register Offset and Literal Offset Addressing  
modes. Instructions are associated with predefined  
addressing modes, depending upon their functional  
requirements.  
2.1  
Core Overview  
The core has a 24-bit instruction word. The Program  
Counter (PC) is 23 bits wide with the Least Significant  
bit (LSb) always clear (see Section 3.1 “Program  
Address Space”), and the Most Significant bit (MSb)  
is ignored during normal program execution, except for  
certain specialized instructions. Thus, the PC can  
address up to 4M instruction words of user program  
space. An instruction prefetch mechanism is used to  
help maintain throughput. Program loop constructs,  
free from loop count management overhead, are  
supported using the DOand REPEATinstructions, both  
of which are interruptible at any point.  
For most instructions, the core is capable of executing  
a data (or program data) memory read, a working reg-  
ister (data) read, a data memory write and a program  
(instruction) memory read per instruction cycle. As a  
result, 3-operand instructions are supported, allowing  
C = A + B operations to be executed in a single cycle.  
A DSP engine has been included to significantly  
enhance the core arithmetic capability and throughput.  
It features a high-speed 17-bit by 17-bit multiplier, a  
40-bit ALU, two 40-bit saturating accumulators and a  
40-bitbidirectionalbarrelshifter.Dataintheaccumulator  
or any working register can be shifted up to 16 bits right  
or 16 bits left in a single cycle. The DSP instructions  
operate seamlessly with all other instructions and have  
been designed for optimal real-time performance. The  
MACclass of instructions can concurrently fetch two data  
operands from memory, while multiplying two W  
registers. To enable this concurrent fetching of data  
operands, the data space has been split for these  
instructions and linear for all others. This has been  
achieved in a transparent and flexible manner, by  
dedicating certain working registers to each address  
space for the MAC class of instructions.  
The working register array consists of 16x16-bit  
registers, each of which can act as data, address or  
offset registers. One working register (W15) operates  
as a Software Stack Pointer for interrupts and calls.  
The data space is 64 Kbytes (32K words) and is split into  
two blocks, referred to as X and Y data memory. Each  
block has its own independent Address Generation Unit  
(AGU). Most instructions operate solely through the X  
memory AGU, which provides the appearance of a  
single unified data space. The Multiply-Accumulate  
(MAC) class of dual source DSP instructions operate  
through both the X and Y AGUs, splitting the data  
address space into two parts (see Section 3.2 “Data  
Address Space”). The X and Y data space boundary is  
device-specific and cannot be altered by the user. Each  
data word consists of 2 bytes, and most instructions can  
address data either as words or bytes.  
The core does not support a multi-stage instruction  
pipeline. However, a single stage instruction prefetch  
mechanism is used, which accesses and partially  
decodesinstructionsacycleaheadofexecution,inorder  
to maximize available execution time. Most instructions  
execute in a single cycle, with certain exceptions.  
There are two methods of accessing data stored in  
program memory:  
The core features a vectored exception processing  
structure for traps and interrupts, with 62 independent  
vectors. The exceptions consist of upto 8 traps (ofwhich  
4 are reserved) and 54 interrupts. Each interrupt is  
prioritized based on a user-assigned priority between 1  
and7(1beingthelowestpriorityand7beingthehighest)  
in conjunction with a predetermined ‘natural order’.  
Traps have fixed priorities, ranging from 8 to 15.  
The upper 32 Kbytes of data space memory can be  
mapped into the lower half (user space) of program  
spaceatany16Kprogramwordboundary, definedby  
the 8-bit Program Space Visibility Page (PSVPAG)  
register. This lets any instruction access program  
spaceasifitweredataspace, withalimitationthatthe  
access requires an additional cycle. Moreover, only  
the lower 16 bits of each instruction word can be  
accessed using this method.  
© 2008 Microchip Technology Inc.  
DS70150D-page 15  
dsPIC30F6010A/6015  
2.2.1  
SOFTWARE STACK POINTER/  
FRAME POINTER  
2.2  
Programmer’s Model  
The programmer’s model is shown in Figure 2-1 and  
consists of 16x16-bit working registers (W0 through  
W15), 2x40-bit accumulators (AccA and AccB),  
STATUS register (SR), Data Table Page register  
(TBLPAG), Program Space Visibility Page register  
(PSVPAG), DO and REPEAT registers (DOSTART,  
DOEND, DCOUNT and RCOUNT), and Program  
Counter (PC). The working registers can act as data,  
address or offset registers. All registers are memory  
mapped. W0 acts as the W register for file register  
addressing.  
The dsPIC® DSC devices contain a software stack.  
W15 is the dedicated Software Stack Pointer (SP), and  
will be automatically modified by exception processing  
and subroutine calls and returns. However, W15 can be  
referenced by any instruction in the same manner as all  
other W registers. This simplifies the reading, writing  
and manipulation of the Stack Pointer (e.g., creating  
stack frames).  
Note:  
In order to protect against misaligned  
stack accesses, W15<0> is always clear.  
Some of these registers have a shadow register  
associated with each of them, as shown in Figure 2-1.  
The shadow register is used as a temporary holding  
register and can transfer its contents to or from its host  
register upon the occurrence of an event. None of the  
shadow registers are accessible directly. The following  
rules apply for transfer of registers into and out of  
shadows.  
W15 is initialized to 0x0800 during a Reset. The user  
may reprogram the SP during initialization to any  
location within data space.  
W14 has been dedicated as a Stack Frame Pointer as  
defined by the LNK and ULNK instructions. However,  
W14 can be referenced by any instruction in the same  
manner as all other W registers.  
PUSH.Sand POP.S  
W0, W1, W2, W3, SR (DC, N, OV, Z and C bits  
only) are transferred.  
2.2.2  
STATUS REGISTER  
The dsPIC DSC core has a 16-bit STATUS register  
(SR), the LSB of which is referred to as the SR Low  
Byte (SRL) and the MSB as the SR High Byte (SRH).  
See Figure 2-1 for SR layout.  
DOinstruction  
DOSTART, DOEND, DCOUNT shadows are  
pushed on loop start and popped on loop end.  
SRL contains all the MCU ALU operation status flags  
(including the Z bit), as well as the CPU Interrupt  
Priority Level Status bits, IPL<2:0>, and the Repeat  
Active Status bit, RA. During exception processing,  
SRL is concatenated with the MSB of the PC to form a  
complete word value which is then stacked.  
When a byte operation is performed on a working  
register, only the Least Significant Byte of the target  
register is affected. However, a benefit of memory  
mapped working registers is that both the Least and  
Most Significant Bytes can be manipulated through  
byte-wide data memory space accesses.  
The upper byte of the SR register contains the DSP  
adder/subtractor Status bits, the DO Loop Active bit  
(DA) and the Digit Carry (DC) Status bit.  
2.2.3  
PROGRAM COUNTER  
The Program Counter is 23 bits wide. Bit 0 is always  
clear. Therefore, the PC can address up to 4M  
instruction words.  
DS70150D-page 16  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 2-1:  
dsPIC30F6010A/6015 PROGRAMMER’S MODEL  
D15  
D0  
W0/WREG  
W1  
PUSH.SShadow  
DOShadow  
W2  
W3  
Legend  
W4  
DSP Operand  
Registers  
W5  
W6  
W7  
Working Registers  
W8  
W9  
DSP Address  
Registers  
W10  
W11  
W12/DSP Offset  
W13/DSP Write-Back  
W14/Frame Pointer  
W15/Stack Pointer  
SPLIM  
Stack Pointer Limit Register  
AD0  
AD15  
AD39  
AccA  
AD31  
DSP  
Accumulators  
AccB  
PC22  
PC0  
0
Program Counter  
0
7
TBLPAG  
Data Table Page Address  
7
0
PSVPAG  
Program Space Visibility Page Address  
15  
0
0
RCOUNT  
REPEATLoop Counter  
DOLoop Counter  
15  
DCOUNT  
22  
0
DOSTART  
DOEND  
DOLoop Start Address  
DOLoop End Address  
22  
15  
0
Core Configuration Register  
CORCON  
OA OB  
SA SB OAB SAB DA DC  
SRH  
IPL0 RA  
N
OV  
Z
C
IPL2 IPL1  
STATUS Register  
SRL  
© 2008 Microchip Technology Inc.  
DS70150D-page 17  
dsPIC30F6010A/6015  
The divide instructions must be executed within a  
REPEAT loop. Any other form of execution (e.g., a  
series of discrete divide instructions) will not function  
correctly because the instruction flow depends on  
RCOUNT. The divide instruction does not automatically  
set up the RCOUNT value, and it must, therefore, be  
explicitly and correctly specified in the REPEAT  
instruction, as shown in Table 2-1 (REPEATwill execute  
the target instruction {operand value + 1} times). The  
REPEAT loop count must be set up for 18 iterations of  
the DIV/DIVF instruction. Thus, a complete divide  
operation requires 19 cycles.  
2.3  
Divide Support  
The dsPIC DSC devices feature a 16/16-bit signed  
fractional divide operation, as well as 32/16-bit and  
16/16-bit signed and unsigned integer divide  
operations, in the form of single instruction iterative  
divides. The following instructions and data sizes are  
supported:  
DIVF– 16/16 signed fractional divide  
DIV.sd– 32/16 signed divide  
DIV.ud– 32/16 unsigned divide  
DIV.s– 16/16 signed divide  
DIV.u– 16/16 unsigned divide  
Note:  
The divide flow is interruptible. However,  
the user needs to save the context as  
appropriate.  
TABLE 2-1:  
DIVIDE INSTRUCTIONS  
Instruction  
Function  
DIVF  
Signed fractional divide: Wm/Wn W0; Rem W1  
Signed divide: (Wm+1:Wm)/Wn W0; Rem W1  
Signed divide: Wm/Wn W0; Rem W1  
DIV.sd  
DIV.s  
DIV.ud  
DIV.u  
Unsigned divide: (Wm+1:Wm)/Wn W0; Rem W1  
Unsigned divide: Wm/Wn W0; Rem W1  
A block diagram of the DSP engine is shown in  
Figure 2-2.  
2.4  
DSP Engine  
The DSP engine consists of a high-speed 17-bit x  
17-bit multiplier, barrel shifter, and 40-bit  
adder/subtractor (with two target accumulators, round  
and saturation logic).  
TABLE 2-2:  
DSP INSTRUCTION  
SUMMARY  
a
a
Instruction  
Algebraic Operation  
The dsPIC30F devices have a single instruction flow  
which can execute either DSP or MCU instructions.  
Many of the hardware resources are shared between  
the DSP and MCU instructions. For example, the  
instruction set has both DSP and MCU multiply  
instructions which use the same hardware multiplier.  
CLR  
ED  
A = 0  
A = (x – y)2  
A = A + (x – y)2  
A = A + (x * y)  
No change in A  
A = x * y  
EDAC  
MAC  
MOVSAC  
MPY  
The DSP engine also has the capability to perform  
inherent accumulator-to-accumulator operations, which  
require no additional data. These instructions are ADD,  
SUBand NEG.  
MPY.N  
MSC  
A = – x * y  
A = A – x * y  
The DSP engine has various options selected through  
various bits in the CPU Core Configuration register  
(CORCON), as listed below:  
• Fractional or Integer DSP Multiply (IF).  
• Signed or Unsigned DSP Multiply (US).  
• Conventional or Convergent Rounding (RND).  
• Automatic Saturation On/Off for AccA (SATA).  
• Automatic Saturation On/Off for AccB (SATB).  
• Automatic Saturation On/Off for Writes to Data  
Memory (SATDW).  
• Accumulator Saturation mode Selection  
(ACCSAT).  
Note:  
For CORCON layout, see Table 3-3.  
DS70150D-page 18  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 2-2:  
DSP ENGINE BLOCK DIAGRAM  
S
a
40  
16  
40-bit Accumulator A  
40-bit Accumulator B  
40  
t
Round  
Logic  
u
r
a
t
Carry/Borrow Out  
Saturate  
e
Adder  
Carry/Borrow In  
Negate  
40  
40  
40  
Barrel  
Shifter  
16  
40  
Sign-Extend  
32  
16  
Zero Backfill  
32  
33  
17-bit  
Multiplier/Scaler  
16  
16  
To/From W Array  
© 2008 Microchip Technology Inc.  
DS70150D-page 19  
dsPIC30F6010A/6015  
2.4.1  
MULTIPLIER  
2.4.2.1  
Adder/Subtractor, Overflow and  
Saturation  
The 17x17-bit multiplier is capable of signed or  
unsigned operations and can multiplex its output using  
a scaler to support either 1.31 fractional (Q31) or 32-bit  
integer results. Unsigned operands are zero-extended  
into the 17th bit of the multiplier input value. Signed  
operands are sign-extended into the 17th bit of the  
multiplier input value. The output of the 17x17-bit  
The adder/subtractor is a 40-bit adder with an optional  
zero input into one side and either true or complement  
data into the other input. In the case of addition, the  
carry/borrow input is active-high and the other input is  
true data (not complemented), whereas in the case of  
subtraction, the carry/borrow input is active-low and the  
other input is complemented. The adder/subtractor  
generates Overflow Status bits, SA/SB and OA/OB,  
which are latched and reflected in the STATUS register.  
multiplier/scaler is  
a
33-bit value, which is  
sign-extended to 40 bits. Integer data is inherently  
represented as a signed two’s complement value,  
where the MSB is defined as a sign bit. Generally  
speaking, the range of an N-bit two’s complement  
integer is -2N-1 to 2N-1 – 1. For a 16-bit integer, the data  
range is -32768 (0x8000) to 32767 (0x7FFF), including  
0. For a 32-bit integer, the data range is -2,147,483,648  
(0x8000 0000) to 2,147,483,645 (0x7FFF FFFF).  
• Overflow from bit 39: this is a catastrophic  
overflow in which the sign of the accumulator is  
destroyed.  
• Overflow into guard bits 32 through 39: this is a  
recoverable overflow. This bit is set whenever all  
the guard bits are not identical to each other.  
When the multiplier is configured for fractional  
multiplication, the data is represented as a two’s  
complement fraction, where the MSB is defined as a  
sign bit and the radix point is implied to lie just after the  
sign bit (QX format). The range of an N-bit two’s  
complement fraction with this implied radix point is -1.0  
to (1-21-N). For a 16-bit fraction, the Q15 data range is  
-1.0 (0x8000) to 0.999969482 (0x7FFF), including 0  
and has a precision of 3.01518x10-5. In Fractional  
mode, a 16x16 multiply operation generates a 1.31  
The adder has an additional saturation block which  
controls accumulator data saturation, if selected. It  
uses the result of the adder, the Overflow Status bits  
described above, and the SATA/B (CORCON<7:6>)  
and ACCSAT (CORCON<4>) mode control bits to  
determine when and to what value to saturate.  
Six STATUS register bits have been provided to  
support saturation and overflow. They are:  
1. OA:  
product, which has a precision of 4.65661x10-10  
.
AccA overflowed into guard bits  
The same multiplier is used to support the MCU  
multiply instructions, which include integer 16-bit  
signed, unsigned and mixed sign multiplies.  
2. OB:  
AccB overflowed into guard bits  
3. SA:  
The MUL instruction may be directed to use byte or  
word-sized operands. Byte operands will direct a 16-bit  
result, and word operands will direct a 32-bit result to  
the specified register(s) in the W array.  
AccA saturated (bit 31 overflow and saturation)  
or  
AccA overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
4. SB:  
2.4.2  
DATA ACCUMULATORS AND  
ADDER/SUBTRACTOR  
AccB saturated (bit 31 overflow and saturation)  
or  
AccB overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
The data accumulator consists of  
a
40-bit  
adder/subtractor with automatic sign extension logic. It  
can select one of two accumulators (A or B) as its  
pre-accumulation source and post-accumulation  
destination. For the ADDand LACinstructions, the data  
to be accumulated or loaded can be optionally scaled  
via the barrel shifter, prior to accumulation.  
5. OAB:  
Logical OR of OA and OB  
6. SAB:  
Logical OR of SA and SB  
The OA and OB bits are modified each time data passes  
through the adder/subtractor. When set, they indicate  
that the most recent operation has overflowed into the  
accumulator guard bits (bits 32 through 39). The OA and  
OB bits can also optionally generate an arithmetic  
warning trap when set and the corresponding overflow  
trap flag enable bit (OVATE, OVBTE) in the INTCON1  
register (refer to Section 5.0 “Interrupts”) is set. This  
allows the user to take immediate action, for example, to  
correct system gain.  
DS70150D-page 20  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
The SA and SB bits are modified each time data passes  
through the adder/subtractor, but can only be cleared by  
the user. When set, they indicate that the accumulator  
has overflowed its maximum range (bit 31 for 32-bit  
saturation, or bit 39 for 40-bit saturation) and will be  
saturated if saturation is enabled. When saturation is not  
enabled, SA and SB default to bit 39 overflow and thus  
indicate that a catastrophic overflow has occurred. If the  
COVTE bit in the INTCON1 register is set, SA and SB  
bits will generate an arithmetic warning trap when  
saturation is disabled.  
2.4.2.2  
Accumulator ‘Write-Back’  
The MAC class of instructions (with the exception of  
MPY, MPY.N, ED and EDAC) can optionally write a  
rounded version of the high word (bits 31 through 16)  
of the accumulator that is not targeted by the instruction  
into data space memory. The write is performed across  
the X bus into combined X and Y address space. The  
following addressing modes are supported:  
1. W13, Register Direct:  
The rounded contents of the non-target  
accumulator are written into W13 as a 1.15  
fraction.  
The Overflow and Saturation Status bits can optionally  
be viewed in the STATUS register (SR) as the logical  
OR of OA and OB (in bit OAB) and the logical OR of SA  
and SB (in bit SAB). This allows programmers to check  
one bit in the STATUS register to determine if either  
accumulator has overflowed, or one bit to determine if  
either accumulator has saturated. This would be useful  
for complex number arithmetic which typically uses  
both the accumulators.  
2. [W13]+ = 2, Register Indirect with Post-Increment:  
The rounded contents of the non-target  
accumulator are written into the address pointed  
to by W13 as a 1.15 fraction. W13 is then  
incremented by 2 (for a word write).  
2.4.2.3  
The round logic is a combinational block, which  
performs conventional (biased) or convergent  
(unbiased) round function during an accumulator write  
(store). The Round mode is determined by the state of  
the RND bit in the CORCON register. It generates a  
16-bit, 1.15 data value which is passed to the data  
space write saturation logic. If rounding is not indicated  
by the instruction, a truncated 1.15 data value is stored  
and the least significant word is simply discarded.  
Round Logic  
The device supports three Saturation and Overflow  
modes.  
a
1. Bit 39 Overflow and Saturation:  
When bit 39 overflow and saturation occurs, the  
saturation logic loads the maximally positive 9.31  
(0x7FFFFFFFFF) or maximally negative 9.31  
value (0x8000000000) into the target  
accumulator. The SA or SB bit is set and  
remains set until cleared by the user. This is  
referred to as ‘super saturation’ and provides  
protection against erroneous data or unexpected  
algorithm problems (e.g., gain calculations).  
Conventional rounding takes bit 15 of the accumulator,  
zero-extends it and adds it to the ACCxH word (bits 16  
through 31 of the accumulator). If the ACCxL word (bits  
0 through 15 of the accumulator) is between 0x8000  
and 0xFFFF (0x8000 included), ACCxH is  
incremented. If ACCxL is between 0x0000 and 0x7FFF,  
ACCxH is left unchanged. A consequence of this  
algorithm is that over a succession of random rounding  
operations, the value will tend to be biased slightly  
positive.  
2. Bit 31 Overflow and Saturation:  
When bit 31 overflow and saturation occurs, the  
saturation logic then loads the maximally  
positive 1.31 value (0x007FFFFFFF) or  
maximally negative 1.31 value (0x0080000000)  
into the target accumulator. The SA or SB bit is  
set and remains set until cleared by the user.  
When this Saturation mode is in effect, the guard  
bits are not used so the OA, OB or OAB bits are  
never set.  
Convergent (or unbiased) rounding operates in the  
same manner as conventional rounding, except when  
ACCxL equals 0x8000. If this is the case, the LSb  
(bit 16 of the accumulator) of ACCxH is examined. If it  
is ‘1’, ACCxH is incremented. If it is ‘0’, ACCxH is not  
modified. Assuming that bit 16 is effectively random in  
nature, this scheme will remove any rounding bias that  
may accumulate.  
3. Bit 39 Catastrophic Overflow  
The bit 39 Overflow Status bit from the adder is  
used to set the SA or SB bit, which remain set  
until cleared by the user. No saturation operation  
is performed and the accumulator is allowed to  
overflow (destroying its sign). If the COVTE bit in  
the INTCON1 register is set, a catastrophic  
overflow can initiate a trap exception.  
The SAC and SAC.R instructions store either a  
truncated (SAC) or rounded (SAC.R) version of the  
contents of the target accumulator to data memory, via  
the  
X
bus (subject to data saturation, see  
Section 2.4.2.4 “Data Space Write Saturation”).  
Note that for the MAC class of instructions, the  
accumulator write-back operation will function in the  
same manner, addressing combined MCU (X and Y)  
data space though the X bus. For this class of  
instructions, the data is always subject to rounding.  
© 2008 Microchip Technology Inc.  
DS70150D-page 21  
dsPIC30F6010A/6015  
2.4.2.4  
Data Space Write Saturation  
2.4.3  
BARREL SHIFTER  
In addition to adder/subtractor saturation, writes to data  
space may also be saturated, but without affecting the  
contents of the source accumulator. The data space  
write saturation logic block accepts a 16-bit, 1.15  
fractional value from the round logic block as its input,  
together with overflow status from the original source  
(accumulator) and the 16-bit round adder. These are  
combined and used to select the appropriate 1.15  
fractional value as output to write to data space  
memory.  
The barrel shifter is capable of performing up to 16-bit  
arithmetic or logic right shifts, or up to 16-bit left shifts  
in a single cycle. The source can be either of the two  
DSP accumulators or the X bus (to support multi-bit  
shifts of register or memory data).  
The shifter requires a signed binary value to determine  
both the magnitude (number of bits) and direction of the  
shift operation. A positive value will shift the operand  
right. A negative value will shift the operand left. A  
value of ‘0’ will not modify the operand.  
If the SATDW bit in the CORCON register is set, data  
(after rounding or truncation) is tested for overflow and  
adjusted accordingly. For input data greater than  
0x007FFF, data written to memory is forced to the  
maximum positive 1.15 value, 0x7FFF. For input data  
less than 0xFF8000, data written to memory is forced  
to the maximum negative 1.15 value, 0x8000. The MSb  
of the source (bit 39) is used to determine the sign of  
the operand being tested.  
The barrel shifter is 40 bits wide, thereby obtaining a  
40-bit result for DSP shift operations and a 16-bit result  
for MCU shift operations. Data from the X bus is  
presented to the barrel shifter between bit positions 16  
to 31 for right shifts, and bit positions 0 to 15 for left  
shifts.  
If the SATDW bit in the CORCON register is not set, the  
input data is always passed through unmodified under  
all conditions.  
DS70150D-page 22  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 3-1:  
PROGRAM SPACE  
MEMORY MAP FOR  
dsPIC30F6010A/6015  
3.0  
MEMORY ORGANIZATION  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “dsPIC30F/33F Programmers  
Reference Manual” (DS70157).  
Reset – GOTOInstruction  
Reset – Target Address  
000000  
000002  
000004  
Vector Tables  
Interrupt Vector Table  
3.1  
Program Address Space  
00007E  
000080  
000084  
0000FE  
000100  
Reserved  
The program address space is 4M instruction words. It  
is addressable by the 23-bit PC, table instruction  
Effective Address (EA), or data space EA, when  
program space is mapped into data space, as defined  
by Table 3-1. Note that the program space address is  
incremented by two between successive program  
words, in order to provide compatibility with data space  
addressing.  
Alternate Vector Table  
User Flash  
Program Memory  
(48K instructions)  
017FFE  
018000  
Reserved  
(Read ‘0’s)  
7FEFFE  
7FF000  
User program space access is restricted to the lower  
4M instruction word address range (0x000000 to  
0x7FFFFE), for all accesses other than TBLRD/TBLWT,  
which use TBLPAG<7> to determine user or  
configuration space access. In Table 3-1, read/write  
instructions, bit 23 allows access to the device ID, the  
user ID and the Configuration bits. Otherwise, bit 23 is  
always clear.  
Data EEPROM  
(4 Kbytes)  
7FFFFE  
800000  
Reserved  
8005BE  
8005C0  
UNITID (32 instr.)  
Reserved  
8005FE  
800600  
F7FFFE  
Device Configuration  
Registers  
F80000  
F8000E  
F80010  
Reserved  
DEVID (2)  
FEFFFE  
FF0000  
FFFFFE  
© 2008 Microchip Technology Inc.  
DS70150D-page 23  
dsPIC30F6010A/6015  
TABLE 3-1:  
PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
User  
User  
(TBLPAG<7> = 0)  
0
PC<22:1>  
0
TBLRD/TBLWT  
TBLPAG<7:0>  
TBLPAG<7:0>  
PSVPAG<7:0>  
Data EA <15:0>  
Data EA <15:0>  
TBLRD/TBLWT  
Configuration  
(TBLPAG<7> = 1)  
Program Space Visibility User  
0
Data EA <14:0>  
FIGURE 3-2:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
23 bits  
Using  
Program  
Counter  
Program Counter  
0
0
0
Select  
1
EA  
Using  
Program  
Space  
PSVPAG Reg  
Visibility  
8 bits  
15 bits  
EA  
Using  
Table  
Instruction  
1/0  
TBLPAG Reg  
8 bits  
16 bits  
User/  
Configuration  
Space  
Byte  
Select  
24-bit EA  
Select  
Note: Program Space Visibility cannot be used to access bits <23:16> of a word in program memory.  
DS70150D-page 24  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
A set of table instructions are provided to move byte or  
word-sized data to and from program space.  
3.1.1  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
1. TBLRDL: Table Read Low  
Word: Read the least significant word of the  
program address;  
This architecture fetches 24-bit wide program memory.  
Consequently, instructions are always aligned.  
However, as the architecture is modified Harvard, data  
can also be present in program space.  
P<15:0> maps to D<15:0>.  
Byte: Read one of the Least Significant Bytes of  
the program address;  
There are two methods by which program space can  
be accessed; via special table instructions, or through  
the remapping of a 16K word program space page into  
the upper half of data space (see Section 3.1.2 “Data  
Access From Program Memory Using Program  
Space Visibility”). The TBLRDL and TBLWTL  
instructions offer a direct method of reading or writing  
the least significant word of any address within  
program space, without going through data space. The  
TBLRDHand TBLWTHinstructions are the only method  
whereby the upper 8 bits of a program space word can  
be accessed as data.  
P<7:0> maps to the destination byte when byte  
select = 0;  
P<15:8> maps to the destination byte when byte  
select = 1.  
2. TBLWTL: Table Write Low (refer to Section 6.0  
“Flash Program Memory” for details on Flash  
Programming).  
3. TBLRDH: Table Read High  
Word: Read the most significant word of the  
program address;  
P<23:16> maps to D<7:0>; D<15:8> always  
be = 0.  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two 16-bit  
word-wide address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space which contains the lsw, and TBLRDH  
and TBLWTH access the space which contains the  
MSB.  
Byte: Read one of the Most Significant Bytes of  
the program address;  
P<23:16> maps to the destination byte when  
byte select = 0;  
The destination byte will always be = 0 when  
byte select = 1.  
4. TBLWTH: Table Write High (refer to Section 6.0  
“Flash Program Memory” for details on Flash  
Programming).  
Figure 3-2 shows how the EA is created for table  
operations and data space accesses (PSV = 1). Here,  
P<23:0> refers to a program space word, whereas  
D<15:0> refers to a data space word.  
FIGURE 3-3:  
PROGRAM DATA TABLE ACCESS (LEAST SIGNIFICANT WORD)  
PC Address  
23  
8
0
16  
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
TBLRDL.B (Wn<0> = 0)  
TBLRDL.W  
Program Memory  
‘Phantom’ Byte  
(Read as ‘0’).  
TBLRDL.B (Wn<0> = 1)  
© 2008 Microchip Technology Inc.  
DS70150D-page 25  
dsPIC30F6010A/6015  
FIGURE 3-4:  
PROGRAM DATA TABLE ACCESS (MOST SIGNIFICANT BYTE)  
TBLRDH.W  
PC Address  
23  
8
0
16  
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
TBLRDH.B (Wn<0> = 0)  
Program Memory  
‘Phantom’ Byte  
(Read as ‘0’)  
TBLRDH.B (Wn<0> = 1)  
Note that by incrementing the PC by 2 for each  
program memory word, the Least Significant 15 bits of  
data space addresses directly map to the Least  
Significant 15 bits in the corresponding program space  
addresses. The remaining bits are provided by the  
Program Space Visibility Page register, PSVPAG<7:0>,  
as shown in Figure 3-5.  
3.1.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING PROGRAM SPACE  
VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word program space page. This  
provides transparent access of stored constant data  
from X data space, without the need to use special  
instructions (i.e., TBLRDL/H, TBLWTL/Hinstructions).  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
Program space access through the data space occurs  
if the MSb of the data space EA is set and program  
space visibility is enabled, by setting the PSV bit in the  
Core Control register (CORCON). The functions of  
CORCON are discussed in Section 2.4 “DSP  
Engine”.  
For instructions that use PSV which are executed  
outside a REPEAT loop:  
• The following instructions will require one  
instruction cycle in addition to the specified  
execution time:  
Data accesses to this area add an additional cycle to  
the instruction being executed, since two program  
memory fetches are required.  
- MACclass of instructions with data operand  
prefetch  
- MOVinstructions  
Note that the upper half of addressable data space is  
always part of the X data space. Therefore, when a  
DSP operation uses program space mapping to access  
this memory region, Y data space should typically  
contain state (variable) data for DSP operations,  
- MOV.Dinstructions  
• All other instructions will require two instruction  
cycles in addition to the specified execution time  
of the instruction.  
For instructions that use PSV which are executed  
inside a REPEAT loop:  
whereas  
X data space should typically contain  
coefficient (constant) data.  
• The following instances will require two instruction  
cycles in addition to the specified execution time  
of the instruction:  
Although each data space address, 0x8000 and higher,  
maps directly into a corresponding program memory  
address (see Figure 3-5), only the lower 16 bits of the  
24-bit program word are used to contain the data. The  
upper 8 bits should be programmed to force an illegal  
instruction to maintain machine robustness. Refer  
to the dsPIC30F/33F Programmers Reference  
Manual” (DS70157) for details on instruction encoding.  
- Execution in the first iteration  
- Execution in the last iteration  
- Execution prior to exiting the loop due to an  
interrupt  
- Execution upon re-entering the loop after an  
interrupt is serviced  
• Any other iteration of the REPEAT loop will allow  
the instruction, accessing data using PSV, to  
execute in a single cycle.  
DS70150D-page 26  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 3-5:  
DATA SPACE WINDOW INTO PROGRAM SPACE OPERATION  
Data Space  
Program Space  
0x000100  
0x0000  
PSVPAG(1)  
0x00  
8
15  
15  
EA<15> =  
0
Data  
Space  
16  
0x8000  
23  
15  
0
EA  
Address  
Concatenation  
EA<15> = 1  
0x001200  
0x017FFE  
15  
23  
Upper half of Data  
Space is mapped  
into Program Space  
0xFFFF  
BSET CORCON,#2  
; PSV bit set  
MOV  
MOV  
MOV  
#0x00, W0  
W0, PSVPAG  
0x9200, W0  
; Set PSVPAG register  
; Access program memory location  
; using a data space access  
Data Read  
Note: PSVPAG is an 8-bit register, containing bits <22:15> of the program space address  
(i.e., it defines the page in program space to which the upper half of data space is being mapped).  
When executing any instruction other than one of the  
MAC class of instructions, the X block consists of the  
3.2  
Data Address Space  
The core has two data spaces. The data spaces can be  
considered either separate (for some DSP  
instructions), or as one unified linear address range (for  
MCU instructions). The data spaces are accessed  
using two Address Generation Units (AGUs) and  
separate data paths.  
64 Kbyte data address space (including all  
Y
addresses). When executing one of the MAC class of  
instructions, the X block consists of the 64 Kbyte data  
address space excluding the Y address block (for data  
reads only). In other words, all other instructions regard  
the entire data memory as one composite address  
space. The MAC class instructions extract the Y  
address space from data space and address it using  
EAs sourced from W10 and W11. The remaining X data  
space is addressed using W8 and W9. Both address  
spaces are concurrently accessed only with the MAC  
class instructions.  
3.2.1  
DATA SPACE MEMORY MAP  
The data space memory is split into two blocks, X and  
Y data space. A key element of this architecture is that  
Y space is a subset of X space, and is fully contained  
within X space. In order to provide an apparent Linear  
Addressing space, X and Y spaces have contiguous  
addresses.  
A data space memory map is shown in Figure 3-6.  
Figure 3-7 shows a graphical summary of how X and Y  
data spaces are accessed for MCU and DSP  
instructions.  
© 2008 Microchip Technology Inc.  
DS70150D-page 27  
dsPIC30F6010A/6015  
FIGURE 3-6:  
dsPIC30F6010A/6015 DATA SPACE MEMORY MAP  
Least Significant Byte  
Address  
Most Significant Byte  
Address  
16 bits  
MSB  
LSB  
0x0000  
0x0001  
2 Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
8 Kbyte  
Near  
Data  
X Data RAM (X)  
Y Data RAM (Y)  
Space  
8 Kbyte  
0x17FF  
0x1801  
0x17FE  
0x1800  
SRAM Space  
0x1FFF  
0x1FFE  
0x27FF  
0x2801  
0x27FE  
0x2800  
0x8001  
0x8000  
X Data  
Unimplemented (X)  
Optionally  
Mapped  
into Program  
Memory  
0xFFFF  
0xFFFE  
DS70150D-page 28  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
DATA SPACE FOR MCU AND DSP (MAC CLASS) INSTRUCTIONS EXAMPLE  
SFR SPACE  
FIGURE 3-7:  
SFR SPACE  
UNUSED  
Y SPACE  
UNUSED  
(Y SPACE)  
UNUSED  
Non-MACClass Ops (Read/Write)  
MACClass Ops (Write)  
MACClass Ops Read-Only  
Indirect EA using any W  
Indirect EA using W10, W11 Indirect EA using W8, W9  
© 2008 Microchip Technology Inc.  
DS70150D-page 29  
dsPIC30F6010A/6015  
3.2.2  
DATA SPACES  
3.2.3  
DATA SPACE WIDTH  
The X data space is used by all instructions and  
supports all addressing modes. There are separate  
read and write data buses. The X read data bus is the  
return data path for all instructions that view data space  
as combined X and Y address space. It is also the X  
address space data path for the dual operand read  
instructions (MAC class). The X write data bus is the  
only write path to data space for all instructions.  
The core data width is 16 bits. All internal registers are  
organized as 16-bit wide words. Data space memory is  
organized in byte addressable, 16-bit wide blocks.  
3.2.4  
DATA ALIGNMENT  
To help maintain backward compatibility with  
PIC® MCU devices and improve data space memory  
usage efficiency, the dsPIC30F instruction set supports  
both word and byte operations. Data is aligned in data  
memory and registers as words, but all data space EAs  
resolve to bytes. Data byte reads will read the complete  
word, which contains the byte, using the LSb of any EA  
to determine which byte to select. The selected byte is  
placed onto the LSB of the X data path (no byte  
accesses are possible from the Y data path as the MAC  
class of instruction can only fetch words). That is, data  
memory and registers are organized as two parallel  
byte wide entities with shared (word) address decode,  
but separate write lines. Data byte writes only write to  
the corresponding side of the array or register which  
matches the byte address.  
The X data space also supports Modulo Addressing for  
all instructions, subject to addressing mode  
restrictions. Bit-Reversed Addressing is only supported  
for writes to X data space.  
The Y data space is used in concert with the X data  
space by the MAC class of instructions (CLR, ED,  
EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to  
provide two concurrent data read paths. No writes  
occur across the Y bus. This class of instructions  
dedicates two W register pointers, W10 and W11, to  
always address Y data space, independent of X data  
space, whereas W8 and W9 always address X data  
space. Note that during accumulator write-back, the  
data address space is considered a combination of X  
and Y data spaces, so the write occurs across the X  
bus. Consequently, the write can be to any address in  
the entire data space.  
As a consequence of this byte accessibility, all Effective  
Address calculations (including those generated by the  
DSP operations, which are restricted to word-sized  
data) are internally scaled to step through word-aligned  
memory. For example, the core would recognize that  
Post-Modified Register Indirect Addressing mode,  
[Ws++], will result in a value of Ws + 1 for byte  
operations and Ws + 2 for word operations.  
The Y data space can only be used for the data  
prefetch operation associated with the MAC class of  
instructions. It also supports Modulo Addressing for  
automated circular buffers. Of course, all other  
instructions can access the Y data address space  
through the X data path, as part of the composite linear  
space.  
All word accesses must be aligned to an even address.  
Misaligned word data fetches are not supported, so  
care must be taken when mixing byte and word  
operations, or translating from 8-bit MCU code. Should  
a misaligned read or write be attempted, an address  
error trap will be generated. If the error occurred on a  
read, the instruction underway is completed, whereas if  
it occurred on a write, the instruction will be executed  
but the write will not occur. In either case, a trap will  
then be executed, allowing the system and/or user to  
examine the machine state prior to execution of the  
address Fault.  
The boundary between the X and Y data spaces is  
defined as shown in Figure 3-6 and is not user  
programmable. Should an EA point to data outside its  
own assigned address space, or to a location outside  
physical memory, an all-zero word/byte will be  
returned. For example, although Y address space is  
visible by all non-MAC instructions using any  
addressing mode, an attempt by a MAC instruction to  
fetch data from that space, using W8 or W9 (X space  
pointers), will return 0x0000.  
FIGURE 3-8:  
DATA ALIGNMENT  
LSB  
TABLE 3-2:  
EFFECT OF INVALID  
MEMORY ACCESSES  
MSB  
15  
8 7  
0
0000  
0002  
0004  
0001  
Byte 1  
Byte 3  
Byte 5  
Byte 0  
Byte 2  
Byte 4  
Attempted Operation  
Data Returned  
0003  
0005  
EA = an unimplemented address  
0x0000  
0x0000  
W8 or W9 used to access Y data  
space in a MACinstruction  
W10 or W11 used to access X  
0x0000  
data space in a MACinstruction  
All Effective Addresses are 16 bits wide and point to  
bytes within the data space. Therefore, the data space  
address range is 64 Kbytes or 32K words.  
DS70150D-page 30  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
All byte loads into any W register are loaded into the  
LSB. The MSB is not modified.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0x0800, thus preventing the stack from  
interfering with the Special Function Register (SFR)  
space.  
A sign-extend (SE) instruction is provided to allow  
users to translate 8-bit signed data to 16-bit signed  
values. Alternatively, for 16-bit unsigned data, users  
can clear the MSB of any W register by executing a  
zero-extend (ZE) instruction on the appropriate  
address.  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
FIGURE 3-9:  
CALL STACK FRAME  
Although most instructions are capable of operating on  
word or byte data sizes, it should be noted that some  
instructions, including the DSP instructions, operate  
only on words.  
0x0000  
15  
0
3.2.5  
NEAR DATA SPACE  
An 8 Kbyte ‘near’ data space is reserved in X address  
memory space between 0x0000 and 0x1FFF, which is  
directly addressable via a 13-bit absolute address field  
within all memory direct instructions. The remaining X  
address space and all of the Y address space is  
addressable indirectly. Additionally, the whole of X data  
space is addressable using MOV instructions, which  
support memory direct addressing with a 16-bit  
address field.  
PC<15:0>  
000000000PC<22:16>  
<Free Word>  
W15 (before CALL)  
W15 (after CALL)  
POP: [--W15]  
PUSH: [W15++]  
3.2.7  
DATA RAM PROTECTION FEATURE  
3.2.6  
SOFTWARE STACK  
The dsPIC30F6010A/6015 devices support Data RAM  
protection features which enable segments of RAM to  
be protected when used in conjunction with Boot and  
Secure Code Segment Security. BSRAM (Secure RAM  
segment for BS) is accessible only from the Boot  
Segment Flash code when enabled. SSRAM (Secure  
RAM segment for RAM) is accessible only from the  
Secure Segment Flash code when enabled.  
The dsPIC DSC device contains a software stack. W15  
is used as the Stack Pointer.  
The Stack Pointer always points to the first available  
free word and grows from lower addresses towards  
higher addresses. It pre-decrements for stack pops and  
post-increments for stack pushes, as shown in  
Figure 3-9. Note that for a PC push during any CALL  
instruction, the MSB of the PC is zero-extended before  
the push, ensuring that the MSB is always clear.  
See Table 3-3 for an overview of the BSRAM and  
SSRAM SFRs.  
Note:  
A PC push during exception processing  
will concatenate the SRL register to the  
MSB of the PC prior to the push.  
There is a Stack Pointer Limit register (SPLIM)  
associated with the Stack Pointer. SPLIM is  
uninitialized at Reset. As is the case for the Stack  
Pointer, SPLIM<0> is forced to ‘0’, because all stack  
operations must be word-aligned. Whenever an  
Effective Address (EA) is generated using W15 as a  
source or destination pointer, the address thus  
generated is compared with the value in SPLIM. If the  
contents of the Stack Pointer (W15) and the SPLIM reg-  
ister are equal and a push operation is performed, a  
stack error trap will not occur. The stack error trap will  
occur on a subsequent push operation. Thus, for  
example, if it is desirable to cause a stack error trap  
when the stack grows beyond address 0x2000 in RAM,  
initialize the SPLIM with the value, 0x1FFE.  
© 2008 Microchip Technology Inc.  
DS70150D-page 31  
(1)  
TABLE 3-3:  
CORE REGISTER MAP  
Address  
(Home)  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
W0  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
0022  
0024  
0026  
0028  
002A  
002C  
002E  
0030  
0032  
0034  
0036  
0038  
003A  
003C  
003E  
0040  
W0 / WREG  
W1  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 1000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuu0  
0000 0000 0uuu uuuu  
uuuu uuuu uuuu uuu0  
0000 0000 0uuu uuuu  
W1  
W2  
W2  
W3  
W3  
W4  
W4  
W5  
W5  
W6  
W6  
W7  
W7  
W8  
W8  
W9  
W9  
W10  
W10  
W11  
W12  
W13  
W14  
W15  
SPLIM  
ACCAL  
ACCAH  
W11  
W12  
W13  
W14  
W15  
SPLIM  
ACCAL  
ACCAH  
ACCAU  
ACCBL  
ACCBH  
ACCBU  
PCL  
Sign Extension (ACCA<39>)  
Sign Extension (ACCB<39>)  
ACCAU  
ACCBL  
ACCBH  
ACCBU  
PCL  
PCH  
PCH  
TBLPAG  
PSVPAG  
RCOUNT  
DCOUNT  
DOSTARTL  
DOSTARTH  
DOENDL  
DOENDH  
TBLPAG  
PSVPAG  
RCOUNT  
DCOUNT  
DOSTARTL  
0
0
DOSTARTH  
DOENDL  
DOENDH  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
(1)  
TABLE 3-3:  
CORE REGISTER MAP (CONTINUED)  
Address  
(Home)  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
SR  
0042  
0044  
0046  
0048  
004A  
004C  
004E  
0050  
0052  
0750  
0752  
OA  
OB  
SA  
SB  
US  
OAB  
EDT  
SAB  
DL2  
DA  
DC  
IPL2  
IPL1  
IPL0  
RA  
N
OV  
Z
C
0000 0000 0000 0000  
0000 0000 0010 0000  
0000 0000 0000 0000  
uuuu uuuu uuuu uuu0  
uuuu uuuu uuuu uuu1  
uuuu uuuu uuuu uuu0  
uuuu uuuu uuuu uuu1  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
CORCON  
MODCON  
XMODSRT  
XMODEND  
YMODSRT  
YMODEND  
XBREV  
DL1  
DL0  
SATA  
SATB SATDW ACCSAT IPL3  
YWM<3:0>  
PSV  
RND  
IF  
XMODEN YMODEN  
BWM<3:0>  
XWM<3:0>  
XS<15:1>  
XE<15:1>  
YS<15:1>  
YE<15:1>  
0
1
0
1
BREN  
XB<14:0>  
DISICNT  
BSRAM  
DISICNT<13:0>  
IW_BSR IR_BSR RL_BSR 0000 0000 0000 0000  
IW_SSR IR_SSR RL_SSR 0000 0000 0000 0000  
SSRAM  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 34  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
4.1.1  
FILE REGISTER INSTRUCTIONS  
4.0  
ADDRESS GENERATOR UNITS  
Most file register instructions use a 13-bit address field  
(f) to directly address data present in the first  
8192 bytes of data memory (near data space). Most file  
register instructions employ a working register W0,  
which is denoted as WREG in these instructions. The  
destination is typically either the same file register, or  
WREG (with the exception of the MUL instruction),  
which writes the result to a register or register pair. The  
MOV instruction allows additional flexibility and can  
access the entire data space during file register  
operation.  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “dsPIC30F/33F Programmers  
Reference Manual” (DS70157).  
4.1.2  
MCU INSTRUCTIONS  
The dsPIC DSC core contains two independent  
Address Generator Units (AGU): the X AGU and Y  
AGU. The Y AGU supports word-sized data reads for  
the DSP MACclass of instructions only. The dsPIC DSC  
AGUs support three types of data addressing:  
The three-operand MCU instructions are of the form:  
Operand 3 = Operand 1 <function> Operand 2  
where Operand 1 is always a working register (i.e., the  
addressing mode can only be Register Direct), which is  
referred to as Wb. Operand 2 can be a W register,  
fetched from data memory, or a 5-bit literal. The result  
location can be either a W register or an address  
location. The following addressing modes are  
supported by MCU instructions:  
• Linear Addressing  
• Modulo (Circular) Addressing  
• Bit-Reversed Addressing  
Linear and Modulo Data Addressing modes can be  
applied to data space or program space. Bit-Reversed  
Addressing mode is only applicable to data space  
addresses.  
• Register Direct  
• Register Indirect  
• Register Indirect Post-Modified  
• Register Indirect Pre-Modified  
• 5-bit or 10-bit Literal  
4.1  
Instruction Addressing Modes  
The addressing modes in Table 4-1 form the basis of  
the addressing modes optimized to support the specific  
features of individual instructions. The addressing  
modes provided in the MAC class of instructions are  
somewhat different from those in the other instruction  
types.  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions may support different subsets  
of these addressing modes.  
TABLE 4-1:  
FUNDAMENTAL ADDRESSING MODES SUPPORTED  
Description  
The address of the file register is specified explicitly.  
Addressing Mode  
File Register Direct  
Register Direct  
The contents of a register are accessed directly.  
The contents of Wn forms the EA.  
Register Indirect  
Register Indirect Post-Modified  
The contents of Wn forms the EA. Wn is post-modified (incremented or  
decremented) by a constant value.  
Register Indirect Pre-Modified  
Wn is pre-modified (incremented or decremented) by a signed constant value  
to form the EA.  
Register Indirect with Register Offset The sum of Wn and Wb forms the EA.  
Register Indirect with Literal Offset  
The sum of Wn and a literal forms the EA.  
© 2008 Microchip Technology Inc.  
DS70150D-page 35  
dsPIC30F6010A/6015  
In summary, the following addressing modes are  
supported by the MACclass of instructions:  
4.1.3  
MOVE AND ACCUMULATOR  
INSTRUCTIONS  
• Register Indirect  
Move instructions and the DSP Accumulator class of  
instructions provide a greater degree of addressing  
flexibility than other instructions. In addition to the  
addressing modes supported by most MCU  
instructions, Move and Accumulator instructions also  
support Register Indirect with Register Offset Address-  
ing mode, also referred to as Register Indexed mode.  
• Register Indirect Post-Modified by 2  
• Register Indirect Post-Modified by 4  
• Register Indirect Post-Modified by 6  
• Register Indirect with Register Offset (Indexed)  
4.1.5  
OTHER INSTRUCTIONS  
Note:  
For the MOV instructions, the addressing  
mode specified in the instruction can differ  
for the source and destination EA.  
However, the 4-bit Wb (Register Offset)  
field is shared between both source and  
destination (but typically only used by  
one).  
Besides the various addressing modes outlined above,  
some instructions use literal constants of various sizes.  
For example, BRA (branch) instructions use 16-bit  
signed literals to specify the branch destination directly,  
whereas the DISI instruction uses a 14-bit unsigned  
literal field. In some instructions, such as ADDAcc, the  
source of an operand or result is implied by the opcode  
itself. Certain operations, such as NOP, do not have any  
operands.  
In summary, the following addressing modes are  
supported by Move and Accumulator instructions:  
• Register Direct  
4.2  
Modulo Addressing  
• Register Indirect  
• Register Indirect Post-Modified  
• Register Indirect Pre-Modified  
• Register Indirect with Register Offset (Indexed)  
• Register Indirect with Literal Offset  
• 8-bit Literal  
Modulo Addressing is a method of providing an  
automated means to support circular data buffers using  
hardware. The objective is to remove the need for  
software to perform data address boundary checks  
when executing tightly looped code, as is typical in  
many DSP algorithms.  
• 16-bit Literal  
Modulo Addressing can operate in either data or  
program space (since the data pointer mechanism is  
essentially the same for both). One circular buffer can be  
supported in each of the X (which also provides the  
pointers into program space) and Y data spaces. Modulo  
Addressing can operate on any W register pointer.  
However, it is not advisable to use W14 or W15 for  
Modulo Addressing, since these two registers are used  
as the Stack Frame Pointer and Stack Pointer,  
respectively.  
Note:  
Not all instructions support all the address-  
ing modes given above. Individual  
instructions may support different subsets  
of these addressing modes.  
4.1.4  
MACINSTRUCTIONS  
The dual source operand DSP instructions (CLR,ED,  
EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also  
referred to as MACinstructions, utilize a simplified set of  
addressing modes to allow the user to effectively  
manipulate the data pointers through Register Indirect  
tables.  
In general, any particular circular buffer can only be  
configured to operate in one direction, as there are  
certain restrictions on the buffer start address (for  
incrementing buffers) or end address (for decrementing  
buffers) based upon the direction of the buffer.  
The two source operand prefetch registers must be a  
member of the set {W8, W9, W10, W11}. For data reads,  
W8 and W9 will always be directed to the X RAGU and  
W10 and W11 will always be directed to the Y AGU. The  
Effective Addresses generated (before and after  
modification) must, therefore, be valid addresses within  
X data space for W8 and W9 and Y data space for W10  
and W11.  
The only exception to the usage restrictions is for  
buffers which have a power-of-2 length. As these  
buffers satisfy the start and end address criteria, they  
may operate in a Bidirectional mode, (i.e., address  
boundary checks will be performed on both the lower  
and upper address boundaries).  
Note:  
Register Indirect with Register Offset  
Addressing is only available for W9 (in X  
space) and W11 (in Y space).  
DS70150D-page 36  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
4.2.1  
START AND END ADDRESS  
4.2.2  
W ADDRESS REGISTER  
SELECTION  
The Modulo Addressing scheme requires that a  
starting and an ending address be specified and loaded  
into the 16-bit Modulo Buffer Address registers:  
XMODSRT, XMODEND, YMODSRT and YMODEND  
(see Table 3-3).  
The Modulo and Bit-Reversed Addressing Control  
register, MODCON<15:0>, contains enable flags, as  
well as a W register field to specify the W Address  
registers. The XWM and YWM fields select which  
registers will operate with Modulo Addressing. If  
XWM = 15, X RAGU and X WAGU Modulo Addressing  
are disabled. Similarly, if YWM = 15, Y AGU Modulo  
Addressing is disabled.  
Note:  
Y
space Modulo Addressing EA  
calculations assume word-sized data (LSb  
of every EA is always clear).  
The length of a circular buffer is not directly specified. It  
is determined by the difference between the  
corresponding start and end addresses. The maximum  
possible length of the circular buffer is 32K words  
(64 Kbytes).  
The X Address Space Pointer W register (XWM) to  
which Modulo Addressing is to be applied, is stored in  
MODCON<3:0> (see Table 3-3). Modulo Addressing is  
enabled for X data space when XWM is set to any value  
other than 15 and the XMODEN bit is set at  
MODCON<15>.  
The Y Address Space Pointer W register (YWM) to  
which Modulo Addressing is to be applied, is stored in  
MODCON<7:4>. Modulo Addressing is enabled for Y  
data space when YWM is set to any value other than 15  
and the YMODEN bit is set at MODCON<14>.  
FIGURE 4-1:  
MODULO ADDRESSING OPERATION EXAMPLE  
Byte  
Address  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
DO  
#0x1100,W0  
W0, XMODSRT  
#0x1163,W0  
W0,MODEND  
#0x8001,W0  
W0,MODCON  
#0x0000,W0  
#0x1110,W1  
AGAIN,#0x31  
W0, [W1++]  
;set modulo start address  
;set modulo end address  
0x1100  
;enable W1, X AGU for modulo  
;W0 holds buffer fill value  
;point W1 to buffer  
;fill the 50 buffer locations  
;fill the next location  
;increment the fill value  
MOV  
AGAIN: INC  
W0,W0  
0x1163  
Start Addr = 0x1100  
End Addr = 0x1163  
Length = 0x0032 words  
© 2008 Microchip Technology Inc.  
DS70150D-page 37  
dsPIC30F6010A/6015  
If the length of a Bit-Reversed buffer is M = 2N bytes,  
then the last ‘N’ bits of the data buffer start address  
must be zeros.  
4.2.3  
MODULO ADDRESSING  
APPLICABILITY  
Modulo Addressing can be applied to the Effective  
Address (EA) calculation associated with any W  
register. It is important to realize that the address  
boundaries check for addresses less than or greater  
than the upper (for incrementing buffers) and lower (for  
decrementing buffers) boundary addresses (not just  
equal to). Address changes may, therefore, jump  
beyond boundaries and still be adjusted correctly.  
XB<14:0> is the Bit-Reversed Address modifier or  
‘pivot point’ which is typically a constant. In the case of  
an FFT computation, its value is equal to half of the FFT  
data buffer size.  
Note:  
All Bit-Reversed EA calculations assume  
word-sized data (LSb of every EA is  
always clear). The XB value is scaled  
accordingly to generate compatible (byte)  
addresses.  
Note:  
The modulo corrected Effective Address is  
written back to the register only when  
Pre-Modify or Post-Modify Addressing  
mode is used to compute the Effective  
Address. When an address offset  
(e.g., [W7+W2]) is used, Modulo Address  
correction is performed, but the contents  
of the register remains unchanged.  
When enabled, Bit-Reversed Addressing will only be  
executed for Register Indirect with Pre-Increment or  
Post-Increment Addressing and word-sized data writes.  
It will not function for any other addressing mode or for  
byte-sized data, and normal addresses will be generated  
instead. When Bit-Reversed Addressing is active, the W  
Address Pointer will always be added to the address  
modifier (XB) and the offset associated with the Register  
Indirect Addressing mode will be ignored. In addition, as  
word-sized data is a requirement, the LSb of the EA is  
ignored (and always clear).  
4.3  
Bit-Reversed Addressing  
Bit-Reversed Addressing is intended to simplify data  
re-ordering for radix-2 FFT algorithms. It is supported  
by the X AGU for data writes only.  
Note:  
Modulo Addressing and Bit-Reversed  
Addressing should not be enabled  
together. In the event that the user  
attempts to do this, Bit-Reversed  
Addressing will assume priority when  
active for the X WAGU, and X WAGU  
Modulo Addressing will be disabled.  
However, Modulo Addressing will continue  
to function in the X RAGU.  
The modifier, which may be a constant value or register  
contents, is regarded as having its bit order reversed.  
The address source and destination are kept in normal  
order. Thus, the only operand requiring reversal is the  
modifier.  
4.3.1  
BIT-REVERSED ADDRESSING  
IMPLEMENTATION  
Bit-Reversed Addressing is enabled when:  
If Bit-Reversed Addressing has already been enabled  
by setting the BREN (XBREV<15>) bit, then a write to  
the XBREV register should not be immediately followed  
by an indirect read operation using the W register that  
has been designated as the Bit-Reversed Pointer.  
1. BWM (W register selection) in the MODCON  
register is any value other than 15 (the stack can  
not be accessed using Bit-Reversed Addressing)  
and  
2. the BREN bit is set in the XBREV register and  
3. the addressing mode used is Register Indirect  
with Pre-Increment or Post-Increment.  
FIGURE 4-2:  
BIT-REVERSED ADDRESS EXAMPLE  
Sequential Address  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1  
0
Bit Locations Swapped Left-to-Right  
Around Center of Binary Value  
b2 b3 b4  
0
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1  
Bit-Reversed Address  
Pivot Point  
XB = 0x0008 for a 16-word Bit-Reversed Buffer  
DS70150D-page 38  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
TABLE 4-2:  
A2  
BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)  
Normal Address Bit-Reversed Address  
A3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Decimal  
A3  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
A2  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A1  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Decimal  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
8
2
4
3
12  
2
4
5
10  
6
6
7
14  
1
8
9
9
10  
11  
12  
13  
14  
15  
5
13  
3
11  
7
15  
TABLE 4-3:  
BIT-REVERSED ADDRESS MODIFIER VALUES FOR XBREV REGISTER  
Buffer Size (Words)  
XB<14:0> Bit-Reversed Address Modifier Value  
4096  
2048  
1024  
512  
256  
128  
64  
0x0800  
0x0400  
0x0200  
0x0100  
0x0080  
0x0040  
0x0020  
0x0010  
0x0008  
0x0004  
0x0002  
0x0001  
32  
16  
8
4
2
© 2008 Microchip Technology Inc.  
