DSPIC30F4013-20E/PT [MICROCHIP]

16-BIT, FLASH, 20 MHz, RISC MICROCONTROLLER, PQFP44, 10 X 10 MM, 1 MM HEIGHT, PLASTIC, MS-026, TQFP-44;
DSPIC30F4013-20E/PT
型号: DSPIC30F4013-20E/PT
厂家: MICROCHIP    MICROCHIP
描述:

16-BIT, FLASH, 20 MHz, RISC MICROCONTROLLER, PQFP44, 10 X 10 MM, 1 MM HEIGHT, PLASTIC, MS-026, TQFP-44

时钟 外围集成电路
文件: 总228页 (文件大小:1666K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
dsPIC30F3014/4013  
Data Sheet  
High-Performance,  
16-bit Digital Signal Controllers  
2010 Microchip Technology Inc.  
DS70138G  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-666-1  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS70138G-page 2  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
High-Performance, 16-Bit Digital Signal Controllers  
Peripheral Features:  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC Pro-  
• High-Current Sink/Source I/O Pins: 25 mA/25 mA  
• Up to Five 16-Bit Timers/Counters; Optionally Pair  
Up  
16-Bit Timers into 32-Bit Timer modules  
• Up to Four 16-Bit Capture Input Functions  
• Up to Four 16-Bit Compare/PWM Output Functions  
• Data Converter Interface (DCI) Supports Common  
Audio Codec Protocols, Including I2S and AC’97  
• 3-Wire SPI module (supports 4 Frame modes)  
• I2C™ module Supports Multi-Master/Slave mode  
and 7-Bit/10-Bit Addressing  
grammer’s  
(DS70157).  
Reference  
Manual”  
• Up to Two Addressable UART modules with FIFO  
Buffers  
High-Performance Modified RISC CPU:  
• Modified Harvard Architecture  
• CAN bus module Compliant with CAN 2.0B  
Standard  
• C Compiler Optimized Instruction Set Architecture  
• Flexible Addressing modes  
• 83 Base Instructions  
Analog Features:  
• 24-Bit Wide Instructions, 16-Bit Wide Data Path  
• Up to 48 Kbytes On-Chip Flash Program Space  
• 2 Kbytes of On-Chip Data RAM  
• 12-Bit Analog-to-Digital Converter (ADC) with:  
- 200 ksps conversion rate  
- Up to 13 input channels  
• 1 Kbyte of Nonvolatile Data EEPROM  
• 16 x 16-Bit Working Register Array  
• Up to 30 MIPS Operation:  
- Conversion available during Sleep and Idle  
• Programmable Low-Voltage Detection (PLVD)  
• Programmable Brown-out Reset  
- DC to 40 MHz External Clock Input  
- 4 MHz-10 MHz Oscillator Input with  
PLL Active (4x, 8x, 16x)  
Special Microcontroller Features:  
• Enhanced Flash Program Memory:  
• Up to 33 Interrupt Sources:  
- 8 user-selectable priority levels  
- 3 external interrupt sources  
- 4 processor traps  
- 10,000 erase/write cycle (min.) for  
industrial temperature range, 100K (typical)  
• Data EEPROM Memory:  
- 100,000 erase/write cycle (min.) for  
industrial temperature range, 1M (typical)  
DSP Features:  
• Self-Reprogrammable under Software Control  
• Dual Data Fetch  
• Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
• Modulo and Bit-Reversed modes  
• Two 40-Bit Wide Accumulators with Optional  
saturation Logic  
• Flexible Watchdog Timer (WDT) with On-Chip  
Low-Power RC Oscillator for Reliable Operation  
• 17-Bit x 17-Bit Single-Cycle Hardware  
Fractional/Integer Multiplier  
• Fail-Safe Clock Monitor Operation:  
- Detects clock failure and switches to on-chip  
low-power RC oscillator  
• All DSP Instructions are Single Cycle  
- Multiply-Accumulate (MAC) Operation  
• Single-Cycle ±16 Shift  
• Programmable Code Protection  
• In-Circuit Serial Programming™ (ICSP™)  
• Selectable Power Management modes:  
- Sleep, Idle and Alternate Clock modes  
2010 Microchip Technology Inc.  
DS70138G-page 3  
 
dsPIC30F3014/4013  
CMOS Technology:  
• Low-Power, High-Speed Flash Technology  
• Wide Operating Voltage Range (2.5V to 5.5V)  
• Industrial and Extended Temperature Ranges  
• Low-Power Consumption  
dsPIC30F3014/4013 Controller Family  
Program Memory  
Output  
Comp/  
Std PWM  
SRAM EEPROM Timer Input  
Codec A/D 12-Bit  
Interface 200 Ksps  
Device  
Pins  
Bytes  
Bytes  
16-Bit Cap  
Bytes Instructions  
dsPIC30F3014 40/44 24K  
dsPIC30F4013 40/44 48K  
8K  
2048  
2048  
1024  
1024  
3
5
2
4
2
4
13 ch  
13 ch  
2
2
1
1
1
1
0
1
2
16K  
AC’97, I S  
Pin Diagrams  
40-Pin PDIP  
AVDD  
MCLR  
1
40  
AN0/VREF+/CN2/RB0  
AN1/VREF-/CN3/RB1  
AVss  
AN9/RB9  
2
3
4
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
AN2/SS1/LVDIN/CN4/RB2  
AN3/CN5/RB3  
AN4/CN6/RB4  
AN5/CN7/RB5  
PGC/EMUC/AN6/OCFA/RB6  
PGD/EMUD/AN7/RB7  
AN8/RB8  
AN10/RB10  
AN11/RB11  
AN12/RB12  
EMUC2/OC1/RD0  
EMUD2/OC2/RD1  
VDD  
Vss  
RF0  
RF1  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VDD  
Vss  
OSC1/CLKI  
OSC2/CLKO/RC15  
EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13  
EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14  
U2RX/CN17/RF4  
U2TX/CN18/RF5  
U1RX/SDI1/SDA/RF2  
EMUD3/U1TX/SDO1/SCL/RF3  
INT0/RA11  
IC2/INT2/RD9  
RD3  
EMUC3/SCK1/RF6  
IC1/INT1/RD8  
RD2  
Vss  
VDD  
40-Pin PDIP  
MCLR  
AN0/VREF+/CN2/RB0  
AN1/VREF-/CN3/RB1  
AN2/SS1/LVDIN/CN4/RB2  
AN3/CN5/RB3  
AN4/IC7/CN6/RB4  
AN5/IC8/CN7/RB5  
PGC/EMUC/AN6/OCFA/RB6  
PGD/EMUD/AN7/RB7  
AN8/RB8  
1
2
3
4
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
AVDD  
AVSS  
AN9/CSCK/RB9  
AN10/CSDI/RB10  
AN11/CSDO/RB11  
AN12/COFS/RB12  
EMUC2/OC1/RD0  
EMUD2/OC2/RD1  
VDD  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
VDD  
VSS  
OSC1/CLKI  
C1RX/RF0  
C1TX/RF1  
U2RX/CN17/RF4  
U2TX/CN18/RF5  
U1RX/SDI1/SDA/RF2  
EMUD3/U1TX/SDO1/SCL/RF3  
EMUC3/SCK1/RF6  
IC1/INT1/RD8  
OC3/RD2  
OSC2/CLKO/RC15  
EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13  
EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14  
INT0/RA11  
IC2/INT2/RD9  
OC4/RD3  
VDD  
VSS  
DS70138G-page 4  
2010 Microchip Technology Inc.  
 
 
dsPIC30F3014/4013  
Pin Diagrams (Continued)  
44-Pin TQFP  
U1RX/SDI1/SDA/RF2  
U2TX/CN18/RF5  
U2RX/CN17/RF4  
RF1  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
NC  
1
2
3
4
5
6
7
8
9
EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13  
OSC2/CLKO/RC15  
OSC1/CLKI  
VSS  
VDD  
RF0  
VSS  
VDD  
dsPIC30F3014  
AN8/RB8  
PGD/EMUD/AN7/RB7  
PGC/EMUC/AN6/OCFA/RB6  
AN5/CN7/RB5  
EMUD2/OC2/RD1  
EMUC2/OC1/RD0  
AN12/RB12  
AN11/RB11  
10  
11  
AN4/CN6/RB4  
2010 Microchip Technology Inc.  
DS70138G-page 5  
dsPIC30F3014/4013  
Pin Diagrams (Continued)  
44-Pin QFN(1)  
U1RX/SDI1/SDA/RF2  
1
OSC2/CLKO/RC15  
OSC1/CLKI  
VSS  
VSS  
VDD  
VDD  
AN8/RB8  
PGD/EMUD/AN7/RB7  
PGC/EMUC/AN6/OCFA/RB6  
AN5/CN7/RB5  
AN4/CN6/RB4  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
U2TX/CN18/RF5  
2
U2RX/CN17/RF4  
3
RF1  
RF0  
5
VSS  
VDD  
VDD  
4
6
7
8
dsPIC30F3014  
EMUD2/OC2/RD1  
EMUC2/OC1/RD0  
AN12/RB12  
9
10  
11  
Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  
DS70138G-page 6  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
Pin Diagrams (Continued)  
44-Pin TQFP  
NC  
U1RX/SDI1/SDA/RF2  
U2TX/CN18/RF5  
U2RX/CN17/RF4  
C1TX/RF1  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
1
2
3
4
5
6
7
8
EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13  
OSC2/CLKO/RC15  
OSC1/CLKI  
VSS  
VDD  
AN8/RB8  
PGD/EMUD/AN7/RB7  
PGC/EMUC/AN6/OCFA/RB6  
AN5/IC8/CN7/RB5  
AN4/IC7/CN6/RB4  
C1RX/RF0  
VSS  
VDD  
dsPIC30F4013  
EMUD2/OC2/RD1  
EMUC2/OC1/RD0  
AN12/COFS/RB12  
AN11/CSDO/RB11  
9
10  
11  
2010 Microchip Technology Inc.  
DS70138G-page 7  
dsPIC30F3014/4013  
Pin Diagrams (Continued)  
44-Pin QFN(1)  
U1RX/SDI1/SDA/RF2  
U2TX/CN18/RF5  
U2RX/CN17/RF4  
C1TX/RF1  
1
2
3
4
5
6
7
8
9
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
OSC2/CLKO/RC15  
OSC1/CLKI  
VSS  
VSS  
VDD  
VDD  
AN8/RB8  
PGD/EMUD/AN7/RB7  
PGC/EMUC/AN6/OCFA/RB6  
AN5/IC8/CN7/RB5  
AN4/IC7/CN6/RB4  
C1RX/RF0  
VSS  
VDD  
VDD  
dsPIC30F4013  
EMUD2/OC2/RD1  
EMUC2/OC1/RD0  
AN12/COFS/RB12  
10  
11  
Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  
DS70138G-page 8  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................ 11  
2.0 CPU Architecture Overview........................................................................................................................................................ 15  
3.0 Memory Organization................................................................................................................................................................. 25  
4.0 Address Generator Units............................................................................................................................................................ 37  
5.0 Flash Program Memory.............................................................................................................................................................. 43  
6.0 Data EEPROM Memory ............................................................................................................................................................. 49  
7.0 I/O Ports ..................................................................................................................................................................................... 53  
8.0 Interrupts .................................................................................................................................................................................... 59  
9.0 Timer1 Module ........................................................................................................................................................................... 67  
10.0 Timer2/3 Module ........................................................................................................................................................................ 71  
11.0 Timer4/5 Module ....................................................................................................................................................................... 77  
12.0 Input Capture Module................................................................................................................................................................. 81  
13.0 Output Compare Module............................................................................................................................................................ 85  
14.0 I2C™ Module ............................................................................................................................................................................. 91  
15.0 SPI Module................................................................................................................................................................................. 99  
16.0 Universal Asynchronous Receiver Transmitter (UART) Module .............................................................................................. 103  
17.0 CAN Module............................................................................................................................................................................. 111  
18.0 Data Converter Interface (DCI) Module.................................................................................................................................... 121  
19.0 12-bit Analog-to-Digital Converter (ADC) Module .................................................................................................................... 131  
20.0 System Integration ................................................................................................................................................................... 141  
21.0 Instruction Set Summary.......................................................................................................................................................... 159  
22.0 Development Support............................................................................................................................................................... 167  
23.0 Electrical Characteristics.......................................................................................................................................................... 171  
24.0 Packaging Information.............................................................................................................................................................. 211  
Index ................................................................................................................................................................................................. 219  
The Microchip Web Site..................................................................................................................................................................... 225  
Customer Change Notification Service .............................................................................................................................................. 225  
Customer Support.............................................................................................................................................................................. 225  
Reader Response.............................................................................................................................................................................. 226  
Product Identification System ............................................................................................................................................................ 227  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of  
silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
2010 Microchip Technology Inc.  
DS70138G-page 9  
 
 
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 10  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
This document contains specific information for the  
dsPIC30F3014/4013 Digital Signal Controller (DSC)  
devices. The dsPIC30F3014/4013 devices contain  
extensive Digital Signal Processor (DSP) functionality  
1.0  
DEVICE OVERVIEW  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC Pro-  
within  
a high-performance, 16-bit microcontroller  
(MCU) architecture. Figure 1-1 and Figure 1-2 show  
device block diagrams for dsPIC30F3014 and  
dsPIC30F4013, respectively.  
grammer’s  
Reference  
Manual”  
(DS70157).  
FIGURE 1-1:  
dsPIC30F3014 BLOCK DIAGRAM  
Y Data Bus  
X Data Bus  
16  
16 16  
16  
Data Latch  
Data Latch  
INT0/RA11  
Interrupt  
Controller  
PSV & Table  
X Data  
RAM  
Y Data  
Data Access  
8
16  
RAM  
24  
24  
Control Block  
(1 Kbyte)  
(1 Kbyte)  
Address  
Latch  
Address  
Latch  
PORTA  
24  
16  
16  
16  
X RAGU  
X WAGU  
AN0/VREF+/CN2/RB0  
AN1/VREF-/CN3/RB1  
AN2/SS1/LVDIN/CN4/RB2  
AN3/CN5/RB3  
Y AGU  
PCH PCL  
PCU  
Program Counter  
Stack  
Control  
Logic  
16  
Loop  
Control  
Logic  
Address Latch  
AN4/CN6/RB4  
AN5/CN7/RB5  
Program Memory  
(24 Kbytes)  
PGC/EMUC/AN6/OCFA/RB6  
PGD/EMUD/AN7/RB7  
AN8/RB8  
Data EEPROM  
(1 Kbyte)  
Effective Address  
16  
Data Latch  
AN9/RB9  
AN10/RB10  
AN11/RB11  
AN12/RB12  
ROM Latch  
16  
24  
PORTB  
IR  
16  
16  
EMUD1/SOSCI/T2CK/U1ATX/  
CN1/RC13  
16 x 16  
W Reg Array  
EMUC1/SOSCO/T1CK/U1ARX/  
CN0/RC14  
Decode  
Instruction  
Decode and  
Control  
OSC2/CLKO/RC15  
16 16  
PORTC  
Control Signals  
OSC1/CLKI  
DSP  
Engine  
Divide  
Unit  
to Various Blocks  
Power-up  
Timer  
Timing  
Generation  
Oscillator  
Start-up Timer  
EMUC2/OC1/RD0  
EMUD2/OC2/RD1  
RD2  
RD3  
IC1/INT1/RD8  
IC2/INT2/RD9  
ALU<16>  
16  
POR/BOR  
Reset  
16  
Watchdog  
Timer  
MCLR  
Low-Voltage  
Detect  
V
DD, VSS  
PORTD  
AVDD, AVSS  
Input  
Capture  
Module  
Output  
Compare  
Module  
RF0  
RF1  
I2C™  
12-Bit ADC  
U1RX/SDI1/SDA/RF2  
EMUD3/U1TX/SDO1/SCL/RF3  
U2RX/CN17/RF4  
U2TX/CN18/RF5  
EMUC3/SCK1/RF6  
UART1,  
UART2  
Timers  
SPI1  
PORTF  
2010 Microchip Technology Inc.  
DS70138G-page 11  
 
 
 
 
 
dsPIC30F3014/4013  
FIGURE 1-2:  
dsPIC30F4013 BLOCK DIAGRAM  
Y Data Bus  
X Data Bus  
16  
16 16  
16  
Data Latch  
Data Latch  
Interrupt  
Controller  
INT0/RA11  
PSV & Table  
Data Access  
Control Block  
X Data  
RAM  
(1 Kbyte)  
Address  
Latch  
Y Data  
RAM  
(1 Kbyte)  
Address  
Latch  
8
16  
24  
24  
PORTA  
24  
16  
16  
16  
X RAGU  
X WAGU  
AN0/VREF+/CN2/RB0  
AN1/VREF-/CN3/RB1  
AN2/SS1/LVDIN/CN4/RB2  
AN3/CN5/RB3  
AN4/IC7/CN6/RB4  
AN5/IC8/CN7/RB5  
PGC/EMUC/AN6/OCFA/RB6  
PGD/EMUD/AN7/RB7  
AN8/RB8  
Y AGU  
PCH PCL  
PCU  
Program Counter  
Stack  
Control  
Logic  
16  
Loop  
Control  
Logic  
Address Latch  
Program Memory  
(48 Kbytes)  
Data EEPROM  
(1 Kbyte)  
Effective Address  
16  
Data Latch  
AN9/CSCK/RB9  
AN10/CSDI/RB10  
AN11/CSDO/RB11  
AN12/COFS/RB12  
ROM Latch  
16  
24  
PORTB  
IR  
16  
16  
EMUD1/SOSCI/T2CK/U1ATX/  
CN1/RC13  
16 x 16  
W Reg Array  
EMUC1/SOSCO/T1CK/U1ARX/  
CN0/RC14  
Decode  
Instruction  
Decode &  
Control  
OSC2/CLKO/RC15  
16 16  
PORTC  
Control Signals  
OSC1/CLKI  
DSP  
Engine  
Divide  
Unit  
to Various Blocks  
Power-up  
Timer  
EMUC2/OC1/RD0  
EMUD2/OC2/RD1  
OC3/RD2  
Timing  
Generation  
Oscillator  
Start-up Timer  
OC4/RD3  
ALU<16>  
16  
POR/BOR  
Reset  
IC1/INT1/RD8  
IC2/INT2/RD9  
16  
Watchdog  
Timer  
MCLR  
Low-Voltage  
Detect  
PORTD  
VDD, VSS  
AVDD, AVSS  
Input  
Capture  
Module  
Output  
Compare  
Module  
C1RX/RF0  
C1TX/RF1  
U1RX/SDI1/SDA/RF2  
EMUD3/U1TX/SDO1/SCL/RF3  
I2C™  
CAN1  
12-Bit ADC  
U2RX/CN17/RF4  
U2TX/CN18/RF5  
EMUC3/SCK1/RF6  
UART1,  
UART2  
Timers  
DCI  
SPI1  
PORTF  
DS70138G-page 12  
2010 Microchip Technology Inc.  
 
dsPIC30F3014/4013  
Table 1-1 provides a brief description of device I/O pin-  
outs and the functions that may be multiplexed to a port  
pin. Multiple functions may exist on one port pin. When  
multiplexing occurs, the peripheral module’s functional  
requirements may force an override of the data  
direction of the port pin.  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS  
Pin  
Buffer  
Type  
Description  
Type  
AN0-AN12  
I
Analog Analog input channels. AN6 and AN7 are also used for device programming  
data and clock inputs, respectively.  
AVDD  
AVSS  
CLKI  
P
P
I
P
P
Positive supply for analog module. This pin must be connected at all times.  
Ground reference for analog module. This pin must be connected at all times.  
ST/CMOS External clock source input. Always associated with OSC1 pin function.  
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator  
mode. Optionally functions as CLKO in RC and EC modes.  
CLKO  
O
I
Always associated with OSC2 pin function.  
CN0-CN7,  
CN17-CN18  
ST  
Input change notification inputs. Can be software programmed for internal  
weak pull-ups on all inputs.  
COFS  
CSCK  
CSDI  
I/O  
I/O  
I
ST  
ST  
ST  
Data Converter Interface Frame Synchronization pin.  
Data Converter Interface Serial Clock input/output pin.  
Data Converter Interface Serial data input pin.  
Data Converter Interface Serial data output pin.  
CSDO  
O
C1RX  
C1TX  
I
O
ST  
CAN1 bus receive pin.  
CAN1 bus transmit pin.  
EMUD  
EMUC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ICD Primary Communication Channel data input/output pin.  
ICD Primary Communication Channel clock input/output pin.  
ICD Secondary Communication Channel data input/output pin.  
ICD Secondary Communication Channel clock input/output pin.  
ICD Tertiary Communication Channel data input/output pin.  
ICD Tertiary Communication Channel clock input/output pin.  
ICD Quaternary Communication Channel data input/output pin.  
ICD Quaternary Communication Channel clock input/output pin.  
EMUD1  
EMUC1  
EMUD2  
EMUC2  
EMUD3  
EMUC3  
IC1, IC2, IC7,  
IC8  
I
ST  
Capture inputs 1,2, 7 and 8.  
INT0  
INT1  
INT2  
I
I
I
ST  
ST  
ST  
External interrupt 0.  
External interrupt 1.  
External interrupt 2.  
LVDIN  
MCLR  
I
Analog Low-Voltage Detect Reference Voltage Input pin.  
I/P  
ST  
Master Clear (Reset) input or programming voltage input. This pin is an  
active-low Reset to the device.  
OCFA  
OC1-OC4  
I
O
ST  
Compare Fault A input (for Compare channels 1, 2, 3 and 4).  
Compare outputs 1 through 4.  
OSC1  
I
ST/CMOS Oscillator crystal input. ST buffer when configured in RC mode; CMOS  
otherwise.  
OSC2  
I/O  
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator  
mode. Optionally functions as CLKO in RC and EC modes.  
PGD  
PGC  
I/O  
I
ST  
ST  
In-Circuit Serial Programming data input/output pin.  
In-Circuit Serial Programming clock input pin.  
Legend: CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
= Schmitt Trigger input with CMOS levels  
= Input  
O
P
= Output  
= Power  
2010 Microchip Technology Inc.  
DS70138G-page 13  
 
 
 
dsPIC30F3014/4013  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin  
Buffer  
Type  
Description  
Type  
RA11  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
PORTA is a bidirectional I/O port.  
PORTB is a bidirectional I/O port.  
PORTC is a bidirectional I/O port.  
PORTD is a bidirectional I/O port.  
RB0-RB12  
RC13-RC15  
RD0-RD3,  
RD8, RD9  
RF0-RF5  
I/O  
ST  
PORTF is a bidirectional I/O port.  
SCK1  
SDI1  
SDO1  
SS1  
I/O  
ST  
ST  
Synchronous serial clock input/output for SPI1.  
SPI1 data in.  
SPI1 data out.  
I
O
I
ST  
SPI1 slave synchronization.  
SCL  
SDA  
I/O  
I/O  
ST  
ST  
Synchronous serial clock input/output for I2C™.  
Synchronous serial data input/output for I2C.  
SOSCO  
SOSCI  
O
I
32 kHz low-power oscillator crystal output.  
ST/CMOS 32 kHz low-power oscillator crystal input. ST buffer when configured in RC  
mode; CMOS otherwise.  
T1CK  
T2CK  
I
I
ST  
ST  
Timer1 external clock input.  
Timer2 external clock input.  
U1RX  
U1TX  
U1ARX  
U1ATX  
I
O
I
ST  
ST  
UART1 receive.  
UART1 transmit.  
UART1 alternate receive.  
UART1 alternate transmit.  
O
VDD  
P
P
I
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
VSS  
VREF+  
VREF-  
Analog Analog voltage reference (high) input.  
Analog Analog voltage reference (low) input.  
I
Legend: CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
= Schmitt Trigger input with CMOS levels  
= Input  
O
P
= Output  
= Power  
DS70138G-page 14  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
There are two methods of accessing data stored in  
program memory:  
2.0  
CPU ARCHITECTURE  
OVERVIEW  
• The upper 32 Kbytes of data space memory can  
be mapped into the lower half (user space) of pro-  
gram space at any 16K program word boundary,  
defined by the 8-bit Program Space Visibility Page  
(PSVPAG) register. This lets any instruction  
access program space as if it were data space,  
with a limitation that the access requires an addi-  
tional cycle. Moreover, only the lower 16 bits of  
each instruction word can be accessed using this  
method.  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC Pro-  
• Linear indirect access of 32K word pages within  
program space is also possible using any working  
register, via table read and write instructions.  
Table read and write instructions can be used to  
access all 24 bits of an instruction word.  
grammer’s  
Reference  
Manual”  
(DS70157).  
2.1  
Core Overview  
Overhead-free circular buffers (Modulo Addressing)  
are supported in both X and Y address spaces. This is  
primarily intended to remove the loop overhead for  
DSP algorithms.  
This section contains a brief overview of the CPU  
architecture of the dsPIC30F.  
The core has a 24-bit instruction word. The Program  
Counter (PC) is 23 bits wide with the Least Significant  
bit (LSb) always clear (refer to Section 3.1 “Program  
Address Space”), and the Most Significant bit (MSb)  
is ignored during normal program execution, except for  
certain specialized instructions. Thus, the PC can  
address up to 4M instruction words of user program  
space. An instruction prefetch mechanism is used to  
help maintain throughput. Program loop constructs,  
free from loop count management overhead, are  
supported using the DOand REPEATinstructions, both  
of which are interruptible at any point.  
The X AGU also supports Bit-Reversed Addressing on  
destination effective addresses to greatly simplify input  
or output data reordering for radix-2 FFT algorithms.  
Refer to Section 4.0 “Address Generator Units” for  
details on Modulo and Bit-Reversed Addressing.  
The core supports Inherent (no operand), Relative,  
Literal, Memory Direct, Register Direct, Register  
Indirect, Register Offset and Literal Offset Addressing  
modes. Instructions are associated with predefined  
addressing modes, depending upon their functional  
requirements.  
The working register array consists of 16-bit x 16-bit  
registers, each of which can act as data, address or off-  
set registers. One working register (W15) operates as  
a Software Stack Pointer for interrupts and calls.  
For most instructions, the core is capable of executing  
a data (or program data) memory read, a working reg-  
ister (data) read, a data memory write and a program  
(instruction) memory read per instruction cycle. As a  
result, 3-operand instructions are supported, allowing  
C = A+B operations to be executed in a single cycle.  
The data space is 64 Kbytes (32K words) and is split  
into two blocks, referred to as X and Y data memory.  
Each block has its own independent Address Genera-  
tion Unit (AGU). Most instructions operate solely  
through the X memory, AGU, which provides the  
appearance of a single, unified data space. The  
Multiply-Accumulate (MAC) class of dual source DSP  
instructions operate through both the X and Y AGUs,  
splitting the data address space into two parts (see  
Section 3.2 “Data Address Space”). The X and Y  
data space boundary is device-specific and cannot be  
altered by the user. Each data word consists of 2 bytes,  
and most instructions can address data either as words  
or bytes.  
A DSP engine has been included to significantly  
enhance the core arithmetic capability and throughput. It  
features a high-speed, 17-bit x 17-bit multiplier, a 40-bit  
ALU, two 40-bit saturating accumulators and a 40-bit  
bidirectional barrel shifter. Data in the accumulator, or  
any working register, can be shifted up to 15 bits right, or  
16 bits left in a single cycle. The DSP instructions oper-  
ate seamlessly with all other instructions and have been  
designed for optimal real-time performance. The MAC  
class of instructions can concurrently fetch two data  
operands from memory while multiplying two W  
registers. To enable this concurrent fetching of data  
operands, the data space has been split for these  
instructions and linear is for all others. This has been  
achieved in a transparent and flexible manner by  
dedicating certain working registers to each address  
space for the MACclass of instructions.  
2010 Microchip Technology Inc.  
DS70138G-page 15  
 
 
dsPIC30F3014/4013  
The core does not support a multi-stage instruction  
pipeline. However, a single-stage instruction prefetch  
mechanism is used, which accesses and partially  
decodes instructions a cycle ahead of execution, in  
order to maximize available execution time. Most  
instructions execute in a single cycle with certain  
exceptions.  
2.2.1  
SOFTWARE STACK POINTER/  
FRAME POINTER  
The dsPIC® DSC devices contain a software stack.  
W15 is the dedicated Software Stack Pointer (SP) and  
is automatically modified by exception processing and  
subroutine calls and returns. However, W15 can be ref-  
erenced by any instruction in the same manner as all  
other W registers. This simplifies the reading, writing  
and manipulation of the Stack Pointer (e.g., creating  
Stack Frames).  
The core features a vectored exception processing  
structure for traps and interrupts, with 62 independent  
vectors. The exceptions consist of up to 8 traps (of  
which 4 are reserved) and 54 interrupts. Each interrupt  
is prioritized based on a user-assigned priority between  
1 and 7 (1 being the lowest priority and 7 being the  
highest), in conjunction with a predetermined ‘natural  
order’. Traps have fixed priorities ranging from 8 to 15.  
Note:  
In order to protect against misaligned  
stack accesses, W15<0> is always clear.  
W15 is initialized to 0x0800 during a Reset. The user  
may reprogram the SP during initialization to any  
location within data space.  
2.2  
Programmer’s Model  
W14 has been dedicated as a Stack Frame Pointer, as  
defined by the LNK and ULNK instructions. However,  
W14 can be referenced by any instruction in the same  
manner as all other W registers.  
The programmer’s model is shown in Figure 2-1 and  
consists of 16 x 16-bit working registers (W0 through  
W15), 2 x 40-bit accumulators (AccA and AccB),  
STATUS register (SR), Data Table Page register  
(TBLPAG), Program Space Visibility Page register  
(PSVPAG), DO and REPEAT registers (DOSTART,  
DOEND, DCOUNT and RCOUNT) and Program Coun-  
ter (PC). The working registers can act as data,  
address or offset registers. All registers are memory  
mapped. W0 acts as the W register for file register  
addressing.  
2.2.2  
STATUS REGISTER  
The dsPIC DSC core has a 16-bit STATUS register  
(SR), the Least Significant Byte (LSB) of which is  
referred to as the SR Low byte (SRL) and the Most  
Significant Byte (MSB) as the SR High byte (SRH). See  
Figure 2-1 for SR layout.  
SRL contains all the MCU ALU operation status flags  
(including the Z bit), as well as the CPU Interrupt Prior-  
ity Level Status bits, IPL<2:0> and the Repeat Active  
Status bit, RA. During exception processing, SRL is  
concatenated with the MSB of the PC to form a  
complete word value which is then stacked.  
Some of these registers have a shadow register asso-  
ciated with each of them, as shown in Figure 2-1. The  
shadow register is used as a temporary holding register  
and can transfer its contents to or from its host register  
upon the occurrence of an event. None of the shadow  
registers are accessible directly. The following rules  
apply for transfer of registers into and out of shadows.  
The upper byte of the STATUS register contains the  
DSP adder/subtracter Status bits, the DO Loop Active  
bit (DA) and the Digit Carry (DC) Status bit.  
PUSH.Sand POP.S  
W0, W1, W2, W3, SR (DC, N, OV, Z and C bits  
only) are transferred.  
2.2.3  
PROGRAM COUNTER  
DOinstruction  
DOSTART, DOEND, DCOUNT shadows are  
pushed on loop start and popped on loop end.  
The program counter is 23 bits wide; bit 0 is always  
clear. Therefore, the PC can address up to 4M  
instruction words.  
When a byte operation is performed on a working  
register, only the Least Significant Byte of the target  
register is affected. However, a benefit of memory  
mapped working registers is that both the Least and  
Most Significant Bytes can be manipulated through  
byte-wide data memory space accesses.  
DS70138G-page 16  
2010 Microchip Technology Inc.  
 
 
 
 
dsPIC30F3014/4013  
FIGURE 2-1:  
PROGRAMMER’S MODEL  
D15  
D0  
W0/WREG  
W1  
PUSH.SShadow  
DOShadow  
W2  
W3  
Legend  
W4  
DSP Operand  
Registers  
W5  
W6  
W7  
Working Registers  
W8  
W9  
DSP Address  
Registers  
W10  
W11  
W12/DSP Offset  
W13/DSP Write-Back  
W14/Frame Pointer  
W15/Stack Pointer  
SPLIM  
Stack Pointer Limit Register  
AD0  
AD15  
AD39  
AD31  
DSP  
Accumulators  
AccA  
AccB  
PC22  
PC0  
0
Program Counter  
0
7
TBLPAG  
Data Table Page Address  
7
0
PSVPAG  
Program Space Visibility Page Address  
15  
0
0
RCOUNT  
REPEATLoop Counter  
DOLoop Counter  
15  
DCOUNT  
22  
0
DOSTART  
DOEND  
DOLoop Start Address  
DOLoop End Address  
22  
15  
0
Core Configuration Register  
CORCON  
OA OB  
SA SB OAB SAB DA DC  
SRH  
IPL0 RA  
N
OV  
Z
C
IPL2 IPL1  
STATUS Register  
SRL  
2010 Microchip Technology Inc.  
DS70138G-page 17  
 
dsPIC30F3014/4013  
The divide instructions must be executed within a  
REPEAT loop. Any other form of execution (e.g., a  
series of discrete divide instructions) will not function  
correctly because the instruction flow depends on  
RCOUNT. The divide instruction does not automatically  
set up the RCOUNT value and it must, therefore, be  
explicitly and correctly specified in the REPEATinstruc-  
tion, as shown in Table 2-1 (REPEAT will execute the  
target instruction {operand value+1} times). The  
REPEAT loop count must be setup for 18 iterations of  
the DIV/DIVF instruction. Thus, a complete divide  
operation requires 19 cycles.  
2.3  
Divide Support  
The dsPIC DSC devices feature a 16/16-bit signed  
fractional divide operation, as well as 32/16-bit and 16/  
16-bit signed and unsigned integer divide operations, in  
the form of single instruction iterative divides. The  
following instructions and data sizes are supported:  
1. DIVF– 16/16 signed fractional divide  
2. DIV.sd– 32/16 signed divide  
3. DIV.ud– 32/16 unsigned divide  
4. DIV.s– 16/16 signed divide  
5. DIV.u– 16/16 unsigned divide  
Note:  
The divide flow is interruptible. However,  
the user needs to save the context as  
appropriate.  
The 16/16 divides are similar to the 32/16 (same number  
of iterations), but the dividend is either zero-extended or  
sign-extended during the first iteration.  
TABLE 2-1:  
Instruction  
DIVIDE INSTRUCTIONS  
Function  
DIVF  
Signed fractional divide: Wm/Wn W0; Rem W1  
Signed divide: (Wm+1:Wm)/Wn W0; Rem W1  
Signed divide: Wm/Wn W0; Rem W1  
DIV.sd  
DIV.s  
DIV.ud  
DIV.u  
Unsigned divide: (Wm+1:Wm)/Wn W0; Rem W1  
Unsigned divide: Wm/Wn W0; Rem W1  
DS70138G-page 18  
2010 Microchip Technology Inc.  
 
 
 
dsPIC30F3014/4013  
The DSP engine has various options selected through  
various bits in the CPU Core Configuration register  
(CORCON), as listed below:  
2.4  
DSP Engine  
The DSP engine consists of a high-speed, 17-bit x  
17-bit multiplier, a barrel shifter and a 40-bit adder/  
subtracter (with two target accumulators, round and  
saturation logic).  
1. Fractional or integer DSP multiply (IF).  
2. Signed or unsigned DSP multiply (US).  
3. Conventional or convergent rounding (RND).  
4. Automatic saturation on/off for AccA (SATA).  
5. Automatic saturation on/off for AccB (SATB).  
The DSP engine also has the capability to perform  
inherent  
which require no additional data. These instructions are  
accumulator-to-accumulator  
operations,  
ADD, SUBand NEG.  
6. Automatic saturation on/off for writes to data  
memory (SATDW).  
The dsPIC30F is a single-cycle instruction flow archi-  
tecture, therefore, concurrent operation of the DSP  
engine with MCU instruction flow is not possible.  
However, some MCU ALU and DSP engine resources  
may be used concurrently by the same instruction (e.g.,  
ED, EDAC). (See Table 2-2 for DSP instructions.)  
7. Accumulator Saturation mode selection  
(ACCSAT).  
Note:  
For CORCON layout, see Table 3-3.  
A block diagram of the DSP engine is shown in  
Figure 2-2.  
TABLE 2-2:  
DSP INSTRUCTION  
SUMMARY  
Algebraic  
Operation  
Instruction  
ACC WB?  
CLR  
A = 0  
Yes  
No  
ED  
A = (x – y)2  
A = A + (x – y)2  
A = A + (x * y)  
A = A + x2  
EDAC  
MAC  
No  
Yes  
No  
MAC  
MOVSAC  
MPY  
No change in A  
A = x * y  
Yes  
No  
MPY.N  
MSC  
A = – x * y  
No  
A = A – x * y  
Yes  
2010 Microchip Technology Inc.  
DS70138G-page 19  
 
 
 
dsPIC30F3014/4013  
FIGURE 2-2:  
DSP ENGINE BLOCK DIAGRAM  
S
a
40  
16  
40-Bit Accumulator A  
40-Bit Accumulator B  
40  
t
Round  
Logic  
u
r
a
t
Carry/Borrow Out  
Saturate  
e
Adder  
Carry/Borrow In  
Negate  
40  
40  
40  
Barrel  
Shifter  
16  
40  
Sign-Extend  
32  
16  
Zero Backfill  
32  
33  
17-Bit  
Multiplier/Scaler  
16  
16  
To/From W Array  
DS70138G-page 20  
2010 Microchip Technology Inc.  
 
dsPIC30F3014/4013  
2.4.1  
MULTIPLIER  
2.4.2.1  
Adder/Subtracter, Overflow and  
Saturation  
The 17-bit x 17-bit multiplier is capable of signed or  
unsigned operation and can multiplex its output using a  
scaler to support either 1.31 fractional (Q31) or 32-bit  
integer results. Unsigned operands are zero-extended  
into the 17th bit of the multiplier input value. Signed  
operands are sign-extended into the 17th bit of the  
multiplier input value. The output of the 17-bit x 17-bit  
multiplier/scaler is a 33-bit value, which is sign-  
extended to 40 bits. Integer data is inherently  
represented as a signed two’s complement value,  
where the MSB is defined as a sign bit. Generally  
speaking, the range of an N-bit two’s complement inte-  
ger is -2N-1 to 2N-1 – 1. For a 16-bit integer, the data  
range is -32768 (0x8000) to 32767 (0x7FFF) including  
The adder/subtracter is a 40-bit adder with an optional  
zero input into one side and either true or complement  
data into the other input. In the case of addition, the  
carry/borrow input is active-high and the other input is  
true data (not complemented), whereas in the case of  
subtraction, the carry/borrow input is active-low and the  
other input is complemented. The adder/subtracter  
generates overflow Status bits, SA/SB and OA/OB,  
which are latched and reflected in the STATUS register:  
• Overflow from bit 39: this is a catastrophic  
overflow in which the sign of the accumulator is  
destroyed.  
• Overflow into guard bits 32 through 39: this is a  
recoverable overflow. This bit is set whenever all  
the guard bits are not identical to each other.  
0’. For  
a 32-bit integer, the data range is -  
2,147,483,648 (0x8000 0000) to 2,147,483,645  
(0x7FFF FFFF).  
The adder has an additional saturation block which  
controls accumulator data saturation if selected. It uses  
the result of the adder, the overflow Status bits  
described above, and the SATA/B (CORCON<7:6>)  
and ACCSAT (CORCON<4>) mode control bits to  
determine when and to what value to saturate.  
When the multiplier is configured for fractional multipli-  
cation, the data is represented as a two’s complement  
fraction, where the MSB is defined as a sign bit and the  
radix point is implied to lie just after the sign bit (QX for-  
mat). The range of an N-bit two’s complement fraction  
with this implied radix point is -1.0 to (1 – 21-N). For a  
16-bit fraction, the Q15 data range is -1.0 (0x8000) to  
0.999969482 (0x7FFF) including ‘0’ and has a preci-  
sion of 3.01518x10-5. In Fractional mode, the 16x16  
multiply operation generates a 1.31 product, which has  
Six STATUS register bits have been provided to  
support saturation and overflow. They are:  
1. OA:  
AccA overflowed into guard bits  
a precision of 4.65661 x 10-10  
.
2. OB:  
The same multiplier is used to support the MCU multi-  
ply instructions, which includes integer 16-bit signed,  
unsigned and mixed sign multiplies.  
AccB overflowed into guard bits  
3. SA:  
AccA saturated (bit 31 overflow and saturation)  
or  
AccA overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
The MUL instruction can be directed to use byte or  
word-sized operands. Byte operands direct a 16-bit  
result, and word operands direct a 32-bit result to the  
specified register(s) in the W array.  
4. SB:  
AccB saturated (bit 31 overflow and saturation)  
or  
AccB overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
2.4.2  
DATA ACCUMULATORS AND  
ADDER/SUBTRACTER  
The data accumulator consists of a 40-bit adder/  
subtracter with automatic sign extension logic. It can  
select one of two accumulators (A or B) as its pre-  
5. OAB:  
Logical OR of OA and OB  
accumulation  
source  
and  
post-accumulation  
6. SAB:  
destination. For the ADDand LACinstructions, the data  
to be accumulated or loaded can be optionally scaled  
via the barrel shifter prior to accumulation.  
Logical OR of SA and SB  
The OA and OB bits are modified each time data  
passes through the adder/subtracter. When set, they  
indicate that the most recent operation has overflowed  
into the accumulator guard bits (bits 32 through 39).  
The OA and OB bits can also optionally generate an  
arithmetic warning trap when set and the correspond-  
ing overflow trap flag enable bit (OVATE, OVBTE) in  
the INTCON1 register (refer to Section 8.0 “Inter-  
rupts”) is set. This allows the user to take immediate  
action, for example, to correct system gain.  
2010 Microchip Technology Inc.  
DS70138G-page 21  
 
 
 
dsPIC30F3014/4013  
The SA and SB bits are modified each time data  
passes through the adder/subtracter but can only be  
cleared by the user. When set, they indicate that the  
accumulator has overflowed its maximum range (bit 31  
for 32-bit saturation or bit 39 for 40-bit saturation) and  
will be saturated if saturation is enabled. When  
saturation is not enabled, SA and SB default to bit 39  
overflow and, thus, indicate that a catastrophic over-  
flow has occurred. If the COVTE bit in the INTCON1  
register is set, SA and SB bits generate an arithmetic  
warning trap when saturation is disabled.  
2.4.2.2  
Accumulator ‘Write-Back’  
The MAC class of instructions (with the exception of  
MPY, MPY.N, ED and EDAC) can optionally write a  
rounded version of the high word (bits 31 through 16)  
of the accumulator that is not targeted by the instruction  
into data space memory. The write is performed across  
the X bus into combined X and Y address space. The  
following addressing modes are supported:  
1. W13, Register Direct:  
The rounded contents of the non-target  
accumulator are written into W13 as  
1.15 fraction.  
a
The overflow and saturation Status bits can optionally  
be viewed in the STATUS register (SR) as the logical  
OR of OA and OB (in bit OAB) and the logical OR of SA  
and SB (in bit SAB). This allows programmers to check  
one bit in the STATUS register to determine if either  
accumulator has overflowed, or one bit to determine if  
either accumulator has saturated. This would be useful  
for complex number arithmetic which typically uses  
both the accumulators.  
2. [W13]+=2, Register Indirect with Post-Increment:  
The rounded contents of the non-target accumu-  
lator are written into the address pointed to by  
W13 as  
incremented by 2 (for a word write).  
a
1.15 fraction. W13 is then  
2.4.2.3  
Round Logic  
The round logic is a combinational block which performs  
a conventional (biased) or convergent (unbiased) round  
function during an accumulator write (store). The Round  
mode is determined by the state of the RND bit in the  
CORCON register. It generates a 16-bit, 1.15 data value,  
which is passed to the data space write saturation logic.  
If rounding is not indicated by the instruction, a truncated  
1.15 data value is stored and the least significant word  
(lsw) is simply discarded.  
The device supports three saturation and overflow  
modes:  
1. Bit 39 Overflow and Saturation:  
When bit 39 overflow and saturation occurs, the  
saturation logic loads the maximally positive 9.31  
(0x7FFFFFFFFF), or maximally negative 9.31  
value (0x8000000000) into the target accumula-  
tor. The SA or SB bit is set and remains set until  
cleared by the user. This is referred to as ‘super  
saturation’ and provides protection against erro-  
neous data or unexpected algorithm problems  
(e.g., gain calculations).  
Conventional rounding takes bit 15 of the accumulator,  
zero-extends it and adds it to the ACCxH word (bits 16  
through 31 of the accumulator). If the ACCxL word  
(bits 0 through 15 of the accumulator) is between  
0x8000 and 0xFFFF (0x8000 included), ACCxH is  
incremented. If ACCxL is between 0x0000 and 0x7FFF,  
ACCxH is left unchanged. A consequence of this algo-  
rithm is that over a succession of random rounding  
operations, the value tends to be biased slightly  
positive.  
2. Bit 31 Overflow and Saturation:  
When bit 31 overflow and saturation occurs, the  
saturation logic then loads the maximally posi-  
tive 1.31 value (0x007FFFFFFF), or maximally  
negative 1.31 value (0x0080000000) into the  
target accumulator. The SA or SB bit is set and  
remains set until cleared by the user. When this  
Saturation mode is in effect, the guard bits are  
not used, so the OA, OB or OAB bits are never  
set.  
Convergent (or unbiased) rounding operates in the  
same manner as conventional rounding, except when  
ACCxL equals 0x8000. If this is the case, the Least Sig-  
nificant bit (LSb) (bit 16 of the accumulator) of ACCxH  
is examined. If it is ‘1’, ACCxH is incremented. If it is ‘0’,  
ACCxH is not modified. Assuming that bit 16 is  
effectively random in nature, this scheme removes any  
rounding bias that may accumulate.  
3. Bit 39 Catastrophic Overflow:  
The bit 39 overflow Status bit from the adder is  
used to set the SA or SB bit which remain set  
until cleared by the user. No saturation operation  
is performed and the accumulator is allowed to  
overflow (destroying its sign). If the COVTE bit in  
the INTCON1 register is set, a catastrophic  
overflow can initiate a trap exception.  
The SAC and SAC.R instructions store either a trun-  
cated (SAC) or rounded (SAC.R) version of the contents  
of the target accumulator to data memory via the X bus  
(subject to data saturation, see Section 2.4.2.4 “Data  
Space Write Saturation”). Note that for the MACclass  
of instructions, the accumulator write-back operation  
functions in the same manner, addressing combined  
MCU (X and Y) data space though the X bus. For this  
class of instructions, the data is always subject to  
rounding.  
DS70138G-page 22  
2010 Microchip Technology Inc.  
 
 
dsPIC30F3014/4013  
2.4.2.4  
Data Space Write Saturation  
2.4.3  
BARREL SHIFTER  
In addition to adder/subtracter saturation, writes to data  
space may also be saturated but without affecting the  
contents of the source accumulator. The data space  
The barrel shifter is capable of performing up to 16-bit  
arithmetic or logic right shifts, or up to 16-bit left shifts  
in a single cycle. The source can be either of the two  
DSP accumulators, or the X bus (to support multi-bit  
shifts of register or memory data).  
write saturation logic block accepts  
a
16-bit,  
1.15 fractional value from the round logic block as its  
input, together with overflow status from the original  
source (accumulator) and the 16-bit round adder.  
These are combined and used to select the appropriate  
1.15 fractional value as output to write to data space  
memory.  
The shifter requires a signed binary value to determine  
both the magnitude (number of bits) and direction of the  
shift operation. A positive value shifts the operand right.  
A negative value shifts the operand left. A value of ‘0’  
does not modify the operand.  
If the SATDW bit in the CORCON register is set, data  
(after rounding or truncation) is tested for overflow and  
adjusted accordingly. For input data greater than  
0x007FFF, data written to memory is forced to the  
maximum positive 1.15 value, 0x7FFF. For input data  
less than 0xFF8000, data written to memory is forced  
to the maximum negative 1.15 value, 0x8000. The  
Most Significant bit (MSb) of the source (bit 39) is used  
to determine the sign of the operand being tested.  
The barrel shifter is 40 bits wide, thereby obtaining a  
40-bit result for DSP shift operations and a 16-bit result  
for MCU shift operations. Data from the X bus is  
presented to the barrel shifter between bit positions 16  
to 31 for right shifts, and bit positions 0 to 16 for left  
shifts.  
If the SATDW bit in the CORCON register is not set, the  
input data is always passed through unmodified under  
all conditions.  
2010 Microchip Technology Inc.  
DS70138G-page 23  
 
 
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 24  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
User program space access is restricted to the lower  
4M instruction word address range (0x000000 to  
0x7FFFFE) for all accesses other than TBLRD/TBLWT,  
which use TBLPAG<7> to determine user or configura-  
tion space access. In Table 3-1, bit 23 allows access to  
the Device ID, the User ID and the Configuration bits;  
otherwise, bit 23 is always clear.  
3.0  
MEMORY ORGANIZATION  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC Pro-  
FIGURE 3-2:  
dsPIC30F4013 PROGRAM  
SPACE MEMORY MAP  
Reset – GOTOInstruction  
Reset – Target Address  
000000  
000002  
000004  
grammer’s  
Reference  
Manual”  
(DS70157).  
Interrupt Vector Table  
3.1  
Program Address Space  
00007E  
000080  
Reserved  
The program address space is 4M instruction words. It  
is addressable by a 24-bit value from either the 23-bit  
PC, table instruction Effective Address (EA) or data  
space EA, when program space is mapped into data  
space as defined by Table 3-1. Note that the program  
space address is incremented by two between succes-  
sive program words in order to provide compatibility  
with data space addressing.  
000084  
Alternate Vector Table  
0000FE  
000100  
User Flash  
Program Memory  
(16K instructions)  
007FFE  
008000  
Reserved  
(Read ‘0’s)  
FIGURE 3-1:  
dsPIC30F3014 PROGRAM  
SPACE MEMORY MAP  
7FFBFE  
7FFC00  
Data EEPROM  
(1 Kbyte)  
Reset – GOTOInstruction  
Reset – Target Address  
000000  
000002  
000004  
7FFFFE  
800000  
Interrupt Vector Table  
Reserved  
UNITID (32 instr.)  
Reserved  
00007E  
000080  
Reserved  
8005BE  
8005C0  
000084  
Alternate Vector Table  
8005FE  
800600  
0000FE  
000100  
User Flash  
Program Memory  
(8K instructions)  
003FFE  
004000  
F7FFFE  
Device Configuration  
Registers  
Reserved  
(Read ‘0’s)  
F80000  
F8000E  
F80010  
7FFBFE  
7FFC00  
Data EEPROM  
(1 Kbyte)  
Reserved  
DEVID (2)  
FEFFFE  
FF0000  
FF0002  
7FFFFE  
800000  
Reserved  
8005BE  
8005C0  
UNITID (32 instr.)  
8005FE  
800600  
Reserved  
F7FFFE  
Device Configuration  
Registers  
F80000  
F8000E  
F80010  
Reserved  
DEVID (2)  
FEFFFE  
FF0000  
FF0002  
2010 Microchip Technology Inc.  
DS70138G-page 25  
 
 
 
 
dsPIC30F3014/4013  
TABLE 3-1:  
PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
User  
User  
(TBLPAG<7> = 0)  
0
PC<22:1>  
0
TBLRD/TBLWT  
TBLPAG<7:0>  
TBLPAG<7:0>  
PSVPAG<7:0>  
Data EA<15:0>  
Data EA<15:0>  
TBLRD/TBLWT  
Configuration  
(TBLPAG<7> = 1)  
Program Space Visibility User  
0
Data EA<14:0>  
FIGURE 3-3:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
23 bits  
Using  
Program  
Counter  
Program Counter  
0
0
0
Select  
1
EA  
Using  
Program  
Space  
PSVPAG Reg  
8 bits  
Visibility  
15 bits  
EA  
Using  
1/0  
TBLPAG Reg  
8 bits  
Table  
Instruction  
16 bits  
User/  
Configuration  
Space  
Select  
Byte  
Select  
24-bit EA  
Note:  
Program space visibility cannot be used to access bits<23:16> of a word in program memory.  
DS70138G-page 26  
2010 Microchip Technology Inc.  
 
 
 
dsPIC30F3014/4013  
A set of table instructions are provided to move byte or  
word-sized data to and from program space. (See  
Figure 3-4 and Figure 3-5.)  
3.1.1  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
1. TBLRDL:Table Read Low  
Word: Read the lsw of the program address;  
P<15:0> maps to D<15:0>.  
This architecture fetches 24-bit wide program memory.  
Consequently, instructions are always aligned.  
However, as the architecture is modified Harvard, data  
can also be present in program space.  
Byte: Read one of the LSBs of the program  
address;  
There are two methods by which program space can  
be accessed: via special table instructions, or through  
the remapping of a 16K word program space page into  
the upper half of data space (see Section 3.1.2 “Data  
Access from Program Memory Using Program  
Space Visibility”). The TBLRDLand TBLWTLinstruc-  
tions offer a direct method of reading or writing the lsw  
of any address within program space, without going  
through data space. The TBLRDHand TBLWTHinstruc-  
tions are the only method whereby the upper 8 bits of a  
program space word can be accessed as data.  
P<7:0> maps to the destination byte when byte  
select = 0;  
P<15:8> maps to the destination byte when byte  
select = 1.  
2. TBLWTL:Table Write Low (refer to Section 5.0  
“Flash Program Memory” for details on Flash  
programming)  
3. TBLRDH:Table Read High  
Word: Read the most significant word (msw) of  
the program address; P<23:16> maps to D<7:0>;  
D<15:8> will always be = 0.  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two 16-bit  
word-wide address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space which contains the least significant  
data word, and TBLRDHand TBLWTHaccess the space  
which contains the MS Data Byte.  
Byte: Read one of the MSBs of the program  
address;  
P<23:16> maps to the destination byte when  
byte select = 0;  
The destination byte will always be = 0 when  
byte select = 1.  
4. TBLWTH:Table Write High (refer to Section 5.0  
“Flash Program Memory” for details on Flash  
Programming)  
Figure 3-3 shows how the EA is created for table oper-  
ations and data space accesses (PSV = 1). Here,  
P<23:0> refers to a program space word, whereas  
D<15:0> refers to a data space word.  
FIGURE 3-4:  
PROGRAM DATA TABLE ACCESS (LEAST SIGNIFICANT WORD)  
PC Address  
23  
8
16  
0
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
TBLRDL.B (Wn<0> = 0)  
TBLRDL.W  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
TBLRDL.B (Wn<0> = 1)  
2010 Microchip Technology Inc.  
DS70138G-page 27  
 
 
 
 
 
 
 
dsPIC30F3014/4013  
FIGURE 3-5:  
PROGRAM DATA TABLE ACCESS (MSB)  
TBLRDH.W  
PC Address  
23  
8
16  
0
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
TBLRDH.B (Wn<0> = 0)  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
TBLRDH.B (Wn<0> = 1)  
Note that by incrementing the PC by 2 for each  
program memory word, the 15 LSbs of data space  
addresses directly map to the 15 LSbs in the corre-  
sponding program space addresses. The remaining  
bits are provided by the Program Space Visibility Page  
register, PSVPAG<7:0>, as shown in Figure 3-6.  
3.1.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING PROGRAM SPACE  
VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word program space page. This  
provides transparent access of stored constant data  
from X data space without the need to use special  
instructions (i.e., TBLRDL/H, TBLWTL/Hinstructions).  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
Program space access through the data space occurs  
if the MSb of the data space, EA, is set and program  
space visibility is enabled by setting the PSV bit in the  
Core Control register (CORCON). The functions of  
CORCON are discussed in Section 2.4 “DSP  
Engine”.  
For instructions that use PSV which are executed  
outside a REPEATloop:  
• The following instructions require one instruction  
cycle in addition to the specified execution time:  
- MACclass of instructions with data operand  
prefetch  
Data accesses to this area add an additional cycle to  
the instruction being executed, since two program  
memory fetches are required.  
- MOVinstructions  
- MOV.Dinstructions  
• All other instructions require two instruction cycles  
in addition to the specified execution time of the  
instruction.  
Note that the upper half of addressable data space is  
always part of the X data space. Therefore, when a  
DSP operation uses program space mapping to access  
this memory region, Y data space should typically con-  
tain state (variable) data for DSP operations, whereas  
X data space should typically contain coefficient  
(constant) data.  
For instructions that use PSV which are executed  
inside a REPEATloop:  
• The following instances require two instruction  
cycles in addition to the specified execution time  
of the instruction:  
Although each data space address, 0x8000 and higher,  
maps directly into a corresponding program memory  
address (see Figure 3-6), only the lower 16 bits of the  
24-bit program word are used to contain the data. The  
upper 8 bits should be programmed to force an illegal  
instruction to maintain machine robustness. Refer to  
the “16-bit MCU and DSC Programmer’s Reference  
Manual” (DS70157) for details on instruction encoding.  
- Execution in the first iteration  
- Execution in the last iteration  
- Execution prior to exiting the loop due to an  
interrupt  
- Execution upon re-entering the loop after an  
interrupt is serviced  
• Any other iteration of the REPEATloop allows the  
instruction accessing data, using PSV, to execute  
in a single cycle.  
DS70138G-page 28  
2010 Microchip Technology Inc.  
 
 
dsPIC30F3014/4013  
FIGURE 3-6:  
DATA SPACE WINDOW INTO PROGRAM SPACE OPERATION  
Data Space  
Program Space  
0x0000  
0x000100  
PSVPAG(1)  
15  
15  
EA<15> =  
0
0x00  
8
16  
Data  
Space  
EA  
0x8000  
23  
15  
0
Address  
EA<15> = 1  
0x000200  
0x007FFF  
Concatenation  
15  
23  
Upper Half of Data  
Space is Mapped  
into Program Space  
0xFFFF  
BSET CORCON,#2  
; PSV bit set  
MOV  
MOV  
MOV  
#0x00, W0  
W0, PSVPAG  
0x8200, W0  
; Set PSVPAG register  
; Access program memory location  
; using a data space access  
Data Read  
Note:  
PSVPAG is an 8-bit register, containing bits<22:15> of the program space address (i.e., it defines  
the page in program space to which the upper half of data space is being mapped).  
The memory map shown here is for a dsPIC30F4013 device.  
2010 Microchip Technology Inc.  
DS70138G-page 29  
 
dsPIC30F3014/4013  
When executing any instruction other than one of  
the MACclass of instructions, the X block consists of the  
64-Kbyte data address space (including all Y addresses).  
When executing one of the MACclass of instructions, the  
X block consists of the 64-Kbyte data address space  
excluding the Y address block (for data reads only). In  
other words, all other instructions regard the entire data  
memory as one composite address space. The MAC  
class instructions extract the Y address space from data  
space and address it using EAs sourced from W10 and  
W11. The remaining X data space is addressed using W8  
and W9. Both address spaces are concurrently accessed  
only with the MACclass instructions.  
3.2  
Data Address Space  
The core has two data spaces. The data spaces can be  
considered either separate (for some DSP instructions),  
or as one unified linear address range (for MCU instruc-  
tions). The data spaces are accessed using two Address  
Generation Units (AGUs) and separate data paths.  
3.2.1  
DATA SPACE MEMORY MAP  
The data space memory is split into two blocks, X and  
Y data space. A key element of this architecture is that  
Y space is a subset of X space, and is fully contained  
within X space. In order to provide an apparent Linear  
Addressing space, X and Y spaces have contiguous  
addresses.  
The data space memory map is shown in Figure 3-7.  
FIGURE 3-7:  
dsPIC30F3014/dsPIC30F4013 DATA SPACE MEMORY MAP  
LSB  
Address  
MSB  
Address  
16 bits  
MSB  
LSB  
0x0000  
0x0001  
2 Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
8 Kbyte  
Near  
Data  
X Data RAM (X)  
Y Data RAM (Y)  
0x0BFF  
0x0C01  
0x0BFE  
0x0C00  
2 Kbyte  
Space  
SRAM Space  
0x0FFF  
0x1001  
0x0FFE  
0x1000  
0x1FFF  
0x1FFE  
0x8000  
0x8001  
X Data  
Unimplemented (X)  
Optionally  
Mapped  
into Program  
Memory  
0xFFFF  
0xFFFE  
DS70138G-page 30  
2010 Microchip Technology Inc.  
 
 
 
dsPIC30F3014/4013  
FIGURE 3-8:  
DATA SPACE FOR MCU AND DSP (MACCLASS) INSTRUCTIONS EXAMPLE  
SFR SPACE  
SFR SPACE  
UNUSED  
Y SPACE  
UNUSED  
(Y SPACE)  
UNUSED  
Non-MACClass Ops (Read/Write)  
MACClass Ops (Write)  
MACClass Ops (Read)  
Indirect EA using any W  
Indirect EA using W8, W9 Indirect EA using W10, W11  
2010 Microchip Technology Inc.  
DS70138G-page 31  
 
dsPIC30F3014/4013  
3.2.2  
DATA SPACES  
3.2.3  
DATA SPACE WIDTH  
The X data space is used by all instructions and sup-  
ports all addressing modes. There are separate read  
and write data buses. The X read data bus is the return  
data path for all instructions that view data space as  
combined X and Y address space. It is also the X  
address space data path for the dual operand read  
instructions (MAC class). The X write data bus is the  
only write path to data space for all instructions.  
The core data width is 16 bits. All internal registers are  
organized as 16-bit wide words. Data space memory is  
organized in byte addressable, 16-bit wide blocks.  
3.2.4  
DATA ALIGNMENT  
To help maintain backward compatibility with PIC®  
MCU devices and improve data space memory usage  
efficiency, the dsPIC30F instruction set supports both  
word and byte operations. Data is aligned in data mem-  
ory and registers as words, but all data space EAs  
resolve to bytes. Data byte reads read the complete  
word which contains the byte, using the LSb of any EA  
to determine which byte to select. The selected byte is  
placed onto the LSB of the X data path (no byte  
accesses are possible from the Y data path as the MAC  
class of instruction can only fetch words). That is, data  
memory and registers are organized as two parallel  
byte-wide entities with shared (word) address decode  
but separate write lines. Data byte writes only write to  
the corresponding side of the array or register which  
matches the byte address.  
The X data space also supports Modulo Addressing for  
all instructions, subject to addressing mode restric-  
tions. Bit-Reversed Addressing is only supported for  
writes to X data space.  
The Y data space is used in concert with the X data  
space by the MAC class of instructions (CLR, ED,  
EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to  
provide two concurrent data read paths. No writes  
occur across the Y bus. This class of instructions dedi-  
cates two W register pointers, W10 and W11, to always  
address Y data space, independent of X data space,  
whereas W8 and W9 always address X data space.  
Note that during accumulator write-back, the data  
address space is considered a combination of X and Y  
data spaces, so the write occurs across the X bus.  
Consequently, the write can be to any address in the  
entire data space.  
As a consequence of this byte accessibility, all effective  
address calculations (including those generated by the  
DSP operations which are restricted to word-sized  
data) are internally scaled to step through word-aligned  
memory. For example, the core would recognize that  
Post-Modified Register Indirect Addressing mode  
[Ws++] will result in a value of Ws + 1 for byte  
operations and Ws + 2 for word operations.  
The Y data space can only be used for the data  
prefetch operation associated with the MAC class of  
instructions. It also supports Modulo Addressing for  
automated circular buffers. Of course, all other instruc-  
tions can access the Y data address space through the  
X data path as part of the composite linear space.  
All word accesses must be aligned to an even address.  
Misaligned word data fetches are not supported so  
care must be taken when mixing byte and word  
operations, or translating from 8-bit MCU code. Should  
a misaligned read or write be attempted, an address  
error trap is generated. If the error occurred on a read,  
the instruction underway is completed, whereas if it  
occurred on a write, the instruction is executed but the  
write does not occur. In either case, a trap is then exe-  
cuted, allowing the system and/or user to examine the  
machine state prior to execution of the address Fault.  
The boundary between the X and Y data spaces is  
defined as shown in Figure 3-7 and is not user-  
programmable. Should an EA point to data outside its  
own assigned address space, or to a location outside  
physical memory, an all zero word/byte is returned. For  
example, although Y address space is visible by all  
non-MAC instructions using any addressing mode, an  
attempt by a MAC instruction to fetch data from that  
space using W8 or W9 (X Space Pointers) returns  
0x0000.  
FIGURE 3-9:  
DATA ALIGNMENT  
LSB  
TABLE 3-2:  
EFFECT OF INVALID  
MEMORY ACCESSES  
MSB  
15  
8 7  
0
0000  
0002  
0004  
0001  
Byte 1  
Byte 3  
Byte 5  
Byte 0  
Byte 2  
Byte 4  
Attempted Operation  
Data Returned  
0003  
0005  
EA = an unimplemented address  
0x0000  
0x0000  
W8 or W9 used to access Y data  
space in a MACinstruction  
W10 or W11 used to access X  
0x0000  
data space in a MACinstruction  
All effective addresses are 16 bits wide and point to  
bytes within the data space. Therefore, the data space  
address range is 64 Kbytes or 32K words.  
DS70138G-page 32  
2010 Microchip Technology Inc.  
 
 
 
 
 
dsPIC30F3014/4013  
All byte loads into any W register are loaded into the  
LSB. The MSB is not modified.  
There is a Stack Pointer Limit register (SPLIM) associ-  
ated with the Stack Pointer. SPLIM is uninitialized at  
Reset. As is the case for the Stack Pointer, SPLIM<0>  
is forced to ‘0’ because all stack operations must be  
word-aligned. Whenever an Effective Address (EA) is  
generated, using W15 as a source or destination  
pointer, the address thus generated is compared with  
the value in SPLIM. If the contents of the Stack Pointer  
(W15) and the SPLIM register are equal and a push  
operation is performed, a stack error trap does not  
occur. The stack error trap occurs on a subsequent  
push operation. Thus, for example, if it is desirable to  
cause a stack error trap when the stack grows beyond  
address 0x2000 in RAM, initialize the SPLIM with the  
value, 0x1FFE.  
A Sign-Extend (SE) instruction is provided to allow  
users to translate 8-bit signed data to 16-bit signed  
values. Alternatively, for 16-bit unsigned data, users  
can clear the MSB of any W register by executing a  
Zero-Extend (ZE) instruction on the appropriate  
address.  
Although most instructions are capable of operating on  
word or byte data sizes, it should be noted that some  
instructions, including the DSP instructions, operate  
only on words.  
3.2.5  
NEAR DATA SPACE  
An 8-Kbyte ‘near’ data space is reserved in X address  
memory space between 0x0000 and 0x1FFF, which is  
directly addressable via a 13-bit absolute address field  
within all memory direct instructions. The remaining X  
address space and all of the Y address space is  
addressable indirectly. Additionally, the whole of X data  
space is addressable using MOV instructions, which  
support memory direct addressing with a 16-bit  
address field.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0x0800, thus preventing the stack from  
interfering with the Special Function Register (SFR)  
space.  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
FIGURE 3-10:  
CALLSTACK FRAME  
3.2.6  
SOFTWARE STACK  
0x0000  
15  
0
The dsPIC DSC devices contain a software stack. W15  
is used as the Stack Pointer.  
The Stack Pointer always points to the first available  
free word and grows from lower addresses towards  
higher addresses. It pre-decrements for stack pops  
and post-increments for stack pushes as shown in  
Figure 3-10. Note that for a PC push during any CALL  
instruction, the MSB of the PC is zero-extended before  
the push, ensuring that the MSB is always clear.  
PC<15:0>  
000000000  
W15 (before CALL)  
PC<22:16>  
<Free Word>  
W15 (after CALL)  
POP : [--W15]  
PUSH: [W15++]  
Note:  
A PC push during exception processing  
concatenates the SRL register to the MSB  
of the PC prior to the push.  
2010 Microchip Technology Inc.  
DS70138G-page 33  
 
 
 
 
 
TABLE 3-3:  
CORE REGISTER MAP(1)  
Address  
(Home)  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
W0  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
0022  
0024  
0026  
0028  
002A  
002C  
002E  
0030  
0032  
0034  
0036  
0038  
003A  
003C  
003E  
0040  
0042  
W0/WREG  
W1  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 1000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuu0  
0000 0000 0uuu uuuu  
uuuu uuuu uuuu uuu0  
0000 0000 0uuu uuuu  
0000 0000 0000 0000  
W1  
W2  
W2  
W3  
W3  
W4  
W4  
W5  
W5  
W6  
W6  
W7  
W7  
W8  
W8  
W9  
W9  
W10  
W10  
W11  
W12  
W13  
W14  
W15  
SPLIM  
ACCAL  
ACCAH  
W11  
W12  
W13  
W14  
W15  
SPLIM  
ACCAL  
ACCAH  
ACCAU  
ACCBL  
ACCBH  
ACCBU  
PCL  
Sign Extension (ACCA<39>)  
Sign Extension (ACCB<39>)  
ACCAU  
ACCBL  
ACCBH  
ACCBU  
PCL  
PCH  
PCH  
TBLPAG  
PSVPAG  
RCOUNT  
DCOUNT  
DOSTARTL  
DOSTARTH  
DOENDL  
DOENDH  
SR  
TBLPAG  
PSVPAG  
RCOUNT  
DCOUNT  
DOSTARTL  
0
0
DOSTARTH  
DOENDL  
DOENDH  
N
OA  
OB  
SA  
SB  
OAB  
SAB  
DA  
DC  
IPL2  
IPL1  
IPL0  
RA  
OV  
Z
C
Legend:  
1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
 
TABLE 3-3:  
CORE REGISTER MAP(1) (CONTINUED)  
Address  
(Home)  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
CORCON  
MODCON  
XMODSRT  
XMODEND  
YMODSRT  
YMODEND  
XBREV  
0044  
0046  
0048  
004A  
004C  
004E  
0050  
0052  
US  
EDT  
DL2  
DL1  
DL0  
SATA  
SATB SATDW ACCSAT  
YWM<3:0>  
IPL3  
PSV  
RND  
IF  
0000 0000 0010 0000  
0000 0000 0000 0000  
uuuu uuuu uuuu uuu0  
uuuu uuuu uuuu uuu1  
uuuu uuuu uuuu uuu0  
uuuu uuuu uuuu uuu1  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
XMODEN YMODEN  
BWM<3:0>  
XWM<3:0>  
XS<15:1>  
XE<15:1>  
YS<15:1>  
YE<15:1>  
0
1
0
1
BREN  
XB<14:0>  
DISICNT  
DISICNT<13:0>  
Legend:  
1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 36  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
4.1.1  
FILE REGISTER INSTRUCTIONS  
4.0  
ADDRESS GENERATOR UNITS  
Most file register instructions use a 13-bit address field  
(f) to directly address data present in the first  
8192 bytes of data memory (near data space). Most file  
register instructions employ a working register, W0,  
which is denoted as WREG in these instructions. The  
destination is typically either the same file register or  
WREG (with the exception of the MUL instruction),  
which writes the result to a register or register pair. The  
MOV instruction allows additional flexibility and can  
access the entire data space during file register  
operation.  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC Pro-  
grammer’s  
Reference  
Manual”  
(DS70157).  
4.1.2  
MCU INSTRUCTIONS  
The dsPIC DSC core contains two independent  
address generator units: the X AGU and Y AGU. The Y  
AGU supports word-sized data reads for the DSP MAC  
class of instructions only. The dsPIC DSC AGUs  
support three types of data addressing:  
The three-operand MCU instructions are of the form:  
Operand 3 = Operand 1 <function> Operand 2  
where Operand 1 is always a working register (i.e., the  
addressing mode can only be Register Direct), which is  
referred to as Wb. Operand 2 can be a W register,  
fetched from data memory or a 5-bit literal. The result  
location can be either a W register or an address  
location. The following addressing modes are  
supported by MCU instructions:  
• Linear Addressing  
• Modulo (Circular) Addressing  
• Bit-Reversed Addressing  
Linear and Modulo Data Addressing modes can be  
applied to data space or program space. Bit-Reversed  
Addressing is only applicable to data space addresses.  
• Register Direct  
• Register Indirect  
• Register Indirect Post-Modified  
• Register Indirect Pre-Modified  
• 5-bit or 10-bit Literal  
4.1  
Instruction Addressing Modes  
The addressing modes in Table 4-1 form the basis of  
the addressing modes optimized to support the specific  
features of individual instructions. The addressing  
modes provided in the MAC class of instructions are  
somewhat different from those in the other instruction  
types.  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions may support different subsets  
of these addressing modes.  
TABLE 4-1:  
FUNDAMENTAL ADDRESSING MODES SUPPORTED  
Description  
The address of the File register is specified explicitly.  
Addressing Mode  
File Register Direct  
Register Direct  
The contents of a register are accessed directly.  
The contents of Wn forms the EA.  
Register Indirect  
Register Indirect Post-Modified  
The contents of Wn forms the EA. Wn is post-modified (incremented or  
decremented) by a constant value.  
Register Indirect Pre-Modified  
Wn is pre-modified (incremented or decremented) by a signed constant value  
to form the EA.  
Register Indirect with Register Offset The sum of Wn and Wb forms the EA.  
Register Indirect with Literal Offset  
The sum of Wn and a literal forms the EA.  
2010 Microchip Technology Inc.  
DS70138G-page 37  
 
 
 
 
 
 
dsPIC30F3014/4013  
In summary, the following addressing modes are  
supported by the MACclass of instructions:  
4.1.3  
MOVE AND ACCUMULATOR  
INSTRUCTIONS  
• Register Indirect  
Move instructions and the DSP accumulator class of  
instructions provide a greater degree of addressing  
flexibility than other instructions. In addition to the  
addressing modes supported by most MCU instruc-  
tions, move and accumulator instructions also support  
Register Indirect with Register Offset Addressing  
mode, also referred to as Register Indexed mode.  
• Register Indirect Post-Modified by 2  
• Register Indirect Post-Modified by 4  
• Register Indirect Post-Modified by 6  
• Register Indirect with Register Offset (Indexed)  
4.1.5  
OTHER INSTRUCTIONS  
Note:  
For the MOV instructions, the addressing  
mode specified in the instruction can differ  
for the source and destination EA.  
However, the 4-bit Wb (register offset)  
field is shared between both source and  
destination (but typically only used by  
one).  
Besides the various addressing modes outlined above,  
some instructions use literal constants of various sizes.  
For example, BRA (branch) instructions use 16-bit  
signed literals to specify the branch destination directly,  
whereas the DISI instruction uses a 14-bit unsigned  
literal field. In some instructions, such as ADD Acc, the  
source of an operand or result is implied by the opcode  
itself. Certain operations, such as NOP, do not have any  
operands.  
In summary, the following addressing modes are  
supported by move and accumulator instructions:  
• Register Direct  
4.2  
Modulo Addressing  
• Register Indirect  
Modulo Addressing is a method of providing an  
automated means to support circular data buffers using  
hardware. The objective is to remove the need for  
software to perform data address boundary checks  
when executing tightly looped code, as is typical in  
many DSP algorithms.  
• Register Indirect Post-Modified  
• Register Indirect Pre-Modified  
• Register Indirect with Register Offset (Indexed)  
• Register Indirect with Literal Offset  
• 8-bit Literal  
• 16-bit Literal  
Modulo Addressing can operate in either data or  
program space (since the data pointer mechanism is  
essentially the same for both). One circular buffer can  
be supported in each of the X (which also provides the  
pointers into program space) and Y data spaces.  
Modulo Addressing can operate on any W register  
pointer. However, it is not advisable to use W14 or W15  
for Modulo Addressing since these two registers are  
used as the Stack Frame Pointer and Stack Pointer,  
respectively.  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions may support different subsets  
of these addressing modes.  
4.1.4  
MACINSTRUCTIONS  
The dual source operand DSP instructions (CLR, ED,  
EDAC, MAC, MPY, MPY.N, MOVSACand MSC), also  
referred to as MACinstructions, utilize a simplified set of  
addressing modes to allow the user to effectively  
manipulate the Data Pointers through register indirect  
tables.  
In general, any particular circular buffer can only be  
configured to operate in one direction, as there are  
certain restrictions on the buffer start address (for incre-  
menting buffers), or end address (for decrementing  
buffers) based upon the direction of the buffer.  
The two source operand prefetch registers must be a  
member of the set {W8, W9, W10, W11}. For data  
reads, W8 and W9 is always directed to the X RAGU,  
and W10 and W11 are always directed to the Y AGU.  
The Effective Addresses generated (before and after  
modification) must, therefore, be valid addresses within  
X data space for W8 and W9 and Y data space for W10  
and W11.  
The only exception to the usage restrictions is for  
buffers that have a power-of-2 length. As these buffers  
satisfy the start and end address criteria, they may  
operate in a Bidirectional mode (i.e., address boundary  
checks are performed on both the lower and upper  
address boundaries).  
Note:  
Register Indirect with Register Offset  
addressing is only available for W9 (in X  
space) and W11 (in Y space).  
DS70138G-page 38  
2010 Microchip Technology Inc.  
 