DS70150D-page 39  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 40  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
use of the alternate vector table.  
5.0  
INTERRUPTS  
• INTTREG<15:0>  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “dsPIC30F/33F Programmers  
Reference Manual” (DS70157).  
The associated interrupt vector number and the  
new CPU interrupt priority level are latched into  
Vector number (VECNUM<5:0>) and Interrupt  
level ILR<3:0> bit fields in the INTTREG register.  
The new interrupt priority level is the priority of the  
pending interrupt.  
Note:  
Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit. User  
software should ensure the appropriate  
interrupt flag bits are clear prior to  
enabling an interrupt.  
The dsPIC30F6010A/6015 has 44 interrupt sources  
and four processor exceptions (traps), which must be  
arbitrated based on a priority scheme.  
All interrupt sources can be user assigned to one of  
seven priority levels, 1 through 7, via the IPCx  
registers. Each interrupt source is associated with an  
interrupt vector, as shown in Table 5-1. Levels 7 and 1  
represent the highest and lowest maskable priorities,  
respectively.  
The CPU is responsible for reading the Interrupt  
Vector Table (IVT) and transferring the address  
contained in the interrupt vector to the program  
counter. The interrupt vector is transferred from the  
program data bus into the program counter, via a  
24-bit wide multiplexer on the input of the program  
counter.  
Note:  
Assigning a priority level of 0 to an  
interrupt source is equivalent to disabling  
that interrupt.  
The Interrupt Vector Table (IVT) and Alternate  
Interrupt Vector Table (AIVT) are placed near the  
beginning of program memory (0x000004). The IVT  
and AIVT are shown in Figure 5-1.  
If the NSTDIS bit (INTCON1<15>) is set, nesting of  
interrupts is prevented. Thus, if an interrupt is currently  
being serviced, processing of a new interrupt is  
prevented, even if the new interrupt is of higher priority  
than the one currently being serviced.  
The interrupt controller  
is  
responsible  
for  
pre-processing the interrupts and processor  
exceptions, prior to their being presented to the  
processor core. The peripheral interrupts and traps are  
enabled, prioritized and controlled using centralized  
Special Function Registers:  
Note:  
The IPL bits become read-only whenever  
the NSTDIS bit has been set to ‘1’.  
Certain interrupts have specialized control bits for  
features like edge or level triggered interrupts,  
interrupt-on-change, etc. Control of these features  
remains within the peripheral module which generates  
the interrupt.  
• IFS0<15:0>, IFS1<15:0>, IFS2<15:0>  
All Interrupt Request Flags are maintained in  
these three registers. The flags are set by their  
respective peripherals or external signals, and  
they are cleared via software.  
The DISI instruction can be used to disable the  
processing of interrupts of priorities 6 and lower for a  
certain number of instructions, during which the DISI bit  
(INTCON2<14>) remains set.  
• IEC0<15:0>, IEC1<15:0>, IEC2<15:0>  
All Interrupt Enable Control bits are maintained in  
these three registers. These control bits are used  
to individually enable interrupts from the  
peripherals or external signals.  
When an interrupt is serviced, the PC is loaded with the  
address stored in the vector location in program  
memory that corresponds to the interrupt. There are 63  
different vectors within the IVT (refer to Figure 5-2).  
These vectors are contained in locations 0x000004  
through 0x0000FE of program memory (refer to  
Figure 5-2). These locations contain 24-bit addresses,  
and in order to preserve robustness, an address error  
trap will take place should the PC attempt to fetch any  
of these words during normal execution. This prevents  
execution of random data as a result of accidentally  
decrementing a PC into vector space, accidentally  
mapping a data space address into vector space, or the  
PC rolling over to 0x000000 after reaching the end of  
implemented program memory space. Execution of a  
GOTOinstruction to this vector space will also generate  
an address error trap.  
• IPC0<15:0>... IPC11<7:0>  
The user assignable priority level associated with  
each of these 44 interrupts is held centrally in  
these twelve registers.  
• IPL<3:0>  
The current CPU priority level is explicitly stored  
in the IPL bits. IPL<3> is present in the CORCON  
register, whereas IPL<2:0> are present in the  
STATUS register (SR) in the processor core.  
• INTCON1<15:0>, INTCON2<15:0>  
Global interrupt control functions are derived from  
these two registers. INTCON1 contains the  
control and status flags for the processor  
exceptions. The INTCON2 register controls the  
external interrupt request signal behavior and the  
© 2008 Microchip Technology Inc.  
DS70150D-page 41  
dsPIC30F6010A/6015  
TABLE 5-1:  
INTERRUPT VECTOR TABLE  
5.1  
Interrupt Priority  
INT  
Vector  
The user-assignable Interrupt Priority (IP<2:0>) bits  
for each individual interrupt source are located in the  
Least Significant 3 bits of each nibble within the IPCx  
register(s). Bit 3 of each nibble is not used and is read  
as a ‘0’. These bits define the priority level assigned  
to a particular interrupt by the user.  
Interrupt Source  
Number Number  
Highest Natural Order Priority  
0
1
8
INT0 – External Interrupt 0  
IC1 – Input Capture 1  
OC1 – Output Compare 1  
T1 – Timer1  
9
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
Note:  
The user-assignable priority levels start at  
0, as the lowest priority and level 7, as the  
highest priority.  
3
4
IC2 – Input Capture 2  
OC2 – Output Compare 2  
T2 – Timer2  
5
Since more than one interrupt request source may be  
assigned to a specific user-assigned priority level, a  
means is provided to assign priority within a given level.  
This method is called “Natural Order Priority”.  
6
7
T3 – Timer3  
8
SPI1  
9
U1RX – UART1 Receiver  
U1TX – UART1 Transmitter  
ADC – ADC Convert Done  
NVM - NVM Write Complete  
Natural Order Priority is determined by the position of  
an interrupt in the vector table, and only affects  
interrupt operation when multiple interrupts with the  
same user-assigned priority become pending at the  
same time.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45-53  
2
SI2C – I C™ Slave Interrupt  
2
MI2C – I C Master Interrupt  
Table 5-1 lists the interrupt numbers and interrupt  
sources for the dsPIC DSC devices and their associated  
vector numbers.  
Input Change Interrupt  
INT1 – External Interrupt 1  
IC7 – Input Capture 7  
IC8 – Input Capture 8  
OC3 – Output Compare 3  
OC4 – Output Compare 4  
T4 – Timer4  
Note 1: The Natural Order Priority scheme has 0  
as the highest priority and 53 as the  
lowest priority.  
2: The Natural Order Priority number is the  
same as the INT number.  
T5 – Timer5  
The ability for the user to assign every interrupt to one  
of seven priority levels means that the user can assign  
a very high overall priority level to an interrupt with a  
low natural order priority.  
INT2 – External Interrupt 2  
U2RX – UART2 Receiver  
U2TX – UART2 Transmitter  
SPI2  
C1 – Combined IRQ for CAN1  
IC3 – Input Capture 3  
IC4 – Input Capture 4  
IC5 – Input Capture 5  
IC6 – Input Capture 6  
OC5 – Output Compare 5  
OC6 – Output Compare 6  
OC7 – Output Compare 7  
OC8 – Output Compare 8  
INT3 – External Interrupt 3  
INT4 - External Interrupt 4  
C2 – Combined IRQ for CAN2  
PWM – PWM Period Match  
QEI – QEI Interrupt  
Reserved  
Reserved  
FLTA – PWM Fault A  
FLTB – PWM Fault B  
53-61 Reserved  
Lowest Natural Order Priority  
DS70150D-page 42  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
5.2  
Reset Sequence  
5.3  
Traps  
A Reset is not a true exception because the interrupt  
controller is not involved in the Reset process. The  
processor initializes its registers in response to a Reset  
which forces the PC to zero. The processor then begins  
program execution at location 0x000000. A GOTO  
instruction is stored in the first program memory  
location, immediately followed by the address target for  
the GOTOinstruction. The processor executes the GOTO  
to the specified address and then begins operation at  
the specified target (start) address.  
Traps can be considered as non-maskable interrupts  
indicating a software or hardware error, which adhere  
to a predefined priority, as shown in Figure 5-1. They  
are intended to provide the user a means to correct  
erroneous operation during debug and when operating  
within the application.  
Note:  
If the user does not intend to take  
corrective action in the event of a trap  
error condition, these vectors must be  
loaded with the address of a default  
handler that simply contains the RESET  
instruction. If, on the other hand, one of  
the vectors containing an invalid address  
is called, an address error trap is  
generated.  
5.2.1  
RESET SOURCES  
There are six sources of error which will cause a device  
Reset.  
• Watchdog Time-out:  
The watchdog has timed out, indicating that the  
processor is no longer executing the correct flow  
of code.  
Note that many of these trap conditions can only be  
detected when they occur. Consequently, the  
questionable instruction is allowed to complete prior to  
trap exception processing. If the user chooses to  
recover from the error, the result of the erroneous  
action that caused the trap may have to be corrected.  
• Uninitialized W Register Trap:  
An attempt to use an uninitialized W register as  
an Address Pointer will cause a Reset.  
• Illegal Instruction Trap:  
There are 8 fixed priority levels for traps: Level 8  
through Level 15, which means that IPL3 is always set  
during processing of a trap.  
Attempted execution of any unused opcodes will  
result in an illegal instruction trap. Note that a  
fetch of an illegal instruction does not result in an  
illegal instruction trap if that instruction is flushed  
prior to execution due to a flow change.  
If the user is not currently executing a trap, and he sets  
the IPL<3:0> bits to a value of ‘0111’ (Level 7), then all  
interrupts are disabled, but traps can still be processed.  
• Brown-out Reset (BOR):  
A momentary dip in the power supply to the  
device has been detected which may result in  
malfunction.  
5.3.1  
TRAP SOURCES  
The following traps are provided with increasing prior-  
ity. However, since all traps can be nested, priority has  
little effect.  
• Trap Lockout:  
Occurrence of multiple trap conditions  
simultaneously will cause a Reset.  
Math Error Trap:  
The math error trap executes under the following four  
circumstances:  
• Should an attempt be made to divide by zero, the  
divide operation will be aborted on a cycle bound-  
ary and the trap taken.  
• If enabled, a math error trap will be taken when an  
arithmetic operation on either Accumulator A or B  
causes an overflow from bit 31 and the Accumula-  
tor Guard bits are not utilized.  
• If enabled, a math error trap will be taken when an  
arithmetic operation on either Accumulator A or B  
causes a catastrophic overflow from bit 39 and all  
saturation is disabled.  
• If the shift amount specified in a shift instruction is  
greater than the maximum allowed shift amount, a  
trap will occur.  
© 2008 Microchip Technology Inc.  
DS70150D-page 43  
dsPIC30F6010A/6015  
Address Error Trap:  
5.3.2  
HARD AND SOFT TRAPS  
This trap is initiated when any of the following  
circumstances occurs:  
It is possible that multiple traps can become active  
within the same cycle (e.g., a misaligned word stack  
write to an overflowed address). In such a case, the  
fixed priority shown in Figure 5-2 is implemented,  
which may require the user to check if other traps are  
pending in order to completely correct the Fault.  
• A misaligned data word access is attempted.  
• A data fetch from our unimplemented data  
memory location is attempted.  
• A data access of an unimplemented program  
memory location is attempted.  
‘Soft’ traps include exceptions of priority level 8 through  
level 11, inclusive. The arithmetic error trap (level 11)  
falls into this category of traps.  
• An instruction fetch from vector space is  
attempted.  
‘Hard’ traps include exceptions of priority level 12  
through level 15, inclusive. The address error (level  
12), stack error (level 13) and oscillator error (level 14)  
traps fall into this category.  
Note:  
In the MAC class of instructions, wherein  
the data space is split into X and Y data  
space, unimplemented X space includes  
all of Y space, and unimplemented Y  
space includes all of X space.  
Each hard trap that occurs must be Acknowledged  
before code execution of any type may continue. If a  
lower priority hard trap occurs while a higher priority  
trap is pending, Acknowledged, or is being processed,  
a hard trap conflict will occur.  
4. Execution of a “BRA #literal” instruction or a  
GOTO #literal” instruction, where literal  
is an unimplemented program memory address.  
5. Executing instructions after modifying the PC to  
point to unimplemented program memory  
addresses. The PC may be modified by loading  
a value into the stack and executing a RETURN  
instruction.  
The device is automatically reset in a hard trap conflict  
condition. The TRAPR Status bit (RCON<15>) is set  
when the Reset occurs, so that the condition may be  
detected in software.  
Stack Error Trap:  
FIGURE 5-1:  
TRAP VECTORS  
This trap is initiated under the following conditions:  
Reset – GOTOInstruction  
Reset – GOTOAddress  
0x000000  
0x000002  
0x000004  
1. The Stack Pointer is loaded with a value which  
is greater than the (user programmable) limit  
value written into the SPLIM register (stack  
overflow).  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved Vector  
Reserved Vector  
Reserved Vector  
Interrupt 0 Vector  
Interrupt 1 Vector  
2. The Stack Pointer is loaded with a value which  
is less than 0x0800 (simple stack underflow).  
IVT  
0x000014  
Oscillator Fail Trap:  
This trap is initiated if the external oscillator fails and  
operation becomes reliant on an internal RC backup.  
Interrupt 52 Vector  
Interrupt 53 Vector  
0x00007E  
0x000080  
0x000082  
Reserved  
Reserved  
Reserved  
0x000084  
Oscillator Fail Trap Vector  
Stack Error Trap Vector  
Address Error Trap Vector  
Math Error Trap Vector  
Reserved Vector  
AIVT  
Reserved Vector  
Reserved Vector  
0x000094  
0x0000FE  
Interrupt 0 Vector  
Interrupt 1 Vector  
Interrupt 52 Vector  
Interrupt 53 Vector  
DS70150D-page 44  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
5.4  
Interrupt Sequence  
5.5  
Alternate Vector Table  
In program memory, the Interrupt Vector Table (IVT) is  
followed by the Alternate Interrupt Vector Table (AIVT),  
as shown in Figure 5-1. Access to the Alternate Vector  
Table is provided by the ALTIVT bit in the INTCON2  
register. If the ALTIVT bit is set, all interrupt and excep-  
tion processes will use the alternate vectors instead of  
the default vectors. The alternate vectors are organized  
in the same manner as the default vectors. The AIVT  
supports emulation and debugging efforts by providing  
a means to switch between an application and a  
support environment, without requiring the interrupt  
vectors to be reprogrammed. This feature also enables  
switching between applications for evaluation of  
different software algorithms at run time.  
All interrupt event flags are sampled in the beginning of  
each instruction cycle by the IFSx registers. A pending  
Interrupt Request (IRQ) is indicated by the flag bit  
being equal to a ‘1’ in an IFSx register. The IRQ will  
cause an interrupt to occur if the corresponding bit in  
the Interrupt Enable (IECx) register is set. For the  
remainder of the instruction cycle, the priorities of all  
pending interrupt requests are evaluated.  
If there is a pending IRQ with a priority level greater  
than the current processor priority level in the IPL bits,  
the processor will be interrupted.  
The processor then stacks the current program counter  
and the low byte of the processor STATUS register  
(SRL), as shown in Figure 5-2. The low byte of the  
STATUS register contains the processor priority level at  
the time prior to the beginning of the interrupt cycle.  
The processor then loads the priority level for this inter-  
rupt into the STATUS register. This action will disable  
all lower priority interrupts until the completion of the  
Interrupt Service Routine.  
If the AIVT is not required, the program memory  
allocated to the AIVT may be used for other purposes.  
AIVT is not a protected section and may be freely  
programmed by the user.  
5.6  
Fast Context Saving  
A context saving option is available using shadow  
registers. Shadow registers are provided for the DC, N,  
OV, Z and C bits in SR, and the registers W0 through  
W3. The shadows are only one level deep. The shadow  
registers are accessible using the PUSH.Sand POP.S  
instructions only.  
FIGURE 5-2:  
INTERRUPT STACK  
FRAME  
0x0000 15  
0
When the processor vectors to an interrupt, the  
PUSH.S instruction can be used to store the current  
value of the aforementioned registers into their  
respective shadow registers.  
PC<15:0>  
SRL IPL3 PC<22:16>  
<Free Word>  
W15 (before CALL)  
W15 (after CALL)  
If an ISR of a certain priority uses the PUSH.S and  
POP.S instructions for fast context saving, then a  
higher priority ISR should not include the same  
instructions. Users must save the key registers in  
software during a lower priority interrupt, if the higher  
priority ISR uses fast context saving.  
POP : [--W15]  
PUSH : [W15++]  
Note 1: The user can always lower the priority level  
by writing a new value into SR. The Interrupt  
Service Routine must clear the interrupt flag  
bits in the IFSx register before lowering the  
processor interrupt priority in order to avoid  
recursive interrupts.  
5.7  
External Interrupt Requests  
The interrupt controller supports five external interrupt  
request signals, INT0-INT4. These inputs are edge  
sensitive; they require a low-to-high or a high-to-low  
transition to generate an interrupt request. The  
INTCON2 register has five bits, INT0EP-INT4EP, that  
select the polarity of the edge detection circuitry.  
2: The IPL3 bit (CORCON<3>) is always clear  
when interrupts are being processed. It is  
set only during execution of traps.  
5.8  
Wake-up from Sleep and Idle  
The RETFIE (Return from Interrupt) instruction will  
unstack the program counter and STATUS registers to  
return the processor to its state prior to the interrupt  
sequence.  
The interrupt controller may be used to wake-up the  
processor from either Sleep or Idle modes, if Sleep or  
Idle mode is active when the interrupt is generated.  
If an enabled interrupt request of sufficient priority is  
received by the interrupt controller, then the standard  
interrupt request is presented to the processor. At the  
same time, the processor will wake-up from Sleep or  
Idle and begin execution of the Interrupt Service  
Routine (ISR) needed to process the interrupt request.  
© 2008 Microchip Technology Inc.  
DS70150D-page 45  
(1)  
TABLE 5-2:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC30F6010A  
SFR  
Name  
ADR  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0000 0000 0000  
0000 0000 0000 0100  
0000 0000 0000 0000  
INTCON1 0080 NSTDIS  
INTCON2 0082 ALTIVT  
OVATE OVBTE COVTE  
MATHERR ADDRERR STKERR OSCFAIL  
DISI  
INT4EP  
IC2IF  
INT3EP  
T1IF  
OC3IF  
OC8IF  
T1IE  
OC3IE  
OC8IE  
INT2EP INT1EP INT0EP  
IFS0  
IFS1  
IFS2  
IEC0  
IEC1  
IEC2  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC10  
IPC11  
0084  
0086  
0088  
008C  
008E  
0090  
0094  
0096  
0098  
009A  
009C  
009E  
00A0  
00A2  
00A4  
00A6  
00A8  
00AA  
CNIF  
IC6IF  
MI2CIF SI2CIF NVMIF  
ADIF U1TXIF U1RXIF SPI1IF  
C1IF  
FLTBIF FLTAIF  
T3IF  
T2IF OC2IF  
T5IF T4IF  
QEIIF PWMIF C2IF INT4IF  
T3IE T2IE OC2IE  
SPI2IE U2TXIE U2RXIE INT2IE T5IE T4IE  
QEIIE PWMIE C2IE INT4IE  
OC1IF  
IC8IF  
IC1IF  
IC7IF  
INT0IF  
INT1IF  
OC5IF  
INT0IE  
INT1IE  
OC5IE  
IC5IF  
IC4IF  
IC3IF  
SPI2IF U2TXIF U2RXIF INT2IF  
OC4IF  
INT3IF  
IC2IE  
OC7IF  
OC1IE  
IC8IE  
OC6IF  
CNIE  
IC6IE  
MI2CIE SI2CIE NVMIE ADIE U1TXIE U1RXIE SPI1IE  
IC1IE  
IC5IE  
IC4IE  
IC3IE  
C1IE  
OC4IE  
INT3IE  
IC7IE  
FLTBIE FLTAIE  
OC7IE  
OC6IE  
T1IP<2:0>  
T31P<2:0>  
ADIP<2:0>  
CNIP<2:0>  
OC3IP<2:0>  
INT2IP<2:0>  
C1IP<2:0>  
IC6IP<2:0>  
OC8IP<2:0>  
OC1IP<2:0>  
T2IP<2:0>  
U1TXIP<2:0>  
MI2CIP<2:0>  
IC8IP<2:0>  
T5IP<2:0>  
SPI2IP<2:0>  
IC5IP<2:0>  
OC7IP<2:0>  
C2IP<2:0>  
IC1IP<2:0>  
OC2IP<2:0>  
INT0IP<2:0>  
IC2IP<2:0>  
SPI1IP<2:0>  
NVMIP<2:0>  
INT1IP<2:0>  
OC4IP<2:0>  
U2RXIP<2:0>  
IC3IP<2:0>  
OC5IP<2:0>  
INT3IP<2:0>  
QEIIP<2:0>  
FLTBIP<2:0>  
U1RXIP<2:0>  
SI2CIP<2:0>  
IC7IP<2:0>  
T4IP<2:0>  
U2TXIP<2:0>  
IC4IP<2:0>  
OC6IP<2:0>  
INT41IP<2:0>  
PWMIP<2:0>  
FLTAIP<2:0>  
INTTREG 00B0  
ILR<3:0>  
VECNUM<5:0>  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
(1)  
TABLE 5-3:  
INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC30F6015  
SFR  
Name  
ADR  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0000 0100 0100  
0100 0000 0000 0000  
0000 0000 0000 0100  
0000 0000 0000 0000  
INTCON1 0080 NSTDIS  
INTCON2 0082 ALTIVT  
OVATE OVBTE COVTE  
MATHERR ADDRERR STKERR OSCFAIL  
DISI  
INT4EP  
IC2IF  
INT3EP  
T1IF  
OC3IF  
OC8IF  
T1IE  
OC3IE  
OC8IE  
INT2EP INT1EP INT0EP  
IFS0  
IFS1  
IFS2  
IEC0  
IEC1  
IEC2  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC10  
IPC11  
0084  
0086  
0088  
008C  
008E  
0090  
0094  
0096  
0098  
009A  
009C  
009E  
00A0  
00A2  
00A4  
00A6  
00A8  
00AA  
CNIF  
IC6IF  
MI2CIF SI2CIF NVMIF  
ADIF U1TXIF U1RXIF SPI1IF  
C1IF  
FLTBIF FLTAIF  
T3IF  
T2IF OC2IF  
OC1IF  
IC8IF  
IC1IF  
IC7IF  
INT0IF  
INT1IF  
OC5IF  
INT0IE  
INT1IE  
OC5IE  
IC5IF  
IC4IF  
IC3IF  
SPI2IF U2TXIF U2RXIF INT2IF  
QEIIF PWMIF  
T3IE  
SPI2IE U2TXIE U2RXIE INT2IE T5IE  
T5IF  
T4IF  
OC4IF  
INT3IF  
IC2IE  
INT4IF  
OC7IF  
OC1IE  
IC8IE  
OC6IF  
CNIE  
IC6IE  
MI2CIE SI2CIE NVMIE ADIE U1TXIE U1RXIE SPI1IE  
T2IE OC2IE  
IC1IE  
IC5IE  
IC4IE  
IC3IE  
C1IE  
T4IE  
OC4IE  
INT3IE  
IC7IE  
FLTBIE FLTAIE  
QEIIE PWMIE  
INT4IE  
OC7IE  
OC6IE  
T1IP<2:0>  
T31P<2:0>  
ADIP<2:0>  
CNIP<2:0>  
OC3IP<2:0>  
INT2IP<2:0>  
C1IP<2:0>  
IC6IP<2:0>  
OC8IP<2:0>  
OC1IP<2:0>  
T2IP<2:0>  
U1TXIP<2:0>  
MI2CIP<2:0>  
IC8IP<2:0>  
T5IP<2:0>  
SPI2IP<2:0>  
IC5IP<2:0>  
OC7IP<2:0>  
IC1IP<2:0>  
OC2IP<2:0>  
U1RXIP<2:0>  
SI2CIP<2:0>  
IC7IP<2:0>  
T4IP<2:0>  
U2TXIP<2:0>  
IC4IP<2:0>  
OC6IP<2:0>  
INT41IP<2:0>  
INT0IP<2:0>  
IC2IP<2:0>  
SPI1IP<2:0>  
NVMIP<2:0>  
INT1IP<2:0>  
OC4IP<2:0>  
U2RXIP<2:0>  
IC3IP<2:0>  
OC5IP<2:0>  
INT3IP<2:0>  
QEIIP<2:0>  
FLTBIP<2:0>  
PWMIP<2:0>  
FLTAIP<2:0>  
INTTREG 00B0  
ILR<3:0>  
VECNUM<5:0>  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 48  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
6.2  
Run-Time Self-Programming  
(RTSP)  
6.0  
FLASH PROGRAM MEMORY  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “dsPIC30F/33F Programmers  
Reference Manual” (DS70157).  
RTSP is accomplished using TBLRD (table read) and  
TBLWT(table write) instructions.  
With RTSP, the user may erase program memory,  
32 instructions (96 bytes) at a time and can write  
program memory data, 32 instructions (96 bytes) at a  
time.  
6.3  
Table Instruction Operation Summary  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
Word or Byte mode.  
The dsPIC30F family of devices contains internal  
program Flash memory for executing user code. There  
are two methods by which the user can program this  
memory:  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits<23:16> of program memory. TBLRDH  
and TBLWTHcan access program memory in Word or  
Byte mode.  
1. In-Circuit Serial Programming™ (ICSP™)  
2. Run-Time Self-Programming (RTSP)  
A 24-bit program memory address is formed using  
bits<7:0> of the TBLPAG register and the Effective  
Address (EA) from a W register specified in the table  
instruction, as shown in Figure 6-1.  
6.1  
In-Circuit Serial Programming  
(ICSP)  
dsPIC30F devices can be serially programmed while in  
the end application circuit. This is simply done with two  
lines for Programming Clock and Programming Data  
(which are named PGC and PGD, respectively), and  
three other lines for Power (VDD), Ground (VSS) and  
Master Clear (MCLR). This allows customers to  
manufacture boards with unprogrammed devices and  
then program the microcontroller just before shipping  
the product. This also allows the most recent firmware  
or a custom firmware to be programmed.  
FIGURE 6-1:  
ADDRESSING FOR TABLE AND NVM REGISTERS  
24 bits  
Using  
Program  
Counter  
Program Counter  
0
0
NVMADR Reg EA  
Using  
NVMADR  
Addressing  
1/0  
NVMADRU Reg  
8 bits  
16 bits  
Working Reg EA  
Using  
Table  
Instruction  
1/0  
TBLPAG Reg  
8 bits  
16 bits  
Byte  
Select  
User/Configuration  
Space Select  
24-bit EA  
© 2008 Microchip Technology Inc.  
DS70150D-page 49  
dsPIC30F6010A/6015  
6.4  
RTSP Operation  
6.5  
RTSP Control Registers  
The dsPIC30F Flash program memory is organized  
into rows and panels. Each row consists of 32 instruc-  
tions, or 96 bytes. Each panel consists of 128 rows, or  
4K x 24 instructions. RTSP allows the user to erase one  
row (32 instructions) at a time and to program  
32 instructions at one time.  
The four SFRs used to read and write the program  
Flash memory are:  
• NVMCON  
• NVMADR  
• NVMADRU  
• NVMKEY  
Each panel of program memory contains write latches  
that hold 32 instructions of programming data. Prior to  
the actual programming operation, the write data must  
be loaded into the panel write latches. The data to be  
programmed into the panel is loaded in sequential  
order into the write latches; instruction 0, instruction 1,  
etc. The addresses loaded must always be from a 32  
address boundary.  
6.5.1  
NVMCON REGISTER  
The NVMCON register controls which blocks are to be  
erased, which memory type is to be programmed and  
start of the programming cycle.  
6.5.2  
NVMADR REGISTER  
The NVMADR register is used to hold the lower two  
bytes of the Effective Address. The NVMADR register  
captures the EA<15:0> of the last table instruction that  
has been executed and selects the row to write.  
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the write latches. Programming is performed by  
setting the special bits in the NVMCON register. 32  
TBLWTL and 32 TBLWTH instructions are required to  
load the 32 instructions.  
6.5.3  
NVMADRU REGISTER  
The NVMADRU register is used to hold the upper byte  
of the Effective Address. The NVMADRU register  
captures the EA<23:16> of the last table instruction  
that has been executed.  
All of the table write operations are single-word writes  
(2 instruction cycles), because only the table latches  
are written.  
After the latches are written, a programming operation  
needs to be initiated to program the data.  
6.5.4  
NVMKEY REGISTER  
NVMKEY is a write-only register that is used for write  
protection. To start a programming or an erase  
sequence, the user must consecutively write 0x55 and  
0xAA to the NVMKEY register. Refer to Section 6.6  
“Programming Operations” for further details.  
The Flash program memory is readable, writable and  
erasable during normal operation over the entire VDD  
range.  
Note:  
The user can also directly write to the  
NVMADR and NVMADRU registers to  
specify a program memory address for  
erasing or programming.  
DS70150D-page 50  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
4. Write 32 instruction words of data from data  
RAM “image” into the program Flash write  
latches.  
6.6  
Programming Operations  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. A programming operation is nominally 2 msec in  
duration and the processor stalls (waits) until the  
operation is finished. Setting the WR bit  
(NVMCON<15>) starts the operation, and the WR bit is  
automatically cleared when the operation is finished.  
5. Program 32 instruction words into program  
Flash.  
a) Set up NVMCON register for multi-word,  
program Flash, program, and set WREN  
bit.  
b) Write 0x55’ to NVMKEY.  
c) Write 0xAA’ to NVMKEY.  
6.6.1  
PROGRAMMING ALGORITHM FOR  
PROGRAM FLASH  
d) Set the WR bit. This will begin program  
cycle.  
The user can erase or program one row of program  
Flash memory at a time. The general process is:  
e) CPU will stall for duration of the program  
cycle.  
1. Read one row of program Flash (32 instruction  
words) and store into data RAM as a data  
“image”.  
f) The WR bit is cleared by the hardware  
when program cycle ends.  
6. Repeat steps 1 through 5 as needed to program  
desired amount of program Flash memory.  
2. Update the data image with the desired new  
data.  
3. Erase program Flash row.  
6.6.2  
ERASING A ROW OF PROGRAM  
MEMORY  
a) Set up NVMCON register for multi-word,  
program Flash, erase, and set WREN bit.  
Example 6-1 shows a code sequence that can be used  
to erase a row (32 instructions) of program memory.  
b) Write address of row to be erased into  
NVMADRU/NVMDR.  
c) Write 0x55’ to NVMKEY.  
d) Write 0xAA’ to NVMKEY.  
e) Set the WR bit. This will begin erase cycle.  
f) CPU will stall for the duration of the erase  
cycle.  
g) The WR bit is cleared when erase cycle  
ends.  
EXAMPLE 6-1:  
ERASING A ROW OF PROGRAM MEMORY  
; Setup NVMCON for erase operation, multi word write  
; program memory selected, and writes enabled  
MOV  
MOV  
#0x4041,W0  
W0,NVMCON  
;
; Init NVMCON SFR  
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
MOV  
DISI  
#tblpage(PROG_ADDR),W0  
W0,NVMADRU  
#tbloffset(PROG_ADDR),W0  
W0, NVMADR  
;
; Initialize PM Page Boundary SFR  
; Intialize in-page EA[15:0] pointer  
; Intialize NVMADR SFR  
; Block all interrupts with priority <7  
; for next 5 instructions  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0,NVMKEY  
#0xAA,W1  
W1,NVMKEY  
NVMCON,#WR  
; Write the 0x55 key  
;
; Write the 0xAA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
© 2008 Microchip Technology Inc.  
DS70150D-page 51  
dsPIC30F6010A/6015  
6.6.3  
LOADING WRITE LATCHES  
Example 6-2 shows a sequence of instructions that  
can be used to load the 96 bytes of write latches.  
32 TBLWTLand 32 TBLWTHinstructions are needed to  
load the write latches selected by the Table Pointer.  
EXAMPLE 6-2:  
LOADING WRITE LATCHES  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000,W0  
W0,TBLPAG  
#0x6000,W0  
;
; Initialize PM Page Boundary SFR  
; An example program memory address  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
#LOW_WORD_0,W2  
#HIGH_BYTE_0,W3  
;
;
TBLWTL W2,[W0]  
TBLWTH W3,[W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 1st_program_word  
MOV  
MOV  
#LOW_WORD_1,W2  
#HIGH_BYTE_1,W3  
;
;
TBLWTL W2,[W0]  
TBLWTH W3,[W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
;
2nd_program_word  
MOV  
MOV  
#LOW_WORD_2,W2  
#HIGH_BYTE_2,W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 31st_program_word  
MOV  
MOV  
#LOW_WORD_31,W2  
#HIGH_BYTE_31,W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
Note: In Example 6-2, the contents of the upper byte of W3 has no effect.  
6.6.4  
INITIATING THE PROGRAMMING  
SEQUENCE  
For protection, the write initiate sequence for NVMKEY  
must be used to allow any erase or program operation  
to proceed. After the programming command has been  
executed, the user must wait for the programming time  
until programming is complete. The two instructions  
following the start of the programming sequence  
should be NOPs.  
EXAMPLE 6-3:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0,NVMKEY  
#0xAA,W1  
W1,NVMKEY  
NVMCON,#WR  
; Write the 0x55 key  
;
; Write the 0xAA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
DS70150D-page 52  
© 2008 Microchip Technology Inc.  
(1)  
TABLE 6-1:  
NVM REGISTER MAP  
File Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
NVMCON  
NVMADR  
NVMADRU  
NVMKEY  
0760  
0762  
0764  
0766  
WR  
WREN  
WRERR  
PROGOP<6:0>  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
TWRI  
NVMADR<15:0>  
NVMADR<23:16>  
KEY<7:0>  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 54  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
A program or erase operation on the data EEPROM  
does not stop the instruction flow. The user is  
responsible for waiting for the appropriate duration of  
time before initiating another data EEPROM write/  
erase operation. Attempting to read the data EEPROM  
while a programming or erase operation is in progress  
results in unspecified data.  
7.0  
DATA EEPROM MEMORY  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “dsPIC30F/33F Programmers  
Reference Manual” (DS70157).  
Control bit WR initiates write operations, similar to  
program Flash writes. This bit cannot be cleared, only  
set, in software. This bit is cleared in hardware at the  
completion of the write operation. The inability to clear  
the WR bit in software prevents the accidental or  
premature termination of a write operation.  
The data EEPROM memory is readable and writable  
during normal operation over the entire VDD range. The  
data EEPROM memory is directly mapped in the  
program memory address space.  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset, or a WDT Time-out Reset, during normal  
operation. In these situations, following Reset, the user  
can check the WRERR bit and rewrite the location. The  
address register NVMADR remains unchanged.  
The four SFRs used to read and write the program  
Flash memory are used to access data EEPROM  
memory, as well. As described in Section 4.0  
“Address Generator Units”, these registers are:  
Note:  
Interrupt flag bit NVMIF in the IFS0  
register is set when write is complete. It  
must be cleared in software.  
• NVMCON  
• NVMADR  
• NVMADRU  
• NVMKEY  
7.1  
Reading the Data EEPROM  
The EEPROM data memory allows read and write of  
single words and 16-word blocks. When interfacing to  
data memory, NVMADR, in conjunction with the  
NVMADRU register, is used to address the EEPROM  
location being accessed. TBLRDL and TBLWTL  
instructions are used to read and write data EEPROM.  
The dsPIC30F6010 device has 8 Kbytes (4K words) of  
data EEPROM, with an address range from 0x7FF000  
to 0x7FFFFE.  
A TBLRD instruction reads a word at the current  
program word address. This example uses W0 as a  
pointer to data EEPROM. The result is placed in  
register W4, as shown in Example 7-1.  
EXAMPLE 7-1:  
DATA EEPROM READ  
MOV  
MOV  
MOV  
#LOW_ADDR_WORD,W0 ; Init Pointer  
#HIGH_ADDR_WORD,W1  
W1 TBLPAG  
,
A word write operation should be preceded by an erase  
of the corresponding memory location(s). The write  
typically requires 2 ms to complete, but the write time  
will vary with voltage and temperature.  
TBLRDL [ W0 ], W4  
; read data EEPROM  
© 2008 Microchip Technology Inc.  
DS70150D-page 55  
dsPIC30F6010A/6015  
7.2  
Erasing Data EEPROM  
7.2.1  
ERASING A BLOCK OF DATA  
EEPROM  
In order to erase a block of data EEPROM, the  
NVMADRU and NVMADR registers must initially  
point to the block of memory to be erased. Configure  
NVMCON for erasing a block of data EEPROM and  
set the WR and WREN bits in the NVMCON register.  
Setting the WR bit initiates the erase, as shown in  
Example 7-2.  
EXAMPLE 7-2:  
DATA EEPROM BLOCK ERASE  
; Select data EEPROM block, WR, WREN bits  
MOV  
MOV  
#4045,W0  
W0,NVMCON  
; Initialize NVMCON SFR  
; Start erase cycle by setting WR after writing key sequence  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0,NVMKEY  
#0xAA,W1  
W1,NVMKEY  
NVMCON,#WR  
;
; Write the 0x55 key  
;
; Write the 0xAA key  
; Initiate erase sequence  
; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle  
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete  
7.2.2  
ERASING A WORD OF DATA  
EEPROM  
The NVMADRU and NVMADR registers must point to  
the block. Select a block of data Flash and set the WR  
and WREN bits in the NVMCON register. Setting the  
WR bit initiates the erase, as shown in Example 7-3.  
EXAMPLE 7-3:  
DATA EEPROM WORD ERASE  
; Select data EEPROM word, WR, WREN bits  
MOV  
MOV  
#4044,W0  
W0,NVMCON  
; Start erase cycle by setting WR after writing key sequence  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0,NVMKEY  
#0xAA,W1  
W1,NVMKEY  
NVMCON,#WR  
;
; Write the 0x55 key  
;
; Write the 0xAA key  
; Initiate erase sequence  
; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle  
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete  
DS70150D-page 56  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
The write will not initiate if the above sequence is not  
exactly followed (write 0x55 to NVMKEY, write 0xAA to  
NVMCON, then set WR bit) for each word. It is strongly  
recommended that interrupts be disabled during this  
code segment.  
7.3  
Writing to the Data EEPROM  
To write an EEPROM data location, the following  
sequence must be followed:  
1. Erase data EEPROM word.  
a) Select word, data EEPROM, erase and set  
WREN bit in NVMCON register.  
Additionally, the WREN bit in NVMCON must be set to  
enable writes. This mechanism prevents accidental  
writes to data EEPROM, due to unexpected code  
execution. The WREN bit should be kept clear at all  
times, except when updating the EEPROM. The  
WREN bit is not cleared by hardware.  
b) Write address of word to be erased into  
NVMADRU/NVMADR.  
c) Enable NVM interrupt (optional).  
d) Write 0x55’ to NVMKEY.  
After a write sequence has been initiated, clearing the  
WREN bit will not affect the current write cycle. The WR  
bit will be inhibited from being set unless the WREN bit  
is set. The WREN bit must be set on a previous  
instruction. Both WR and WREN cannot be set with the  
same instruction.  
e) Write 0xAA’ to NVMKEY.  
f) Set the WR bit. This will begin erase cycle.  
g) Either poll NVMIF bit or wait for NVMIF  
interrupt.  
h) The WR bit is cleared when the erase cycle  
ends.  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the Nonvolatile Memory Write  
Complete Interrupt Flag bit (NVMIF) is set. The user  
may either enable this interrupt, or poll this bit. NVMIF  
must be cleared by software.  
2. Write data word into data EEPROM write  
latches.  
3. Program 1 data word into data EEPROM.  
a) Select word, data EEPROM, program and  
set WREN bit in NVMCON register.  
7.3.1  
WRITING A WORD OF DATA  
EEPROM  
b) Enable NVM write done interrupt (optional).  
c) Write 0x55’ to NVMKEY.  
Once the user has erased the word to be programmed,  
then a table write instruction is used to write one write  
latch, as shown in Example 7-4.  
d) Write 0xAA’ to NVMKEY.  
e) Set the WR bit. This will begin program  
cycle.  
f) Either poll NVMIF bit or wait for NVM  
interrupt.  
g) The WR bit is cleared when the write cycle  
ends.  
EXAMPLE 7-4:  
DATA EEPROM WORD WRITE  
; Point to data memory  
MOV  
#LOW_ADDR_WORD,W0  
; Init pointer  
MOV  
MOV  
#HIGH_ADDR_WORD,W1  
W1,TBLPAG  
MOV  
TBLWTL  
#LOW(WORD),W2  
W2,[ W0]  
; Get data  
; Write data  
; The NVMADR captures last table access address  
; Select data EEPROM for 1 word op  
MOV  
MOV  
#0x4004,W0  
W0,NVMCON  
; Operate key to allow write operation  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0,NVMKEY  
#0xAA,W1  
W1,NVMKEY  
NVMCON,#WR  
; Write the 0x55 key  
; Write the 0xAA key  
; Initiate program sequence  
; Write cycle will complete in 2mS. CPU is not stalled for the Data Write Cycle  
; User can poll WR bit, use NVMIF or Timer IRQ to determine write complete  
© 2008 Microchip Technology Inc.  
DS70150D-page 57  
dsPIC30F6010A/6015  
7.3.2  
WRITING A BLOCK OF DATA  
EEPROM  
To write a block of data EEPROM, write to all sixteen  
latches first, then set the NVMCON register and  
program the block.  
EXAMPLE 7-5:  
DATA EEPROM BLOCK WRITE  
MOV  
MOV  
#LOW_ADDR_WORD,W0 ; Init pointer  
#HIGH_ADDR_WORD,W1  
MOV  
W1,TBLPAG  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
#data1,W2  
W2,[ W0]++  
#data2,W2  
W2,[ W0]++  
#data3,W2  
W2,[ W0]++  
#data4,W2  
W2,[ W0]++  
#data5,W2  
W2,[ W0]++  
#data6,W2  
W2,[ W0]++  
#data7,W2  
W2,[ W0]++  
#data8,W2  
W2,[ W0]++  
#data9,W2  
W2,[ W0]++  
#data10,W2  
W2,[ W0]++  
#data11,W2  
W2,[ W0]++  
#data12,W2  
W2,[ W0]++  
#data13,W2  
W2,[ W0]++  
#data14,W2  
W2,[ W0]++  
#data15,W2  
W2,[ W0]++  
#data16,W2  
W2,[ W0]++  
#0x400A,W0  
W0,NVMCON  
#5  
; Get 1st data  
; write data  
; Get 2nd data  
; write data  
; Get 3rd data  
; write data  
; Get 4th data  
; write data  
; Get 5th data  
; write data  
; Get 6th data  
; write data  
; Get 7th data  
; write data  
; Get 8th data  
; write data  
; Get 9th data  
; write data  
; Get 10th data  
; write data  
; Get 11th data  
; write data  
; Get 12th data  
; write data  
; Get 13th data  
; write data  
; Get 14th data  
; write data  
; Get 15th data  
; write data  
; Get 16th data  
TBLWTL  
MOV  
MOV  
; write data. The NVMADR captures last table access address.  
; Select data EEPROM for multi word op  
; Operate Key to allow program operation  
; Block all interrupts with priority <7  
; for next 5 instructions  
DISI  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0,NVMKEY  
#0xAA,W1  
W1,NVMKEY  
NVMCON,#WR  
; Write the 0x55 key  
; Write the 0xAA key  
; Start write cycle  
7.4  
Write Verify  
7.5  
Protection Against Spurious Write  
Depending on the application, good programming  
practice may dictate that the value written to the  
memory should be verified against the original value.  
This should be used in applications where excessive  
writes can stress bits near the specification limit.  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built-in. On power-up, the WREN bit is cleared;  
also, the Power-up Timer prevents EEPROM write.  
The write initiate sequence and the WREN bit together,  
help prevent an accidental write during brown-out,  
power glitch or software malfunction.  
DS70150D-page 58  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
Writes to the latch, write the latch (LATx). Reads from  
the port (PORTx), read the port pins and writes to the  
port pins, write the latch (LATx).  
8.0  
I/O PORTS  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual  
(DS70046).  
Any bit and its associated data and control registers  
that are not valid for a particular device will be  
disabled. That means the corresponding LATx and  
TRISx registers and the port pin will read as zeros.  
When a pin is shared with another peripheral or  
function that is defined as an input only, it is  
nevertheless regarded as a dedicated port because  
there is no other competing source of outputs. An  
example is the INT4 pin. Figure 8-1 shows the  
structure for a dedicated port.  
All of the device pins (except VDD, VSS, MCLR and  
OSC1/CLKI) are shared between the peripherals and  
the parallel I/O ports.  
All I/O input ports feature Schmitt Trigger inputs for  
improved noise immunity.  
The format of the registers for PORTA are shown in  
Table 8-1.  
The TRISA (Data Direction Control) register controls  
the direction of the RA<7:0> pins, as well as the INTx  
pins and the VREF pins. The LATA register supplies  
data to the outputs and is readable/writable. Reading  
the PORTA register yields the state of the input pins,  
while writing the PORTA register modifies the contents  
of the LATA register.  
8.1  
Parallel I/O (PIO) Ports  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as  
a general purpose output pin is disabled. The I/O pin  
may be read, but the output driver for the parallel port  
bit will be disabled. If a peripheral is enabled, but the  
peripheral is not actively driving a pin, that pin may be  
driven by a port.  
A parallel I/O (PIO) port that shares a pin with a  
peripheral is, in general, subservient to the peripheral.  
The peripheral’s output buffer data and control signals  
are provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pad cell. Figure 8-2 shows how ports are shared  
with other peripherals, and the associated I/O cell (pad)  
to which they are connected. Table 8-1 shows the  
formats of the registers for the shared ports, PORTB  
through PORTG.  
All port pins have three registers directly associated  
with the operation of the port pin. The data direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is a ‘1’, then the pin  
is an input. All port pins are defined as inputs after a  
Reset. Reads from the latch (LATx), read the latch.  
FIGURE 8-1:  
BLOCK DIAGRAM OF A DEDICATED PORT STRUCTURE  
Dedicated Port Module  
Read TRIS  
I/O Cell  
TRIS Latch  
D
Q
Data Bus  
WR TRIS  
CK  
Data Latch  
I/O Pad  
D
Q
WR LAT+  
WR Port  
CK  
Read LAT  
Read Port  
© 2008 Microchip Technology Inc.  
DS70150D-page 59  
dsPIC30F6010A/6015  
FIGURE 8-2:  
BLOCK DIAGRAM OF A SHARED PORT STRUCTURE  
Output Multiplexers  
Peripheral Module  
Peripheral Input Data  
Peripheral Module Enable  
I/O Cell  
Peripheral Output Enable  
Peripheral Output Data  
1
0
Output Enable  
1
0
PIO Module  
Output Data  
Read TRIS  
I/O Pad  
Data Bus  
WR TRIS  
D
Q
CK  
TRIS Latch  
D
Q
WR LAT +  
WR Port  
CK  
Data Latch  
Read LAT  
Input Data  
Read Port  
8.2.1  
I/O PORT WRITE/READ TIMING  
8.2  
Configuring Analog Port Pins  
One instruction cycle is required between a port  
direction change or port write operation and a read  
operation of the same port. Typically this instruction  
would be a NOP.  
The use of the ADPCFG and TRIS registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their correspond-  
ing TRIS bit set (input). If the TRIS bit is cleared  
(output), the digital output level (VOH or VOL) will be  
converted.  
EXAMPLE 8-1:  
PORT WRITE/READ  
EXAMPLE  
When reading the PORT register, all pins configured as  
analog input channels will read as cleared (a low level).  
MOV 0xFF00, W0  
; Configure PORTB<15:8>  
; as inputs  
Pins configured as digital inputs will not convert an ana-  
log input. Analog levels on any pin that is defined as a  
digital input (including the ANx pins) may cause the  
input buffer to consume current that exceeds the  
device specifications.  
MOV W0, TRISBB  
NOP  
; and PORTB<7:0> as outputs  
; Delay 1 cycle  
BTSS PORTB, #13 ; Next Instruction  
DS70150D-page 60  
© 2008 Microchip Technology Inc.  
(1)  
TABLE 8-1:  
dsPIC30F6010A PORT REGISTER MAP  
SFR  
Name  
Addr. Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
1100 0110 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
1110 0000 0000 1010  
TRISA  
02C0 TRISA15 TRISA14  
TRISA10 TRISA9  
RA10 RA9  
LATA10 LATA9  
PORTA  
LATA  
02C2  
RA15  
RA14  
02C4 LATA15 LATA14  
TRISB  
PORTB  
LATB  
02C6 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0  
02C8 RB15 RB14 RB13 RB12 RB11 RB10 RB9 RB8 RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0  
02CB LATB15 LATB14 LATB13 LATB12 LATB11 LATB10 LATB9 LATB8 LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0  
TRISC  
02CC TRISC15 TRISC14 TRISC13  
02CE RC15 RC14 RC13  
02D0 LATC15 LATC14 LATC13  
TRISC3  
RC3  
TRISC1  
RC1  
PORTC  
LATC  
0000 0000 0000 0000  
LATC3  
LATC1  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0011 1111 1111  
TRISD  
PORTD  
LATD  
02D2 TRISD15 TRISD14 TRISD13 TRISD12 TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0  
02D4 RD15 RD14 RD13 RD12 RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0  
02D6 LATD15 LATD14 LATD13 LATD12 LATD11 LATD10 LATD9 LATD8 LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0  
TRISE  
02D8  
02DA  
02DC  
02EE  
02E0  
TRISE9 TRISE8 TRISE7 TRISE6 TRISE5 TRISE4 TRISE3 TRISE2 TRISE1 TRISE0  
RE9 RE8 RE7 RE6 RE5 RE4 RE3 RE2 RE1 RE0  
LATE9 LATE8 LATE7 LATE6 LATE5 LATE4 LATE3 LATE2 LATE1 LATE0  
PORTE  
LATE  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0001 1111 1111  
0000 0000 0000 0000  
TRISF  
PORTF  
TRISF8 TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0  
RF8 RF7 RF6 RF5 RF4 RF3 RF2 RF1 RF0  
LATF8 LATF7 LATF6 LATF5 LATF4 LATF3 LATF2 LATF1 LATF0  
LATF  
02E2  
02E4  
02E6  
02E8  
0000 0000 0000 0000  
0000 0011 1100 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
TRISG  
PORTG  
LATG  
TRISG9 TRISG8 TRISG7 TRISG6  
RG9 RG8 RG7 RG6  
LATG9 LATG8 LATG7 LATG6  
TRISG3 TRISG2 TRISG1 TRISG0  
RG3 RG2 RG1 RG0  
LATG3 LATG2 LATG1 LATG0  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
(1)  
TABLE 8-2:  
dsPIC30F6015 PORT REGISTER MAP  
SFR  
Name  
Addr. Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
1110 0000 0000 0000  
TRISA  
02C0  
02C2  
02C4  
PORTA  
LATA  
TRISB  
PORTB  
LATB  
02C6 TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0  
02C8 RB15 RB14 RB13 RB12 RB11 RB10 RB9 RB8 RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0  
02CB LATB15 LATB14 LATB13 LATB12 LATB11 LATB10 LATB9 LATB8 LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0  
TRISC  
02CC TRISC15 TRISC14 TRISC13  
02CE RC15 RC14 RC13  
02D0 LATC15 LATC14 LATC13  
PORTC  
LATC  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 1111 1111  
TRISD  
PORTD  
LATD  
02D2  
02D4  
02D6  
02D8  
TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0  
RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0  
LATD11 LATD10 LATD9 LATD8 LATD7 LATD6 LATD5 LATD4 LATD3 LATD2 LATD1 LATD0  
TRISE  
TRISE7 TRISE6 TRISE5 TRISE4 TRISE3 TRISE2 TRISE1 TRISE0  
RE7 RE6 RE5 RE4 RE3 RE2 RE1 RE0  
LATE7 LATE6 LATE5 LATE4 LATE3 LATE2 LATE1 LATE0  
PORTE  
LATE  
02DA  
02DC  
02EE  
02E0  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0111 1111  
0000 0000 0000 0000  
TRISF  
PORTF  
TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0  
RF6 RF5 RF4 RF3 RF2 RF1 RF0  
LATF6 LATF5 LATF4 LATF3 LATF2 LATF1 LATF0  
LATF  
02E2  
02E4  
02E6  
02E8  
0000 0000 0000 0000  
0000 0011 1100 1100  
0000 0000 0000 0000  
0000 0000 0000 0000  
TRISG  
PORTG  
LATG  
TRISG9 TRISG8 TRISG7 TRISG6  
RG9 RG8 RG7 RG6  
LATG9 LATG8 LATG7 LATG6  
TRISG3 TRISG2  
RG3 RG2  
LATG3 LATG2  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6010A/6015  
8.3  
Input Change Notification Module  
The input change notification module provides the  
dsPIC30F devices the ability to generate interrupt  
requests to the processor in response to  
a
change-of-state on selected input pins. This module is  
capable of detecting input change-of-states, even in  
Sleep mode when the clocks are disabled. There are 22  
external  
signals  
(CN0  
through  
CN21)  
for  
dsPIC30F6010A and 19 external signals (CN0 through  
CN19)fordsPIC30F6015thatmaybeselected(enabled)  
forgeneratinganinterrupt request on a change-of-state.  
Please refer to the Pin Diagrams for CN pin locations.  
(1)  
TABLE 8-3:  
INPUT CHANGE NOTIFICATION REGISTER MAP (BITS 15-8)  
SFR  
Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Reset State  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
00C0  
00C2  
00C4  
00C6  
CN15IE  
CN14IE  
CN13IE  
CN12IE  
CN11IE  
CN10IE  
CN9IE  
CN8IE  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
(1)  
TABLE 8-4:  
INPUT CHANGE NOTIFICATION REGISTER MAP (BITS 7-0) FOR dsPIC30F6010A  
SFR  
Name  
Addr.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
00C0  
00C2  
00C4  
00C6  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
CN16IE  
CN0PUE  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
CN21IE  
CN20IE  
CN19IE  
CN18IE  
CN17IE  
CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE  
CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
(1)  
TABLE 8-5:  
INPUT CHANGE NOTIFICATION REGISTER MAP (BITS 7-0) FOR dsPIC30F6015  
SFR  
Name  
Addr.  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
00C0  
00C2  
00C4  
00C6  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
CN16IE  
CN0PUE  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
CN18IE  
CN17IE  
CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE  
CN18PUE CN17PUE CN16PUE  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
© 2008 Microchip Technology Inc.  
DS70150D-page 63  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 64  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
These operating modes are determined by setting the  
appropriate bit(s) in the 16-bit SFR, T1CON. Figure 9-1  
presents a block diagram of the 16-bit timer module.  
9.0  
TIMER1 MODULE  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
16-bit Timer Mode: In the 16-bit Timer mode, the timer  
increments on every instruction cycle up to a match  
value, preloaded into the period register, PR1, then  
resets to ‘0’ and continues to count.  
When the CPU goes into the Idle mode, the timer will  
stop incrementing, unless the TSIDL (T1CON<13>)  
bit = 0. If TSIDL = 1, the timer module logic will resume  
the incrementing sequence upon termination of the  
CPU Idle mode.  
This section describes the 16-bit General Purpose  
(GP) Timer1 module and associated operational  
modes.  
16-bit Synchronous Counter Mode: In the 16-bit  
Synchronous Counter mode, the timer increments on  
the rising edge of the applied external clock signal,  
which is synchronized with the internal phase clocks.  
The timer counts up to a match value preloaded in PR1,  
then resets to 0and continues.  
Note:  
Timer1 is a Type A timer. Please refer to the  
specifications for a Type A timer in  
Section 24.0 "Electrical Characteristics"  
of this document.  
The following sections provide a detailed description,  
including setup and control registers along with  
associated block diagrams for the operational modes of  
the timers.  
When the CPU goes into the Idle mode, the timer will  
stop incrementing, unless the respective TSIDL bit = 0.  
If TSIDL = 1, the timer module logic will resume the  
incrementing sequence upon termination of the CPU  
Idle mode.  
The Timer1 module is a 16-bit timer which can serve as  
the time counter for the Real-Time Clock, or operate as  
a free running interval timer/counter. The 16-bit timer  
has the following modes:  
16-bit Asynchronous Counter Mode: In the 16-bit  
Asynchronous Counter mode, the timer increments on  
every rising edge of the applied external clock signal.  
The timer counts up to a match value preloaded in PR1,  
then resets to ‘0’ and continues.  
• 16-bit Timer  
• 16-bit Synchronous Counter  
• 16-bit Asynchronous Counter  
When the timer is configured for the Asynchronous mode  
of operation and the CPU goes into the Idle mode, the  
timer will stop incrementing if TSIDL = 1.  
Further, the following operational characteristics are  
supported:  
• Timer gate operation  
• Selectable prescaler settings  
• Timer operation during CPU Idle and Sleep  
modes  
• Interrupt on 16-bit Period register match or falling  
edge of external gate signal  
© 2008 Microchip Technology Inc.  