 
 
 
dsPIC30F3014/4013  
4.2.1  
START AND END ADDRESS  
4.2.2  
W ADDRESS REGISTER  
SELECTION  
The Modulo Addressing scheme requires that a start-  
ing and an ending address be specified and loaded  
into the 16-bit Modulo Buffer Address registers:  
XMODSRT, XMODEND, YMODSRT and YMODEND  
(see Table 3-3).  
The Modulo and Bit-Reversed Addressing Control reg-  
ister MODCON<15:0> contains enable flags as well as  
a W register field to specify the W address registers.  
The XWM and YWM fields select which registers oper-  
ate with Modulo Addressing. If XWM = 15, X RAGU  
and X WAGU Modulo Addressing is disabled. Similarly,  
if YWM = 15, Y AGU Modulo Addressing is disabled.  
Note:  
Y space Modulo Addressing EA calcula-  
tions assume word-sized data (LSb of  
every EA is always clear).  
The X Address Space Pointer W register (XWM), to  
which Modulo Addressing is to be applied, is stored in  
MODCON<3:0> (see Table 3-3). Modulo Addressing is  
enabled for X data space when XWM is set to any value  
other than ‘15’ and the XMODEN bit is set at  
MODCON<15>.  
The length of a circular buffer is not directly specified. It  
is determined by the difference between the  
corresponding start and end addresses. The maximum  
possible length of the circular buffer is 32K words  
(64 Kbytes).  
The Y Address Space Pointer W register (YWM), to  
which Modulo Addressing is to be applied, is stored in  
MODCON<7:4>. Modulo Addressing is enabled for Y  
data space when YWM is set to any value other than  
15’ and the YMODEN bit is set at MODCON<14>.  
FIGURE 4-1:  
MODULO ADDRESSING OPERATION EXAMPLE  
Byte  
Address  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
#0x800,W0  
W0,XMODSRT  
#0x863,W0  
W0,MODEND  
#0x8001,W0  
W0,MODCON  
;set modulo start address  
;set modulo end address  
0x0800  
;enable W1, X AGU for modulo  
MOV  
MOV  
#0x0000,W0  
#0x800,W1  
;W0 holds buffer fill value  
;point W1 to buffer  
DO  
AGAIN,#0x31 ;fill the 50 buffer locations  
MOV  
W0,[W1++]  
;fill the next location  
;increment the fill value  
AGAIN: INC W0,W0  
0x0863  
Start Addr = 0x0800  
End Addr = 0x0863  
Length = 0x0032 words  
2010 Microchip Technology Inc.  
DS70138G-page 39  
 
 
 
dsPIC30F3014/4013  
If the length of a bit-reversed buffer is M = 2N bytes,  
then the last ‘N’ bits of the data buffer start address  
must be zeros.  
4.2.3  
MODULO ADDRESSING  
APPLICABILITY  
Modulo Addressing can be applied to the Effective  
Address (EA) calculation associated with any W  
register. It is important to realize that the address  
boundaries check for addresses less than or greater  
than the upper (for incrementing buffers) and lower (for  
decrementing buffers) boundary addresses (not just  
equal to). Address changes may, therefore, jump  
beyond boundaries and still be adjusted correctly.  
XB<14:0> is the bit-reversed address modifier or ‘pivot  
point’ which is typically a constant. In the case of an  
FFT computation, its value is equal to half of the FFT  
data buffer size.  
Note:  
All bit-reversed EA calculations assume  
word-sized data (LSb of every EA is  
always clear). The XB value is scaled  
accordingly to generate compatible (byte)  
addresses.  
Note:  
The modulo corrected effective address is  
written back to the register only when Pre-  
Modify or Post-Modify Addressing mode is  
used to compute the effective address.  
When an address offset (e.g., [W7+W2])  
is used, Modulo Addressing correction is  
performed but the contents of the register  
remain unchanged.  
When enabled, Bit-Reversed Addressing is only  
executed for Register Indirect with Pre-Increment or  
Post-Increment Addressing and word-sized data  
writes. It does not function for any other addressing  
mode or for byte sized data. Normal addresses are  
generated instead. When Bit-Reversed Addressing is  
active, the W Address Pointer is always added to the  
address modifier (XB) and the offset associated with  
the Register Indirect Addressing mode is ignored. In  
addition, as word-sized data is a requirement, the LSb  
of the EA is ignored (and always clear).  
4.3  
Bit-Reversed Addressing  
Bit-Reversed Addressing is intended to simplify data  
re-ordering for radix-2 FFT algorithms. It is supported  
by the X AGU for data writes only.  
Note:  
Modulo Addressing and Bit-Reversed  
Addressing should not be enabled  
together. In the event that the user  
attempts to do this, Bit-Reversed Address-  
ing assumes priority when active for the X  
WAGU, and X WAGU Modulo Addressing  
is disabled. However, Modulo Addressing  
continues to function in the X RAGU.  
The modifier, which may be a constant value or register  
contents, is regarded as having its bit order reversed. The  
address source and destination are kept in normal order.  
Thus, the only operand requiring reversal is the modifier.  
4.3.1  
BIT-REVERSED ADDRESSING  
IMPLEMENTATION  
Bit-Reversed Addressing is enabled when:  
If Bit-Reversed Addressing has already been enabled  
by setting the BREN (XBREV<15>) bit, then a write to  
the XBREV register should not be immediately followed  
by an indirect read operation using the W register that  
has been designated as the Bit-Reversed Pointer.  
1. BWM (W register selection) in the MODCON  
register is any value other than ‘15’ (the stack  
cannot be accessed using Bit-Reversed  
Addressing) and  
2. the BREN bit is set in the XBREV register and  
3. the addressing mode used is Register Indirect  
with Pre-Increment or Post-Increment.  
FIGURE 4-2:  
BIT-REVERSED ADDRESS EXAMPLE  
Sequential Address  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1  
0
Bit Locations Swapped Left-to-Right  
Around Center of Binary Value  
b2 b3 b4  
0
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1  
Bit-Reversed Address  
Pivot Point  
XB = 0x0008 for a 16-word Bit-Reversed Buffer  
DS70138G-page 40  
2010 Microchip Technology Inc.  
 
 
 
 
dsPIC30F3014/4013  
TABLE 4-2:  
BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)  
Normal Address Bit-Reversed Address  
A3  
A2  
A1  
A0  
Decimal  
A3  
A2  
A1  
A0  
Decimal  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
8
2
4
3
12  
2
4
5
10  
6
6
7
14  
1
8
9
9
10  
11  
12  
13  
14  
15  
5
13  
3
11  
7
15  
TABLE 4-3:  
BIT-REVERSED ADDRESS MODIFIER VALUES FOR XBREV REGISTER  
Buffer Size (Words)  
XB<14:0> Bit-Reversed Address Modifier Value  
1024  
512  
256  
128  
64  
32  
16  
8
0x0200  
0x0100  
0x0080  
0x0040  
0x0020  
0x0010  
0x0008  
0x0004  
0x0002  
0x0001  
4
2
2010 Microchip Technology Inc.  
DS70138G-page 41  
 
 
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 42  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
5.2  
Run-Time Self-Programming  
(RTSP)  
5.0  
FLASH PROGRAM MEMORY  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC Pro-  
RTSP is accomplished using TBLRD (table read) and  
TBLWT(table write) instructions.  
With RTSP, the user may erase program memory,  
32 instructions (96 bytes) at a time and can write  
program memory data, 32 instructions (96 bytes) at a  
time.  
5.3  
Table Instruction Operation  
Summary  
grammer’s  
Reference  
Manual”  
(DS70157).  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
Word or Byte mode.  
The dsPIC30F family of devices contains internal  
program Flash memory for executing user code. There  
are two methods by which the user can program this  
memory:  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits<23:16> of program memory. TBLRDH  
and TBLWTHcan access program memory in Word or  
Byte mode.  
1. Run-Time Self-Programming (RTSP)  
2. In-Circuit Serial Programming™ (ICSP™)  
A 24-bit program memory address is formed using  
bits<7:0> of the TBLPAG register and the Effective  
Address (EA) from a W register specified in the table  
instruction, as shown in Figure 5-1.  
5.1  
In-Circuit Serial Programming  
(ICSP)  
dsPIC30F devices can be serially programmed while in  
the end application circuit. This is simply done with two  
lines for Programming Clock and Programming Data  
(which are named PGC and PGD, respectively), and  
three other lines for Power (VDD), Ground (VSS) and  
Master Clear (MCLR). This allows customers to manu-  
facture boards with unprogrammed devices and then  
program the microcontroller just before shipping the  
product. This also allows the most recent firmware or a  
custom firmware to be programmed.  
FIGURE 5-1:  
ADDRESSING FOR TABLE AND NVM REGISTERS  
24 bits  
Using  
Program  
Counter  
Program Counter  
0
0
NVMADR Reg EA  
Using  
NVMADR  
Addressing  
1/0 NVMADRU Reg  
8 bits  
16 bits  
Working Reg EA  
Using  
Table  
Instruction  
1/0  
TBLPAG Reg  
8 bits  
16 bits  
Byte  
Select  
User/Configuration  
Space Select  
24-bit EA  
2010 Microchip Technology Inc.  
DS70138G-page 43  
 
 
 
 
 
dsPIC30F3014/4013  
5.4  
RTSP Operation  
5.5  
Control Registers  
The dsPIC30F Flash program memory is organized  
into rows and panels. Each row consists of 32 instruc-  
tions or 96 bytes. Each panel consists of 128 rows or  
4K x 24 instructions. RTSP allows the user to erase one  
row (32 instructions) at a time and to program four  
instructions at one time. RTSP may be used to program  
multiple program memory panels, but the Table Pointer  
must be changed at each panel boundary.  
The four SFRs used to read and write the program  
Flash memory are:  
• NVMCON  
• NVMADR  
• NVMADRU  
• NVMKEY  
5.5.1  
NVMCON REGISTER  
Each panel of program memory contains write latches  
that hold 32 instructions of programming data. Prior to  
the actual programming operation, the write data must  
be loaded into the panel write latches. The data to be  
programmed into the panel is loaded in sequential  
order into the write latches; instruction 0, instruction 1,  
etc. The instruction words loaded must always be from  
a 32 address boundary.  
The NVMCON register controls which blocks are to be  
erased, which memory type is to be programmed and  
the start of the programming cycle.  
5.5.2  
NVMADR REGISTER  
The NVMADR register is used to hold the lower two  
bytes of the Effective Address. The NVMADR register  
captures the EA<15:0> of the last table instruction that  
has been executed and selects the row to write.  
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the write latches. Programming is performed by  
setting the special bits in the NVMCON register.  
32 TBLWTL and four TBLWTH instructions are  
required to load the 32 instructions. If multiple panel  
programming is required, the Table Pointer needs to be  
changed and the next set of multiple write latches  
written.  
5.5.3  
NVMADRU REGISTER  
The NVMADRU register is used to hold the upper byte  
of the Effective Address. The NVMADRU register cap-  
tures the EA<23:16> of the last table instruction that  
has been executed.  
5.5.4  
NVMKEY is a write-only register that is used for write  
protection. To start programming or erase  
sequence, the user must consecutively write 0x55 and  
0xAA to the NVMKEY register. Refer to Section 5.6  
“Programming Operations” for further details.  
NVMKEY REGISTER  
All of the table write operations are single-word writes  
(2 instruction cycles), because only the table latches  
are written. A programming cycle is required for  
programming each row.  
a
The Flash program memory is readable, writable and  
erasable during normal operation over the entire VDD  
range.  
Note:  
The user can also directly write to the  
NVMADR and NVMADRU registers to  
specify a program memory address for  
erasing or programming.  
DS70138G-page 44  
2010 Microchip Technology Inc.  
 
 
 
 
 
dsPIC30F3014/4013  
4. Write 32 instruction words of data from data  
RAM “image” into the program Flash write  
latches.  
5.6  
Programming Operations  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. A programming operation is nominally 2 msec in  
duration and the processor stalls (waits) until the oper-  
ation is finished. Setting the WR bit (NVMCON<15>)  
starts the operation and the WR bit is automatically  
cleared when the operation is finished.  
5. Program 32 instruction words into program  
Flash.  
a) Set up NVMCON register for multi-word,  
program Flash, program, and set WREN  
bit.  
b) Write 0x55 to NVMKEY.  
5.6.1  
PROGRAMMING ALGORITHM FOR  
PROGRAM FLASH  
c) Write 0xAA to NVMKEY.  
d) Set the WR bit. This begins program cycle.  
e) CPU stalls for duration of the program cycle.  
The user can erase or program one row of program  
Flash memory at a time. The general process is:  
f) The WR bit is cleared by the hardware  
when program cycle ends.  
1. Read one row of program Flash (32 instruction  
words) and store into data RAM as a data  
“image”.  
6. Repeat steps 1 through 5 as needed to program  
desired amount of program Flash memory.  
2. Update the data image with the desired new  
data.  
5.6.2  
ERASING A ROW OF PROGRAM  
MEMORY  
3. Erase program Flash row.  
Example 5-1 shows a code sequence that can be used  
to erase a row (32 instructions) of program memory.  
a) Set up NVMCON register for multi-word,  
program Flash, erase, and set WREN bit.  
b) Write address of row to be erased into  
NVMADRU/NVMDR.  
c) Write 0x55 to NVMKEY.  
d) Write 0xAA to NVMKEY.  
e) Set the WR bit. This begins erase cycle.  
f) CPU stalls for the duration of the erase cycle.  
g) The WR bit is cleared when erase cycle  
ends.  
EXAMPLE 5-1:  
ERASING A ROW OF PROGRAM MEMORY  
; Setup NVMCON for erase operation, multi word write  
; program memory selected, and writes enabled  
MOV  
MOV  
#0x4041,W0  
W0 NVMCON  
;
; Init NVMCON SFR  
,
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
MOV  
DISI  
#tblpage(PROG_ADDR),W0  
;
W0 NVMADRU  
; Initialize PM Page Boundary SFR  
; Intialize in-page EA[15:0] pointer  
; Initialize NVMADR SFR  
; Block all interrupts with priority <7 for  
; next 5 instructions  
,
#tbloffset(PROG_ADDR),W0  
W0, NVMADR  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0 NVMKEY  
; Write the 0x55 key  
;
; Write the 0xAA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
,
#0xAA,W1  
W1 NVMKEY  
,
NVMCON,#WR  
2010 Microchip Technology Inc.  
DS70138G-page 45  
 
 
 
 
 
dsPIC30F3014/4013  
5.6.3  
LOADING WRITE LATCHES  
5.6.4  
INITIATING THE PROGRAMMING  
SEQUENCE  
Example 5-2 shows a sequence of instructions that  
can be used to load the 96 bytes of write latches.  
32 TBLWTLand 32 TBLWTHinstructions are needed to  
load the write latches selected by the Table Pointer.  
For protection, the write initiate sequence for NVMKEY  
must be used to allow any erase or program operation  
to proceed. After the programming command has been  
executed, the user must wait for the programming time  
until programming is complete. The two instructions  
following the start of the programming sequence  
should be NOPs as shown in Example 5-3.  
EXAMPLE 5-2:  
LOADING WRITE LATCHES  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000,W0  
;
W0 TBLPAG  
; Initialize PM Page Boundary SFR  
; An example program memory address  
,
#0x6000,W0  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
#LOW_WORD_0,W2  
#HIGH_BYTE_0,W3  
;
;
TBLWTL W2 [W0]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
,
TBLWTH W3 [W0++]  
,
; 1st_program_word  
MOV  
MOV  
#LOW_WORD_1,W2  
#HIGH_BYTE_1,W3  
;
;
TBLWTL W2 [W0]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
,
TBLWTH W3 [W0++]  
,
;
2nd_program_word  
MOV  
MOV  
#LOW_WORD_2,W2  
#HIGH_BYTE_2,W3  
;
;
TBLWTL W2 [W0]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
,
TBLWTH W3 [W0++]  
,
; 31st_program_word  
MOV  
MOV  
#LOW_WORD_31,W2  
#HIGH_BYTE_31,W3  
;
;
TBLWTL W2 [W0]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
,
TBLWTH W3 [W0++]  
,
Note:  
In Example 5-2, the contents of the upper byte of W3 has no effect.  
EXAMPLE 5-3:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7 for  
; next 5 instructions  
;
; Write the 0x55 key  
;
; Write the 0xAA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0 NVMKEY  
,
#0xAA,W1  
W1 NVMKEY  
,
NVMCON,#WR  
DS70138G-page 46  
2010 Microchip Technology Inc.  
 
 
 
 
 
 
TABLE 5-1:  
NVM REGISTER MAP(1)  
File Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Resets  
NVMCON  
NVMADR  
NVMADRU  
NVMKEY  
0760  
0762  
0764  
0766  
WR  
WREN  
WRERR  
TWRI  
PROGOP<6:0>  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
NVMADR<15:0>  
NVMADR<23:16>  
KEY<7:0>  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
 
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 48  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
A program or erase operation on the data EEPROM  
does not stop the instruction flow. The user is respon-  
sible for waiting for the appropriate duration of time  
before initiating another data EEPROM write/erase  
operation. Attempting to read the data EEPROM while  
a programming or erase operation is in progress results  
in unspecified data.  
6.0  
DATA EEPROM MEMORY  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC Pro-  
Control bit, WR, initiates write operations similar to  
program Flash writes. This bit cannot be cleared, only  
set, in software. They are cleared in hardware at the  
completion of the write operation. The inability to clear  
the WR bit in software prevents the accidental or  
premature termination of a write operation.  
grammer’s  
Reference  
Manual”  
(DS70157).  
The WREN bit, when set, allows a write operation. On  
power-up, the WREN bit is clear. The WRERR bit is set  
when a write operation is interrupted by a MCLR Reset  
or a WDT Time-out Reset during normal operation. In  
these situations, following Reset, the user can check  
the WRERR bit and rewrite the location. The address  
register, NVMADR, remains unchanged.  
The data EEPROM memory is readable and writable  
during normal operation over the entire VDD range. The  
data EEPROM memory is directly mapped in the  
program memory address space.  
The four SFRs used to read and write the program  
Flash memory are used to access data EEPROM  
memory as well. As described in Section 5.5 “Control  
Registers”, these registers are:  
Note:  
Interrupt flag bit, NVMIF in the IFS0 regis-  
ter, is set when the write is complete. It  
must be cleared in software.  
• NVMCON  
• NVMADR  
• NVMADRU  
• NVMKEY  
6.1  
Reading the Data EEPROM  
A TBLRD instruction reads a word at the current  
program word address. This example uses W0 as a  
pointer to data EEPROM. The result is placed in  
register W4 as shown in Example 6-1.  
The EEPROM data memory allows read and write of  
single words and 16-word blocks. When interfacing to  
data memory, NVMADR, in conjunction with the  
NVMADRU register, are used to address the  
EEPROM location being accessed. TBLRDL and  
TBLWTLinstructions are used to read and write data  
EEPROM. The dsPIC30F devices have up to 8 Kbytes  
(4K words) of data EEPROM with an address range  
from 0x7FF000 to 0x7FFFFE.  
EXAMPLE 6-1:  
DATA EEPROM READ  
MOV  
MOV  
MOV  
#LOW_ADDR_WORD,W0 ; Init Pointer  
#HIGH_ADDR_WORD,W1  
W1 TBLPAG  
,
TBLRDL [ W0 ], W4  
; read data EEPROM  
A word write operation should be preceded by an erase  
of the corresponding memory location(s). The write  
typically requires 2 ms to complete, but the write time  
varies with voltage and temperature.  
2010 Microchip Technology Inc.  
DS70138G-page 49  
 
 
 
 
dsPIC30F3014/4013  
6.2.2  
ERASING A WORD OF DATA  
EEPROM  
6.2  
Erasing Data EEPROM  
6.2.1  
ERASING A BLOCK OF DATA  
EEPROM  
The NVMADRU and NVMADR registers must point to  
the block. Select a block of data Flash and set the WR  
and WREN bits in the NVMCON register. Setting the  
WR bit initiates the erase, as shown in Example 6-3.  
In order to erase a block of data EEPROM, the  
NVMADRU and NVMADR registers must initially point  
to the block of memory to be erased. Configure  
NVMCON for erasing a block of data EEPROM and  
set the WR and WREN bits in the NVMCON register.  
Setting the WR bit initiates the erase, as shown in  
Example 6-2.  
EXAMPLE 6-2:  
DATA EEPROM BLOCK ERASE  
; Select data EEPROM block, WR, WREN bits  
MOV  
MOV  
#4045,W0  
W0 NVMCON  
; Initialize NVMCON SFR  
,
; Start erase cycle by setting WR after writing key sequence  
DISI  
#5  
; Block all interrupts with priority <7 for  
; next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
;
W0 NVMKEY  
; Write the 0x55 key  
;
; Write the 0xAA key  
; Initiate erase sequence  
,
#0xAA,W1  
W1 NVMKEY  
,
NVMCON,#WR  
; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle  
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete  
EXAMPLE 6-3:  
DATA EEPROM WORD ERASE  
; Select data EEPROM word, WR, WREN bits  
MOV  
MOV  
#4044,W0  
W0 NVMCON  
,
; Start erase cycle by setting WR after writing key sequence  
DISI  
#5  
; Block all interrupts with priority <7 for  
; next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
;
W0 NVMKEY  
; Write the 0x55 key  
;
; Write the 0xAA key  
; Initiate erase sequence  
,
#0xAA,W1  
W1 NVMKEY  
,
NVMCON,#WR  
; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle  
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete  
DS70138G-page 50  
2010 Microchip Technology Inc.  
 
 
 
 
 
 
 
dsPIC30F3014/4013  
The write does not initiate if the above sequence is not  
exactly followed (write 0x55 to NVMKEY, write 0xAA to  
NVMCON, then set WR bit) for each word. It is strongly  
recommended that interrupts be disabled during this  
code segment.  
6.3  
Writing to the Data EEPROM  
To write an EEPROM data location, the following  
sequence must be followed:  
1. Erase the data EEPROM word.  
a) Select the word, data EEPROM erase and  
set the WREN bit in the NVMCON register.  
Additionally, the WREN bit in NVMCON must be set to  
enable writes. This mechanism prevents accidental  
writes to data EEPROM due to unexpected code exe-  
cution. The WREN bit should be kept clear at all times  
except when updating the EEPROM. The WREN bit is  
not cleared by hardware.  
b) Write the address of word to be erased into  
NVMADR.  
c) Enable the NVM interrupt (optional).  
d) Write 0x55 to NVMKEY.  
After a write sequence has been initiated, clearing the  
WREN bit does not affect the current write cycle. The  
WR bit is inhibited from being set unless the WREN bit  
is set. The WREN bit must be set on a previous instruc-  
tion. Both WR and WREN cannot be set with the same  
instruction.  
e) Write 0xAA to NVMKEY.  
f) Set the WR bit. This begins the erase cycle.  
g) Either poll the NVMIF bit or wait for the  
NVMIF interrupt.  
h) The WR bit is cleared when the erase cycle  
ends.  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the Nonvolatile Memory Write  
Complete Interrupt Flag bit (NVMIF) is set. The user  
may either enable this interrupt or poll this bit. NVMIF  
must be cleared by software.  
2. Write the data word into data the EEPROM write  
latches.  
3. Program 1 data word into the data EEPROM.  
a) Select the word, data EEPROM program and  
set the WREN bit in the NVMCON register.  
6.3.1  
WRITING A WORD OF DATA  
EEPROM  
b) Enable the NVM write done interrupt  
(optional).  
c) Write 0x55 to NVMKEY.  
d) Write 0xAA to NVMKEY.  
Once the user has erased the word to be programmed,  
then a table write instruction is used to write one write  
latch, as shown in Example 6-4.  
e) Set the WR bit. This begins the program  
cycle.  
6.3.2  
WRITING A BLOCK OF DATA  
EEPROM  
f) Either poll the NVMIF bit or wait for the  
NVM interrupt.  
To write a block of data EEPROM, write to all sixteen  
latches first, then set the NVMCON register and  
program the block, as shown in Example 6-5.  
g) The WR bit is cleared when the write cycle  
ends.  
EXAMPLE 6-4:  
DATA EEPROM WORD WRITE  
; Point to data memory  
MOV  
MOV  
#LOW_ADDR_WORD,W0  
#HIGH_ADDR_WORD,W1  
; Init pointer  
MOV  
W1 TBLPAG  
,
MOV  
#LOW(WORD),W2  
; Get data  
TBLWTL  
W2 [ W0]  
; Write data  
,
; The NVMADR captures last table access address  
; Select data EEPROM for 1 word op  
MOV  
MOV  
#0x4004,W0  
W0 NVMCON  
,
; Operate key to allow write operation  
DISI  
#5  
; Block all interrupts with priority <7 for  
; next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0 NVMKEY  
; Write the 0x55 key  
,
#0xAA,W1  
W1 NVMKEY  
; Write the 0xAA key  
; Initiate program sequence  
,
NVMCON,#WR  
; Write cycle will complete in 2mS. CPU is not stalled for the Data Write Cycle  
; User can poll WR bit, use NVMIF or Timer IRQ to determine write complete  
2010 Microchip Technology Inc.  
DS70138G-page 51  
 
 
 
 
 
dsPIC30F3014/4013  
EXAMPLE 6-5:  
DATA EEPROM BLOCK WRITE  
MOV  
MOV  
#LOW_ADDR_WORD,W0 ; Init pointer  
#HIGH_ADDR_WORD,W1  
MOV  
W1 TBLPAG  
,
MOV  
#data1,W2  
; Get 1st data  
TBLWTL  
MOV  
W2 [ W0]++  
#data2,W2  
; write data  
; Get 2nd data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data3,W2  
; write data  
; Get 3rd data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data4,W2  
; write data  
; Get 4th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data5,W2  
; write data  
; Get 5th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data6,W2  
; write data  
; Get 6th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data7,W2  
; write data  
; Get 7th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data8,W2  
; write data  
; Get 8th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data9,W2  
; write data  
; Get 9th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data10,W2  
; write data  
; Get 10th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data11,W2  
; write data  
; Get 11th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data12,W2  
; write data  
; Get 12th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data13,W2  
; write data  
; Get 13th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data14,W2  
; write data  
; Get 14th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data15,W2  
; write data  
; Get 15th data  
,
TBLWTL  
MOV  
W2 [ W0]++  
#data16,W2  
; write data  
; Get 16th data  
,
TBLWTL  
MOV  
MOV  
W2 [ W0]++  
#0x400A,W0  
; write data. The NVMADR captures last table access address.  
; Select data EEPROM for multi word op  
; Operate Key to allow program operation  
; Block all interrupts with priority <7 for  
; next 5 instructions  
,
W0 NVMCON  
,
DISI  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0 NVMKEY  
; Write the 0x55 key  
,
#0xAA,W1  
W1 NVMKEY  
; Write the 0xAA key  
; Start write cycle  
,
NVMCON,#WR  
6.4  
Write Verify  
6.5  
Protection Against Spurious Write  
Depending on the application, good programming  
practice may dictate that the value written to the mem-  
ory should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built-in. On power-up, the WREN bit is cleared;  
also, the Power-up Timer prevents EEPROM write.  
The write initiate sequence, and the WREN bit  
together, help prevent an accidental write during  
brown-out, power glitch or software malfunction.  
DS70138G-page 52  
2010 Microchip Technology Inc.  
 
 
 
dsPIC30F3014/4013  
Reads from the latch (LATx), read the latch. Writes to  
the latch, write the latch (LATx). Reads from the port  
(PORTx), read the port pins and writes to the port pins,  
write the latch (LATx).  
7.0  
I/O PORTS  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
Any bit and its associated data and control registers  
that are not valid for a particular device are disabled,  
which means the corresponding LATx and TRISx  
registers and the port pin read as zeros.  
When a pin is shared with another peripheral or func-  
tion that is defined as an input only, it is nevertheless  
regarded as a dedicated port because there is no  
other competing source of outputs. An example is the  
INT4 pin.  
All of the device pins (except VDD, VSS, MCLR and  
OSC1/CLKI) are shared between the peripherals and  
the parallel I/O ports.  
All I/O input ports feature Schmitt Trigger inputs for  
improved noise immunity.  
A Parallel I/O (PIO) port that shares a pin with a periph-  
eral is, in general, subservient to the peripheral. The  
peripheral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pad cell. Figure 7-2 shows how ports are shared  
with other peripherals and the associated I/O cell (pad)  
to which they are connected. Table 7-1 shows the  
formats of the registers for the shared ports, PORTB  
through PORTF.  
7.1  
Parallel I/O (PIO) Ports  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as  
a general purpose output pin is disabled. The I/O pin  
can be read, but the output driver for the parallel port bit  
is disabled. If a peripheral is enabled but the peripheral  
is not actively driving a pin, that pin can be driven by a  
port.  
Note:  
The actual bits in use vary between  
devices.  
All port pins have three registers directly associated  
with the operation of the port pin. The Data Direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is a ‘1’, then the pin  
is an input. All port pins are defined as inputs after a  
Reset.  
FIGURE 7-1:  
BLOCK DIAGRAM OF A DEDICATED PORT STRUCTURE  
Dedicated Port Module  
Read TRIS  
I/O Cell  
TRIS Latch  
D
Q
Data Bus  
WR TRIS  
CK  
Data Latch  
I/O Pad  
D
Q
WR LAT +  
WR PORT  
CK  
Read LAT  
Read PORT  
2010 Microchip Technology Inc.  
DS70138G-page 53  
 
 
 
dsPIC30F3014/4013  
FIGURE 7-2:  
BLOCK DIAGRAM OF A SHARED PORT STRUCTURE  
Output Multiplexers  
Peripheral Module  
Peripheral Input Data  
Peripheral Module Enable  
Peripheral Output Enable  
Peripheral Output Data  
I/O Cell  
1
0
Output Enable  
1
0
PIO Module  
Read TRIS  
Output Data  
I/O Pad  
Data Bus  
WR TRIS  
D
Q
CK  
TRIS Latch  
D
Q
WR LAT +  
WR PORT  
CK  
Data Latch  
Read LAT  
Input Data  
Read PORT  
7.2.1  
I/O PORT WRITE/READ TIMING  
7.2  
Configuring Analog Port Pins  
One instruction cycle is required between a port  
direction change or port write operation and a read  
operation of the same port. Typically, this instruction  
would be a NOP.  
The use of the ADPCFG and TRIS registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their correspond-  
ing TRIS bit set (input). If the TRIS bit is cleared  
(output), the digital output level (VOH or VOL) is  
converted.  
EXAMPLE 7-1:  
PORT WRITE/READ  
EXAMPLE  
When the PORT register is read, all pins configured as  
analog input channels are read as cleared (a low level).  
MOV 0xFF00, W0 ; Configure PORTB<15:8>  
; as inputs  
MOV W0, TRISB ; and PORTB<7:0> as outputs  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin that is defined as  
a digital input (including the ANx pins) may cause the  
input buffer to consume current that exceeds the  
device specifications.  
NOP  
; additional instruction  
cycle  
BTSS PORTB, #11 ; bit test RB11 and skip if set  
DS70138G-page 54  
2010 Microchip Technology Inc.  
 