DS70150D-page 65  
dsPIC30F6010A/6015  
FIGURE 9-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM (TYPE A TIMER)  
PR1  
Comparator x 16  
TMR1  
Equal  
TSYNC  
1
Sync  
(3)  
Reset  
0
0
1
T1IF  
Event Flag  
Q
D
TGATE  
Q
CK  
TGATE  
TCKPS<1:0>  
2
TON  
SOSCO/  
T1CK  
1X  
Gate  
Sync  
Prescaler  
1, 8, 64, 256  
LPOSCEN  
01  
00  
SOSCI  
TCY  
9.1  
Timer Gate Operation  
9.3  
Timer Operation During Sleep  
Mode  
The 16-bit timer can be placed in the Gated Time  
Accumulation mode. This mode allows the internal TCY  
to increment the respective timer when the gate input  
signal (T1CK pin) is asserted high. Control bit TGATE  
(T1CON<6>) must be set to enable this mode. The  
timer must be enabled (TON = 1) and the timer clock  
source set to internal (TCS = 0).  
During CPU Sleep mode, the timer will operate if:  
• The timer module is enabled (TON = 1) and  
• The timer clock source is selected as external  
(TCS = 1) and  
• The TSYNC bit (T1CON<2>) is asserted to a logic  
0’, which defines the external clock source as  
asynchronous  
When the CPU goes into the Idle mode, the timer will  
stop incrementing, unless TSIDL = 0. If TSIDL = 1, the  
timer will resume the incrementing sequence upon  
termination of the CPU Idle mode.  
When all three conditions are true, the timer will  
continue to count up to the period register and be reset  
to 0x0000.  
9.2  
Timer Prescaler  
When a match between the timer and the period  
register occurs, an interrupt can be generated, if the  
respective timer interrupt enable bit is asserted.  
The input clock (FOSC/4 or external clock) to the 16-bit  
Timer has a prescale option of 1:1, 1:8, 1:64 and 1:256  
selected by control bits, TCKPS<1:0> (T1CON<5:4>).  
The prescaler counter is cleared when any of the  
following occurs:  
• a write to the TMR1 register  
• clearing of the TON bit (T1CON<15>)  
• device Reset such as POR and BOR  
However, if the timer is disabled (TON = 0), then the  
timer prescaler cannot be reset since the prescaler  
clock is halted.  
TMR1 is not cleared when T1CON is written. It is  
cleared by writing to the TMR1 register.  
DS70150D-page 66  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
9.5.1  
RTC OSCILLATOR OPERATION  
9.4  
Timer Interrupt  
When the TON = 1, TCS = 1and TGATE = 0, the timer  
increments on the rising edge of the 32 kHz LP  
oscillator output signal, up to the value specified in the  
period register, and is then reset to ‘0’.  
The 16-bit timer has the ability to generate an interrupt  
on period match. When the timer count matches the  
period register, the T1IF bit is asserted and an interrupt  
will be generated, if enabled. The T1IF bit must be  
cleared in software. The Timer Interrupt Flag, T1IF, is  
located in the IFS0 Control register in the interrupt  
controller.  
The TSYNC bit must be asserted to a logic ‘0’  
(Asynchronous mode) for correct operation.  
Enabling LPOSCEN (OSCCON<1>) will disable the  
normal Timer and Counter modes and enable a timer  
carry-out wake-up event.  
When the Gated Time Accumulation mode is enabled,  
an interrupt will also be generated on the falling edge of  
the gate signal (at the end of the accumulation cycle).  
When the CPU enters Sleep mode, the RTC will  
continue to operate, provided the 32 kHz external  
crystal oscillator is active and the control bits have not  
been changed. The TSIDL bit should be cleared to ‘0’  
in order for RTC to continue operation in Idle mode.  
Enabling an interrupt is accomplished via the  
respective Timer Interrupt Enable bit, T1IE. The Timer  
Interrupt Enable bit is located in the IEC0 Control  
register in the interrupt controller.  
9.5.2  
RTC INTERRUPTS  
9.5  
Real-Time Clock  
When an interrupt event occurs, the respective  
interrupt flag, T1IF, is asserted and an interrupt will be  
generated, if enabled. The T1IF bit must be cleared in  
software. The respective Timer Interrupt Flag, T1IF, is  
located in the IFS0 STATUS register in the interrupt  
controller.  
Timer1, when operating in Real-Time Clock (RTC)  
mode, provides time-of-day and event time-stamping  
capabilities. Key operational features of the RTC are:  
• Operation from 32 kHz LP oscillator  
• 8-bit prescaler  
• Low power  
Enabling an interrupt is accomplished via the  
respective Timer Interrupt Enable bit, T1IE. The Timer  
Interrupt Enable bit is located in the IEC0 Control  
register in the interrupt controller.  
• Real-Time Clock interrupts  
These operating modes are determined by setting the  
appropriate bit(s) in the T1CON Control register.  
FIGURE 9-2:  
RECOMMENDED  
COMPONENTS FOR  
TIMER1 LP OSCILLATOR  
RTC  
C1  
SOSCI  
32.768 kHz  
XTAL  
dsPIC30FXXXX  
SOSCO  
C2  
R
C1 = C2 = 18 pF; R = 100K  
© 2008 Microchip Technology Inc.  
DS70150D-page 67  
(1)  
TABLE 9-1:  
TIMER1 REGISTER MAP  
SFR Name Addr. Bit 15  
Bit 14 Bit 13  
Bit 12  
Bit 11  
Bit 10 Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TMR1  
0100  
Timer1 Register  
uuuu uuuu uuuu uuuu  
PR1  
0102  
0104  
Period Register 1  
TGATE TCKPS1 TCKPS0  
1111 1111 1111 1111  
0000 0000 0000 0000  
T1CON  
TON  
TSIDL  
TSYNC  
TCS  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6010A/6015  
For 32-bit timer/counter operation, Timer2 is the least  
significant word and Timer3 is the most significant word  
of the 32-bit timer.  
10.0 TIMER2/3 MODULE  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and gen-  
eral device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
Note:  
For 32-bit timer operation, T3CON control  
bits are ignored. Only T2CON control bits  
are used for setup and control. Timer2  
clock and gate inputs are utilized for the  
32-bit timer module, but an interrupt is  
generated with the Timer3 Interrupt Flag  
(T3IF) and the interrupt is enabled with the  
Timer3 Interrupt Enable bit (T3IE).  
This section describes the 32-bit General Purpose  
(GP) Timer module (Timer2/3) and associated opera-  
tional modes. Figure 10-1 depicts the simplified block  
diagram of the 32-bit Timer2/3 module. Figure 10-3  
and Figure 10-5 show Timer2/3 configured as two  
independent 16-bit timers; Timer2 and Timer3,  
respectively.  
16-bit Mode: In the 16-bit mode, Timer2 and Timer3  
can be configured as two independent 16-bit timers.  
Each timer can be set up in either 16-bit Timer mode or  
16-bit Synchronous Counter mode. See Section 9.0  
“Timer1 Module”, Timer1 Module, for details on these  
two operating modes.  
Note:  
Timer2 is a Type B timer and Timer3 is a  
Type C timer. Please refer to the appropri-  
ate timer type in Section 24.0 "Electrical  
Characteristics" of this document.  
The only functional difference between Timer2 and  
Timer3 is that Timer2 provides synchronization of the  
clock prescaler output. This is useful for high frequency  
external clock inputs.  
The Timer2/3 module is a 32-bit timer, which can be  
configured as two 16-bit timers, with selectable operat-  
ing modes. These timers are utilized by other  
peripheral modules such as:  
32-bit Timer Mode: In the 32-bit Timer mode, the timer  
increments on every instruction cycle up to a match  
value, preloaded into the combined 32-bit period  
register, PR3/PR2, then resets to ‘0’ and continues to  
count.  
• Input Capture  
• Output Compare/Simple PWM  
For synchronous 32-bit reads of the Timer2/Timer3  
pair, reading the lsw (TMR2 register) will cause the  
msw to be read and latched into a 16-bit holding  
register, termed TMR3HLD.  
The following sections provide a detailed description,  
including setup and control registers, along with asso-  
ciated block diagrams for the operational modes of the  
timers.  
For synchronous 32-bit writes, the holding register  
(TMR3HLD) must first be written to. When followed by  
a write to the TMR2 register, the contents of TMR3HLD  
will be transferred and latched into the MSB of the  
32-bit timer (TMR3).  
The 32-bit timer has the following modes:  
• Two independent 16-bit timers (Timer2 and  
Timer3) with all 16-bit operating modes (except  
Asynchronous Counter mode)  
32-bit Synchronous Counter Mode: In the 32-bit  
Synchronous Counter mode, the timer increments on  
the rising edge of the applied external clock signal,  
which is synchronized with the internal phase clocks.  
The timer counts up to a match value preloaded in the  
combined 32-bit period register, PR3/PR2, then resets  
to ‘0’ and continues.  
• Single 32-bit Timer operation  
• Single 32-bit Synchronous Counter  
Further, the following operational characteristics are  
supported:  
• ADC Event Trigger  
• Timer Gate Operation  
When the timer is configured for the Synchronous  
Counter mode of operation and the CPU goes into the  
Idle mode, the timer will stop incrementing, unless the  
TSIDL (T2CON<13>) bit = 0. If TSIDL = 1, the timer  
module logic will resume the incrementing sequence  
upon termination of the CPU Idle mode.  
• Selectable Prescaler Settings  
• Timer Operation during Idle and Sleep modes  
• Interrupt on a 32-bit Period Register Match  
These operating modes are determined by setting the  
appropriate bit(s) in the 16-bit T2CON and T3CON  
SFRs.  
© 2008 Microchip Technology Inc.  
DS70150D-page 69  
dsPIC30F6010A/6015  
FIGURE 10-1:  
32-BIT TIMER2/3 BLOCK DIAGRAM FOR dsPIC30F6010A  
Data Bus<15:0>  
TMR3HLD  
16  
16  
Write TMR2  
Read TMR2  
16  
Reset  
TMR3  
TMR2  
LSB  
Sync  
MSB  
ADC Event Trigger  
Comparator x 32  
Equal  
PR3  
PR2  
0
1
T3IF  
Event Flag  
Q
Q
D
TGATE (T2CON<6>)  
CK  
TGATE  
(T2CON<6>)  
TCKPS<1:0>  
2
TON  
T2CK  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
01  
00  
TCY  
Note:  
Timer Configuration bit T32, T2CON(<3>) must be set to ‘1’ for a 32-bit timer/counter operation. All control  
bits are respective to the T2CON register.  
DS70150D-page 70  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 10-2:  
32-BIT TIMER2/3 BLOCK DIAGRAM FOR dsPIC30F6015  
Data Bus<15:0>  
TMR3HLD  
16  
16  
Write TMR2  
Read TMR2  
16  
Reset  
TMR3  
TMR2  
LSB  
Sync  
MSB  
ADC Event Trigger  
Comparator x 32  
Equal  
PR3  
PR2  
0
1
T3IF  
Event Flag  
Q
Q
D
TGATE(T2CON<6>)  
CK  
TGATE  
(T2CON<6>)  
TCKPS<1:0>  
2
TON  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
01  
00  
TCY  
Note:  
Timer Configuration bit T32, T2CON(<3>) must be set to ‘1’ for a 32-bit timer/counter operation. All control  
bits are respective to the T2CON register.  
© 2008 Microchip Technology Inc.  
DS70150D-page 71  
dsPIC30F6010A/6015  
FIGURE 10-3:  
16-BIT TIMER2 BLOCK DIAGRAM (TYPE B TIMER) FOR dsPIC30F6010A  
PR2  
Comparator x 16  
TMR2  
Equal  
Reset  
Sync  
0
1
T2IF  
Event Flag  
Q
Q
D
TGATE  
CK  
TGATE  
TCKPS<1:0>  
2
TON  
T2CK  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
TCY  
FIGURE 10-4:  
16-BIT TIMER2 BLOCK DIAGRAM (TYPE B TIMER) FOR dsPIC30F6015  
PR2  
Equal  
Comparator x 16  
TMR2  
Sync  
Reset  
0
1
T2IF  
Event Flag  
Q
Q
D
TGATE  
CK  
TGATE  
TCKPS<1:0>  
2
TON  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
TCY  
Note: The dsPIC30F6015 does not have an external pin input to TIMER2. The following modes should not be used:  
1. TCS = 1  
2. TCS = 0and TGATE = 1(gated time accumulation)  
DS70150D-page 72  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 10-5:  
16-BIT TIMER3 BLOCK DIAGRAM (TYPE C TIMER)  
PR3  
Comparator x 16  
TMR3  
ADC Event Trigger  
Equal  
Reset  
0
1
T3IF  
Event Flag  
Q
Q
D
TGATE  
CK  
TGATE  
TCKPS<1:0>  
2
TON  
Sync  
TCY  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Note: The dsPIC30F6010A/6015 devices do not have an external pin input to Timer3. These modes should not be used:  
1. TCS = 1  
2. TCS = 0and TGATE = 1(gated time accumulation)  
© 2008 Microchip Technology Inc.  
DS70150D-page 73  
dsPIC30F6010A/6015  
10.1 Timer Gate Operation  
10.4 Timer Operation During Sleep  
Mode  
The 32-bit timer can be placed in the Gated Time  
Accumulation mode. This mode allows the internal TCY  
to increment the respective timer when the gate input  
signal (T2CK pin) is asserted high. Control bit TGATE  
(T2CON<6>) must be set to enable this mode. When in  
this mode, Timer2 is the originating clock source. The  
TGATE setting is ignored for Timer3. The timer must be  
enabled (TON = 1) and the timer clock source set to  
internal (TCS = 0).  
During CPU Sleep mode, the timer will not operate,  
because the internal clocks are disabled.  
10.5 Timer Interrupt  
The 32-bit timer module can generate an interrupt on  
period match, or on the falling edge of the external gate  
signal. When the 32-bit timer count matches the  
respective 32-bit period register, or the falling edge of  
the external “gate” signal is detected, the T3IF bit  
(IFS0<7>) is asserted and an interrupt will be  
generated if enabled. In this mode, the T3IF interrupt  
flag is used as the source of the interrupt. The T3IF bit  
must be cleared in software.  
The falling edge of the external signal terminates the  
count operation, but does not reset the timer. The user  
must reset the timer in order to start counting from zero.  
10.2 ADC Event Trigger  
When a match occurs between the 32-bit timer  
(TMR3/TMR2) and the 32-bit combined period register  
(PR3/PR2), a special ADC trigger event signal is  
generated by Timer3.  
Enabling an interrupt is accomplished via the  
respective Timer Interrupt Enable bit, T3IE (IEC0<7>).  
10.3 Timer Prescaler  
The input clock (FOSC/4 or external clock) to the timer  
has a prescale option of 1:1, 1:8, 1:64, and 1:256  
selected by control bits TCKPS<1:0> (T2CON<5:4>  
and T3CON<5:4>). For the 32-bit timer operation, the  
originating clock source is Timer2. The prescaler  
operation for Timer3 is not applicable in this mode. The  
prescaler counter is cleared when any of the following  
occurs:  
• a write to the TMR2/TMR3 register  
• clearing either of the TON (T2CON<15> or  
T3CON<15>) bits to ‘0’  
• device Reset such as POR and BOR  
However, if the timer is disabled (TON = 0), then the  
Timer2 prescaler cannot be reset, since the prescaler  
clock is halted.  
TMR2/TMR3 is not cleared when T2CON/T3CON is  
written.  
DS70150D-page 74  
© 2008 Microchip Technology Inc.  
(1)  
TABLE 10-1: TIMER2/3 REGISTER MAP  
SFR Name Addr.  
TMR2 0106  
TMR3HLD 0108  
Bit 15  
Bit 14 Bit 13  
Bit 12  
Bit 11  
Bit 10 Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
1111 1111 1111 1111  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
Timer2 Register  
Timer3 Holding Register (For 32-bit timer operations only)  
TMR3  
PR2  
010A  
010C  
010E  
0110  
0112  
Timer3 Register  
Period Register 2  
Period Register 3  
PR3  
T2CON  
T3CON  
TON  
TON  
TSIDL  
TSIDL  
TGATE TCKPS1 TCKPS0  
TGATE TCKPS1 TCKPS0  
T32  
TCS  
TCS  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 76  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
Figure 11-2 and Figure 11-3 show Timer4/5 configured  
as two independent 16-bit timers, Timer4 and Timer5,  
respectively.  
11.0 TIMER4/5 MODULE  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
Note:  
Timer4 is a Type B timer and Timer5 is a  
Type timer. Please refer to the  
appropriate timer type in Section 24.0  
"Electrical Characteristics" of this  
document.  
C
The Timer4/5 module is similar in operation to the  
Timer2/3 module. However, there are some  
differences, which are listed below:  
This section describes the second 32-bit General  
Purpose (GP) Timer module (Timer4/5) and associated  
operational modes. Figure 11-1 depicts the simplified  
block diagram of the 32-bit Timer4/5 Module.  
• The Timer4/5 module does not support the ADC  
Event Trigger feature  
FIGURE 11-1:  
32-BIT TIMER4/5 BLOCK DIAGRAM  
Data Bus<15:0>  
TMR5HLD  
16  
16  
Write TMR4  
Read TMR4  
16  
Reset  
TMR5  
MSB  
TMR4  
LSB  
Sync  
Comparator x 32  
Equal  
PR5  
PR4  
0
1
T5IF  
Event Flag  
Q
Q
D
TGATE(T4CON<6>)  
CK  
TGATE  
(T4CON<6>)  
TCKPS<1:0>  
2
TON  
T4CK  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
0 1  
00  
TCY  
Note:  
Timer Configuration bit T45, T4CON(<3>) must be set to ‘1’ for a 32-bit timer/counter operation. All  
control bits are respective to the T4CON register.  
© 2008 Microchip Technology Inc.  
DS70150D-page 77  
dsPIC30F6010A/6015  
FIGURE 11-2:  
16-BIT TIMER4 BLOCK DIAGRAM (TYPE B TIMER)  
PR4  
Comparator x 16  
TMR4  
Equal  
Reset  
Sync  
0
1
T4IF  
Event Flag  
Q
D
TGATE  
Q
CK  
TGATE  
TCKPS<1:0>  
2
TON  
T4CK  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
01  
00  
TCY  
FIGURE 11-3:  
16-BIT TIMER5 BLOCK DIAGRAM (TYPE C TIMER)  
PR5  
Equal  
Reset  
ADC Event Trigger  
Comparator x 16  
TMR5  
0
1
T5IF  
Event Flag  
Q
D
TGATE  
Q
CK  
TGATE  
TCKPS<1:0>  
TON  
2
Sync  
TCY  
1x  
Prescaler  
1, 8, 64, 256  
01  
00  
Note: The dsPIC30F6010A/6015 devices do not have an external pin input to Timer5. These modes should not be used:  
1. TCS = 1  
2. TCS = 0and TGATE = 1(gated time accumulation)  
DS70150D-page 78  
© 2008 Microchip Technology Inc.  
(1)  
TABLE 11-1: TIMER4/5 REGISTER MAP  
SFR Name  
Addr.  
Bit 15 Bit 14 Bit 13 Bit 12  
Bit 11  
Bit 10 Bit 9 Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
1111 1111 1111 1111  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
TMR4  
TMR5HLD  
TMR5  
PR4  
0114  
0116  
0118  
011A  
011C  
011E  
0120  
Timer4 Register  
Timer5 Holding Register (For 32-bit operations only)  
Timer5 Register  
Period Register 4  
PR5  
Period Register 5  
T4CON  
T5CON  
TON  
TON  
TSIDL  
TSIDL  
TGATE TCKPS1 TCKPS0  
TGATE TCKPS1 TCKPS0  
T45  
TCS  
TCS  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 80  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
12.1 Simple Capture Event Mode  
12.0 INPUT CAPTURE MODULE  
The simple capture events in the dsPIC30F product  
family are:  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
• Capture every falling edge  
• Capture every rising edge  
• Capture every 4th rising edge  
• Capture every 16th rising edge  
• Capture every rising and falling edge  
These simple Input Capture modes are configured by  
setting the appropriate bits ICM<2:0> (ICxCON<2:0>).  
This section describes the input capture module and  
associated operational modes. The features provided by  
this module are useful in applications requiring  
frequency (period) and pulse measurement. Figure 12-1  
depicts a block diagram of the input capture module.  
Input capture is useful for such modes as:  
12.1.1  
CAPTURE PRESCALER  
There are four input capture prescaler settings,  
specified by bits ICM<2:0> (ICxCON<2:0>). Whenever  
the capture channel is turned off, the prescaler counter  
will be cleared. In addition, any Reset will clear the  
prescaler counter.  
• Frequency/Period/Pulse Measurements  
• Additional sources of External Interrupts  
The key operational features of the input capture  
module are:  
• Simple Capture Event mode  
• Timer2 and Timer3 mode selection  
• Interrupt on input capture event  
These operating modes are determined by setting the  
appropriate bits in the ICxCON register (where  
x = 1,2,...,N). The dsPIC30F6010A and dsPIC30F6015  
devices have eight capture channels.  
FIGURE 12-1:  
INPUT CAPTURE MODE BLOCK DIAGRAM  
T3_CNT  
16  
T2_CNT  
From GP Timer Module  
16  
ICx  
Pin  
ICTMR  
1
0
Edge  
Detection  
Logic  
FIFO  
R/W  
Logic  
Prescaler  
1, 4, 16  
Clock  
Synchronizer  
3
ICM<2:0>  
Mode Select  
ICxBUF  
ICBNE, ICOV  
ICI<1:0>  
Interrupt  
Logic  
ICxCON  
Data Bus  
Set Flag  
ICxIF  
Note:  
Where ‘x’ is shown, reference is made to the registers or bits associated to the respective input  
capture channels 1 through N.  
© 2008 Microchip Technology Inc.  
DS70150D-page 81  
dsPIC30F6010A/6015  
12.1.2  
CAPTURE BUFFER OPERATION  
12.2 Input Capture Operation During  
Sleep and Idle Modes  
Each capture channel has an associated FIFO buffer,  
which is four 16-bit words deep. There are two status  
flags, which provide status on the FIFO buffer:  
An input capture event will generate a device wake-up  
or interrupt, if enabled, if the device is in CPU Idle or  
Sleep mode.  
• ICBNE – Input Capture Buffer Not Empty  
• ICOV – Input Capture Overflow  
Independent of the timer being enabled, the input  
capture module will wake-up from the CPU Sleep or Idle  
mode when a capture event occurs, if ICM<2:0> = 111  
and the interrupt enable bit is asserted. The same wake-  
up can generate an interrupt, if the conditions for pro-  
cessing the interrupt have been satisfied. The wake-up  
feature is useful as a method of adding extra external pin  
interrupts.  
The ICBFNE will be set on the first input capture event  
and remain set until all capture events have been read  
from the FIFO. As each word is read from the FIFO, the  
remaining words are advanced by one position within  
the buffer.  
In the event that the FIFO is full with four capture  
events and a fifth capture event occurs prior to a read  
of the FIFO, an overflow condition will occur and the  
ICOV bit will be set to a logic ‘1’. The fifth capture event  
is lost and is not stored in the FIFO. No additional  
events will be captured till all four events have been  
read from the buffer.  
12.2.1  
INPUT CAPTURE IN CPU SLEEP  
MODE  
CPU Sleep mode allows input capture module  
operation with reduced functionality. In the CPU Sleep  
mode, the ICI<1:0> bits are not applicable, and the  
input capture module can only function as an external  
interrupt source.  
If a FIFO read is performed after the last read and no  
new capture event has been received, the read will  
yield indeterminate results.  
The capture module must be configured for interrupt  
only on the rising edge (ICM<2:0> = 111), in order for  
the input capture module to be used while the device  
is in Sleep mode. The prescale settings of 4:1 or 16:1  
are not applicable in this mode.  
12.1.3  
TIMER2 AND TIMER3 SELECTION  
MODE  
Each capture channel can select between one of two  
timers for the time base, Timer2 or Timer3.  
Selection of the timer resource is accomplished  
through SFR bit ICTMR (ICxCON<7>). Timer3 is the  
default timer resource available for the input capture  
module.  
12.2.2  
INPUT CAPTURE IN CPU IDLE  
MODE  
CPU Idle mode allows input capture module operation  
with full functionality. In the CPU Idle mode, the Interrupt  
mode selected by the ICI<1:0> bits is applicable, as well  
as the 4:1 and 16:1 capture prescale settings, which are  
defined by control bits ICM<2:0>. This mode requires  
the selected timer to be enabled. Moreover, the ICSIDL  
bit must be asserted to a logic ‘0’.  
12.1.4  
HALL SENSOR MODE  
When the input capture module is set for capture on  
every edge, rising and falling, ICM<2:0> = 001, the  
following operations are performed by the input  
capture logic:  
If the input capture module is defined as  
ICM<2:0> = 111in CPU Idle mode, the input capture  
pin will serve only as an external interrupt pin.  
• The input capture interrupt flag is set on every  
edge, rising and falling.  
• The interrupt on Capture mode setting bits,  
ICI<1:0>, is ignored, since every capture  
generates an interrupt.  
12.3 Input Capture Interrupts  
The input capture channels have the ability to generate  
an interrupt, based upon the selected number of  
capture events. The selection number is set by control  
bits ICI<1:0> (ICxCON<6:5>).  
• A capture overflow condition is not generated in  
this mode.  
Each channel provides an interrupt flag (ICxIF) bit. The  
respective Capture Channel Interrupt Flag is located in  
the corresponding IFSx STATUS register.  
Enabling an interrupt is accomplished via the  
respective Capture Channel Interrupt Enable (ICxIE)  
bit. The Capture Interrupt Enable bit is located in the  
corresponding IEC Control register.  
DS70150D-page 82  
© 2008 Microchip Technology Inc.  
(1)  
TABLE 12-1: INPUT CAPTURE REGISTER MAP  
SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10  
Bit 9  
Input 1 Capture Register  
ICTMR  
Input 2 Capture Register  
ICTMR  
Input 3 Capture Register  
ICTMR  
Input 4 Capture Register  
ICTMR  
Input 5 Capture Register  
ICTMR  
Input 6 Capture Register  
ICTMR  
Input 7 Capture Register  
ICTMR  
Input 8 Capture Register  
ICTMR  
Bit 8  
Bit 7  
Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2 Bit 1 Bit 0  
Reset State  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
IC1BUF  
IC1CON  
IC2BUF  
IC2CON  
IC3BUF  
IC3CON  
IC4BUF  
IC4CON  
IC5BUF  
IC5CON  
IC6BUF  
IC6CON  
IC7BUF  
IC7CON  
IC8BUF  
IC8CON  
0140  
0142  
0144  
0146  
0148  
014A  
014C  
014E  
0150  
0152  
0154  
0156  
0158  
015A  
015C  
015E  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICOV ICBNE  
ICOV ICBNE  
ICOV ICBNE  
ICOV ICBNE  
ICOV ICBNE  
ICOV ICBNE  
ICOV ICBNE  
ICOV ICBNE  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 84  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
The key operational features of the output compare  
module include:  
13.0 OUTPUT COMPARE MODULE  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
• Timer2 and Timer3 Selection mode  
• Simple Output Compare Match mode  
• Dual Output Compare Match mode  
• Simple PWM mode  
• Output Compare during Sleep and Idle modes  
• Interrupt on Output Compare/PWM Event  
These operating modes are determined by setting the  
appropriate bits in the 16-bit OCxCON SFR (where  
This section describes the output compare module and  
associated operational modes. The features provided  
by this module are useful in applications requiring  
operational modes such as:  
x = 1,2,3,...,N).  
The  
dsPIC30F6010A  
and  
dsPIC30F6015 devices have eight compare channels.  
OCxRS and OCxR in Figure 13-1 represent the Dual  
Compare registers. In the Dual Compare mode, the  
OCxR register is used for the first compare and OCxRS  
is used for the second compare.  
• Generation of Variable Width Output Pulses  
• Power Factor Correction  
Figure 13-1 depicts a block diagram of the output  
compare module.  
FIGURE 13-1:  
OUTPUT COMPARE MODE BLOCK DIAGRAM  
Set Flag bit  
OCxIF  
OCxRS  
OCxR  
Output  
Logic  
S
R
Q
OCx  
Output Enable  
3
OCM<2:0>  
Mode Select  
OCFA  
Comparator  
(for x = 1, 2, 3 or 4)  
OCTSEL  
1
1
or OCFB  
0
0
(for x = 5, 6, 7 or 8)  
From GP Timer Module  
T3P3_MATCH  
TMR3<15:0> T2P2_MATCH  
TMR2<15:0  
Note:  
Where ‘x’ is shown, reference is made to the registers associated with the respective output compare  
channels 1 through N.  
© 2008 Microchip Technology Inc.  
DS70150D-page 85  
dsPIC30F6010A/6015  
13.3.2  
CONTINUOUS PULSE MODE  
13.1 Timer2 and Timer3 Selection Mode  
For the user to configure the module for the generation  
of a continuous stream of output pulses, the following  
steps are required:  
Each output compare channel can select between one  
of two 16-bit timers; Timer2 or Timer3.  
The selection of the timers is controlled by the OCTSEL  
bit (OCxCON<3>). Timer2 is the default timer resource  
for the Output Compare module.  
• Determine instruction cycle time TCY.  
• Calculate desired pulse value based on TCY.  
• Calculate timer to start pulse width from timer start  
value of 0x0000.  
13.2 Simple Output Compare Match  
Mode  
• Write pulse-width start and stop times into OCxR  
and OCxRS (x denotes channel 1, 2, ...,N)  
Compare registers, respectively.  
When control bits OCM<2:0> (OCxCON<2:0>) = 001,  
010 or 011, the selected output compare channel is  
configured for one of three simple output compare  
match modes:  
• Set Timer Period register to value equal to, or  
greater than, value in OCxRS Compare register.  
• Set OCM<2:0> = 101.  
• Compare forces I/O pin low  
• Compare forces I/O pin high  
• Compare toggles I/O pin  
• Enable timer, TON (TxCON<15>) = 1.  
13.4 Simple PWM Mode  
The OCxR register is used in these modes. The OCxR  
register is loaded with a value and is compared to the  
selected incrementing timer count. When a compare  
occurs, one of these compare match modes occurs. If  
the counter resets to zero before reaching the value in  
OCxR, the state of the OCx pin remains unchanged.  
When control bits OCM<2:0> (OCxCON<2:0>) = 110  
or 111, the selected output compare channel is  
configured for the PWM mode of operation. When  
configured for the PWM mode of operation, OCxR is  
the main latch (read-only) and OCxRS is the secondary  
latch. This enables glitchless PWM transitions.  
The user must perform the following steps in order to  
configure the output compare module for PWM  
operation:  
13.3 Dual Output Compare Match Mode  
When control bits OCM<2:0> (OCxCON<2:0>) = 100  
or 101, the selected output compare channel is  
configured for one of two Dual Output Compare modes,  
which are:  
1. Set the PWM period by writing to the appropriate  
period register.  
2. Set the PWM duty cycle by writing to the OCxRS  
register.  
• Single Output Pulse mode  
• Continuous Output Pulse mode  
3. Configure the output compare module for PWM  
operation.  
13.3.1  
SINGLE PULSE MODE  
4. Set the TMRx prescale value and enable the  
For the user to configure the module for the generation  
of a single output pulse, the following steps are  
required (assuming timer is off):  
Timer, TON (TxCON<15>) = 1.  
13.4.1  
INPUT PIN FAULT PROTECTION  
FOR PWM  
• Determine instruction cycle time TCY.  
• Calculate desired pulse-width value based on  
TCY.  
When control bits OCM<2:0> (OCxCON<2:0>) = 111,  
the selected output compare channel is again  
configured for the PWM mode of operation, with the  
additional feature of input Fault protection. While in this  
mode, if a logic ‘0’ is detected on the OCFA/B pin, the  
respective PWM output pin is placed in the  
high-impedance input state. The OCFLT bit  
(OCxCON<4>) indicates whether a Fault condition has  
occurred. This state will be maintained until both of the  
following events have occurred:  
• Calculate time to start pulse from timer start value  
of 0x0000.  
• Write pulse-width start and stop times into OCxR  
and OCxRS Compare registers (x denotes  
channel 1, 2, ...,N).  
• Set Timer Period register to value equal to, or  
greater than, value in OCxRS Compare register.  
• Set OCM<2:0> = 100.  
• The external Fault condition has been removed.  
• Enable timer, TON (TxCON<15>) = 1.  
• The PWM mode has been re-enabled by writing  
to the appropriate control bits.  
To initiate another single pulse, issue another write to  
set OCM<2:0> = 100.  
DS70150D-page 86  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
When the selected TMRx is equal to its respective  
period register, PRx, the following four events occur on  
the next increment cycle:  
13.4.2  
PWM PERIOD  
The PWM period is specified by writing to the PRx  
register. The PWM period can be calculated using  
Equation 13-1.  
• TMRx is cleared.  
• The OCx pin is set.  
EQUATION 13-1: PWM PERIOD  
- Exception 1: If PWM duty cycle is 0x0000,  
the OCx pin will remain low.  
PWM Period = [(PRx) + 1] • 4 • TOSC •  
(TMRx Prescale Value)  
- Exception 2: If duty cycle is greater than PRx,  
the pin will remain high.  
• The PWM duty cycle is latched from OCxRS into  
OCxR.  
PWM frequency is defined as 1/[PWM period].  
• The corresponding timer interrupt flag is set.  
See Figure 13-2 for key PWM period comparisons.  
Timer3 is referred to in the figure for clarity.  
FIGURE 13-2:  
PWM OUTPUT TIMING  
Period  
Duty Cycle  
TMR3 = PR3  
TMR3 = PR3  
T3IF = 1  
(Interrupt Flag)  
T3IF = 1  
(Interrupt Flag)  
OCxR = OCxRS  
OCxR = OCxRS  
TMR3 = Duty Cycle (OCxR)  
TMR3 = Duty Cycle (OCxR)  
13.5 Output Compare Operation During  
CPU Sleep Mode  
13.7 Output Compare Interrupts  
The output compare channels have the ability to  
generate an interrupt on a compare match, for  
whichever match mode has been selected.  
When the CPU enters the Sleep mode, all internal  
clocks are stopped. Therefore, when the CPU enters  
the Sleep state, the output compare channel will drive  
the pin to the active state that was observed prior to  
entering the CPU Sleep state.  
For all modes except the PWM mode, when a compare  
event occurs, the respective interrupt flag (OCxIF) is  
asserted and an interrupt will be generated, if enabled.  
The OCxIF bit is located in the corresponding IFS  
STATUS register and must be cleared in software. The  
interrupt is enabled via the respective Compare  
Interrupt Enable (OCxIE) bit, located in the  
corresponding IEC Control register.  
For example, if the pin was high when the CPU  
entered the Sleep state, the pin will remain high.  
Likewise, if the pin was low when the CPU entered the  
Sleep state, the pin will remain low. In either case, the  
output compare module will resume operation when  
the device wakes up.  
For the PWM mode, when an event occurs, the  
respective Timer Interrupt Flag (T2IF or T3IF) is  
asserted and an interrupt will be generated, if enabled.  
The IF bit is located in the IFS0 STATUS register, and  
must be cleared in software. The interrupt is enabled  
via the respective Timer Interrupt Enable bit (T2IE or  
T3IE), located in the IEC0 Control register. The output  
compare interrupt flag is never set during the PWM  
mode of operation.  
13.6 Output Compare Operation During  
CPU Idle Mode  
When the CPU enters the Idle mode, the output  
compare module can operate with full functionality.  
The output compare channel will operate during the  
CPU Idle mode if the OCSIDL bit (OCxCON<13>) is at  
logic 0and the selected time base (Timer2 or Timer3)  
is enabled and the TSIDL bit of the selected timer is  
set to logic 0.  
© 2008 Microchip Technology Inc.  
DS70150D-page 87  
(1)  
TABLE 13-1: OUTPUT COMPARE REGISTER MAP  
SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
OC1RS  
OC1R  
0180  
0182  
0184  
0186  
0188  
018A  
018C  
018E  
0190  
0192  
0194  
0196  
0198  
019A  
019C  
019E  
01A0  
01A2  
01A4  
01A6  
01A8  
01AA  
01AC  
01AE  
Output Compare 1 Secondary Register  
Output Compare 1 Main Register  
OC1CON  
OC2RS  
OC2R  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCTSEL  
OCTSE  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
Output Compare 2 Secondary Register  
Output Compare 2 Main Register  
OC2CON  
OC3RS  
OC3R  
Output Compare 3 Secondary Register  
Output Compare 3 Main Register  
OC3CON  
OC4RS  
OC4R  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
Output Compare 4 Secondary Register  
Output Compare 4 Main Register  
OC4CON  
OC5RS  
OC5R  
Output Compare 5 Secondary Register  
Output Compare 5 Main Register  
OC5CON  
OC6RS  
OC6R  
Output Compare 6 Secondary Register  
Output Compare 6 Main Register  
OC6CON  
OC7RS  
OC7R  
Output Compare 7 Secondary Register  
Output Compare 7 Main Register  
OC7CON  
OC8RS  
OC8R  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
Output Compare 8 Secondary Register  
Output Compare 8 Main Register  
OC8CON  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6010A/6015  
The operational features of the QEI include:  
14.0 QUADRATURE ENCODER  
INTERFACE (QEI) MODULE  
• Three input channels for two phase signals and  
index pulse  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
• 16-bit up/down position counter  
• Count direction status  
• Position Measurement (x2 and x4) mode  
• Programmable digital noise filters on inputs  
• Alternate 16-bit Timer/Counter mode  
• Quadrature Encoder Interface interrupts  
These operating modes are determined by setting the  
appropriate bits, QEIM<2:0> (QEICON<10:8>).  
Figure 14-1 depicts the Quadrature Encoder Interface  
block diagram.  
ThissectiondescribestheQuadratureEncoderInterface  
(QEI) module and associated operational modes. The  
QEI module provides the interface to incremental  
encoders for obtaining mechanical position data.  
FIGURE 14-1:  
QUADRATURE ENCODER INTERFACE BLOCK DIAGRAM  
TQCKPS<1:0>  
2
Sleep Input  
TQCS  
TCY  
0
1
Synchronize  
Det  
Prescaler  
1, 8, 64, 256  
1
0
QEIM<2:0>  
QEIIF  
Event  
Flag  
D
Q
Q
TQGATE  
CK  
16-bit Up/Down Counter  
(POSCNT)  
2
Programmable  
Digital Filter  
QEA  
Reset  
Quadrature  
Encoder  
Interface Logic  
UPDN_SRC  
Comparator/  
Zero Detect  
Equal  
QEICON<11>  
3
0
QEIM<2:0>  
Mode Select  
1
Max Count Register  
(MAXCNT)  
Programmable  
Digital Filter  
QEB  
Programmable  
Digital Filter  
INDX  
3
PCDOUT  
Existing Pin Logic  
0
UPDN  
Up/Down  
1
© 2008 Microchip Technology Inc.  
DS70150D-page 89  
dsPIC30F6010A/6015  
If the POSRES bit is set to ‘1’, then the position counter  
is reset when the index pulse is detected. If the  
POSRES bit is set to ‘0’, then the position counter is not  
reset when the index pulse is detected. The position  
counter will continue counting up or down, and will be  
reset on the rollover or underflow condition.  
14.1 Quadrature Encoder Interface  
Logic  
A typical incremental (a.k.a. optical) encoder has three  
outputs: Phase A, Phase B, and an index pulse. These  
signals are useful and often required in position and  
speed control of ACIM and SR motors.  
The interrupt is still generated on the detection of the  
index pulse and not on the position counter over-  
flow/underflow.  
The two channels, Phase A (QEA) and Phase B (QEB),  
have a unique relationship. If Phase A leads Phase B,  
then the direction (of the motor) is deemed positive or  
forward. If Phase A lags Phase B, then the direction  
(of the motor) is deemed negative or reverse.  
14.2.3  
COUNT DIRECTION STATUS  
As mentioned in the previous section, the QEI logic  
generates an UPDN signal, based upon the  
relationship between Phase A and Phase B. In addition  
to the output pin, the state of this internal UPDN signal  
is supplied to a SFR bit, UPDN (QEICON<11>) as a  
read-only bit. To place the state of this signal on an I/O  
pin, the SFR bit, PCDOUT (QEICON<6>), must be 1.  
A third channel, termed index pulse, occurs once per  
revolution and is used as a reference to establish an  
absolute position. The index pulse coincides with  
Phase A and Phase B, both low.  
14.2 16-bit Up/Down Position Counter  
Mode  
14.3 Position Measurement Mode  
The 16-bit up/down counter counts up or down on  
every count pulse, which is generated by the difference  
of the Phase A and Phase B input signals. The counter  
acts as an integrator, whose count value is proportional  
to position. The direction of the count is determined by  
the UPDN signal, which is generated by the  
Quadrature Encoder Interface logic.  
There are two measurement modes which are  
supported and are termed x2 and x4. These modes are  
selected by the QEIM<2:0> mode select bits located in  
SFR QEICON<10:8>.  
When control bits QEIM<2:0> = 100 or 101, the x2  
Measurement mode is selected and the QEI logic only  
looks at the Phase A input for the position counter  
increment rate. Every rising and falling edge of the  
Phase A signal causes the position counter to be incre-  
mented or decremented. The Phase B signal is still  
utilized for the determination of the counter direction,  
just as in the x4 mode.  
14.2.1  
POSITION COUNTER ERROR  
CHECKING  
Position count error checking in the QEI is provided for  
and indicated by the CNTERR bit (QEICON<15>). The  
error checking only applies when the position counter  
is configured for Reset on the Index Pulse modes  
(QEIM<2:0> = ‘110’ or ‘100’). In these modes, the  
contents of the POSCNT register are compared with  
the values (0xFFFF or MAXCNT + 1, depending on  
direction). If these values are detected, an error condi-  
tion is generated by setting the CNTERR bit and a QEI  
count error interrupt is generated. The QEI count error  
interrupt can be disabled by setting the CEID bit  
(DFLTCON<8>). The position counter continues to  
count encoder edges after an error has been detected.  
The POSCNT register continues to count up/down until  
a natural rollover/underflow. No interrupt is generated  
for the natural rollover/underflow event. The CNTERR  
bit is a read/write bit and reset in software by the user.  
Within the x2 Measurement mode, there are two  
variations of how the position counter is reset:  
1. Position counter reset by detection of index  
pulse, QEIM<2:0> = 100.  
2. Position counter reset by match with MAXCNT,  
QEIM<2:0> = 101.  
When control bits QEIM<2:0> = 110 or 111, the x4  
Measurement mode is selected and the QEI logic looks  
at both edges of the Phase A and Phase B input sig-  
nals. Every edge of both signals causes the position  
counter to increment or decrement.  
Within the x4 Measurement mode, there are two  
variations of how the position counter is reset:  
1. Position counter reset by detection of index  
14.2.2  
POSITION COUNTER RESET  
pulse, QEIM<2:0> = 110.  
The Position Counter Reset Enable bit, POSRES  
(QEI<2>), controls whether the position counter is reset  
when the index pulse is detected. This bit is only  
applicable when QEIM<2:0> = 100or 110.  
2. Position counter reset by match with MAXCNT,  
QEIM<2:0> = 111.  
The x4 Measurement mode provides for finer  
resolution data (more position counts) for determining  
motor position.  
DS70150D-page 90  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
In addition, control bit, UDSRC (QEICON<0>),  
determines whether the timer count direction state is  
based on the logic state, written into the UPDN  
control/Status bit (QEICON<11>), or the QEB pin state.  
When UDSRC = 1, the timer count direction is  
controlled from the QEB pin. Likewise, when  
UDSRC = 0, the timer count direction is controlled by  
the UPDN bit.  
14.4 Programmable Digital Noise  
Filters  
The digital noise filter section is responsible for  
rejecting noise on the incoming quadrature signals.  
Schmitt Trigger inputs and a three-clock cycle delay  
filter combine to reject low level noise and large, short  
duration noise spikes that typically occur in noise prone  
applications, such as a motor system.  
Note:  
This Timer does not support the External  
Asynchronous Counter mode of operation.  
If using an external clock source, the clock  
will automatically be synchronized to the  
internal instruction cycle.  
The filter ensures that the filtered output signal is not  
permitted to change until a stable value has been  
registered for three consecutive clock cycles.  
For the QEA, QEB and INDX pins, the clock divide  
frequency for the digital filter is programmed by bits  
QECK<2:0> (DFLTCON<6:4>) and are derived from  
the base instruction cycle TCY.  
14.6 QEI Module Operation During CPU  
Sleep Mode  
To enable the filter output for channels QEA, QEB and  
INDX, the QEOUT bit must be ‘1’. The filter network for  
all channels is disabled on POR and BOR.  
14.6.1  
QEI OPERATION DURING CPU  
SLEEP MODE  
The QEI module will be halted during the CPU Sleep  
mode.  
14.5 Alternate 16-bit Timer/Counter  
When the QEI module is not configured for the QEI  
mode QEIM<2:0> = 001, the module can be configured  
as a simple 16-bit timer/counter. The setup and control  
of the auxiliary timer is accomplished through the  
QEICON SFR register. This timer functions identically  
to Timer1. The QEA pin is used as the timer clock input.  
14.6.2  
TIMER OPERATION DURING CPU  
SLEEP MODE  
During CPU Sleep mode, the timer will not operate,  
because the internal clocks are disabled.  
14.7 QEI Module Operation During CPU  
Idle Mode  
When configured as a timer, the POSCNT register  
serves as the Timer Count register and the MAXCNT  
register serves as the Period register. When a  
Timer/Period register match occur, the QEI interrupt  
flag will be asserted.  
Since the QEI module can function as a Quadrature  
Encoder Interface, or as a 16-bit timer, the following  
section describes operation of the module in both  
modes.  
The only exception between the general purpose  
timers and this timer is the added feature of external  
up/down input select. When the UPDN pin is asserted  
high, the timer will increment up. When the UPDN pin  
is asserted low, the timer will be decremented.  
14.7.1  
QEI OPERATION DURING CPU IDLE  
MODE  
When the CPU is placed in the Idle mode, the QEI  
module will operate if the QEISIDL bit  
(QEICON<13>) = 0. This bit defaults to a logic ‘0’ upon  
executing POR and BOR. For halting the QEI module  
during the CPU Idle mode, QEISIDL should be set to  
1’.  
Note:  
Changing the operational mode (i.e., from  
QEI to Timer or vice versa), will not affect  
the Timer/Position Count register contents.  
The UPDN control/Status bit (QEICON<11>) can be  
used to select the count direction state of the Timer  
register. When UPDN = 1, the timer will count up. When  
UPDN = 0, the timer will count down.  
© 2008 Microchip Technology Inc.  
DS70150D-page 91  
dsPIC30F6010A/6015  
14.7.2  
TIMER OPERATION DURING CPU  
IDLE MODE  
14.8 Quadrature Encoder Interface  
Interrupts  
When the CPU is placed in the Idle mode and the QEI  
module is configured in the 16-bit Timer mode, the  
16-bit timer will operate if the QEISIDL bit  
(QEICON<13>) = 0. This bit defaults to a logic ‘0’ upon  
executing POR and BOR. For halting the timer module  
during the CPU Idle mode, QEISIDL should be set  
to ‘1’.  
The Quadrature Encoder Interface has the ability to  
generate an interrupt on occurrence of the following  
events:  
• Interrupt on 16-bit up/down position counter  
rollover/underflow  
• Detection of qualified index pulse, or if CNTERR  
bit is set  
If the QEISIDL bit is cleared, the timer will function  
normally, as if the CPU Idle mode had not been  
entered.  
• Timer period match event (overflow/underflow)  
• Gate accumulation event  
The QEI Interrupt Flag bit, QEIIF, is asserted upon  
occurrence of any of the above events. The QEIIF bit  
must be cleared in software. QEIIF is located in the  
IFS2 STATUS register.  
Enabling an interrupt is accomplished via the  
respective enable bit, QEIIE. The QEIIE bit is located in  
the IEC2 Control register.  
DS70150D-page 92  
© 2008 Microchip Technology Inc.  
(1)  
TABLE 14-1: QEI REGISTER MAP  
SFR  
Name  
Addr.  
Bit 15  
Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
QEICON  
0122 CNTERR  
QEISIDL INDX UPDN  
QEIM<2:0>  
IMV<1:0>  
SWPAB PCDOUT TQGATE  
CEID QEOUT QECK<2:0>  
Position Counter<15:0>  
Maximun Count<15:0>  
TQCKPS<1:0>  
POSRES TQCS  
UDSRC  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 1111 1111 1111  
DFLTCON 0124  
POSCNT  
MAXCNT  
0126  
0128  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 94  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
The PWM module has the following features:  
15.0 MOTOR CONTROL PWM  
MODULE  
• 8 PWM I/O pins with 4 duty cycle generators  
• Up to 16-bit resolution  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
• ‘On-the-Fly’ PWM frequency changes  
• Edge and Center-Aligned Output modes  
• Single Pulse Generation mode  
• Interrupt support for asymmetrical updates in  
Center-Aligned mode  
• Output override control for Electrically  
Commutative Motor (ECM) operation  
• ‘Special Event’ comparator for scheduling other  
peripheral events  
This module simplifies the task of generating multiple,  
synchronized Pulse-Width Modulated (PWM) outputs.  
In particular, the following power and motion control  
applications are supported by the PWM module:  
• Fault pins to optionally drive each of the PWM  
output pins to a defined state  
• Duty cycle updates are configurable to be  
immediate or synchronized to the PWM time base  
• Three Phase AC Induction Motor  
• Switched Reluctance (SR) Motor  
• Brushless DC (BLDC) Motor  
This module contains  
numbered 1 through 4. The module has 8 PWM output  
pins, numbered PWM1H/PWM1L through  
4 duty cycle generators,  
• Uninterruptible Power Supply (UPS)  
PWM4H/PWM4L. The eight I/O pins are grouped into  
high/low numbered pairs, denoted by the suffix H or L,  
respectively. For complementary loads, the low PWM  
pins are always the complement of the corresponding  
high I/O pin.  
The PWM module allows several modes of operation  
which are beneficial for specific power control  
applications.  
© 2008 Microchip Technology Inc.  
DS70150D-page 95  
dsPIC30F6010A/6015  
FIGURE 15-1:  
PWM MODULE BLOCK DIAGRAM  
PWMCON1  
PWM Enable and Mode SFRs  
PWMCON2  
DTCON1  
Dead-Time Control SFRs  
DTCON2  
FLTACON  
FLTBCON  
OVDCON  
Fault Pin Control SFRs  
PWM Manual  
Control SFR  
PWM Generator #4  
PDC4 Buffer  
PDC4  
PWM4H  
PWM4L  
Comparator  
Channel 4 Dead-Time  
Generator and  
Override Logic  
PWM Generator  
#3  
PWM3H  
PWM3L  
PTMR  
Comparator  
PTPER  
Channel 3 Dead-Time  
Generator and  
Output  
Driver  
Block  
Override Logic  
PWM Generator  
#2  
PWM2H  
PWM2L  
Channel 2 Dead-Time  
Generator and  
Override Logic  
PWM Generator  
#1  
PWM1H  
PWM1L  
Channel 1 Dead-Time  
Generator and  
Override Logic  
PTPER Buffer  
PTCON  
FLTA  
FLTB  
Special Event  
Postscaler  
Comparator  
SEVTCMP  
Special Event Trigger  
SEVTDIR  
PTDIR  
PWM Time Base  
Note:  
Details of PWM Generator #1, #2 and #3 not shown for clarity.  
DS70150D-page 96  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
15.1.1  
FREE-RUNNING MODE  
15.1 PWM Time Base  
In the Free-Running mode, the PWM time base counts  
upwards until the value in the Time Base Period  
register (PTPER) is matched. The PTMR register is  
reset on the following input clock edge and the time  
base will continue to count upwards as long as the  
PTEN bit remains set.  
The PWM time base is provided by a 15-bit timer with  
a prescaler and postscaler. The time base is accessible  
via the PTMR SFR. PTMR<15> is a read-only Status  
bit, PTDIR, that indicates the present count direction of  
the PWM time base. If PTDIR is cleared, PTMR is  
counting upwards. If PTDIR is set, PTMR is counting  
downwards. The PWM time base is configured via the  
PTCON SFR. The time base is enabled/disabled by  
setting/clearing the PTEN bit in the PTCON SFR.  
PTMR is not cleared when the PTEN bit is cleared in  
software.  
When the PWM time base is in the Free-Running mode  
(PTMOD<1:0> = 00), an interrupt event is generated  
each time a match with the PTPER register occurs and  
the PTMR register is reset to zero. The postscaler  
selection bits may be used in this mode of the timer to  
reduce the frequency of the interrupt events.  
The PTPER SFR sets the counting period for PTMR.  
The user must write a 15-bit value to PTPER<14:0>.  
When the value in PTMR<14:0> matches the value in  
PTPER<14:0>, the time base will either reset to ‘0’, or  
reverse the count direction on the next occurring clock  
cycle. The action taken depends on the operating  
mode of the time base.  
15.1.2  
SINGLE-SHOT MODE  
In the Single-Shot Counting mode, the PWM time base  
begins counting upwards when the PTEN bit is set.  
When the value in the PTMR register matches the  
PTPER register, the PTMR register will be reset on the  
following input clock edge and the PTEN bit will be  
cleared by the hardware to halt the time base.  
Note:  
If the Period register is set to 0x0000, the  
timer will stop counting, and the interrupt  
and the special event trigger will not be  
generated, even if the special event value  
is also 0x0000. The module will not update  
the Period register, if it is already at  
0x0000; therefore, the user must disable  
the module in order to update the Period  
register.  
When the PWM time base is in the Single-Shot mode  
(PTMOD<1:0> = 01), an interrupt event is generated  
when a match with the PTPER register occurs, the  
PTMR register is reset to zero on the following input  
clock edge, and the PTEN bit is cleared. The postscaler  
selection bits have no effect in this mode of the timer.  
15.1.3  
CONTINUOUS UP/DOWN  
COUNTING MODES  
The PWM time base can be configured for four different  
modes of operation:  
In the Continuous Up/Down Counting modes, the PWM  
time base counts upwards until the value in the PTPER  
register is matched. The timer will begin counting  
downwards on the following input clock edge. The  
PTDIR bit in the PTMR SFR is read-only and indicates  
the counting direction The PTDIR bit is set when the  
timer counts downwards.  
• Free-Running mode  
• Single-Shot mode  
• Continuous Up/Down Count mode  
• Continuous Up/Down Count mode with interrupts  
for double updates  
These four modes are selected by the PTMOD<1:0>  
bits in the PTCON SFR. The Up/Down Counting modes  
support center-aligned PWM generation. The  
Single-Shot mode allows the PWM module to support  
pulse control of certain Electronically Commutative  
Motors (ECMs).  
In the Up/Down Counting mode (PTMOD<1:0> = 10),  
an interrupt event is generated each time the value of  
the PTMR register becomes zero and the PWM time  
base begins to count upwards. The postscaler selec-  
tion bits may be used in this mode of the timer to reduce  
the frequency of the interrupt events.  
The interrupt signals generated by the PWM time base  
depend on the mode selection bits (PTMOD<1:0>) and  
the postscaler bits (PTOPS<3:0>) in the PTCON SFR.  
© 2008 Microchip Technology Inc.  
DS70150D-page 97  
dsPIC30F6010A/6015  
15.1.4  
DOUBLE UPDATE MODE  
EQUATION 15-1: PWM PERIOD  
In the Double Update mode (PTMOD<1:0> = 11), an  
interrupt event is generated each time the PTMR  
register is equal to zero, as well as each time a period  
match occurs. The postscaler selection bits have no  
effect in this mode of the timer.  
TCY (PTPER + 1)  
TPWM =  
(PTMR Prescale Value)  
If the PWM time base is configured for one of the  
Up/Down Count modes, the PWM period will be given  
by Equation 15-2.  
The Double Update mode provides two additional  
functions to the user. First, the control loop bandwidth  
is doubled because the PWM duty cycles can be  
updated, twice per period. Second, asymmetrical  
center-aligned PWM waveforms can be generated,  
which are useful for minimizing output waveform  
distortion in certain motor control applications.  
EQUATION 15-2: PWM PERIOD FOR  
UP/DOWN COUNT  
TCY • 2 • (PTPER + 0.75)  
TPWM =  
(PTMR Prescale Value)  
Note:  
Programming a value of 0x0001 in the  
Period register could generate  
a
continuous interrupt pulse, and hence,  
must be avoided.  
The maximum resolution (in bits) for a given device  
oscillator and PWM frequency can be determined using  
Equation 15-3:  
15.1.5  
PWM TIME BASE PRESCALER  
The input clock to PTMR (FOSC/4), has prescaler  
options of 1:1, 1:4, 1:16, or 1:64, selected by control  
bits, PTCKPS<1:0>, in the PTCON SFR. The prescaler  
counter is cleared when any of the following occurs:  
EQUATION 15-3: PWM RESOLUTION  
log (2 TPWM/TCY)  
Resolution =  
log (2)  
• a write to the PTMR register  
• a write to the PTCON register  
• any device Reset  
15.3 Edge-Aligned PWM  
Edge-aligned PWM signals are produced by the module  
when the PWM time base is in the Free-Running or  
Single-Shot mode. For edge-aligned PWM outputs, the  
output has a period specified by the value in PTPER  
and a duty cycle specified by the appropriate Duty Cycle  
register (see Figure 15-2). The PWM output is driven  
active at the beginning of the period (PTMR = 0) and is  
driven inactive when the value in the Duty Cycle register  
matches PTMR.  
PTMR is not cleared when PTCON is written.  
15.1.6  
PWM TIME BASE POSTSCALER  
The match output of PTMR can optionally be  
post-scaled through a 4-bit postscaler (which gives a  
1:1 to 1:16 scaling).  
The postscaler counter is cleared when any of the  
following occurs:  
• a write to the PTMR register  
• a write to the PTCON register  
• any device Reset  
If the value in a particular Duty Cycle register is zero,  
then the output on the corresponding PWM pin will be  
inactive for the entire PWM period. In addition, the  
output on the PWM pin will be active for the entire  
PWM period if the value in the Duty Cycle register is  
greater than the value held in the PTPER register.  