 
 
TABLE 7-1:  
dsPIC30F3014/4013 PORT REGISTER MAP(1)  
SFR Name Addr. Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TRISA  
PORTA  
LATA  
02C0  
02C2  
02C4  
02C6  
02C8  
02CB  
TRISA11  
RA11  
0000 1000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
LATA11  
TRISB  
PORTB  
LATB  
TRISB12 TRISB11 TRISB10 TRISB9 TRISB8 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 0001 1111 1111 1111  
RB12 RB11 RB10 RB9 RB8 RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 0000 0000 0000 0000  
LATB12 LATB11 LATB10 LATB9 LATB8 LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 0000 0000 0000 0000  
TRISC  
PORTC  
LATC  
02CC TRISC15 TRISC14 TRISC13  
02CE RC15 RC14 RC13  
02D0 LATC15 LATC14 LATC13  
1110 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
TRISD  
PORTD  
LATD  
02D2  
02D4  
02D6  
02DE  
02E0  
02E2  
TRISD9 TRISD8  
RD9 RD8  
LATD9 LATD8  
TRISD3 TRISD2 TRISD1 TRISD0 0000 0011 0000 1111  
RD3 RD2 RD1 RD0 0000 0000 0000 0000  
LATD3 LATD2 LATD1 LATD0 0000 0000 0000 0000  
TRISF  
PORTF  
LATF  
TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 0000 0000 0111 1111  
RF6 RF5 RF4 RF3 RF2 RF1 RF0 0000 0000 0000 0000  
LATF6 LATF5 LATF4 LATF3 LATF2 LATF1 LATF0 0000 0000 0000 0000  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
 
dsPIC30F3014/4013  
7.3  
Input Change Notification Module  
The input change notification module provides the  
dsPIC30F devices the ability to generate interrupt  
requests to the processor, in response to a Change-Of-  
State (COS) on selected input pins. This module is  
capable of detecting input Change-Of-States, even in  
Sleep mode, when the clocks are disabled. There are  
up to 10 external signals (CN0 through CN9, CN17 and  
CN18) that may be selected (enabled) for generating  
an interrupt request on a Change-Of-State.  
DS70138G-page 56  
2010 Microchip Technology Inc.  
 
TABLE 7-2:  
INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F3014/4013 DEVICES (BITS 15-0)(1)  
SFR  
Name  
Addr. Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
CNEN1 00C0  
CNEN2 00C2  
CNPU1 00C4  
CNPU2 00C6  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE 0000 0000 0000 0000  
0000 0000 0000 0000  
CN18IE  
CN17IE  
CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE 0000 0000 0000 0000  
CN18PUE CN17PUE 0000 0000 0000 0000  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
 
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 58  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
• INTCON1<15:0>, INTCON2<15:0>  
8.0  
INTERRUPTS  
Global interrupt control functions are derived from  
these two registers. INTCON1 contains the con-  
trol and status flags for the processor exceptions.  
The INTCON2 register controls the external  
interrupt request signal behavior and the use of  
the alternate vector table.  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC Pro-  
Note:  
Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit. User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
grammer’s  
Reference  
Manual”  
(DS70157).  
All interrupt sources can be user-assigned to one of  
7 priority levels, 1 through 7, via the IPCx registers.  
Each interrupt source is associated with an interrupt  
vector, as shown in Table 8-1. Levels 7 and 1 represent  
the highest and lowest maskable priorities,  
respectively.  
The dsPIC30F sensor and general purpose families  
have up to 41 interrupt sources and 4 processor excep-  
tions (traps) which must be arbitrated based on a  
priority scheme.  
The CPU is responsible for reading the Interrupt Vector  
Table (IVT) and transferring the address contained in  
the interrupt vector to the program counter. The inter-  
rupt vector is transferred from the program data bus  
into the program counter via a 24-bit wide multiplexer  
on the input of the program counter.  
Note:  
Assigning a priority level of ‘0’ to an inter-  
rupt source is equivalent to disabling that  
interrupt.  
If the NSTDIS bit (INTCON1<15>) is set, nesting of  
interrupts is prevented. Thus, if an interrupt is currently  
being serviced, processing of a new interrupt is pre-  
vented even if the new interrupt is of higher priority than  
the one currently being serviced.  
The Interrupt Vector Table (IVT) and Alternate Interrupt  
Vector Table (AIVT) are placed near the beginning of  
program memory (0x000004). The IVT and AIVT are  
shown in Figure 8-1.  
Note:  
The IPL bits become read-only whenever  
the NSTDIS bit has been set to ‘1’.  
The interrupt controller is responsible for pre-  
processing the interrupts and processor exceptions  
prior to them being presented to the processor core.  
The peripheral interrupts and traps are enabled,  
prioritized and controlled using centralized Special  
Function Registers:  
Certain interrupts have specialized control bits for  
features like edge or level triggered interrupts, inter-  
rupt-on-change, etc. Control of these features remains  
within the peripheral module which generates the  
interrupt.  
• IFS0<15:0>, IFS1<15:0>, IFS2<15:0>  
All interrupt request flags are maintained in these  
three registers. The flags are set by their respec-  
tive peripherals or external signals and they are  
cleared via software.  
The DISI instruction can be used to disable the  
processing of interrupts of priorities 6 and lower for a  
certain number of instructions, during which the DISI bit  
(INTCON2<14>) remains set.  
• IEC0<15:0>, IEC1<15:0>, IEC2<15:0>  
All interrupt enable control bits are maintained in  
these three registers. These control bits are used  
to individually enable interrupts from the  
peripherals or external signals.  
When an interrupt is serviced, the PC is loaded with the  
address stored in the vector location in program  
memory that corresponds to the interrupt. There are  
63 different vectors within the IVT (refer to Table 8-1)  
These vectors are contained in locations 0x000004  
through 0x0000FE of program memory (refer to  
Table 8-1). These locations contain 24-bit addresses.  
In order to preserve robustness, an address error trap  
takes place should the PC attempt to fetch any of these  
words during normal execution. This prevents execu-  
tion of random data as a result of accidentally  
decrementing a PC into vector space, accidentally  
mapping a data space address into vector space or the  
PC rolling over to 0x000000 after reaching the end of  
implemented program memory space. Execution of a  
GOTOinstruction to this vector space also generates an  
address error trap.  
• IPC0<15:0>... IPC10<7:0>  
The user-assignable priority level associated with  
each of these 41 interrupts is held centrally in  
these eleven registers.  
• IPL<3:0>  
The current CPU priority level is explicitly stored  
in the IPL bits. IPL<3> is present in the CORCON  
register, whereas IPL<2:0> are present in the  
STATUS register (SR) in the processor core.  
2010 Microchip Technology Inc.  
DS70138G-page 59  
 
dsPIC30F3014/4013  
TABLE 8-1:  
dsPIC30F3014 INTERRUPT  
VECTOR TABLE  
8.1  
Interrupt Priority  
The user-assignable interrupt priority (IP<2:0>) bits for  
each individual interrupt source are located in the  
3 LSbs of each nibble within the IPCx register(s). Bit 3  
of each nibble is not used and is read as a ‘0’. These  
bits define the priority level assigned to a particular  
interrupt by the user.  
INT  
Vector  
Interrupt Source  
Number Number  
Highest Natural Order Priority  
0
1
8
INT0 – External Interrupt 0  
IC1 – Input Capture 1  
OC1 – Output Compare 1  
T1 – Timer1  
9
Note:  
The user-assignable priority levels start at  
0 as the lowest priority and Level 7 as the  
highest priority.  
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
3
4
IC2 – Input Capture 2  
OC2 – Output Compare 2  
T2 – Timer2  
Since more than one interrupt request source may be  
assigned to a specific user-assigned priority level, a  
means is provided to assign priority within a given level.  
This method is called “Natural Order Priority” and is  
final.  
5
6
7
T3 – Timer3  
8
SPI1  
Natural Order Priority is determined by the position of  
an interrupt in the vector table, and only affects  
interrupt operation when multiple interrupts with the  
same user-assigned priority become pending at the  
same time.  
9
U1RX – UART1 Receiver  
U1TX – UART1 Transmitter  
ADC – ADC Convert Done  
NVM – NVM Write Complete  
SI2C – I2C™ Slave Interrupt  
MI2C – I2C Master Interrupt  
Input Change Interrupt  
INT1 – External Interrupt 1  
10  
11  
12  
13  
14  
15  
16  
17-22  
23  
24  
25  
26  
27  
28-41  
42  
43-53  
Table 8-1 and Table 8-2 list the interrupt numbers,  
corresponding interrupt sources and associated vector  
numbers for the dsPIC30F3014 and dsPIC30F4013  
devices, respectively.  
Note 1: The natural order priority scheme has 0  
as the highest priority and 53 as the  
lowest priority.  
25-30 Reserved  
31  
32  
33  
34  
35  
INT2 – External Interrupt 2  
2: The natural order priority number is the  
U2RX – UART2 Receiver  
U2TX – UART2 Transmitter  
Reserved  
same as the INT number.  
The ability for the user to assign every interrupt to one  
of seven priority levels means that the user can assign  
a very high overall priority level to an interrupt with a  
low natural order priority. For example, the PLVD (Pro-  
grammable Low-Voltage Detect) can be given a priority  
of 7. The INT0 (External Interrupt 0) may be assigned  
to priority Level 1, thus giving it a very low effective  
priority.  
C1 – Combined IRQ for CAN1  
36-49 Reserved  
50  
LVD – Low-Voltage Detect  
51-61 Reserved  
Lowest Natural Order Priority  
DS70138G-page 60  
2010 Microchip Technology Inc.  
 
 
dsPIC30F3014/4013  
TABLE 8-2:  
dsPIC30F4013 INTERRUPT  
VECTOR TABLE  
8.2  
Reset Sequence  
A Reset is not a true exception because the interrupt  
controller is not involved in the Reset process. The pro-  
cessor initializes its registers in response to a Reset  
which forces the PC to zero. The processor then begins  
program execution at location 0x000000. A GOTO  
instruction is stored in the first program memory loca-  
tion immediately followed by the address target for the  
GOTOinstruction. The processor executes the GOTOto  
the specified address and then begins operation at the  
specified target (start) address.  
Interrupt Vector  
Number Number  
Interrupt Source  
Highest Natural Order Priority  
0
1
8
INT0 – External Interrupt 0  
IC1 – Input Capture 1  
OC1 – Output Compare 1  
T1 – Timer1  
9
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
3
4
IC2 – Input Capture 2  
OC2 – Output Compare 2  
T2 V Timer2  
8.2.1  
RESET SOURCES  
5
6
In addition to external Reset and Power-on Reset  
(POR), these sources of error conditions ‘trap’ to the  
Reset vector:  
7
T3 – Timer3  
8
SPI1  
• Watchdog Time-out:  
9
U1RX – UART1 Receiver  
U1TX – UART1 Transmitter  
ADC – ADC Convert Done  
NVM – NVM Write Complete  
SI2C – I2C™ Slave Interrupt  
MI2C – I2C Master Interrupt  
Input Change Interrupt  
INT1 – External Interrupt 1  
IC7 – Input Capture 7  
IC8 – Input Capture 8  
OC3 – Output Compare 3  
OC4 – Output Compare 4  
T4 – Timer4  
The watchdog has timed out, indicating that the  
processor is no longer executing the correct flow  
of code.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28-40  
41  
42  
43-53  
• Uninitialized W Register Trap:  
An attempt to use an uninitialized W register as  
an Address Pointer causes a Reset.  
• Illegal Instruction Trap:  
Attempted execution of any unused opcodes  
results in an illegal instruction trap. Note that a  
fetch of an illegal instruction does not result in an  
illegal instruction trap if that instruction is flushed  
prior to execution due to a flow change.  
• Brown-out Reset (BOR):  
A momentary dip in the power supply to the  
device has been detected which may result in  
malfunction.  
T5 – Timer5  
• Trap Lockout:  
Occurrence of multiple trap conditions  
simultaneously causes a Reset.  
INT2 – External Interrupt 2  
U2RX – UART2 Receiver  
U2TX – UART2 Transmitter  
Reserved  
C1 – Combined IRQ for CAN1  
36-48 Reserved  
49  
50  
DCI – CODEC Transfer Done  
LVD – Low-Voltage Detect  
51-61 Reserved  
Lowest Natural Order Priority  
2010 Microchip Technology Inc.  
DS70138G-page 61  
 
 
 
 
 
 
 
dsPIC30F3014/4013  
Address Error Trap:  
8.3  
Traps  
This trap is initiated when any of the following  
circumstances occurs:  
Traps can be considered as non-maskable interrupts,  
indicating a software or hardware error, which adhere  
to a predefined priority as shown in Figure 8-1. They  
are intended to provide the user a means to correct  
erroneous operation during debug and when operating  
within the application.  
1. A misaligned data word access is attempted.  
2. A data fetch from our unimplemented data  
memory location is attempted.  
3. A data access of an unimplemented program  
memory location is attempted.  
Note:  
If the user does not intend to take correc-  
tive action in the event of a trap error  
condition, these vectors must be loaded  
with the address of a default handler that  
simply contains the RESETinstruction. If,  
on the other hand, one of the vectors  
containing an invalid address is called, an  
address error trap is generated.  
4. An instruction fetch from vector space is  
attempted.  
Note:  
In the MAC class of instructions, wherein  
the data space is split into X and Y data  
space, unimplemented X space includes  
all of Y space, and unimplemented Y  
space includes all of X space.  
Note that many of these trap conditions can only be  
detected when they occur. Consequently, the question-  
able instruction is allowed to complete prior to trap  
exception processing. If the user chooses to recover  
from the error, the result of the erroneous action that  
caused the trap may have to be corrected.  
5. Execution of a “BRA #literal” instruction or a  
GOTO #literal” instruction, where literal  
is an unimplemented program memory address.  
6. Executing instructions after modifying the PC to  
point to unimplemented program memory  
addresses. The PC may be modified by loading  
a value into the stack and executing a RETURN  
instruction.  
There are 8 fixed priority levels for traps: Level 8  
through Level 15, which means that the IPL3 is always  
set during processing of a trap.  
Stack Error Trap:  
If the user is not currently executing a trap, and he sets  
the IPL<3:0> bits to a value of ‘0111’ (Level 7), then all  
interrupts are disabled, but traps can still be processed.  
This trap is initiated under the following conditions:  
1. The Stack Pointer is loaded with a value which  
is greater than the (user-programmable) limit  
value written into the SPLIM register (stack  
overflow).  
8.3.1  
TRAP SOURCES  
The following traps are provided with increasing prior-  
ity. However, since all traps can be nested, priority has  
little effect.  
2. The Stack Pointer is loaded with a value which  
is less than 0x0800 (simple stack underflow).  
Math Error Trap:  
Oscillator Fail Trap:  
The math error trap executes under these  
circumstances:  
This trap is initiated if the external oscillator fails and  
operation becomes reliant on an internal RC backup.  
1. Should an attempt be made to divide by zero,  
the divide operation aborts on a cycle boundary  
and the trap is taken.  
8.3.2  
HARD AND SOFT TRAPS  
It is possible that multiple traps can become active  
within the same cycle (e.g., a misaligned word stack  
write to an overflowed address). In such a case, the  
fixed priority shown in Figure 8-2 is implemented,  
which may require the user to check if other traps are  
pending, in order to completely correct the Fault.  
2. If enabled, a math error trap is taken when an  
arithmetic operation on either accumulator A or  
B causes an overflow from bit 31 and the  
accumulator guard bits are not utilized.  
3. If enabled, a math error trap is taken when an  
arithmetic operation on either accumulator A or  
B causes a catastrophic overflow from bit 39 and  
all saturation is disabled.  
‘Soft’ traps include exceptions of priority Level 8  
through Level 11, inclusive. The arithmetic error trap  
(Level 11) falls into this category of traps.  
4. If the shift amount specified in a shift instruction  
is greater than the maximum allowed shift  
amount, a trap occurs.  
‘Hard’ traps include exceptions of priority Level 12  
through Level 15, inclusive. The address error  
(Level 12), stack error (Level 13) and oscillator error  
(Level 14) traps fall into this category.  
DS70138G-page 62  
2010 Microchip Technology Inc.  
 
 
dsPIC30F3014/4013  
Each hard trap that occurs must be Acknowledged  
before code execution of any type may continue. If a  
lower priority hard trap occurs while a higher priority  
trap is pending, Acknowledged, or is being processed,  
a hard trap conflict occurs.  
8.4  
Interrupt Sequence  
All interrupt event flags are sampled in the beginning of  
each instruction cycle by the IFSx registers. A pending  
Interrupt Request (IRQ) is indicated by the flag bit  
being equal to a ‘1’ in an IFSx register. The IRQ causes  
an interrupt to occur if the corresponding bit in the Inter-  
rupt Enable (IECx) register is set. For the remainder of  
the instruction cycle, the priorities of all pending  
interrupt requests are evaluated.  
The device is automatically Reset in a hard trap conflict  
condition. The TRAPR status bit (RCON<15>) is set  
when the Reset occurs so that the condition may be  
detected in software.  
If there is a pending IRQ with a priority level greater  
than the current processor priority level in the IPL bits,  
the processor is interrupted.  
FIGURE 8-1:  
TRAP VECTORS  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
0x000000  
0x000002  
0x000004  
The processor then stacks the current program counter  
and the low byte of the processor STATUS register  
(SRL), as shown in Figure 8-2. The low byte of the  
STATUS register contains the processor priority level at  
the time prior to the beginning of the interrupt cycle.  
The processor then loads the priority level for this  
interrupt into the STATUS register. This action disables  
all lower priority interrupts until the completion of the  
Interrupt Service Routine.  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
IVT  
Reserved Vector  
Reserved Vector  
Reserved Vector  
Interrupt 0 Vector  
0x000014  
Interrupt 1 Vector  
FIGURE 8-2:  
INTERRUPTSTACKFRAME  
0x0000 15  
0
Interrupt 52 Vector  
Interrupt 53 Vector  
Reserved  
0x00007E  
0x000080  
0x000082  
0x000084  
Reserved  
Reserved  
W15 (before CALL)  
W15 (after CALL)  
PC<15:0>  
SRL IPL3 PC<22:16>  
<Free Word>  
Oscillator Fail Trap Vector  
Stack Error Trap Vector  
Address Error Trap Vector  
Math Error Trap Vector  
AIVT  
POP :[--W15]  
PUSH:[W15++]  
Reserved Vector  
Reserved Vector  
Reserved Vector  
Interrupt 0 Vector  
0x000094  
0x0000FE  
Interrupt 1 Vector  
Note 1: The user can always lower the priority  
level by writing a new value into SR. The  
Interrupt Service Routine must clear the  
interrupt flag bits in the IFSx register  
before lowering the processor interrupt  
priority, in order to avoid recursive  
interrupts.  
Interrupt 52 Vector  
Interrupt 53 Vector  
2: The IPL3 bit (CORCON<3>) is always  
clear when interrupts are being pro-  
cessed. It is set only during execution of  
traps.  
The RETFIE(return from interrupt) instruction unstacks  
the program counter and STATUS registers to return  
the processor to its state prior to the interrupt  
sequence.  
2010 Microchip Technology Inc.  
DS70138G-page 63  
 
 
 
 
 
dsPIC30F3014/4013  
8.5  
Alternate Vector Table  
8.7  
External Interrupt Requests  
In program memory, the Interrupt Vector Table (IVT) is  
followed by the Alternate Interrupt Vector Table (AIVT),  
as shown in Figure 8-1. Access to the alternate vector  
table is provided by the ALTIVT bit in the INTCON2 reg-  
ister. If the ALTIVT bit is set, all interrupt and exception  
processes use the alternate vectors instead of the  
default vectors. The alternate vectors are organized in  
the same manner as the default vectors. The AIVT sup-  
ports emulation and debugging efforts by providing a  
means to switch between an application and a support  
environment without requiring the interrupt vectors to  
be reprogrammed. This feature also enables switching  
between applications for evaluation of different  
software algorithms at run time.  
The interrupt controller supports up to five external  
interrupt request signals, INT0-INT4. These inputs are  
edge sensitive; they require a low-to-high or a high-to-  
low transition to generate an interrupt request. The  
INTCON2 register has three bits, INT0EP-INT2EP, that  
select the polarity of the edge detection circuitry.  
8.8  
Wake-up from Sleep and Idle  
The interrupt controller may be used to wake-up the  
processor from either Sleep or Idle mode, if Sleep or  
Idle mode is active when the interrupt is generated.  
If an enabled interrupt request of sufficient priority is  
received by the interrupt controller, then the standard  
interrupt request is presented to the processor. At the  
same time, the processor wakes up from Sleep or Idle  
and begins execution of the Interrupt Service Routine  
(ISR) needed to process the interrupt request.  
If the AIVT is not required, the program memory  
allocated to the AIVT may be used for other purposes.  
AIVT is not a protected section and may be freely  
programmed by the user.  
8.6  
Fast Context Saving  
A context saving option is available using shadow reg-  
isters. Shadow registers are provided for the DC, N,  
OV, Z and C bits in SR, and the registers, W0 through  
W3. The shadows are only one level deep. The shadow  
registers are accessible using the PUSH.Sand POP.S  
instructions only.  
When the processor vectors to an interrupt, the  
PUSH.S instruction can be used to store the current  
value of the aforementioned registers into their  
respective shadow registers.  
If an ISR of a certain priority uses the PUSH.S and  
POP.S instructions for fast context saving, then a  
higher priority ISR should not include the same instruc-  
tions. Users must save the key registers in software  
during a lower priority interrupt if the higher priority ISR  
uses fast context saving.  
DS70138G-page 64  
2010 Microchip Technology Inc.  
 
 
 
 
TABLE 8-3:  
dsPIC30F3014 INTERRUPT CONTROLLER REGISTER MAP(1)  
SFR  
Name  
ADR Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
INTCON1 0080 NSTDIS  
INTCON2 0082 ALTIVT  
OVATE OVBTE COVTE  
MATHERR ADDRERR STKERR OSCFAIL  
0000 0000 0000 0000  
DISI  
IC2IF  
T1IF  
INT2EP INT1EP INT0EP 0000 0000 0000 0000  
IFS0  
IFS1  
IFS2  
IEC0  
IEC1  
IEC2  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC10  
0084 CNIF MI2CIF SI2CIF NVMIF  
ADIF U1TXIF U1RXIF SPI1IF  
T3IF  
T2IF OC2IF  
OC1IF  
IC1IF  
INT0IF 0000 0000 0000 0000  
INT1IF 0000 0000 0000 0000  
0086  
0088  
C1IF  
U2TXIF U2RXIF INT2IF  
LVDIF  
0000 0000 0000 0000  
008C CNIE MI2CIE SI2CIE NVMIE ADIE U1TXIE U1RXIE SPI1IE  
T3IE  
T2IE OC2IE  
IC2IE  
T1IE  
OC1IE  
IC1IE  
INT0IE 0000 0000 0000 0000  
INT1IE 0000 0000 0000 0000  
008E  
0090  
0094  
0096  
0098  
009A  
009C  
009E  
00A0  
00A2  
00A4  
00A6  
00A8  
C1IE  
U2TXIE U2RXIE INT2IE  
LVDIE  
INT0IP<2:0>  
IC2IP<2:0>  
SPI1IP<2:0>  
NVMIP<2:0>  
INT1IP<2:0>  
0000 0000 0000 0000  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0000 0100 0100 0100  
0000 0100 0100 0000  
T1IP<2:0>  
T31P<2:0>  
ADIP<2:0>  
CNIP<2:0>  
OC1IP<2:0>  
IC1IP<2:0>  
T2IP<2:0>  
OC2IP<2:0>  
U1TXIP<2:0>  
U1RXIP<2:0>  
MI2CIP<2:0>  
SI2CIP<2:0>  
INT2IP<2:0>  
C1IP<2:0>  
U2TXIP<2:0>  
U2RXIP<2:0>  
LVDIP<2:0>  
DCIIP<2:0>  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 8-4:  
dsPIC30F4013 INTERRUPT CONTROLLER REGISTER MAP(1)  
SFR  
Name  
ADR Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
INTCON1 0080 NSTDIS  
INTCON2 0082 ALTIVT  
OVATE OVBTE COVTE  
MATHERR ADDRERR STKERR OSCFAIL  
0000 0000 0000 0000  
DISI  
IC2IF  
OC4IF  
T1IF  
OC3IF  
INT2EP INT1EP INT0EP 0000 0000 0000 0000  
IFS0  
IFS1  
IFS2  
IEC0  
IEC1  
IEC2  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC10  
0084 CNIF MI2CIF SI2CIF NVMIF  
ADIF U1TXIF U1RXIF SPI1IF  
T3IF  
T2IF OC2IF  
OC1IF  
IC8IF  
IC1IF  
IC7IF  
INT0IF 0000 0000 0000 0000  
INT1IF 0000 0000 0000 0000  
0086  
0088  
C1IF  
U2TXIF U2RXIF INT2IF  
T5IF  
T4IF  
LVDIF  
DCIIF  
0000 0000 0000 0000  
008C CNIE MI2CIE SI2CIE NVMIE ADIE U1TXIE U1RXIE SPI1IE  
T3IE  
T2IE OC2IE  
IC2IE  
OC4IE  
T1IE  
OC3IE  
OC1IE  
IC8IE  
IC1IE  
INT0IE 0000 0000 0000 0000  
INT1IE 0000 0000 0000 0000  
008E  
0090  
0094  
0096  
0098  
009A  
009C  
009E  
00A0  
00A2  
00A4  
00A6  
00A8  
C1IE  
U2TXIE U2RXIE INT2IE T5IE  
T4IE  
IC7IE  
LVDIE  
DCIIE  
OC1IP<2:0>  
T2IP<2:0>  
U1TXIP<2:0>  
MI2CIP<2:0>  
IC8IP<2:0>  
T5IP<2:0>  
SPI2IP<2:0>  
0000 0000 0000 0000  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0000 0100 0100 0100  
0000 0100 0100 0000  
T1IP<2:0>  
T31P<2:0>  
ADIP<2:0>  
CNIP<2:0>  
OC3IP<2:0>  
INT2IP<2:0>  
C1IP<2:0>  
IC1IP<2:0>  
OC2IP<2:0>  
U1RXIP<2:0>  
SI2CIP<2:0>  
IC7IP<2:0>  
T4IP<2:0>  
U2TXIP<2:0>  
INT0IP<2:0>  
IC2IP<2:0>  
SPI1IP<2:0>  
NVMIP<2:0>  
INT1IP<2:0>  
OC4IP<2:0>  
U2RXIP<2:0>  
LVDIP<2:0>  
DCIIP<2:0>  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
 
dsPIC30F3014/4013  
These operating modes are determined by setting the  
appropriate bit(s) in the 16-bit SFR, T1CON. Figure 9-1  
presents a block diagram of the 16-bit timer module.  
9.0  
TIMER1 MODULE  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
16-Bit Timer Mode: In the 16-Bit Timer mode, the  
timer increments on every instruction cycle up to a  
match value preloaded into the Period register, PR1,  
then resets to ‘0’ and continues to count.  
When the CPU goes into the Idle mode, the timer stops  
incrementing unless the TSIDL (T1CON<13>) bit = 0.  
If TSIDL = 1, the timer module logic resumes the incre-  
menting sequence upon termination of the CPU Idle  
mode.  
This section describes the 16-bit general purpose  
Timer1 module and associated operational modes.  
Figure 9-1 depicts the simplified block diagram of the  
16-bit Timer1 module.  
16-Bit Synchronous Counter Mode: In the 16-Bit  
Synchronous Counter mode, the timer increments on  
the rising edge of the applied external clock signal  
which is synchronized with the internal phase clocks.  
The timer counts up to a match value preloaded in PR1,  
then resets to ‘0’ and continues.  
The following sections provide a detailed description  
including setup and control registers, along with  
associated block diagrams for the operational modes of  
the timers.  
The Timer1 module is a 16-bit timer which can serve as  
the time counter for the Real-Time Clock (RTC), or  
operate as a free-running interval timer/counter. The  
16-bit timer has the following modes:  
When the CPU goes into the Idle mode, the timer stops  
incrementing unless the respective TSIDL bit = 0. If  
TSIDL = 1, the timer module logic resumes the incre-  
menting sequence upon termination of the CPU Idle  
mode.  
• 16-bit Timer  
• 16-bit Synchronous Counter  
• 16-bit Asynchronous Counter  
16-Bit Asynchronous Counter Mode: In the 16-Bit  
Asynchronous Counter mode, the timer increments on  
every rising edge of the applied external clock signal.  
The timer counts up to a match value preloaded in PR1,  
then resets to ‘0’ and continues.  
Further, the following operational characteristics are  
supported:  
• Timer gate operation  
When the timer is configured for the Asynchronous  
mode of operation and the CPU goes into the Idle  
mode, the timer stops incrementing if TSIDL = 1.  
• Selectable prescaler settings  
• Timer operation during CPU Idle and Sleep  
modes  
• Interrupt on 16-bit Period register match or falling  
edge of external gate signal  
FIGURE 9-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
PR1  
Comparator x 16  
TMR1  
Equal  
Reset  
TSYNC  
1
0
Sync  
0
1
T1IF  
Event Flag  
Q
Q
D
TGATE  
CK  
TGATE  
TCKPS<1:0>  
2
TON  
SOSCO/  
T1CK  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
LPOSCEN  
SOSCI  
TCY  
2010 Microchip Technology Inc.  
DS70138G-page 67  
 
 
 
 
 
 
 
dsPIC30F3014/4013  
Enabling an interrupt is accomplished via the respec-  
tive timer interrupt enable bit, T1IE. The timer interrupt  
enable bit is located in the IEC0 Control register in the  
interrupt controller.  
9.1  
Timer Gate Operation  
The 16-bit timer can be placed in the Gated Time Accu-  
mulation mode. This mode allows the internal TCY to  
increment the respective timer when the gate input sig-  
nal (T1CK pin) is asserted high. Control bit, TGATE  
(T1CON<6>), must be set to enable this mode. The  
timer must be enabled (TON = 1) and the timer clock  
source set to internal (TCS = 0).  
9.5  
Real-Time Clock  
Timer1, when operating in Real-Time Clock (RTC)  
mode, provides time of day and event time-stamping  
capabilities. Key operational features of the RTC are:  
When the CPU goes into the Idle mode, the timer stops  
incrementing unless TSIDL = 0. If TSIDL = 1, the timer  
resumes the incrementing sequence upon termination  
of the CPU Idle mode.  
• Operation from 32 kHz LP oscillator  
• 8-bit prescaler  
• Low power  
• Real-Time Clock interrupts  
9.2  
Timer Prescaler  
These operating modes are determined by setting the  
appropriate bit(s) in the T1CON Control register.  
The input clock (FOSC/4 or external clock) to the 16-bit  
Timer has a prescale option of 1:1, 1:8, 1:64 and 1:256,  
selected by control bits, TCKPS<1:0> (T1CON<5:4>).  
The prescaler counter is cleared when any of the  
following occurs:  
FIGURE 9-2:  
RECOMMENDED  
COMPONENTS FOR  
TIMER1 LP OSCILLATOR  
RTC  
• a write to the TMR1 register  
• a write to the T1CON register  
• device Reset, such as POR and BOR  
C1  
SOSCI  
However, if the timer is disabled (TON = 0), then the  
timer prescaler cannot be reset since the prescaler  
clock is halted.  
32.768 kHz  
XTAL  
dsPIC30FXXXX  
SOSCO  
TMR1 is not cleared when T1CON is written. It is  
cleared by writing to the TMR1 register.  
C2  
R
C1 = C2 = 18 pF; R = 100K  
9.3  
Timer Operation During Sleep  
Mode  
9.5.1  
RTC OSCILLATOR OPERATION  
During CPU Sleep mode, the timer operates if:  
When the TON = 1, TCS = 1and TGATE = 0, the timer  
increments on the rising edge of the 32 kHz LP oscilla-  
tor output signal, up to the value specified in the Period  
register and is then reset to ‘0’.  
• The timer module is enabled (TON = 1) and  
• The timer clock source is selected as external  
(TCS = 1) and  
• The TSYNC bit (T1CON<2>) is asserted to a logic  
0’ which defines the external clock source as  
asynchronous.  
The TSYNC bit must be asserted to a logic ‘0’  
(Asynchronous mode) for correct operation.  
Enabling LPOSCEN (OSCCON<1>) disables the nor-  
mal Timer and Counter modes and enable a timer  
carry-out wake-up event.  
When all three conditions are true, the timer continues  
to count up to the Period register and is reset to  
0x0000.  
When the CPU enters Sleep mode, the RTC continues  
to operate, provided the 32 kHz external crystal oscilla-  
tor is active and the control bits have not been  
changed. The TSIDL bit should be cleared to ‘0’ in  
order for RTC to continue operation in Idle mode.  
When a match between the timer and the Period  
register occurs, an interrupt can be generated if the  
respective timer interrupt enable bit is asserted.  
9.4  
Timer Interrupt  
9.5.2  
RTC INTERRUPTS  
The 16-bit timer has the ability to generate an interrupt-  
on-period match. When the timer count matches the  
Period register, the T1IF bit is asserted and an interrupt  
is generated, if enabled. The T1IF bit must be cleared in  
software. The Timer Interrupt Flag, T1IF, is located in the  
IFS0 Control register in the interrupt controller.  
When an interrupt event occurs, the respective interrupt  
flag, T1IF, is asserted and an interrupt is generated, if  
enabled. The T1IF bit must be cleared in software. The  
respective Timer Interrupt Flag, T1IF, is located in the  
IFS0 register in the interrupt controller.  
Enabling an interrupt is accomplished via the respec-  
tive timer interrupt enable bit, T1IE. The timer interrupt  
enable bit is located in the IEC0 Control register in the  
interrupt controller.  
When the Gated Time Accumulation mode is enabled,  
an interrupt is also generated on the falling edge of the  
gate signal (at the end of the accumulation cycle).  
DS70138G-page 68  
2010 Microchip Technology Inc.  
 
 
 
 
 
 
 
TABLE 9-1:  
dsPIC30F3014/4013 TIMER1 REGISTER MAP(1)  
SFR Name Addr.  
Bit 15  
Bit 14 Bit 13  
Bit 12  
Bit 11  
Bit 10 Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TMR1  
PR1  
0100  
0102  
0104  
Timer1 Register  
uuuu uuuu uuuu uuuu  
1111 1111 1111 1111  
0000 0000 0000 0000  
Period Register 1  
TGATE TCKPS1 TCKPS0  
T1CON  
TON  
TSIDL  
TSYNC  
TCS  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
 
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 70  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
For 32-bit timer/counter operation, Timer2 is the lsw  
and Timer3 is the msw of the 32-bit timer.  
10.0 TIMER2/3 MODULE  
Note:  
This data sheet summarizes features of  
Note:  
For 32-bit timer operation, T3CON control  
bits are ignored. Only T2CON control bits  
are used for setup and control. Timer2  
clock and gate inputs are utilized for the  
32-bit timer module, but an interrupt is  
generated with the Timer3 Interrupt Flag  
(T3IF) and the interrupt is enabled with the  
Timer3 interrupt enable bit (T3IE).  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
This section describes the 32-bit general purpose timer  
module (Timer2/3) and associated operational modes.  
Figure 10-1 depicts the simplified block diagram of the  
32-bit Timer2/3 module. Figure 10-2 and Figure 10-3  
show Timer2/3 configured as two independent 16-bit  
timers, Timer2 and Timer3, respectively.  
16-Bit Timer Mode: In the 16-bit mode, Timer2 and  
Timer3 can be configured as two independent 16-bit  
timers. Each timer can be set up in either 16-bit Timer  
mode or 16-bit Synchronous Counter mode. See  
Section 9.0 “Timer1 Module” for details on these two  
operating modes.  
The Timer2/3 module is a 32-bit timer (which can be  
configured as two 16-bit timers) with selectable  
operating modes. These timers are utilized by other  
peripheral modules, such as:  
The only functional difference between Timer2 and  
Timer3 is that Timer2 provides synchronization of the  
clock prescaler output. This is useful for high-frequency  
external clock inputs.  
• Input Capture  
32-Bit Timer Mode: In the 32-Bit Timer mode, the  
timer increments on every instruction cycle, up to a  
match value preloaded into the combined 32-bit Period  
register, PR3/PR2, then resets to ‘0’ and continues to  
count.  
• Output Compare/Simple PWM  
The following sections provide a detailed description,  
including setup and control registers, along with  
associated block diagrams for the operational modes of  
the timers.  
For synchronous 32-bit reads of the Timer2/Timer3  
pair, reading the lsw (TMR2 register) causes the msw  
to be read and latched into a 16-bit holding register,  
termed TMR3HLD.  
The 32-bit timer has the following modes:  
• Two independent 16-bit timers (Timer2 and  
Timer3) with all 16-bit operating modes (except  
Asynchronous Counter mode)  
For synchronous 32-bit writes, the holding register  
(TMR3HLD) must first be written to. When followed by  
a write to the TMR2 register, the contents of TMR3HLD  
is transferred and latched into the MSB of the 32-bit  
timer (TMR3).  
• Single 32-bit timer operation  
• Single 32-bit synchronous counter  
Further, the following operational characteristics are  
supported:  
32-Bit Synchronous Counter Mode: In the 32-Bit  
Synchronous Counter mode, the timer increments on  
the rising edge of the applied external clock signal  
which is synchronized with the internal phase clocks.  
The timer counts up to a match value preloaded in the  
combined 32-bit Period register, PR3/PR2, then resets  
to ‘0’ and continues.  
• ADC event trigger  
• Timer gate operation  
• Selectable prescaler settings  
• Timer operation during Idle and Sleep modes  
• Interrupt on a 32-bit Period register match  
These operating modes are determined by setting the  
appropriate bit(s) in the 16-bit T2CON and T3CON  
SFRs.  
When the timer is configured for the Synchronous  
Counter mode of operation and the CPU goes into the  
Idle mode, the timer stops incrementing unless the  
TSIDL (T2CON<13>) bit = 0. If TSIDL = 1, the timer  
module logic resumes the incrementing sequence  
upon termination of the CPU Idle mode.  
2010 Microchip Technology Inc.  
DS70138G-page 71  
 
 
 
 
dsPIC30F3014/4013  
FIGURE 10-1:  
32-BIT TIMER2/3 BLOCK DIAGRAM  
Data Bus<15:0>  
TMR3HLD  
16  
16  
Write TMR2  
Read TMR2  
16  
Reset  
Sync  
TMR3  
MSB  
TMR2  
LSB  
ADC Event Trigger  
Comparator x 32  
Equal  
PR3  
PR2  
0
1
T3IF  
Event Flag  
Q
Q
D
TGATE (T2CON<6>)  
CK  
TGATE  
(T2CON<6>)  
TCKPS<1:0>  
2
TON  
T2CK  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
01  
00  
TCY  
Note:  
Timer Configuration bit, T32 (T2CON<3>), must be set to ‘1’ for a 32-bit timer/counter operation. All control  
bits are respective to the T2CON register.  
DS70138G-page 72  
2010 Microchip Technology Inc.  
 
dsPIC30F3014/4013  
FIGURE 10-2:  
16-BIT TIMER2 BLOCK DIAGRAM  
PR2  
Equal  
Comparator x 16  
TMR2  
Reset  
Sync  
0
1
T2IF  
Event Flag  
TGATE  
Q
Q
D
CK  
TGATE  
TCKPS<1:0>  
2
TON  
T2CK  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
01  
00  
TCY  
FIGURE 10-3:  
16-BIT TIMER3 BLOCK DIAGRAM  
PR3  
ADC Event Trigger  
Equal  
Comparator x 16  
TMR3  
Reset  
0
1
T3IF  
Event Flag  
TGATE  
Q
Q
D
CK  
TGATE  
TCKPS<1:0>  
2
TON  
T3CK  
Sync  
TCY  
1x  
Prescaler  
1, 8, 64, 256  
01  
00  
Note:  
T3CK pin does not exist on dsPIC30F3014/4013 devices. The block diagram shown here illustrates the  
schematic of Timer3 as implemented on the dsPIC30F6014 device.  
2010 Microchip Technology Inc.  
DS70138G-page 73  
 
 
dsPIC30F3014/4013  
10.1 Timer Gate Operation  
10.4 Timer Operation During Sleep  
Mode  
The 32-bit timer can be placed in the Gated Time Accu-  
mulation mode. This mode allows the internal TCY to  
increment the respective timer when the gate input  
signal (T2CK pin) is asserted high. Control bit, TGATE  
(T2CON<6>), must be set to enable this mode. When  
in this mode, Timer2 is the originating clock source.  
The TGATE setting is ignored for Timer3. The timer  
must be enabled (TON = 1) and the timer clock source  
set to internal (TCS = 0).  
During CPU Sleep mode, the timer does not operate  
because the internal clocks are disabled.  
10.5 Timer Interrupt  
The 32-bit timer module can generate an interrupt-on-  
period match or on the falling edge of the external gate  
signal. When the 32-bit timer count matches the  
respective 32-bit Period register, or the falling edge of  
the external “gate” signal is detected, the T3IF bit  
(IFS0<7>) is asserted and an interrupt is generated, if  
enabled. In this mode, the T3IF interrupt flag is used as  
the source of the interrupt. The T3IF bit must be  
cleared in software.  
The falling edge of the external signal terminates the  
count operation but does not reset the timer. The user  
must reset the timer in order to start counting from zero.  
10.2 ADC Event Trigger  
When a match occurs between the 32-bit timer (TMR3/  
TMR2) and the 32-bit combined Period register (PR3/  
PR2), a special ADC trigger event signal is generated  
by Timer3.  
Enabling an interrupt is accomplished via the  
respective timer interrupt enable bit, T3IE (IEC0<7>).  
10.3 Timer Prescaler  
The input clock (FOSC/4 or external clock) to the timer  
has a prescale option of 1:1, 1:8, 1:64 and 1:256,  
selected by control bits, TCKPS<1:0> (T2CON<5:4>  
and T3CON<5:4>). For the 32-bit timer operation, the  
originating clock source is Timer2. The prescaler oper-  
ation for Timer3 is not applicable in this mode. The  
prescaler counter is cleared when any of the following  
occurs:  
• a write to the TMR2/TMR3 register  
• a write to the T2CON/T3CON register  
• device Reset, such as POR and BOR  
However, if the timer is disabled (TON = 0), then the  
Timer2 prescaler cannot be reset since the prescaler  
clock is halted.  
TMR2/TMR3 is not cleared when T2CON/T3CON is  
written.  
DS70138G-page 74  
2010 Microchip Technology Inc.  
 
 
 
 
 
TABLE 10-1: dsPIC30F3014/4013 TIMER2/3 REGISTER MAP(1)  
SFR Name Addr.  
Bit 15  
Bit 14 Bit 13  
Bit 12  
Bit 11  
Bit 10 Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TMR2  
0106  
Timer2 Register  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
1111 1111 1111 1111  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
TMR3HLD 0108  
Timer3 Holding Register (for 32-bit timer operations only)  
Timer3 Register  
TMR3  
PR2  
010A  
010C  
010E  
0110  
0112  
Period Register 2  
PR3  
Period Register 3  
T2CON  
T3CON  
TON  
TON  
TSIDL  
TSIDL  
TGATE TCKPS1 TCKPS0  
TGATE TCKPS1 TCKPS0  
T32  
TCS  
TCS  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
 
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 76  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
The Timer4/5 module is similar in operation to the  
Timer2/3 module. However, there are some  
differences:  
11.0 TIMER4/5 MODULE  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual  
(DS70046).  
• The Timer4/5 module does not support the ADC  
event trigger feature  
• Timer4/5 can not be utilized by other peripheral  
modules, such as input capture and output compare  
The operating modes of the Timer4/5 module are deter-  
mined by setting the appropriate bit(s) in the 16-bit  
T4CON and T5CON SFRs.  
This section describes the second 32-bit general  
purpose timer module (Timer4/5) and associated  
operational modes. Figure 11-1 depicts the simplified  
block diagram of the 32-bit Timer4/5 module.  
Figure 11-2 and Figure 11-3 show Timer4/5 configured  
as two independent 16-bit timers, Timer4 and Timer5,  
respectively.  
For 32-bit timer/counter operation, Timer4 is the lsw  
and Timer5 is the msw of the 32-bit timer.  
Note:  
For 32-bit timer operation, T5CON control  
bits are ignored. Only T4CON control bits  
are used for setup and control. Timer4  
clock and gate inputs are utilized for the  
32-bit timer module but an interrupt is  
generated with the Timer5 Interrupt Flag  
(T5IF) and the interrupt is enabled with the  
Timer5 interrupt enable bit (T5IE).  
FIGURE 11-1:  
32-BIT TIMER4/5 BLOCK DIAGRAM  
Data Bus<15:0>  
TMR5HLD  
16  
16  
Write TMR4  
Read TMR4  
16  
Reset  
Sync  
TMR5  
MSB  
TMR4  
LSB  
Comparator x 32  
Equal  
PR5  
PR4  
0
1
T5IF  
Event Flag  
Q
Q
D
TGATE (T4CON<6>)  
CK  
TGATE  
(T4CON<6>)  
TCKPS<1:0>  
2
TON  
T4CK  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
01  
00  
Sync  
TCY  
Note:  
Timer Configuration bit, T32 (T4CON<3>), must be set to ‘1’ for a 32-bit timer/counter operation. All  
control bits are respective to the T4CON register.  
2010 Microchip Technology Inc.  
DS70138G-page 77  
 
 
 
dsPIC30F3014/4013  
FIGURE 11-2:  
16-BIT TIMER4 BLOCK DIAGRAM  
PR4  
Comparator x 16  
TMR4  
Equal  
Reset  
Sync  
0
1
T4IF  
Event Flag  
Q
D
TGATE  
Q
CK  
TGATE  
TCKPS<1:0>  
2
TON  
T4CK  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
01  
00  
TCY  
FIGURE 11-3:  
16-BIT TIMER5 BLOCK DIAGRAM  
PR5  
ADC Event Trigger  
Equal  
Reset  
Comparator x 16  
TMR5  
0
1
T5IF  
Event Flag  
Q
D
TGATE  
Q
CK  
TGATE  
TCKPS<1:0>  
2
TON  
T5CK  
1x  
Sync  
TCY  
Prescaler  
1, 8, 64, 256  
01  
00  
Note:  
In the dsPIC30F3014 device, there is no T5CK pin. Therefore, in this device the following modes should  
not be used for Timer5:  
2: TCS = 1(16-bit counter)  
3: TCS = 0, TGATE = 1(gated time accumulation)  
DS70138G-page 78  
2010 Microchip Technology Inc.  
 
 
TABLE 11-1: dsPIC30F4013 TIMER4/5 REGISTER MAP(1)  
SFR Name  
Addr.  
Bit 15 Bit 14 Bit 13 Bit 12  
Bit 11  
Bit 10 Bit 9 Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TMR4  
TMR5HLD  
TMR5  
PR4  
0114  
0116  
0118  
011A  
011C  
011E  
0120  
Timer4 Register  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
1111 1111 1111 1111  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
Timer5 Holding Register (for 32-bit operations only)  
Timer5 Register  
Period Register 4  
PR5  
Period Register 5  
T4CON  
T5CON  
TON  
TON  
TSIDL  
TSIDL  
TGATE TCKPS1 TCKPS0  
TGATE TCKPS1 TCKPS0  
T32  
TCS  
TCS  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
 
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 80  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
These operating modes are determined by setting the  
appropriate bits in the ICxCON register (where  
x = 1,2,...,N). The dsPIC DSC devices contain up to 8  
capture channels (i.e., the maximum value of N is 8).  
12.0 INPUT CAPTURE MODULE  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
The dsPIC30F3014 device contains  
2
capture  
channels while the dsPIC30F4013 device contains  
4 capture channels.  
12.1 Simple Capture Event Mode  
The simple capture events in the dsPIC30F product  
family are:  
This section describes the input capture module and  
associated operational modes. The features provided  
by this module are useful in applications requiring fre-  
quency (period) and pulse measurement. Figure 12-1  
depicts a block diagram of the input capture module.  
Input capture is useful for such modes as:  
• Capture every falling edge  
• Capture every rising edge  
• Capture every 4th rising edge  
• Capture every 16th rising edge  
• Capture every rising and falling edge  
• Frequency/Period/Pulse Measurements  
• Additional Sources of External Interrupts  
These simple Input Capture modes are configured by  
setting the appropriate bits, ICM<2:0> (ICxCON<2:0>).  
The key operational features of the input capture  
module are:  
12.1.1  
CAPTURE PRESCALER  
• Simple Capture Event mode  
There are four input capture prescaler settings speci-  
fied by bits, ICM<2:0> (ICxCON<2:0>). Whenever the  
capture channel is turned off, the prescaler counter is  
cleared. In addition, any Reset clears the prescaler  
counter.  
• Timer2 and Timer3 mode selection  
• Interrupt on input capture event  
FIGURE 12-1:  
INPUT CAPTURE MODE BLOCK DIAGRAM  
T3_CNT  
16  
From GP Timer Module  
T2_CNT  
16  
ICTMR  
1
0
ICx pin  
Edge  
Detection  
Logic  
FIFO  
R/W  
Logic  
Prescaler  
1, 4, 16  
Clock  
Synchronizer  
ICM<2:0>  
Mode Select  
3
ICxBUF  
ICBNE, ICOV  
ICI<1:0>  
Interrupt  
Logic  
ICxCON  
Data Bus  
Set Flag  
ICxIF  
Note:  
Where ‘x’ is shown, reference is made to the registers or bits associated to the respective input capture  
channels, 1 through N.  
2010 Microchip Technology Inc.  
DS70138G-page 81  
 
 
 
 
 
dsPIC30F3014/4013  
12.1.2  
CAPTURE BUFFER OPERATION  
12.2 Input Capture Operation During  
Sleep and Idle Modes  
Each capture channel has an associated FIFO buffer  
which is four 16-bit words deep. There are two status  
flags which provide status on the FIFO buffer:  
An input capture event generates a device wake-up or  
interrupt, if enabled, if the device is in CPU Idle or Sleep  
mode.  
• ICBNE – Input Capture Buffer Not Empty  
• ICOV – Input Capture Overflow  
Independent of the timer being enabled, the input cap-  
ture module wakes up from the CPU Sleep or Idle mode  
when a capture event occurs if ICM<2:0> = 111and the  
interrupt enable bit is asserted. The same wake-up can  
generate an interrupt if the conditions for processing the  
interrupt have been satisfied. The wake-up feature is  
useful as a method of adding extra external pin  
interrupts.  
The ICBFNE is set on the first input capture event and  
remain set until all capture events have been read from  
the FIFO. As each word is read from the FIFO, the  
remaining words are advanced by one position within  
the buffer.  
In the event that the FIFO is full with four capture  
events and a fifth capture event occurs prior to a read  
of the FIFO, an overflow condition occurs and the ICOV  
bit is set to a logic ‘1’. The fifth capture event is lost and  
is not stored in the FIFO. No additional events are  
captured until all four events have been read from the  
buffer.  
12.2.1  
INPUT CAPTURE IN CPU SLEEP  
MODE  
CPU Sleep mode allows input capture module opera-  
tion with reduced functionality. In the CPU Sleep mode,  
the ICI<1:0> bits are not applicable and the input cap-  
ture module can only function as an external interrupt  
source.  
If a FIFO read is performed after the last read and no  
new capture event has been received, the read will  
yield indeterminate results.  
The capture module must be configured for interrupt  
only on rising edge (ICM<2:0> = 111) in order for the  
input capture module to be used while the device is in  
Sleep mode. The prescale settings of 4:1 or 16:1 are  
not applicable in this mode.  
12.1.3  
TIMER2 AND TIMER3 SELECTION  
MODE  
The input capture module consists of up to 8 input cap-  
ture channels. Each channel can select between one of  
two timers for the time base, Timer2 or Timer3.  
12.2.2  
INPUT CAPTURE IN CPU IDLE  
MODE  
Selection of the timer resource is accomplished  
through SFR bit, ICTMR (ICxCON<7>). Timer3 is the  
default timer resource available for the input capture  
module.  
CPU Idle mode allows input capture module operation  
with full functionality. In the CPU Idle mode, the Inter-  
rupt mode selected by the ICI<1:0> bits is applicable,  
as well as the 4:1 and 16:1 capture prescale settings  
which are defined by control bits, ICM<2:0>. This mode  
requires the selected timer to be enabled. Moreover,  
the ICSIDL bit must be asserted to a logic ‘0’.  
12.1.4  
HALL SENSOR MODE  
When the input capture module is set for capture on  
every edge, rising and falling, ICM<2:0> = 001, the  
following operations are performed by the input capture  
logic:  
If the input capture module is defined as  
ICM<2:0> = 111 in CPU Idle mode, the input capture  
pin serves only as an external interrupt pin.  
• The input capture interrupt flag is set on every  
edge, rising and falling.  
• The interrupt on Capture mode setting bits,  
ICI<1:0>, is ignored since every capture  
generates an interrupt.  
12.3 Input Capture Interrupts  
The input capture channels have the ability to generate  
an interrupt based upon the selected number of  
capture events. The selection number is set by control  
bits, ICI<1:0> (ICxCON<6:5>).  
• A capture overflow condition is not generated in  
this mode.  
Each channel provides an interrupt flag (ICxIF) bit. The  
respective capture channel interrupt flag is located in  
the corresponding IFSx register.  
Enabling an interrupt is accomplished via the respec-  
tive Input Capture Channel Interrupt Enable (ICxIE) bit.  
The capture interrupt enable bit is located in the  
corresponding IEC Control register.  
DS70138G-page 82  
2010 Microchip Technology Inc.  
 
 
 
 
 
 
 
TABLE 12-1: dsPIC30F3014 INPUT CAPTURE REGISTER MAP(1)  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
IC1BUF  
IC1CON  
IC2BUF  
IC2CON  
0140  
0142  
0144  
0146  
Input 1 Capture Register  
ICTMR  
Input 2 Capture Register  
ICTMR  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
ICSIDL  
ICSIDL  
ICI<1:0>  
ICOV  
ICOV  
ICBNE  
ICBNE  
ICM<2:0>  
ICM<2:0>  
ICI<1:0>  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 12-2: dsPIC30F4013 INPUT CAPTURE REGISTER MAP(1)  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
IC1BUF  
IC1CON  
IC2BUF  
IC2CON  
IC7BUF  
IC7CON  
IC8BUF  
IC8CON  
0140  
0142  
0144  
0146  
0158  
015A  
015C  
015E  
Input 1 Capture Register  
ICTMR  
Input 2 Capture Register  
ICTMR  
Input 7 Capture Register  
ICTMR  
Input 8 Capture Register  
ICTMR  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
ICOV  
ICOV  
ICOV  
ICOV  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
 
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 84  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
These operating modes are determined by setting the  
appropriate bits in the 16-bit OCxCON SFR (where  
x = 1,2,3,...,N). The dsPIC DSC devices contain up to  
8 compare channels (i.e., the maximum value of N is 8).  
13.0 OUTPUT COMPARE MODULE  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
The dsPIC30F3014 device contains  
2 compare  
channels while the dsPIC30F4013 device contains  
4 compare channels.  
OCxRS and OCxR in Figure 13-1 represent the Dual  
Compare registers. In the Dual Compare mode, the  
OCxR register is used for the first compare and OCxRS  
is used for the second compare.  
This section describes the output compare module and  
associated operational modes. The features provided  
by this module are useful in applications requiring  
operational modes, such as:  
13.1 Timer2 and Timer3 Selection Mode  
Each output compare channel can select between one  
of two 16-bit timers: Timer2 or Timer3.  
• Generation of Variable Width Output Pulses  
• Power Factor Correction  
The selection of the timers is controlled by the OCTSEL  
bit (OCxCON<3>). Timer2 is the default timer resource  
for the output compare module.  
Figure 13-1 depicts a block diagram of the output  
compare module.  
The key operational features of the output compare  
module include:  
• Timer2 and Timer3 Selection mode  
• Simple Output Compare Match mode  
• Dual Output Compare Match mode  
• Simple PWM mode  
• Output Compare During Sleep and Idle modes  
• Interrupt on Output Compare/PWM Event  
FIGURE 13-1:  
OUTPUT COMPARE MODE BLOCK DIAGRAM  
Set Flag bit  
OCxIF  
OCxRS  
OCxR  
Output  
Logic  
S
R
Q
OCx  
Output  
Enable  
3
OCM<2:0>  
Mode Select  
Comparator  
OCFA  
(for x = 1, 2, 3 or 4)  
OCTSEL  
0
1
0
1
or OCFB  
(for x = 5, 6, 7 or 8)  
From GP  
Timer Module  
TMR2<15:0  
TMR3<15:0> T2P2_MATCH  
T3P3_MATCH  
Note:  
Where ‘x’ is shown, reference is made to the registers associated with the respective output compare  
channels, 1 through N.  
2010 Microchip Technology Inc.  
DS70138G-page 85  
 
 
 
 
dsPIC30F3014/4013  
13.3.2  
CONTINUOUS PULSE MODE  
13.2 Simple Output Compare Match  
Mode  
For the user to configure the module for the generation  
of a continuous stream of output pulses, the following  
steps are required:  
When control bits, OCM<2:0> (OCxCON<2:0>) = 001,  
010 or 011, the selected output compare channel is  
configured for one of three simple Output Compare  
Match modes:  
• Determine instruction cycle time, TCY.  
• Calculate desired pulse value based on TCY.  
• Calculate timer to Start pulse width from timer  
start value of 0x0000.  
• Compare forces I/O pin low  
• Compare forces I/O pin high  
• Compare toggles I/O pin  
• Write pulse-width Start and Stop times into OCxR  
and OCxRS (x denotes channel 1, 2, ...,N)  
Compare registers, respectively.  
The OCxR register is used in these modes. The OCxR  
register is loaded with a value and is compared to the  
selected incrementing timer count. When a compare  
occurs, one of these Compare Match modes occurs. If  
the counter resets to zero before reaching the value in  
OCxR, the state of the OCx pin remains unchanged.  
• Set Timer Period register to value equal to or  
greater than value in OCxRS Compare register.  
• Set OCM<2:0> = 101.  
• Enable timer, TON (TxCON<15>) = 1.  
13.4 Simple PWM Mode  
13.3 Dual Output Compare Match Mode  
When control bits, OCM<2:0> (OCxCON<2:0>) = 110  
or 111, the selected output compare channel is config-  
ured for the PWM mode of operation. When configured  
for the PWM mode of operation, OCxR is the main latch  
(read-only) and OCxRS is the secondary latch. This  
enables glitchless PWM transitions.  
When control bits, OCM<2:0> (OCxCON<2:0>) = 100  
or 101, the selected output compare channel is config-  
ured for one of two Dual Output Compare modes,  
which are:  
• Single Output Pulse mode  
• Continuous Output Pulse mode  
The user must perform the following steps in order to  
configure the output compare module for PWM  
operation:  
13.3.1  
SINGLE PULSE MODE  
For the user to configure the module for the generation  
of a single output pulse, the following steps are  
required (assuming timer is off):  
1. Set the PWM period by writing to the appropriate  
Period register.  
2. Set the PWM duty cycle by writing to the OCxRS  
register.  
• Determine instruction cycle time, TCY.  
• Calculate desired pulse width value based on TCY.  
3. Configure the output compare module for PWM  
operation.  
• Calculate time to Start pulse from timer start value  
of 0x0000.  
4. Set the TMRx prescale value and enable the  
• Write pulse-width start and stop times into OCxR  
and OCxRS Compare registers (x denotes  
channel 1, 2, ...,N).  
timer, TON (TxCON<15>) = 1.  
13.4.1  
INPUT PIN FAULT PROTECTION  
FOR PWM  
• Set Timer Period register to value equal to or  
greater than value in OCxRS Compare register.  
When control bits, OCM<2:0> (OCxCON<2:0>) = 111,  
the selected output compare channel is again config-  
ured for the PWM mode of operation with the additional  
feature of input Fault protection. While in this mode, if  
a logic ‘0’ is detected on the OCFA/B pin, the respective  
PWM output pin is placed in the high-impedance input  
state. The OCFLT bit (OCxCON<4>) indicates whether  
a Fault condition has occurred. This state is maintained  
until both of the following events have occurred:  
• Set OCM<2:0> = 100.  
• Enable timer, TON (TxCON<15>) = 1.  
To initiate another single pulse, issue another write to  
set OCM<2:0> = 100.  
• The external Fault condition has been removed.  
• The PWM mode has been re-enabled by writing  
to the appropriate control bits.  
DS70138G-page 86  
2010 Microchip Technology Inc.  
 
 
 
 
 
 
dsPIC30F3014/4013  
13.4.2  
PWM PERIOD  
The PWM period is specified by writing to the PRx  
register. The PWM period can be calculated using  
Equation 13-1.  
EQUATION 13-1:  
PWM period = [(PRx) + 1] • 4 • TOSC •  
(TMRx prescale value)  
PWM frequency is defined as 1/[PWM period].  
When the selected TMRx is equal to its respective  
Period register, PRx, the following four events occur on  
the next increment cycle:  
• TMRx is cleared.  
• The OCx pin is set.  
- Exception 1: If PWM duty cycle is 0x0000,  
the OCx pin remains low.  
- Exception 2: If duty cycle is greater than PRx,  
the pin remains high.  
• The PWM duty cycle is latched from OCxRS into  
OCxR.  
• The corresponding timer interrupt flag is set.  
See Figure 13-2 for key PWM period comparisons.  
Timer3 is referred to in Figure 13-2 for clarity.  
FIGURE 13-2:  
PWM OUTPUT TIMING  
Period  
Duty Cycle  
TMR3 = PR3  
T3IF = 1  
(Interrupt Flag)  
TMR3 = PR3  
T3IF = 1  
(Interrupt Flag)  
OCxR = OCxRS  
OCxR = OCxRS  
TMR3 = Duty Cycle  
(OCxR)  
TMR3 = Duty Cycle  
(OCxR)  
2010 Microchip Technology Inc.  
DS70138G-page 87  
 
 
 
 
dsPIC30F3014/4013  
13.5 Output Compare Operation During  
CPU Sleep Mode  
13.7 Output Compare Interrupts  
The output compare channels have the ability to gener-  
ate an interrupt on a compare match for whichever  
Match mode has been selected.  
When the CPU enters Sleep mode, all internal clocks  
are stopped. Therefore, when the CPU enters the  
Sleep state, the output compare channel drives the pin  
to the active state that was observed prior to entering  
the CPU Sleep state.  
For all modes, except the PWM mode, when a com-  
pare event occurs, the respective interrupt flag (OCxIF)  
is asserted and an interrupt is generated, if enabled.  
The OCxIF bit is located in the corresponding IFSx reg-  
ister and must be cleared in software. The interrupt is  
enabled via the respective compare interrupt enable  
(OCxIE) bit located in the corresponding IEC register.  
For example, if the pin was high when the CPU entered  
the Sleep state, the pin remains high. Likewise, if the  
pin was low when the CPU entered the Sleep state, the  
pin remains low. In either case, the output compare  
module resumes operation when the device wakes up.  
For the PWM mode, when an event occurs, the respec-  
tive Timer Interrupt Flag (T2IF or T3IF) is asserted and  
an interrupt is generated, if enabled. The TxIF bit is  
located in the IFS0 register and must be cleared in soft-  
ware. The interrupt is enabled via the respective timer  
interrupt enable bit (T2IE or T3IE) located in the IEC0  
register. The output compare interrupt flag is never set  
during the PWM mode of operation.  
13.6 Output Compare Operation During  
CPU Idle Mode  
When the CPU enters the Idle mode, the output  
compare module can operate with full functionality.  
The output compare channel operates during the CPU  
Idle mode if the OCSIDL bit (OCxCON<13>) is at logic  
0’ and the selected time base (Timer2 or Timer3) is  
enabled and the TSIDL bit of the selected timer is set  
to logic ‘0’.  
DS70138G-page 88  
2010 Microchip Technology Inc.  
 
 
 
TABLE 13-1: dsPIC30F3014 OUTPUT COMPARE REGISTER MAP(1)  
SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
OC1RS  
OC1R  
0180  
0182  
0184  
0186  
0188  
018A  
Output Compare 1 Secondary Register  
Output Compare 1 Main Register  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
OC1CON  
OC2RS  
OC2R  
OCSIDL  
OCSIDL  
OCFLT  
OCFLT  
OCTSEL  
OCTSE  
OCM<2:0>  
OCM<2:0>  
Output Compare 2 Secondary Register  
Output Compare 2 Main Register  
OC2CON  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 13-2: dsPIC30F4013 OUTPUT COMPARE REGISTER MAP(1)  
SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
OC1RS  
OC1R  
0180  
0182  
0184  
0186  
0188  
018A  
018C  
018E  
0190  
0192  
0194  
0196  
Output Compare 1 Secondary Register  
Output Compare 1 Main Register  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
OC1CON  
OC2RS  
OC2R  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCTSEL  
OCTSE  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
Output Compare 2 Secondary Register  
Output Compare 2 Main Register  
OC2CON  
OC3RS  
OC3R  
Output Compare 3 Secondary Register  
Output Compare 3 Main Register  
OC3CON  
OC4RS  
OC4R  
OCTSEL  
OCTSEL  
Output Compare 4 Secondary Register  
Output Compare 4 Main Register  
OC4CON  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
 
 
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 90  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
2
14.1.1  
VARIOUS I2C MODES  
14.0 I C™ MODULE  
The following types of I2C operation are supported:  
Note:  
This data sheet summarizes features of  
• I2C slave operation with 7-bit addressing  
• I2C slave operation with 10-bit addressing  
• I2C master operation with 7-bit or 10-bit addressing  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
'dsPIC30F Family Reference Manual'  
(DS70046).  
See the I2C programmer’s model in Figure 14-1.  
14.1.2  
PIN CONFIGURATION IN I2C MODE  
I2C has a 2-pin interface: the SCL pin is clock and the  
SDA pin is data.  
The Inter-Integrated Circuit (I2CTM) module provides  
complete hardware support for both Slave and Multi-  
Master modes of the I2C serial communication  
standard with a 16-bit interface.  
14.1.3  
I2C REGISTERS  
I2CCON and I2CSTAT are control and status registers,  
respectively. The I2CCON register is readable and writ-  
able. The lower 6 bits of I2CSTAT are read-only. The  
remaining bits of the I2CSTAT are read/write.  
This module offers the following key features:  
• I2C interface supporting both master and slave  
operation.  
• I2C Slave mode supports 7-bit and 10-bit address-  
ing.  
• I2C Master mode supports 7-bit and 10-bit  
addressing.  
• I2C port allows bidirectional transfers between  
master and slaves.  
• Serial clock synchronization for I2C port can be  
used as a handshake mechanism to suspend and  
resume serial transfer (SCLREL control).  
I2CRSR is the shift register used for shifting data,  
whereas I2CRCV is the buffer register to which data  
bytes are written, or from which data bytes are read.  
I2CRCV is the receive buffer as shown in Figure 14-1.  
I2CTRN is the transmit register to which bytes are  
written during a transmit operation, as shown in  
Figure 14-2.  
The I2CADD register holds the slave address. A status  
bit, ADD10, indicates 10-Bit Addressing mode. The  
I2CBRG acts as the Baud Rate Generator reload  
value.  
• I2C supports multi-master operation; detects bus  
collision and arbitrates accordingly.  
In receive operations, I2CRSR and I2CRCV together  
form  
a double-buffered receiver. When I2CRSR  
14.1 Operating Function Description  
receives a complete byte, it is transferred to I2CRCV  
and an interrupt pulse is generated. During  
transmission, the I2CTRN is not double-buffered.  
The hardware fully implements all the master and slave  
functions of the I2C Standard and Fast mode  
specifications, as well as 7 and 10-bit addressing.  
Thus, the I2C module can operate either as a slave or  
a master on an I2C bus.  
Note:  
Following a Restart condition in 10-bit  
mode, the user only needs to match the  
first 7-bit address.  
FIGURE 14-1:  
PROGRAMMER’S MODEL  
I2CRCV (8 bits)  
Bit 0  
Bit 7  
I2CTRN (8 bits)  
Bit 0  
Bit 7  
Bit 8  
I2CBRG (9 bits)  
Bit 0  
I2CCON (16 bits)  
Bit 0  
Bit 15  
Bit 15  
I2CSTAT (16 bits)  
Bit 0  
I2CADD (10 bits)  
Bit 0  
Bit 9  
2010 Microchip Technology Inc.  
DS70138G-page 91  
 
 
 
 
 
 
 
dsPIC30F3014/4013  
FIGURE 14-2:  
I2C™ BLOCK DIAGRAM  
Internal  
Data Bus  
I2CRCV  
Read  
Shift  
Clock  
SCL  
SDA  
I2CRSR  
LSB  
Addr_Match  
Match Detect  
I2CADD  
Write  
Read  
Start and  
Stop bit Detect  
Write  
Read  
Start, Restart,  
Stop bit Generate  
Collision  
Detect  
Write  
Read  
Acknowledge  
Generation  
Clock  
Stretching  
Write  
Read  
I2CTRN  
LSB  
Shift  
Clock  
Reload  
Control  
Write  
Read  
I2CBRG  
BRG Down  
Counter  
FCY  
DS70138G-page 92  
2010 Microchip Technology Inc.  
 
dsPIC30F3014/4013  
2
14.3.2  
SLAVE RECEPTION  
14.2 I C Module Addresses  
If the R_W bit received is a ‘0’ during an address  
match, then Receive mode is initiated. Incoming bits  
are sampled on the rising edge of SCL. After 8 bits are  
received, if I2CRCV is not full or I2COV is not set,  
I2CRSR is transferred to I2CRCV. ACK is sent on the  
ninth clock.  
The I2CADD register contains the Slave mode  
addresses. The register is a 10-bit register.  
If the A10M bit (I2CCON<10>) is ‘0’, the address is  
interpreted by the module as a 7-bit address. When an  
address is received, it is compared to the 7 LSbs of the  
I2CADD register.  
If the RBF flag is set, indicating that I2CRCV is still  
holding data from a previous operation (RBF = 1), then  
ACK is not sent; however, the interrupt pulse is gener-  
ated. In the case of an overflow, the contents of the  
I2CRSR are not loaded into the I2CRCV.  
If the A10M bit is ‘1’, the address is assumed to be a  
10-bit address. When an address is received, it is com-  
pared with the binary value, ‘11110 A9 A8’ (where A9  
and A8are two Most Significant bits of I2CADD). If that  
value matches, the next address is compared with the  
Least Significant 8 bits of I2CADD, as specified in the  
10-bit addressing protocol.  
Note:  
The I2CRCV is loaded if the I2COV bit = 1  
and the RBF flag = 0. In this case, a read  
of the I2CRCV was performed but the  
user did not clear the state of the I2COV  
bit before the next receive occurred. The  
acknowledgement is not sent (ACK = 1)  
and the I2CRCV is updated.  
TABLE 14-1: 7-BIT I2C™ SLAVE  
ADDRESSES SUPPORTED BY  
dsPIC30F  
0x00  
General Call Address or Start Byte  
0x01-0x03 Reserved  
0x04-0x07 HS mode Master Codes  
0x08-0x77 Valid 7-Bit Addresses  
0x78-0x7b Valid 10-Bit Addresses (lower 7 bits)  
2
14.4 I C 10-Bit Slave Mode Operation  
In 10-bit mode, the basic receive and transmit opera-  
tions are the same as in the 7-bit mode. However, the  
criteria for address match is more complex.  
0x7c-0x7f  
Reserved  
The I2C specification dictates that a slave must be  
addressed for a write operation with two address bytes  
following a Start bit.  
2
14.3 I C 7-Bit Slave Mode Operation  
Once enabled (I2CEN = 1), the slave module waits for  
a Start bit to occur (i.e., the I2C module is ‘Idle’). Follow-  
ing the detection of a Start bit, 8 bits are shifted into  
I2CRSR, and the address is compared against  
I2CADD. In 7-bit mode (A10M = 0), bits I2CADD<6:0>  
are compared against I2CRSR<7:1> and I2CRSR<0>  
is the R_W bit. All incoming bits are sampled on the  
rising edge of SCL.  
The A10M bit is a control bit that signifies that the  
address in I2CADD is a 10-bit address rather than a 7-bit  
address. The address detection protocol for the first byte  
of a message address is identical for 7-bit and 10-bit  
messages, but the bits being compared are different.  
I2CADD holds the entire 10-bit address. Upon receiv-  
ing an address following a Start bit, I2CRSR <7:3> is  
compared against a literal ‘11110’ (the default 10-bit  
address) and I2CRSR<2:1> are compared against  
I2CADD<9:8>. If a match occurs and if R_W = 0, the  
interrupt pulse is sent. The ADD10 bit is cleared to indi-  
cate a partial address match. If a match fails or  
R_W = 1, the ADD10 bit is cleared and the module  
returns to the Idle state.  
If an address match occurs, an Acknowledgement is  
sent and the Slave Event Interrupt Flag (SI2CIF) is set  
on the falling edge of the ninth (ACK) bit. The address  
match does not affect the contents of the I2CRCV buf-  
fer or the RBF bit.  
14.3.1  
SLAVE TRANSMISSION  
If the R_W bit received is a ‘1’, the serial port goes into  
Transmit mode. It sends an ACK on the ninth bit and  
then holds SCL to ‘0’ until the CPU responds by writing  
to I2CTRN. SCL is released by setting the SCLREL bit,  
and 8 bits of data are shifted out. Data bits are shifted  
out on the falling edge of SCL, such that SDA is valid  
during SCL high. The interrupt pulse is sent on the  
falling edge of the ninth clock pulse, regardless of the  
status of the ACK received from the master.  
The low byte of the address is then received and com-  
pared with I2CADD<7:0>. If an address match occurs,  
the interrupt pulse is generated and the ADD10 bit is  
set, indicating a complete 10-bit address match. If an  
address match did not occur, the ADD10 bit is cleared  
and the module returns to the Idle state.  
14.4.1  
10-BIT MODE SLAVE TRANSMISSION  
Once a slave is addressed in this fashion with the full  
10-bit address (we refer to this state as  
“PRIOR_ADDR_MATCH”), the master can begin  
sending data bytes for a slave reception operation.  
2010 Microchip Technology Inc.  
DS70138G-page 93  
 