PTMR is not cleared when PTCON is written.  
15.2 PWM Period  
FIGURE 15-2:  
EDGE-ALIGNED PWM  
PTPER is a 15-bit, double-buffered register that sets the  
counting period for the PWM time base. The PTPER  
buffer is loaded into the PTPER register at these instants:  
New Duty Cycle Latched  
• Free-Running and Single-Shot modes: When the  
PTMR register is reset to zero after a match with  
the PTPER register.  
PTPER  
PTMR  
Value  
• Up/Down Counting modes: When the PTMR  
register is zero.  
The value held in the PTPER buffer is automatically  
loaded into the PTPER register when the PWM time  
base is disabled (PTEN = 0).  
0
Duty Cycle  
Period  
The PWM period can be determined using  
Equation 15-1:  
DS70150D-page 98  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
15.5.1  
DUTY CYCLE REGISTER BUFFERS  
15.4 Center-Aligned PWM  
The four PWM Duty Cycle registers are  
double-buffered to allow glitchless updates of the PWM  
outputs. For each duty cycle, there is a Duty Cycle  
register that is accessible by the user and a second  
Duty Cycle register that holds the actual compare value  
used in the present PWM period.  
Center-aligned PWM signals are produced by the  
module when the PWM time base is configured in an  
Up/Down Counting mode (see Figure 15-3).  
The PWM compare output is driven to the active state  
when the value of the Duty Cycle register matches the  
value of PTMR and the PWM time base is counting  
downwards (PTDIR = 1). The PWM compare output is  
driven to the inactive state when the PWM time base is  
counting upwards (PTDIR = 0) and the value in the  
PTMR register matches the duty cycle value.  
For edge-aligned PWM output, a new duty cycle value  
will be updated whenever a match with the PTPER  
register occurs and PTMR is reset. The contents of the  
duty cycle buffers are automatically loaded into the  
Duty Cycle registers when the PWM time base is dis-  
abled (PTEN = 0) and the UDIS bit is cleared in  
PWMCON2.  
If the value in a particular Duty Cycle register is zero,  
then the output on the corresponding PWM pin will be  
inactive for the entire PWM period. In addition, the  
output on the PWM pin will be active for the entire PWM  
period if the value in the Duty Cycle register is equal to  
the value held in the PTPER register.  
When the PWM time base is in the Up/Down Counting  
mode, new duty cycle values are updated when the  
value of the PTMR register is zero and the PWM time  
base begins to count upwards. The contents of the duty  
cycle buffers are automatically loaded into the Duty  
Cycle registers when the PWM time base is disabled  
(PTEN = 0).  
FIGURE 15-3:  
CENTER-ALIGNED PWM  
Period/2  
When the PWM time base is in the Up/Down Counting  
mode with double updates, new duty cycle values are  
updated when the value of the PTMR register is zero,  
and when the value of the PTMR register matches the  
value in the PTPER register. The contents of the duty  
cycle buffers are automatically loaded into the Duty  
Cycle registers when the PWM time base is disabled  
(PTEN = 0).  
PTPER  
PTMR  
Value  
Duty  
Cycle  
0
15.5.2  
DUTY CYCLE IMMEDIATE  
UPDATES  
Period  
When the Immediate Update Enable bit is set (IUE = 1),  
any write to the Duty Cycle registers will update the  
new duty cycle value immediately. This feature gives  
the option to the user to allow immediate updates of the  
active PWM Duty Cycle registers instead of waiting for  
the end of the current time base period. System  
stability is improved in closed loop servo applications  
by reducing the delay between system observation and  
the issuance of system corrective commands when  
immediate updates are enabled (IUE = 1).  
15.5 PWM Duty Cycle Comparison  
Units  
There are four 16-bit Special Function Registers  
(PDC1, PDC2, PDC3 and PDC4) used to specify duty  
cycle values for the PWM module.  
The value in each Duty Cycle register determines the  
amount of time that the PWM output is in the active  
state. The Duty Cycle registers are 16-bits wide. The  
LSb of a Duty Cycle register determines whether the  
PWM edge occurs in the beginning. Thus, the PWM  
resolution is effectively doubled.  
If the PWM output is active at the time the new duty  
cycle is written and the new duty cycle is less than the  
current time base value, the PWM pulse width will be  
shortened. If the PWM output is active at the time the  
new duty cycle is written and the new duty cycle is  
greater than the current time base value, the PWM  
pulse width will be lengthened.  
If the PWM output is inactive at the time the new duty  
cycle is written and the new duty cycle is greater than  
the current time base value, the PWM output will  
become active immediately and will remain active for  
the new written duty cycle value.  
© 2008 Microchip Technology Inc.  
DS70150D-page 99  
dsPIC30F6010A/6015  
15.7.2  
DEAD-TIME ASSIGNMENT  
15.6 Complementary PWM Operation  
The DTCON2 SFR contains control bits that allow the  
dead times to be assigned to each of the  
complementary outputs. Table 15-1 summarizes the  
function of each dead-time selection control bit.  
In the Complementary mode of operation, each pair of  
PWM outputs is obtained by a complementary PWM  
signal. A dead time may be optionally inserted during  
device switching, when both outputs are inactive for a  
short period (Refer to Section 15.7 “Dead-Time  
Generators”).  
TABLE 15-1: DEAD-TIME SELECTION BITS  
Bit  
Function  
In Complementary mode, the duty cycle comparison  
units are assigned to the PWM outputs as follows:  
DTS1A Selects PWM1L/PWM1H active edge dead time.  
DTS1I  
Selects PWM1L/PWM1H inactive edge  
dead time.  
• PDC1 register controls PWM1H/PWM1L outputs  
• PDC2 register controls PWM2H/PWM2L outputs  
• PDC3 register controls PWM3H/PWM3L outputs  
• PDC4 register controls PWM4H/PWM4L outputs  
DTS2A Selects PWM2L/PWM2H active edge dead time.  
DTS2I  
Selects PWM2L/PWM2H inactive edge  
dead time.  
The Complementary mode is selected for each PWM  
I/O pin pair by clearing the appropriate PMODx bit in the  
PWMCON1 SFR. The PWM I/O pins are set to  
Complementary mode by default upon a device Reset.  
DTS3A Selects PWM3L/PWM3H active edge dead time.  
DTS3I  
Selects PWM3L/PWM3H inactive edge  
dead time.  
DTS4A Selects PWM4L/PWM4H active edge dead time.  
DTS4I  
Selects PWM4L/PWM4H inactive edge  
dead time.  
15.7 Dead-Time Generators  
Dead-time generation may be provided when any of  
the PWM I/O pin pairs are operating in the  
Complementary Output mode. The PWM outputs use  
Push-Pull drive circuits. Due to the inability of the  
power output devices to switch instantaneously, some  
amount of time must be provided between the turn off  
event of one PWM output in a complementary pair and  
the turn on event of the other transistor.  
15.7.3  
DEAD-TIME RANGES  
The amount of dead time provided by each dead-time  
unit is selected by specifying the input clock prescaler  
value and a 6-bit unsigned value. The amount of dead  
time provided by each unit may be set independently.  
Four input clock prescaler selections have been  
provided to allow a suitable range of dead times, based  
on the device operating frequency. The clock prescaler  
option may be selected independently for each of the  
two dead-time values. The dead-time clock prescaler  
values are selected using the DTAPS<1:0> and  
DTBPS<1:0> control bits in the DTCON1 SFR. One of  
four clock prescaler options (TCY, 2 TCY, 4 TCY or 8 TCY)  
may be selected for each of the dead-time values.  
The PWM module allows two different dead times to be  
programmed. These two dead times may be used in  
one of two methods described below to increase user  
flexibility:  
• The PWM output signals can be optimized for  
different turn off times in the high side and low  
side transistors in a complementary pair of  
transistors. The first dead time is inserted  
between the turn off event of the lower transistor  
of the complementary pair and the turn on event  
of the upper transistor. The second dead time is  
inserted between the turn off event of the upper  
transistor and the turn on event of the lower  
transistor.  
After the prescaler values are selected, the dead time  
for each unit is adjusted by loading two 6-bit unsigned  
values into the DTCON1 SFR.  
The dead-time unit prescalers are cleared on the  
following events:  
• On a load of the down timer due to a duty cycle  
comparison edge event.  
• The two dead times can be assigned to individual  
PWM I/O pin pairs. This Operating mode allows  
the PWM module to drive different transistor/load  
combinations with each complementary PWM I/O  
pin pair.  
• On a write to the DTCON1 or DTCON2 registers.  
• On any device Reset.  
Note:  
The user should not modify the DTCON1  
or DTCON2 values while the PWM  
module is operating (PTEN  
Unexpected results may occur.  
=
1).  
15.7.1  
DEAD-TIME GENERATORS  
Each complementary output pair for the PWM module  
has a 6-bit down counter that is used to produce the  
dead-time insertion. As shown in Figure 15-4, each  
dead-time unit has a rising and falling edge detector  
connected to the duty cycle comparison output.  
DS70150D-page 100  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 15-4:  
DEAD-TIME TIMING DIAGRAM  
Duty Cycle Generator  
PWMxH  
PWMxL  
Time selected by DTSxA bit (A or B)  
Time selected by DTSxI bit (A or B)  
15.8 Independent PWM Output  
15.10 PWM Output Override  
An independent PWM Output mode is required for  
driving certain types of loads. A particular PWM output  
pair is in the Independent Output mode when the  
corresponding PMOD bit in the PWMCON1 register is  
set. No dead-time control is implemented between  
adjacent PWM I/O pins when the module is operating  
in the Independent mode and both I/O pins are allowed  
to be active simultaneously.  
The PWM output override bits allow the user to  
manually drive the PWM I/O pins to specified logic  
states, independent of the duty cycle comparison units.  
All control bits associated with the PWM output  
override function are contained in the OVDCON  
register. The upper half of the OVDCON register  
contains eight bits, POVDxH<4:1> and POVDxL<4:1>,  
that determine which PWM I/O pins will be overridden.  
The lower half of the OVDCON register contains eight  
bits, POUTxH<4:1> and POUTxL<4:1>, that determine  
the state of the PWM I/O pins when a particular output  
is overridden via the POVD bits.  
In the Independent mode, each duty cycle generator is  
connected to both of the PWM I/O pins in an output  
pair. By using the associated Duty Cycle register and  
the appropriate bits in the OVDCON register, the user  
may select the following signal output options for each  
PWM I/O pin operating in the Independent mode:  
15.10.1 COMPLEMENTARY OUTPUT MODE  
When a PWMxL pin is driven active via the OVDCON  
register, the output signal is forced to be the  
complement of the corresponding PWMxH pin in the  
pair. Dead-time insertion is still performed when PWM  
channels are overridden manually.  
• I/O pin outputs PWM signal  
• I/O pin inactive  
• I/O pin active  
15.9 Single-Pulse PWM Operation  
15.10.2 OVERRIDE SYNCHRONIZATION  
The PWM module produces single pulse outputs when  
the PTCON control bits PTMOD<1:0> = 10. Only  
edge-aligned outputs may be produced in the  
Single-Pulse mode. In Single-Pulse mode, the PWM  
I/O pin(s) are driven to the active state when the PTEN  
bit is set. When a match with a Duty Cycle register  
occurs, the PWM I/O pin is driven to the inactive state.  
When a match with the PTPER register occurs, the  
PTMR register is cleared, all active PWM I/O pins are  
driven to the inactive state, the PTEN bit is cleared, and  
an interrupt is generated.  
If the OSYNC bit in the PWMCON2 register is set, all  
output overrides performed via the OVDCON register  
are synchronized to the PWM time base. Synchronous  
output overrides occur at the following times:  
• Edge-Aligned mode, when PTMR is zero.  
• Center-Aligned modes, when PTMR is zero and  
when the value of PTMR matches PTPER.  
© 2008 Microchip Technology Inc.  
DS70150D-page 101  
dsPIC30F6010A/6015  
15.12.2 FAULT STATES  
15.11 PWM Output and Polarity Control  
The FLTACON and FLTBCON Special Function  
Registers have eight bits each that determine the state  
of each PWM I/O pin when it is overridden by a Fault  
input. When these bits are cleared, the PWM I/O pin is  
driven to the inactive state. If the bit is set, the PWM I/O  
pin will be driven to the active state. The active and  
inactive states are referenced to the polarity defined for  
each PWM I/O pin (HPOL and LPOL polarity control  
bits).  
There are three device Configuration bits associated  
with the PWM module that provide PWM output pin  
control:  
• HPOL Configuration bit  
• LPOL Configuration bit  
• PWMPIN Configuration bit  
These three bits in the FBORPOR Configuration  
register (see Section 21.6 “Device Configuration  
Registers”) work in conjunction with the four PWM  
Enable bits (PENxH and PENxL) located in the  
PWMCON1 SFR. The Configuration bits and PWM  
Enable bits ensure that the PWM pins are in the correct  
states after a device Reset occurs. The PWMPIN  
configuration fuse allows the PWM module outputs to  
A special case exists when a PWM module I/O pair is  
in the Complementary mode and both pins are  
programmed to be active on a Fault condition. The  
PWMxH pin always has priority in the Complementary  
mode, so that both I/O pins cannot be driven active  
simultaneously.  
be optionally enabled on  
a
device Reset. If  
PWMPIN = 0, the PWM outputs will be driven to their  
inactive states at Reset. If PWMPIN = 1(default), the  
PWM outputs will be tri-stated. The HPOL bit specifies  
the polarity for the PWMxH outputs, whereas the LPOL  
bit specifies the polarity for the PWMxL outputs.  
15.12.3 FAULT PIN PRIORITY  
If both Fault input pins have been assigned to control a  
particular PWM I/O pin, the Fault state programmed for  
the Fault A input pin will take priority over the Fault B  
input pin.  
15.11.1 OUTPUT PIN CONTROL  
15.12.4 FAULT INPUT MODES  
The PENxH and PENxL control bits in the PWMCON1  
SFR enable each high PWM output pin and each low  
PWM output pin, respectively. If a particular PWM  
output pin is not enabled, it is treated as a general  
purpose I/O pin.  
Each of the Fault input pins has two modes of  
operation:  
Latched Mode: When the Fault pin is driven low,  
the PWM outputs will go to the states defined in  
the FLTACON/FLTBCON register. The PWM  
outputs will remain in this state until the Fault pin  
is driven high and the corresponding interrupt flag  
has been cleared in software. When both of these  
actions have occurred, the PWM outputs will  
return to normal operation at the beginning of the  
next PWM cycle or half-cycle boundary. If the  
interrupt flag is cleared before the Fault condition  
ends, the PWM module will wait until the Fault pin  
is no longer asserted, to restore the outputs.  
15.12 PWM Fault Pins  
There are two Fault pins (FLTA and FLTB) associated  
with the PWM module. When asserted, these pins can  
optionally drive each of the PWM I/O pins to a defined  
state.  
15.12.1 FAULT PIN ENABLE BITS  
The FLTACON and FLTBCON SFRs each have 4  
control bits that determine whether a particular pair of  
PWM I/O pins is to be controlled by the Fault input pin.  
To enable a specific PWM I/O pin pair for Fault  
overrides, the corresponding bit should be set in the  
FLTACON or FLTBCON register.  
Cycle-by-Cycle Mode: When the Fault input pin  
is driven low, the PWM outputs remain in the  
defined Fault states for as long as the Fault pin is  
held low. After the Fault pin is driven high, the  
PWM outputs return to normal operation at the  
beginning of the following PWM cycle or  
half-cycle boundary.  
If all enable bits are cleared in the FLTACON or  
FLTBCON registers, then the corresponding Fault input  
pin has no effect on the PWM module and the pin may  
be used as a general purpose interrupt or I/O pin.  
The Operating mode for each Fault input pin is selected  
using the FLTAM and FLTBM control bits in the  
FLTACON and FLTBCON Special Function Registers.  
Each of the Fault pins can be controlled manually in  
software.  
Note:  
The Fault pin logic can operate  
independent of the PWM logic. If all the  
enable bits in the FLTACON/FLTBCON  
register are cleared, then the Fault pin(s)  
could be used as general purpose  
interrupt pin(s). Each Fault pin has an  
interrupt vector, Interrupt Flag bit and  
Interrupt Priority bits associated with it.  
DS70150D-page 102  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
15.14.1 SPECIAL EVENT TRIGGER  
POSTSCALER  
15.13 PWM Update Lockout  
For a complex PWM application, the user may need to  
write up to four Duty Cycle registers and the Time Base  
Period register, PTPER, at a given time. In some  
applications, it is important that all buffer registers be  
written before the new duty cycle and period values are  
loaded for use by the module.  
The PWM special event trigger has a postscaler that  
allows a 1:1 to 1:16 postscale ratio. The postscaler is  
configured by writing the SEVOPS<3:0> control bits in  
the PWMCON2 SFR.  
The special event output postscaler is cleared on the  
following events:  
The PWM update lockout feature is enabled by setting  
the UDIS control bit in the PWMCON2 SFR. The UDIS  
bit affects all Duty Cycle Buffer registers and the PWM  
time base period buffer, PTPER. No duty cycle  
changes or period value changes will have effect while  
UDIS = 1.  
• Any write to the SEVTCMP register  
• Any device Reset  
15.15 PWM Operation During CPU Sleep  
Mode  
If the IUE bit is set, any change to the Duty Cycle  
registers will be immediately updated regardless of the  
UDIS bit state. The PWM Period register updates  
(PTPER) are not affected by the IUE control bit.  
The Fault A and Fault B input pins have the ability to  
wake the CPU from Sleep mode. The PWM module  
generates an interrupt if either of the Fault pins is  
driven low while in Sleep.  
15.14 PWM Special Event Trigger  
15.16 PWM Operation During CPU Idle  
Mode  
The PWM module has a special event trigger that  
allows A/D conversions to be synchronized to the PWM  
time base. The A/D sampling and conversion time may  
be programmed to occur at any point within the PWM  
period. The special event trigger allows the user to  
minimize the delay between the time when A/D  
conversion results are acquired and the time when the  
duty cycle value is updated.  
The PTCON SFR contains a PTSIDL control bit. This  
bit determines if the PWM module will continue to  
operate or stop when the device enters Idle mode. If  
PTSIDL = 0, the module will continue to operate. If  
PTSIDL = 1, the module will stop operation as long as  
the CPU remains in Idle mode.  
The PWM special event trigger has an SFR named  
SEVTCMP, and five control bits to control its operation.  
The PTMR value for which a special event trigger  
should occur is loaded into the SEVTCMP register.  
When the PWM time base is in an Up/Down Counting  
mode, an additional control bit is required to specify the  
counting phase for the special event trigger. The count  
phase is selected using the SEVTDIR control bit in the  
SEVTCMP SFR. If the SEVTDIR bit is cleared, the  
special event trigger will occur on the upward counting  
cycle of the PWM time base. If the SEVTDIR bit is set,  
the special event trigger will occur on the downward  
count cycle of the PWM time base. The SEVTDIR  
control bit has no effect unless the PWM time base is  
configured for an Up/Down Counting mode.  
© 2008 Microchip Technology Inc.  
DS70150D-page 103  
(1)  
TABLE 15-2: 8-OUTPUT PWM REGISTER MAP  
Addr Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
SFR Name  
0000 0000 0000 0000  
0000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 1111 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
PTCON  
PTMR  
01C0 PTEN  
01C2 PTDIR  
PTSIDL  
PTOPS<3:0>  
PTCKPS<1:0>  
PTMOD<1:0>  
PWM Timer Count Value  
PTPER  
01C4  
PWM Time Base Period Register  
SEVTCMP 01C6 SEVTDIR  
PWM Special Event Compare Register  
PTMOD4 PTMOD3 PTMOD2 PTMOD1 PEN4H PEN3H PEN2H PEN1H PEN4L PEN3L PEN2L PEN1L  
SEVOPS<3:0> IUE OSYNC UDIS  
Dead-Time B Value Dead-Time A Value  
DTS4I DTS3A DTS3I DTS2A DTS2I DTS1A DTS1I  
PWMCON1 01C8  
PWMCON2 01CA  
DTCON1 01CC  
DTBPS<1:0>  
DTAPS<1:0>  
DTS4A  
DTCON2  
01CE  
FLTACON 01D0 FAOV4H FAOV4L FAOV3H FAOV3L FAOV2H FAOV2L FAOV1H FAOV1L FLTAM  
FLTBCON 01D2 FBOV4H FBOV4L FBOV3H FBOV3L FBOV2H FBOV2L FBOV1H FBOV1L FLTBM  
FAEN4 FAEN3 FAEN2 FAEN1  
FBEN4 FBEN3 FBEN2 FBEN1  
OVDCON 01D4 POVD4H POVD4L POVD3H POVD3L POVD2H POVD2L POVD1H POVD1L POUT4H POUT4L POUT3H POUT3L POUT2H POUT2L POUT1H POUT1L  
PDC1  
PDC2  
PDC3  
PDC4  
01D6  
01D8  
01DA  
PWM Duty Cycle 1 Register  
PWM Duty Cycle 2 Register  
PWM Duty Cycle 3 Register  
PWM Duty Cycle 4 Register  
01DC  
Legend:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Note 1:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6010A/6015  
Transmit writes are also double-buffered. The user  
writes to SPIxBUF. When the master or slave transfer  
is completed, the contents of the shift register  
(SPIxSR) is moved to the receive buffer. If any  
transmit data has been written to the buffer register,  
the contents of the transmit buffer are moved to  
SPIxSR. The received data is thus placed in SPIxBUF  
and the transmit data in SPIxSR is ready for the next  
transfer.  
16.0 SPI MODULE  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
Note:  
Both the transmit buffer (SPIxTXB) and  
the receive buffer (SPIxRXB) are mapped  
to the same register address, SPIxBUF.  
The Serial Peripheral Interface (SPI) module is a  
synchronous serial interface. It is useful for  
communicating with other peripheral devices such as  
EEPROMs, shift registers, display drivers and A/D  
converters, or other microcontrollers. It is compatible  
with Motorola’s SPI and SIOP interfaces.  
In Master mode, the clock is generated by prescaling  
the system clock. Data is transmitted as soon as a  
value is written to SPIxBUF. The interrupt is generated  
at the middle of the transfer of the last bit.  
In Slave mode, data is transmitted and received as  
external clock pulses appear on SCK. Again, the  
interrupt is generated when the last bit is latched. If  
SSx control is enabled, then transmission and  
reception are enabled only when SSx = low. The  
SDOx output will be disabled in SSx mode with SSx  
high.  
16.1 Operating Function Description  
Each SPI module consists of a 16-bit shift register,  
SPIxSR (where x = 1 or 2), used for shifting data in  
and out, and a buffer register, SPIxBUF. A control  
register,  
SPIxCON,  
configures  
the  
module.  
Additionally, a STATUS register, SPIxSTAT, indicates  
various status conditions.  
The clock provided to the module is (FOSC/4). This  
clock is then prescaled by the primary (PPRE<1:0>)  
and the secondary (SPRE<2:0>) prescale factors. The  
CKE bit determines whether transmit occurs on  
transition from active clock state to Idle clock state, or  
vice versa. The CKP bit selects the Idle state (high or  
low) for the clock.  
The serial interface consists of 4 pins: SDIx (Serial  
Data Input), SDOx (Serial Data Output), SCKx (Shift  
Clock Input or Output) and SSx (active-low Slave  
Select).  
In Master mode operation, SCK is a clock output, but  
in Slave mode, it is a clock input.  
A series of eight (8) or sixteen (16) clock pulses shifts  
out bits from the SPIxSR to SDOx pin and  
simultaneously shifts in data from SDIx pin. An  
interrupt is generated when the transfer is complete  
and the corresponding interrupt flag bit (SPI1IF or  
SPI2IF) is set. This interrupt can be disabled through  
an interrupt enable bit (SPI1IE or SPI2IE).  
16.1.1  
WORD AND BYTE  
COMMUNICATION  
A control bit, MODE16 (SPIxCON<10>), allows the  
module to communicate in either 16-bit or 8-bit mode.  
16-bit operation is identical to 8-bit operation, except  
that the number of bits transmitted is 16 instead of 8.  
The user software must disable the module prior to  
changing the MODE16 bit. The SPI module is reset  
when the MODE16 bit is changed by the user.  
The receive operation is double-buffered. When a  
complete byte is received, it is transferred from  
SPIxSR to SPIxBUF.  
A basic difference between 8-bit and 16-bit operation is  
that the data is transmitted out of bit 7 of the SPIxSR for  
8-bit operation, and data is transmitted out of bit 15 of  
the SPIxSR for 16-bit operation. In both modes, data is  
shifted into bit 0 of the SPIxSR.  
If the receive buffer is full when new data is being  
transferred from SPIxSR to SPIxBUF, the module will  
set the SPIROV bit, indicating an overflow condition.  
The transfer of the data from SPIxSR to SPIxBUF will  
not be completed and the new data will be lost. The  
module will not respond to SCL transitions while  
SPIROV is ‘1’, effectively disabling the module until  
SPIxBUF is read by user software.  
16.1.2  
SDOx DISABLE  
A control bit, DISSDO, is provided to the SPIxCON  
register to allow the SDOx output to be disabled. This  
will allow the SPI module to be connected in an input  
only configuration. SDO can also be used for general  
purpose I/O.  
Note:  
The user must perform reads of SPIxBUF  
if the module is used in a transmit only  
configuration to avoid a receive overflow  
condition. (SPIROV = 1)  
© 2008 Microchip Technology Inc.  
DS70150D-page 105  
dsPIC30F6010A/6015  
FIGURE 16-1:  
SPI BLOCK DIAGRAM  
Internal  
Data Bus  
Read  
Write  
SPIxBUF  
Transmit  
SPIxBUF  
Receive  
SPIxSR  
bit 0  
SDIx  
SDOx  
Shift  
clock  
SS & FSYNC  
Control  
Clock  
Control  
Edge  
Select  
SSx  
Secondary  
Prescaler  
1:1-1:8  
Primary  
Prescaler  
1, 4, 16, 64  
FCY  
SCKx  
Enable Master Clock  
Note: x = 1 or 2.  
FIGURE 16-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master  
SPI Slave  
SDOx  
SDIy  
Serial Input Buffer  
(SPIxBUF)  
Serial Input Buffer  
(SPIyBUF)  
SDIx  
SDOy  
SCKy  
Shift Register  
(SPIxSR)  
Shift Register  
(SPIySR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCKx  
PROCESSOR 1  
PROCESSOR 2  
Note: x = 1 or 2, y = 1 or 2.  
DS70150D-page 106  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
16.2 Framed SPI Support  
16.4 SPI Operation During CPU Sleep  
Mode  
The module supports a basic framed SPI protocol in  
Master or Slave mode. The control bit, FRMEN,  
enables framed SPI support and causes the SSx pin to  
perform the Frame Synchronization pulse (FSYNC)  
function. The control bit SPIFSD determines whether  
the SSx pin is an input or an output (i.e., whether the  
module receives or generates the Frame  
Synchronization pulse). The frame pulse is an  
active-high pulse for a single SPI clock cycle. When  
Frame Synchronization is enabled, the data transmis-  
sion starts only on the subsequent transmit edge of the  
SPI clock.  
During Sleep mode, the SPI module is shut down. If  
the CPU enters Sleep mode while an SPI transaction  
is in progress, then the transmission and reception is  
aborted.  
The transmitter and receiver will stop in Sleep mode.  
However, register contents are not affected by  
entering or exiting Sleep mode.  
16.5 SPI Operation During CPU Idle  
Mode  
When the device enters Idle mode, all clock sources  
remain functional. The SPISIDL bit (SPIxSTAT<13>)  
selects if the SPI module will stop or continue on Idle.  
If SPISIDL = 0, the module will continue to operate  
when the CPU enters Idle mode. If SPISIDL = 1, the  
module will stop when the CPU enters Idle mode.  
16.3 Slave Select Synchronization  
The SSx pin allows a Synchronous Slave mode. The  
SPI must be configured in SPI Slave mode, with SSx  
pin control enabled (SSEN = 1). When the SSx pin is  
low, transmission and reception are enabled, and the  
SDOx pin is driven. When SSx pin goes high, the SDOx  
pin is no longer driven. Also, the SPI module is  
re-synchronized, and all counters/control circuitry are  
reset. Therefore, when the SSx pin is asserted low  
again, transmission/reception will begin at the MSb,  
even if SSx had been de-asserted in the middle of a  
transmit/receive.  
© 2008 Microchip Technology Inc.  
DS70150D-page 107  
(1)  
TABLE 16-1: SPI1 REGISTER MAP  
SFR  
Name  
Addr. Bit 15 Bit 14  
Bit 13  
Bit 12 Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
SPI1STAT 0220 SPIEN  
SPISIDL  
SPIROV  
CKP  
SPITBF SPIRBF  
SPI1CON  
SPI1BUF  
0222  
0224  
FRMEN SPIFSD  
DISSDO MODE16 SMP  
CKE  
SSEN  
MSTEN SPRE2 SPRE1 SPRE0 PPRE1 PPRE0  
Transmit and Receive Buffer  
Legend:  
— = unimplemented bit, read as ‘0’  
Note 1:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
(1)  
TABLE 16-2: SPI2 REGISTER MAP  
SFR Name  
Addr.  
Bit 15 Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
SPI2STAT  
SPI2CON  
SPI2BUF  
0226  
0228  
022A  
SPIEN  
SPISIDL  
SPIROV  
CKP  
SPITBF SPIRBF  
FRMEN SPIFSD  
DISSDO MODE16 SMP  
CKE  
SSEN  
MSTEN SPRE2 SPRE1 SPRE0 PPRE1 PPRE0  
Transmit and Receive Buffer  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6010A/6015  
2
2
17.1.1  
VARIOUS I C MODES  
17.0 I C™ MODULE  
The following types of I2C operation are supported:  
Note:  
This data sheet summarizes features of  
• I2C Slave operation with 7-bit address  
• I2C Slave operation with 10-bit address  
• I2C Master operation with 7 or 10-bit address  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
See the I2C programmer’s model in Figure 17-1.  
2
17.1.2  
PIN CONFIGURATION IN I C MODE  
I2C has a 2-pin interface; pin SCL is clock and pin SDA  
is data.  
The Inter-Integrated Circuit™ (I2C™) module provides  
complete hardware support for both Slave and  
Multi-Master modes of the I2C serial communication  
standard, with a 16-bit interface.  
2
17.1.3  
I C REGISTERS  
I2CCON and I2CSTAT are control and STATUS  
registers, respectively. The I2CCON register is  
readable and writable. The lower 6 bits of I2CSTAT are  
read-only. The remaining bits of the I2CSTAT are  
read/write.  
This module offers the following key features:  
• I2C interface supporting both Master and Slave  
operation.  
• I2C Slave mode supports 7 and 10-bit address.  
• I2C Master mode supports 7 and 10-bit address.  
• I2C port allows bidirectional transfers between  
master and slaves.  
• Serial clock synchronization for I2C port can be  
used as a handshake mechanism to suspend and  
resume serial transfer (SCLREL control).  
• I2C supports multi-master operation; detects bus  
collision and will arbitrate accordingly.  
I2CRSR is the shift register used for shifting data,  
whereas I2CRCV is the buffer register to which data  
bytes are written, or from which data bytes are read.  
I2CRCV is the receive buffer, as shown in Figure 16-1.  
I2CTRN is the transmit register to which bytes are written  
during a transmit operation, as shown in Figure 16-2.  
The I2CADD register holds the slave address. A Status  
bit, ADD10, indicates 10-bit Address mode. The  
I2CBRG acts as the Baud Rate Generator reload  
value.  
17.1 Operating Function Description  
In receive operations, I2CRSR and I2CRCV together  
form a double-buffered receiver. When I2CRSR receives  
a complete byte, it is transferred to I2CRCV and an  
interrupt pulse is generated. During transmission, the  
I2CTRN is not double-buffered.  
The hardware fully implements all the master and  
slave functions of the I2C Standard and Fast mode  
specifications, as well as 7 and 10-bit addressing.  
Thus, the I2C module can operate either as a slave or  
a master on an I2C bus.  
Note:  
Following a Restart condition in 10-bit  
mode, the user only needs to match the  
first 7-bit address.  
FIGURE 17-1:  
PROGRAMMER’S MODEL  
I2CRCV (8 bits)  
bit 7  
bit 0  
I2CTRN (8 bits)  
I2CBRG (9 bits)  
bit 7  
bit 8  
bit 0  
bit 0  
I2CCON (16 bits)  
I2CSTAT (16 bits)  
bit 15  
bit 15  
bit 0  
bit 0  
I2CADD (10 bits)  
bit 9  
bit 0  
© 2008 Microchip Technology Inc.  
DS70150D-page 109  
dsPIC30F6010A/6015  
2
FIGURE 17-2:  
I C™ BLOCK DIAGRAM  
Internal  
Data Bus  
I2CRCV  
Read  
Shift  
Clock  
SCL  
SDA  
I2CRSR  
LSB  
Addr_Match  
Match Detect  
I2CADD  
Write  
Read  
Start and  
Stop bit Detect  
Write  
Read  
Start, Restart,  
Stop bit Generate  
Collision  
Detect  
Write  
Read  
Acknowledge  
Generation  
Clock  
Stretching  
Write  
Read  
I2CTRN  
LSB  
Shift  
Clock  
Reload  
Control  
Write  
Read  
I2CBRG  
BRG Down  
Counter  
FCY  
DS70150D-page 110  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
17.2 I2C Module Addresses  
17.3.2  
SLAVE RECEPTION  
If the R_W bit received is a ‘0’ during an address  
match, then Receive mode is initiated. Incoming bits  
are sampled on the rising edge of SCL. After 8 bits are  
received, if I2CRCV is not full or I2COV is not set,  
I2CRSR is transferred to I2CRCV. ACK is sent on the  
ninth clock.  
The I2CADD register contains the Slave mode  
addresses. The register is a 10-bit register.  
If the A10M bit (I2CCON<10>) is ‘0’, the address is  
interpreted by the module as a 7-bit address. When an  
address is received, it is compared to the 7 Least  
Significant bits of the I2CADD register.  
If the RBF flag is set, indicating that I2CRCV is still  
holding data from a previous operation (RBF = 1), then  
ACK is not sent; however, the interrupt pulse is  
generated. In the case of an overflow, the contents of  
the I2CRSR are not loaded into the I2CRCV.  
If the A10M bit is ‘1’, the address is assumed to be a  
10-bit address. When an address is received, it will be  
compared with the binary value ‘1 1 1 1 0 A9 A8’  
(where A9, A8 are two Most Significant bits of  
I2CADD). If that value matches, the next address will  
be compared with the Least Significant 8 bits of  
I2CADD, as specified in the 10-bit addressing protocol.  
Note:  
The I2CRCV will be loaded if the I2COV  
bit = 1and the RBF flag = 0. In this case,  
a read of the I2CRCV was performed, but  
the user did not clear the state of the  
I2COV bit before the next receive  
occurred. The Acknowledgement is not  
sent (ACK = 1) and the I2CRCV is  
updated.  
2
TABLE 17-1: 7-BIT I C™ SLAVE  
ADDRESSES SUPPORTED BY  
dsPIC30F  
0x00  
General call address or start byte  
Reserved  
0x01-0x03  
0x04-0x07  
0x04-0x77  
0x78-0x7b  
17.4 I2C 10-bit Slave Mode Operation  
HS-mode Master codes  
Valid 7-bit addresses  
In 10-bit mode, the basic receive and transmit  
operations are the same as in the 7-bit mode. However,  
the criteria for address match is more complex.  
Valid 10-bit addresses (lower 7  
bits)  
The I2C specification dictates that a slave must be  
addressed for a write operation, with two address bytes  
following a Start bit.  
0x7c-0x7f  
Reserved  
17.3 I2C 7-bit Slave Mode Operation  
The A10M bit is a control bit that signifies that the  
address in I2CADD is a 10-bit address rather than a  
7-bit address. The address detection protocol for the  
first byte of a message address is identical for 7-bit  
and 10-bit messages, but the bits being compared are  
different.  
Once enabled (I2CEN = 1), the slave module will wait  
for a Start bit to occur (i.e., the I2C module is ‘Idle’).  
Following the detection of a Start bit, 8 bits are shifted  
into I2CRSR and the address is compared against  
I2CADD. In 7-bit mode (A10M = 0), bits I2CADD<6:0>  
are compared against I2CRSR<7:1> and I2CRSR<0>  
is the R_W bit. All incoming bits are sampled on the  
rising edge of SCL.  
I2CADD holds the entire 10-bit address. Upon receiv-  
ing an address following a Start bit, I2CRSR <7:3> is  
compared against a literal ‘11110’ (the default 10-bit  
address) and I2CRSR<2:1> are compared against  
I2CADD<9:8>. If a match occurs and if R_W = 0, the  
interrupt pulse is sent. The ADD10 bit will be cleared to  
indicate a partial address match. If a match fails or  
R_W = 1, the ADD10 bit is cleared and the module  
returns to the Idle state.  
If an address match occurs, an Acknowledgement will  
be sent, and the Slave Event Interrupt Flag (SI2CIF) is  
set on the falling edge of the ninth (ACK) bit. The  
address match does not affect the contents of the  
I2CRCV buffer or the RBF bit.  
17.3.1  
SLAVE TRANSMISSION  
The low byte of the address is then received and  
compared with I2CADD<7:0>. If an address match  
occurs, the interrupt pulse is generated and the ADD10  
bit is set, indicating a complete 10-bit address match. If  
an address match did not occur, the ADD10 bit is  
cleared and the module returns to the Idle state.  
If the R_W bit received is a ‘1’, then the serial port will  
go into Transmit mode. It will send ACK on the ninth bit  
and then hold SCL to ‘0’ until the CPU responds by  
writing to I2CTRN. SCL is released by setting the  
SCLREL bit, and 8 bits of data are shifted out. Data bits  
are shifted out on the falling edge of SCL, such that  
SDA is valid during SCL high (see timing diagram). The  
interrupt pulse is sent on the falling edge of the ninth  
clock pulse, regardless of the status of the ACK  
received from the master.  
© 2008 Microchip Technology Inc.  
DS70150D-page 111  
dsPIC30F6010A/6015  
17.4.1  
10-BIT MODE SLAVE  
TRANSMISSION  
17.5.3  
CLOCK STRETCHING DURING  
7-BIT ADDRESSING (STREN = 1)  
Once a slave is addressed in this fashion, with the full  
10-bit address (this state is referred as  
“PRIOR_ADDR_MATCH”), the master can begin  
sending data bytes for a slave reception operation.  
When the STREN bit is set in Slave Receive mode,  
the SCL line is held low when the buffer register is full.  
The method for stretching the SCL output is the same  
for both 7 and 10-bit addressing modes.  
Clock stretching takes place following the ninth clock of  
the receive sequence. On the falling edge of the ninth  
clock at the end of the ACK sequence, if the RBF bit is  
set, the SCLREL bit is automatically cleared, forcing the  
SCL output to be held low. The user’s ISR must set the  
SCLREL bit before reception is allowed to continue. By  
holding the SCL line low, the user has time to service  
the ISR and read the contents of the I2CRCV before the  
master device can initiate another receive sequence.  
This will prevent buffer overruns from occurring.  
17.4.2  
10-BIT MODE SLAVE RECEPTION  
Once addressed, the master can generate a Repeated  
Start, reset the high byte of the address and set the  
R_W bit without generating a Stop bit, thus initiating a  
slave transmit operation.  
17.5 Automatic Clock Stretch  
In the slave modes, the module can synchronize buffer  
reads and write to the master device by clock  
stretching.  
Note 1: If the user reads the contents of the  
I2CRCV, clearing the RBF bit before the  
falling edge of the ninth clock, the  
SCLREL bit will not be cleared and clock  
stretching will not occur.  
17.5.1  
TRANSMIT CLOCK STRETCHING  
Both 10-bit and 7-bit Transmit modes implement clock  
stretching by asserting the SCLREL bit after the falling  
edge of the ninth clock if the TBF bit is cleared,  
indicating the buffer is empty.  
2: The SCLREL bit can be set in software,  
regardless of the state of the RBF bit. The  
user should be careful to clear the RBF bit  
in the ISR before the next receive  
sequence in order to prevent an overflow  
condition.  
In Slave Transmit modes, clock stretching is always  
performed, irrespective of the STREN bit.  
Clock synchronization takes place following the ninth  
clock of the transmit sequence. If the device samples  
an ACK on the falling edge of the ninth clock, and if the  
TBF bit is still clear, then the SCLREL bit is  
automatically cleared. The SCLREL being cleared to  
0’ will assert the SCL line low. The user’s ISR must  
set the SCLREL bit before transmission is allowed to  
continue. By holding the SCL line low, the user has  
time to service the ISR and load the contents of the  
I2CTRN before the master device can initiate another  
transmit sequence.  
17.5.4  
CLOCK STRETCHING DURING  
10-BIT ADDRESSING (STREN = 1)  
Clock stretching takes place automatically during the  
addressing sequence. Because this module has a  
register for the entire address, it is not necessary for  
the protocol to wait for the address to be updated.  
After the address phase is complete, clock stretching  
will occur on each data receive or transmit sequence  
as was described earlier.  
Note 1: If the user loads the contents of I2CTRN,  
setting the TBF bit before the falling edge  
of the ninth clock, the SCLREL bit will not  
be cleared and clock stretching will not  
occur.  
17.6 Software Controlled Clock  
Stretching (STREN = 1)  
When the STREN bit is ‘1’, the SCLREL bit may be  
cleared by software to allow software to control the  
clock stretching. The logic will synchronize writes to  
the SCLREL bit with the SCL clock. Clearing the  
SCLREL bit will not assert the SCL output until the  
module detects a falling edge on the SCL output and  
SCL is sampled low. If the SCLREL bit is cleared by  
the user while the SCL line has been sampled low, the  
SCL output will be asserted (held low). The SCL out-  
put will remain low until the SCLREL bit is set, and all  
other devices on the I2C bus have de-asserted SCL.  
This ensures that a write to the SCLREL bit will not  
violate the minimum high time requirement for SCL.  
2: The SCLREL bit can be set in software,  
regardless of the state of the TBF bit.  
17.5.2  
RECEIVE CLOCK STRETCHING  
The STREN bit in the I2CCON register can be used to  
enable clock stretching in Slave Receive mode. When  
the STREN bit is set, the SCL pin will be held low at  
the end of each data receive sequence.  
If the STREN bit is ‘0’, a software write to the SCLREL  
bit will be disregarded and have no effect on the  
SCLREL bit.  
DS70150D-page 112  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
17.7 Interrupts  
17.12 I2C Master Operation  
The I2C module generates two interrupt flags, MI2CIF  
(I2C Master Interrupt Flag) and SI2CIF (I2C Slave  
Interrupt Flag). The MI2CIF interrupt flag is activated  
on completion of a master message event. The SI2CIF  
interrupt flag is activated on detection of a message  
directed to the slave.  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the data direction bit. In  
this case, the data direction bit (R_W) is logic ‘0’. Serial  
data is transmitted 8 bits at a time. After each byte is  
transmitted, an ACK bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
17.8 Slope Control  
The I2C standard requires slope control on the SDA  
and SCL signals for Fast Mode (400 kHz). The control  
bit, DISSLW, enables the user to disable slew rate  
control, if desired. It is necessary to disable the slew  
rate control for 1 MHz mode.  
17.9 IPMI Support  
In Master Receive mode, the first byte transmitted  
contains the slave address of the transmitting device  
(7 bits) and the data direction bit. In this case, the data  
direction bit (R_W) is logic ‘1’. Thus, the first byte  
transmitted is a 7-bit slave address, followed by a ‘1’ to  
indicate receive bit. Serial data is received via SDA,  
while SCL outputs the serial clock. Serial data is  
received 8 bits at a time. After each byte is received, an  
ACK bit is transmitted. Start and Stop conditions  
indicate the beginning and end of transmission.  
The control bit, IPMIEN, enables the module to support  
Intelligent Peripheral Management Interface (IPMI).  
When this bit is set, the module accepts and acts upon  
all addresses.  
17.10 General Call Address Support  
The general call address can address all devices. When  
this address is used, all devices should, in theory,  
respond with an acknowledgement.  
2
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R_W = 0.  
17.12.1 I C MASTER TRANSMISSION  
Transmission of a data byte, a 7-bit address, or the sec-  
ond half of a 10-bit address is accomplished by simply  
writing a value to I2CTRN register. The user should  
only write to I2CTRN when the module is in a WAIT  
state. This action will set the buffer full flag (TBF) and  
allow the Baud Rate Generator to begin counting and  
start the next transmission. Each bit of address/data  
will be shifted out onto the SDA pin after the falling  
edge of SCL is asserted. The Transmit Status Flag,  
TRSTAT (I2CSTAT<14>), indicates that a master  
transmit is in progress.  
The general call address is recognized when the  
General Call Enable (GCEN) bit is set  
(I2CCON<7> = 1). Following a Start bit detection, 8 bits  
are shifted into I2CRSR and the address is compared  
with I2CADD, and is also compared with the general  
call address which is fixed in hardware.  
If a general call address match occurs, the I2CRSR is  
transferred to the I2CRCV after the eighth clock, the  
RBF flag is set, and on the falling edge of the ninth bit  
(ACK bit), the Master Event Interrupt Flag (MI2CIF) is  
set.  
2
17.12.2 I C MASTER RECEPTION  
Master mode reception is enabled by programming the  
Receive Enable (RCEN) bit (I2CCON<3>). The I2C  
module must be idle before the RCEN bit is set, other-  
wise the RCEN bit will be disregarded. The Baud Rate  
Generator begins counting, and on each rollover, the  
state of the SCL pin toggles, and data is shifted in to the  
I2CRSR on the rising edge of each clock.  
When the interrupt is serviced, the source for the  
interrupt can be checked by reading the contents of the  
I2CRCV to determine if the address was  
device-specific, or a general call address.  
17.11 I2C Master Support  
As a Master device, six operations are supported.  
17.12.3 BAUD RATE GENERATOR  
• Assert a Start condition on SDA and SCL.  
• Assert a Restart condition on SDA and SCL.  
In I2C Master mode, the reload value for the BRG is  
located in the I2CBRG register. When the BRG is  
loaded with this value, the BRG counts down to ‘0’ and  
stops until another reload has taken place. If clock  
arbitration is taking place, for instance, the BRG is  
reloaded when the SCL pin is sampled high.  
• Write to the I2CTRN register initiating  
transmission of data/address.  
• Generate a Stop condition on SDA and SCL.  
• Configure the I2C port to receive data.  
• Generate an ACK condition at the end of a  
received byte of data.  
© 2008 Microchip Technology Inc.  
DS70150D-page 113  
dsPIC30F6010A/6015  
As per the I2C standard, FSCL may be 100 kHz or  
400 kHz. However, the user can specify any baud rate  
up to 1 MHz. I2CBRG values of ‘0’ or ‘1’ are illegal.  
The Master will continue to monitor the SDA and SCL  
pins, and if a Stop condition occurs, the MI2CIF bit will  
be set.  
A write to the I2CTRN will start the transmission of data  
at the first data bit, regardless of where the transmitter  
left off when bus collision occurred.  
EQUATION 17-1: SERIAL CLOCK RATE  
FCY  
FCY  
In a Multi-Master environment, the interrupt generation  
on the detection of Start and Stop conditions allows the  
determination of when the bus is free. Control of the I2C  
bus can be taken when the P bit is set in the I2CSTAT  
register, or the bus is Idle and the S and P bits are  
cleared.  
------------ --------------------------  
I2CBRG =  
– 1  
FSCL 1, 111, 111  
17.12.4 CLOCK ARBITRATION  
Clock arbitration occurs when the master de-asserts  
the SCL pin (SCL allowed to float high) during any  
receive, transmit, or Restart/Stop condition. When the  
SCL pin is allowed to float high, the Baud Rate  
Generator (BRG) is suspended from counting until the  
SCL pin is actually sampled high. When the SCL pin is  
sampled high, the Baud Rate Generator is reloaded  
with the contents of I2CBRG and begins counting. This  
ensures that the SCL high time will always be at least  
one BRG rollover count in the event that the clock is  
held low by an external device.  
17.13 I2C Module Operation During CPU  
Sleep and Idle Modes  
2
17.13.1 I C OPERATION DURING CPU  
SLEEP MODE  
When the device enters Sleep mode, all clock sources  
to the module are shutdown and stay at logic ‘0’. If  
Sleep occurs in the middle of a transmission, and the  
state machine is partially into a transmission as the  
clocks stop, then the transmission is aborted. Similarly,  
if Sleep occurs in the middle of a reception, then the  
reception is aborted.  
17.12.5 MULTI-MASTER COMMUNICATION,  
BUS COLLISION AND BUS  
ARBITRATION  
2
Multi-Master operation support is achieved by bus  
arbitration. When the master outputs address/data bits  
onto the SDA pin, arbitration takes place when the  
master outputs a ‘1’ on SDA, by letting SDA float high  
while another master asserts a ‘0’. When the SCL pin  
floats high, data should be stable. If the expected data  
on SDA is a ‘1’ and the data sampled on the SDA  
pin = 0, then a bus collision has taken place. The  
master will set the MI2CIF pulse and reset the master  
portion of the I2C port to its Idle state.  
17.13.2 I C OPERATION DURING CPU IDLE  
MODE  
For the I2C, the I2CSIDL bit selects if the module will  
stop on Idle or continue on Idle. If I2CSIDL = 0, the  
module will continue operation on assertion of the Idle  
mode. If I2CSIDL = 1, the module will stop on Idle.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the TBF flag is  
cleared, the SDA and SCL lines are de-asserted, and a  
value can now be written to I2CTRN. When the user  
services the I2C master event Interrupt Service  
Routine, if the I2C bus is free (i.e., the P bit is set), the  
user can resume communication by asserting a Start  
condition.  
If a Start, Restart, Stop or Acknowledge condition was  
in progress when the bus collision occurred, the  
condition is aborted, the SDA and SCL lines are  
de-asserted, and the respective control bits in the  
I2CCON register are cleared to 0. When the user  
services the bus collision Interrupt Service Routine,  
and if the I2C bus is free, the user can resume  
communication by asserting a Start condition.  
DS70150D-page 114  
© 2008 Microchip Technology Inc.  
2
(1)  
TABLE 17-2: I C™ REGISTER MAP  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
0000 0000 0000 0000  
0000 0000 1111 1111  
0000 0000 0000 0000  
0001 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
I2CRCV  
I2CTRN  
I2CBRG  
I2CCON  
I2CSTAT  
I2CADD  
0200  
0202  
0204  
0206  
Receive Register  
Transmit Register  
Baud Rate Generator  
GCEN STREN ACKDT ACKEN RCEN  
GCSTAT ADD10 IWCOL I2COV D_A  
Address Register  
I2CEN  
I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN  
PEN  
R_W  
RSEN  
RBF  
SEN  
TBF  
0208 ACKSTAT TRSTAT  
BCL  
P
S
020A  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 116  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
18.1 UART Module Overview  
18.0 UNIVERSAL ASYNCHRONOUS  
RECEIVER TRANSMITTER  
(UART) MODULE  
The key features of the UART module are:  
• Full-duplex, 8 or 9-bit data communication  
• Even, Odd or No Parity options (for 8-bit data)  
• One or two Stop bits  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
• Fully integrated Baud Rate Generator with 16-bit  
prescaler  
• Baud rates range from 38 bps to 1.875 Mbps at a  
30 MHz instruction rate  
• 4-word deep transmit data buffer  
• 4-word deep receive data buffer  
This section describes the Universal Asynchronous  
Receiver/Transmitter Communications module.  
• Parity, Framing and Buffer Overrun error detection  
• Support for Interrupt only on Address Detect  
(9th bit = 1)  
• Separate Transmit and Receive Interrupts  
• Loopback mode for diagnostic support  
FIGURE 18-1:  
UART TRANSMITTER BLOCK DIAGRAM  
Internal Data Bus  
Control and Status bits  
Write  
Write  
UTX8  
UxTXREG Low Byte  
Transmit Control  
– Control TSR  
– Control Buffer  
– Generate Flags  
– Generate Interrupt  
Load TSR  
UxTXIF  
UTXBRK  
Data  
Transmit Shift Register (UxTSR)  
0’ (Start)  
1’ (Stop)  
UxTX  
16X Baud Clock  
from Baud Rate  
Generator  
Parity  
Generator  
16 Divider  
Parity  
Control  
Signals  
Note: x = 1 or 2.  
© 2008 Microchip Technology Inc.  
DS70150D-page 117  
dsPIC30F6010A/6015  
FIGURE 18-2:  
UART RECEIVER BLOCK DIAGRAM  
Internal Data Bus  
16  
Write  
Read  
Read Read  
Write  
UxMODE  
UxSTA  
UxRXREG Low Byte  
URX8  
Receive Buffer Control  
– Generate Flags  
– Generate Interrupt  
– Shift Data Characters  
8-9  
LPBACK  
From UxTX  
UxRX  
Load RSR  
to Buffer  
Receive Shift Register  
(UxRSR)  
1
0
Control  
Signals  
· Start bit Detect  
· Parity Check  
· Stop bit Detect  
· Shift Clock Generation  
· Wake Logic  
16 Divider  
16X Baud Clock from  
Baud Rate Generator  
UxRXIF  
DS70150D-page 118  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
18.2 Enabling and Setting Up UART  
18.3 Transmitting Data  
18.2.1  
ENABLING THE UART  
18.3.1  
TRANSMITTING IN 8-BIT DATA  
MODE  
The UART module is enabled by setting the UARTEN  
bit in the UxMODE register (where x = 1 or 2). Once  
enabled, the UxTX and UxRX pins are configured as an  
output and an input respectively, overriding the TRIS  
and LAT register bit settings for the corresponding I/O  
port pins. The UxTX pin is at logic ‘1’ when no  
transmission is taking place.  
The following steps must be performed in order to  
transmit 8-bit data:  
1. Set up the UART:  
First, the data length, parity and number of Stop  
bits must be selected. Then, the Transmit and  
Receive Interrupt Enable and Priority bits are  
setup in the UxMODE and UxSTA registers.  
Also, the appropriate baud rate value must be  
written to the UxBRG register.  
18.2.2  
DISABLING THE UART  
The UART module is disabled by clearing the  
UARTEN bit in the UxMODE register. This is the  
default state after any Reset. If the UART is disabled,  
all I/O pins operate as port pins under the control of  
the LAT and TRIS bits of the corresponding port pins.  
2. Enable the UART by setting the UARTEN bit  
(UxMODE<15>).  
3. Set the UTXEN bit (UxSTA<10>), thereby  
enabling a transmission.  
Disabling the UART module resets the buffers to  
empty states. Any data characters in the buffers are  
lost, and the baud rate counter is reset.  
Note:  
The UTXEN bit must be set after the  
UARTEN bit is set to enable UART  
transmissions.  
All error and status flags associated with the UART  
module are reset when the module is disabled. The  
URXDA, OERR, FERR, PERR, UTXEN, UTXBRK and  
UTXBF bits are cleared, whereas RIDLE and TRMT  
are set. Other control bits, including ADDEN,  
URXISEL<1:0>, UTXISEL, as well as the UxMODE  
and UxBRG registers, are not affected.  
4. Write the byte to be transmitted to the lower byte  
of UxTXREG. The value will be transferred to the  
Transmit Shift Register (UxTSR) immediately  
and the serial bit stream will start shifting out  
during the next rising edge of the baud clock.  
Alternatively, the data byte may be written while  
UTXEN = 0, following which, the user may set  
UTXEN. This will cause the serial bit stream to  
begin immediately because the baud clock will  
start from a cleared state.  
Clearing the UARTEN bit while the UART is active will  
abort all pending transmissions and receptions and  
reset the module as defined above. Re-enabling the  
UART will restart the UART in the same configuration.  
5. A transmit interrupt will be generated depending  
on the value of the interrupt control bit UTXISEL  
(UxSTA<15>).  
18.2.3  
SETTING UP DATA, PARITY AND  
STOP BIT SELECTIONS  
18.3.2  
TRANSMITTING IN 9-BIT DATA  
MODE  
Control bits PDSEL<1:0> in the UxMODE register are  
used to select the data length and parity used in the  
transmission. The data length may either be 8-bits with  
even, odd or no parity, or 9-bits with no parity.  
The sequence of steps involved in the transmission of  
9-bit data is similar to 8-bit transmission, except that a  
16-bit data word (of which the upper 7 bits are always  
clear) must be written to the UxTXREG register.  
The STSEL bit determines whether one or two Stop bits  
will be used during data transmission.  
The default (power-on) setting of the UART is 8 bits, no  
parity, 1 Stop bit (typically represented as 8, N, 1).  
18.3.3  
TRANSMIT BUFFER (UXTXB)  
The transmit buffer is 9-bits wide and 4 characters  
deep. Including the Transmit Shift Register (UxTSR),  
the user effectively has a 5-deep FIFO (First-In, First-  
Out) buffer. The UTXBF Status bit (UxSTA<9>)  
indicates whether the transmit buffer is full.  
If a user attempts to write to a full buffer, the new data  
will not be accepted into the FIFO, and no data shift  
will occur within the buffer. This enables recovery from  
a buffer overrun condition.  
The FIFO is reset during any device Reset, but is not  
affected when the device enters or wakes up from a  
Power-Saving mode.  
© 2008 Microchip Technology Inc.  
DS70150D-page 119  
dsPIC30F6010A/6015  
18.3.4  
TRANSMIT INTERRUPT  
18.4.2  
RECEIVE BUFFER (UXRXB)  
The Transmit Interrupt Flag (U1TXIF or U2TXIF) is  
located in the corresponding interrupt flag register.  