 
 
 
 
 
 
dsPIC30F3014/4013  
Clock stretching takes place following the ninth clock of  
the receive sequence. On the falling edge of the ninth  
clock at the end of the ACK sequence, if the RBF bit is  
set, the SCLREL bit is automatically cleared, forcing  
the SCL output to be held low. The user’s ISR must set  
the SCLREL bit before reception is allowed to continue.  
By holding the SCL line low, the user has time to ser-  
vice the ISR and read the contents of the I2CRCV  
before the master device can initiate another receive  
sequence. This prevents buffer overruns from  
occurring.  
14.4.2  
10-BIT MODE SLAVE RECEPTION  
Once addressed, the master can generate a Repeated  
Start, reset the high byte of the address and set the  
R_W bit without generating a Stop bit, thus initiating a  
slave transmit operation.  
14.5 Automatic Clock Stretch  
In the Slave modes, the module can synchronize buffer  
reads and write to the master device by clock stretching.  
14.5.1  
TRANSMIT CLOCK STRETCHING  
Note 1: If the user reads the contents of the  
I2CRCV, clearing the RBF bit before the  
falling edge of the ninth clock, the  
SCLREL bit is not cleared and clock  
stretching does not occur.  
Both 10-Bit and 7-Bit Transmit modes implement clock  
stretching by asserting the SCLREL bit after the falling  
edge of the ninth clock, if the TBF bit is cleared,  
indicating the buffer is empty.  
In Slave Transmit modes, clock stretching is always  
performed irrespective of the STREN bit.  
2: The SCLREL bit can be set in software  
regardless of the state of the RBF bit. The  
user should be careful to clear the RBF  
bit in the ISR before the next receive  
sequence in order to prevent an overflow  
condition.  
Clock synchronization takes place following the ninth  
clock of the transmit sequence. If the device samples  
an ACK on the falling edge of the ninth clock and if the  
TBF bit is still clear, then the SCLREL bit is automati-  
cally cleared. The SCLREL being cleared to ‘0’ asserts  
the SCL line low. The user’s ISR must set the SCLREL  
bit before transmission is allowed to continue. By hold-  
ing the SCL line low, the user has time to service the  
ISR and load the contents of the I2CTRN before the  
master device can initiate another transmit sequence.  
14.5.4  
CLOCK STRETCHING DURING  
10-BIT ADDRESSING (STREN = 1)  
Clock stretching takes place automatically during the  
addressing sequence. Because this module has a  
register for the entire address, it is not necessary for  
the protocol to wait for the address to be updated.  
Note 1: If the user loads the contents of I2CTRN,  
setting the TBF bit before the falling edge  
of the ninth clock, the SCLREL bit is not  
be cleared and clock stretching does not  
occur.  
After the address phase is complete, clock stretching  
occurs on each data receive or transmit sequence, as  
described earlier.  
2: The SCLREL bit can be set in software,  
14.6 Software Controlled Clock  
regardless of the state of the TBF bit.  
Stretching (STREN = 1)  
14.5.2  
RECEIVE CLOCK STRETCHING  
When the STREN bit is ‘1’, the SCLREL bit can be  
cleared by software to allow software to control the  
clock stretching. Program logic synchronizes writes to  
the SCLREL bit with the SCL clock. Clearing the  
SCLREL bit does not assert the SCL output until the  
module detects a falling edge on the SCL output and  
SCL is sampled low. If the SCLREL bit is cleared by the  
user while the SCL line has been sampled low, the SCL  
output is asserted (held low). The SCL output remains  
low until the SCLREL bit is set and all other devices on  
the I2C bus have deasserted SCL. This ensures that a  
write to the SCLREL bit does not violate the minimum  
high time requirement for SCL.  
The STREN bit in the I2CCON register can be used to  
enable clock stretching in Slave Receive mode. When  
the STREN bit is set, the SCL pin is held low at the end  
of each data receive sequence.  
14.5.3  
CLOCK STRETCHING DURING  
7-BIT ADDRESSING (STREN = 1)  
When the STREN bit is set in Slave Receive mode, the  
SCL line is held low when the buffer register is full. The  
method for stretching the SCL output is the same for  
both 7 and 10-Bit Addressing modes.  
If the STREN bit is ‘0’, a software write to the SCLREL  
bit is disregarded and has no effect on the SCLREL bit.  
DS70138G-page 94  
2010 Microchip Technology Inc.  
 
 
 
 
 
 
 
dsPIC30F3014/4013  
2
14.7 Interrupts  
14.11 I C Master Support  
The I2C module generates two interrupt flags, MI2CIF  
(I2C Master Interrupt Flag) and SI2CIF (I2C Slave Inter-  
rupt Flag). The MI2CIF interrupt flag is activated on  
completion of a master message event. The SI2CIF  
interrupt flag is activated on detection of a message  
directed to the slave.  
As a master device, six operations are supported:  
• Assert a Start condition on SDA and SCL.  
• Assert a Restart condition on SDA and SCL.  
• Write to the I2CTRN register initiating  
transmission of data/address.  
• Generate a Stop condition on SDA and SCL.  
• Configure the I2C port to receive data.  
14.8 Slope Control  
• Generate an ACK condition at the end of a  
received byte of data.  
The I2C standard requires slope control on the SDA  
and SCL signals for Fast mode (400 kHz). The control  
bit, DISSLW, enables the user to disable slew rate  
control if desired. It is necessary to disable the slew  
rate control for 1 MHz mode.  
2
14.12 I C Master Operation  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus is  
not released.  
14.9 IPMI Support  
The control bit, IPMIEN, enables the module to support  
Intelligent Peripheral Management Interface (IPMI).  
When this bit is set, the module accepts and acts upon  
all addresses.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the data direction bit. In  
this case, the data direction bit (R_W) is logic ‘0’. Serial  
data is transmitted 8 bits at a time. After each byte is  
transmitted, an ACK bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
14.10 General Call Address Support  
The general call address can address all devices.  
When this address is used, all devices should, in  
theory, respond with an Acknowledgement.  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R_W = 0.  
In Master Receive mode, the first byte transmitted  
contains the slave address of the transmitting device  
(7 bits) and the data direction bit. In this case, the data  
direction bit (R_W) is logic ‘1’. Thus, the first byte  
transmitted is a 7-bit slave address, followed by a ‘1’ to  
indicate the receive bit. Serial data is received via SDA  
while SCL outputs the serial clock. Serial data is  
received 8 bits at a time. After each byte is received, an  
ACK bit is transmitted. Start and Stop conditions indi-  
cate the beginning and end of transmission.  
The general call address is recognized when the Gen-  
eral Call Enable (GCEN) bit is set (I2CCON<7> = 1).  
Following a Start bit detection, 8 bits are shifted into  
I2CRSR and the address is compared with I2CADD,  
and is also compared with the general call address  
which is fixed in hardware.  
If a general call address match occurs, the I2CRSR is  
transferred to the I2CRCV after the eighth clock, the  
RBF flag is set and on the falling edge of the ninth bit  
(ACK bit), the Master Event Interrupt Flag (MI2CIF) is  
set.  
14.12.1 I2C MASTER TRANSMISSION  
Transmission of a data byte, a 7-bit address or the  
second half of a 10-bit address, is accomplished by  
simply writing a value to I2CTRN register. The user  
should only write to I2CTRN when the module is in a  
Wait state. This action sets the Buffer Full Flag (TBF)  
and allow the Baud Rate Generator to begin counting  
and start the next transmission. Each bit of address/  
data is shifted out onto the SDA pin after the falling  
edge of SCL is asserted. The Transmit Status Flag,  
TRSTAT (I2CSTAT<14>), indicates that a master  
transmit is in progress.  
When the interrupt is serviced, the source for the  
interrupt can be checked by reading the contents of the  
I2CRCV to determine if the address was device-specific  
or a general call address.  
2010 Microchip Technology Inc.  
DS70138G-page 95  
 
 
 
 
 
 
 
dsPIC30F3014/4013  
14.12.2 I2C MASTER RECEPTION  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the TBF flag is  
cleared, the SDA and SCL lines are deasserted and a  
value can now be written to I2CTRN. When the user  
services the I2C master event Interrupt Service  
Routine, if the I2C bus is free (i.e., the P bit is set), the  
user can resume communication by asserting a Start  
condition.  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN (I2CCON<3>). The I2C  
module must be Idle before the RCEN bit is set; other-  
wise, the RCEN bit is disregarded. The Baud Rate  
Generator begins counting and on each rollover, the  
state of the SCL pin ACK and data are shifted into the  
I2CRSR on the rising edge of each clock.  
If a Start, Restart, Stop or Acknowledge condition was  
in progress when the bus collision occurred, the condi-  
tion is aborted, the SDA and SCL lines are deasserted  
and the respective control bits in the I2CCON register  
are cleared to ‘0’. When the user services the bus  
collision Interrupt Service Routine, and if the I2C bus is  
free, the user can resume communication by asserting  
a Start condition.  
14.12.3 BAUD RATE GENERATOR  
In I2C Master mode, the reload value for the BRG is  
located in the I2CBRG register. When the BRG is  
loaded with this value, the BRG counts down to ‘0’ and  
stops until another reload has taken place. If clock  
arbitration is taking place, for instance, the BRG is  
reloaded when the SCL pin is sampled high.  
The master continues to monitor the SDA and SCL  
pins, and if a Stop condition occurs, the MI2CIF bit is  
set.  
As per the I2C standard, FSCK may be 100 kHz or  
400 kHz. However, the user can specify any baud rate  
up to 1 MHz. I2CBRG values of ‘0’ or ‘1’ are illegal.  
A write to the I2CTRN starts the transmission of data at  
the first data bit, regardless of where the transmitter left  
off when bus collision occurred.  
EQUATION 14-1: SERIAL CLOCK RATE  
In a multi-master environment, the interrupt generation  
on the detection of Start and Stop conditions allows the  
determination of when the bus is free. Control of the I2C  
bus can be taken when the P bit is set in the I2CSTAT  
register, or the bus is Idle and the S and P bits are  
cleared.  
FCY  
FSCK  
FCY  
1,111,111  
I2CBRG =  
– 1  
(
)
14.12.4 CLOCK ARBITRATION  
Clock arbitration occurs when the master deasserts the  
SCL pin (SCL allowed to float high) during any receive,  
transmit, or Restart/Stop condition. When the SCL pin  
is allowed to float high, the Baud Rate Generator  
(BRG) is suspended from counting until the SCL pin is  
actually sampled high. When the SCL pin is sampled  
high, the Baud Rate Generator is reloaded with the  
contents of I2CBRG and begins counting. This ensures  
that the SCL high time is always at least one BRG roll-  
over count in the event that the clock is held low by an  
external device.  
2
14.13 I C Module Operation During CPU  
Sleep and Idle Modes  
14.13.1 I2C OPERATION DURING CPU  
SLEEP MODE  
When the device enters Sleep mode, all clock sources  
to the module are shut down and stay at logic ‘0’. If  
Sleep occurs in the middle of a transmission and the  
state machine is partially into a transmission as the  
clocks stop, then the transmission is aborted. Similarly,  
if Sleep occurs in the middle of a reception, then the  
reception is aborted.  
14.12.5 MULTI-MASTER COMMUNICATION,  
BUS COLLISION AND BUS  
ARBITRATION  
14.13.2 I2C OPERATION DURING CPU IDLE  
MODE  
For the I2C, the I2CSIDL bit determines if the module  
stops or continues on Idle. If I2CSIDL = 0, the module  
continues operation on assertion of the Idle mode. If  
I2CSIDL = 1, the module stops on Idle.  
Multi-master operation support is achieved by bus arbi-  
tration. When the master outputs address/data bits  
onto the SDA pin, arbitration takes place when the  
master outputs a ‘1’ on SDA by letting SDA float high  
while another master asserts a ‘0’. When the SCL pin  
floats high, data should be stable. If the expected data  
on SDA is a ‘1’ and the data sampled on the SDA  
pin = 0, then a bus collision has taken place. The  
master sets the MI2CIF pulse and resetS the master  
portion of the I2C port to its Idle state.  
DS70138G-page 96  
2010 Microchip Technology Inc.  
 
 
 
 
 
 
TABLE 14-2: dsPIC30F3014/4013 I2C REGISTER MAP(1)  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
I2CRCV  
I2CTRN  
I2CBRG  
I2CCON  
I2CSTAT  
I2CADD  
0200  
0202  
0204  
0206  
Receive Register  
Transmit Register  
0000 0000 0000 0000  
0000 0000 1111 1111  
0000 0000 0000 0000  
Baud Rate Generator  
GCEN STREN ACKDT ACKEN RCEN  
GCSTAT ADD10 IWCOL I2COV D_A  
Address Register  
I2CEN  
I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN  
PEN  
R_W  
RSEN  
RBF  
SEN 0001 0000 0000 0000  
0208 ACKSTAT TRSTAT  
020A  
BCL  
P
S
TBF  
0000 0000 0000 0000  
0000 0000 0000 0000  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
 
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 98  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
Transmit writes are also double-buffered. The user  
writes to SPIxBUF. When the master or slave transfer  
is completed, the contents of the shift register (SPIxSR)  
are moved to the receive buffer. If any transmit data has  
been written to the buffer register, the contents of the  
transmit buffer are moved to SPIxSR. The received  
data is thus placed in SPIxBUF and the transmit data in  
SPIxSR is ready for the next transfer.  
15.0 SPI MODULE  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
Note:  
Both the transmit buffer (SPIxTXB) and  
the receive buffer (SPIxRXB) are mapped  
to the same register address, SPIxBUF.  
The Serial Peripheral Interface (SPI) module is a syn-  
chronous serial interface. It is useful for communicating  
with other peripheral devices, such as EEPROMs, shift  
registers, display drivers and A/D converters, or other  
microcontrollers. It is compatible with Motorola’s SPI  
and SIOP interfaces. The dsPIC30F3014 and  
dsPIC30F4013 devices feature one SPI module, SPI1.  
In Master mode, the clock is generated by prescaling  
the system clock. Data is transmitted as soon as a  
value is written to SPIxBUF. The interrupt is generated  
at the middle of the transfer of the last bit.  
In Slave mode, data is transmitted and received as  
external clock pulses appear on SCKx. Again, the inter-  
rupt is generated when the last bit is latched. If SSx  
control is enabled, then transmission and reception are  
enabled only when SSx = low. The SDOx output is  
disabled in SSx mode with SSx high.  
15.1 Operating Function Description  
Each SPI module consists of a 16-bit shift register,  
SPIxSR (where x = 1 or 2), used for shifting data in and  
out, and a buffer register, SPIxBUF. A control register,  
SPIxCON, configures the module. Additionally, a status  
register, SPIxSTAT, indicates various status conditions.  
The clock provided to the module is (FOSC/4). This  
clock is then prescaled by the primary (PPRE<1:0>)  
and the secondary (SPRE<2:0>) prescale factors. The  
CKE bit determines whether transmit occurs on transi-  
tion from active clock state to Idle clock state, or vice  
versa. The CKP bit selects the Idle state (high or low)  
for the clock.  
The serial interface consists of 4 pins: SDIx (Serial  
Data Input), SDOx (Serial Data Output), SCKx (Shift  
Clock Input or Output), and SSx (Active-Low Slave  
Select).  
In Master mode operation, SCKx is a clock output but  
in Slave mode, it is a clock input.  
15.1.1  
WORD AND BYTE  
COMMUNICATION  
A series of eight (8) or sixteen (16) clock pulses shift  
out bits from the SPIxSR to SDOx pin and  
simultaneously shift in data from SDIx pin. An interrupt  
is generated when the transfer is complete and the cor-  
responding interrupt flag bit (SPI1IF or SPI2IF) is set.  
This interrupt can be disabled through an interrupt  
enable bit (SPI1IE or SPI2IE).  
A control bit, MODE16 (SPIxCON<10>), allows the  
module to communicate in either 16-bit or 8-bit mode.  
16-bit operation is identical to 8-bit operation except  
that the number of bits transmitted is 16 instead of 8.  
The user software must disable the module prior to  
changing the MODE16 bit. The SPI module is reset  
when the MODE16 bit is changed by the user.  
The receive operation is double-buffered. When a com-  
plete byte is received, it is transferred from SPIxSR to  
SPIxBUF.  
A basic difference between 8-bit and 16-bit operation is  
that the data is transmitted out of bit 7 of the SPIxSR for  
8-bit operation, and data is transmitted out of bit 15 of  
the SPIxSR for 16-bit operation. In both modes, data is  
shifted into bit 0 of the SPIxSR.  
If the receive buffer is full when new data is being trans-  
ferred from SPIxSR to SPIxBUF, the module sets the  
SPIROV bit, indicating an overflow condition. The  
transfer of the data from SPIxSR to SPIxBUF is not  
completed and new data is lost. The module does not  
respond to SCL transitions while SPIROV is ‘1’,  
effectively disabling the module until SPIxBUF is read  
by user software.  
15.1.2  
SDOx DISABLE  
A control bit, DISSDO, is provided to the SPIxCON reg-  
ister to allow the SDOx output to be disabled. This  
allows the SPI module to be connected in an input-only  
configuration. SDOx can also be used for general  
purpose I/O.  
2010 Microchip Technology Inc.  
DS70138G-page 99  
 
 
 
 
dsPIC30F3014/4013  
the SSx pin is an input or an output (i.e., whether the  
module receives or generates the Frame Synchroniza-  
tion pulse). The frame pulse is an active-high pulse for  
a single SPI clock cycle. When Frame Synchronization  
is enabled, the data transmission starts only on the  
subsequent transmit edge of the SPI clock.  
15.2 Framed SPI Support  
The module supports a basic framed SPI protocol in  
Master or Slave mode. The control bit, FRMEN,  
enables framed SPI support and causes the SSx pin to  
perform the Frame Synchronization pulse (FSYNC)  
function. The control bit, SPIFSD, determines whether  
FIGURE 15-1:  
SPI BLOCK DIAGRAM  
Internal  
Data Bus  
Read  
Write  
SPIxBUF  
Transmit  
SPIxBUF  
Receive  
SPIxSR  
bit 0  
SDIx  
SDOx  
Shift  
Clock  
SSx and  
FSYNC  
Control  
Clock  
Control  
Edge  
Select  
SSx  
Primary  
Prescaler  
1:1, 1:4,  
Secondary  
Prescaler  
1:1-1:8  
FCY  
1:16, 1:64  
SCKx  
Enable Master Clock  
Note: x = 1 or 2.  
FIGURE 15-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master  
SPI Slave  
SDOx  
SDIy  
Serial Input Buffer  
(SPIxBUF)  
Serial Input Buffer  
(SPIyBUF)  
SDIx  
SDOy  
SCKy  
Shift Register  
(SPIxSR)  
Shift Register  
(SPIySR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCKx  
PROCESSOR 1  
PROCESSOR 2  
Note: x = 1 or 2, y = 1 or 2.  
DS70138G-page 100  
2010 Microchip Technology Inc.  
 
 
 
dsPIC30F3014/4013  
15.3 Slave Select Synchronization  
15.5 SPI Operation During CPU Idle  
Mode  
The SSx pin allows a Synchronous Slave mode. The  
SPI must be configured in SPI Slave mode with SSx pin  
control enabled (SSEN = 1). When the SSx pin is low,  
transmission and reception are enabled and the SDOx  
pin is driven. When SSx pin goes high, the SDOx pin is  
no longer driven. Also, the SPI module is resynchro-  
nized, and all counters/control circuitry are reset.  
Therefore, when the SSx pin is asserted low again,  
transmission/reception begins at the MSb even if SSx  
had been deasserted in the middle of a transmit/  
receive.  
When the device enters Idle mode, all clock sources  
remain functional. The SPISIDL bit (SPIxSTAT<13>)  
determines if the SPI module stops or continues on  
Idle. If SPISIDL = 0, the module continues to operate  
when the CPU enters Idle mode. If SPISIDL = 1, the  
module stops when the CPU enters Idle mode.  
15.4 SPI Operation During CPU Sleep  
Mode  
During Sleep mode, the SPI module is shut down. If the  
CPU enters Sleep mode while an SPI transaction is in  
progress, then the transmission and reception is  
aborted.  
The transmitter and receiver stop in Sleep mode.  
However, register contents are not affected by entering  
or exiting Sleep mode.  
2010 Microchip Technology Inc.  
DS70138G-page 101  
 
 
 
TABLE 15-1: dsPIC30F3014/4013 SPI1 REGISTER MAP  
SFR  
Name  
Addr. Bit 15 Bit 14  
Bit 13  
Bit 12 Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
SPI1STAT 0220 SPIEN  
SPISIDL  
SPIROV  
CKP  
SPITBF SPIRBF 0000 0000 0000 0000  
SPI1CON  
SPI1BUF  
0222  
0224  
FRMEN SPIFSD  
DISSDO MODE16 SMP  
CKE  
SSEN  
MSTEN SPRE2 SPRE1 SPRE0 PPRE1 PPRE0 0000 0000 0000 0000  
Transmit and Receive Buffer  
0000 0000 0000 0000  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
 
dsPIC30F3014/4013  
16.1 UART Module Overview  
16.0 UNIVERSAL ASYNCHRONOUS  
RECEIVER TRANSMITTER  
(UART) MODULE  
The key features of the UART module are:  
• Full-duplex, 8 or 9-bit data communication  
• Even, odd or no parity options (for 8-bit data)  
• One or two Stop bits  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
• Fully integrated Baud Rate Generator with 16-bit  
prescaler  
• Baud rates range from 38 bps to 1.875 Mbps at a  
30 MHz instruction rate  
• 4-word deep transmit data buffer  
• 4-word deep receive data buffer  
This section describes the Universal Asynchronous  
Receiver/Transmitter Communications module.  
• Parity, framing and buffer overrun error detection  
• Support for interrupt only on address detect  
(9th bit = 1)  
• Separate transmit and receive interrupts  
• Loopback mode for diagnostic support  
• Two choices of TX/RX pins on UART1 module  
FIGURE 16-1:  
UART TRANSMITTER BLOCK DIAGRAM  
Internal Data Bus  
Control and Status bits  
Write  
Write  
UTX8 UxTXREG Low Byte  
Transmit Control  
– Control TSR  
– Control Buffer  
– Generate Flags  
– Generate Interrupt  
Load TSR  
UxTXIF  
UTXBRK  
Data  
Transmit Shift Register (UxTSR)  
0’ (Start)  
1’ (Stop)  
UxTX  
or UxATX  
if ALTIO = 1  
16x Baud Clock  
from Baud Rate  
Generator  
Parity  
Generator  
16 Divider  
Parity  
Control  
Signals  
Note:  
x = 1 or 2.  
2010 Microchip Technology Inc.  
DS70138G-page 103  
 
 
 
dsPIC30F3014/4013  
FIGURE 16-2:  
UART RECEIVER BLOCK DIAGRAM  
Internal Data Bus  
Read  
16  
Write  
Read Read  
Write  
UxMODE  
UxSTA  
UxRXREG Low Byte  
URX8  
Receive Buffer Control  
– Generate Flags  
– Generate Interrupt  
– Shift Data Characters  
8-9  
LPBACK  
From UxTX  
Load RSR  
to Buffer  
Receive Shift Register  
1
0
Control  
Signals  
(UxRSR)  
UxRX  
or UxARX  
if ALTIO = 1  
· Start bit Detect  
· Parity Check  
· Stop bit Detect  
· Shift Clock Generation  
· Wake Logic  
16 Divider  
16x Baud Clock from  
Baud Rate Generator  
UxRXIF  
DS70138G-page 104  
2010 Microchip Technology Inc.  
 
dsPIC30F3014/4013  
16.2 Enabling and Setting Up UART  
16.2.1 ENABLING THE UART  
16.3 Transmitting Data  
16.3.1  
TRANSMITTING IN 8-BIT DATA  
MODE  
The UART module is enabled by setting the UARTEN  
bit in the UxMODE register (where x = 1 or 2). Once  
enabled, the UxTX and UxRX pins are configured as an  
output and an input, respectively, overriding the TRIS  
and LAT register bit settings for the corresponding I/O  
port pins. The UxTX pin is at logic ‘1’ when no  
transmission is taking place.  
The following steps must be performed in order to  
transmit 8-bit data:  
1. Set up the UART:  
First, the data length, parity and number of Stop  
bits must be selected. Then, the transmit and  
receive interrupt enable and priority bits are set  
up in the UxMODE and UxSTA registers. Also,  
the appropriate baud rate value must be written  
to the UxBRG register.  
16.2.2  
DISABLING THE UART  
The UART module is disabled by clearing the UARTEN  
bit in the UxMODE register. This is the default state  
after any Reset. If the UART is disabled, all I/O pins  
operate as port pins under the control of the LAT and  
TRIS bits of the corresponding port pins.  
2. Enable the UART by setting the UARTEN bit  
(UxMODE<15>).  
3. Set the UTXEN bit (UxSTA<10>), thereby  
enabling a transmission.  
Disabling the UART module resets the buffers to empty  
states. Any data characters in the buffers are lost and  
the baud rate counter is reset.  
4. Write the byte to be transmitted to the lower byte  
of UxTXREG. The value is transferred to the  
Transmit Shift register (UxTSR) immediately,  
and the serial bit stream starts shifting out during  
the next rising edge of the baud clock. Alterna-  
tively, the data byte can be written while UTXEN  
= 0, following which, the user can set UTXEN.  
This causes the serial bit stream to begin imme-  
diately because the baud clock starts from a  
cleared state.  
All error and status flags associated with the UART  
module are reset when the module is disabled. The  
URXDA, OERR, FERR, PERR, UTXEN, UTXBRK and  
UTXBF bits are cleared, whereas RIDLE and TRMT  
are set. Other control bits, including ADDEN,  
URXISEL<1:0>, UTXISEL, as well as the UxMODE  
and UxBRG registers, are not affected.  
5. A transmit interrupt is generated, depending on  
the value of the interrupt control bit, UTXISEL  
(UxSTA<15>).  
Clearing the UARTEN bit while the UART is active  
aborts all pending transmissions and receptions and  
resets the module, as defined above. Re-enabling the  
UART restarts the UART in the same configuration.  
16.3.2  
TRANSMITTING IN 9-BIT DATA  
MODE  
16.2.3  
ALTERNATE I/O  
The sequence of steps involved in the transmission of  
9-bit data is similar to 8-bit transmission, except that a  
16-bit data word (of which the upper 7 bits are always  
clear) must be written to the UxTXREG register.  
The alternate I/O function is enabled by setting the  
ALTIO bit (UxMODE<10>). If ALTIO = 1, the UxATX  
and UxARX pins (alternate transmit and alternate  
receive pins, respectively) are used by the UART mod-  
ule instead of the UxTX and UxRX pins. If ALTIO = 0,  
the UxTX and UxRX pins are used by the UART  
module.  
16.3.3  
TRANSMIT BUFFER (UXTXB)  
The transmit buffer is 9 bits wide and 4 characters  
deep. Including the Transmit Shift register (UxTSR),  
the user effectively has a 5-deep FIFO (First-In, First-  
Out) buffer. The UTXBF status bit (UxSTA<9>)  
indicates whether the transmit buffer is full.  
16.2.4  
SETTING UP DATA, PARITY AND  
STOP BIT SELECTIONS  
Control bits, PDSEL<1:0> in the UxMODE register, are  
used to select the data length and parity used in the  
transmission. The data length may either be 8 bits with  
even, odd or no parity, or 9 bits with no parity.  
If a user attempts to write to a full buffer, the new data  
is not accepted into the FIFO, and no data shift occurs  
within the buffer. This enables recovery from a buffer  
overrun condition.  
The STSEL bit determines whether one or two Stop bits  
are used during data transmission.  
The FIFO is reset during any device Reset but is not  
affected when the device enters or wakes up from a  
power-saving mode.  
The default (power-on) setting of the UART is 8 bits, no  
parity and 1 Stop bit (typically represented as 8, N, 1).  
2010 Microchip Technology Inc.  
DS70138G-page 105  
 
 
 
 
 
 
 
 
 
 
 
dsPIC30F3014/4013  
16.3.4  
TRANSMIT INTERRUPT  
16.4.2  
RECEIVE BUFFER (UXRXB)  
The transmit interrupt flag (U1TXIF or U2TXIF) is  
located in the corresponding interrupt flag register.  
The receive buffer is 4 words deep. Including the  
Receive Shift register (UxRSR), the user effectively  
has a 5-word deep FIFO buffer.  
The transmitter generates an edge to set the UxTXIF  
bit. The condition for generating the interrupt depends  
on the UTXISEL control bit:  
URXDA (UxSTA<0>) = 1 indicates that the receive  
buffer has data available. URXDA = 0means that the  
buffer is empty. If a user attempts to read an empty buf-  
fer, the old values in the buffer are read and no data  
shift occurs within the FIFO.  
a) If UTXISEL = 0, an interrupt is generated when  
a word is transferred from the transmit buffer to  
the Transmit Shift register (UxTSR). This means  
that the transmit buffer has at least one empty  
word.  
The FIFO is reset during any device Reset. It is not  
affected when the device enters or wakes up from a  
power-saving mode.  
b) If UTXISEL = 1, an interrupt is generated when  
a word is transferred from the transmit buffer to  
the Transmit Shift register (UxTSR) and the  
transmit buffer is empty.  
16.4.3  
RECEIVE INTERRUPT  
The receive interrupt flag (U1RXIF or U2RXIF) can be  
read from the corresponding interrupt flag register. The  
interrupt flag is set by an edge generated by the  
receiver. The condition for setting the receive interrupt  
flag depends on the settings specified by the  
URXISEL<1:0> (UxSTA<7:6>) control bits.  
Switching between the two Interrupt modes during  
operation is possible and sometimes offers more  
flexibility.  
16.3.5  
TRANSMIT BREAK  
a) If URXISEL<1:0> = 00or 01, an interrupt is gen-  
erated every time a data word is transferred  
from the Receive Shift register (UxRSR) to the  
receive buffer. There may be one or more  
characters in the receive buffer.  
Setting the UTXBRK bit (UxSTA<11>) causes the  
UxTX line to be driven to logic ‘0’. The UTXBRK bit  
overrides all transmission activity. Therefore, the user  
should generally wait for the transmitter to be Idle  
before setting UTXBRK.  
b) If URXISEL<1:0> = 10, an interrupt is generated  
when a word is transferred from the Receive Shift  
register (UxRSR) to the receive buffer, which as a  
result of the transfer, contains 3 characters.  
To send a Break character, the UTXBRK bit must be set  
by software and must remain set for a minimum of  
13 baud clock cycles. The UTXBRK bit is then cleared  
by software to generate Stop bits. The user must wait  
for a duration of at least one or two baud clock cycles  
in order to ensure a valid Stop bit(s) before reloading  
the UxTXB, or starting other transmitter activity. Trans-  
mission of a Break character does not generate a  
transmit interrupt.  
c) If URXISEL<1:0> = 11, an interrupt is set when  
a word is transferred from the Receive Shift  
register (UxRSR) to the receive buffer, which as  
a result of the transfer, contains 4 characters  
(i.e., becomes full).  
Switching between the Interrupt modes during opera-  
tion is possible, though generally not advisable during  
normal operation.  
16.4 Receiving Data  
16.4.1  
RECEIVING IN 8-BIT OR 9-BIT  
DATA MODE  
16.5 Reception Error Handling  
The following steps must be performed while receiving  
8-bit or 9-bit data:  
16.5.1  
RECEIVE BUFFER OVERRUN  
ERROR (OERR BIT)  
1. Set up the UART (see Section 16.3.1  
“Transmitting in 8-Bit Data Mode”).  
The OERR bit (UxSTA<1>) is set if all of the following  
conditions occur:  
2. Enable the UART (see Section 16.3.1  
“Transmitting in 8-Bit Data Mode”).  
a) The receive buffer is full.  
3. A receive interrupt is generated when one or  
more data words have been received, depend-  
ing on the receive interrupt settings specified by  
the URXISEL bits (UxSTA<7:6>).  
b) The Receive Shift register is full, but unable to  
transfer the character to the receive buffer.  
c) The Stop bit of the character in the UxRSR is  
detected, indicating that the UxRSR needs to  
transfer the character to the buffer.  
4. Read the OERR bit to determine if an overrun  
error has occurred. The OERR bit must be reset  
in software.  
Once OERR is set, no further data is shifted in UxRSR  
(until the OERR bit is cleared in software or a Reset  
occurs). The data held in UxRSR and UxRXREG  
remains valid.  
5. Read the received data from UxRXREG. The act  
of reading UxRXREG moves the next word to  
the top of the receive FIFO, and the PERR and  
FERR values are updated.  
DS70138G-page 106  
2010 Microchip Technology Inc.  
 