The receive buffer is 4 words deep. Including the  
Receive Shift Register (UxRSR), the user effectively  
has a 5-word deep FIFO buffer.  
The transmitter generates an edge to set the UxTXIF  
bit. The condition for generating the interrupt depends  
on UTXISEL control bit:  
URXDA (UxSTA<0>) = 1 indicates that the receive  
buffer has data available. URXDA = 0means that the  
buffer is empty. If a user attempts to read an empty  
buffer, the old values in the buffer will be read and no  
data shift will occur within the FIFO.  
a) If UTXISEL = 0, an interrupt is generated when  
a word is transferred from the transmit buffer to  
the Transmit Shift Register (UxTSR). This  
means that the transmit buffer has at least one  
empty word.  
The FIFO is reset during any device Reset. It is not  
affected when the device enters or wakes up from a  
Power-Saving mode.  
b) If UTXISEL = 1, an interrupt is generated when  
a word is transferred from the transmit buffer to  
the Transmit Shift Register (UxTSR) and the  
transmit buffer is empty.  
18.4.3  
RECEIVE INTERRUPT  
The Receive Interrupt Flag (U1RXIF or U2RXIF) can  
be read from the corresponding interrupt flag register.  
The interrupt flag is set by an edge generated by the  
receiver. The condition for setting the receive interrupt  
flag depends on the settings specified by the  
URXISEL<1:0> (UxSTA<7:6>) control bits.  
Switching between the two interrupt modes during  
operation is possible and sometimes offers more  
flexibility.  
18.3.5  
TRANSMIT BREAK  
a) If URXISEL<1:0> = 00 or 01, an interrupt is  
generated every time a data word is transferred  
from the Receive Shift Register (UxRSR) to the  
receive buffer. There may be one or more  
characters in the receive buffer.  
Setting the UTXBRK bit (UxSTA<11>) will cause the  
UxTX line to be driven to logic ‘0’. The UTXBRK bit  
overrides all transmission activity. Therefore, the user  
should generally wait for the transmitter to be Idle  
before setting UTXBRK.  
b) If URXISEL<1:0> = 10, an interrupt is generated  
when a word is transferred from the Receive  
Shift Register (UxRSR) to the receive buffer,  
which, as a result of the transfer, contains  
3 characters.  
To send a Break character, the UTXBRK bit must be  
set by software and must remain set for a minimum of  
13 baud clock cycles. The UTXBRK bit is then cleared  
by software to generate Stop bits. The user must wait  
for a duration of at least one or two baud clock cycles  
in order to ensure a valid Stop bit(s) before reloading  
the UxTXB or starting other transmitter activity.  
Transmission of a Break character does not generate  
a transmit interrupt.  
c) If URXISEL<1:0> = 11, an interrupt is set when  
a word is transferred from the Receive Shift  
Register (UxRSR) to the receive buffer, which,  
as a result of the transfer, contains 4 characters  
(i.e., becomes full).  
Switching between the interrupt modes during  
operation is possible, though generally not advisable  
during normal operation.  
18.4 Receiving Data  
18.4.1  
RECEIVING IN 8-BIT OR 9-BIT DATA  
MODE  
18.5 Reception Error Handling  
The following steps must be performed while receiving  
8-bit or 9-bit data:  
18.5.1  
RECEIVE BUFFER OVERRUN  
ERROR (OERR BIT)  
1. Set up and enable the UART (see Section 18.3  
"Transmitting Data").  
The OERR bit (UxSTA<1>) is set if all of the following  
conditions occur:  
2. A receive interrupt will be generated when one  
or more data words have been received,  
depending on the receive interrupt settings  
specified by the URXISEL bits (UxSTA<7:6>).  
a) The receive buffer is full.  
b) The Receive Shift Register is full, but unable to  
transfer the character to the receive buffer.  
3. Read the OERR bit to determine if an overrun  
error has occurred. The OERR bit must be reset  
in software.  
c) The Stop bit of the character in the UxRSR is  
detected, indicating that the UxRSR needs to  
transfer the character to the buffer.  
4. Read the received data from UxRXREG. The act  
of reading UxRXREG will move the next word to  
the top of the receive FIFO, and the PERR and  
FERR values will be updated.  
Once OERR is set, no further data is shifted in UxRSR  
(until the OERR bit is cleared in software or a Reset  
occurs). The data held in UxRSR and UxRXREG  
remains valid.  
DS70150D-page 120  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
18.5.2  
FRAMING ERROR (FERR)  
18.6 Address Detect Mode  
The FERR bit (UxSTA<2>) is set if a ‘0’ is detected  
instead of a Stop bit. If two Stop bits are selected, both  
Stop bits must be ‘1’, otherwise FERR will be set. The  
read-only FERR bit is buffered along with the received  
data. It is cleared on any Reset.  
Setting the ADDEN bit (UxSTA<5>) enables this  
special mode, in which a 9th bit (URX8) value of ‘1’  
identifies the received word as an address rather than  
data. This mode is only applicable for 9-bit data com-  
munication. The URXISEL control bit does not have  
any impact on interrupt generation in this mode, since  
an interrupt (if enabled) will be generated every time  
the received word has the 9th bit set.  
18.5.3  
PARITY ERROR (PERR)  
The PERR bit (UxSTA<3>) is set if the parity of the  
received word is incorrect. This error bit is applicable  
only if a Parity mode (odd or even) is selected. The  
read-only PERR bit is buffered along with the received  
data bytes. It is cleared on any Reset.  
18.7 Loopback Mode  
Setting the LPBACK bit enables this special mode in  
which the UxTX pin is internally connected to the UxRX  
pin. When configured for the Loopback mode, the  
UxRX pin is disconnected from the internal UART  
receive logic. However, the UxTX pin still functions as  
in a normal operation.  
18.5.4  
IDLE STATUS  
When the receiver is active (i.e., between the initial  
detection of the Start bit and the completion of the Stop  
bit), the RIDLE bit (UxSTA<4>) is ‘0’. Between the  
completion of the Stop bit and detection of the next  
Start bit, the RIDLE bit is ‘1’, indicating that the UART  
is Idle.  
To select this mode:  
a) Configure UART for desired mode of operation.  
b) Set LPBACK = 1to enable Loopback mode.  
c) Enable transmission as defined in Section 18.3  
“Transmitting Data”.  
18.5.5  
RECEIVE BREAK  
The receiver will count and expect a certain number of  
bit times based on the values programmed in the  
PDSEL (UxMODE<2:1>) and STSEL (UxMODE<0>)  
bits.  
18.8 Baud Rate Generator (BRG)  
The UART has a 16-bit Baud Rate Generator to allow  
maximum flexibility in baud rate generation. The Baud  
Rate Generator register (UxBRG) is readable and  
writable. The baud rate is computed as follows:  
If the break is longer than 13 bit times, the reception is  
considered complete after the number of bit times  
specified by PDSEL and STSEL. The URXDA bit is  
set, FERR is set, zeros are loaded into the receive  
FIFO, interrupts are generated, if appropriate, and the  
RIDLE bit is set.  
BRG = 16-bit value held in UxBRG register  
(0 through 65535)  
FCY = Instruction Clock Rate (1/TCY)  
The baud rate is given by Equation 18-1.  
When the module receives a long break signal and the  
receiver has detected the Start bit, the data bits and  
the invalid Stop bit (which sets the FERR), the receiver  
must wait for a valid Stop bit before looking for the next  
Start bit. It cannot assume that the break condition on  
the line is the next Start bit.  
EQUATION 18-1: BAUD RATE  
Baud Rate = FCY/(16 * (BRG + 1))  
Break is regarded as a character containing all ‘0’s,  
with the FERR bit set. The Break character is loaded  
into the buffer. No further reception can occur until a  
Stop bit is received. Note that RIDLE goes high when  
the Stop bit has not been received yet.  
Therefore, maximum baud rate possible is  
FCY/16 (if BRG = 0),  
and the minimum baud rate possible is  
FCY/(16 * 65536).  
With a full 16-bit Baud Rate Generator, at 30 MIPS  
operation, the minimum baud rate achievable is  
28.5 bps.  
© 2008 Microchip Technology Inc.  
DS70150D-page 121  
dsPIC30F6010A/6015  
18.10.2 UART OPERATION DURING CPU  
IDLE MODE  
18.9 Auto-Baud Support  
To allow the system to determine baud rates of  
received characters, the input can be optionally linked  
to a selected capture input. To enable this mode, the  
user must program the input capture module to detect  
the falling and rising edges of the Start bit.  
For the UART, the USIDL bit selects if the module will  
stop operation when the device enters Idle mode, or  
whether the module will continue on Idle. If USIDL = 0,  
the module will continue operation during Idle mode. If  
USIDL = 1, the module will stop on Idle.  
18.10 UART Operation During CPU  
Sleep and Idle Modes  
18.10.1 UART OPERATION DURING CPU  
SLEEP MODE  
When the device enters Sleep mode, all clock sources  
to the module are shut down and stay at logic ‘0’. If  
entry into Sleep mode occurs while a transmission is  
in progress, then the transmission is aborted. The  
UxTX pin is driven to logic ‘1’. Similarly, if entry into  
Sleep mode occurs while a reception is in progress,  
then the reception is aborted. The UxSTA, UxMODE,  
Transmit and Receive registers and buffers, and the  
UxBRG register are not affected by Sleep mode.  
If the Wake bit (UxMODE<7>) is set before the device  
enters Sleep mode, then a falling edge on the UxRX  
pin will generate a receive interrupt. The Receive  
Interrupt Select Mode bit (URXISEL) has no effect for  
this function. If the receive interrupt is enabled, then  
this will wake-up the device from Sleep. The UARTEN  
bit must be set in order to generate a wake-up  
interrupt.  
DS70150D-page 122  
© 2008 Microchip Technology Inc.  
(1)  
TABLE 18-1: UART1 REGISTER MAP  
SFR Name Addr.  
Bit 15  
Bit 14 Bit 13 Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
0000 0000 0000 0000  
0000 0001 0001 0000  
0000 000u uuuu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
U1MODE  
U1STA  
020C UARTEN  
020E UTXISEL  
USIDL  
WAKE  
LPBACK ABAUD  
PDSEL1 PDSEL0 STSEL  
UTXBRK UTXEN UTXBF  
TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR  
FERR  
OERR URXDA  
U1TXREG 0210  
U1RXREG 0212  
UTX8  
Transmit Register  
Receive Register  
URX8  
U1BRG  
0214  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Baud Rate Generator Prescaler  
Legend:  
Note 1:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
(1)  
TABLE 18-2: UART2 REGISTER MAP  
SFR  
Name  
Addr.  
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
0000 0000 0000 0000  
0000 0001 0001 0000  
0000 000u uuuu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
U2MODE  
U2STA  
0216 UARTEN  
0218 UTXISEL  
USIDL  
WAKE  
LPBACK ABAUD  
PDSEL1 PDSEL0 STSEL  
FERR OERR URXDA  
UTXBRK UTXEN UTXBF  
TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR  
U2TXREG 021A  
U2RXREG 021C  
UTX8  
Transmit Register  
Receive Register  
URX8  
U2BRG  
021E  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
Baud Rate Generator Prescaler  
Legend:  
Note 1:  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 124  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
• Low-Power Sleep and Idle mode  
19.0 CAN MODULE  
The CAN bus module consists of a protocol engine,  
and message buffering/control. The CAN protocol  
engine handles all functions for receiving and  
transmitting messages on the CAN bus. Messages are  
transmitted by first loading the appropriate data  
registers. Status and errors can be checked by reading  
the appropriate registers. Any message detected on  
the CAN bus is checked for errors and then matched  
against filters to see if it should be received and stored  
in one of the receive registers.  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
19.1 Overview  
19.2 Frame Types  
The Controller Area Network (CAN) module is a serial  
interface, useful for communicating with other CAN  
The CAN module transmits various types of frames,  
which include data messages or remote transmission  
requests initiated by the user as other frames that are  
automatically generated for control purposes. The  
following frame types are supported:  
modules  
or  
microcontroller  
devices.  
This  
interface/protocol was designed to allow communica-  
tions within noisy environments. The dsPIC30F6010A  
has two CAN modules. The dsPIC30F6015 has only  
one.  
• Standard Data Frame  
The CAN module is a communication controller  
implementing the CAN 2.0 A/B protocol, as defined in  
the BOSCH specification. The module will support  
CAN 1.2, CAN 2.0A, CAN2.0B Passive and CAN 2.0B  
Active versions of the protocol. The module  
implementation is a full CAN system. The CAN  
specification is not covered within this data sheet. The  
reader may refer to the BOSCH CAN specification for  
further details.  
A Standard Data Frame is generated by a node when  
the node wishes to transmit data. It includes a 11-bit  
Standard Identifier (SID), but not an 18-bit Extended  
Identifier (EID).  
• Extended Data Frame  
An Extended Data Frame is similar to a Standard Data  
Frame, but includes an Extended Identifier as well.  
• Remote Frame  
The module features are as follows:  
It is possible for a destination node to request the data  
from the source. For this purpose, the destination node  
sends a Remote Frame with an identifier that matches  
the identifier of the required Data Frame. The  
appropriate data source node will then send a Data  
Frame as a response to this remote request.  
• Implementation of the CAN protocol CAN 1.2,  
CAN 2.0A and CAN 2.0B  
• Standard and extended data frames  
• 0-8 bytes data length  
• Programmable bit rate up to 1 Mbit/sec  
• Support for remote frames  
• Error Frame  
• Double-buffered receiver with two prioritized  
received message storage buffers (each buffer  
may contain up to 8 bytes of data)  
An Error Frame is generated by any node that detects  
a bus error. An error frame consists of 2 fields: an Error  
Flag field and an Error Delimiter field.  
• 6 full (standard/extended identifier) acceptance  
filters, 2 associated with the high priority receive  
buffer, and 4 associated with the low priority  
receive buffer  
• Overload Frame  
An Overload Frame can be generated by a node as a  
result of 2 conditions. First, the node detects a  
dominant bit during lnterframe Space, which is an  
illegal condition. Second, due to internal conditions, the  
node is not yet able to start reception of the next  
message. A node may generate a maximum of 2  
sequential Overload Frames to delay the start of the  
next message.  
• 2 full acceptance filter masks, one each associ-  
ated with the high and low priority receive buffers  
• Three transmit buffers with application specified  
prioritization and abort capability (each buffer may  
contain up to 8 bytes of data)  
• Programmable wake-up functionality with  
integrated low-pass filter  
• Interframe Space  
• Programmable Loopback mode supports self-test  
operation  
Interframe Space separates a proceeding frame (of  
whatever type) from a following Data or Remote  
Frame.  
• Signaling via interrupt capabilities for all CAN  
receiver and transmitter error states  
• Programmable clock source  
• Programmable link to timer module for  
time-stamping and network synchronization  
© 2008 Microchip Technology Inc.  
DS70150D-page 125  
dsPIC30F6010A/6015  
FIGURE 19-1:  
CAN BUFFERS AND PROTOCOL ENGINE BLOCK DIAGRAM  
Acceptance Mask  
RXM1  
BUFFERS  
Acceptance Filter  
RXF2  
A
c
c
e
p
t
Acceptance Mask  
RXM0  
Acceptance Filter  
RXF3  
TXB0  
TXB1  
TXB2  
A
c
c
e
p
t
Acceptance Filter  
RXF0  
Acceptance Filter  
RXF4  
Acceptance Filter  
RXF1  
Acceptance Filter  
RXF5  
R
X
B
0
R
X
B
1
M
A
B
Identifier  
Identifier  
Message  
Queue  
Control  
Transmit Byte Sequencer  
Data Field  
Data Field  
Receive  
Error  
Counter  
RERRCNT  
TERRCNT  
PROTOCOL  
ENGINE  
Transmit  
Error  
ErrPas  
BusOff  
Counter  
Transmit Shift  
Receive Shift  
CRC Check  
Protocol  
Finite  
State  
CRC Generator  
Machine  
Bit  
Timing  
Logic  
Transmit  
Logic  
Bit Timing  
Generator  
(1)  
(1)  
CiTX  
CiRX  
Note 1. i = 1 or 2 refers to a particular CAN module (CAN1 or CAN2).  
The dsPIC30F6015 has only one CAN module.  
DS70150D-page 126  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
The module can be programmed to apply a low-pass  
filter function to the CiRX input line while the module or  
the CPU is in Sleep mode. The WAKFIL bit  
(CiCFG2<14>) enables or disables the filter.  
19.3 Modes of Operation  
The CAN module can operate in one of several operation  
modes selected by the user. These modes include:  
• Initialization mode  
• Disable mode  
• Normal Operation mode  
• Listen-Only mode  
• Loopback mode  
Note:  
Typically, if the CAN module is allowed to  
transmit in a particular mode of operation  
and  
a
transmission is requested  
immediately after the CAN module has  
been placed in that mode of operation, the  
module waits for 11 consecutive recessive  
bits on the bus before starting  
transmission. If the user switches to  
Disable mode within this 11-bit period, then  
this transmission is aborted and the  
corresponding TXABT bit is set and  
TXREQ bit is cleared.  
• Error Recognition mode  
Modes are requested by setting the REQOP<2:0>  
bits (CiCTRL<10:8>). Entry into  
a
mode is  
acknowledged by monitoring the OPMODE<2:0> bits  
(CiCTRL<7:5>). The module will not change the mode  
and the OPMODE bits until a change in mode is  
acceptable, generally during bus idle time which is  
defined as at least 11 consecutive recessive bits.  
19.3.3  
NORMAL OPERATION MODE  
19.3.1  
INITIALIZATION MODE  
Normal Operating mode is selected when  
REQOP<2:0> = 000. In this mode, the module is  
activated, the I/O pins will assume the CAN bus  
functions. The module will transmit and receive CAN  
bus messages via the CiTX and CiRX pins.  
In the Initialization mode, the module will not transmit or  
receive. The error counters are cleared and the  
interrupt flags remain unchanged. The programmer will  
have access to Configuration registers that are access  
restricted in other modes. The module will protect the  
user from accidentally violating the CAN protocol  
through programming errors. All registers which control  
the configuration of the module can not be modified  
while the module is on-line. The CAN module will not  
be allowed to enter the Configuration mode while a  
transmission is taking place. The Configuration mode  
serves as a lock to protect the following registers:  
19.3.4  
LISTEN-ONLY MODE  
If the Listen-Only mode is activated, the module on the  
CAN bus is passive. The transmitter buffers revert to  
the Port I/O function. The receive pins remain inputs.  
For the receiver, no error flags or acknowledge signals  
are sent. The error counters are deactivated in this  
state. The Listen-Only mode can be used for detecting  
the baud rate on the CAN bus. To use this, it is  
necessary that there are at least two further nodes that  
communicate with each other.  
• All Module Control Registers  
• Baud Rate and Interrupt Configuration Registers  
• Bus Timing Registers  
• Identifier Acceptance Filter Registers  
• Identifier Acceptance Mask Registers  
19.3.5  
ERROR RECOGNITION MODE  
The module can be set to ignore all errors and receive  
any message. The Error Recognition mode is activated  
by setting the RXM<1:0> bits (CiRXnCON<6:5>) to  
11’. In this mode, the data which is in the message  
assembly buffer until the time an error occurred, is  
copied in the receive buffer and can be read via the  
CPU interface.  
19.3.2  
DISABLE MODE  
In Disable mode, the module will not transmit or  
receive. The module has the ability to set the WAKIF bit  
due to bus activity, however any pending interrupts will  
remain and the error counters will retain their value.  
If the REQOP<2:0> bits (CiCTRL<10:8>) = 001, the  
module will enter the Module Disable mode. If the  
module is active, the module will wait for 11 recessive  
bits on the CAN bus, detect that condition as an idle  
bus, then accept the module disable command. When  
the OPMODE<2:0> bits (CiCTRL<7:5>) = 001, that  
indicates whether the module successfully went into  
Module Disable mode. The I/O pins will revert to normal  
I/O function when the module is in the Module Disable  
mode.  
19.3.6  
LOOPBACK MODE  
If the Loopback mode is activated, the module will  
connect the internal transmit signal to the internal  
receive signal at the module boundary. The transmit  
and receive pins revert to their Port I/O function.  
© 2008 Microchip Technology Inc.  
DS70150D-page 127  
dsPIC30F6010A/6015  
19.4.4  
RECEIVE OVERRUN  
19.4 Message Reception  
An overrun condition occurs when the message  
assembly buffer has assembled a valid received  
message and the message is accepted through the  
acceptance filters, but the receive buffer associated  
with the filter still contains unread data.  
19.4.1  
RECEIVE BUFFERS  
The CAN bus module has 3 receive buffers. However,  
one of the receive buffers is always committed to  
monitoring the bus for incoming messages. This buffer  
is called the Message Assembly Buffer (MAB). So  
there are 2 receive buffers visible, RXB0 and RXB1,  
that can essentially instantaneously receive a complete  
message from the protocol engine.  
The overrun error flag, RXnOVR (CiINTF<15> or  
CiINTF<14>) and the ERRIF bit (CiINTF<5>) will be set  
and the message in the MAB will be discarded.  
If the DBEN bit is clear, RXB1 and RXB0 operate inde-  
pendently. When this is the case, a message intended  
for RXB0 will not be diverted into RXB1 if RXB0  
contains an unread message and the RX0OVR bit will  
be set.  
All messages are assembled by the MAB, and are trans-  
ferred to the RXBn buffers only if the acceptance filter  
criterion is met. When a message is received, the RXnIF  
flag (CiINTF<0> or CiINTF<1>) will be set. This bit can  
only be set by the module when a message is received.  
The bit is cleared by the CPU when it has completed  
processing the message in the buffer. If the RXnIE bit  
(CiINTE<0> or CiINTE<1>) is set, an interrupt will be  
generated when a message is received.  
If the DBEN bit is set, the overrun for RXB0 is handled  
differently. If a valid message is received for RXB0 and  
RXFUL = 1indicates that RXB0 is full and RXFUL = 0  
indicates that RXB1 is empty, the message for RXB0  
will be loaded into RXB1. An overrun error will not be  
generated for RXB0. If a valid message is received for  
RXB0 and RXFUL = 1, and RXFUL = 1indicating that  
both RXB0 and RXB1 are full, the message will be lost  
and an overrun will be indicated for RXB1.  
RXF0 and RXF1 filters with RXM0 mask are associated  
with RXB0. The filters RXF2, RXF3, RXF4, and RXF5  
and the mask RXM1 are associated with RXB1.  
19.4.2  
MESSAGE ACCEPTANCE FILTERS  
19.4.5  
RECEIVE ERRORS  
The message acceptance filters and masks are used to  
determine if a message in the message assembly  
buffer should be loaded into either of the receive  
buffers. Once a valid message has been received into  
the message assembly buffer, the identifier fields of the  
message are compared to the filter values. If there is a  
match, that message will be loaded into the appropriate  
receive buffer.  
The CAN module will detect the following receive  
errors:  
• Cyclic Redundancy Check (CRC) error  
• Bit Stuffing error  
• Invalid message receive error  
The receive error counter is incremented by one in  
case one of these errors occur. The RXWAR bit  
(CiINTF<9>) indicates that the Receive Error Counter  
has reached the CPU warning limit of 96 and an  
interrupt is generated.  
The acceptance filter looks at incoming messages for  
the RXIDE bit (CiRXnSID<0>) to determine how to  
compare the identifiers. If the RXIDE bit is clear, the  
message is a standard frame, and only filters with the  
EXIDE bit (CiRXFnSID<0>) clear are compared. If the  
RXIDE bit is set, the message is an extended frame,  
and only filters with the EXIDE bit set are compared.  
Configuring the RXM<1:0> bits to ‘01’ or ‘10’ can  
override the EXIDE bit.  
19.4.6  
RECEIVE INTERRUPTS  
Receive interrupts can be divided into 3 major groups,  
each including various conditions that generate  
interrupts:  
• Receive Interrupt  
19.4.3  
MESSAGE ACCEPTANCE FILTER  
MASKS  
A message has been successfully received and loaded  
into one of the receive buffers. This interrupt is  
activated immediately after receiving the End-of-Frame  
(EOF) field. Reading the RXnIF flag will indicate which  
receive buffer caused the interrupt.  
The mask bits essentially determine which bits to apply  
the filter to. If any mask bit is set to a zero, then that bit  
will automatically be accepted regardless of the filter  
bit. There are 2 programmable acceptance filter masks  
associated with the receive buffers, one for each buffer.  
• Wake-up Interrupt  
The CAN module has woken up from Disable mode or  
the device has woken up from Sleep mode.  
DS70150D-page 128  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
• Receive Error Interrupts  
Setting TXREQ bit simply flags a message buffer as  
enqueued for transmission. When the module detects  
an available bus, it begins transmitting the message  
which has been determined to have the highest priority.  
A receive error interrupt will be indicated by the ERRIF  
bit. This bit shows that an error condition occurred. The  
source of the error can be determined by checking the  
bits in the CAN Interrupt STATUS register, CiINTF.  
If the transmission completes successfully on the first  
attempt, the TXREQ bit is cleared automatically and an  
interrupt is generated if TXIE was set.  
• Invalid message received  
If any type of error occurred during reception of the last  
message, an error will be indicated by the IVRIF bit.  
If the message transmission fails, one of the error  
condition flags will be set and the TXREQ bit will  
remain set indicating that the message is still pending  
for transmission. If the message encountered an error  
condition during the transmission attempt, the TXERR  
bit will be set and the error condition may cause an  
interrupt. If the message loses arbitration during the  
transmission attempt, the TXLARB bit is set. No  
interrupt is generated to signal the loss of arbitration.  
• Receiver overrun  
The RXnOVR bit indicates that an overrun condition  
occurred.  
• Receiver warning  
The RXWAR bit indicates that the Receive Error  
Counter (RERRCNT<7:0>) has reached the Warning  
limit of 96.  
19.5.4  
ABORTING MESSAGE  
TRANSMISSION  
• Receiver error passive  
The RXEP bit indicates that the Receive Error Counter  
has exceeded the Error Passive limit of 127 and the  
module has gone into Error Passive state.  
The system can also abort a message by clearing the  
TXREQ bit associated with each message buffer.  
Setting the ABAT bit (CiCTRL<12>) will request an  
abort of all pending messages. If the message has not  
yet started transmission, or if the message started but  
is interrupted by loss of arbitration or an error, the abort  
will be processed. The abort is indicated when the  
module sets the TXABT bit, and the TXnIF flag is not  
automatically set.  
19.5 Message Transmission  
19.5.1  
TRANSMIT BUFFERS  
The CAN module has three transmit buffers. Each of  
the three buffers occupies 14 bytes of data. Eight of the  
bytes are the maximum 8 bytes of the transmitted  
message. Five bytes hold the standard and extended  
identifiers and other message arbitration information.  
19.5.5  
TRANSMISSION ERRORS  
The CAN module will detect the following transmission  
errors:  
19.5.2  
TRANSMIT MESSAGE PRIORITY  
• Acknowledge error  
• Form error  
Transmit priority is a prioritization within each node of the  
pending transmittable messages. There are 4 levels of  
transmit priority. If TXPRI<1:0> (CiTXnCON<1:0>, where  
n = 0, 1 or 2 represents a particular transmit buffer) for a  
particular message buffer is set to ‘11’, that buffer has the  
highest priority. If TXPRI<1:0> for a particular message  
buffer is set to ‘10’ or ‘01’, that buffer has an intermediate  
priority. If TXPRI<1:0> for a particular message buffer is  
00’, that buffer has the lowest priority.  
• Bit error  
These transmission errors will not necessarily generate  
an interrupt, but are indicated by the transmission error  
counter. However, each of these errors will cause the  
transmission error counter to be incremented by one.  
Once the value of the error counter exceeds the value  
of 96, the ERRIF (CiINTF<5>) and the TXWAR bit  
(CiINTF<10>) are set. Once the value of the error  
counter exceeds the value of 96, an interrupt is  
generated and the TXWAR bit in the Error Flag register  
is set.  
19.5.3  
TRANSMISSION SEQUENCE  
To initiate transmission of the message, the TXREQ bit  
(CiTXnCON<3>) must be set. The CAN bus module  
resolves any timing conflicts between setting of the  
TXREQ bit and the Start-of-Frame (SOF), ensuring  
that if the priority was changed, it is resolved correctly  
before the SOF occurs. When TXREQ is set, the  
TXABT (CiTXnCON<6>), TXLARB (CiTXnCON<5>)  
and TXERR (CiTXnCON<4>) flag bits are  
automatically cleared.  
© 2008 Microchip Technology Inc.  
DS70150D-page 129  
dsPIC30F6010A/6015  
19.5.6  
TRANSMIT INTERRUPTS  
19.6 Baud Rate Setting  
Transmit interrupts can be divided into 2 major groups,  
each including various conditions that generate  
interrupts:  
All nodes on any particular CAN bus must have the  
same nominal bit rate. In order to set the baud rate, the  
following parameters have to be initialized:  
• Transmit Interrupt  
• Synchronization jump width  
• Baud rate prescaler  
At least one of the three transmit buffers is empty (not  
scheduled) and can be loaded to schedule a message  
for transmission. Reading the TXnIF flags will indicate  
which transmit buffer is available and caused the  
interrupt.  
• Phase segments  
• Length determination of Phase2 Seg  
• Sample point  
• Propagation segment bits  
• Transmit Error Interrupts  
19.6.1  
BIT TIMING  
A transmission error interrupt will be indicated by the  
ERRIF flag. This flag shows that an error condition  
occurred. The source of the error can be determined by  
checking the error flags in the CAN Interrupt STATUS  
register, CiINTF. The flags in this register are related to  
receive and transmit errors.  
All controllers on the CAN bus must have the same baud  
rate and bit length. However, different controllers are not  
required to have the same master oscillator clock. At  
different clock frequencies of the individual controllers,  
the baud rate has to be adjusted by adjusting the  
number of time quanta in each segment.  
• Transmitter Warning Interrupt  
The TXWAR bit indicates that the Transmit Error  
Counter has reached the CPU warning limit of 96.  
The Nominal Bit Time can be thought of as being  
divided into separate non-overlapping time segments.  
These segments are shown in Figure 19-2.  
• Transmitter Error Passive  
Synchronization segment (Sync Seg)  
Propagation time segment (Prop Seg)  
Phase segment 1 (Phase1 Seg)  
Phase segment 2 (Phase2 Seg)  
The TXEP bit (CiINTF<12>) indicates that the Transmit  
Error Counter has exceeded the Error Passive limit of  
127 and the module has gone to Error Passive state.  
• Bus Off  
The TXBO bit (CiINTF<13>) indicates that the Transmit  
Error Counter has exceeded 255 and the module has  
gone to Bus Off state.  
The time segments and also the nominal bit time are  
made up of integer units of time called time quanta or  
TQ. By definition, the nominal bit time has a minimum  
of 8 TQ and a maximum of 25 TQ. Also, by definition,  
the minimum nominal bit time is 1 μsec, corresponding  
to a maximum bit rate of 1 MHz.  
FIGURE 19-2:  
CAN BIT TIMING  
Input Signal  
Prop  
Segment  
Phase  
Segment 1  
Phase  
Segment 2  
Sync  
Sync  
Sample Point  
TQ  
DS70150D-page 130  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
19.6.2  
PRESCALER SETTING  
19.6.5  
SAMPLE POINT  
There is a programmable prescaler, with integral  
values ranging from 1 to 64, in addition to a fixed  
divide-by-2 for clock generation. The Time Quantum  
(TQ) is a fixed unit of time derived from the oscillator  
period, and is given by Equation 19-1, where FCAN is  
FCY (if the CANCKS bit is set or 4 FCY (if CANCKS is  
cleared).  
The sample point is the point of time at which the bus  
level is read and interpreted as the value of that  
respective bit. The location is at the end of Phase1  
Seg. If the bit timing is slow and contains many TQ, it is  
possible to specify multiple sampling of the bus line at  
the sample point. The level determined by the CAN bus  
then corresponds to the result from the majority deci-  
sion of three values. The majority samples are taken at  
the sample point and twice before with a distance of  
TQ/2. The CAN module allows the user to chose  
between sampling three times at the same point or  
once at the same point, by setting or clearing the SAM  
bit (CiCFG2<6>).  
Note:  
FCAN must not exceed 30 MHz. If  
CANCKS = 0, then FCY must not exceed  
7.5 MHz.  
EQUATION 19-1: TIME QUANTUM FOR  
CLOCK GENERATION  
Typically, the sampling of the bit should take place at  
about 60-70% through the bit time, depending on the  
system parameters.  
TQ = 2 ( BRP<5:0> + 1 )/FCAN  
19.6.6  
SYNCHRONIZATION  
19.6.3  
PROPAGATION SEGMENT  
To compensate for phase shifts between the oscillator  
frequencies of the different bus stations, each CAN  
controller must be able to synchronize to the relevant  
signal edge of the incoming signal. When an edge in  
the transmitted data is detected, the logic will compare  
the location of the edge to the expected time  
(Synchronous Segment). The circuit will then adjust the  
values of Phase1 Seg and Phase2 Seg. There are 2  
mechanisms used to synchronize.  
This part of the bit time is used to compensate physical  
delay times within the network. These delay times  
consist of the signal propagation time on the bus line  
and the internal delay time of the nodes. The  
Propagation Segment can be programmed from 1 TQ  
to 8 TQ by setting the PRSEG<2:0> bits  
(CiCFG2<2:0>).  
19.6.4  
PHASE SEGMENTS  
19.6.6.1  
Hard Synchronization  
The phase segments are used to optimally locate the  
sampling of the received bit within the transmitted bit  
time. The sampling point is between Phase1 Seg and  
Phase2 Seg. These segments are lengthened or short-  
ened by re-synchronization. The end of the Phase1  
Seg determines the sampling point within a bit period.  
The segment is programmable from 1 TQ to 8 TQ.  
Phase2 Seg provides delay to the next transmitted data  
transition. The segment is programmable from 1 TQ to  
8 TQ, or it may be defined to be equal to the greater of  
Phase1 Seg or the Information Processing Time  
(2 TQ). The Phase1 Seg is initialized by setting bits  
SEG1PH<2:0> (CiCFG2<5:3>), and Phase2 Seg is  
initialized by setting SEG2PH<2:0> (CiCFG2<10:8>).  
Hard synchronization is only done whenever there is a  
recessive to dominant edge during bus Idle, indicating  
the start of a message. After hard synchronization, the  
bit time counters are restarted with the Synchronous  
Segment. Hard synchronization forces the edge which  
has caused the hard synchronization to lie within the  
synchronization segment of the restarted bit time. If a  
hard synchronization is done, there will not be a  
resynchronization within that bit time.  
19.6.6.2  
Re-synchronization  
As a result of re-synchronization, Phase1 Seg may be  
lengthened or Phase2 Seg may be shortened. The  
amount of lengthening or shortening of the phase  
buffer segment has an upper bound known as the  
synchronization jump width, and is specified by the  
SJW<1:0> bits (CiCFG1<7:6>). The value of the  
synchronization jump width will be added to Phase1  
Seg or subtracted from Phase2 Seg. The  
re-synchronization jump width is programmable  
between 1 TQ and 4 TQ.  
The following requirement must be fulfilled while setting  
the lengths of the Phase Segments:  
• Propagation Segment + Phase1 Seg > = Phase2 Seg  
The following requirement must be fulfilled while setting  
the SJW<1:0> bits:  
• Phase2 Seg > Synchronization Jump Width  
© 2008 Microchip Technology Inc.  
DS70150D-page 131  
(1)  
TABLE 19-1: CAN1 REGISTER MAP FOR dsPIC30F6010A AND 6015 DEVICES  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Receive Acceptance Filter 0 Standard Identifier<10:0>  
Receive Acceptance Filter 0 Extended Identifier<17:6>  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2 Bit 1  
Bit 0  
Reset State  
C1RXF0SID 0300  
EXIDE 000u uuuu uuuu uu0u  
C1RXF0EIDH 0302  
C1RXF0EIDL 0304  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 0 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Filter 1 Standard Identifier<10:0>  
Receive Acceptance Filter 1 Extended Identifier<17:6>  
C1RXF1SID  
0308  
EXIDE 000u uuuu uuuu uu0u  
C1RXF1EIDH 030A  
C1RXF1EIDL 030C  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 1 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Filter 2 Standard Identifier <10:0>  
Receive Acceptance Filter 2 Extended Identifier<17:6>  
C1RXF2SID  
0310  
EXIDE 000u uuuu uuuu uu0u  
C1RXF2EIDH 0312  
C1RXF2EIDL 0314  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 2 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Filter 3 Standard Identifier <10:0>  
Receive Acceptance Filter 3 Extended Identifier<17:6>  
C1RXF3SID  
0318  
EXIDE 000u uuuu uuuu uu0u  
C1RXF3EIDH 031A  
C1RXF3EIDL 031C  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 3 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Filter 4 Standard Identifier<10:0>  
Receive Acceptance Filter 4 Extended Identifier<17:6>  
C1RXF4SID  
0320  
EXIDE 000u uuuu uuuu uu0u  
C1RXF4EIDH 0322  
C1RXF4EIDL 0324  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 4 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Filter 5 Standard Identifier<10:0>  
Receive Acceptance Filter 5 Extended Identifier<17:6>  
C1RXF5SID  
0328  
EXIDE 000u uuuu uuuu uu0u  
C1RXF5EIDH 032A  
C1RXF5EIDL 032C  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 5 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Mask 0 Standard Identifier<10:0>  
Receive Acceptance Mask 0 Extended Identifier<17:6>  
C1RXM0SID  
0330  
MIDE 000u uuuu uuuu uu0u  
C1RXM0EIDH 0332  
C1RXM0EIDL 0334  
0000 uuuu uuuu uuuu  
Receive Acceptance Mask 0 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Mask 1 Standard Identifier<10:0>  
Receive Acceptance Mask 1 Extended Identifier<17:6>  
C1RXM1SID  
0338  
MIDE 000u uuuu uuuu uu0u  
C1RXM1EIDH 033A  
C1RXM1EIDL 033C  
0000 uuuu uuuu uuuu  
Receive Acceptance Mask 1 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
C1TX2SID  
C1TX2EID  
0340  
0342  
Transmit Buffer 2 Standard Identifier<10:6>  
Transmit Buffer 2 Standard Identifier<5:0>  
Transmit Buffer 2 Extended Identifier<13:6>  
SRR TXIDE uuuu u000 uuuu uuuu  
Transmit Buffer 2 Extended  
Identifier<17:14>  
uuuu 0000 uuuu uuuu  
C1TX2DLC  
C1TX2B1  
C1TX2B2  
C1TX2B3  
C1TX2B4  
C1TX2CON  
C1TX1SID  
C1TX1EID  
0344  
0346  
0348  
034A  
034C  
034E  
0350  
0352  
Transmit Buffer 2 Extended Identifier<5:0>  
Transmit Buffer 2 Byte 1  
TXRTR TXRB1  
TXRB0  
DLC<3:0>  
Transmit Buffer 2 Byte 0  
uuuu uuuu uuuu u000  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
Transmit Buffer 2 Byte 3  
Transmit Buffer 2 Byte 2  
Transmit Buffer 2 Byte 5  
Transmit Buffer 2 Byte 4  
Transmit Buffer 2 Byte 7  
Transmit Buffer 2 Byte 6  
TXABT TXLARB TXERR TXREQ  
Transmit Buffer 1 Standard Identifier<5:0>  
TXPRI<1:0> 0000 0000 0000 0000  
SRR TXIDE uuuu u000 uuuu uuuu  
uuuu 0000 uuuu uuuu  
Transmit Buffer 1 Standard Identifier<10:6>  
Transmit Buffer 1 Extended  
Identifier<17:14>  
Transmit Buffer 1 Extended Identifier<13:6>  
C1TX1DLC  
C1TX1B1  
0354  
0356  
Transmit Buffer 1 Extended Identifier<5:0>  
Transmit Buffer 1 Byte 1  
TXRTR TXRB1  
TXRB0  
DLC<3:0>  
uuuu uuuu uuuu u000  
uuuu uuuu uuuu uuuu  
Transmit Buffer 1 Byte 0  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
(1)  
TABLE 19-1: CAN1 REGISTER MAP FOR dsPIC30F6010A AND 6015 DEVICES (CONTINUED)  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2 Bit 1  
Bit 0  
Reset State  
C1TX1B2  
C1TX1B3  
C1TX1B4  
C1TX1CON  
C1TX0SID  
C1TX0EID  
0358  
035A  
035C  
035E  
0360  
0362  
Transmit Buffer 1 Byte 3  
Transmit Buffer 1 Byte 5  
Transmit Buffer 1 Byte 7  
Transmit Buffer 1 Byte 2  
Transmit Buffer 1 Byte 4  
Transmit Buffer 1 Byte 6  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
TXABT TXLARB TXERR TXREQ  
TXPRI<1:0> 0000 0000 0000 0000  
SRR TXIDE uuuu u000 uuuu uuuu  
Transmit Buffer 0 Extended Identifier<13:6> uuuu 0000 uuuu uuuu  
Transmit Buffer 0 Standard Identifier<10:6>  
Transmit Buffer 0 Standard Identifier<5:0>  
Transmit Buffer 0 Extended  
Identifier<17:14>  
C1TX0DLC  
C1TX0B1  
C1TX0B2  
C1TX0B3  
C1TX0B4  
C1TX0CON  
C1RX1SID  
C1RX1EID  
C1RX1DLC  
C1RX1B1  
C1RX1B2  
C1RX1B3  
C1RX1B4  
C1RX1CON  
C1RX0SID  
C1RX0EID  
C1RX0DLC  
C1RX0B1  
C1RX0B2  
C1RX0B3  
C1RX0B4  
C1RX0CON  
C1CTRL  
0364  
0366  
0368  
036A  
036C  
036E  
0370  
0372  
0374  
0376  
0378  
037A  
037C  
037E  
0380  
0382  
0384  
0386  
0388  
038A  
038C  
038E  
Transmit Buffer 0 Extended Identifier<5:0>  
Transmit Buffer 0 Byte 1  
TXRTR TXRB1  
TXRB0  
DLC<3:0>  
Transmit Buffer 0 Byte 0  
Transmit Buffer 0 Byte 2  
Transmit Buffer 0 Byte 4  
Transmit Buffer 0 Byte 6  
TXABT TXLARB TXERR TXREQ  
uuuu uuuu uuuu u000  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
Transmit Buffer 0 Byte 3  
Transmit Buffer 0 Byte 5  
Transmit Buffer 0 Byte 7  
TXPRI<1:0> 0000 0000 0000 0000  
SRR RXIDE 000u uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
Receive Buffer 1 Standard Identifier<10:0>  
Receive Buffer 1 Extended Identifier<17:6>  
Receive Buffer 1 Extended Identifier<5:0>  
Receive Buffer 1 Byte 1  
RXRTR RXRB1  
RXRB0  
DLC<3:0>  
uuuu uuuu 000u uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
Receive Buffer 1 Byte 0  
Receive Buffer 1 Byte 2  
Receive Buffer 1 Byte 4  
Receive Buffer 1 Byte 6  
Receive Buffer 1 Byte 3  
Receive Buffer 1 Byte 5  
Receive Buffer 1 Byte 7  
RXFUL  
RXRTRRO  
FILHIT<2:0>  
Receive Buffer 0 Standard Identifier<10:0>  
Receive Buffer 0 Extended Identifier<17:6>  
SRR RXIDE 000u uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
Receive Buffer 0 Extended Identifier<5:0>  
Receive Buffer 0 Byte 1  
RXRTR RXRB1  
RXRB0  
DLC<3:0>  
uuuu uuuu 000u uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
Receive Buffer 0 Byte 0  
Receive Buffer 0 Byte 2  
Receive Buffer 0 Byte 4  
Receive Buffer 0 Byte 6  
Receive Buffer 0 Byte 3  
Receive Buffer 0 Byte 5  
Receive Buffer 0 Byte 7  
CSIDLE  
RXFUL  
RXRTRRO DBEN JTOFF FILHIT0 0000 0000 0000 0000  
0390 CANCAP  
ABAT CANCKS  
REQOP<2:0>  
— —  
OPMODE<2:0>  
SJW<1:0>  
ICODE<2:0>  
BRP<5:0>  
0000 0100 1000 0000  
0000 0000 0000 0000  
0u00 0uuu uuuu uuuu  
C1CFG1  
0392  
0394  
C1CFG2  
WAKFIL  
SEG2PH<2:0>  
SEG2PHTS SAM  
SEG1PH<2:0>  
PRSEG<2:0>  
C1INTF  
0396 RX0OVR RX1OVR  
TXBO  
TXEP  
RXEP TXWAR RXWAR EWARN  
IVRIF  
IVRIE  
WAKIF ERRIF  
WAKIE ERRIE TX2IE  
Receive Error Count Register  
TX2IF  
TX1IF  
TX0IF RX1IF RX0IF 0000 0000 0000 0000  
TX0IE RX1E RX0IE 0000 0000 0000 0000  
0000 0000 0000 0000  
C1INTE  
0398  
039A  
TX1IE  
C1EC  
Transmit Error Count Register  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
(1)  
TABLE 19-2: CAN2 REGISTER MAP FOR dsPIC30F6010A  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2 Bit 1  
Bit 0  
Reset State  
Receive Acceptance Filter 0 Standard Identifier<10:0>  
Receive Acceptance Filter 0 Extended Identifier<17:6>  
C2RXF0SID 03C0  
EXIDE 000u uuuu uuuu uu0u  
C2RXF0EIDH 03C2  
C2RXF0EIDL 03C4  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 0 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Filter 1 Standard Identifier<10:0>  
Receive Acceptance Filter 1 Extended Identifier<17:6>  
C2RXF1SID  
03C8  
EXIDE 000u uuuu uuuu uu0u  
C2RXF1EIDH 03CA  
C2RXF1EIDL 03CC  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 1 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Filter 2 Standard Identifier<10:0>  
Receive Acceptance Filter 2 Extended Identifier<17:6>  
C2RXF2SID  
03D0  
EXIDE 000u uuuu uuuu uu0u  
C2RXF2EIDH 03D2  
C2RXF2EIDL 03D4  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 2 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Filter 3 Standard Identifier<10:0>  
Receive Acceptance Filter 3 Extended Identifier<17:6>  
C2RXF3SID  
03D8  
EXIDE 000u uuuu uuuu uu0u  
C2RXF3EIDH 03DA  
C2RXF3EIDL 03DC  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 3 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Filter 4 Standard Identifier<10:0>  
Receive Acceptance Filter 4 Extended Identifier<17:6>  
C2RXF4SID  
03E0  
EXIDE 000u uuuu uuuu uu0u  
C2RXF4EIDH 03E2  
C2RXF4EIDL 03E4  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 4 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Filter 5 Standard Identifier <10:0>  
Receive Acceptance Filter 5 Extended Identifier<17:6>  
C2RXF5SID  
03E8  
EXIDE 000u uuuu uuuu uu0u  
C2RXF5EIDH 03EA  
C2RXF5EIDL 03EC  
C2RXM0SID 03F0  
C2RXM0EIDH 03F2  
C2RXM0EIDL 03F4  
C2RXM1SID 03F8  
C2RXM1EIDH 03FA  
C2RXM1EIDL 03FC  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 5 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Mask 0 Standard Identifier<10:0>  
Receive Acceptance Mask 0 Extended Identifier<17:6>  
MIDE 000u uuuu uuuu uu0u  
0000 uuuu uuuu uuuu  
Receive Acceptance Mask 0 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
Receive Acceptance Mask 1 Standard Identifier<10:0>  
Receive Acceptance Mask 1 Extended Identifier<17:6>  
MIDE 000u uuuu uuuu uu0u  
0000 uuuu uuuu uuuu  
Receive Acceptance Mask 1 Extended Identifier<5:0>  
Transmit Buffer 2 Standard Identifier<10:6>  
0402 Transmit Buffer 2 Extended Identifier<17:14>  
uuuu uu00 0000 0000  
C2TX2SID  
C2TX2EID  
C2TX2DLC  
C2TX2B1  
C2TX2B2  
C2TX2B3  
C2TX2B4  
C2TX2CON  
C2TX1SID  
C2TX1EID  
C2TX1DLC  
0400  
Transmit Buffer 2 Standard Identifier<5:0>  
Transmit Buffer 2 Extended Identifier<13:6>  
SRR TXIDE uuuu u000 uuuu uuuu  
uuuu 0000 uuuu uuuu  
0404  
0406  
0408  
040A  
040C  
040E  
0410  
Transmit Buffer 2 Extended Identifier<5:0>  
TXRTR TXRB1  
TXRB0  
DLC<3:0>  
Transmit Buffer 2 Byte 0  
uuuu uuuu uuuu u000  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
Transmit Buffer 2 Byte 1  
Transmit Buffer 2 Byte 3  
Transmit Buffer 2 Byte 5  
Transmit Buffer 2 Byte 7  
Transmit Buffer 2 Byte 2  
Transmit Buffer 2 Byte 4  
Transmit Buffer 2 Byte 6  
TXABT TXLARB TXERR TXREQ  
Transmit Buffer 1 Standard Identifier<5:0>  
TXPRI<1:0> 0000 0000 0000 0000  
SRR TXIDE uuuu u000 uuuu uuuu  
uuuu 0000 uuuu uuuu  
Transmit Buffer 1 Standard Identifier<10:6>  
0412 Transmit Buffer 1 Extended Identifier<17:14>  
0414  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
Transmit Buffer 1 Extended Identifier<13:6>  
DLC<3:0>  
Transmit Buffer 1 Extended Identifier<5:0>  
TXRTR TXRB1  
TXRB0  
uuuu uuuu uuuu u000  
Legend:  
Note 1:  
(1)  
TABLE 19-2: CAN2 REGISTER MAP FOR dsPIC30F6010A (CONTINUED)  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2 Bit 1  
Bit 0  
Reset State  
C2TX1B1  
C2TX1B2  
C2TX1B3  
C2TX1B4  
C2TX1CON  
C2TX0SID  
C2TX0EID  
C2TX0DLC  
C2TX0B1  
C2TX0B2  
C2TX0B3  
C2TX0B4  
C2TX0CON  
C2RX1SID  
C2RX1EID  
C2RX1DLC  
C2RX1B1  
C2RX1B2  
C2RX1B3  
C2RX1B4  
C2RX1CON  
C2RX0SID  
C2RX0EID  
C2RX0DLC  
C2RX0B1  
C2RX0B2  
C2RX0B3  
C2RX0B4  
C2RX0CON  
C2CTRL  
0416  
0418  
041A  
041C  
041E  
0420  
Transmit Buffer 1 Byte 1  
Transmit Buffer 1 Byte 3  
Transmit Buffer 1 Byte 5  
Transmit Buffer 1 Byte 7  
Transmit Buffer 1 Byte 0  
Transmit Buffer 1 Byte 2  
Transmit Buffer 1 Byte 4  
Transmit Buffer 1 Byte 6  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
TXABT TXLARB TXERR TXREQ  
TXPRI<1:0> 0000 0000 0000 0000  
SRR TXIDE uuuu u000 uuuu uuuu  
uuuu 0000 uuuu uuuu  
Transmit Buffer 0 Standard Identifier<10:6>  
Transmit Buffer 0 Standard Identifier<5:0>  
0422 Transmit Buffer 0 Extended Identifier<17:14>  
Transmit Buffer 0 Extended Identifier<13:6>  
0424  
0426  
0428  
042A  
042C  
042E  
0430  
0432  
0434  
0436  
0438  
043A  
043C  
043E  
0440  
0442  
0444  
0446  
0448  
044A  
044C  
044E  
Transmit Buffer 0 Extended Identifier<5:0>  
Transmit Buffer 0 Byte 1  
TXRTR TXRB1  
TXRB0  
DLC<3:0>  
Transmit Buffer 0 Byte 0  
Transmit Buffer 0 Byte 2  
Transmit Buffer 0 Byte 4  
Transmit Buffer 0 Byte 6  
TXABT TXLARB TXERR TXREQ  
uuuu uuuu uuuu u000  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
Transmit Buffer 0 Byte 3  
Transmit Buffer 0 Byte 5  
Transmit Buffer 0 Byte 7  
TXPRI<1:0> 0000 0000 0000 0000  
SRR RXIDE 000u uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
Receive Buffer 1 Standard Identifier<10:0>  
Receive Buffer 1 Extended Identifier <17:6>  
Receive Buffer 1 Extended Identifier<5:0>  
Receive Buffer 1 Byte 1  
RXRTR RXRB1  
RXRB0  
DLC<3:0>  
uuuu uuuu 000u uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
Receive Buffer 1 Byte 0  
Receive Buffer 1 Byte 2  
Receive Buffer 1 Byte 4  
Receive Buffer 1 Byte 6  
Receive Buffer 1 Byte 3  
Receive Buffer 1 Byte 5  
Receive Buffer 1 Byte 7  
RXFUL  
RXRTRRO  
FILHIT<2:0>  
Receive Buffer 0 Standard Identifier<10:0>  
Receive Buffer 0 Extended Identifier<17:6>  
SRR RXIDE 000u uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
Receive Buffer 0 Extended Identifier<5:0>  
Receive Buffer 0 Byte 1  
RXRTR RXRB1  
RXRB0  
DLC<3:0>  
uuuu uuuu 000u uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
Receive Buffer 0 Byte 0  
Receive Buffer 0 Byte 2  
Receive Buffer 0 Byte 4  
Receive Buffer 0 Byte 6  
Receive Buffer 0 Byte 3  
Receive Buffer 0 Byte 5  
Receive Buffer 0 Byte 7  
REQOP<2:0>  
RXFUL  
RXRTRRO DBEN JTOFF FILHIT0 0000 0000 0000 0000  
0450 CANCAP  
CSIDLE ABAT CANCKS  
OPMODE<2:0>  
SJW<1:0>  
ICODE<2:0>  
BRP<5:0>  
0000 0100 1000 0000  
0000 0000 0000 0000  
0u00 0uuu uuuu uuuu  
C2CFG1  
0452  
0454  
C2CFG2  
WAKFIL  
SEG2PH<2:0>  
SEG2PHTS SAM  
SEG1PH<2:0>  
PRSEG<2:0>  
C2INTF  
0456 RX0OVR RX1OVR  
TXBO  
TXEP  
RXEP TXWAR RXWAR EWARN  
IVRIF  
IVRIE  
WAKIF ERRIF TX2IF  
TX1IF  
TX0IF RX1IF RX0IF 0000 0000 0000 0000  
TX0IE RX1E RX0IE 0000 0000 0000 0000  
Receive Error Count Register 0000 0000 0000 0000  
C2INTE  
0458  
045A  
WAKIE ERRIE TX2IE  
TX1IE  
C2EC  
Transmit Error Count Register  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 136  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
The A/D module has six 16-bit registers:  
20.0 10-BIT HIGH-SPEED  
ANALOG-TO-DIGITAL  
• A/D Control Register 1 (ADCON1)  
• A/D Control Register 2 (ADCON2)  
• A/D Control Register 3 (ADCON3)  
• A/D Input Select Register (ADCHS)  
• A/D Port Configuration Register (ADPCFG)  
• A/D Input Scan Selection Register (ADCSSL)  
CONVERTER (ADC) MODULE  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
The ADCON1, ADCON2 and ADCON3 registers  
control the operation of the A/D module. The ADCHS  
register selects the input channels to be converted. The  
ADPCFG register configures the port pins as analog  
inputs or as digital I/O. The ADCSSL register selects  
inputs for scanning.  
The10-bit high-speed Analog-to-Digital Converter  
(ADC) allows conversion of an analog input signal to a  
10-bit digital number. This module is based on a  
Note:  
The SSRC<2:0>, ASAM, SIMSAM,  
SMPI<3:0>, BUFM and ALTS bits, as well  
as the ADCON3 and ADCSSL registers,  
must not be written to while ADON = 1.  
This would lead to indeterminate results.  
Successive  
Approximation  
Register  
(SAR)  
architecture, and provides a maximum sampling rate of  
1 Msps. The A/D module has 16 analog inputs which  
are multiplexed into four sample and hold amplifiers.  
The output of the sample and hold is the input into the  
converter, which generates the result. The analog  
reference voltages are software selectable to either the  
device supply voltage (AVDD/AVSS) or the voltage level  
on the (VREF+/VREF-) pin. The A/D converter has a  
unique feature of being able to operate while the device  
is in Sleep mode.  
The block diagram of the A/D module is shown in  
Figure 20-1.  
© 2008 Microchip Technology Inc.  
DS70150D-page 137  
dsPIC30F6010A/6015  
FIGURE 20-1:  
10-BIT HIGH-SPEED A/D FUNCTIONAL BLOCK DIAGRAM  
AVDD  
(1)  
VREF+  
AVSS  
(2)  
VREF-  
AN0  
AN3  
AN0  
AN1  
AN2  
+
CH1  
CH2  
CH3  
ADC  
S/H  
AN6  
AN9  
-
10-bit Result  
Conversion Logic  
AN1  
AN4  
+
S/H  
AN7  
AN10  
-
16-word, 10-bit  
Dual Port  
Buffer  
AN2  
AN5  
+
S/H  
AN8  
AN11  
CH1,CH2,  
CH3,CH0  
-
Sample/Sequence  
Control  
sample  
AN0  
AN1  
AN2  
AN3  
input  
switches  
Input MUX  
Control  
AN3  
AN4  
AN4  
AN5  
AN5  
AN6  
AN6  
AN7  
AN7  
AN8  
AN8  
AN9  
AN9  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
+
CH0  
S/H  
-
AN1  
Note 1: VREF+ is multiplexed with AN0 in the dsPIC30F6015 variant.  
2: VREF- is multiplexed with AN1 in the dsPIC30F6015 variant.  
DS70150D-page 138  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
The CHPS bits selects how many channels are  
sampled. This can vary from 1, 2 or 4 channels. If  
CHPS selects 1 channel, the CH0 channel will be  
sampled at the sample clock and converted. The result  
is stored in the buffer. If CHPS selects 2 channels, the  
CH0 and CH1 channels will be sampled and converted.  
If CHPS selects 4 channels, the CH0, CH1, CH2 and  
CH3 channels will be sampled and converted.  
20.1 A/D Result Buffer  
The module contains a 16-word dual port, read-only  
buffer, called ADCBUF0...ADCBUFF, to buffer the A/D  
results. The RAM is 10-bits wide, but is read into different  
format 16-bit words. The contents of the sixteen A/D  
Conversion Result Buffer registers, ADCBUF0 through  
ADCBUFF, cannot be written by user software.  
The  
SMPI  
bits  
select  
the  
number  
of  
20.2 Conversion Operation  
acquisition/conversion sequences that would be  
performed before an interrupt occurs. This can vary  
from 1 sample per interrupt to 16 samples per interrupt.  
After the A/D module has been configured, the sample  
acquisition is started by setting the SAMP bit. Various  
sources, such as a programmable bit, timer time-outs and  
external events, will terminate acquisition and start a  
conversion. When the A/D conversion is complete, the  
result is loaded into ADCBUF0...ADCBUFF, and the A/D  
Interrupt Flag ADIF and the DONE bit are set after the  
number of samples specified by the SMPI bit.  
The user cannot program a combination of CHPS and  
SMPI bits that specifies more than 16 conversions per  
interrupt, or 8 conversions per interrupt, depending on  
the BUFM bit. The BUFM bit, when set, will split the  
16-word results buffer (ADCBUF0...ADCBUFF) into  
two 8-word groups. Writing to the 8-word buffers will be  
alternated on each interrupt event. Use of the BUFM bit  
will depend on how much time is available for moving  
data out of the buffers after the interrupt, as determined  
by the application.  
The following steps should be followed for doing an  
A/D conversion:  
1. Configure the A/D module:  
-Configure analog pins, voltage reference  
and digital I/O  
If the processor can quickly unload a full buffer within  
the time it takes to acquire and convert one channel,  
the BUFM bit can be ‘0’ and up to 16 conversions may  
be done per interrupt. The processor will have one  
sample and conversion time to move the sixteen  
conversions.  
-Select A/D input channels  
-Select A/D conversion clock  
-Select A/D conversion trigger  
-Turn on A/D module  
2. Configure A/D interrupt (if required):  
-Clear ADIF bit  
If the processor cannot unload the buffer within the  
acquisition and conversion time, the BUFM bit should be  
1’. For example, if SMPI<3:0> (ADCON2<5:2> = 0111),  
then eight conversions will be loaded into 1/2 of the  
buffer, following which an interrupt occurs. The next eight  
conversions will be loaded into the other 1/2 of the buffer.  
The processor will have the entire time between  
interrupts to move the eight conversions.  
-Select A/D interrupt priority  
3. Start sampling.  
4. Wait the required acquisition time.  
5. Trigger acquisition end, start conversion  
6. Wait for A/D conversion to complete, by either:  
-Waiting for the A/D interrupt  
The ALTS bit can be used to alternate the inputs  
selected during the sampling sequence. The input  
multiplexer has two sets of sample inputs: MUX A and  
MUX B. If the ALTS bit is ‘0’, only the MUX A inputs are  
selected for sampling. If the ALTS bit is ‘1’ and  
SMPI<3:0> = 0000, on the first sample/convert  
sequence, the MUX A inputs are selected, and on the  
next acquire/convert sequence, the MUX B inputs are  
selected.  
7. Read A/D result buffer, clear ADIF if required.  
20.3 Selecting the Conversion  
Sequence  
Several groups of control bits select the sequence in  
which the A/D connects inputs to the sample/hold  
channels, converts channels, writes the buffer memory,  
and generates interrupts. The sequence is controlled  
by the sampling clocks.  
The CSCNA bit (ADCON2<10>) will allow the CH0  
channel inputs to be alternately scanned across a  
selected number of analog inputs for the MUX A group.  
The inputs are selected by the ADCSSL register. If a  
particular bit in the ADCSSL register is ‘1’, the  
corresponding input is selected. The inputs are always  
scanned from lower to higher numbered inputs, starting  
after each interrupt. If the number of inputs selected is  
greater than the number of samples taken per interrupt,  
the higher numbered inputs are unused.  
The SIMSAM bit controls the acquire/convert  
sequence for multiple channels. If the SIMSAM bit is  
0’, the two or four selected channels are acquired and  
converted sequentially, with two or four sample clocks.  
If the SIMSAM bit is ‘1’, two or four selected channels  
are acquired simultaneously, with one sample clock.  
The channels are then converted sequentially.  
Obviously, if there is only 1 channel selected, the  
SIMSAM bit is not applicable.  
© 2008 Microchip Technology Inc.  
DS70150D-page 139  
dsPIC30F6010A/6015  
20.4 Programming the Start of  
Conversion Trigger  
20.6 Selecting the A/D Conversion  
Clock  
The conversion trigger will terminate acquisition and  
start the requested conversions.  
The A/D conversion requires 12 TAD. The source of the  
A/D conversion clock is software selected using a 6-bit  
counter. There are 64 possible options for TAD.  
The SSRC<2:0> bits select the source of the  
conversion trigger.  
EQUATION 20-1: A/D CONVERSION CLOCK  
The SSRC bits provide for up to five alternate sources  
of conversion trigger.  
TAD = TCY * (0.5 * (ADCS<5:0> + 1))  
TAD  
When SSRC<2:0> = 000, the conversion trigger is  
under software control. Clearing the SAMP bit will  
cause the conversion trigger.  
ADCS<5:0> = 2  
– 1  
TCY  
The internal RC oscillator is selected by setting the  
ADRC bit.  
When SSRC<2:0> = 111 (Auto-Start mode), the con-  
version trigger is under A/D clock control. The SAMC  
bits select the number of A/D clocks between the start  
of acquisition and the start of conversion. This provides  
the fastest conversion rates on multiple channels.  
SAMC must always be at least one clock cycle.  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 83.33 nsec (for VDD = 5V). Refer to Section 24.0  
"Electrical Characteristics" for minimum TAD under  
other operating conditions.  
Other trigger sources can come from timer modules,  
motor control PWM module, or external interrupts.  
Example 20-1 shows a sample calculation for the  
ADCS<5:0> bits, assuming a device operating speed  
of 30 MIPS.  
Note:  
To operate the A/D at the maximum  
specified conversion speed, the  
Auto-Convert Trigger option should be  
selected (SSRC = 111) and the  
EXAMPLE 20-1:  
A/D CONVERSION CLOCK  
CALCULATION  
Auto-Sample Time bits should be set to 1  
TAD (SAMC = 00001). This configuration  
will give a total conversion period (sample +  
convert) of 13 TAD.  
TAD = 84 nsec  
TCY = 33 nsec (30 MIPS)  
The use of any other conversion trigger  
will result in additional TAD cycles to  
synchronize the external event to the A/D.  
TAD  
TCY  
84 nsec  
33 nsec  
ADCS<5:0> = 2  
– 1  
= 2 •  
– 1  
20.5 Aborting a Conversion  
= 4.09  
Therefore,  
Set ADCS<5:0> = 9  
Clearing the ADON bit during a conversion will abort  
the current conversion and stop the sampling  
sequencing. The ADCBUF will not be updated with the  
partially completed A/D conversion sample. That is, the  
ADCBUF will continue to contain the value of the last  
completed conversion (or the last value written to the  
ADCBUF register).  
TCY  
2
Actual TAD =  
=
(ADCS<5:0> + 1)  
33 nsec  
2
(9 + 1)  
If the clearing of the ADON bit coincides with an  
auto-start, the clearing has a higher priority.  
= 99 nsec  
After the A/D conversion is aborted, a 2 TAD wait is  
required before the next sampling may be started by  
setting the SAMP bit.  
If sequential sampling is specified, the A/D will continue  
at the next sample pulse which corresponds with the  
next channel converted. If simultaneous sampling is  
specified, the A/D will continue with the next  
multichannel group conversion sequence.  
DS70150D-page 140  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
20.7 A/D Conversion Speeds  
The dsPIC30F 10-bit A/D converter specifications  
permit a maximum 1 Msps sampling rate. Table 20-1  
summarizes the conversion speeds for the dsPIC30F  
10-bit A/D converter and the required operating  
conditions.  
TABLE 20-1: 10-BIT A/D CONVERSION RATE PARAMETERS  
dsPIC30F 10-bit A/D Converter Conversion Rates  
TAD  
Sampling  
A/D Speed  
RS Max  
VDD  
Temperature  
A/D Channels Configuration  
Minimum Time Min  
Up to  
83.33 ns  
12 TAD  
500Ω  
4.5V to 5.5V -40°C to +85°C  
V
CH1, CH2 or CH3  
CH0  
REF- VREF+  
1 Msps(1)  
ANx  
S/H  
S/H  
ADC  
Up to  
95.24 ns  
2 TAD  
500Ω  
500Ω  
4.5V to 5.5V -40°C to +85°C  
3.0V to 5.5V -40°C to +125°C  
V
REF  
-
VREF+  
750 ksps(1)  
CHX  
ANx  
S/H  
ADC  
Up to  
138.89 ns  
12 TAD  
VREF  
-
VREF+  
600 ksps(1)  
CH1, CH2 or CH3  
CH0  
ANx  
S/H  
S/H  
ADC  
Up to  
500 ksps  
153.85 ns  
256.41 ns  
1 TAD  
1 TAD  
5.0 kΩ  
5.0 kΩ  
4.5V to 5.5V -40°C to +125°C  
3.0V to 5.5V -40°C to +125°C  
V
REF  
-
V
REF  
+
or  
or  
AVSS AVDD  
CHX  
ANx  
S/H  
ADC  
ANx or VREF  
-
Up to  
300 ksps  
VREF  
-
VREF  
+
or  
or  
AVSS AVDD  
CHX  
ANx  
S/H  
ADC  
ANx or VREF  
-
Note 1: External VREF- and VREF+ pins must be used for correct operation. See Figure 20-2 for recommended  
circuit.  
© 2008 Microchip Technology Inc.  
DS70150D-page 141  
dsPIC30F6010A/6015  
The configuration guidelines give the required setup  
values for the conversion speeds above 500 ksps,  
since they require external VREF pins usage and there  
are some differences in the configuration procedure.  
Configuration details that are not critical to the  
conversion speed have been omitted.  
The following figure depicts the recommended circuit  
for the conversion rates above 500 ksps.  
FIGURE 20-2:  
A/D CONVERTER VOLTAGE REFERENCE SCHEMATIC  
VDD  
V
DD  
V
F
DD  
VDD  
C8  
1
C7  
0.1  
C6  
0.01 μF  
μ
F
μ
V
SS  
dsPIC30F6010A  
VDD  
V
SS  
DD  
VDD  
V
VDD  
V
DD  
V
F
DD  
VDD  
C5  
1
C4  
0.1  
C3  
0.01 μF  
μ
F
μ
VDD  
R2  
10  
R1  
10  
V
DD  
C2  
0.1  
C1  
0.01  
μF  
μF  
V
DD  
20.7.1  
1 Msps CONFIGURATION  
GUIDELINE  
20.7.1.2  
Multiple Analog Inputs  
The A/D converter can also be used to sample multiple  
analog inputs using multiple sample and hold channels.  
In this case, the total 1 Msps conversion rate is divided  
among the different input signals. For example, four  
inputs can be sampled at a rate of 250 ksps for each  
signal or two inputs could be sampled at a rate of  
500 ksps for each signal. Sequential sampling must be  
used in this configuration to allow adequate sampling  
time on each input.  
The configuration for 1 Msps operation is dependent on  
whether a single input pin is to be sampled or whether  
multiple pins will be sampled.  
20.7.1.1  
Single Analog Input  
For conversions at 1 Msps for a single analog input, at  
least two sample and hold channels must be enabled.  
The analog input multiplexer must be configured so  
that the same input pin is connected to both sample  
and hold channels. The A/D converts the value held on  
one S/H channel, while the second S/H channel  
acquires a new input sample.  
DS70150D-page 142  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
20.7.1.3  
1 Msps Configuration Items  
20.7.3  
600 ksps CONFIGURATION  
GUIDELINE  
The following configuration items are required to  
achieve a 1 Msps conversion rate.  
The configuration for 600 ksps operation is dependent  
on whether a single input pin is to be sampled or  
whether multiple pins will be sampled.  
• Comply with conditions provided in Table 20-2  
• Connect external VREF+ and VREF- pins following  
the recommended circuit shown in Figure 20-2  
20.7.3.1  
Single Analog Input  
• Set SSRC<2:0> = 111in the ADCON1 register to  
When performing conversions at 600 ksps for a single  
analog input, at least two sample and hold channels  
must be enabled. The analog input multiplexer must be  
configured so that the same input pin is connected to  
both sample and hold channels. The A/D converts the  
value held on one S/H channel, while the second S/H  
channel acquires a new input sample.  
enable the auto-convert option  
• Enable automatic sampling by setting the ASAM  
control bit in the ADCON1 register  
• Enable sequential sampling by clearing the  
SIMSAM bit in the ADCON1 register  
• Enable at least two sample and hold channels by  
writing the CHPS<1:0> control bits in the  
ADCON2 register  
20.7.3.2  
Multiple Analog Input  
• Write the SMPI<3:0> control bits in the ADCON2  
register for the desired number of conversions  
between interrupts. At a minimum, set  
SMPI<3:0> = 0001since at least two sample and  
hold channels should be enabled  
The A/D converter can also be used to sample multiple  
analog inputs using multiple sample and hold channels.  
In this case, the total 600 ksps conversion rate is  
divided among the different input signals. For example,  
four inputs can be sampled at a rate of 150 ksps for  
each signal or two inputs can be sampled at a rate of  
300 ksps for each signal. Sequential sampling must be  
used in this configuration to allow adequate sampling  
time on each input.  
• Configure the A/D clock period to be:  
1
= 83.33 ns  
12 x 1,000,000  
by writing to the ADCS<5:0> control bits in the  
ADCON3 register  
20.7.3.3  
600 ksps Configuration Items  
• Configure the sampling time to be 2 TAD by  
writing: SAMC<4:0> = 00010  
The following configuration items are required to  
achieve a 600 ksps conversion rate.  
• Select at least two channels per analog input pin  
by writing to the ADCHS register  
• Comply with conditions provided in Table 20-2  
• Connect external VREF+ and VREF- pins following  
the recommended circuit shown in Figure 20-2  
20.7.2  
750 ksps CONFIGURATION  
GUIDELINE  
• Set SSRC<2:0> = 111in the ADCON1 register to  
enable the auto-convert option  
The following configuration items are required to  
achieve a 750 ksps conversion rate. This configuration  
assumes that a single analog input is to be sampled.  
• Enable automatic sampling by setting the ASAM  
control bit in the ADCON1 register  
• Enable sequential sampling by clearing the  
SIMSAM bit in the ADCON1 register  
• Comply with conditions provided in Table 20-2  
• Connect external VREF+ and VREF- pins following  
the recommended circuit shown in Figure 20-2  
• Enable at least two sample and hold channels by  
writing the CHPS<1:0> control bits in the  
ADCON2 register  
• Set SSRC<2:0> = 111in the ADCON1 register to  
enable the auto-convert option  
• Write the SMPI<3:0> control bits in the ADCON2  
register for the desired number of conversions  
between interrupts. At a minimum, set  
• Enable automatic sampling by setting the ASAM  
control bit in the ADCON1 register  
SMPI<3:0> = 0001since at least two sample and  
hold channels should be enabled  
• Enable one sample and hold channel by setting  
CHPS<1:0> = 00in the ADCON2 register  
• Configure the A/D clock period to be:  
• Write the SMPI<3:0> control bits in the ADCON2  
register for the desired number of conversions  
between interrupts  
1
= 138.89 ns  
12 x 600,000  
• Configure the A/D clock period to be:  
by writing to the ADCS<5:0> control bits in the  
ADCON3 register  
1
= 95.24 ns  
(12 + 2) X 750,000  
• Configure the sampling time to be 2 TAD by  
writing: SAMC<4:0> = 00010  
by writing to the ADCS<5:0> control bits in the  
ADCON3 register  
• Select at least two channels per analog input pin  
by writing to the ADCHS register  
• Configure the sampling time to be 2 TAD by  
writing: SAMC<4:0> = 00010  
© 2008 Microchip Technology Inc.  
DS70150D-page 143  
dsPIC30F6010A/6015  
The user must allow at least 1 TAD period of sampling  
time, TSAMP, between conversions to allow each  
sample to be acquired. This sample time may be  
controlled manually in software by setting/clearing the  
SAMP bit, or it may be automatically controlled by the  
A/D converter. In an automatic configuration, the user  
must allow enough time between conversion triggers  
so that the minimum sample time can be satisfied.  
Refer to Section 24.0 “Electrical Characteristics” for  
TAD and sample time requirements.  
20.8 A/D Acquisition Requirements  
The analog input model of the 10-bit A/D converter is  
shown in Figure 20-3. The total sampling time for the  
A/D is a function of the internal amplifier settling time,  
device VDD and the holding capacitor charge time.  
For the A/D converter to meet its specified accuracy, the  
charge holding capacitor (CHOLD) must be allowed to  
fully charge to the voltage level on the analog input pin.  
The analog output source impedance (RS), the  
interconnectimpedance(RIC), andtheinternalsampling  
switch (RSS) impedance combine to directly affect the  
time required to charge the capacitor CHOLD. The  
combined impedance must therefore be small enough  
to fully charge the holding capacitor within the chosen  
sample time. To minimize the effects of pin leakage  
currents on the accuracy of the A/D converter, the  
maximumrecommendedsourceimpedance, RS,is5kΩ  
for conversion rates up to 500 ksps and a maximum of  
500Ω for conversion rates up to 1 Msps. After the analog  
input channel is selected (changed), this sampling  
function must be completed prior to starting the  
conversion. The internal holding capacitor will be in a  
discharged state prior to each sample operation.  
FIGURE 20-3:  
A/D CONVERTER ANALOG INPUT MODEL  
VDD  
RIC 250Ω  
RSS 3 kΩ  
Sampling  
Switch  
VT = 0.6V  
VT = 0.6V  
ANx  
RSS  
Rs  
CHOLD  
CPIN  
= DAC capacitance  
VA  
I leakage  
± 500 nA  
= 4.4 pF  
VSS  
Legend: CPIN  
VT  
= input capacitance  
= threshold voltage  
I leakage = leakage current at the pin due to  
various junctions  
RIC  
= interconnect resistance  
RSS  
= sampling switch resistance  
= sample/hold capacitance (from DAC)  
CHOLD  
Note: CPIN value depends on device package and is not tested. Effect of CPIN negligible if Rs 5 kΩ.  
DS70150D-page 144  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
If the A/D interrupt is enabled, the device will wake-up  
from Sleep. If the A/D interrupt is not enabled, the A/D  
module will then be turned off, although the ADON bit  
will remain set.  
20.9 Module Power-Down Modes  
The module has 3 internal power modes. When the  
ADON bit is ‘1’, the module is in Active mode; it is fully  
powered and functional. When ADON is ‘0’, the module  
is in Off mode. The digital and analog portions of the  
circuit are disabled for maximum current savings. In  
order to return to the Active mode from Off mode, the  
user must wait for the ADC circuitry to stabilize.  
20.10.2 A/D OPERATION DURING CPU IDLE  
MODE  
The ADSIDL bit selects if the module will stop on Idle or  
continue on Idle. If ADSIDL = 0, the module will continue  
operation on assertion of Idle mode. If ADSIDL = 1, the  
module will stop on Idle.  
20.10 A/D Operation During CPU Sleep  
and Idle Modes  
20.11 Effects of a Reset  
20.10.1 A/D OPERATION DURING CPU  
SLEEP MODE  
A device Reset forces all registers to their Reset state.  
This forces the A/D module to be turned off, and any  
conversion and acquisition sequence is aborted. The  
values that are in the ADCBUF registers are not  
modified. The A/D Result register will contain unknown  
data after a Power-on Reset.  
When the device enters Sleep mode, all clock sources  
to the module are shutdown and stay at logic ‘0’.  
If Sleep occurs in the middle of a conversion, the  
conversion is aborted. The converter will not continue  
with a partially completed conversion on exit from  
Sleep mode.  
20.12 Output Formats  
Register contents are not affected by the device  
entering or leaving Sleep mode.  
The A/D result is 10 bits wide. The data buffer RAM is  
also 10 bits wide. The 10-bit data can be read in one of  
four different formats. The FORM<1:0> bits select the  
format. Each of the output formats translates to a 16-bit  
result on the data bus.  
The A/D module can operate during Sleep mode if the  
A/D clock source is set to RC (ADRC = 1). When the  
RC clock source is selected, the A/D module waits one  
instruction cycle before starting the conversion. This  
allows the SLEEP instruction to be executed, which  
eliminates all digital switching noise from the  
conversion. When the conversion is complete, the  
DONE bit will be set and the result loaded into the  
ADCBUF register.  
Write data will always be in right justified (integer)  
format.  
FIGURE 20-4:  
A/D OUTPUT DATA FORMATS  
RAM Contents:  
d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
Read to Bus:  
Signed Fractional (1.15)  
Fractional (1.15)  
Signed Integer  
Integer  
d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
0
0
0
0
0
0
0
0
0
0
0
0
d09 d09 d09 d09 d09 d09 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
0
0
0
0
0
0
d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
© 2008 Microchip Technology Inc.  
DS70150D-page 145  
dsPIC30F6010A/6015  
20.13 Configuring Analog Port Pins  
20.14 Connection Considerations  
The use of the ADPCFG and TRIS registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their  
corresponding TRIS bit set (input). If the TRIS bit is  
cleared (output), the digital output level (VOH or VOL)  
will be converted.  
The analog inputs have diodes to VDD and VSS as ESD  
protection. This requires that the analog input be  
between VDD and VSS. If the input voltage exceeds this  
range by greater than 0.3V (either direction), one of the  
diodes becomes forward biased and it may damage the  
device if the input current specification is exceeded.  
The A/D operation is independent of the state of the  
CH0SA<3:0>/CH0SB<3:0> bits and the TRIS bits.  
An external RC filter is sometimes added for  
anti-aliasing of the input signal. The R component  
should be selected to ensure that the sampling time  
requirements are satisfied. Any external components  
connected (via high-impedance) to an analog input pin  
(capacitor, Zener diode, etc.) should have very little  
leakage current at the pin.  
When reading the PORT register, all pins configured as  
analog input channels will read as cleared.  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin that is defined as  
a digital input (including the ANx pins) may cause the  
input buffer to consume current that exceeds the  
device specifications.  
DS70150D-page 146  
© 2008 Microchip Technology Inc.  
(1)  
TABLE 20-2: ADC REGISTER MAP  
SFR Name Addr. Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
0000 00uu uuuu uuuu  
0000 00uu uuuu uuuu  
0000 00uu uuuu uuuu  
0000 00uu uuuu uuuu  
0000 00uu uuuu uuuu  
0000 00uu uuuu uuuu  
0000 00uu uuuu uuuu  
0000 00uu uuuu uuuu  
0000 00uu uuuu uuuu  
0000 00uu uuuu uuuu  
0000 00uu uuuu uuuu  
0000 00uu uuuu uuuu  
0000 00uu uuuu uuuu  
0000 00uu uuuu uuuu  
0000 00uu uuuu uuuu  
0000 00uu uuuu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
ADCBUF0 0280  
ADCBUF1 0282  
ADCBUF2 0284  
ADCBUF3 0286  
ADCBUF4 0288  
ADCBUF5 028A  
ADCBUF6 028C  
ADCBUF7 028E  
ADCBUF8 0290  
ADCBUF9 0292  
ADCBUFA 0294  
ADCBUFB 0296  
ADCBUFC 0298  
ADCBUFD 029A  
ADCBUFE 029C  
ADCBUFF 029E  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
ADCON1  
ADCON2  
ADCON3  
ADCHS  
02A0 ADON  
02A2  
VCFG<2:0>  
ADSIDL  
FORM<1:0>  
CHPS<1:0>  
SSRC<2:0>  
SIMSAM ASAM SAMP DONE  
SMPI<3:0> BUFM ALTS  
ADCS<5:0>  
CH0SA<3:0>  
CSCNA  
SAMC<4:0>  
BUFS  
ADRC  
02A4  
02A6  
CH123NB<1:0>  
CH123SB CH0NB  
CH0SB<3:0>  
CH123NA<1:0> CH123SA CH0NA  
ADPCFG  
ADCSSL  
02A8 PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8 PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0  
02AA CSSL15 CSSL14 CSSL13 CSSL12 CSSL11 CSSL10 CSSL9 CSSL8 CSSL7 CSSL6  
CSSL5  
CSSL4 CSSL3 CSSL2 CSSL1 CSSL0  
Legend:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Note 1:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 148  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
21.1 Oscillator System Overview  
21.0 SYSTEM INTEGRATION  
The dsPIC30F oscillator system has the following  
modules and features:  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “dsPIC30F/33F Programmers  
Reference Manual” (DS70157).  
• Various external and internal oscillator options as  
clock sources  
• An on-chip PLL to boost internal operating  
frequency  
• A clock switching mechanism between various  
clock sources  
• Programmable clock postscaler for system power  
savings  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and takes fail-safe measures  
There are several features intended to maximize  
system reliability, minimize cost through elimination of  
external components, provide power-saving operating  
modes and offer code protection:  
• Clock Control register (OSCCON)  
• Configuration bits for main oscillator selection  
Configuration bits determine the clock source upon  
Power-on Reset (POR) and Brown-out Reset (BOR).  
Thereafter, the clock source can be changed between  
permissible clock sources. The OSCCON register  
controls the clock switching and reflects system clock  
related Status bits.  
• Oscillator Selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Programmable Brown-out Reset (BOR)  
• Watchdog Timer (WDT)  
• Power-Saving modes (Sleep and Idle)  
• Code Protection  
Table 21-1 provides a summary of the dsPIC30F  
oscillator operating modes. A simplified diagram of the  
oscillator system is shown in Figure 21-1.  
• Unit ID Locations  
• In-Circuit Serial Programming (ICSP)  
dsPIC30F devices have a Watchdog Timer, which is  
permanently enabled via the Configuration bits or can  
be software controlled. It runs off its own RC oscillator  
for added reliability. There are two timers that offer  
necessary delays on power-up. One is the Oscillator  
Start-up Timer (OST), intended to keep the chip in  
Reset until the crystal oscillator is stable. The other is  
the Power-up Timer (PWRT), which provides a delay  
on power-up only, designed to keep the part in Reset  
while the power supply stabilizes. With these two  
timers on-chip, most applications need no external  
Reset circuitry.  
Sleep mode is designed to offer a very low-current  
Power-Down mode. The user can wake-up from Sleep  
through external Reset, Watchdog Timer Wake-up or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit a wide variety of  
applications. In the Idle mode, the clock sources are  
still active, but the CPU is shut-off. The RC oscillator  
option saves system cost, while the LP crystal option  
saves power.  
© 2008 Microchip Technology Inc.  
DS70150D-page 149  
dsPIC30F6010A/6015  
TABLE 21-1: OSCILLATOR OPERATING MODES  
Oscillator Mode  
Description  
XTL  
200 kHz-4 MHz crystal on OSC1:OSC2  
4 MHz-10 MHz crystal on OSC1:OSC2  
XT  
XT w/PLL 4x  
XT w/PLL 8x  
XT w/PLL 16x  
LP  
4 MHz-10 MHz crystal on OSC1:OSC2, 4x PLL enabled  
4 MHz-10 MHz crystal on OSC1:OSC2, 8x PLL enabled  
4 MHz-7.5 MHz crystal on OSC1:OSC2, 16x PLL enabled(1)  
32 kHz crystal on SOSCO:SOSCI(2)  
HS  
10 MHz-25 MHz crystal.  
HS/2 w/PLL 4x  
HS/2 w/PLL 8x  
HS/2 w/PLL 16x  
HS/3 w/PLL 4x  
HS/3 w/PLL 8x  
HS/3 w/PLL 16x  
EC  
10 MHz-20 MHz crystal, divide by 2, 4x PLL enabled(3)  
10 MHz-20 MHz crystal, divide by 2, 8x PLL enabled(3)  
10 MHz-15 MHz crystal, divide by 2, 16x PLL enabled(1)  
12 MHz-25 MHz crystal, divide by 3, 4x PLL enabled(4)  
12 MHz-25 MHz crystal, divide by 3, 8x PLL enabled(4)  
12 MHz-22.5 MHz crystal, divide by 3, 16x PLL enabled(1)(4)  
External clock input (0-40 MHz)  
ECIO  
External clock input (0-40 MHz), OSC2 pin is I/O  
External clock input (4-10 MHz), OSC2 pin is I/O, 4x PLL enabled  
External clock input (4-10 MHz), OSC2 pin is I/O, 8x PLL enabled  
External clock input (4-7.5 MHz), OSC2 pin is I/O, 16x PLL enabled(1)  
External RC oscillator, OSC2 pin is FOSC/4 output(5)  
External RC oscillator, OSC2 pin is I/O(5)  
EC w/PLL 4x  
EC w/PLL 8x  
EC w/PLL 16x  
ERC  
ERCIO  
FRC  
7.37 MHz internal RC oscillator  
FRC w/PLL 4x  
FRC w/PLL 8x  
FRC w/PLL 16x  
LPRC  
7.37 MHz internal RC oscillator, 4x PLL enabled  
7.37 MHz internal RC oscillator, 8x PLL enabled  
7.37 MHz internal RC oscillator, 16x PLL enabled  
512 kHz internal RC oscillator  
Note 1: Any higher will violate device operating frequency range.  
2: LP oscillator can be conveniently shared as system clock, as well as Real-Time Clock for Timer1.  
3: Any higher will violate PLL input range.  
4: Any lower will violate PLL input range.  
5: Requires external R and C. Frequency operation up to 4 MHz.  
DS70150D-page 150  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 21-1:  
OSCILLATOR SYSTEM BLOCK DIAGRAM  
Oscillator Configuration bits  
PWRSAVInstruction  
Wake-up Request  
FPLL  
OSC1  
OSC2  
PLL  
Primary  
Oscillator  
x4, x8, x16  
PLL  
Lock  
COSC<2:0>  
NOSC<2:0>  
OSWEN  
Primary Osc  
TUN<5:0>  
6
Primary  
Oscillator  
Stability Detector  
Internal Fast RC  
Oscillator (FRC)  
Oscillator  
Start-up  
Timer  
POR Done  
Clock  
Switching  
and Control  
Block  
Programmable  
Secondary Osc  
Clock Divider  
System  
Clock  
SOSCO  
SOSCI  
Secondary  
2
32 kHz LP  
Oscillator  
Oscillator  
Stability Detector  
POST<1:0>  
Internal Low-  
Power RC  
LPRC  
Oscillator (LPRC)  
CF  
Fail-Safe Clock  
Monitor (FSCM)  
FCKSM<1:0>  
2
Oscillator Trap  
to Timer1  
© 2008 Microchip Technology Inc.  
DS70150D-page 151  
dsPIC30F6010A/6015  
21.2 Oscillator Configurations  
21.2.1  
INITIAL CLOCK SOURCE  
SELECTION  
While coming out of Power-on Reset or Brown-out  
Reset, the device selects its clock source based on:  
a) FOS<2:0> Configuration bits that select one of  
four oscillator groups,  
b) and FPR<4:0> Configuration bits that select one  
of 16 oscillator choices within the primary group.  
The selection is as shown in Table 21-2.  
TABLE 21-2: .CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator  
Source  
Oscillator Mode  
FOS<2:0>  
FPR<4:0>  
OSC2 Function  
ECIO w/PLL 4x  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
x
x
x
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
1
0
x
x
x
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
1
1
0
0
0
0
0
x
x
x
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
0
1
1
0
0
0
x
x
x
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
0
0
1
1
0
0
x
x
x
I/O  
I/O  
ECIO w/PLL 8x  
ECIO w/PLL 16x  
FRC w/PLL 4x  
FRC w/PLL 8x  
FRC w/PLL 16x  
XT w/PLL 4x  
XT w/PLL 8x  
XT w/PLL 16x  
HS/2 w/PLL 4x  
HS/2 w/PLL 8x  
HS/2 w/PLL 16x  
HS/3 w/PLL 4x  
HS/3 w/PLL 8x  
HS/3 w/PLL 16x  
ECIO  
I/O  
I/O  
I/O  
I/O  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
I/O  
External  
XT  
External  
OSC2  
OSC2  
CLKO  
CLKO  
I/O  
HS  
External  
EC  
External  
ERC  
External  
ERCIO  
External  
XTL  
External  
OSC2  
(Note 1, 2)  
(Note 1, 2)  
(Note 1, 2)  
LP  
Secondary  
Internal FRC  
Internal LPRC  
FRC  
LPRC  
Note 1: The OC2 pin is usable as general-purpose I/O pin functionality only, depending on the Primary Oscillator  
mode selection (FPR<4:0>).  
2: OSC1 pin cannot be used as an I/O pin even if the secondary oscillator or an internal clock source is  
selected at all times.  
DS70150D-page 152  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
21.2.2  
OSCILLATOR START-UP TIMER  
(OST)  
21.2.5  
FAST RC OSCILLATOR (FRC)  
The FRC oscillator is a fast (7.37 MHz nominal) internal  
RC oscillator. This oscillator is intended to provide  
reasonable device operating speeds without the use of  
an external crystal, ceramic resonator or RC network.  
The FRC oscillator can be used with the PLL to obtain  
higher clock frequencies.  
In order to ensure that a crystal oscillator (or ceramic  
resonator) has started and stabilized, an Oscillator  
Start-up Timer is included. It is a simple 10-bit counter  
that counts 1024 TOSC cycles before releasing the  
oscillator clock to the rest of the system. The time-out  
period is designated as TOST. The TOST time is involved  
every time the oscillator has to restart (i.e., on POR,  
BOR and wake-up from Sleep). The Oscillator Start-up  
Timer is applied to the LP, XT, XTL and HS Oscillator  
modes (upon wake-up from Sleep, POR and BOR) for  
the primary oscillator.  
The dsPIC30F operates from the FRC oscillator  
whenever the current oscillator selection control bits in  
the OSCCON register (OSCCON<14:12>) are set to  
001’.  
The 6-bit field specified by TUN<5:0> (OSCTUN<5:0>)  
allows the user to tune the internal fast RC oscillator  
(nominal 7.37 MHz). The user can tune the FRC  
oscillator within a range of +12.6% (930 kHz) and -13%  
(960 kHz) in steps of 0.4% around the  
factory-calibrated setting, see Table 20-4.  
21.2.3  
LP OSCILLATOR CONTROL  
Enabling the LP oscillator is controlled with two  
elements:  
• The current oscillator group bits COSC<2:0>  
• The LPOSCEN bit (OSCCON register)  
If OSCCON<14:12> are set to ‘111’ and FPR<4:0> are  
set to ‘00101’, ‘00110’ or ‘00111’, then a PLL  
multiplier of 4, 8 or 16 (respectively) is applied.  
The LP oscillator is ON (even during Sleep mode) if  
LPOSCEN = 1. The LP oscillator is the device clock if:  
Note:  
When a 16x PLL is used, the FRC  
oscillator must not be tuned to a frequency  
greater than 7.5 MHz.  
COSC<2:0> = 000(LP selected as main oscillator)  
and  
• LPOSCEN = 1  
TABLE 21-4: FRC TUNING  
TUN<5:0>  
Keeping the LP oscillator ON at all times allows for a  
fast switch to the 32 kHz system clock for lower power  
operation. Returning to the faster main oscillator will  
still require a start-up time.  
FRC Frequency  
Bits  
01 1111  
01 1110  
01 1101  
...  
+12.6%  
+12.2%  
+11.8%  
...  
21.2.4  
PHASE LOCKED LOOP (PLL)  
The PLL multiplies the clock which is generated by the  
primary oscillator. The PLL is selectable to have either  
gains of x4, x8 and x16. Input and output frequency  
ranges are summarized in Table 21-3.  
00 0100  
00 0011  
00 0010  
00 0001  
00 0000  
+1.6%  
+1.2%  
+0.8%  
+0.4%  
TABLE 21-3: PLL FREQUENCY RANGE  
PLL  
Center Frequency (oscillator is  
running at calibrated frequency)  
Fin  
Fout  
Multiplier  
11 1111  
11 1110  
11 1101  
11 1100  
...  
-0.4%  
-0.8%  
-1.2%  
-1.6%  
...  
4 MHz-10 MHz  
4 MHz-10 MHz  
4 MHz-7.5 MHz  
x4  
x8  
16 MHz-40 MHz  
32 MHz-80 MHz  
64 MHz-120 MHz  
x16  
The PLL features a lock output, which is asserted when  
the PLL enters a phase locked state. Should the loop  
fall out of lock (e.g., due to noise), the lock signal will be  
rescinded. The state of this signal is reflected in the  
read-only LOCK bit in the OSCCON register.  
10 0011  
10 0010  
10 0001  
10 0000  
-11.8%  
-12.2%  
-12.6%  
-13.0%  
© 2008 Microchip Technology Inc.  
DS70150D-page 153  
dsPIC30F6010A/6015  
the FSCM will initiate a clock failure trap, and the  
COSC<2:0> bits are loaded with FRC oscillator  
selection. This will effectively shut-off the original  
oscillator that was trying to start.  
21.2.6  
LOW-POWER RC OSCILLATOR  
(LPRC)  
The LPRC oscillator is a component of the Watchdog  
Timer (WDT) and oscillates at a nominal frequency of  
512 kHz. The LPRC oscillator is the clock source for  
the Power-up Timer (PWRT) circuit, WDT and clock  
monitor circuits. It may also be used to provide a low  
frequency clock source option for applications where  
power consumption is critical, and timing accuracy is  
not required.  
The user may detect this situation and restart the  
oscillator in the clock fail trap ISR.  
Upon a clock failure detection, the FSCM module will  
initiate a clock switch to the FRC oscillator as follows:  
1. The COSC bits (OSCCON<14:12>) are loaded  
with the FRC oscillator selection value.  
The LPRC oscillator is always enabled at a Power-on  
Reset, because it is the clock source for the PWRT.  
After the PWRT expires, the LPRC oscillator will remain  
ON if one of the following is TRUE:  
2. CF bit is set (OSCCON<3>).  
3. OSWEN control bit (OSCCON<0>) is cleared.  
For the purpose of clock switching, the clock sources  
are sectioned into four groups:  
• The Fail-Safe Clock Monitor is enabled  
• The WDT is enabled  
• Primary  
• Secondary  
• Internal FRC  
• Internal LPRC  
• The LPRC oscillator is selected as the system  
clock via the COSC<2:0> control bits in the  
OSCCON register  
The user can switch between these functional groups,  
but cannot switch between options within a group. If the  
primary group is selected, then the choice within the  
group is always determined by the FPR<4:0>  
Configuration bits.  
If one of the above conditions is not true, the LPRC will  
shut-off after the PWRT expires.  
Note 1: OSC2 pin function is determined by the  
Primary Oscillator mode selection  
(FPR<4:0>).  
The OSCCON register holds the control and Status bits  
related to clock switching.  
2: Note that OSC1 pin cannot be used as an  
I/O pin, even if the secondary oscillator or  
an internal clock source is selected at all  
times.  
• COSC<2:0>: Read-only Status bits always reflect  
the current oscillator group in effect.  
• NOSC<2:0>: Control bits which are written to  
indicate the new oscillator group of choice.  
21.2.7  
FAIL-SAFE CLOCK MONITOR  
- On POR and BOR, COSC<2:0> and  
NOSC<2:0> are both loaded with the  
Configuration bit values FOS<2:0>.  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue to operate even in the event of an oscillator  
failure. The FSCM function is enabled by appropriately  
programming the FCKSM Configuration bits (Clock  
Switch and Monitor Selection bits) in the FOSC device  
Configuration register. If the FSCM function is  
enabled, the LPRC internal oscillator will run at all  
times (except during Sleep mode) and will not be  
subject to control by the SWDTEN bit.  
• LOCK: The LOCK Status bit indicates a PLL lock.  
• CF: Read-only Status bit indicating if a clock fail  
detect has occurred.  
• OSWEN: Control bit changes from a ‘0’ to a ‘1’  
when a clock transition sequence is initiated.  
Clearing the OSWEN control bit will abort a clock  
transition in progress (used for hang-up situations).  
In the event of an oscillator failure, the FSCM will  
generate a clock failure trap event and will switch the  
system clock over to the FRC oscillator. The user will  
then have the option to either attempt to restart the  
oscillator or execute a controlled shutdown. The user  
may decide to treat the trap as a warm Reset by simply  
loading the Reset address into the oscillator fail trap  
vector. In this event, the CF (Clock Fail) Status bit  
(OSCCON<3>) is also set whenever a clock failure is  
recognized.  
If Configuration bits FCKSM<1:0> = 1x, then the clock  
switching and Fail-Safe Clock Monitor functions are  
disabled. This is the default Configuration bit setting.  
If clock switching is disabled, then the FOS<2:0> and  
FPR<4:0> bits directly control the oscillator selection  
and the COSC<2:0> bits do not control the clock  
selection. However, these bits will reflect the clock  
source selection.  
Note:  
The application should not attempt to  
switch to a clock of frequency lower than  
100 kHz when the Fail-Safe Clock Monitor  
is enabled. If clock switching is performed,  
the device may generate an oscillator fail  
trap and switch to the fast RC oscillator.  
In the event of a clock failure, the WDT is unaffected  
and continues to run on the LPRC clock.  
If the oscillator has a very slow start-up time coming  
out of POR, BOR or Sleep, it is possible that the  
PWRT timer will expire before the oscillator has  
started. In such cases, the FSCM will be activated and  
DS70150D-page 154  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
21.2.8  
PROTECTION AGAINST  
ACCIDENTAL WRITES TO OSCCON  
21.3 Reset  
The dsPIC30F differentiates between various kinds of  
Reset:  
A write to the OSCCON register is intentionally made  
difficult because it controls clock switching and clock  
scaling.  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during Sleep  
To write to the OSCCON low byte, the following code  
sequence must be executed without any other  
instructions in between:  
d) Watchdog Timer (WDT) Reset (during normal  
operation)  
Byte Write “0x46” to OSCCON low  
Byte Write “0x57” to OSCCON low  
e) Programmable Brown-out Reset (BOR)  
f) RESETInstruction  
g) Reset caused by trap lockup (TRAPR)  
Byte write is allowed for one instruction cycle. Write the  
h) Reset caused by illegal opcode, or by using an  
uninitialized W register as an Address Pointer  
(IOPUWR)  
desired value or use bit manipulation instruction.  
To write to the OSCCON high byte, the following  
instructions must be executed without any other  
instructions in between:  
Different registers are affected in different ways by  
various Reset conditions. Most registers are not  
affected by a WDT wake-up, since this is viewed as the  
resumption of normal operation. Status bits from the  
RCON register are set or cleared differently in different  
Reset situations, as indicated in Table 21-5. These bits  
are used in software to determine the nature of the  
Reset.  
Byte Write0x78to OSCCON high  
Byte Write0x9Ato OSCCON high  
Byte write is allowed for one instruction cycle. Write the  
desired value or use bit manipulation instruction.  
A block diagram of the on-chip Reset circuit is shown in  
Figure 21-2.  
A MCLR noise filter is provided in the MCLR Reset  
path. The filter detects and ignores small pulses.  
Internally generated Resets do not drive MCLR pin low.  
FIGURE 21-2:  
RESET SYSTEM BLOCK DIAGRAM  
RESET  
Instruction  
Digital  
Glitch Filter  
MCLR  
Sleep or Idle  
WDT  
Module  
POR  
VDD Rise  
Detect  
S
VDD  
Brown-out  
Reset  
BOR  
BOREN  
Q
R
SYSRST  
Trap Conflict  
Illegal Opcode/  
Uninitialized W Register  
© 2008 Microchip Technology Inc.  
DS70150D-page 155  
dsPIC30F6010A/6015  
The POR circuit inserts a small delay, TPOR, which is  
nominally 10 μs and ensures that the device bias  
circuits are stable. Furthermore, a user selected  
power-up time-out (TPWRT) is applied. The TPWRT  
parameter is based on device Configuration bits and  
can be 0 ms (no delay), 4 ms, 16 ms or 64 ms. The total  
delay is at device power-up TPOR + TPWRT. When  
these delays have expired, SYSRST will be negated on  
the next leading edge of the Q1 clock, and the PC will  
jump to the Reset vector.  
21.3.1  
POR: POWER-ON RESET  
A power-on event will generate an internal POR pulse  
when a VDD rise is detected. The Reset pulse will occur  
at the POR circuit threshold voltage (VPOR), which is  
nominally 1.85V. The device supply voltage  
characteristics must meet specified starting voltage  
and rise rate requirements. The POR pulse will reset a  
POR timer and place the device in the Reset state. The  
POR also selects the device clock source identified by  
the oscillator configuration fuses.  
The timing for the SYSRST signal is shown in  
Figure 21-3 through Figure 21-5.  
FIGURE 21-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
Internal POR  
TOST  
OST Time-out  
TPWRT  
PWRT Time-out  
Internal Reset  
FIGURE 21-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
Internal POR  
TOST  
OST Time-out  
TPWRT  
PWRT Time-out  
Internal Reset  
DS70150D-page 156  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 21-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
Internal POR  
TOST  
OST Time-out  
TPWRT  
PWRT Time-out  
Internal Reset  
21.3.1.1  
POR with Long Crystal Start-up Time  
(with FSCM Enabled)  
21.3.2  
BOR: PROGRAMMABLE  
BROWN-OUT RESET  
The oscillator start-up circuitry is not linked to the POR  
circuitry. Some crystal circuits (especially low frequency  
crystals) will have a relatively long start-up time.  
Therefore, one or more of the following conditions is  
possible after the POR timer and the PWRT have  
expired:  
The BOR (Brown-out Reset) module is based on an  
internal voltage reference circuit. The main purpose of  
the BOR module is to generate a device Reset when a  
brown-out condition occurs. Brown-out conditions are  
generally caused by glitches on the AC mains (i.e.,  
missing portions of the AC cycle waveform due to bad  
power transmission lines or voltage sags due to exces-  
sive current draw when a large inductive load is turned  
on).  
• The oscillator circuit has not begun to oscillate.  
• The Oscillator Start-up Timer has NOT expired (if  
a crystal oscillator is used).  
The BOR module allows selection of one of the  
following voltage trip points:  
• The PLL has not achieved a LOCK (if PLL is  
used).  
• 2.6V–2.71V  
• 4.1V–4.4V  
• 4.58V–4.73V  
If the FSCM is enabled and one of the above conditions  
is true, then a clock failure trap will occur. The device  
will automatically switch to the FRC oscillator and the  
user can switch to the desired crystal oscillator in the  
trap ISR.  
Note:  
The BOR voltage trip points indicated here  
are nominal values provided for design  
guidance only.  
21.3.1.2  
Operating without FSCM and PWRT  
A BOR will generate a Reset pulse which will reset the  
device. The BOR will select the clock source, based on  
the device Configuration bit values (FOS<2:0> and  
FPR<4:0>). Furthermore, if an oscillator mode is  
selected, the BOR will activate the Oscillator Start-up  
Timer (OST). The system clock is held until OST  
expires. If the PLL is used, then the clock will be held  
until the LOCK bit (OSCCON<5>) is ‘1’.  
If the FSCM is disabled and the Power-up Timer  
(PWRT) is also disabled, then the device will exit rapidly  
from Reset on power-up. If the clock source is FRC,  
LPRC, EXTRC or EC, it will be active immediately.  
If the FSCM is disabled and the system clock has not  
started, the device will be in a frozen state at the Reset  
vector until the system clock starts. From the user’s  
perspective, the device will appear to be in Reset until  
a system clock is available.  
© 2008 Microchip Technology Inc.  
DS70150D-page 157  
dsPIC30F6010A/6015  
Concurrently, the POR time-out (TPOR) and the PWRT  
time-out (TPWRT) will be applied before the internal  
Reset is released. If TPWRT = 0and a crystal oscillator  
is being used, then a nominal delay of TFSCM = 100 μs  
is applied. The total delay in this case is  
(TPOR + TFSCM).  
FIGURE 21-6:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
VDD  
D
R
The BOR Status bit (RCON<1>) will be set to indicate  
that a BOR has occurred. The BOR circuit, if enabled,  
will continue to operate while in Sleep or Idle modes  
and will reset the device should VDD fall below the BOR  
threshold voltage.  
R1  
MCLR  
dsPIC30F  
C
Note 1: External Power-on Reset circuit is  
required only if the VDD power-up slope  
is too slow. The diode D helps discharge  
the capacitor quickly when VDD powers  
down.  
2: R should be suitably chosen so as to  
make sure that the voltage drop across  
R does not violate the device’s electrical  
specification.  
3: R1 should be suitably chosen so as to  
limit any current flowing into MCLR from  
external capacitor C, in the event of  
MCLR/VPP pin breakdown due to Elec-  
trostatic Discharge (ESD) or Electrical  
Overstress (EOS).  
Note:  
Dedicated supervisory devices, such as  
the MCP1XX and MCP8XX, may also be  
used as an external Power-on Reset  
circuit.  
DS70150D-page 158  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
Table 21-5 shows the Reset conditions for the RCON  
register. Since the control bits within the RCON register  
are R/W, the information in the table means that all the  
bits are negated prior to the action specified in the  
condition column.  
TABLE 21-5: INITIALIZATION CONDITION FOR RCON REGISTER CASE 1  
Program  
Condition  
TRAPR IOPUWR EXTR SWR WDTO IDLE SLEEP POR BOR  
Counter  
Power-on Reset  
Brown-out Reset  
0x000000  
0x000000  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
MCLR Reset during normal 0x000000  
operation  
Software Reset during  
normal operation  
0x000000  
0
0
0
1
0
0
0
0
0
MCLR Reset during Sleep  
MCLR Reset during Idle  
WDT Time-out Reset  
WDT Wake-up  
0x000000  
0x000000  
0x000000  
PC + 2  
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
Interrupt Wake-up from  
Sleep  
PC + 2(1)  
Clock Failure Trap  
Trap Reset  
0x000004  
0x000000  
0x000000  
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Illegal Operation Trap  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’  
Note 1: When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector.  
Table 21-6 shows a second example of the bit  
conditions for the RCON register. In this case, it is not  
assumed the user has set/cleared specific bits prior to  
action specified in the condition column.  
TABLE 21-6: INITIALIZATION CONDITION FOR RCON REGISTER CASE 2  
Program  
Condition  
TRAPR IOPUWR EXTR SWR WDTO IDLE SLEEP POR BOR  
Counter  
Power-on Reset  
0x000000  
0x000000  
0x000000  
0
u
u
0
u
u
0
u
1
0
u
0
0
u
0
0
u
0
0
u
0
1
0
u
1
1
u
Brown-out Reset  
MCLR Reset during normal  
operation  
Software Reset during  
normal operation  
0x000000  
u
u
0
1
0
0
0
u
u
MCLR Reset during Sleep  
MCLR Reset during Idle  
WDT Time-out Reset  
WDT Wake-up  
0x000000  
0x000000  
0x000000  
PC + 2  
u
u
u
u
u
u
u
u
u
u
1
1
0
u
u
u
u
0
u
u
0
0
1
1
u
0
1
0
u
u
1
0
0
1
1
u
u
u
u
u
u
u
u
u
u
Interrupt Wake-up from  
Sleep  
PC + 2(1)  
Clock Failure Trap  
Trap Reset  
0x000004  
0x000000  
0x000000  
u
1
u
u
u
1
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
Illegal Operation Reset  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’  
Note 1: When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector.  
© 2008 Microchip Technology Inc.  
DS70150D-page 159  
dsPIC30F6010A/6015  
The processor wakes up from Sleep if at least one of  
the following conditions has occurred:  
21.4  
Watchdog Timer (WDT)  
21.4.1  
WATCHDOG TIMER OPERATION  
• any interrupt that is individually enabled and  
meets the required priority level  
The primary function of the Watchdog Timer (WDT) is  
to reset the processor in the event of a software  
malfunction. The WDT is a free running timer, which  
runs off an on-chip RC oscillator, requiring no external  
component. Therefore, the WDT timer will continue to  
operate even if the main processor clock (e.g., the  
crystal oscillator) fails.  
• any Reset (POR, BOR and MCLR)  
• WDT time-out  
On waking up from Sleep mode, the processor will  
restart the same clock that was active prior to entry  
into Sleep mode. When clock switching is enabled,  
bits COSC<2:0> will determine the oscillator source  
that will be used on wake-up. If clock switch is  
disabled, then there is only one system clock.  
21.4.2  
ENABLING AND DISABLING THE  
WDT  
Note:  
If a POR or BOR occurred, the selection of  
the oscillator is based on the FOS<2:0>  
and FPR<4:0> Configuration bits.  
The Watchdog Timer can be “Enabled” or “Disabled”  
only through a Configuration bit (FWDTEN) in the  
Configuration register FWDT.  
If the clock source is an oscillator, the clock to the  
device is held off until OST times out (indicating a  
stable oscillator). If PLL is used, the system clock is  
held off until LOCK = 1 (indicating that the PLL is  
stable). Either way, TPOR, TLOCK and TPWRT delays are  
Setting FWDTEN = 1 enables the Watchdog Timer.  
The enabling is done when programming the device.  
By default, after chip-erase, FWDTEN bit = 1. Any  
device programmer capable of programming  
dsPIC30F devices allows programming of this and  
other Configuration bits.  
applied  
.
If EC, FRC, LPRC or ERC oscillators are used, then a  
delay of TPOR (~ 10 μs) is applied. This is the smallest  
delay possible on wake-up from Sleep.  
If enabled, the WDT will increment until it overflows or  
“times out”. A WDT time-out will force a device Reset  
(except during Sleep). To prevent a WDT time-out, the  
user must clear the Watchdog Timer using a CLRWDT  
instruction.  
Moreover, if LP oscillator was active during Sleep, and  
LP is the oscillator used on wake-up, then the start-up  
delay will be equal to TPOR. PWRT delay and OST  
timer delay are not applied. In order to have the  
smallest possible start-up delay when waking up from  
Sleep, one of these faster wake-up options should be  
selected before entering Sleep.  
If a WDT times out during Sleep, the device will  
wake-up. The WDTO bit in the RCON register will be  
cleared to indicate a wake-up resulting from a WDT  
time-out.  
Setting FWDTEN =  
0 allows user software to  
Any interrupt that is individually enabled (using the  
corresponding IE bit) and meets the prevailing priority  
level will be able to wake-up the processor. The  
processor will process the interrupt and branch to the  
ISR. The Sleep Status bit in RCON register is set upon  
enable/disable the Watchdog Timer via the SWDTEN  
(RCON<5>) control bit.  
21.5 Power-Saving Modes  
There are two power-saving states that can be entered  
through the execution of a special instruction, PWRSAV.  
wake-up  
.
Note:  
In spite of various delays applied (TPOR  
,
These are: Sleep and Idle.  
TLOCK and TPWRT), the crystal oscillator  
The format of the PWRSAVinstruction is as follows:  
(and PLL) may not be active at the end of  
the time-out (e.g., for low-frequency  
crystals). In such cases, if FSCM is  
enabled, then the device will detect this as  
a clock failure and process the clock failure  
trap, the FRC oscillator will be enabled, and  
the user will have to re-enable the crystal  
oscillator. If FSCM is not enabled, then the  
device will simply suspend execution of  
code until the clock is stable, and will  
remain in Sleep until the oscillator clock has  
started.  
PWRSAV <parameter>, where ‘parameter’ defines  
Idle or Sleep mode.  
21.5.1  
SLEEP MODE  
In Sleep mode, the clock to the CPU and peripherals is  
shut down. If an on-chip oscillator is being used, it is  
shut down.  
The Fail-Safe Clock Monitor is not functional during  
Sleep, since there is no clock to monitor. However,  
LPRC clock remains active if WDT is operational during  
Sleep.  
All Resets will wake-up the processor from Sleep  
mode. Any Reset, other than POR, will set the Sleep  
Status bit. In a POR, the Sleep bit is cleared.  
The Brown-out protection circuit, if enabled, will remain  
functional during Sleep.  
DS70150D-page 160  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
If Watchdog Timer is enabled, then the processor will  
wake-up from Sleep mode upon WDT time-out. The  
Sleep and WDTO Status bits are both set.  
21.6 Device Configuration Registers  
The Configuration bits in each device Configuration  
register specify some of the device modes and are  
programmed by a device programmer, or by using the  
In-Circuit Serial Programming™ (ICSP™) feature of the  
device. Each device Configuration register is a 24-bit  
register, but only the lower 16 bits of each register are  
used to hold configuration data. There are six device  
Configuration registers available to the user:  
21.5.2  
IDLE MODE  
In Idle mode, the clock to the CPU is shutdown while  
peripherals keep running. Unlike Sleep mode, the clock  
source remains active.  
Several peripherals have a control bit in each module,  
that allows them to operate during Idle.  
1. FOSC (0xF80000): Oscillator Configuration  
register  
LPRC fail-safe clock remains active if clock failure  
detect is enabled.  