 
 
 
 
 
 
 
dsPIC30F3014/4013  
16.5.2  
FRAMING ERROR (FERR)  
16.6 Address Detect Mode  
The FERR bit (UxSTA<2>) is set if a ‘0’ is detected  
instead of a Stop bit. If two Stop bits are selected, both  
Stop bits must be ‘1’; otherwise, FERR is set. The read-  
only FERR bit is buffered along with the received data;  
it is cleared on any Reset.  
Setting the ADDEN bit (UxSTA<5>) enables this  
special mode in which a 9th bit (URX8) value of ‘1’  
identifies the received word as an address, rather than  
data. This mode is only applicable for 9-bit data  
communication. The URXISEL control bit does not  
have any impact on interrupt generation in this mode  
since an interrupt (if enabled) is generated every time  
the received word has the 9th bit set.  
16.5.3  
PARITY ERROR (PERR)  
The PERR bit (UxSTA<3>) is set if the parity of the  
received word is incorrect. This error bit is applicable  
only if a Parity mode (odd or even) is selected. The  
read-only PERR bit is buffered along with the received  
data bytes; it is cleared on any Reset.  
16.7 Loopback Mode  
Setting the LPBACK bit enables this special mode in  
which the UxTX pin is internally connected to the UxRX  
pin. When configured for the Loopback mode, the  
UxRX pin is disconnected from the internal UART  
receive logic. However, the UxTX pin still functions as  
in a normal operation.  
16.5.4  
IDLE STATUS  
When the receiver is active (i.e., between the initial  
detection of the Start bit and the completion of the Stop  
bit), the RIDLE bit (UxSTA<4>) is ‘0’. Between the com-  
pletion of the Stop bit and detection of the next Start bit,  
the RIDLE bit is ‘1’, indicating that the UART is Idle.  
To select this mode:  
a) Configure UART for desired mode of operation.  
b) Set LPBACK = 1to enable Loopback mode.  
16.5.5  
RECEIVE BREAK  
c) Enable transmission as defined in Section 16.3  
“Transmitting Data”.  
The receiver counts and expects a certain number of bit  
times based on the values programmed in the PDSEL  
(UxMODE<2:1>) and STSEL (UxMODE<0>) bits.  
16.8 Baud Rate Generator  
If the break is longer than 13 bit times, the reception is  
considered complete after the number of bit times  
specified by PDSEL and STSEL. The URXDA bit is set,  
FERR is set, zeros are loaded into the receive FIFO,  
interrupts are generated if appropriate, and the RIDLE  
bit is set.  
The UART has a 16-bit Baud Rate Generator to allow  
maximum flexibility in baud rate generation. The Baud  
Rate Generator register (UxBRG) is readable and  
writable. The baud rate is computed as follows:  
BRG = 16-bit value held in UxBRG register  
(0 through 65535)  
When the module receives a long Break signal and the  
receiver has detected the Start bit, the data bits and the  
invalid Stop bit (which sets the FERR), the receiver  
must wait for a valid Stop bit before looking for the next  
Start bit. It cannot assume that the Break condition on  
the line is the next Start bit.  
FCY = Instruction Clock Rate (1/TCY)  
The Baud Rate is given by Equation 16-1.  
EQUATION 16-1: BAUD RATE  
Break is regarded as a character containing all ‘0’s with  
the FERR bit set. The Break character is loaded into  
the buffer. No further reception can occur until a Stop bit  
is received. Note that RIDLE goes high when the Stop  
bit has not yet been received.  
Baud Rate = FCY/(16*(BRG+1))  
Therefore, the maximum baud rate possible is:  
FCY/16 (if BRG = 0),  
and the minimum baud rate possible is:  
FCY/(16 * 65536).  
With a full 16-bit Baud Rate Generator at 30 MIPS  
operation, the minimum baud rate achievable is  
28.5 bps.  
2010 Microchip Technology Inc.  
DS70138G-page 107  
 
 
 
 
 
 
 
 
 
dsPIC30F3014/4013  
16.10.2 UART OPERATION DURING CPU  
IDLE MODE  
16.9 Auto-Baud Support  
To allow the system to determine baud rates of  
received characters, the input can be optionally linked  
to a capture input (IC1 for UART1, IC2 for UART2). To  
enable this mode, the user must program the input  
capture module to detect the falling and rising edges of  
the Start bit.  
For the UART, the USIDL bit determines if the module  
stops or continues operation when the device enters  
Idle mode. If USIDL = 0, the module continues  
operation during Idle mode. If USIDL = 1, the module  
stops on Idle.  
16.10 UART Operation During CPU  
Sleep and Idle Modes  
16.10.1 UART OPERATION DURING CPU  
SLEEP MODE  
When the device enters Sleep mode, all clock sources  
to the module are shut down and stay at logic ‘0’. If  
entry into Sleep mode occurs while a transmission is in  
progress, then the transmission is aborted. The UxTX  
pin is driven to logic ‘1’. Similarly, if entry into Sleep  
mode occurs while a reception is in progress, then the  
reception is aborted. The UxSTA, UxMODE, transmit  
and receive registers and buffers, and the UxBRG  
register are not affected by Sleep mode.  
If the WAKE bit (UxMODE<7>) is set before the device  
enters Sleep mode, a falling edge on the UxRX pin  
generates a receive interrupt. The Receive Interrupt  
Select mode bit (URXISEL) has no effect for this func-  
tion. If the receive interrupt is enabled, this wakes the  
device up from Sleep. The UARTEN bit must be set in  
order to generate a wake-up interrupt.  
DS70138G-page 108  
2010 Microchip Technology Inc.  
 
 
 
 
TABLE 16-1: dsPIC30F3014/4013 UART1 REGISTER MAP(1)  
SFR Name Addr.  
Bit 15  
Bit 14 Bit 13 Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
U1MODE  
U1STA  
020C UARTEN  
020E UTXISEL  
USIDL  
ALTIO  
WAKE  
LPBACK ABAUD  
PDSEL1 PDSEL0 STSEL 0000 0000 0000 0000  
UTXBRK UTXEN UTXBF  
TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR  
FERR  
OERR URXDA 0000 0001 0001 0000  
0000 000u uuuu uuuu  
U1TXREG 0210  
U1RXREG 0212  
UTX8  
Transmit Register  
Receive Register  
URX8  
0000 0000 0000 0000  
U1BRG  
0214  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
Baud Rate Generator Prescaler  
0000 0000 0000 0000  
Legend:  
Note 1:  
TABLE 16-2: dsPIC30F3014/4013 UART2 REGISTER MAP(1)  
SFR  
Name  
Addr.  
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
U2MODE  
U2STA  
0216 UARTEN  
0218 UTXISEL  
USIDL  
WAKE  
LPBACK ABAUD  
PDSEL1 PDSEL0 STSEL 0000 0000 0000 0000  
UTXBRK UTXEN UTXBF  
TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR  
FERR  
OERR URXDA 0000 0001 0001 0000  
0000 000u uuuu uuuu  
U2TXREG 021A  
U2RXREG 021C  
UTX8  
Transmit Register  
Receive Register  
URX8  
0000 0000 0000 0000  
U2BRG  
021E  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
Baud Rate Generator Prescaler  
0000 0000 0000 0000  
Legend:  
Note 1:  
 
 
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 110  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
The CAN bus module consists of a protocol engine and  
message buffering/control. The CAN protocol engine  
handles all functions for receiving and transmitting  
messages on the CAN bus. Messages are transmitted  
by first loading the appropriate data registers. Status  
and errors can be checked by reading the appropriate  
registers. Any message detected on the CAN bus is  
checked for errors and then matched against filters to  
see if it should be received and stored in one of the  
receive registers.  
17.0 CAN MODULE  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
17.2 Frame Types  
17.1 Overview  
The CAN module transmits various types of frames  
which include data messages or remote transmission  
requests, initiated by the user, as other frames that are  
automatically generated for control purposes. The  
following frame types are supported:  
The Controller Area Network (CAN) module is a serial  
interface, useful for communicating with other CAN  
modules or microcontroller devices. This interface/  
protocol was designed to allow communications within  
noisy environments.  
The CAN module is a communication controller imple-  
menting the CAN 2.0 A/B protocol, as defined in the  
BOSCH specification. The module supports CAN 1.2,  
CAN 2.0A, CAN 2.0B Passive, and CAN 2.0B Active  
versions of the protocol. The module implementation is  
a full CAN system. The CAN specification is not cov-  
ered within this data sheet. The reader may refer to the  
BOSCH CAN specification for further details.  
• Standard Data Frame:  
A standard data frame is generated by a node  
when the node wishes to transmit data. It includes  
an 11-bit Standard Identifier (SID) but not an 18-bit  
Extended Identifier (EID).  
• Extended Data Frame:  
An extended data frame is similar to a standard  
data frame but includes an extended identifier as  
well.  
The module features are as follows:  
• Implementation of the CAN protocol CAN 1.2,  
CAN 2.0A and CAN 2.0B  
• Remote Frame:  
• Standard and extended data frames  
• 0-8 bytes data length  
It is possible for a destination node to request the  
data from the source. For this purpose, the  
destination node sends a remote frame with an  
identifier that matches the identifier of the required  
data frame. The appropriate data source node  
then sends a data frame as a response to this  
remote request.  
• Programmable bit rate up to 1 Mbit/sec  
• Support for remote frames  
• Double-buffered receiver with two prioritized  
received message storage buffers (each buffer  
may contain up to 8 bytes of data)  
• Error Frame:  
• 6 full (standard/extended identifier), acceptance  
filters, 2 associated with the high-priority receive  
buffer and 4 associated with the low-priority  
receive buffer  
An error frame is generated by any node that  
detects a bus error. An error frame consists of  
2 fields: an error flag field and an error delimiter  
field.  
• 2 full, acceptance filter masks, one each  
associated with the high and low-priority receive  
buffers  
• Overload Frame:  
An overload frame can be generated by a node as  
a result of 2 conditions. First, the node detects a  
dominant bit during interframe space which is an  
illegal condition. Second, due to internal condi-  
tions, the node is not yet able to start reception of  
the next message. A node may generate a  
maximum of 2 sequential overload frames to  
delay the start of the next message.  
• Three transmit buffers with application specified  
prioritization and abort capability (each buffer may  
contain up to 8 bytes of data)  
• Programmable wake-up functionality with  
integrated low-pass filter  
• Programmable Loopback mode supports self-test  
operation  
• Signaling via interrupt capabilities for all CAN  
receiver and transmitter error states  
• Interframe Space:  
Interframe space separates a proceeding frame  
(of whatever type) from a following data or remote  
frame.  
• Programmable clock source  
• Programmable link to input capture module (IC2,  
for both CAN1 and CAN2) for time-stamping and  
network synchronization  
• Low-power Sleep and Idle mode  
2010 Microchip Technology Inc.  
DS70138G-page 111  
 
 
 
dsPIC30F3014/4013  
FIGURE 17-1:  
CAN BUFFERS AND PROTOCOL ENGINE BLOCK DIAGRAM  
Acceptance Mask  
RXM1(2)  
BUFFERS  
Acceptance Filter  
RXF2(2)  
A
c
c
e
p
t
Acceptance Mask  
RXM0(2)  
Acceptance Filter  
RXF3(2)  
TXB0(2)  
TXB1(2)  
TXB2(2)  
A
c
c
e
p
t
Acceptance Filter  
RXF0(2)  
Acceptance Filter  
RXF4(2)  
Acceptance Filter  
RXF1(2)  
Acceptance Filter  
RXF5(2)  
R(2)  
X
R(2)  
X
B
1
M
A
B
Identifier  
Identifier  
Message  
Queue  
B
0
Control  
Transmit Byte Sequencer  
Data Field  
Data Field  
Receive  
Error  
Counter  
RERRCNT  
TERRCNT  
PROTOCOL  
ENGINE  
Transmit  
Error  
Err Pas  
Bus Off  
Counter  
Transmit Shift  
Receive Shift  
CRC Check  
Protocol  
Finite  
State  
CRC Generator  
Machine  
Bit  
Timing  
Logic  
Transmit  
Logic  
Bit Timing  
Generator  
CiTX(1)  
CiRX(1)  
Note 1:  
2:  
i = 1 or 2 refers to a particular CAN module (CAN1 or CAN2).  
These are conceptual groups of registers, not SFR names by themselves.  
DS70138G-page 112  
2010 Microchip Technology Inc.  
 
dsPIC30F3014/4013  
The module can be programmed to apply a low-pass  
filter function to the CiRX input line while the module or  
the CPU is in Sleep mode. The WAKFIL bit  
(CiCFG2<14>) enables or disables the filter.  
17.3 Modes of Operation  
The CAN module can operate in one of several operation  
modes selected by the user. These modes include:  
• Initialization mode  
• Disable mode  
• Normal Operation mode  
• Listen Only mode  
• Loopback mode  
Note:  
Typically, if the CAN module is allowed to  
transmit in a particular mode of operation  
and a transmission is requested immedi-  
ately after the CAN module has been  
placed in that mode of operation, the mod-  
ule waits for 11 consecutive recessive bits  
on the bus before starting transmission. If  
the user switches to Disable mode within  
this 11-bit period, then this transmission is  
aborted and the corresponding TXABT bit  
is set and TXREQ bit is cleared.  
• Error Recognition mode  
Modes are requested by setting the REQOP<2:0> bits  
(CiCTRL<10:8>). Entry into a mode is Acknowledged  
by monitoring the OPMODE<2:0> bits (CiCTRL<7:5>).  
The module does not change the mode and the  
OPMODE bits until a change in mode is acceptable,  
generally during bus Idle time which is defined as at  
least 11 consecutive recessive bits.  
17.3.3  
NORMAL OPERATION MODE  
Normal Operating mode is selected when  
REQOP<2:0> = 000. In this mode, the module is acti-  
vated and the I/O pins assume the CAN bus functions.  
The module transmits and receives CAN bus  
messages via the CxTX and CxRX pins.  
17.3.1  
INITIALIZATION MODE  
In the Initialization mode, the module does not transmit  
or receive. The error counters are cleared and the inter-  
rupt flags remain unchanged. The programmer has  
access to Configuration registers that are access  
restricted in other modes. The module protects the user  
from accidentally violating the CAN protocol through  
programming errors. All registers that control the con-  
figuration of the module can not be modified while the  
module is on-line. The CAN module is not allowed to  
enter the Configuration mode while a transmission is  
taking place. The Configuration mode serves as a lock  
to protect the following registers.  
17.3.4  
LISTEN ONLY MODE  
If the Listen Only mode is activated, the module on the  
CAN bus is passive. The transmitter buffers revert to  
the port I/O function. The receive pins remain inputs.  
For the receiver, no error flags or Acknowledge signals  
are sent. The error counters are deactivated in this  
state. The Listen Only mode can be used for detecting  
the baud rate on the CAN bus. To use this, it is neces-  
sary that there are at least two further nodes that  
communicate with each other.  
• All Module Control registers  
• Baud Rate and Interrupt Configuration registers  
• Bus Timing registers  
• Identifier Acceptance Filter registers  
• Identifier Acceptance Mask registers  
17.3.5  
LISTEN ALL MESSAGES MODE  
The module can be set to ignore all errors and receive  
any message. The Listen All Messages mode is acti-  
vated by setting the REQOP<2:0> bits to ‘111’. In this  
mode, the data which is in the message assembly buf-  
fer until the time an error occurred, is copied in the  
receive buffer and can be read via the CPU interface.  
17.3.2  
DISABLE MODE  
In Disable mode, the module does not transmit or  
receive. The module has the ability to set the WAKIF bit  
due to bus activity, however, any pending interrupts  
remain and the error counters retain their value.  
17.3.6  
LOOPBACK MODE  
If the REQOP<2:0> bits (CiCTRL<10:8>) = 001, the  
module enters the Module Disable mode. If the module is  
active, the module waits for 11 recessive bits on the CAN  
bus, detects that condition as an Idle bus, and then  
accepts the module disable command. When the  
OPMODE<2:0> bits (CiCTRL<7:5>) = 001, that  
indicates whether the module successfully went into  
Module Disable mode. The I/O pins revert to normal I/O  
function when the module is in the Module Disable mode.  
If the Loopback mode is activated, the module  
connects the internal transmit signal to the internal  
receive signal at the module boundary. The transmit  
and receive pins revert to their port I/O function.  
2010 Microchip Technology Inc.  
DS70138G-page 113  
 
 
 
 
 
 
 
dsPIC30F3014/4013  
17.4.4  
RECEIVE OVERRUN  
17.4 Message Reception  
An overrun condition occurs when the Message  
Assembly Buffer (MAB) has assembled a valid  
received message, the message is accepted through  
the acceptance filters, and when the receive buffer  
associated with the filter has not been designated as  
clear of the previous message.  
17.4.1  
RECEIVE BUFFERS  
The CAN bus module has 3 receive buffers. However,  
one of the receive buffers is always committed to mon-  
itoring the bus for incoming messages. This buffer is  
called the Message Assembly Buffer (MAB). So there  
are 2 receive buffers visible, denoted as RXB0 and  
RXB1, that can essentially instantaneously receive a  
complete message from the protocol engine.  
The overrun error flag, RXnOVR (CiINTF<15> or  
CiINTF<14>), and the ERRIF bit (CiINTF<5>) are set  
and the message in the MAB is discarded.  
All messages are assembled by the MAB and are trans-  
ferred to the RXBn buffers only if the acceptance filter  
criterion are met. When a message is received, the  
RXnIF flag (CiINRF<0> or CiINRF<1>) is set. This bit  
can only be set by the module when a message is  
received. The bit is cleared by the CPU when it has com-  
pleted processing the message in the buffer. If the  
RXnIE bit (CiINTE<0> or CiINTE<1>) is set, an interrupt  
is generated when a message is received.  
If the DBEN bit is clear, RXB1 and RXB0 operate inde-  
pendently. When this is the case, a message intended  
for RXB0 is not diverted into RXB1 if RXB0 contains an  
unread message, and the RX0OVR bit is set.  
If the DBEN bit is set, the overrun for RXB0 is handled  
differently. If a valid message is received for RXB0 and  
RXFUL = 1 it indicates that RXB0 is full and  
RXFUL = 0indicates that RXB1 is empty, the message  
for RXB0 is loaded into RXB1. An overrun error is not  
generated for RXB0. If a valid message is received for  
RXB0 and RXFUL = 1, indicates that both RXB0 and  
RXB1 are full, the message is lost and an overrun is  
indicated for RXB1.  
RXF0 and RXF1 filters with RXM0 mask are associated  
with RXB0. The filters RXF2, RXF3, RXF4 and RXF5,  
and the mask RXM1 are associated with RXB1.  
17.4.2  
MESSAGE ACCEPTANCE FILTERS  
The message acceptance filters and masks are used to  
determine if a message in the message assembly buf-  
fer should be loaded into either of the receive buffers.  
Once a valid message has been received into the Mes-  
sage Assembly Buffer (MAB), the identifier fields of the  
message are compared to the filter values. If there is a  
match, that message is loaded into the appropriate  
receive buffer.  
17.4.5  
RECEIVE ERRORS  
The CAN module detects the following receive errors:  
• Cyclic Redundancy Check (CRC) error  
• Bit Stuffing error  
• Invalid Message Receive Error  
The receive error counter is incremented by one in  
case one of these errors occur. The RXWAR bit  
(CiINTF<9>) indicates that the receive error counter  
has reached the CPU warning limit of 96 and an  
interrupt is generated.  
The acceptance filter looks at incoming messages for  
the RXIDE bit (CiRXnSID<0>) to determine how to  
compare the identifiers. If the RXIDE bit is clear, the  
message is a standard frame and only filters with the  
EXIDE bit (CiRXFnSID<0>) clear are compared. If the  
RXIDE bit is set, the message is an extended frame  
and only filters with the EXIDE bit set are compared.  
17.4.6  
RECEIVE INTERRUPTS  
Receive interrupts can be divided into 3 major groups,  
each including various conditions that generate  
interrupts:  
17.4.3  
MESSAGE ACCEPTANCE FILTER  
MASKS  
• Receive Interrupt:  
A message has been successfully received and  
loaded into one of the receive buffers. This inter-  
rupt is activated immediately after receiving the  
End-of-Frame (EOF) field. Reading the RXnIF flag  
indicates which receive buffer caused the  
interrupt.  
The mask bits essentially determine which bits to apply  
the filter to. If any mask bit is set to a zero, that bit is  
automatically accepted regardless of the filter bit.  
There are two programmable acceptance filter masks  
associated with the receive buffers, one for each buffer.  
• Wake-up Interrupt:  
The CAN module has woken up from Disable  
mode or the device has woken up from Sleep  
mode.  
DS70138G-page 114  
2010 Microchip Technology Inc.  
 
 
dsPIC30F3014/4013  
• Receive Error Interrupts:  
Setting TXREQ bit simply flags a message buffer as  
enqueued for transmission. When the module detects  
an available bus, it begins transmitting the message  
which has been determined to have the highest priority.  
A receive error interrupt is indicated by the ERRIF  
bit. This bit shows that an error condition  
occurred. The source of the error can be deter-  
mined by checking the bits in the CAN Interrupt  
register, CiINTF.  
If the transmission completes successfully on the first  
attempt, the TXREQ bit is cleared automatically and an  
interrupt is generated if TX1IE was set.  
- Invalid Message Received:  
If the message transmission fails, one of the error  
condition flags is set, and the TXREQ bit remains set,  
indicating that the message is still pending for transmis-  
sion. If the message encountered an error condition  
during the transmission attempt, the TXERR bit is set,  
and the error condition may cause an interrupt. If the  
message loses arbitration during the transmission  
attempt, the TXLARB bit is set. No interrupt is  
generated to signal the loss of arbitration.  
If any type of error occurred during reception of  
the last message, an error is indicated by the  
IVRIF bit.  
- Receiver Overrun:  
The RXnOVR bit indicates that an overrun  
condition occurred.  
- Receiver Warning:  
The RXWAR bit indicates that the Receive Error  
Counter (RERRCNT<7:0>) has reached the  
warning limit of 96.  
17.5.4  
ABORTING MESSAGE  
TRANSMISSION  
- Receiver Error Passive:  
The system can also abort a message by clearing the  
TXREQ bit associated with each message buffer.  
Setting the ABAT bit (CiCTRL<12>) requests an abort  
of all pending messages. If the message has not yet  
started transmission, or if the message started but is  
interrupted by loss of arbitration or an error, the abort is  
processed. The abort is indicated when the module  
sets the TXABT bit and the TXnIF flag is not  
automatically set.  
The RXEP bit indicates that the Receive Error  
Counter has exceeded the error passive limit of  
127 and the module has gone into error passive  
state.  
17.5 Message Transmission  
17.5.1  
TRANSMIT BUFFERS  
The CAN module has three transmit buffers. Each of  
the three buffers occupies 14 bytes of data. Eight of the  
bytes are the maximum 8 bytes of the transmitted mes-  
sage. Five bytes hold the standard and extended  
identifiers and other message arbitration information.  
17.5.5  
TRANSMISSION ERRORS  
The CAN module detects the following transmission  
errors:  
• Acknowledge error  
• Form error  
17.5.2  
TRANSMIT MESSAGE PRIORITY  
• Bit error  
Transmit priority is a prioritization within each node of  
the pending transmittable messages. There are  
4 levels of transmit priority. If TXPRI<1:0>  
(CiTXnCON<1:0>, where n = 0, 1 or 2, represents a  
particular transmit buffer) for a particular message buf-  
fer is set to ‘11’, that buffer has the highest priority. If  
TXPRI<1:0> for a particular message buffer is set to  
10’ or ‘01’, that buffer has an intermediate priority. If  
TXPRI<1:0> for a particular message buffer is ‘00’, that  
buffer has the lowest priority.  
These transmission errors do not necessarily generate  
an interrupt but are indicated by the transmission error  
counter. However, each of these errors causes the  
transmission error counter to be incremented by one.  
Once the value of the error counter exceeds the value  
of 96, the ERRIF (CiINTF<5>) and the TXWAR bit  
(CiINTF<10>) are set. Once the value of the error  
counter exceeds the value of 96, an interrupt is  
generated and the TXWAR bit in the Error Flag register  
is set.  
17.5.3  
TRANSMISSION SEQUENCE  
To initiate transmission of the message, the TXREQ bit  
(CiTXnCON<3>) must be set. The CAN bus module  
resolves any timing conflicts between setting of the  
TXREQ bit and the Start-of-Frame (SOF), ensuring that if  
the priority was changed, it is resolved correctly before the  
SOF occurs. When TXREQ is set, the TXABT  
(CiTXnCON<6>), TXLARB (CiTXnCON<5>) and TXERR  
(CiTXnCON<4>) flag bits are automatically cleared.  
2010 Microchip Technology Inc.  
DS70138G-page 115  
 
dsPIC30F3014/4013  
17.5.6  
TRANSMIT INTERRUPTS  
17.6 Baud Rate Setting  
Transmit interrupts can be divided into 2 major groups,  
each including various conditions that generate  
interrupts:  
All nodes on any particular CAN bus must have the  
same nominal bit rate. In order to set the baud rate, the  
following parameters have to be initialized:  
• Transmit Interrupt:  
• Synchronization Jump Width  
• Baud Rate Prescaler  
At least one of the three transmit buffers is empty  
(not scheduled) and can be loaded to schedule a  
message for transmission. The TXnIF flags are  
read to determine which transmit buffer is  
available and caused the interrupt.  
• Phase Segments  
• Length determination of Phase Segment 2  
• Sample Point  
• Propagation Segment bits  
• Transmit Error Interrupts:  
A transmission error interrupt is indicated by the  
ERRIF flag. This flag shows that an error condition  
occurred. The source of the error can be  
determined by checking the error flags in the CAN  
Interrupt register, CiINTF. The flags in this register  
are related to receive and transmit errors.  
17.6.1  
BIT TIMING  
All controllers on the CAN bus must have the same  
baud rate and bit length. However, different controllers  
are not required to have the same master oscillator  
clock. At different clock frequencies of the individual  
controllers, the baud rate has to be adjusted by  
adjusting the number of time quanta in each segment.  
- Transmitter Warning Interrupt:  
The TXWAR bit indicates that the Transmit Error  
Counter has reached the CPU warning limit of  
96.  
The nominal bit time can be thought of as being divided  
into separate non-overlapping time segments. These  
segments are shown in Figure 17-2.  
- Transmitter Error Passive:  
Synchronization Segment (Sync Seg)  
Propagation Time Segment (Prop Seg)  
Phase Segment 1 (Phase1 Seg)  
Phase Segment 2 (Phase2 Seg)  
The TXEP bit (CiINTF<12>) indicates that the  
Transmit Error Counter has exceeded the error  
passive limit of 127 and the module has gone to  
error passive state.  
The time segments and also the nominal bit time are  
made up of integer units of time called time quanta or  
TQ. By definition, the nominal bit time has a minimum  
of 8 TQ and a maximum of 25 TQ. Also, by definition,  
the minimum nominal bit time is 1 sec corresponding  
to a maximum bit rate of 1 MHz.  
- Bus Off:  
The TXBO bit (CiINTF<13>) indicates that the  
Transmit Error Counter (TERRCNT<7:0>) has  
exceeded 255 and the module has gone to the  
bus off state.  
FIGURE 17-2:  
CAN BIT TIMING  
Input Signal  
Prop  
Segment  
Phase  
Segment 1  
Phase  
Segment 2  
Sync  
Sync  
Sample Point  
TQ  
DS70138G-page 116  
2010 Microchip Technology Inc.  
 
 
 
dsPIC30F3014/4013  
17.6.2  
PRESCALER SETTING  
17.6.5  
SAMPLE POINT  
There is a programmable prescaler with integral values  
ranging from 1 to 64 in addition to a fixed divide-by-2 for  
clock generation. The Time Quantum (TQ) is a fixed  
unit of time derived from the oscillator period, shown in  
Equation 17-1, where FCAN is FCY (if the CANCKS bit  
is set) or 4FCY (if CANCKS is clear).  
The sample point is the point of time at which the bus  
level is read and interpreted as the value of that respec-  
tive bit. The location is at the end of Phase1 Seg. If the  
bit timing is slow and contains many TQ, it is possible to  
specify multiple sampling of the bus line at the sample  
point. The level determined by the CAN bus then corre-  
sponds to the result from the majority decision of three  
values. The majority samples are taken at the sample  
point and twice before with a distance of TQ/2. The  
CAN module allows the user to choose between  
sampling three times at the same point, or once at the  
same point by setting or clearing the SAM bit  
(CiCFG2<6>).  
Note:  
FCAN must not exceed 30 MHz. If  
CANCKS = 0, then FCY must not exceed  
7.5 MHz.  
EQUATION 17-1: TIME QUANTUM FOR  
CLOCK GENERATION  
Typically, the sampling of the bit should take place at  
about 60-70% through the bit time depending on the  
system parameters.  
TQ = 2 (BRP<5:0> + 1)/FCAN  
17.6.3  
PROPAGATION SEGMENT  
17.6.6  
SYNCHRONIZATION  
This part of the bit time is used to compensate physical  
delay times within the network. These delay times con-  
sist of the signal propagation time on the bus line and  
the internal delay time of the nodes. The propagation  
segment can be programmed from 1 TQ to 8 TQ by  
setting the PRSEG<2:0> bits (CiCFG2<2:0>).  
To compensate for phase shifts between the oscillator  
frequencies of the different bus stations, each CAN  
controller must be able to synchronize to the relevant  
signal edge of the incoming signal. When an edge in  
the transmitted data is detected, the logic compares the  
location of the edge to the expected time (synchronous  
segment). The circuit then adjusts the values of  
Phase1 Seg and Phase2 Seg. There are two  
mechanisms used to synchronize.  
17.6.4  
PHASE SEGMENTS  
The phase segments are used to optimally locate the  
sampling of the received bit within the transmitted bit  
time. The sampling point is between Phase1 Seg and  
Phase2 Seg. These segments are lengthened or short-  
ened by resynchronization. The end of the Phase1 Seg  
determines the sampling point within a bit period. The  
segment is programmable from 1 TQ to 8 TQ. Phase2  
Seg provides delay to the next transmitted data transi-  
tion. The segment is programmable from 1 TQ to 8 TQ,  
or it may be defined to be equal to the greater of  
Phase1 Seg or the information processing time (2 TQ).  
The Phase1 Seg is initialized by setting bits  
SEG1PH<2:0> (CiCFG2<5:3>), and Phase2 Seg is  
initialized by setting SEG2PH<2:0> (CiCFG2<10:8>).  
17.6.6.1  
Hard Synchronization  
Hard synchronization is only done when there is a  
recessive to dominant edge during bus Idle, indicating  
the start of a message. After hard synchronization, the  
bit-time counters are restarted with the synchronous  
segment. Hard synchronization forces the edge which  
has caused the hard synchronization to lie within the  
synchronization segment of the restarted bit time. If a  
hard synchronization is done, there will not be a  
resynchronization within that bit time.  
17.6.6.2  
Resynchronization  
The following requirement must be fulfilled while setting  
the lengths of the phase segments:  
As a result of resynchronization, Phase1 Seg may be  
lengthened or Phase2 Seg may be shortened. The  
amount of lengthening or shortening of the phase buf-  
fer segment has an upper bound known as the syn-  
chronization jump width, and is specified by the  
SJW<1:0> bits (CiCFG1<7:6>). The value of the  
synchronization jump width is added to Phase1 Seg or  
subtracted from Phase2 Seg. The resynchronization  
jump width is programmable between 1 TQ and 4 TQ.  
Prop Seg + Phase1 Seg > = Phase2 Seg  
The following requirement must be fulfilled while setting  
the SJW<1:0> bits:  
Phase2 Seg > Synchronization Jump Width  
2010 Microchip Technology Inc.  
DS70138G-page 117  
 
 
TABLE 17-1: dsPIC30F4013 CAN1 REGISTER MAP(1)  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
C1RXF0SID 0300  
Receive Acceptance Filter 0 Standard Identifier<10:0>  
Receive Acceptance Filter 0 Extended Identifier<17:6>  
EXIDE 000u uuuu uuuu uu0u  
C1RXF0EIDH 0302  
C1RXF0EIDL 0304  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 0 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
C1RXF1SID  
0308  
Receive Acceptance Filter 1 Standard Identifier<10:0>  
Receive Acceptance Filter 1 Extended Identifier<17:6>  
EXIDE 000u uuuu uuuu uu0u  
C1RXF1EIDH 030A  
C1RXF1EIDL 030C  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 1 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
C1RXF2SID  
0310  
Receive Acceptance Filter 2 Standard Identifier<10:0>  
Receive Acceptance Filter 2 Extended Identifier<17:6>  
EXIDE 000u uuuu uuuu uu0u  
C1RXF2EIDH 0312  
C1RXF2EIDL 0314  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 2 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
C1RXF3SID  
0318  
Receive Acceptance Filter 3 Standard Identifier<10:0>  
Receive Acceptance Filter 3 Extended Identifier<17:6>  
EXIDE 000u uuuu uuuu uu0u  
C1RXF3EIDH 031A  
C1RXF3EIDL 031C  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 3 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
C1RXF4SID  
0320  
Receive Acceptance Filter 4 Standard Identifier<10:0>  
Receive Acceptance Filter 4 Extended Identifier<17:6>  
EXIDE 000u uuuu uuuu uu0u  
C1RXF4EIDH 0322  
C1RXF4EIDL 0324  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 4 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
C1RXF5SID  
0328  
Receive Acceptance Filter 5 Standard Identifier<10:0>  
Receive Acceptance Filter 5 Extended Identifier<17:6>  
EXIDE 000u uuuu uuuu uu0u  
C1RXF5EIDH 032A  
C1RXF5EIDL 032C  
0000 uuuu uuuu uuuu  
Receive Acceptance Filter 5 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
C1RXM0SID  
0330  
Receive Acceptance Mask 0 Standard Identifier<10:0>  
Receive Acceptance Mask 0 Extended Identifier<17:6>  
MIDE 000u uuuu uuuu uu0u  
C1RXM0EIDH 0332  
C1RXM0EIDL 0334  
0000 uuuu uuuu uuuu  
Receive Acceptance Mask 0 Extended Identifier<5:0>  
uuuu uu00 0000 0000  
C1RXM1SID  
0338  
Receive Acceptance Mask 1 Standard Identifier<10:0>  
Receive Acceptance Mask 1 Extended Identifier<17:6>  
MIDE 000u uuuu uuuu uu0u  
C1RXM1EIDH 033A  
C1RXM1EIDL 033C  
0000 uuuu uuuu uuuu  
Receive Acceptance Mask 1 Extended Identifier<5:0>  
Transmit Buffer 2 Standard Identifier<10:6>  
uuuu uu00 0000 0000  
C1TX2SID  
C1TX2EID  
C1TX2DLC  
C1TX2B1  
C1TX2B2  
C1TX2B3  
C1TX2B4  
C1TX2CON  
C1TX1SID  
C1TX1EID  
C1TX1DLC  
0340  
Transmit Buffer 2 Standard Identifier<5:0>  
Transmit Buffer 2 Extended Identifier<13:6>  
SRR TXIDE uuuu u000 uuuu uuuu  
0342 Transmit Buffer 2 Extended Identifier<17:14>  
uuuu 0000 uuuu uuuu  
0344  
0346  
0348  
034A  
034C  
034E  
0350  
Transmit Buffer 2 Extended Identifier<5:0>  
TXRTR TXRB1  
TXRB0  
DLC<3:0>  
uuuu uuuu uuuu u000  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
Transmit Buffer 2 Byte 1  
Transmit Buffer 2 Byte 3  
Transmit Buffer 2 Byte 5  
Transmit Buffer 2 Byte 7  
Transmit Buffer 2 Byte 0  
Transmit Buffer 2 Byte 2  
Transmit Buffer 2 Byte 4  
Transmit Buffer 2 Byte 6  
TXABT TXLARB TXERR  
TXREQ  
TXPRI<1:0>  
Transmit Buffer 1 Standard Identifier<10:6>  
Transmit Buffer 1 Standard Identifier<5:0>  
SRR TXIDE uuuu u000 uuuu uuuu  
0352 Transmit Buffer 1 Extended Identifier<17:14>  
0354  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
Transmit Buffer 1 Extended Identifier<13:6>  
DLC<3:0>  
uuuu 0000 uuuu uuuu  
Transmit Buffer 1 Extended Identifier<5:0>  
TXRTR TXRB1  
TXRB0  
uuuu uuuu uuuu u000  
Legend:  
Note 1:  
 
TABLE 17-1: dsPIC30F4013 CAN1 REGISTER MAP(1) (CONTINUED)  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
C1TX1B1  
C1TX1B2  
C1TX1B3  
C1TX1B4  
C1TX1CON  
C1TX0SID  
C1TX0EID  
C1TX0DLC  
C1TX0B1  
C1TX0B2  
C1TX0B3  
C1TX0B4  
C1TX0CON  
C1RX1SID  
C1RX1EID  
C1RX1DLC  
C1RX1B1  
C1RX1B2  
C1RX1B3  
C1RX1B4  
C1RX1CON  
C1RX0SID  
C1RX0EID  
C1RX0DLC  
C1RX0B1  
C1RX0B2  
C1RX0B3  
C1RX0B4  
C1RX0CON  
C1CTRL  
0356  
0358  
035A  
035C  
035E  
0360  
Transmit Buffer 1 Byte 1  
Transmit Buffer 1 Byte 3  
Transmit Buffer 1 Byte 5  
Transmit Buffer 1 Byte 7  
Transmit Buffer 1 Byte 0  
Transmit Buffer 1 Byte 2  
Transmit Buffer 1 Byte 4  
Transmit Buffer 1 Byte 6  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
TXABT TXLARB TXERR  
Transmit Buffer 0 Standard Identifier <5:0>  
Transmit Buffer 0 Extended Identifier<13:6>  
TXREQ  
TXPRI<1:0>  
Transmit Buffer 0 Standard Identifier<10:6>  
SRR TXIDE uuuu u000 uuuu uuuu  
0362 Transmit Buffer 0 Extended Identifier <17:14>  
uuuu 0000 uuuu uuuu  
0364  
0366  
0368  
036A  
036C  
036E  
0370  
0372  
0374  
0376  
0378  
037A  
037C  
037E  
0380  
0382  
0384  
0386  
0388  
038A  
038C  
038E  
Transmit Buffer 0 Extended Identifier<5:0>  
Transmit Buffer 0 Byte 1  
TXRTR TXRB1  
TXRB0  
DLC<3:0>  
uuuu uuuu uuuu u000  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
Transmit Buffer 0 Byte 0  
Transmit Buffer 0 Byte 2  
Transmit Buffer 0 Byte 4  
Transmit Buffer 0 Byte 6  
Transmit Buffer 0 Byte 3  
Transmit Buffer 0 Byte 5  
Transmit Buffer 0 Byte 7  
TXABT TXLARB TXERR  
TXREQ  
TXPRI<1:0>  
Receive Buffer 1 Standard Identifier<10:0>  
Receive Buffer 1 Extended Identifier <17:6>  
SRR RXIDE 000u uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
Receive Buffer 1 Extended Identifier<5:0>  
Receive Buffer 1 Byte 1  
RXRTR RXRB1  
RXRB0  
DLC<3:0>  
uuuu uuuu 000u uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
Receive Buffer 1 Byte 0  
Receive Buffer 1 Byte 2  
Receive Buffer 1 Byte 4  
Receive Buffer 1 Byte 6  
Receive Buffer 1 Byte 3  
Receive Buffer 1 Byte 5  
Receive Buffer 1 Byte 7  
RXFUL  
RXRTRRO  
FILHIT<2:0>  
Receive Buffer 0 Standard Identifier<10:0>  
Receive Buffer 0 Extended Identifier<17:6>  
SRR RXIDE 000u uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
Receive Buffer 0 Extended Identifier<5:0>  
Receive Buffer 0 Byte 1  
RXRTR RXRB1  
RXRB0  
DLC<3:0>  
uuuu uuuu 000u uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
Receive Buffer 0 Byte 0  
Receive Buffer 0 Byte 2  
Receive Buffer 0 Byte 4  
Receive Buffer 0 Byte 6  
Receive Buffer 0 Byte 3  
Receive Buffer 0 Byte 5  
Receive Buffer 0 Byte 7  
CSIDL  
ABAT  
CANCKS  
REQOP<2:0>  
RXFUL  
RXRTRRO DBEN JTOFF FILHIT0 0000 0000 0000 0000  
0390 CANCAP  
OPMODE<2:0>  
SJW<1:0>  
ICODE<2:0>  
BRP<5:0>  
0000 0100 1000 0000  
0000 0000 0000 0000  
0u00 0uuu uuuu uuuu  
C1CFG1  
0392  
0394  
C1CFG2  
WAKFIL  
SEG2PH<2:0>  
TXWAR RXWAR EWARN  
SEG2PHTS SAM  
SEG1PH<2:0>  
PRSEG<2:0>  
C1INTF  
0396 RX0OVR RX1OVR  
TXBO  
TXEP  
RXEP  
IVRIF  
IVRIE  
WAKIF ERRIF  
WAKIE ERRIE TX2IE  
RERRCNT<7:0>  
TX2IF  
TX1IF  
TX0IF RX1IF RX0IF 0000 0000 0000 0000  
TX0IE RX1IE RX0IE 0000 0000 0000 0000  
0000 0000 0000 0000  
C1INTE  
0398  
039A  
TX1IE  
C1EC  
TERRCNT<7:0>  
Legend:  
Note 1:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 120  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
18.2.3  
CSDI PIN  
18.0 DATA CONVERTER  
INTERFACE (DCI) MODULE  
The serial data input (CSDI) pin is configured as an  
input only pin when the module is enabled.  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
18.2.3.1  
COFS PIN  
The Codec Frame Synchronization (COFS) pin is used  
to synchronize data transfers that occur on the CSDO  
and CSDI pins. The COFS pin may be configured as an  
input or an output. The data direction for the COFS pin  
is determined by the COFSD control bit in the  
DCICON1 register.  
The DCI module accesses the shadow registers while  
the CPU is in the process of accessing the memory  
mapped buffer registers.  
18.1 Module Introduction  
The dsPIC30F Data Converter Interface (DCI) module  
allows simple interfacing of devices, such as audio  
coder/decoders (Codecs), A/D converters and D/A  
converters. The following interfaces are supported:  
18.2.4  
BUFFER DATA ALIGNMENT  
Data values are always stored left justified in the buf-  
fers since most Codec data is represented as a signed  
2’s complement fractional number. If the received word  
length is less than 16 bits, the unused LSbs in the  
receive buffer registers are set to ‘0’ by the module. If  
the transmitted word length is less than 16 bits, the  
unused LSbs in the transmit buffer register are ignored  
by the module. The word length setup is described in  
subsequent sections of this document.  
• Framed Synchronous Serial Transfer (single or  
multichannel)  
• Inter-IC Sound (I2S) Interface  
• AC-Link Compliant mode  
The DCI module provides the following general  
features:  
• Programmable word size up to 16 bits  
• Support for up to 16 time slots, for a maximum  
frame size of 256 bits  
18.2.5  
TRANSMIT/RECEIVE SHIFT  
REGISTER  
• Data buffering for up to 4 samples without CPU  
overhead  
The DCI module has a 16-bit shift register for shifting  
serial data in and out of the module. Data is shifted in/  
out of the shift register MSb first, since audio PCM data  
is transmitted in signed 2’s complement format.  
18.2 Module I/O Pins  
There are four I/O pins associated with the module.  
When enabled, the module controls the data direction  
of each of the four pins.  
18.2.6  
DCI BUFFER CONTROL  
The DCI module contains a buffer control unit for trans-  
ferring data between the shadow buffer memory and  
the serial shift register. The buffer control unit is a sim-  
ple 2-bit address counter that points to word locations  
in the shadow buffer memory. For the receive memory  
space (high address portion of DCI buffer memory), the  
address counter is concatenated with a ‘0’ in the MSb  
location to form a 3-bit address. For the transmit mem-  
ory space (high portion of DCI buffer memory), the  
address counter is concatenated with a ‘1’ in the MSb  
location.  
18.2.1  
CSCK PIN  
The CSCK pin provides the serial clock for the DCI  
module. The CSCK pin may be configured as an input  
or output using the CSCKD control bit in the DCICON1  
SFR. When configured as an output, the serial clock is  
provided by the dsPIC30F. When configured as an  
input, the serial clock must be provided by an external  
device.  
18.2.2  
CSDO PIN  
Note:  
The DCI buffer control unit always  
accesses the same relative location in the  
transmit and receive buffers, so only one  
address counter is provided.  
The serial data output (CSDO) pin is configured as an  
output only pin when the module is enabled. The  
CSDO pin drives the serial bus whenever data is to be  
transmitted. The CSDO pin is tri-stated or driven to ‘0’  
during CSCK periods when data is not transmitted,  
depending on the state of the CSDOM control bit. This  
allows other devices to place data on the serial bus  
during transmission periods not used by the DCI  
module.  
2010 Microchip Technology Inc.  
DS70138G-page 121  
 
 
 
 
 
 
 
 
 
 
dsPIC30F3014/4013  
FIGURE 18-1:  
DCI MODULE BLOCK DIAGRAM  
BCG Control bits  
SCKD  
FSD  
Sample Rate  
Generator  
FOSC/4  
CSCK  
COFS  
Word-Size Selection bits  
Frame Length Selection bits  
DCI Mode Selection bits  
Frame  
Synchronization  
Generator  
Receive Buffer  
Registers w/Shadow  
DCI Buffer  
Control Unit  
15  
0
Transmit Buffer  
Registers w/Shadow  
DCI Shift Register  
CSDI  
CSDO  
DS70138G-page 122  
2010 Microchip Technology Inc.  
 
dsPIC30F3014/4013  
Frame lengths, up to 16 data words, may be selected.  
The frame length in CSCK periods can vary up to a  
maximum of 256 depending on the word size that is  
selected.  
18.3 DCI Module Operation  
18.3.1 MODULE ENABLE  
The DCI module is enabled or disabled by setting/  
clearing the DCIEN control bit in the DCICON1 SFR.  
Clearing the DCIEN control bit has the effect of reset-  
ting the module. In particular, all counters associated  
with CSCK generation, Frame Sync, and the DCI buffer  
control unit are reset.  
Note:  
The COFSG control bits have no effect in  
AC-Link mode since the frame length is  
set to 256 CSCK periods by the protocol.  
18.3.4  
FRAME SYNC MODE  
CONTROL BITS  
The DCI clocks are shut down when the DCIEN bit is  
cleared.  
The type of Frame Sync signal is selected using the  
Frame Synchronization mode control bits  
(COFSM<1:0>) in the DCICON1 SFR. The following  
operating modes can be selected:  
When enabled, the DCI controls the data direction for  
the four I/O pins associated with the module. The port,  
LAT and TRIS register values for these I/O pins are  
overridden by the DCI module when the DCIEN bit is set.  
• Multichannel mode  
• I2S mode  
It is also possible to override the CSCK pin separately  
when the bit clock generator is enabled. This permits  
the bit clock generator to operate without enabling the  
rest of the DCI module.  
• AC-Link mode (16-bit)  
• AC-Link mode (20-bit)  
The operation of the COFSM control bits depends on  
whether the DCI module generates the Frame Sync  
signal as a master device, or receives the Frame Sync  
signal as a slave device.  
18.3.2  
WORD-SIZE SELECTION BITS  
The WS<3:0> word-size selection bits in the DCICON2  
SFR determine the number of bits in each DCI data  
word. Essentially, the WS<3:0> bits determine the  
counting period for a 4-bit counter clocked from the  
CSCK signal.  
The master device in a DSP/Codec pair is the device  
that generates the Frame Sync signal. The Frame Sync  
signal initiates data transfers on the CSDI and CSDO  
pins and usually has the same frequency as the data  
sample rate (COFS).  
Any data length, up to 16 bits, may be selected. The  
value loaded into the WS<3:0> bits is one less the  
desired word length. For example, a 16-bit data word  
size is selected when WS<3:0> = 1111.  
The DCI module is a Frame Sync master if the COFSD  
control bit is cleared and is a Frame Sync slave if the  
COFSD control bit is set.  
Note:  
These WS<3:0> control bits are used only  
in the Multichannel and I2S modes. These  
bits have no effect in AC-Link mode since  
the data slot sizes are fixed by the protocol.  
18.3.5  
MASTER FRAME SYNC  
OPERATION  
When the DCI module is operating as a Frame Sync  
master device (COFSD = 0), the COFSM mode bits  
determine the type of Frame Sync pulse that is  
generated by the Frame Sync generator logic.  
18.3.3  
FRAME SYNC GENERATOR  
The Frame Sync generator (COFSG) is a 4-bit counter  
that sets the frame length in data words. The Frame  
Sync generator is incremented each time the word-size  
counter is reset (refer to Section 18.3.2 “Word-Size  
Selection Bits”). The period for the Frame Synchroni-  
zation generator is set by writing the COFSG<3:0>  
control bits in the DCICON2 SFR. The COFSG period  
in clock cycles is determined by the following formula:  
A new COFS signal is generated when the Frame Sync  
generator resets to ‘0’.  
In the Multichannel mode, the Frame Sync pulse is  
driven high for the CSCK period to initiate a data trans-  
fer. The number of CSCK cycles between successive  
Frame Sync pulses depends on the word size and  
Frame Sync generator control bits. A timing diagram for  
the Frame Sync signal in Multichannel mode is shown  
in Figure 18-2.  
EQUATION 18-1: COFSG PERIOD  
Frame Length = Word Length • (FSG Value + 1)  
In the AC-Link mode of operation, the Frame Sync  
signal has a fixed period and duty cycle. The AC-Link  
Frame Sync signal is high for 16 CSCK cycles and is  
low for 240 CSCK cycles. A timing diagram with the  
timing details at the start of an AC-Link frame is shown  
in Figure 18-3.  
In the I2S mode, a Frame Sync signal having a 50%  
duty cycle is generated. The period of the I2S Frame  
Sync signal in CSCK cycles is determined by the word  
2010 Microchip Technology Inc.  
DS70138G-page 123  
 
 
 
 
 
 
 
 
dsPIC30F3014/4013  
size and Frame Sync generator control bits. A new I2S  
data transfer boundary is marked by a high-to-low or a  
low-to-high transition edge on the COFS pin.  
In the I2S mode, a new data word is transferred one  
CSCK cycle after a low-to-high or a high-to-low transi-  
tion is sampled on the COFS pin. A rising or falling  
edge on the COFS pin resets the Frame Sync  
generator logic.  
18.3.6  
SLAVE FRAME SYNC OPERATION  
When the DCI module is operating as a Frame Sync  
slave (COFSD = 1), data transfers are controlled by the  
Codec device attached to the DCI module. The  
COFSM control bits control how the DCI module  
responds to incoming COFS signals.  
In the AC-Link mode, the tag slot and subsequent data  
slots for the next frame is transferred one CSCK cycle  
after the COFS pin is sampled high.  
The COFSG and WS bits must be configured to  
provide the proper frame length when the module is  
operating in the Slave mode. Once a valid Frame Sync  
pulse has been sampled by the module on the COFS  
pin, an entire data frame transfer takes place. The  
module will not respond to further Frame Sync pulses  
until the data frame transfer has completed.  
In the Multichannel mode, a new data frame transfer  
begins one CSCK cycle after the COFS pin is sampled  
high (see Figure 18-2). The pulse on the COFS pin  
resets the Frame Sync generator logic.  
FIGURE 18-2:  
FRAME SYNC TIMING, MULTICHANNEL MODE  
CSCK  
COFS  
CSDI/CSDO  
MSB  
LSB  
FIGURE 18-3:  
FRAME SYNC TIMING, AC-LINK START-OF-FRAME  
BIT_CLK  
S12 S12 S12 Tag Tag Tag  
bit 2 bit 1 LSb  
CSDO or CSDI  
MSb bit 14 bit 13  
SYNC  
FIGURE 18-4:  
I2S INTERFACE FRAME SYNC TIMING  
CSCK  
CSDI or CSDO  
LSB  
MSB  
LSB MSB  
WS  
2
Note:  
A 5-bit transfer is shown here for illustration purposes. The I S protocol does not specify word length – this  
will be system dependent.  
DS70138G-page 124  
2010 Microchip Technology Inc.  
 
 
 
 
 
dsPIC30F3014/4013  
18.3.7  
BIT CLOCK GENERATOR  
EQUATION 18-2: BIT CLOCK FREQUENCY  
The DCI module has a dedicated 12-bit time base that  
produces the bit clock. The bit clock rate (period) is set  
by writing a non-zero 12-bit value to the BCG<11:0>  
control bits in the DCICON3 SFR.  
FCY  
FBCK =  
2
(BCG + 1)  
When the BCG<11:0> bits are set to zero, the bit clock  
is disabled. If the BCG<11:0> bits are set to a non-zero  
value, the bit clock generator is enabled. These bits  
should be set to ‘0’ and the CSCKD bit set to ‘1’ if the  
serial clock for the DCI is received from an external  
device.  
The required bit clock frequency is determined by the  
system sampling rate and frame size. Typical bit clock  
frequencies range from 16x to 512x the converter  
sample rate depending on the data converter and the  
communication protocol that is used.  
To achieve bit clock frequencies associated with  
common audio sampling rates, the user needs to select  
a crystal frequency that has an ‘even’ binary value.  
Examples of such crystal frequencies are listed in  
Table 18-1.  
The formula for the bit clock frequency is given in  
Equation 18-2.  
TABLE 18-1: DEVICE FREQUENCIES FOR COMMON CODEC CSCK FREQUENCIES  
FS (kHz)  
FCSCK/FS  
FCSCK (MHz)(1)  
FOSC (MHZ)  
PLL  
FCY (MIPS)  
BCG(2)  
8
12  
256  
256  
32  
2.048  
3.072  
1.024  
1.4112  
3.072  
8.192  
6.144  
8.192  
5.6448  
6.144  
4
8
8.192  
12.288  
16.384  
11.2896  
24.576  
1
1
7
3
3
32  
8
44.1  
48  
32  
8
64  
16  
Note 1: When the CSCK signal is applied externally (CSCKD = 1), the BCG<11:0> bits have no effect on the  
operation of the DCI module.  
2: When the CSCK signal is applied externally (CSCKD = 1), the external clock high and low times must  
meet the device timing requirements.  
2010 Microchip Technology Inc.  
DS70138G-page 125  
 
 
 
 
 
dsPIC30F3014/4013  
18.3.8  
SAMPLE CLOCK EDGE  
CONTROL BIT  
18.3.11 RECEIVE SLOT ENABLE BITS  
The RSCON SFR contains control bits that are used to  
enable up to 16 time slots for reception. These control  
bits are the RSE<15:0> bits. The size of each receive  
time slot is determined by the WS<3:0> word-size  
selection bits and can vary from 1 to 16 bits.  
The sample clock edge (CSCKE) control bit determines  
the sampling edge for the CSCK signal. If the CSCK bit  
is cleared (default), data is sampled on the falling edge  
of the CSCK signal. The AC-Link protocols and most  
multichannel formats require that data be sampled on  
the falling edge of the CSCK signal. If the CSCK bit is  
set, data is sampled on the rising edge of CSCK. The  
I2S protocol requires that data be sampled on the rising  
edge of the CSCK signal.  
If a receive time slot is enabled via one of the RSE bits  
(RSEx = 1), the shift register contents are written to the  
current DCI receive shadow buffer location and the buf-  
fer control unit is incremented to point to the next buffer  
location.  
Data is not packed in the receive memory buffer loca-  
tions if the selected word size is less than 16 bits. Each  
received slot data word is stored in a separate 16-bit  
buffer location. Data is always stored in a left justified  
format in the receive memory buffer.  
18.3.9  
DATA JUSTIFICATION  
CONTROL BIT  
In most applications, the data transfer begins one  
CSCK cycle after the COFS signal is sampled active.  
This is the default configuration of the DCI module. An  
alternate data alignment can be selected by setting the  
DJST control bit in the DCICON1 SFR. When DJST = 1,  
data transfers begin during the same CSCK cycle when  
the COFS signal is sampled active.  
18.3.12 SLOT ENABLE BITS OPERATION  
WITH FRAME SYNC  
The TSE and RSE control bits operate in concert with  
the DCI Frame Sync generator. In the Master mode, a  
COFS signal is generated whenever the Frame Sync  
generator is reset. In the Slave mode, the Frame Sync  
generator is reset whenever a COFS pulse is received.  
18.3.10 TRANSMIT SLOT ENABLE BITS  
The TSCON SFR has control bits that are used to  
enable up to 16 time slots for transmission. These con-  
trol bits are the TSE<15:0> bits. The size of each time  
slot is determined by the WS<3:0> word-size selection  
bits and can vary up to 16 bits.  
The TSE and RSE control bits allow up to 16 consecu-  
tive time slots to be enabled for transmit or receive.  
After the last enabled time slot has been transmitted/  
received, the DCI stops buffering data until the next  
occurring COFS pulse.  
If a transmit time slot is enabled via one of the TSE bits  
(TSEx = 1), the contents of the current transmit shadow  
buffer location is loaded into the CSDO Shift register  
and the DCI buffer control unit is incremented to point  
to the next location.  
18.3.13 SYNCHRONOUS DATA  
TRANSFERS  
The DCI buffer control unit is incremented by one word  
location whenever a given time slot has been enabled  
for transmission or reception. In most cases, data input  
and output transfers are synchronized, which means  
that a data sample is received for a given channel at the  
same time a data sample is transmitted. Therefore, the  
transmit and receive buffers are filled with equal  
amounts of data when a DCI interrupt is generated.  
During an unused transmit time slot, the CSDO pin  
drives ‘0’s or is tri-stated during all disabled time slots  
depending on the state of the CSDOM bit in the  
DCICON1 SFR.  
The data frame size in bits is determined by the chosen  
data word size and the number of data word elements  
in the frame. If the chosen frame size has less than  
16 elements, the additional slot enable bits have no  
effect.  
In some cases, the amount of data transmitted and  
received during a data frame may not be equal. As an  
example, assume a two-word data frame is used.  
Furthermore, assume that data is only received during  
slot #0 but is transmitted during slot #0 and slot #1. In  
this case, the buffer control unit counter would be  
incremented twice during a data frame but only one  
receive register location would be filled with data.  
Each transmit data word is written to the 16-bit transmit  
buffer as left justified data. If the selected word size is  
less than 16 bits, then the LSbs of the transmit buffer  
memory have no effect on the transmitted data. The  
user should write ‘0’s to the unused LSbs of each  
transmit buffer location.  
DS70138G-page 126  
2010 Microchip Technology Inc.  
 
 
 
 
 
 
dsPIC30F3014/4013  
18.3.14  
BUFFER LENGTH CONTROL  
18.3.16 TRANSMIT STATUS BITS  
The amount of data that is buffered between interrupts  
is determined by the buffer length (BLEN<1:0>) control  
bits in the DCICON2 SFR. The size of the transmit and  
receive buffers may be varied from 1 to 4 data words  
using the BLEN control bits. The BLEN control bits are  
compared to the current value of the DCI buffer control  
unit address counter. When the two LSbs of the DCI  
address counter match the BLEN<1:0> value, the buf-  
fer control unit is reset to ‘0’. In addition, the contents of  
the receive shadow registers are transferred to the  
receive buffer registers and the contents of the transmit  
buffer registers are transferred to the transmit shadow  
registers.  
There are two transmit status bits in the DCISTAT SFR.  
The TMPTY bit is set when the contents of the transmit  
buffer registers are transferred to the transmit shadow  
registers. The TMPTY bit may be polled in software to  
determine when the transmit buffer registers may be  
written. The TMPTY bit is cleared automatically by the  
hardware when a write to one of the four transmit  
buffers occurs.  
The TUNF bit is read-only and indicates that a transmit  
underflow has occurred for at least one of the transmit  
buffer registers that is in use. The TUNF bit is set at the  
time the transmit buffer registers are transferred to the  
transmit shadow registers. The TUNF status bit is  
cleared automatically when the buffer register that  
underflowed is written by the CPU.  
18.3.15 BUFFER ALIGNMENT WITH DATA  
FRAMES  
Note:  
The transmit status bits only indicate  
status for buffer locations that are used by  
the module. If the buffer length is set to  
less than four words, for example, the  
unused buffer locations do not affect the  
transmit status bits.  
There is no direct coupling between the position of the  
AGU Address Pointer and the data frame boundaries.  
This means that there is an implied assignment of each  
transmit and receive buffer that is a function of the  
BLEN control bits and the number of enabled data slots  
via the TSE and RSE control bits.  
As an example, assume that a 4-word data frame is  
chosen and that we want to transmit on all four time  
slots in the frame. This configuration would be estab-  
lished by setting the TSE0, TSE1, TSE2, and TSE3  
control bits in the TSCON SFR. With this module setup,  
the TXBUF0 register would be naturally assigned to  
slot #0, the TXBUF1 register would be naturally  
assigned to slot #1, and so on.  
18.3.17 RECEIVE STATUS BITS  
There are two receive status bits in the DCISTAT SFR.  
The RFUL status bit is read-only and indicates that new  
data is available in the receive buffers. The RFUL bit is  
cleared automatically when all receive buffers in use  
have been read by the CPU.  
The ROV status bit is read-only and indicates that a  
receive overflow has occurred for at least one of the  
receive buffer locations. A receive overflow occurs  
when the buffer location is not read by the CPU before  
new data is transferred from the shadow registers. The  
ROV status bit is cleared automatically when the buffer  
register that caused the overflow is read by the CPU.  
Note:  
When more than four time slots are active  
within a data frame, the user code must  
keep track of which time slots are to be  
read/written at each interrupt. In some  
cases, the alignment between transmit/  
receive buffers and their respective slot  
assignments could be lost. Examples of  
such cases include an emulation  
breakpoint or a hardware trap. In these  
situations, the user should poll the SLOT  
status bits to determine what data should  
be loaded into the buffer registers to  
resynchronize the software with the DCI  
module.  
When a receive overflow occurs for a specific buffer  
location, the old contents of the buffer are overwritten.  
Note:  
The receive status bits only indicate status  
for buffer locations that are used by the  
module. If the buffer length is set to less  
than four words, for example, the unused  
buffer locations do not affect the transmit  
status bits.  
2010 Microchip Technology Inc.  
DS70138G-page 127  
 
 
 
 
dsPIC30F3014/4013  
18.3.18 SLOT STATUS BITS  
18.4 DCI Module Interrupts  
The SLOT<3:0> status bits in the DCISTAT SFR indi-  
cate the current active time slot. These bits correspond  
to the value of the Frame Sync generator counter. The  
user may poll these status bits in software when a DCI  
interrupt occurs to determine what time slot data was  
last received and which time slot data should be loaded  
into the TXBUF registers.  
The frequency of DCI module interrupts is dependent  
on the BLEN<1:0> control bits in the DCICON2 SFR.  
An interrupt to the CPU is generated each time the set  
buffer length has been reached and a shadow register  
transfer takes place. A shadow register transfer is  
defined as the time when the previously written TXBUF  
values are transferred to the transmit shadow registers  
and new received values in the receive shadow  
registers are transferred into the RXBUF registers.  
18.3.19 CSDO MODE BIT  
The CSDOM control bit controls the behavior of the  
CSDO pin during unused transmit slots. A given trans-  
mit time slot is unused if it’s corresponding TSEx bit in  
the TSCON SFR is cleared.  
18.5 DCI Module Operation During CPU  
Sleep and Idle Modes  
18.5.1  
DCI MODULE OPERATION DURING  
CPU SLEEP MODE  
If the CSDOM bit is cleared (default), the CSDO pin is  
low during unused time slot periods. This mode is used  
when there are only two devices attached to the serial  
bus.  
The DCI module has the ability to operate while in  
Sleep mode and wake the CPU when the CSCK signal  
is supplied by an external device (CSCKD = 1). The  
DCI module generates an asynchronous interrupt  
when a DCI buffer transfer has completed and the CPU  
is in Sleep mode.  
If the CSDOM bit is set, the CSDO pin is tri-stated dur-  
ing unused time slot periods. This mode allows multiple  
devices to share the same CSDO line in a multichannel  
application. Each device on the CSDO line is config-  
ured so that it only transmits data during specific time  
slots. No two devices transmit data during the same  
time slot.  
18.5.2  
DCI MODULE OPERATION DURING  
CPU IDLE MODE  
If the DCISIDL control bit is cleared (default), the mod-  
ule continues to operate normally even in Idle mode. If  
the DCISIDL bit is set, the module halts when Idle  
mode is asserted.  
18.3.20 DIGITAL LOOPBACK MODE  
Digital Loopback mode is enabled by setting the  
DLOOP control bit in the DCICON1 SFR. When the  
DLOOP bit is set, the module internally connects the  
CSDO signal to CSDI. The actual data input on the  
CSDI I/O pin is ignored in Digital Loopback mode.  
18.6 AC-Link Mode Operation  
The AC-Link protocol is a 256-bit frame with one 16-bit  
data slot, followed by twelve 20-bit data slots. The DCI  
module has two operating modes for the AC-Link pro-  
tocol. These operating modes are selected by the  
COFSM<1:0> control bits in the DCICON1 SFR. The  
first AC-Link mode is called ‘16-bit AC-Link mode’ and  
is selected by setting COFSM<1:0> = 10. The second  
AC-Link mode is called ‘20-bit AC-Link mode’ and is  
selected by setting COFSM<1:0> = 11.  
18.3.21 UNDERFLOW MODE CONTROL BIT  
When an underflow occurs, one of two actions may  
occur depending on the state of the Underflow mode  
(UNFM) control bit in the DCICON1 SFR. If the UNFM  
bit is cleared (default), the module transmits ‘0’s on the  
CSDO pin during the active time slot for the buffer loca-  
tion. In this operating mode, the Codec device attached  
to the DCI module is simply fed digital ‘silence’. If the  
UNFM control bit is set, the module transmits the last  
data written to the buffer location. This operating mode  
permits the user to send continuous data to the Codec  
device without consuming CPU overhead.  
18.6.1  
16-BIT AC-LINK MODE  
In the 16-bit AC-Link mode, data word lengths are  
restricted to 16 bits. Note that this restriction only  
affects the 20-bit data time slots of the AC-Link proto-  
col. For received time slots, the incoming data is simply  
truncated to 16 bits. For outgoing time slots, the 4 LSbs  
of the data word are set to ‘0’ by the module. This trun-  
cation of the time slots limits the A/D and DAC data to  
16 bits but permits proper data alignment in the TXBUF  
and RXBUF registers. Each RXBUF and TXBUF  
register contains one data time slot value.  
DS70138G-page 128  
2010 Microchip Technology Inc.  
 
 
 
 
 
 
 
 
 
dsPIC30F3014/4013  
18.6.2  
20-BIT AC-LINK MODE  
18.7.1  
I2S FRAME AND DATA WORD  
LENGTH SELECTION  
The 20-bit AC-Link mode allows all bits in the data time  
slots to be transmitted and received but does not main-  
tain data alignment in the TXBUF and RXBUF  
registers.  
The WS and COFSG control bits are set to produce the  
period for one half of an I2S data frame. That is, the  
frame length is the total number of CSCK cycles  
required for a left or a right data word transfer.  
The 20-bit AC-Link mode functions similar to the Multi-  
channel mode of the DCI module, except for the duty  
cycle of the Frame Synchronization signal. The AC-  
Link Frame Synchronization signal should remain high  
for 16 CSCK cycles and should be low for the following  
240 cycles.  
The BLEN bits must be set for the desired buffer length.  
Setting BLEN<1:0> = 01 produces a CPU interrupt,  
once per I2S frame.  
18.7.2  
I2S DATA JUSTIFICATION  
The 20-bit mode treats each 256-bit AC-Link frame as  
sixteen, 16-bit time slots. In the 20-bit AC-Link mode,  
the module operates as if COFSG<3:0> = 1111 and  
WS<3:0> = 1111. The data alignment for 20-bit data  
slots is ignored. For example, an entire AC-Link data  
frame can be transmitted and received in a packed  
fashion by setting all bits in the TSCON and RSCON  
SFRs. Since the total available buffer length is 64 bits,  
it would take 4 consecutive interrupts to transfer the  
AC-Link frame. The application software must keep  
track of the current AC-Link frame segment.  
As per the I2S specification, a data word transfer, by  
default, begins one CSCK cycle after a transition of the  
WS signal. A ‘MSb left justified’ option can be selected  
using the DJST control bit in the DCICON1 SFR.  
If DJST = 1, the I2S data transfers are MSb left justified.  
The MSb of the data word is presented on the CSDO  
pin during the same CSCK cycle as the rising or falling  
edge of the COFS signal. The CSDO pin is tri-stated  
after the data word has been sent.  
2
18.7 I S Mode Operation  
The DCI module is configured for I2S mode by writing  
a value of ‘01’ to the COFSM<1:0> control bits in the  
DCICON1 SFR. When operating in the I2S mode, the  
DCI module generates Frame Synchronization signals  
with a 50% duty cycle. Each edge of the Frame  
Synchronization signal marks the boundary of a new  
data word transfer.  
The user must also select the frame length and data  
word size using the COFSG and WS control bits in the  
DCICON2 SFR.  
2010 Microchip Technology Inc.  
DS70138G-page 129  
 
 
 
 
TABLE 18-2: dsPIC30F3014/4013 DCI REGISTER MAP(1)  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4 Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
DCICON1  
DCICON2  
DCICON3  
DCISTAT  
TSCON  
0240  
0242  
0244  
0246  
0248  
024C  
0250  
0252  
0254  
0256  
0258  
025A  
025C  
025E  
DCIEN  
DCISIDL  
DLOOP CSCKD CSCKE COFSD UNFM CSDOM DJST  
COFSM1 COFSM0 0000 0000 0000 0000  
BLEN1  
BLEN0  
COFSG<3:0>  
BCG<11:0>  
WS<3:0>  
0000 0000 0000 0000  
0000 0000 0000 0000  
SLOT3  
TSE11  
SLOT2  
TSE10  
RSE10  
SLOT1 SLOT0  
ROV RFUL  
TUNF  
TSE1  
RSE1  
TMPTY 0000 0000 0000 0000  
TSE15 TSE14  
RSE15 RSE14  
TSE13  
RSE13  
TSE12  
TSE9  
RSE9  
TSE8  
RSE8  
TSE7  
RSE7  
TSE6  
RSE6  
TSE5 TSE4 TSE3 TSE2  
RSE5 RSE4 RSE3 RSE2  
TSE0  
RSE0  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
RSCON  
RSE12 RSE11  
RXBUF0  
RXBUF1  
RXBUF2  
RXBUF3  
TXBUF0  
TXBUF1  
TXBUF2  
TXBUF3  
Receive Buffer 0 Data Register  
Receive Buffer 1 Data Register  
Receive Buffer 2 Data Register  
Receive Buffer 3 Data Register  
Transmit Buffer 0 Data Register  
Transmit Buffer 1 Data Register  
Transmit Buffer 2 Data Register  
Transmit Buffer 3 Data Register  
Legend:  
Note 1:  
— = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
 
dsPIC30F3014/4013  
The A/D module has six 16-bit registers:  
19.0 12-BIT ANALOG-TO-DIGITAL  
CONVERTER (ADC) MODULE  
• A/D Control Register 1 (ADCON1)  
• A/D Control Register 2 (ADCON2)  
• A/D Control Register 3 (ADCON3)  
• A/D Input Select Register (ADCHS)  
• A/D Port Configuration Register (ADPCFG)  
• A/D Input Scan Selection Register (ADCSSL)  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
The ADCON1, ADCON2 and ADCON3 registers  
control the operation of the A/D module. The ADCHS  
register selects the input channels to be converted. The  
ADPCFG register configures the port pins as analog  
inputs or as digital I/O. The ADCSSL register selects  
inputs for scanning.  
The 12-bit Analog-to-Digital Converter (ADC) allows  
conversion of an analog input signal to a 12-bit digital  
number. This module is based on a Successive  
Approximation Register (SAR) architecture and pro-  
vides a maximum sampling rate of 200 ksps. The A/D  
module has up to 16 analog inputs which are multi-  
plexed into a sample and hold amplifier. The output of  
the sample and hold is the input into the converter  
which generates the result. The analog reference volt-  
age is software selectable to either the device supply  
voltage (AVDD/AVSS) or the voltage level on the  
(VREF+/VREF-) pin. The A/D converter has a unique  
feature of being able to operate while the device is in  
Sleep mode with RC oscillator selection.  
Note:  
The SSRC<2:0>, ASAM, SMPI<3:0>,  
BUFM and ALTS bits, as well as the  
ADCON3 and ADCSSL registers, must  
not be written to while ADON = 1. This  
would lead to indeterminate results.  
The block diagram of the 12-bit A/D module is shown in  
Figure 19-1.  
FIGURE 19-1:  
12-BIT A/D FUNCTIONAL BLOCK DIAGRAM  
AVDD  
AVSS  
VREF+  
VREF-  
Comparator  
0000  
AN0  
DAC  
0001  
0010  
0011  
AN1  
AN2  
AN3  
12-Bit SAR  
Conversion Logic  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
AN4  
AN5  
AN6  
AN7  
16-Word, 12-Bit  
Dual Port  
RAM  
Sample/Sequence  
Control  
Sample  
AN8  
AN9  
Input  
Switches  
AN10  
AN11  
AN12  
Input MUX  
Control  
CH0  
VREF-  
AN1  
S/H  
Note:  
The ADCHS, ADPCFG and ADCSSL registers allow the application to configure AN13-AN15 as analog input  
pins. Since these pins are not physically present on the device, conversion results from these pins will read ‘0’.  
2010 Microchip Technology Inc.  
DS70138G-page 131  
 
 
 
 
 
 
 
 
 
 
 
dsPIC30F3014/4013  
19.1 A/D Result Buffer  
19.3 Selecting the Conversion Sequence  
The module contains a 16-word, dual port read-only  
buffer, called ADCBUF0...ADCBUFF, to buffer the A/D  
results. The RAM is 12 bits wide but the data obtained  
is represented in one of four different 16-bit data for-  
mats. The contents of the sixteen A/D Conversion  
Result Buffer registers, ADCBUF0 through ADCBUFF,  
cannot be written by user software.  
Several groups of control bits select the sequence in  
which the A/D connects inputs to the sample/hold  
channel, converts a channel, writes the buffer memory  
and generates interrupts.  
The sequence is controlled by the sampling clocks.  
The SMPI bits select the number of acquisition/  
conversion sequences that would be performed before  