2. FWDT (0xF80002): Watchdog Timer  
Configuration register  
The processor wakes up from Idle if at least one of the  
following conditions is true:  
3. FBORPOR (0xF80004): BOR and POR  
Configuration register  
• on any interrupt that is individually enabled (IE bit  
4. FBS (0xF80006): Boot Code Segment  
Configuration register  
is ‘1’) and meets the required priority level  
• on any Reset (POR, BOR, MCLR)  
• on WDT time-out  
5. FSS (0xF80008): Secure Code Segment  
Configuration register  
Upon wake-up from Idle mode, the clock is re-applied  
to the CPU and instruction execution begins  
immediately, starting with the instruction following the  
PWRSAVinstruction.  
6. FGS (0xF8000A): General Code Segment  
Configuration register  
7. FICD (0xF8000C): FUSE Configuration  
Register  
Any interrupt that is individually enabled (using IE bit)  
and meets the prevailing priority level will be able to  
wake-up the processor. The processor will process the  
interrupt and branch to the ISR. The Idle Status bit in  
RCON register is set upon wake-up.  
The placement of the Configuration bits is automatically  
handled when you select the device in your device  
programmer. The desired state of the Configuration bits  
may be specified in the source code (dependent on the  
language tool used), or through the programming  
interface. After the device has been programmed, the  
application software may read the Configuration bit  
values through the table read instructions. For additional  
information, please refer to the “dsPIC30F/33F  
Programmers Reference Manual” (DS70157) and the  
dsPIC30F Family Reference Manual” (DS70046).  
Any Reset, other than POR, will set the Idle Status bit.  
On a POR, the Idle bit is cleared.  
If Watchdog Timer is enabled, then the processor will  
wake-up from Idle mode upon WDT time-out. The Idle  
and WDTO Status bits are both set.  
Unlike wake-up from Sleep, there are no time delays  
involved in wake-up from Idle.  
Note 1: If the code protection Configuration Fuse  
bits (FBS(BSS<2:0>), FSS(SSS<2:0>),  
FGS<GCP> and FGS<GWRP>) have  
been programmed, an erase of the entire  
code-protected device is only possible at  
voltages VDD 4.5V.  
2: This device supports an Advanced  
implementation  
Security. Please refer to the “CodeGuard  
Security” chapter (DS70180) for  
of  
CodeGuard™  
information on how CodeGuard Security  
may be used in your application.  
© 2008 Microchip Technology Inc.  
DS70150D-page 161  
dsPIC30F6010A/6015  
21.7 Peripheral Module Disable (PMD)  
Registers  
21.8 In-Circuit Debugger  
When MPLAB® ICD 2 is selected as a debugger, the  
In-Circuit Debugging functionality is enabled. This  
function allows simple debugging functions when used  
with MPLAB IDE. When the device has this feature  
enabled, some of the resources are not available for  
general use. These resources include the first 80 bytes  
of data RAM and two I/O pins.  
The Peripheral Module Disable (PMD) registers  
provide a method to disable a peripheral module by  
stopping all clock sources supplied to that module.  
When a peripheral is disabled via the appropriate PMD  
control bit, the peripheral is in a minimum power  
consumption state. The control and STATUS registers  
associated with the peripheral will also be disabled so  
writes to those registers will have no effect and read  
values will be invalid.  
One of four pairs of debug I/O pins may be selected by  
the user using configuration options in MPLAB IDE.  
These pin pairs are named EMUD/EMUC,  
EMUD1/EMUC1, EMUD2/EMUC2 and MUD3/EMUC3.  
A peripheral module will only be enabled if both the  
associated bit in the PMD register is cleared and the  
peripheral is supported by the specific dsPIC DSC  
variant. If the peripheral is present in the device, it is  
enabled in the PMD register by default.  
In each case, the selected EMUD pin is the  
Emulation/Debug Data line, and the EMUC pin is the  
Emulation/Debug Clock line. These pins will interface  
to the MPLAB ICD 2 module available from Microchip.  
The selected pair of debug I/O pins is used by MPLAB  
ICD 2 to send commands and receive responses, as  
well as to send and receive data. To use the In-Circuit  
Debugger function of the device, the design must  
implement ICSP connections to MCLR, VDD, VSS,  
PGC, PGD and the selected EMUDx/EMUCx pin pair.  
Note:  
If a PMD bit is set, the corresponding  
module is disabled after a delay of 1  
instruction cycle. Similarly, if a PMD bit is  
cleared, the corresponding module is  
enabled after a delay of 1 instruction cycle  
(assuming the module control registers  
are already configured to enable module  
operation).  
This gives rise to two possibilities:  
1. If EMUD/EMUC is selected as the debug I/O pin  
pair, then only a 5-pin interface is required, as  
the EMUD and EMUC pin functions are  
multiplexed with the PGD and PGC pin functions  
in all dsPIC30F devices.  
2. If  
EMUD1/EMUC1,  
EMUD2/EMUC2  
or  
EMUD3/EMUC3 is selected as the debug I/O  
pin pair, then a 7-pin interface is required, as the  
EMUDx/EMUCx pin functions (x = 1, 2 or 3) are  
not multiplexed with the PGD and PGC pin  
functions.  
DS70150D-page 162  
© 2008 Microchip Technology Inc.  
(1)  
TABLE 21-7: SYSTEM INTEGRATION REGISTER MAP FOR dsPIC30F6010A  
SFR  
Name  
Addr. Bit 15  
Bit 14  
Bit 13 Bit 12 Bit 11 Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
RCON  
0740 TRAPR IOPUWR BGST  
EXTR  
SWR SWDTEN WDTO SLEEP  
IDLE  
BOR  
POR  
Depends on type of Reset.  
OSCCON 0742  
COSC<2:0>  
NOSC<2:0>  
POST<1:0>  
LOCK  
U1MD  
CF  
LPOSCEN OSWEN Depends on Configuration bits.  
0744  
TUN<5:0>  
0000 0000 0000 0000  
OSCTUN  
PMD1  
0000 0000 0000 0000  
0000 0000 0000 0000  
0770 T5MD  
T4MD  
T3MD T2MD T1MD QEIMD PWMMD  
I2CMD U2MD  
SPI2MD SPI1MD C2MD  
C1MD  
ADCMD  
OC1MD  
PMD2  
0772 IC8MD IC7MD IC6MD IC5MD IC4MD IC3MD IC2MD IC1MD OC8MD OC7MD OC6MD OC5MD OC4MD OC3MD OC2MD  
Legend:  
— = unimplemented bit, read as ‘0’  
Note 1:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
(1)  
TABLE 21-8: SYSTEM INTEGRATION REGISTER MAP FOR dsPIC30F6015  
SFR  
Name  
Addr. Bit 15  
Bit 14  
Bit 13 Bit 12 Bit 11 Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
RCON  
0740 TRAPR IOPUWR BGST  
EXTR  
SWR SWDTEN WDTO SLEEP  
IDLE  
BOR  
POR  
Depends on type of Reset.  
OSCCON 0742  
COSC<2:0>  
NOSC<2:0>  
POST<1:0>  
LOCK  
U1MD  
CF  
LPOSCEN OSWEN Depends on Configuration bits.  
0744  
TUN<5:0>  
0000 0000 0000 0000  
OSCTUN  
PMD1  
0000 0000 0000 0000  
0000 0000 0000 0000  
0770 T5MD  
T4MD  
T3MD T2MD T1MD QEIMD PWMMD  
I2CMD U2MD  
SPI2MD SPI1MD  
C1MD  
ADCMD  
OC1MD  
PMD2  
0772 IC8MD IC7MD IC6MD IC5MD IC4MD IC3MD IC2MD IC1MD OC8MD OC7MD OC6MD OC5MD OC4MD OC3MD OC2MD  
Legend:  
— = unimplemented bit, read as ‘0’  
Note 1:  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
(1)  
TABLE 21-9: DEVICE CONFIGURATION REGISTER MAP  
File Name  
Addr.  
Bits 23-16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FOSC  
F80000  
F80002  
F80004  
F80006  
F80008  
F8000A  
F8000C  
FCKSM<1:0>  
FOS<2:0>  
FPR<4:0>  
FWDT  
FBORPOR  
FBS  
FWDTEN  
LPOL  
EBS  
ESS0  
FWPSA<1:0>  
BORV<1:0>  
FWPSB<3:0>  
MCLREN  
PWMPIN  
HPOL  
BOREN  
FPWRT<1:0>  
BWRP  
RBS1  
RSS1  
RBS0  
RSS0  
BSS<2:0>  
SSS<2:0>  
FSS  
ESS1  
SWRP  
FGS  
GSS<1:0>  
GWRP  
ICS<1:0>  
FICD  
BKBUG  
COE  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 164  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
Most bit oriented instructions (including simple rotate/  
shift instructions) have two operands:  
22.0 INSTRUCTION SET SUMMARY  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “dsPIC30F/33F Programmers  
Reference Manual” (DS70157).  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register  
(specified by a literal value, or indirectly by the  
contents of register ‘Wb’)  
The literal instructions that involve data movement may  
use some of the following operands:  
• A literal value to be loaded into a W register or file  
register (specified by the value of ‘k’)  
The dsPIC30F instruction set adds many  
enhancements to the previous PIC® Microcontroller  
(MCU) instruction sets, while maintaining an easy  
migration from PIC MCU instruction sets.  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
Most instructions are a single program memory word  
(24-bits). Only three instructions require two program  
memory locations.  
• The first source operand, which is a register ‘Wb’  
without any address modifier  
• The second source operand, which is a literal  
value  
Each single-word instruction is a 24-bit word divided  
into an 8-bit opcode which specifies the instruction  
type, and one or more operands which further specify  
the operation of the instruction.  
• The destination of the result (only if not the same  
as the first source operand), which is typically a  
register ‘Wd’ with or without an address modifier  
The instruction set is highly orthogonal and is grouped  
into five basic categories:  
The MACclass of DSP instructions may use some of the  
following operands:  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• The accumulator (A or B) to be used (required  
operand)  
• The W registers to be used as the two operands  
• The X and Y address space prefetch operations  
• The X and Y address space prefetch destinations  
• The accumulator write-back destination  
• DSP operations  
• Control operations  
Table 22-1 shows the general symbols used in  
describing the instructions.  
The other DSP instructions do not involve any  
multiplication, and may include:  
The dsPIC30F instruction set summary in Table 22-2  
lists all the instructions along with the Status flags  
affected by each instruction.  
• The accumulator to be used (required)  
• The source or destination operand (designated as  
Wso or Wdo, respectively) with or without an  
address modifier  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
• The amount of shift, specified by a W register ‘Wn’  
or a literal value  
• The first source operand, which is typically a  
register ‘Wb’ without any address modifier  
The control instructions may use some of the following  
operands:  
• The second source operand, which is typically a  
register ‘Ws’ with or without an address modifier  
• A program memory address  
• The destination of the result, which is typically a  
register ‘Wd’ with or without an address modifier  
• The mode of the table read and table write  
instructions  
However, word or byte-oriented file register instructions  
have two operands:  
All instructions are a single word, except for certain  
double word instructions, which were made double  
word instructions so that all the required information is  
available in these 48 bits. In the second word, the  
8 MSbs are ‘0’s. If this second word is executed as an  
instruction (by itself), it will execute as a NOP.  
• The file register specified by the value ‘f’  
• The destination, which could either be the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
© 2008 Microchip Technology Inc.  
DS70150D-page 165  
dsPIC30F6010A/6015  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the  
instruction. In these cases, the execution takes two  
instruction cycles with the additional instruction  
cycle(s) executed as a NOP. Notable exceptions are the  
BRA (unconditional/computed branch), indirect CALL/  
GOTO, all table reads and writes and RETURN/RETFIE  
instructions, which are single-word instructions, but  
take two or three cycles. Certain instructions that  
involve skipping over the subsequent instruction,  
require either two or three cycles if the skip is  
performed, depending on whether the instruction being  
skipped is a single-word or two-word instruction.  
Moreover, double word moves require two cycles. The  
double word instructions execute in two instruction  
cycles.  
Note:  
For more details on the instruction set,  
refer to the “dsPIC30F/33F Programmers  
Reference Manual” (DS70157).  
TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field Description  
#text  
(text)  
[text]  
{ }  
<n:m>  
.b  
Means literal defined by “text”  
Means “content of “text”  
Means “the location addressed by text”  
Optional field or operation  
Register bit field  
Byte mode selection  
.d  
.S  
Double Word mode selection  
Shadow register select  
.w  
Word mode selection (default)  
One of two accumulators {A, B}  
Acc  
AWB  
bit4  
C, DC, N, OV, Z  
Expr  
Accumulator Write-Back Destination Address register {W13, [W13]+ = 2}  
4-bit bit selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0x0000...0x1FFF}  
1-bit unsigned literal {0,1}  
f
lit1  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
lit14  
14-bit unsigned literal {0...16384}  
lit16  
16-bit unsigned literal {0...65535}  
lit23  
23-bit unsigned literal {0...8388608}; LSB must be ‘0’  
Field does not require an entry, may be blank  
DSP Status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate  
Program Counter  
None  
OA, OB, SA, SB  
PC  
Slit10  
Slit16  
Slit6  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
DS70150D-page 166  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)  
Field Description  
Wb  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register ∈  
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Dividend, Divisor working register pair (direct addressing)  
Multiplicand and Multiplier working register pair for Square instructions ∈  
{W4*W4,W5*W5,W6*W6,W7*W7}  
Wm,Wn  
Wm*Wm  
Wm*Wn  
Multiplicand and Multiplier working register pair for DSP instructions ∈  
{W4*W5,W4*W6,W4*W7,W5*W6,W5*W7,W6*W7}  
One of 16 working registers {W0..W15}  
Wn  
Wnd  
Wns  
WREG  
Ws  
One of 16 destination working registers {W0..W15}  
One of 16 source working registers {W0..W15}  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Source W register ∈  
Wso  
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
X data space prefetch address register for DSP instructions  
{[W8]+ = 6, [W8]+ = 4, [W8]+ = 2, [W8], [W8]- = 6, [W8]- = 4, [W8]- = 2,  
[W9]+ = 6, [W9]+ = 4, [W9]+ = 2, [W9], [W9]- = 6, [W9]- = 4, [W9]- = 2,  
[W9+W12], none}  
Wx  
Wxd  
Wy  
X data space prefetch destination register for DSP instructions {W4..W7}  
Y data space prefetch address register for DSP instructions  
{[W10]+ = 6, [W10]+ = 4, [W10]+ = 2, [W10], [W10]- = 6, [W10]- = 4, [W10]- = 2,  
[W11]+ = 6, [W11]+ = 4, [W11]+ = 2, [W11], [W11]- = 6, [W11]- = 4, [W11]- = 2,  
[W11+W12], none}  
Wyd  
Y data space prefetch destination register for DSP instructions {W4..W7}  
© 2008 Microchip Technology Inc.  
DS70150D-page 167  
dsPIC30F6010A/6015  
TABLE 22-2: INSTRUCTION SET OVERVIEW  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Add Accumulators  
words cycles  
1
ADD  
ADD  
Acc  
1
1
OA,OB,SA,S  
B
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
f = f + WREG  
1
1
1
1
1
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
f
WREG = f + WREG  
Wd = lit10 + Wd  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
Wd = Wb + Ws  
Wd = Wb + lit5  
16-bit Signed Add to Accumulator  
OA,OB,SA,S  
B
2
3
4
ADDC  
AND  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
f = f + WREG + (C)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
f
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
f,WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
Wd = Wb + lit5 + (C)  
1
f = f .AND. WREG  
1
AND  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
1
N,Z  
f,WREG  
AND  
1
N,Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
AND  
Wd = Wb .AND. Ws  
1
N,Z  
AND  
Wd = Wb .AND. lit5  
1
N,Z  
ASR  
ASR  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
ASR  
1
f,WREG  
ASR  
1
Ws,Wd  
ASR  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
ASR  
1
N,Z  
5
6
BCLR  
BRA  
BCLR  
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
BRA  
Branch if greater than or equal  
Branch if unsigned greater than or equal  
Branch if greater than  
Branch if unsigned greater than  
Branch if less than or equal  
Branch if unsigned less than or equal  
Branch if less than  
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
BRA  
None  
BRA  
None  
BRA  
None  
BRA  
None  
BRA  
None  
BRA  
None  
BRA  
Branch if unsigned less than  
Branch if Negative  
None  
BRA  
None  
BRA  
Branch if Not Carry  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OA,Expr  
OB,Expr  
OV,Expr  
SA,Expr  
SB,Expr  
Expr  
BRA  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
BRA  
None  
BRA  
None  
BRA  
Branch if Accumulator A overflow  
Branch if Accumulator B overflow  
Branch if Overflow  
None  
BRA  
None  
BRA  
None  
BRA  
Branch if Accumulator A saturated  
Branch if Accumulator B saturated  
Branch Unconditionally  
Branch if Zero  
None  
BRA  
None  
BRA  
None  
BRA  
1 (2)  
2
None  
Z,Expr  
BRA  
Computed Branch  
None  
Wn  
7
BSET  
BSW  
BSET  
BSET  
BSW.C  
BSW.Z  
BTG  
Bit Set f  
1
None  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set Ws  
1
None  
8
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
Bit Toggle f  
1
None  
1
None  
Ws,Wb  
9
BTG  
1
None  
f,#bit4  
Ws,#bit4  
f,#bit4  
BTG  
Bit Toggle Ws  
1
None  
10  
BTSC  
BTSC  
Bit Test f, Skip if Clear  
1
None  
(2 or 3)  
BTSC  
Bit Test Ws, Skip if Clear  
1
1
None  
Ws,#bit4  
(2 or 3)  
DS70150D-page 168  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Bit Test f, Skip if Set  
words cycles  
11  
12  
BTSS  
BTST  
BTSS  
BTSS  
f,#bit4  
1
1
1
None  
None  
(2 or 3)  
Bit Test Ws, Skip if Set  
1
Ws,#bit4  
(2 or 3)  
BTST  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
Z
f,#bit4  
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
BTSTS.C  
BTSTS.Z  
CALL  
Bit Test Ws to C  
C
Ws,#bit4  
Bit Test Ws to Z  
Z
Ws,#bit4  
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call Subroutine  
C
Ws,Wb  
Z
Ws,Wb  
13  
BTSTS  
Z
f,#bit4  
C
Ws,#bit4  
Z
Ws,#bit4  
14  
15  
CALL  
CLR  
None  
None  
None  
None  
None  
lit23  
CALL  
Call indirect Subroutine  
f = 0x0000  
Wn  
CLR  
f
CLR  
WREG = 0x0000  
Ws = 0x0000  
WREG  
CLR  
Ws  
CLR  
Clear Accumulator  
OA,OB,SA,S  
B
Acc,Wx,Wxd,Wy,Wyd,AWB  
16  
17  
CLRWDT  
COM  
CLRWDT  
Clear Watchdog Timer  
1
1
WDTO,Sleep  
COM  
COM  
COM  
CP  
f
f = f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
f,WREG  
Ws,Wd  
f
WREG = f  
N,Z  
Wd = Ws  
N,Z  
18  
CP  
Compare f with WREG  
Compare Wb with lit5  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
19  
20  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
21  
22  
23  
24  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Compare Wb with Wn, skip if =  
Compare Wb with Wn, skip if >  
Compare Wb with Wn, skip if <  
Compare Wb with Wn, skip if ≠  
1
1
1
1
1
None  
None  
None  
None  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Wb, Wn  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
25  
26  
DAW  
DEC  
DAW  
Wn = decimal adjust Wn  
f = f –1  
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
C
Wn  
DEC  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
f
DEC  
WREG = f –1  
1
f,WREG  
Ws,Wd  
DEC  
Wd = Ws – 1  
1
27  
DEC2  
DEC2  
DEC2  
DEC2  
DISI  
f = f – 2  
1
f
WREG = f – 2  
1
f,WREG  
Ws,Wd  
Wd = Ws – 2  
1
28  
29  
DISI  
DIV  
Disable Interrupts for k instruction cycles  
Signed 16/16-bit Integer Divide  
Signed 32/16-bit Integer Divide  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Signed 16/16-bit Fractional Divide  
Do code to PC + Expr, lit14 + 1 times  
Do code to PC + Expr, (Wn) + 1 times  
Euclidean Distance (no accumulate)  
1
#lit14  
Wm,Wn  
18  
18  
18  
18  
18  
2
N,Z,C, OV  
N,Z,C, OV  
N,Z,C, OV  
N,Z,C, OV  
N,Z,C, OV  
None  
DIV.S  
DIV.SD  
Wm,Wn  
DIV.U  
DIV.UD  
DIVF  
DO  
Wm,Wn  
Wm,Wn  
30  
31  
DIVF  
DO  
Wm,Wn  
#lit14,Expr  
Wn,Expr  
Wm*Wm,Acc,Wx,Wy,Wxd  
DO  
2
None  
32  
33  
ED  
ED  
1
OA,OB,OAB,  
SA,SB,SAB  
EDAC  
EDAC  
Euclidean Distance  
1
1
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wm,Acc,Wx,Wy,Wxd  
© 2008 Microchip Technology Inc.  
DS70150D-page 169  
dsPIC30F6010A/6015  
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
words cycles  
34  
EXCH  
EXCH  
Swap Wns with Wnd  
1
1
None  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
Ws,Wnd  
Expr  
35  
36  
37  
38  
FBCL  
FF1L  
FF1R  
GOTO  
FBCL  
FF1L  
FF1R  
GOTO  
GOTO  
INC  
Find Bit Change from Left (MSb) Side  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
Go to address  
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
C
C
C
None  
Go to indirect  
None  
Wn  
39  
40  
41  
INC  
f = f + 1  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
f
INC  
WREG = f + 1  
f,WREG  
Ws,Wd  
INC  
Wd = Ws + 1  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f = f + 2  
f
WREG = f + 2  
f,WREG  
Ws,Wd  
Wd = Ws + 2  
f = f .IOR. WREG  
WREG = f .IOR. WREG  
Wd = lit10 .IOR. Wd  
Wd = Wb .IOR. Ws  
Wd = Wb .IOR. lit5  
Load Accumulator  
f
IOR  
N,Z  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
IOR  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
42  
LAC  
LAC  
OA,OB,OAB,  
SA,SB,SAB  
43  
44  
LNK  
LSR  
LNK  
LSR  
LSR  
LSR  
LSR  
LSR  
MAC  
Link Frame Pointer  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
None  
#lit14  
f = Logical Right Shift f  
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Multiply and Accumulate  
f,WREG  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
N,Z  
45  
46  
MAC  
MOV  
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,  
AWB  
MAC  
Square and Accumulate  
1
1
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd  
MOV  
Move f to Wn  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
1
1
None  
N,Z  
f,Wn  
MOV  
Move f to f  
f
MOV  
Move f to WREG  
N,Z  
f,WREG  
MOV  
Move 16-bit literal to Wn  
Move 8-bit literal to Wn  
Move Wn to f  
None  
None  
None  
None  
N,Z  
#lit16,Wn  
MOV.b  
MOV  
#lit8,Wn  
Wn,f  
MOV  
Move Ws to Wd  
Wso,Wdo  
MOV  
Move WREG to f  
WREG,f  
MOV.D  
MOV.D  
MOV.D  
MOVSAC  
MPY  
Move Double from W(ns):W(ns + 1) to Wd  
Move Double from Ws to W(nd + 1):W(nd)  
Move Double from Ws to W(nd + 1):W(nd)  
Prefetch and store Accumulator  
Multiply Wm by Wn to Accumulator  
None  
None  
None  
None  
Wns,Wd  
Ws,Wnd  
Ws,Wnd  
47  
48  
MOVSAC  
MPY  
Acc,Wx,Wxd,Wy,Wyd,AWB  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
OA,OB,OAB,  
SA,SB,SAB  
MPY  
Square Wm to Accumulator  
1
1
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd  
49  
50  
MPY.N  
MSC  
MPY.N  
MSC  
-(Multiply Wm by Wn) to Accumulator  
Multiply and Subtract from Accumulator  
1
1
1
1
None  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd,  
AWB  
51  
MUL  
MUL.SS  
MUL.SU  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
f
{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)  
1
1
1
1
None  
None  
MUL.US  
MUL.UU  
MUL.SU  
MUL.UU  
MUL  
{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)  
{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)  
{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)  
W3:W2 = f * WREG  
1
1
1
1
1
1
1
1
1
1
None  
None  
None  
None  
None  
DS70150D-page 170  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Negate Accumulator  
words cycles  
52  
NEG  
NEG  
Acc  
1
1
OA,OB,OAB,  
SA,SB,SAB  
NEG  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
53  
54  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
None  
f
POP  
None  
Wdo  
Wnd  
POP.D  
Pop from Top-of-Stack (TOS) to  
W(nd):W(nd+1)  
None  
POP.S  
PUSH  
PUSH  
Pop Shadow Registers  
1
1
1
1
1
1
All  
55  
PUSH  
Push f to Top-of-Stack (TOS)  
Push Wso to Top-of-Stack (TOS)  
None  
None  
f
Wso  
Wns  
PUSH.D  
PUSH.S  
PWRSAV  
RCALL  
Push W(ns):W(ns +1) to Top-of-Stack (TOS)  
Push Shadow Registers  
1
1
1
1
2
1
1
2
None  
None  
56  
57  
PWRSAV  
RCALL  
#lit1  
Expr  
Wn  
Go into Sleep or Idle mode  
Relative Call  
WDTO,Sleep  
None  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
Computed Call  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
None  
None  
None  
None  
None  
None  
None  
C,N,Z  
C,N,Z  
C,N,Z  
N,Z  
58  
REPEAT  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software device Reset  
#lit14  
Wn  
1
59  
60  
61  
62  
63  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
Return from interrupt  
3 (2)  
3 (2)  
3 (2)  
1
Return with literal in Wn  
#lit10,Wn  
Return from Subroutine  
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Store Accumulator  
f
RLC  
1
f,WREG  
RLC  
1
Ws,Wd  
64  
65  
66  
67  
RLNC  
RRC  
RLNC  
RLNC  
RLNC  
RRC  
1
f
1
N,Z  
f,WREG  
1
N,Z  
Ws,Wd  
1
C,N,Z  
C,N,Z  
C,N,Z  
N,Z  
f
RRC  
1
f,WREG  
RRC  
1
Ws,Wd  
RRNC  
SAC  
RRNC  
RRNC  
RRNC  
SAC  
1
f
1
N,Z  
f,WREG  
1
N,Z  
Ws,Wd  
1
None  
None  
C,N,Z  
None  
None  
None  
Acc,#Slit4,Wdo  
SAC.R  
SE  
Store Rounded Accumulator  
Wnd = sign extended Ws  
1
Acc,#Slit4,Wdo  
68  
69  
SE  
1
Ws,Wnd  
f
SETM  
SETM  
SETM  
SETM  
SFTAC  
f = 0xFFFF  
1
WREG = 0xFFFF  
1
WREG  
Ws  
Ws = 0xFFFF  
1
70  
71  
SFTAC  
SL  
Arithmetic Shift Accumulator by (Wn)  
1
OA,OB,OAB,  
SA,SB,SAB  
Acc,Wn  
SFTAC  
Arithmetic Shift Accumulator by Slit6  
1
1
OA,OB,OAB,  
SA,SB,SAB  
Acc,#Slit6  
SL  
SL  
SL  
SL  
SL  
f
f = Left Shift f  
1
1
1
1
1
1
1
1
1
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
WREG = Left Shift f  
Wd = Left Shift Ws  
f,WREG  
Ws,Wd  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
N,Z  
© 2008 Microchip Technology Inc.  
DS70150D-page 171  
dsPIC30F6010A/6015  
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Subtract Accumulators  
words cycles  
72  
SUB  
SUB  
Acc  
1
1
OA,OB,OAB,  
SA,SB,SAB  
SUB  
f = f – WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
f
SUB  
WREG = f – WREG  
Wn = Wn – lit10  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
SUB  
SUB  
Wd = Wb – Ws  
SUB  
Wd = Wb – lit5  
73  
74  
SUBB  
SUBR  
SUBB  
SUBB  
SUBB  
SUBB  
f = f – WREG – (C)  
WREG = f – WREG – (C)  
Wn = Wn – lit10 - (C)  
Wd = Wb – Ws – (C)  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
SUBB  
SUBR  
Wd = Wb – lit5 – (C)  
f = WREG – f  
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
SUBR  
SUBR  
SUBR  
WREG = WREG – f  
Wd = Ws – Wb  
Wd = lit5 - Wb  
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
75  
76  
SUBBR  
SWAP  
SUBBR  
SUBBR  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
f = WREG – f - (C)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
WREG = WREG – f – (C)  
Wd = Ws – Wb – (C)  
Wd = lit5 – Wb – (C)  
Wn = nibble swap Wn  
Wn = byte swap Wn  
None  
Wn  
77  
78  
79  
80  
81  
82  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
Read Prog<23:16> to Wd<7:0>  
Read Prog<15:0> to Wd  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
None  
Ws,Wd  
None  
Ws,Wd  
None  
Ws,Wd  
None  
Ws,Wd  
None  
XOR  
XOR  
N,Z  
f
XOR  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
N,Z  
f,WREG  
XOR  
N,Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
XOR  
N,Z  
XOR  
Wd = Wb .XOR. lit5  
N,Z  
83  
ZE  
ZE  
Wnd = Zero-Extend Ws  
C,Z,N  
DS70150D-page 172  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
23.1 MPLAB Integrated Development  
Environment Software  
23.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2008 Microchip Technology Inc.  
DS70150D-page 173  
dsPIC30F6010A/6015  
23.2 MPASM Assembler  
23.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
23.6 MPLAB SIM Software Simulator  
The MPLAB SIM Software Simulator allows code  
23.3 MPLAB C18 and MPLAB C30  
C Compilers  
development in  
a
PC-hosted environment by  
simulating the PIC MCUs and dsPIC® DSCs on an  
instruction level. On any given instruction, the data  
areas can be examined or modified and stimuli can be  
applied from a comprehensive stimulus controller.  
Registers can be logged to files for further run-time  
analysis. The trace buffer and logic analyzer display  
extend the power of the simulator to record and track  
program execution, actions on I/O, most peripherals  
and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
Microchip’s PIC18 and PIC24  
C
compilers for  
families of  
microcontrollers and the dsPIC30 and dsPIC33 family  
of digital signal controllers. These compilers provide  
powerful integration capabilities, superior code  
optimization and ease of use not found with other  
compilers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
23.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS70150D-page 174  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
23.7 MPLAB ICE 2000  
High-Performance  
23.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers  
cost-effective, in-circuit Flash debugging from the graph-  
ical user interface of the MPLAB Integrated Develop-  
ment Environment. This enables a designer to develop  
and debug source code by setting breakpoints, single  
stepping and watching variables, and CPU status and  
peripheral registers. Running at full speed enables  
testing hardware and applications in real time. MPLAB  
ICD 2 also serves as a development programmer for  
selected PIC devices.  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data monitor-  
ing features. Interchangeable processor modules allow  
the system to be easily reconfigured for emulation of  
different processors. The architecture of the MPLAB  
ICE 2000 In-Circuit Emulator allows expansion to  
support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
23.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a  
modular, detachable socket assembly to support  
various package types. The ICSP™ cable assembly is  
included as a standard item. In Stand-Alone mode, the  
MPLAB PM3 Device Programmer can read, verify and  
program PIC devices without a PC connection. It can  
also set code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
23.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high-speed, noise tolerant,  
Low-Voltage Differential Signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be  
supported, and new features will be added, such as  
software breakpoints and assembly code trace.  
MPLAB REAL ICE offers significant advantages over  
competitive emulators including low-cost, full-speed  
emulation, real-time variable watches, trace analysis,  
complex breakpoints, a ruggedized probe interface and  
long (up to three meters) interconnection cables.  
© 2008 Microchip Technology Inc.  
DS70150D-page 175  
dsPIC30F6010A/6015  
23.11 PICSTART Plus Development  
Programmer  
23.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully  
functional systems. Most boards include prototyping  
areas for adding custom circuitry and provide application  
firmware and source code for examination and  
modification.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
23.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™  
demonstration/development board series of circuits,  
Microchip has  
a
line of evaluation kits and  
demonstration software for analog filter design,  
®
KEELOQ security ICs, CAN, IrDA®, PowerSmart  
battery management, SEEVAL® evaluation system,  
Sigma-Delta ADC, flow rate sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS70150D-page 176  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
24.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of dsPIC30F electrical characteristics. Additional information will be provided in future  
revisions of this document as it becomes available.  
For detailed information about the dsPIC30F architecture and core, refer to the “dsPIC30F Family Reference Manual”  
(DS70046).  
Absolute maximum ratings for the dsPIC30F family are listed below. Exposure to these maximum rating conditions for  
extended periods may affect device reliability. Functional operation of the device at these or any other conditions above  
the parameters indicated in the operation listings of this specification is not implied.  
Absolute Maximum Ratings(†)  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD and MCLR) (Note 1)..................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +5.5V  
Voltage on MCLR with respect to VSS........................................................................................................ 0V to +13.25V  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin (Note 2)................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..........................................................................................................±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD)...................................................................................................±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports (Note 2)....................................................................................................200 mA  
Note 1: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100Ω should be used when applying a “low” level to the MCLR/VPP pin, rather  
than pulling this pin directly to VSS.  
2: Maximum allowable current is a function of device maximum power dissipation. See Table 24-6.  
NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
© 2008 Microchip Technology Inc.  
DS70150D-page 177  
dsPIC30F6010A/6015  
24.1 DC Characteristics  
TABLE 24-1: OPERATING MIPS VS. VOLTAGE FOR dsPIC30F6010A  
Max MIPS  
dsPIC30F6010A-20E  
VDD Range  
(in Volts)  
Temp Range  
(in °C)  
dsPIC30F6010A-30I  
4.5-5.5  
4.5-5.5  
3.0-3.6  
3.0-3.6  
2.5-3.0  
-40 to +85  
-40 to +125  
-40 to +85  
-40 to +125  
-40 to +85  
30  
20  
10  
20  
15  
TABLE 24-2: OPERATING MIPS VS. VOLTAGE FOR dsPIC30F6015  
Max MIPS  
VDD Range  
(in Volts)  
Temp Range  
(in °C)  
dsPIC30F6015-30I  
dsPIC30F6015-20E  
4.5-5.5  
4.5-5.5  
3.0-3.6  
3.0-3.6  
2.5-3.0  
-40 to +85  
-40 to +125  
-40 to +85  
-40 to +125  
-40 to +85  
30  
20  
10  
20  
15  
TABLE 24-3: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
dsPIC30F6010A-30I/dsPIC30F6015-30I  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
dsPIC30F6010A-20E/dsPIC30F6015-20E  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
TJ  
TA  
-40  
-40  
+150  
+125  
°C  
°C  
Power Dissipation:  
Internal chip power dissipation:  
PINT = VDD × (IDD –  
)
IOH  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
=
({ VDD – VOH} × IOH ) +  
(
)
VOL × IOL  
I/O  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/θJA  
TABLE 24-4: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
Package Thermal Resistance, 80-pin TQFP (14x14x1mm)  
Package Thermal Resistance, 80-pin TQFP (12x12x1mm)  
Package Thermal Resistance, 64-pin TQFP (10x10x1mm)  
θJA  
θJA  
θJA  
36  
39  
39  
°C/W  
°C/W  
°C/W  
1
1
1
Note 1: Junction to ambient thermal resistance, Theta-ja (θJA) numbers are achieved by package simulations.  
DS70150D-page 178  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
TABLE 24-5: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
Operating Voltage(2)  
DC10  
DC11  
DC12  
DC16  
VDD  
VDD  
VDR  
VPOR  
Supply Voltage  
2.5  
3.0  
1.75  
5.5  
5.5  
V
V
V
V
Industrial temperature  
Extended temperature  
Supply Voltage  
RAM Data Retention Voltage(3)  
VDD Start Voltage  
to ensure internal  
VSS  
Power-on Reset signal  
DC17  
SVDD  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
0.05  
V/ms 0-5V in 0.1 sec  
0-3V in 60 ms  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
3: This is the limit to which VDD can be lowered without losing RAM data.  
© 2008 Microchip Technology Inc.  
DS70150D-page 179  
dsPIC30F6010A/6015  
TABLE 24-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Operating Current (IDD)(2)  
DC31a  
DC31b  
DC31c  
DC31e  
DC31f  
DC31g  
DC30a  
DC30b  
DC30c  
DC30e  
DC30f  
DC30g  
DC23a  
DC23b  
DC23c  
DC23e  
DC23f  
DC23g  
DC24a  
DC24b  
DC24c  
DC24e  
DC24f  
DC24g  
DC27a  
DC27b  
DC27d  
DC27e  
DC27f  
DC29a  
DC29b  
9.5  
9.5  
9.4  
18  
15  
15  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
25°C  
85°C  
125°C  
25°C  
85°C  
3.3V  
5V  
15  
0.128 MIPS  
LPRC (512 kHz)  
27  
17  
27  
17  
27  
15  
23  
15  
23  
3.3V  
5V  
14  
23  
(1.8 MIPS)  
FRC (7.37 MHz)  
30  
45  
29  
45  
27  
45  
40  
50  
40  
50  
3.3V  
5V  
36  
50  
4 MIPS  
44  
64  
43  
64  
43  
64  
50  
75  
51  
75  
3.3V  
51  
75  
10 MIPS  
85  
125  
125  
125  
115  
115  
185  
185  
185  
255  
255  
84  
5V  
3.3V  
5V  
84  
89  
89  
147  
146  
145  
206  
205  
20 MIPS  
30 MIPS  
5V  
Note 1: Data in “Typical” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have  
an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1  
driven with external square wave from rail-to-rail. All I/O pins are configured as Inputs and pulled to VDD.  
MCLR = VDD, WDT, FSCM, LVD and BOR are disabled. CPU, SRAM, Program Memory and Data  
Memory are operational. No peripheral modules are operating.  
DS70150D-page 180  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
TABLE 24-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Parameter  
Typical(1,2)  
No.  
Max  
Units  
Conditions  
Operating Current (IDD)(3)  
DC51a  
DC51b  
DC51c  
DC51e  
DC51f  
DC51g  
DC50a  
DC50b  
DC50c  
DC50e  
DC50f  
DC50g  
DC43a  
DC43b  
DC43c  
DC43e  
DC43f  
DC43g  
DC44a  
DC44b  
DC44c  
DC44e  
DC44f  
DC44g  
DC47a  
DC47b  
DC47d  
DC47e  
DC47f  
DC49a  
DC49b  
9.0  
9.0  
9.0  
17  
16  
16  
11  
14  
14  
14  
26  
26  
26  
18  
18  
18  
38  
38  
38  
30  
30  
30  
51  
51  
51  
53  
53  
53  
89  
89  
89  
70  
70  
115  
115  
115  
155  
155  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
25°C  
85°C  
125°C  
25°C  
85°C  
3.3V  
5V  
0.128 MIPS  
LPRC (512 kHz)  
12  
11  
3.3V  
5V  
(1.8 MIPS)  
FRC (7.37 MHz)  
25  
24  
23  
19  
20  
20  
34  
33  
33  
34  
35  
35  
59  
59  
59  
59  
60  
99  
99  
100  
138  
139  
3.3V  
5V  
4 MIPS  
3.3V  
10 MIPS  
5V  
3.3V  
5V  
20 MIPS  
30 MIPS  
5V  
Note 1: Data in “Typical” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Base IIDLE current is measured with Core off, Clock on and all modules turned off.  
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have  
an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1  
driven with external square wave from rail-to-rail. All I/O pins are configured as Inputs and pulled to VDD.  
MCLR = VDD, WDT, FSCM, LVD and BOR are disabled. CPU, SRAM, Program Memory and Data  
Memory are operational. No peripheral modules are operating.  
© 2008 Microchip Technology Inc.  
DS70150D-page 181  
dsPIC30F6010A/6015  
TABLE 24-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Power-Down Current (IPD)(2)  
DC60a  
DC60b  
DC60c  
DC60e  
DC60f  
DC60g  
DC61a  
DC61b  
DC61c  
DC61e  
DC61f  
DC61g  
DC62a  
DC62b  
DC62c  
DC62e  
DC62f  
DC62g  
DC63a  
DC63b  
DC63c  
DC63e  
DC63f  
DC63g  
0.2  
1.2  
12  
0.4  
1.7  
15  
9
40  
65  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
3.3V  
5V  
Base Power-Down Current(3)  
55  
90  
15  
15  
15  
30  
30  
30  
10  
10  
10  
15  
15  
15  
52  
52  
52  
60  
60  
60  
9
3.3V  
5V  
9
(3)  
Watchdog Timer Current: ΔIWDT  
18  
17  
16  
4
5
3.3V  
4
Timer1 w/32 kHz Crystal: ΔITI32(3)  
4
6
5V  
5
29  
32  
33  
34  
39  
38  
3.3V  
(3)  
BOR On: ΔIBOR  
5V  
Note 1: Data in the “Typical” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and  
pulled high. BOR, WDT, etc. are all switched off.  
3: The Δ current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
DS70150D-page 182  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
Input Low Voltage(2)  
VIL  
DI10  
I/O pins:  
with Schmitt Trigger buffer  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.3 VDD  
0.2 VDD  
V
V
V
V
V
V
DI15  
DI16  
DI17  
DI18  
DI19  
MCLR  
OSC1 (in XT, HS and LP modes)  
OSC1 (in RC mode)(3)  
SDA, SCL  
SMBus disabled  
SDA, SCL  
SMBus enabled  
VIH  
Input High Voltage(2)  
DI20  
I/O pins:  
with Schmitt Trigger buffer  
0.8 VDD  
0.8 VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
DI25  
DI26  
DI27  
DI28  
DI29  
MCLR  
OSC1 (in XT, HS and LP modes) 0.7 VDD  
OSC1 (in RC mode)(3)  
0.9 VDD  
0.7 VDD  
0.8 VDD  
SDA, SCL  
SMBus disabled  
SMBus enabled  
SDA, SCL  
ICNPU  
IIL  
CNXX Pull-up Current(2)  
DI30  
50  
250  
400  
μA VDD = 5V, VPIN = VSS  
Input Leakage Current(2)(4)(5)  
DI50  
DI51  
I/O ports  
0.01  
0.50  
±1  
μA  
μA  
μA  
VSS VPIN VDD,  
Pin at high-impedance  
Analog Input Pins  
VSS VPIN VDD,  
Pin at high-impedance  
DI55  
DI56  
MCLR  
OSC1  
0.05  
0.05  
±5  
±5  
VSS VPIN VDD  
μA VSS VPIN VDD, XT, HS  
and LP Osc mode  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
3: In RC oscillator configuration, the OSC1/CLKl pin is a Schmitt Trigger input. It is not recommended that  
the dsPIC30F device be driven with an external clock while in RC mode.  
4: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
5: Negative current is defined as current sourced by the pin.  
© 2008 Microchip Technology Inc.  
DS70150D-page 183  
dsPIC30F6010A/6015  
TABLE 24-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
VOL  
Output Low Voltage(2)  
DO10  
DO16  
I/O ports  
0.6  
0.15  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 5V  
IOL = 2.0 mA, VDD = 3V  
IOL = 1.6 mA, VDD = 5V  
IOL = 2.0 mA, VDD = 3V  
OSC2/CLKO  
(RC or EC Osc mode)  
Output High Voltage(2)  
I/O ports  
0.72  
VOH  
DO20  
DO26  
VDD – 0.7  
VDD – 0.2  
VDD – 0.7  
VDD – 0.1  
V
V
V
V
IOH = -3.0 mA, VDD = 5V  
IOH = -2.0 mA, VDD = 3V  
IOH = -1.3 mA, VDD = 5V  
IOH = -2.0 mA, VDD = 3V  
OSC2/CLKO  
(RC or EC Osc mode)  
Capacitive Loading Specs  
on Output Pins(2)  
DO50 COSC2  
OSC2/SOSC2 pin  
15  
pF In XTL, XT, HS and LP modes  
when external clock is used to  
drive OSC1.  
DO56 CIO  
DO58 CB  
All I/O pins and OSC2  
SCL, SDA  
50  
pF RC or EC Osc mode  
pF In I2C™ mode  
400  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
FIGURE 24-1:  
BROWN-OUT RESET CHARACTERISTICS  
VDD  
(Device not in Brown-out Reset)  
BO15  
BO10  
(Device in Brown-out Reset)  
Reset (due to BOR)  
Power-up Time-out  
DS70150D-page 184  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
TABLE 24-11: ELECTRICAL CHARACTERISTICS: BOR  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min Typ(1) Max Units  
Conditions  
BO10  
VBOR  
BOR Voltage(2) on  
VDD transition  
high-to-low  
BORV = 11(3)  
V
Not in operating  
range  
BORV = 10  
BORV = 01  
BORV = 00  
2.6  
4.1  
4.58  
5
2.71  
4.4  
V
V
4.73  
V
BO15  
VBHYS  
mV  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
3: 11’ values not in usable operating range.  
TABLE 24-12: DC CHARACTERISTICS: PROGRAM AND EEPROM  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min Typ(1)  
Max  
Units  
Conditions  
Data EEPROM Memory(2)  
Byte Endurance  
D120  
D121  
ED  
100K  
VMIN  
1M  
E/W -40°C TA +85°C  
VDRW  
VDD for Read/Write  
5.5  
V
Using EECON to read/write  
VMIN = Minimum operating  
voltage  
D122  
D123  
TDEW  
Erase/Write Cycle Time  
Characteristic Retention  
2
ms  
TRETD  
40  
100  
Year Provided no other specifications  
are violated  
D124  
IDEW  
IDD During Programming  
Program FLASH Memory(2)  
Cell Endurance  
10  
30  
mA Row Erase  
D130  
D131  
EP  
10K  
100K  
E/W -40°C TA +85°C  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
D133  
D134  
D135  
VEB  
VDD for Bulk Erase  
4.5  
3.0  
1
5.5  
5.5  
2
V
V
VPEW  
TPEW  
TRETD  
VDD for Erase/Write  
Erase/Write Cycle Time  
Characteristic Retention  
ms  
40  
100  
Year Provided no other specifica-  
tions are violated  
D136  
D137  
D138  
TEB  
IPEW  
IEB  
ICSP™ Block Erase Time  
IDD During Programming  
IDD During Programming  
4
30  
30  
ms  
10  
10  
mA Row Erase  
mA Bulk Erase  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
2: These parameters are characterized but not tested in manufacturing.  
© 2008 Microchip Technology Inc.  
DS70150D-page 185  
dsPIC30F6010A/6015  
24.2 AC Characteristics and Timing Parameters  
The information contained in this section defines dsPIC30F AC characteristics and timing parameters.  
TABLE 24-13: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Operating voltage VDD range as described in DC Spec Section 24.1 “DC  
Characteristics”.  
FIGURE 24-2:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
Legend:  
CL  
Pin  
RL = 464 Ω  
CL = 50 pF for all pins except OSC2  
5 pF for OSC2 output  
VSS  
FIGURE 24-3:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1  
CLKO  
OS20  
OS30 OS30  
OS25  
OS31 OS31  
OS40  
OS41  
DS70150D-page 186  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
TABLE 24-14: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param Symb  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
No.  
ol  
OS10  
FOSC External CLKN Frequency(2)  
(External clocks allowed only  
in EC mode)  
DC  
4
4
40  
10  
MHz EC  
MHz EC with 4x PLL  
MHz EC with 8x PLL  
MHz EC with 16x PLL  
10  
4
7.5(3)  
Oscillator Frequency(2)  
DC  
0.4  
4
4
4
10  
MHz RC  
MHz XTL  
MHz XT  
4
4
4
10  
MHz XT with 4x PLL  
MHz XT with 8x PLL  
MHz XT with 16x PLL  
MHz HS  
MHz HS/2 with 4x PLL  
MHz HS/2 with 8x PLL  
MHz HS/2 with 16x PLL  
MHz HS/3 with 4x PLL  
MHz HS/3 with 8x PLL  
MHz HS/3 with 16x PLL  
kHz LP  
10  
7.5(3)  
25  
10  
10  
10  
10  
12(4)  
12(4)  
12(4)  
20(4)  
20(4)  
15(3)  
25  
32.768  
25  
22.5(3)  
OS20  
TOSC  
TCY  
TOSC = 1/FOSC  
See parameter OS10  
for FOSC value  
OS25  
OS30  
Instruction Cycle Time(2)(5)  
33  
DC  
ns  
ns  
See Table 24-16  
EC  
TosL, External Clock(2) in (OSC1)  
TosH High or Low Time  
.45 x TOSC  
OS31  
TosR, External Clock(2) in (OSC1)  
TosF Rise or Fall Time  
20  
ns  
EC  
OS40  
OS41  
TckR CLKO Rise Time(2)(6)  
ns  
ns  
See parameter DO31  
See parameter DO32  
TckF  
CLKO Fall Time(2)(6)  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
3: Limited by the PLL output frequency range.  
4: Limited by the PLL input frequency range.  
5: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at “min.”  
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the  
“Max.” cycle time limit is “DC” (no clock) for all devices.  
6: Measurements are taken in EC or ERC modes. The CLKO signal is measured on the OSC2 pin. CLKO is  
low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).  
© 2008 Microchip Technology Inc.  
DS70150D-page 187  
dsPIC30F6010A/6015  
TABLE 24-15: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.5 TO 5.5 V)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OS50  
FPLLI  
PLL Input Frequency Range(2)  
4
4
4
4
4
10  
10  
MHz EC with 4x PLL  
MHz EC with 8x PLL  
MHz EC with 16x PLL  
MHz XT with 4x PLL  
MHz XT with 8x PLL  
MHz XT with 16x PLL  
MHz HS/2 with 4x PLL  
MHz HS/2 with 8x PLL  
MHz HS/2 with 16x PLL  
7.5(4)  
10  
10  
4
7.5(4)  
10  
5(3)  
5(3)  
5(3)  
4
10  
7.5(4)  
8.33(3) MHz HS/3 with 4x PLL  
8.33(3) MHz HS/3 with 8x PLL  
4
4
7.5(4)  
120  
MHz HS/3 with 16x PLL  
OS51  
OS52  
FSYS  
TLOC  
On-Chip PLL Output(2)  
16  
MHz EC, XT, HS/2, HS/3 modes  
with PLL  
PLL Start-up Time (Lock Time)  
20  
50  
μs  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: Limited by oscillator frequency range.  
4: Limited by device operating frequency range.  
TABLE 24-16: PLL JITTER  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature  
AC CHARACTERISTICS  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
-40°C TA +85°C  
OS61  
x4 PLL  
0.251  
0.251  
0.256  
0.256  
0.355  
0.355  
0.362  
0.362  
0.67  
0.413  
0.413  
0.47  
%
%
%
%
%
%
%
%
%
%
%
VDD = 3.0 to 3.6V  
VDD = 3.0 to 3.6V  
VDD = 4.5 to 5.5V  
VDD = 4.5 to 5.5V  
VDD = 3.0 to 3.6V  
VDD = 3.0 to 3.6V  
VDD = 4.5 to 5.5V  
VDD = 4.5 to 5.5V  
VDD = 3.0 to 3.6V  
VDD = 4.5 to 5.5V  
VDD = 4.5 to 5.5V  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +85°C  
-40°C TA +125°C  
0.47  
x8 PLL  
0.584  
0.584  
0.664  
0.664  
0.92  
x16 PLL  
0.632  
0.632  
0.956  
0.956  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70150D-page 188  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
TABLE 24-17: INTERNAL CLOCK TIMING EXAMPLES  
Clock  
FOSC  
MIPS(3)  
MIPS(3)  
w/PLL x4  
MIPS(3)  
w/PLL x8  
MIPS(3)  
w/PLL x16  
Oscillator  
Mode  
TCY (μsec)(2)  
(MHz)(1)  
w/o PLL  
EC  
0.200  
4
20.0  
1.0  
0.05  
1.0  
4.0  
10.0  
8.0  
20.0  
16.0  
10  
25  
4
0.4  
2.5  
0.16  
1.0  
6.25  
1.0  
XT  
4.0  
10.0  
8.0  
20.0  
16.0  
10  
0.4  
2.5  
Note 1: Assumption: Oscillator Postscaler is divide by 1.  
2: Instruction Execution Cycle Time: TCY = 1/MIPS.  
3: Instruction Execution Frequency: MIPS = (FOSC * PLLx)/4 [since there are 4 Q clocks per instruction  
cycle].  
© 2008 Microchip Technology Inc.  
DS70150D-page 189  
dsPIC30F6010A/6015  
TABLE 24-18: AC CHARACTERISTICS: INTERNAL FRC ACCURACY  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature  
AC CHARACTERISTICS  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Internal FRC Accuracy @ FRC Freq. = 7.37 MHz(1)  
OS63  
FRC  
±2.00  
±5.00  
%
%
-40°C TA +85°C  
VDD = 3.0-5.5V  
-40°C TA +125°C VDD = 3.0-5.5V  
Note 1: Frequency calibrated at 25°C and 5V. TUN bits can be used to compensate for temperature drift.  
TABLE 24-19: AC CHARACTERISTICS: INTERNAL LPRC ACCURACY  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ Freq. = 512 kHz(1)  
OS65A  
OS65B  
OS65C  
-50  
-60  
-70  
+50  
+60  
+70  
%
%
%
VDD = 5.0V, ±10%  
VDD = 3.3V, ±10%  
VDD = 2.5V  
Note 1: Change of LPRC frequency as VDD changes.  
DS70150D-page 190  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 24-4:  
CLKOUT AND I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note: Refer to Figure 24-2 for load conditions.  
TABLE 24-20: CLKOUT AND I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)(2)(3)  
Min  
Typ(4)  
Max  
Units  
Conditions  
DO31  
DO32  
DI35  
TIOR  
TIOF  
TINP  
TRBP  
Port output rise time  
7
7
20  
20  
ns  
ns  
ns  
Port output fall time  
INTx pin high or low time (output)  
CNx high or low time (input)  
20  
DI40  
2 TCY  
Note 1: These parameters are asynchronous events not related to any internal clock edges.  
2: Measurements are taken in RC mode and EC mode where CLKO output is 4 x TOSC.  
3: These parameters are characterized but not tested in manufacturing.  
4: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
© 2008 Microchip Technology Inc.  
DS70150D-page 191  
dsPIC30F6010A/6015  
FIGURE 24-5:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING CHARACTERISTICS  
VDD  
SY12  
MCLR  
SY10  
Internal  
POR  
SY11  
SY30  
PWRT  
Time-out  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
SY20  
SY13  
SY13  
I/O Pins  
SY35  
FSCM  
Delay  
Note: Refer to Figure 24-2 for load conditions.  
DS70150D-page 192  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
TABLE 24-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max Units  
Conditions  
SY10  
SY11  
TmcL  
MCLR Pulse Width (low)  
Power-up Timer Period  
2
μs  
-40°C to +85°C  
TPWRT  
2
10  
43  
4
16  
64  
8
32  
128  
ms  
-40°C to +85°C, VDD =  
5V  
User programmable  
SY12  
SY13  
TPOR  
TIOZ  
Power-on Reset Delay(4)  
3
10  
30  
μs  
μs  
-40°C to +85°C  
I/O High-impedance from MCLR  
Low or Watchdog Timer Reset  
0.8  
1.0  
SY20  
TWDT1  
TWDT2  
TWDT3  
Watchdog Timer Time-out Period  
(No Prescaler)  
1.1  
1.2  
1.3  
2.0  
2.0  
2.0  
6.6  
5.0  
4.0  
ms  
ms  
ms  
VDD = 2.5V  
VDD = 3.3V, ±10%  
VDD = 5V, ±10%  
SY25  
SY30  
SY35  
TBOR  
TOST  
Brown-out Reset Pulse Width(3)  
Oscillator Start-up Timer Period  
Fail-Safe Clock Monitor Delay  
100  
1024 TOSC  
500  
μs  
μs  
VDD VBOR (D034)  
TOSC = OSC1 period  
-40°C to +85°C  
TFSCM  
900  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
3: Refer to Figure 24-1 and Table for BOR  
4: Characterized by design but not tested.  
FIGURE 24-6:  
BAND GAP START-UP TIME CHARACTERISTICS  
VBGAP  
0V  
Enable Band Gap  
(see Note)  
Band Gap  
Stable  
SY40  
Note: Set FBORPOR<7>.  
TABLE 24-22: BAND GAP START-UP TIME REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Band Gap Start-up Time  
Min  
Typ  
Max Units  
65  
Conditions  
SY40  
TBGAP  
40  
μs Defined as the time between the  
instant that the band gap is enabled  
and the moment that the band gap  
reference voltage is stable  
(RCON<13>Status bit).  
Note 1: These parameters are characterized but not tested in manufacturing.  
© 2008 Microchip Technology Inc.  
DS70150D-page 193  
dsPIC30F6010A/6015  
FIGURE 24-7:  
TIMER1, 2, 3, 4 AND 5 EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
Tx11  
Tx10  
Tx15  
OS60  
Tx20  
TMRX  
Note: Refer to Figure 24-2 for load conditions.  
TABLE 24-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
TA10  
TA11  
TA15  
TTXH  
TTXL  
TTXP  
TxCK High Time  
TxCK Low Time  
Synchronous,  
no prescaler  
0.5 TCY + 20  
ns  
ns  
Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
Asynchronous  
10  
ns  
ns  
Synchronous,  
no prescaler  
0.5 TCY + 20  
Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
ns  
Asynchronous  
10  
ns  
ns  
TxCK Input Period Synchronous,  
no prescaler  
TCY + 10  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
N = prescale  
value  
(TCY + 40)/N  
(1, 8, 64, 256)  
Asynchronous  
20  
ns  
OS60  
TA20  
Ft1  
SOSC1/T1CK oscillator input  
DC  
50  
kHz  
frequency range (oscillator enabled  
by setting bit TCS (T1CON, bit 1))  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
Note:  
Timer1 is a Type A.  
DS70150D-page 194  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
TABLE 24-24: TIMER2 AND TIMER4 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
TtxH  
TtxL  
TtxP  
TB10  
TB11  
TB15  
TxCK High Time Synchronous, 0.5 TCY + 20  
no prescaler  
ns  
Must also meet  
parameter TB15  
Synchronous,  
with prescaler  
10  
ns  
ns  
ns  
ns  
TxCK Low Time  
Synchronous, 0.5 TCY + 20  
no prescaler  
Must also meet  
parameter TB15  
Synchronous,  
with prescaler  
10  
TxCK Input Period Synchronous,  
no prescaler  
TCY + 10  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
(TCY + 40)/N  
TB20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
TABLE 24-25: TIMER3 AND TIMER5 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Symbol  
TtxH  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
TC10  
TC11  
TC15  
TxCK High Time  
TxCK Low Time  
Synchronous  
Synchronous  
0.5 TCY + 20  
ns  
ns  
ns  
Must also meet  
parameter TC15  
TtxL  
TtxP  
0.5 TCY + 20  
TCY + 10  
Must also meet  
parameter TC15  
TxCK Input Period Synchronous,  
no prescaler  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
(TCY + 40)/N  
TC20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5  
TCY  
© 2008 Microchip Technology Inc.  
DS70150D-page 195  
dsPIC30F6010A/6015  
FIGURE 24-8:  
TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS  
QEB  
TQ11  
TQ10  
TQ15  
TQ20  
POSCNT  
TABLE 24-26: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
TQ10 TtQH  
TQ11 TtQL  
TQ15 TtQP  
TQCK High Time Synchronous,  
with prescaler  
TCY + 20  
ns  
Must also meet  
parameter TQ15  
TQCK Low Time  
Synchronous,  
with prescaler  
TCY + 20  
ns  
ns  
Must also meet  
parameter TQ15  
TQCP Input  
Period  
Synchronous, 2 * TCY + 40  
with prescaler  
TQ20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70150D-page 196  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 24-9:  
INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS  
ICX  
IC10  
IC11  
IC15  
Note: Refer to Figure 24-2 for load conditions.  
TABLE 24-27: INPUT CAPTURE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
IC10  
IC11  
IC15  
TccL  
TccH  
TccP  
ICx Input Low Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
ICx Input High Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ICx Input Period  
(2 TCY + 40)/N  
N = prescale  
value (1, 4, 16)  
Note 1: These parameters are characterized but not tested in manufacturing.  
FIGURE 24-10:  
OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS  
OCx  
(Output Compare  
or PWM Mode)  
OC10  
OC11  
Note: Refer to Figure 24-2 for load conditions.  
TABLE 24-28: OUTPUT COMPARE MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OC10 TccF  
OC11 TccR  
OCx Output Fall Time  
OCx Output Rise Time  
ns  
ns  
See parameter DO32  
See parameter DO31  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
© 2008 Microchip Technology Inc.  
DS70150D-page 197  
dsPIC30F6010A/6015  
FIGURE 24-11:  
OCFA/OCFB  
OCx  
OC/PWM MODULE TIMING CHARACTERISTICS  
OC20  
OC15  
TABLE 24-29: SIMPLE OC/PWM MODE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OC15 TFD  
Fault Input to PWM I/O  
Change  
50  
ns  
OC20 TFLT  
Fault Input Pulse Width  
50  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
DS70150D-page 198  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 24-12:  
MOTOR CONTROL PWM MODULE FAULT TIMING CHARACTERISTICS  
MP30  
FLTA/B  
PWMx  
MP20  
FIGURE 24-13:  
MOTOR CONTROL PWM MODULE TIMING CHARACTERISTICS  
MP11 MP10  
PWMx  
Note: Refer to Figure 24-2 for load conditions.  
TABLE 24-30: MOTOR CONTROL PWM MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
See parameter DO32  
See parameter DO31  
MP10  
MP11  
TFPWM  
TRPWM  
TFD  
PWM Output Fall Time  
PWM Output Rise Time  
50  
ns  
ns  
ns  
Fault Input to PWM  
I/O Change  
MP20  
MP30  
TFH  
Minimum Pulse Width  
50  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
© 2008 Microchip Technology Inc.  
DS70150D-page 199  
dsPIC30F6010A/6015  
FIGURE 24-14:  
QEA/QEB INPUT CHARACTERISTICS  
TQ36  
QEA  
(input)  
TQ30  
TQ31  
TQ35  
QEB  
(input)  
TQ41  
TQ40  
TQ30  
TQ31  
TQ35  
QEB  
Internal  
TABLE 24-31: QUADRATURE DECODER TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Typ(2)  
Max  
Units  
Conditions  
TQ30  
TQ31  
TQ35  
TQ36  
TQ40  
TQUL  
Quadrature Input Low Time  
Quadrature Input High Time  
Quadrature Input Period  
Quadrature Phase Period  
6 TCY  
6 TCY  
ns  
ns  
ns  
ns  
ns  
TQUH  
TQUIN  
TQUP  
TQUFL  
12 TCY  
3 TCY  
Filter Time to Recognize Low,  
with Digital Filter  
3 * N * TCY  
N = 1, 2, 4, 16, 32, 64,  
128 and 256 (Note 2)  
TQ41  
TQUFH  
Filter Time to Recognize High,  
with Digital Filter  
3 * N * TCY  
ns  
N = 1, 2, 4, 16, 32, 64,  
128 and 256 (Note 2)  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: N = Index Channel Digital Filter Clock Divide Select Bits. Refer to Section 16. “Quadrature Encoder  
Interface (QEI)” in the “dsPIC30F Family Reference Manual” (DS70046).  
DS70150D-page 200  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 24-15:  
QEI MODULE INDEX PULSE TIMING CHARACTERISTICS  
QEA  
(input)  
QEB  
(input)  
Ungated  
Index  
TQ50  
TQ51  
Index Internal  
TQ55  
Position Coun-  
TABLE 24-32: QEI INDEX PULSE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
TQ50  
TQ51  
TQ55  
TqIL  
Filter Time to Recognize Low,  
with Digital Filter  
3 * N * TCY  
ns  
N = 1, 2, 4, 16, 32, 64,  
128 and 256 (Note 2)  
TqiH  
Tqidxr  
Filter Time to Recognize High,  
with Digital Filter  
3 * N * TCY  
3 TCY  
ns  
ns  
N = 1, 2, 4, 16, 32, 64,  
128 and 256 (Note 2)  
Index Pulse Recognized to Position  
Counter Reset (Ungated Index)  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Alignment of index pulses to QEA and QEB is shown for position counter reset timing only. Shown for  
forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but  
index pulse recognition occurs on falling edge.  
© 2008 Microchip Technology Inc.  
DS70150D-page 201  
dsPIC30F6010A/6015  
FIGURE 24-16:  
SPI MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP31  
SP21  
LSb  
BIT14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30  
MSb IN  
SP40  
LSb IN  
BIT14 - - - -1  
SP41  
Note: Refer to Figure 24-2 for load conditions.  
TABLE 24-33: SPI MASTER MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP11  
SP20  
SP21  
SP30  
SP31  
SP35  
TscL  
TscH  
TscF  
TscR  
TdoF  
TdoR  
SCKX Output Low Time(3)  
SCKX Output High Time(3)  
SCKX Output Fall Time(4)  
SCKX Output Rise Time(4)  
SDOX Data Output Fall Time(4)  
SDOX Data Output Rise Time(4)  
TCY/2  
TCY/2  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter DO32  
See parameter DO31  
See parameter DO32  
See parameter DO31  
TscH2doV, SDOX Data Output Valid after  
TscL2doV SCKX Edge  
SP40  
SP41  
TdiV2scH, Setup Time of SDIX Data Input  
20  
20  
ns  
ns  
TdiV2scL  
TscH2diL, Hold Time of SDIX Data Input  
TscL2diL to SCKX Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
to SCKX Edge  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCK is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPI pins.  
DS70150D-page 202  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 24-17:  
SPI MODULE MASTER MODE (CKE =1) TIMING CHARACTERISTICS  
SP36  
SCKX  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP21  
SCKX  
(CKP = 1)  
SP35  
SP20  
LSb  
MSb  
SP40  
BIT14 - - - - - -1  
SDOX  
SDIX  
SP30,SP31  
BIT14 - - - -1  
MSb IN  
SP41  
LSb IN  
Note: Refer to Figure 24-2 for load conditions.  
TABLE 24-34: SPI MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscL  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP11  
SP20  
SP21  
SP30  
SP31  
SP35  
SCKX output low time(3)  
SCKX output high time(3)  
SCKX output fall time(4)  
SCKX output rise time(4)  
SDOX data output fall time(4)  
SDOX data output rise time(4)  
TCY/2  
TCY/2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TscH  
TscF  
TscR  
TdoF  
TdoR  
See parameter DO32  
See parameter DO31  
See parameter DO32  
See parameter DO31  
TscH2doV, SDOX data output valid after  
TscL2doV SCKX edge  
SP36  
SP40  
SP41  
TdoV2sc, SDOX data output setup to  
TdoV2scL first SCKX edge  
30  
20  
20  
ns  
ns  
ns  
TdiV2scH, Setup time of SDIX data input  
TdiV2scL to SCKX edge  
TscH2diL, Hold time of SDIX data input  
TscL2diL  
to SCKX edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCK is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPI pins.  
© 2008 Microchip Technology Inc.  
DS70150D-page 203  
dsPIC30F6010A/6015  
FIGURE 24-18:  
SPI MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS  
SSX  
SP52  
SP50  
SCK  
(CKP =  
X
0
)
)
SP71  
SP70  
SP72  
SP73  
SCK  
(CKP =  
X
1
SP73  
LSb  
SP72  
SP35  
MSb  
BIT14 - - - - - -1  
SDO  
X
SP51  
SP30,SP31  
BIT14 - - - -1  
SDIX  
MSb IN  
SP41  
LSb IN  
Note: Refer to Figure 24-2 for load conditions.  
SP40  
TABLE 24-35: SPI MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70 TscL  
SP71 TscH  
SP72 TscF  
SP73 TscR  
SP30 TdoF  
SP31 TdoR  
SCKX Input Low Time  
30  
30  
10  
10  
25  
25  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCKX Input High Time  
SCKX Input Fall Time(3)  
SCKX Input Rise Time(3)  
SDOX Data Output Fall Time(3)  
SDOX Data Output Rise Time(3)  
See parameter DO32  
See parameter DO31  
SP35 TscH2doV, SDOX Data Output Valid after  
TscL2doV SCKX Edge  
SP40 TdiV2scH, Setup Time of SDIX Data Input  
TdiV2scL to SCKX Edge  
20  
20  
50  
ns  
ns  
ns  
ns  
ns  
SP41 TscH2diL, Hold Time of SDIX Data Input  
TscL2diL  
to SCKX Edge  
SP50 TssL2scH, SSXto SCKXor SCKXInput  
120  
TssL2scL  
SP51 TssH2doZ SSXto SDOX Output  
10  
High-impedance(3)  
SP52  
TscH2ssH SSX after SCK Edge  
TscL2ssH  
1.5 TCY +40  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: Assumes 50 pF load on all SPI pins.  
DS70150D-page 204  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 24-19:  
SPI MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS  
SP60  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP71  
SP70  
SP72  
SP73  
SP73  
SCKX  
(CKP = 1)  
SP35  
SP72  
LSb  
SP52  
BIT14 - - - - - -1  
MSb  
SDOX  
SDIX  
SP30,SP31  
BIT14 - - - -1  
SP51  
MSb IN  
SP41  
LSb IN  
SP40  
Note: Refer to Figure 24-2 for load conditions.  
TABLE 24-36: SPI MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscL  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP70  
SCKX Input Low Time  
30  
30  
10  
10  
25  
25  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SP71 TscH  
SP72 TscF  
SP73 TscR  
SP30 TdoF  
SP31 TdoR  
SCKX Input High Time  
SCKX Input Fall Time(3)  
SCKX Input Rise Time(3)  
SDOX Data Output Fall Time(3)  
SDOX Data Output Rise Time(3)  
See parameter DO32  
See parameter DO31  
SP35 TscH2doV, SDOX Data Output Valid after  
TscL2doV SCKX Edge  
SP40 TdiV2scH, Setup Time of SDIX Data Input  
TdiV2scL to SCKX Edge  
20  
20  
ns  
ns  
ns  
SP41 TscH2diL, Hold Time of SDIX Data Input  
TscL2diL  
to SCKX Edge  
SP50 TssL2scH, SSXto SCKXor SCKXinput  
120  
TssL2scL  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCK is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPI pins.  
© 2008 Microchip Technology Inc.  
DS70150D-page 205  
dsPIC30F6010A/6015  
TABLE 24-36: SPI MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS (CONTINUED)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP51 TssH2doZ SSto SDOX Output  
10  
50  
ns  
High-impedance(4)  
SP52 TscH2ssH SSXafter SCKX Edge  
1.5 TCY +  
40  
ns  
ns  
TscL2ssH  
SP60 TssL2doV SDOX Data Output Valid after  
SSX Edge  
50  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCK is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPI pins.  
DS70150D-page 206  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
2
FIGURE 24-20:  
I C™ BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCL  
SDA  
IM31  
IM34  
IM30  
IM33  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 24-2 for load conditions.  
2
FIGURE 24-21:  
I C™ BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCL  
IM11  
IM26  
IM10  
IM33  
IM25  
SDA  
In  
IM45  
IM40  
IM40  
SDA  
Out  
Note: Refer to Figure 24-2 for load conditions.  
© 2008 Microchip Technology Inc.  
DS70150D-page 207  
dsPIC30F6010A/6015  
2
TABLE 24-37: I C™ BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min(1)  
Max  
Units  
Conditions  
IM10  
IM11  
IM20  
IM21  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
IM40  
IM45  
IM50  
TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
pF  
1 MHz mode(2) TCY/2 (BRG + 1)  
THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TF:SCL  
TR:SCL  
SDA and SCL  
Fall Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
300  
300  
100  
1000  
300  
300  
CB is specified to be  
from 10 to 400 pF  
20 + 0.1 CB  
SDA and SCL  
Rise Time  
CB is specified to be  
from 10 to 400 pF  
20 + 0.1 CB  
250  
100  
TSU:DAT Data Input  
Setup Time  
THD:DAT Data Input  
Hold Time  
0
0
0.9  
TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
After this period the  
first clock pulse is  
generated  
Hold Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1)  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TAA:SCL Output Valid  
From Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
3500  
1000  
TBF:SDA Bus Free Time 100 kHz mode  
400 kHz mode  
4.7  
1.3  
Time the bus must be  
free before a new  
transmission can start  
1 MHz mode(2)  
CB  
Bus Capacitive Loading  
400  
Note 1: BRG is the value of the I2C Baud Rate Generator. Refer to Section 21. “Inter-Integrated Circuit (I2C™)”  
in the “dsPIC30F Family Reference Manual” (DS70046).  
2: Maximum pin capacitance = 10 pF for all I2C pins (for 1 MHz mode only).  
DS70150D-page 208  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
2
FIGURE 24-22:  
I C™ BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCL  
SDA  
IS34  
IS31  
IS30  
IS33  
Stop  
Condition  
Start  
Condition  
2
FIGURE 24-23:  
I C™ BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS21  
IS11  
IS10  
SCL  
IS30  
IS26  
IS31  
IS33  
IS25  
SDA  
In  
IS45  
IS40  
IS40  
SDA  
Out  
© 2008 Microchip Technology Inc.  
DS70150D-page 209  
dsPIC30F6010A/6015  
2
TABLE 24-38: I C™ BUS DATA TIMING REQUIREMENTS (SLAVE MODE  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
IS10  
TLO:SCL Clock Low Time 100 kHz mode  
400 kHz mode  
4.7  
μs  
μs  
Device must operate at a  
minimum of 1.5 MHz  
1.3  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
4.0  
µs  
µs  
IS11  
THI:SCL  
Clock High Time 100 kHz mode  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
µs  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
300  
300  
100  
1000  
300  
300  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
pF  
IS20  
IS21  
IS25  
IS26  
IS30  
IS31  
IS33  
IS34  
IS40  
IS45  
IS50  
TF:SCL  
TR:SCL  
SDA and SCL  
Fall Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
SDA and SCL  
Rise Time  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
TSU:DAT Data Input  
Setup Time  
250  
100  
100  
0
THD:DAT Data Input  
Hold Time  
0
0.9  
0.3  
0
TSU:STA Start Condition  
Setup Time  
4.7  
0.6  
0.25  
4.0  
0.6  
0.25  
4.7  
0.6  
0.6  
4000  
600  
250  
0
Only relevant for Repeated  
Start condition  
THD:STA Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
THD:STO Stop Condition  
Hold Time  
TAA:SCL  
Output Valid From 100 kHz mode  
3500  
1000  
350  
Clock  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
0
0
TBF:SDA Bus Free Time  
4.7  
1.3  
0.5  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus Capacitive Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins (for 1 MHz mode only).  
DS70150D-page 210  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 24-24:  
CAN MODULE I/O TIMING CHARACTERISTICS  
CXTX Pin  
(output)  
New Value  
Old Value  
CA10 CA11  
CA20  
CXRX Pin  
(input)  
TABLE 24-39: CAN MODULE I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2) Max  
Units  
Conditions  
TioF  
TioR  
Tcwf  
CA10  
CA11  
CA20  
Port Output Fall Time  
Port Output Rise Time  
ns  
ns  
ns  
See parameter DO32  
See parameter DO31  
Pulse Width to Trigger  
CAN Wake-up Filter  
500  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
© 2008 Microchip Technology Inc.  
DS70150D-page 211  
dsPIC30F6010A/6015  
(1)  
TABLE 24-40: 10-BIT HIGH-SPEED A/D MODULE SPECIFICATIONS  
Standard Operating Conditions: 2.7V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Device Supply  
AD01  
AD02  
AVDD  
AVSS  
Module VDD Supply  
Module VSS Supply  
Greater of  
VDD – 0.3  
or 2.7  
Lesser of  
VDD + 0.3  
or 5.5  
V
V
Vss - 0.3  
VSS + 0.3  
Reference Inputs  
AD05  
AD06  
AD07  
AD08  
VREFH  
VREFL  
VREF  
IREF  
Reference Voltage High  
Reference Voltage Low  
AVss + 2.7  
AVss  
AVDD  
V
V
V
AVDD – 2.7  
AVDD + 0.3  
Absolute Reference Voltage AVss – 0.3  
Current Drain  
200  
.001  
300  
3
μA A/D operating  
μA A/D off  
Analog Input  
AD10  
AD12  
VINH-VINL Full-Scale Input Span  
VREFL  
VREFH  
±0.244  
V
Leakage Current  
±0.001  
μA VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 5V  
Source Impedance = 5 kΩ  
AD13  
AD17  
Leakage Current  
±0.001  
±0.244  
μA VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
Source Impedance = 5 kΩ  
RIN  
Recommended Impedance  
of Analog Voltage Source  
Ω
See Table 20-2  
DC Accuracy  
10 data bits  
±1  
AD20 Nr  
Resolution  
Integral Nonlinearity(2)  
bits  
AD21 INL  
+1  
+1  
±1  
±1  
±1  
±1  
±6  
±6  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 5V  
AD21A INL  
AD22 DNL  
AD22A DNL  
Integral Nonlinearity(2)  
Differential Nonlinearity(2)  
Differential Nonlinearity(2)  
Gain Error(2)  
±1  
±1  
±1  
±5  
±5  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 5V  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
AD23  
GERR  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 5V  
AD23A GERR  
Gain Error(2)  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Measurements taken with external VREF+ and VREF- used as the ADC voltage references.  
3: The A/D conversion result never decreases with an increase in the input voltage, and has no missing  
codes.  
DS70150D-page 212  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
(1)  
TABLE 24-40: 10-BIT HIGH-SPEED A/D MODULE SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 2.7V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Offset Error(2)  
Min.  
Typ  
Max.  
Units  
Conditions  
AD24  
EOFF  
±1  
±2  
±3  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 5V  
AD24A EOFF  
Offset Error(2)  
Monotonicity(3)  
±1  
±2  
±3  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
AD25  
Guaranteed  
Dynamic Performance  
AD30 THD  
Total Harmonic Distortion  
-64  
57  
-67  
58  
dB  
dB  
AD31 SINAD  
Signal to Noise and  
Distortion  
AD32 SFDR  
Spurious Free Dynamic  
Range  
67  
71  
dB  
AD33  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
500  
kHz  
bits  
AD34 ENOB  
9.29  
9.41  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Measurements taken with external VREF+ and VREF- used as the ADC voltage references.  
3: The A/D conversion result never decreases with an increase in the input voltage, and has no missing  
codes.  
© 2008 Microchip Technology Inc.  
DS70150D-page 213  
dsPIC30F6010A/6015  
FIGURE 24-25:  
10-BIT HIGH-SPEED A/D CONVERSION TIMING CHARACTERISTICS  
(CHPS = 01, SIMSAM = 0, ASAM = 0, SSRC = 000)  
AD50  
ADCLK  
Instruction  
Execution  
SET SAMP  
CLEAR SAMP  
SAMP  
ch0_dischrg  
ch0_samp  
ch1_dischrg  
ch1_samp  
eoc  
AD61  
AD60  
TSAMP  
AD55  
AD55  
DONE  
ADIF  
ADRES(0)  
ADRES(1)  
1
2
3
4
5
6
8
9
5
6
8
9
- Software sets ADCON. SAMP to start sampling.  
- Sampling starts after discharge period.  
1
2
TSAMP is described in Section 17. “10-bit A/D Converter” of the “dsPIC30F Family Reference Manual” (DS70046).  
- Software clears ADCON. SAMP to start conversion.  
3
4
5
6
8
9
- Sampling ends, conversion sequence starts.  
- Convert bit 9.  
- Convert bit 8.  
- Convert bit 0.  
- One TAD for end of conversion.  
DS70150D-page 214  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
FIGURE 24-26:  
10-BIT HIGH-SPEED A/D CONVERSION TIMING CHARACTERISTICS  
(CHPS = 01, SIMSAM = 0, ASAM = 1, SSRC = 111, SAMC = 00001)  
AD50  
ADCLK  
Instruction  
Execution  
SET ADON  
SAMP  
ch0_dischrg  
ch0_samp  
ch1_dischrg  
ch1_samp  
eoc  
TSAMP  
TSAMP  
AD55  
AD55  
TCONV  
DONE  
ADIF  
ADRES(0)  
ADRES(1)  
1
2
3
4
5
6
7
3
4
5
6
8
3
4
- Software sets ADCON. ADON to start AD operation.  
- Sampling starts after discharge period.  
TSAMP is described in Section 17. “10-bit A/D Converter”  
of the “dsPIC30F Family Reference Manual” (DS70046).  
- Convert bit 0.  
1
2
5
6
7
8
- One TAD for end of conversion.  
- Begin conversion of next channel.  
- Sample for time specified by SAMC.  
TSAMP is described in Section 17. “10-bit A/D Converter”  
of the “dsPIC30F Family Reference Manual” (DS70046).  
- Convert bit 9.  
- Convert bit 8.  
3
4
© 2008 Microchip Technology Inc.  
DS70150D-page 215  
dsPIC30F6010A/6015  
TABLE 24-41: 10-BIT HIGH-SPEED A/D CONVERSION TIMING REQUIREMENTS  
Standard Operating Conditions: 2.7V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ(1)  
Max.  
Units  
Conditions  
Clock Parameters  
AD50 TAD  
AD51 tRC  
A/D Clock Period  
A/D Internal RC Oscillator Period  
84  
ns  
ns  
See Table 20-2(2)  
700  
900  
1100  
Conversion Rate  
AD55 tCONV  
AD56 FCNV  
Conversion Time  
Throughput Rate  
12 TAD  
1.0  
Msps See Table 20-2(2)  
AD57 TSAMP Sample Time  
1 TAD  
See Table 20-2(2)  
Timing Parameters  
AD60 tPCS  
Conversion Start from Sample  
1.0 TAD  
Auto-Convert Trigger  
(SSRC = 111) not  
selected  
Trigger(3)  
AD61 tPSS  
AD62 tCSS  
AD63 tDPU  
Sample Start from Setting  
Sample (SAMP) Bit  
0.5 TAD  
0.5 TAD  
1.5 TAD  
μs  
Conversion Completion to  
Sample Start (ASAM = 1)(3)  
(4)  
Time to Stabilize Analog Stage  
from A/D Off to A/D On(3)  
20  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
3: Characterized by design but not tested.  
4: tDPU is the time required for the ADC module to stabilize when it is turned on (ADCON1<ADON> = 1). Dur-  
ing this time the ADC result is indeterminate.  
DS70150D-page 216  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
25.0 PACKAGING INFORMATION  
25.1 Package Marking Information  
64-Lead TQFP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
dsPIC30F6015  
e
3
-30I/PT  
0712XXX  
80-Lead TQFP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
dsPIC30F6010  
e
3
A-30I/PT  
0712XXX  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2008 Microchip Technology Inc.  
DS70150D-page 217  
dsPIC30F6010A/6015  
64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
A1  
β
L
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
64  
0.50 BSC  
1.00  
MAX  
Number of Leads  
Lead Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
N
e
A
A2  
A1  
L
1.20  
1.05  
0.15  
0.75  
0.95  
0.05  
0.45  
Foot Length  
0.60  
Footprint  
Foot Angle  
L1  
φ
1.00 REF  
3.5°  
0°  
7°  
Overall Width  
E
D
E1  
D1  
c
12.00 BSC  
12.00 BSC  
10.00 BSC  
10.00 BSC  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
0.09  
0.17  
11°  
0.20  
0.27  
13°  
b
α
0.22  
12°  
12°  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
11°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-085B  
DS70150D-page 218  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
e
E1  
N
b
NOTE 1  
12 3  
α
NOTE 2  
A
c
φ
A2  
β
A1  
L1  
L
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
80  
0.50 BSC  
1.00  
MAX  
Number of Leads  
Lead Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Foot Length  
N
e
A
A2  
A1  
L
1.20  
1.05  
0.15  
0.75  
0.95  
0.05  
0.45  
0.60  
Footprint  
Foot Angle  
L1  
φ
1.00 REF  
3.5°  
0°  
7°  
Overall Width  
Overall Length  
E
D
E1  
D1  
c
b
α
β
14.00 BSC  
14.00 BSC  
12.00 BSC  
12.00 BSC  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0.09  
0.17  
11°  
0.20  
0.27  
13°  
0.22  
12°  
12°  
11°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-092B  
© 2008 Microchip Technology Inc.  
DS70150D-page 219  
dsPIC30F6010A/6015  
80-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
e
b
E1  
N
NOTE 1  
c
1 2 3  
α
NOTE 2  
φ
A
β
A1  
L1  
L
A2  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
80  
0.65 BSC  
1.00  
MAX  
Number of Leads  
Lead Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Foot Length  
N
e
A
A2  
A1  
L
1.20  
1.05  
0.15  
0.75  
0.95  
0.05  
0.45  
0.60  
Footprint  
Foot Angle  
L1  
φ
1.00 REF  
3.5°  
0°  
7°  
Overall Width  
Overall Length  
E
D
E1  
D1  
c
16.00 BSC  
16.00 BSC  
14.00 BSC  
14.00 BSC  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0.09  
0.22  
11°  
0.20  
0.38  
13°  
b
α
0.32  
12°  
12°  
β
11°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-116B  
DS70150D-page 220  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
Revision D (June 2008)  
APPENDIX A: REVISION HISTORY  
This revision reflects these updates:  
Revision A (July 2005)  
• Changed the location of the input reference in the  
10-bit High-Speed ADC Functional Block Diagram  
(see Figure 20-1)  
Original data sheet for dsPIC30F6010A/6015 devices.  
• Added FUSE Configuration Register (FICD)  
details (see Section 21.6 “Device Configuration  
Registers” and Table 21-9)  
Revision B (September 2006)  
This revision reflects updates in these areas:  
• Data Ram protection feature enables segments of  
RAM to be protected when used in conjunction  
with Boot and Secure Code Segment Security  
(see Section 3.2.7 “Data Ram Protection Fea-  
ture”)  
• Removed erroneous statement regarding genera-  
tion of CAN receive errors (see Section 19.4.5  
“Receive Errors”)  
• Electrical Specifications:  
- Resolved TBD values for parameters DO10,  
DO16, DO20, and DO26 (see Table 24-10)  
• BSRAM and SSRAM SFRs added to support  
Data Ram Protection (see Table 3-3)  
- 10-bit High-Speed ADC tPDU timing parame-  
ter (time to stabilize) has been updated from  
20 µs typical to 20 µs maximum (see  
Table 24-41)  
• Base Instruction CP1 removed (see Table 22-2)  
• Supported I2C Slave addresses (see Table 17-2)  
• Revised Electrical Characteristics:  
- Operating current (IDD) specifications (see  
Table 24-6)  
- Parameter OS65 (Internal RC Accuracy) has  
been expanded to reflect multiple Min and  
Max values for different temperatures (see  
Table 24-19)  
- Idle current (IIDLE) specifications (see  
Table 24-7)  
- Parameter DC12 (RAM Data Retention Volt-  
age) Min and Max values have been updated  
(see Table 24-5)  
- Power-down current (IPD) specifications (see  
Table 24-8)  
- I/O Pin input specifications (see Table 24-9)  
- BOR voltage limits (see Table 24-11)  
- Parameter D134 (Erase/Write Cycle Time)  
has been updated to include Min and Max  
values and the Typ value has been removed  
(see Table 24-12)  
- Watchdog Timer time-out limits (see  
Table 24-21)  
• Added note to package drawings.  
- Removed parameters OS62 (Internal FRC  
Jitter) and OS64 (Internal FRC Drift) and  
Note 2 from AC Characteristics (see  
Table 24-18)  
Revision C (January 2007)  
This revision includes updates to the packaging  
diagrams.  
- Parameter OS63 (Internal FRC Accuracy)  
has been expanded to reflect multiple Min  
and Max values for different temperatures  
(see Table 24-18)  
- Updated Min and Max values and Conditions  
for parameter SY11 and updated Min, Typ,  
and Max values and Conditions for parame-  
ter SY20 (see Table 24-21)  
• Additional minor corrections throughout the  
document  
© 2008 Microchip Technology Inc.  
DS70150D-page 221  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 222  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
INDEX  
Oscillator System ..................................................... 151  
Output Compare Mode .............................................. 85  
PWM Module ............................................................. 96  
Quadrature Encoder Interface ................................... 89  
Reset System .......................................................... 155  
Shared Port Structure ................................................ 60  
SPI ........................................................................... 106  
SPI Master/Slave Connection .................................. 106  
UART Receiver ........................................................ 118  
UART Transmitter .................................................... 117  
10-bit High-Speed A/D Functional ........................... 138  
16-bit Timer1 Module (Type A Timer) ........................ 66  
16-bit Timer2 (Type B Timer) for dsPIC30F6010A .... 72  
16-bit Timer2 (Type B Timer) for dsPIC30F6015 ...... 72  
16-bit Timer3 (Type C Timer) .................................... 73  
16-bit Timer4 (Type B Timer) .................................... 78  
16-bit Timer5 (Type C Timer) .................................... 78  
32-bit Timer2/3 for dsPIC30F6010A .......................... 70  
32-bit Timer2/3 for dsPIC30F6015 ............................ 71  
32-bit Timer4/5 .......................................................... 77  
BOR. See Brown-out Reset.  
A
A/D  
Aborting a Conversion ............................................. 140  
Acquisition Requirements ........................................ 144  
ADCHS .................................................................... 137  
ADCON1 .................................................................. 137  
ADCON2 .................................................................. 137  
ADCON3 .................................................................. 137  
ADCSSL ................................................................... 137  
ADPCFG .................................................................. 137  
Configuring Analog Port Pins ................................... 146  
Connection Considerations ...................................... 146  
Conversion Operation .............................................. 139  
Conversion Rate Parameters ................................... 141  
Conversion Speeds .................................................. 141  
Effects of a Reset ..................................................... 145  
Operation During CPU Idle Mode ............................ 145  
Operation During CPU Sleep Mode ......................... 145  
Output Formats ........................................................ 145  
Power-Down Modes ................................................. 145  
Programming the Start of Conversion Trigger ......... 140  
Register Map ............................................................ 147  
Result Buffer ............................................................ 139  
Selecting the Conversion Clock ............................... 140  
Selecting the Conversion Sequence ........................ 139  
Voltage Reference Schematic ................................. 142  
1 Msps Configuration Guideline ............................... 142  
10-bit High-Speed Analog-to-Digital  
Brown-out Reset (BOR) ................................................... 149  
C
C Compilers  
MPLAB C18 ............................................................. 174  
MPLAB C30 ............................................................. 174  
CAN  
Baud Rate Setting ................................................... 130  
Bit Timing ......................................................... 130  
Phase Segments ............................................. 131  
Prescaler ......................................................... 131  
Propagation Segment ...................................... 131  
Sample Point ................................................... 131  
Synchronization ............................................... 131  
CAN1 Register Map for dsPIC30F6010A/6015 ....... 132  
CAN2 Register Map for dsPIC30F6010A ................ 134  
Frame Types ........................................................... 125  
Message Reception ................................................. 128  
Acceptance Filter Masks ................................. 128  
Acceptance Filters ........................................... 128  
Receive Buffers ............................................... 128  
Receive Errors ................................................. 128  
Receive Interrupts ........................................... 128  
Receive Overrun .............................................. 128  
Message Transmission ............................................ 129  
Aborting ........................................................... 129  
Errors ............................................................... 129  
Priority ............................................................. 129  
Sequence ........................................................ 129  
Transmit Buffers .............................................. 129  
Transmit Interrupts .......................................... 130  
Operation Modes ..................................................... 127  
Disable ............................................................ 127  
Error Recognition ............................................. 127  
Initialization ...................................................... 127  
Listen-Only ...................................................... 127  
Loopback ......................................................... 127  
Normal ............................................................. 127  
Overview .................................................................. 125  
CAN Module .................................................................... 125  
Center-Aligned PWM ......................................................... 99  
Code Examples  
Converter Module .................................................... 137  
600 ksps Configuration Guideline ............................ 143  
750 ksps Configuration Guideline ............................ 143  
AC Characteristics ........................................................... 186  
Internal FRC Jitter, Accuracy and Drift .................... 190  
Internal LPRC Accuracy ........................................... 190  
Load Conditions ....................................................... 186  
Temperature and Voltage Specifications ................. 186  
Address Generator Units ................................................... 35  
Alternate Vector Table ....................................................... 45  
Alternate 16-bit Timer/Counter ........................................... 91  
Assembler  
MPASM Assembler .................................................. 174  
Automatic Clock Stretch ................................................... 112  
During 10-bit Addressing (STREN = 1) .................... 112  
During 7-bit Addressing (STREN = 1) ...................... 112  
Receive Mode .......................................................... 112  
Transmit Mode ......................................................... 112  
B
Barrel Shifter ...................................................................... 22  
Bit-Reversed Addressing ................................................... 38  
Example ..................................................................... 38  
Implementation .......................................................... 38  
Modifier Values (table) ............................................... 39  
Sequence Table (16-Entry) ........................................ 39  
Block Diagrams  
CAN Buffers and Protocol Engine ............................ 126  
Dedicated Port Structure ............................................ 59  
DSP Engine ............................................................... 19  
dsPIC30F6010A ......................................................... 10  
dsPIC30F6015 ........................................................... 11  
External Power-on Reset Circuit .............................. 158  
Input Capture Mode ................................................... 81  
I2C ............................................................................ 110  
Data EEPROM Block Erase ...................................... 56  
© 2008 Microchip Technology Inc.  
DS70150D-page 223  
dsPIC30F6010A/6015  
Data EEPROM Block Write ........................................58  
Data EEPROM Read .................................................55  
Data EEPROM Word Erase .......................................56  
Data EEPROM Word Write ........................................57  
Erasing a Row of Program Memory ...........................51  
Initiating a Programming Sequence ...........................52  
Loading Write Latches ...............................................52  
Port Write/Read Example ..........................................60  
Code Protection ...............................................................149  
Complementary PWM Operation .....................................100  
Configuring Analog Port Pins .............................................60  
Core Overview ...................................................................15  
CPU Architecture Overview ...............................................15  
Customer Change Notification Service ............................228  
Customer Notification Service ..........................................228  
Customer Support ............................................................228  
FBORPOR ............................................................... 161  
FGS ......................................................................... 161  
FOSC ....................................................................... 161  
FWDT ...................................................................... 161  
Device Overview .................................................................. 9  
Divide Support ................................................................... 18  
DSP Engine ....................................................................... 18  
Multiplier .................................................................... 20  
dsPIC30F6010A Port Register Map .................................. 61  
dsPIC30F6015 Port Register Map ..................................... 62  
Dual Output Compare Match Mode ................................... 86  
Continuous Pulse Mode ............................................. 86  
Single Pulse Mode ..................................................... 86  
E
Edge-Aligned PWM ........................................................... 98  
Electrical Characteristics ................................................. 177  
Absolute Maximum Ratings ..................................... 177  
BOR ......................................................................... 185  
Equations  
A/D Conversion Clock .............................................. 140  
Baud Rate ................................................................ 121  
PWM Period ............................................................... 98  
PWM Resolution ........................................................ 98  
Serial Clock Rate ..................................................... 114  
Time Quantum for Clock Generation ....................... 131  
Errata ................................................................................... 7  
External Interrupt Requests ............................................... 45  
D
Data Access from Program Memory Using  
Program Space Visibility ....................................................26  
Data Accumulators and Adder/Subtracter ..........................20  
Data Space Write Saturation .....................................22  
Write Back ..................................................................21  
Data Accumulators and Adder/Subtractor  
Overflow and Saturation ............................................20  
Round Logic ...............................................................21  
Data Address Space ..........................................................27  
Alignment ...................................................................30  
Alignment (Figure) .....................................................30  
Effect of Invalid Memory Accesses ............................30  
MCU and DSP (MAC Class) Instructions Example ....29  
Memory Map ........................................................27, 28  
Near Data Space .......................................................31  
Software Stack ...........................................................31  
Spaces .......................................................................30  
Width ..........................................................................30  
Data EEPROM Memory .....................................................55  
Erasing .......................................................................56  
Erasing, Block ............................................................56  
Erasing, Word ............................................................56  
Protection Against Spurious Write .............................58  
Reading ......................................................................55  
Write Verify ................................................................58  
Writing ........................................................................57  
Writing, Block .............................................................58  
Writing, Word .............................................................57  
DC Characteristics ...........................................................178  
Brown-out Reset ......................................................184  
I/O Pin Output Specifications ...................................184  
Idle Current (IIDLE) ...................................................181  
Operating Current (IDD) ............................................180  
Operating MIPS vs. Voltage for dsPIC30F6010A ....178  
Operating MIPS vs. Voltage for dsPIC30F6015 ......178  
Power-Down Current (IPD) .......................................182  
Program and EEPROM ............................................185  
Thermal Operating Conditions for  
F
Fast Context Saving .......................................................... 45  
Flash Program Memory ..................................................... 49  
In-Circuit Serial Programming (ICSP) ........................ 49  
Run-Time Self-Programming (RTSP) ........................ 49  
Table Instruction Operation Summary ....................... 49  
I
I/O Ports ............................................................................. 59  
Parallel I/O (PIO) ....................................................... 59  
Idle Current (IIDLE) ........................................................... 181  
In-Circuit Debugger (ICD 2) ............................................. 162  
In-Circuit Serial Programming (ICSP) .............................. 149  
Independent PWM Output ............................................... 101  
Initialization Condition for RCON Register Case 1 .......... 159  
Initialization Condition for RCON Register Case 2 .......... 159  
Input Capture Module ........................................................ 81  
Interrupts ................................................................... 82  
Operation During Sleep and Idle Modes .................... 82  
Register Map ............................................................. 83  
Simple Capture Event Mode ...................................... 81  
Input Change Notification Module ...................................... 63  
Register Map (bits 15-8) ............................................ 63  
Register Map (bits 7-0 for dsPIC30F6010A) .............. 63  
Register Map (bits 7-0 for dsPIC30F6015) ................ 63  
Instruction Addressing Modes ........................................... 35  
File Register Instructions ........................................... 35  
Fundamental Modes Supported ................................ 35  
MAC Instructions ....................................................... 36  
MCU Instructions ....................................................... 35  
Move and Accumulator Instructions ........................... 36  
Other Instructions ...................................................... 36  
Instruction Set  
dsPIC30F6010A/6015 ..............................................178  
Thermal Packaging Characteristics .........................178  
Dead-Time Generators ....................................................100  
Assignment ..............................................................100  
Ranges .....................................................................100  
Selection Bits ...........................................................100  
Development Support ......................................................173  
Device Configuration  
Overview .................................................................. 168  
Summary ................................................................. 165  
Internet Address .............................................................. 228  
Interrupt Controller  
Register Map ............................................................163  
Device Configuration Registers ........................................161  
DS70150D-page 224  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
Register Map (dsPIC30F6010A) ................................ 46  
Register Map (dsPIC30F6015) .................................. 47  
Interrupt Priority ................................................................. 42  
Interrupt Sequence ............................................................ 45  
Interrupt Stack Frame ................................................ 45  
Interrupts ............................................................................ 41  
I2C Master Operation  
Initial Clock Source Selection .................................. 152  
Low-Power RC (LPRC) ........................................... 154  
LP Oscillator Control ................................................ 153  
Phase Locked Loop (PLL) ....................................... 153  
Start-up Timer (OST) ............................................... 153  
Oscillator Selection .......................................................... 149  
Output Compare Module ................................................... 85  
Interrupts ................................................................... 87  
Operation During CPU Idle Mode .............................. 87  
Operation During CPU Sleep Mode .......................... 87  
Register Map ............................................................. 88  
Baud Rate Generator ............................................... 113  
Clock Arbitration ....................................................... 114  
Multi-Master Communication, Bus Collision  
and Bus Arbitration .................................................. 114  
Reception ................................................................. 113  
Transmission ............................................................ 113  
I2C Module  
P
Packaging Information ..................................................... 217  
Marking .................................................................... 217  
Peripheral Module Disable (PMD) Registers ................... 162  
PICSTART Plus Development Programmer .................... 176  
Pin Diagrams ................................................................... 5–6  
Pinout Descriptions ............................................................ 12  
POR. See Power-on Reset.  
Addresses ................................................................ 111  
General Call Address Support ................................. 113  
Interrupts .................................................................. 113  
IPMI Support ............................................................ 113  
Master Operation ..................................................... 113  
Master Support ........................................................ 113  
Operating Function Description ............................... 109  
Operation During CPU Sleep and Idle Modes ......... 114  
Pin Configuration ..................................................... 109  
Programmer’s Model ................................................ 109  
Register Map ............................................................ 115  
Registers .................................................................. 109  
Slope Control ........................................................... 113  
Software Controlled Clock Stretching (STREN = 1) . 112  
Various Modes ......................................................... 109  
I2C 10-bit Slave Mode Operation ..................................... 111  
10-bit Mode Slave Reception ................................... 112  
10-bit Mode Slave Transmission .............................. 112  
I2C 7-bit Slave Mode Operation ....................................... 111  
Reception ................................................................. 111  
Transmission ............................................................ 111  
I2C™ Module ................................................................... 109  
Position Measurement Mode ............................................. 90  
Power Saving Modes  
Idle ........................................................................... 161  
Sleep ....................................................................... 160  
Power-on Reset (POR) .................................................... 149  
Oscillator Start-up Timer (OST) ............................... 149  
Power-up Timer (PWRT) ......................................... 149  
Power-Saving Modes ....................................................... 160  
Power-Saving Modes (Sleep and Idle) ............................ 149  
Program Address Space .................................................... 23  
Construction .............................................................. 24  
Data Access from Program Memory Using Table Instruc-  
tions ................................................................... 25  
Data Access from, Address Generation .................... 24  
Memory Map .............................................................. 23  
Table Instructions  
TBLRDH ............................................................ 25  
TBLRDL ............................................................. 25  
TBLWTH ............................................................ 25  
TBLWTL ............................................................ 25  
Program Counter ............................................................... 16  
Program Data Table Access .............................................. 26  
Program Space Visibility  
M
Memory Organization ......................................................... 23  
Core Register Map ..................................................... 32  
Microchip Internet Web Site ............................................. 228  
Modulo Addressing ............................................................ 36  
Applicability ................................................................ 38  
Operation Example .................................................... 37  
Start and End Address ............................................... 37  
W Address Register Selection ................................... 37  
Motor Control PWM Module ............................................... 95  
8-Output Register Map ............................................. 104  
MPLAB ASM30 Assembler, Linker, Librarian .................. 174  
MPLAB ICD 2 In-Circuit Debugger .................................. 175  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator ........................................................... 175  
MPLAB Integrated Development Environment  
Software ........................................................................... 173  
MPLAB PM3 Device Programmer ................................... 175  
MPLAB REAL ICE In-Circuit Emulator System ................ 175  
MPLINK Object Linker/MPLIB Object Librarian ............... 174  
Window into Program Space Operation .................... 27  
Programmable ................................................................. 149  
Programmable Digital Noise Filters ................................... 91  
Programmer’s Model ......................................................... 16  
Diagram ..................................................................... 17  
Programming Operations ................................................... 51  
Algorithm for Program Flash ...................................... 51  
Erasing a Row of Program Memory .......................... 51  
Initiating the Programming Sequence ....................... 52  
Loading Write Latches ............................................... 52  
Protection Against Accidental Writes to OSCCON .......... 155  
PWM Duty Cycle Comparison Units .................................. 99  
Duty Cycle Immediate Updates ................................. 99  
Duty Cycle Register Buffers ...................................... 99  
PWM Fault Pins ............................................................... 102  
Enable Bits .............................................................. 102  
Fault States ............................................................. 102  
Input Modes ............................................................. 102  
Cycle-by-Cycle ................................................ 102  
Latched ............................................................ 102  
Priority ..................................................................... 102  
PWM Operation During CPU Idle Mode .......................... 103  
PWM Operation During CPU Sleep Mode ....................... 103  
O
Operating Current (IDD) .................................................... 180  
Oscillator  
Operating Modes (Table) ......................................... 150  
System Overview ..................................................... 149  
Oscillator Configurations .................................................. 152  
Fail-Safe Clock Monitor ............................................ 154  
Fast RC (FRC) ......................................................... 153  
© 2008 Microchip Technology Inc.  
DS70150D-page 225  
dsPIC30F6010A/6015  
PWM Output and Polarity Control ....................................102  
Output Pin Control ...................................................102  
PWM Output Override ......................................................101  
Complementary Output Mode ..................................101  
Synchronization .......................................................101  
PWM Period .......................................................................98  
PWM Special Event Trigger .............................................103  
Postscaler ................................................................103  
PWM Time Base ................................................................97  
Continuous Up/Down Counting Modes ......................97  
Double Update Mode .................................................98  
Free-Running Mode ...................................................97  
Postscaler ..................................................................98  
Prescaler ....................................................................98  
Single-Shot Mode ......................................................97  
PWM Update Lockout ......................................................103  
Operation During CPU Idle Mode ............................ 107  
Operation During CPU Sleep Mode ......................... 107  
SDOx Disable .......................................................... 105  
Slave Select Synchronization .................................. 107  
SPI1 Register Map ................................................... 108  
SPI2 Register Map ................................................... 108  
Word and Byte Communication ............................... 105  
STATUS Register .............................................................. 16  
Symbols Used in Opcode Descriptions ........................... 166  
System Integration ........................................................... 149  
Register Map for dsPIC30F6010A ........................... 163  
Register Map for dsPIC30F6015 ............................. 163  
T
Timer1 Module ................................................................... 65  
Gate Operation .......................................................... 66  
Interrupt ..................................................................... 67  
Operation During Sleep Mode ................................... 66  
Prescaler ................................................................... 66  
Real-Time Clock ........................................................ 67  
Interrupts ........................................................... 67  
Oscillator Operation ........................................... 67  
Register Map ............................................................. 68  
16-bit Asynchronous Counter Mode .......................... 65  
16-bit Synchronous Counter Mode ............................ 65  
16-bit Timer Mode ...................................................... 65  
Timer2 and Timer3 Selection Mode ................................... 86  
Timer2/3 Module ................................................................ 69  
ADC Event Trigger ..................................................... 74  
Gate Operation .......................................................... 74  
Interrupt ..................................................................... 74  
Operation During Sleep Mode ................................... 74  
Register Map ............................................................. 75  
Timer Prescaler ......................................................... 74  
32-bit Synchronous Counter Mode ............................ 69  
32-bit Timer Mode ...................................................... 69  
Timer4/5 Module ................................................................ 77  
Register Map ............................................................. 79  
Timing Diagrams  
Q
QEI  
16-bit Up/Down Position Counter Mode .....................90  
Count Direction Status .......................................90  
Error Checking ...................................................90  
Quadrature Encoder Interface (QEI) Module .....................89  
Interrupts ....................................................................92  
Logic ..........................................................................90  
Operation During CPU Idle Mode ..............................91  
Operation During CPU Sleep Mode ...........................91  
Register Map ..............................................................93  
Timer Operation During CPU Idle Mode ....................92  
Timer Operation During CPU Sleep Mode .................91  
R
Reader Response ............................................................229  
Reset ........................................................................149, 155  
Reset Sequence .................................................................43  
Reset Sources ...........................................................43  
Resets  
Brown-out Rest (BOR), Programmable ...................157  
POR with Long Crystal Start-up Time ......................157  
POR, Operating without FSCM and PWRT .............157  
Power-on Reset (POR) ............................................156  
Revision History ...............................................................221  
RTSP Control Registers .....................................................50  
NVMADR ...................................................................50  
NVMADRU .................................................................50  
NVMCON ...................................................................50  
NVMKEY ....................................................................50  
Band Gap Start-up Time .......................................... 193  
CAN Bit .................................................................... 130  
CAN I/O ................................................................... 211  
Center-Aligned PWM ................................................. 99  
Dead-Time ............................................................... 101  
Edge-Aligned PWM ................................................... 98  
External Clock .......................................................... 186  
Input Capture (CAPx) .............................................. 197  
I2C Bus Data (Master Mode) ................................... 207  
I2C Bus Data (Slave Mode) ..................................... 209  
I2C Bus Start/Stop Bits (Master Mode) .................... 207  
I2C Bus Start/Stop Bits (Slave Mode) ...................... 209  
Motor Control PWM ................................................. 199  
Motor Control PWM Fault ........................................ 199  
OC/PWM .................................................................. 198  
Output Compare (OCx) ............................................ 197  
PWM Output .............................................................. 87  
QEA/QEB Input ....................................................... 200  
QEI Module Index Pulse .......................................... 201  
Reset, Watchdog Timer, Oscillator Start-up  
S
Simple Capture Event Mode  
Capture Buffer Operation ...........................................82  
Capture Prescaler ......................................................81  
Hall Sensor Mode ......................................................82  
Timer2 and Timer3 Selection Mode ...........................82  
Simple Output Compare Match Mode ................................86  
Simple PWM Mode ............................................................86  
Input Pin Fault Protection ...........................................86  
Period .........................................................................87  
Single-Pulse PWM Operation ..........................................101  
Software Controlled Clock Stretching (STREN = 1) .........112  
Software Simulator (MPLAB SIM) ....................................174  
Software Stack Pointer, Frame Pointer ..............................16  
CALL Stack Frame .....................................................31  
SPI Module .......................................................................105  
Framed SPI Support ................................................107  
Operating Function Description ...............................105  
Timer and Power-up Timer ...................................... 192  
SPI Master Mode (CKE = 0) .................................... 202  
SPI Master Mode (CKE = 1) .................................... 203  
SPI Slave Mode (CKE = 0) ...................................... 204  
SPI Slave Mode (CKE = 1) ...................................... 205  
Time-out Sequence on Power-up  
(MCLR Not Tied to VDD), Case 1 ............................. 156  
DS70150D-page 226  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
Time-out Sequence on Power-up (MCLR  
Not Tied to VDD), Case 2 ......................................... 157  
Time-out Sequence on Power-up (MCLR  
Tied to VDD) ............................................................. 156  
TimerQ (QEI Module) External Clock ...................... 196  
Timer1, 2, 3, 4, 5 External Clock .............................. 194  
10-bit High-Speed A/D Conversion (CHPS = 01,  
SIMSAM = 0, ASAM = 0, SSRC = 000) ................... 214  
10-bit High-Speed A/D Conversion (CHPS = 01,  
SIMSAM = 0, ASAM = 1, SSRC = 111,  
Receive Buffer Overrun Error (OERR Bit) ....... 120  
Setting Up Data, Parity and Stop Bit Selections ...... 119  
Transmitting Data .................................................... 119  
In 8-bit Data Mode ........................................... 119  
In 9-bit Data Mode ........................................... 119  
Interrupt ........................................................... 120  
Transmit Break ................................................ 120  
Transmit Buffer (UxTXB) ................................. 119  
UART1 Register Map .............................................. 123  
UART2 Register Map .............................................. 123  
Unit ID Locations ............................................................. 149  
Universal Asynchronous Receiver  
SAMC = 00001) ....................................................... 215  
Timing Requirements  
Input Capture ........................................................... 197  
Timing Specifications  
Transmitter Module (UART) ............................................. 117  
W
Band Gap Start-up Time Requirements ................... 193  
CAN I/O Requirements ............................................ 211  
CLKOUT and I/O Characteristics ............................. 191  
CLKOUT and I/O Requirements .............................. 191  
External Clock Requirements .................................. 187  
Internal Clock Examples .......................................... 189  
I2C Bus Data Requirements (Master Mode) ............ 208  
I2C Bus Data Requirements (Slave Mode) .............. 210  
Motor Control PWM Requirements .......................... 199  
Output Compare Requirements ............................... 197  
PLL Clock ................................................................. 188  
PLL Jitter .................................................................. 188  
QEI External Clock Requirements ........................... 196  
QEI Index Pulse Requirements ................................ 201  
Quadrature Decoder Requirements ......................... 200  
Reset, Watchdog Timer, Oscillator Start-up  
Wake-up from Sleep ........................................................ 149  
Wake-up from Sleep and Idle ............................................ 45  
Watchdog Timer (WDT) ........................................... 149, 160  
Enabling and Disabling ............................................ 160  
Operation ................................................................. 160  
WWW Address ................................................................ 228  
WWW, On-Line Support ...................................................... 7  
Timer, Power-up Timer and Brown-out  
Reset Requirements ................................................ 193  
Simple OC/PWM Mode Requirements .................... 198  
SPI Master Mode (CKE = 0) Requirements ............. 202  
SPI Master Mode (CKE = 1) Requirements ............. 203  
SPI Slave Mode (CKE = 0) Requirements ............... 204  
SPI Slave Mode (CKE = 1) Requirements ............... 205  
Timer1 External Clock Requirements ...................... 194  
Timer2 and Timer4 External Clock Requirements ... 195  
Timer3 and Timer5 External Clock Requirements ... 195  
10-bit High-Speed A/D ............................................. 212  
10-bit High-Speed A/D Conversion Requirements .. 216  
Traps .................................................................................. 43  
Hard and Soft ............................................................. 44  
Sources ...................................................................... 43  
Vectors ....................................................................... 44  
U
UART  
Address Detect Mode .............................................. 121  
Auto-Baud Support .................................................. 122  
Baud Rate Generator (BRG) .................................... 121  
Disabling .................................................................. 119  
Enabling and Setup .................................................. 119  
Loopback Mode ....................................................... 121  
Module Overview ..................................................... 117  
Operation During CPU Sleep and Idle Modes ......... 122  
Receiving Data ......................................................... 120  
In 8-bit or 9-bit Data Mode ............................... 120  
Interrupt ........................................................... 120  
Receive Buffer (UxRXB) .................................. 120  
Reception Error Handling ......................................... 120  
Framing Error (FERR) ..................................... 121  
Idle Status ........................................................ 121  
Parity Error (PERR) ......................................... 121  
Receive Break ................................................. 121  
© 2008 Microchip Technology Inc.  
DS70150D-page 227  
dsPIC30F6010A/6015  
NOTES:  
DS70150D-page 228  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of Micro-  
chip sales offices, distributors and factory repre-  
sentatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2008 Microchip Technology Inc.  
DS70150D-page 229  
dsPIC30F6010A/6015  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Device: dsPIC30F6010A/6015  
Questions:  
Literature Number: DS70150D  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS70150D-page 230  
© 2008 Microchip Technology Inc.  
dsPIC30F6010A/6015  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
dsPIC30F6010AT-30I/PF-000  
Custom ID (3 digits) or  
Engineering Sample (ES)  
Trademark  
Architecture  
Package  
PF = TQFP 14x14  
PT = TQFP 12x12  
PT = TQFP 10x10  
Flash  
Memory Size in Bytes  
0 = ROMless  
1 = 1K to 6K  
S
= Die (Waffle Pack)  
= Die (Wafers)  
W
2 = 7K to 12K  
3 = 13K to 24K  
4 = 25K to 48K  
5 = 49K to 96K  
6 = 97K to 192K  
7 = 193K to 384K  
8 = 385K to 768K  
9 = 769K and Up  
Temperature  
I = Industrial -40°C to +85°C  
E = Extended High Temp -40°C to +125°C  
Speed  
20 = 20 MIPS  
30 = 30 MIPS  
Device ID  
T = Tape and Reel  
A,B,C… = Revision Level  
Example:  
dsPIC30F6010AT-30I/PF = 30 MIPS, Industrial temp., TQFP package, Rev. A  
© 2008 Microchip Technology Inc.  
DS70150D-page 231  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/02/08  
DS70150D-page 232  
© 2008 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY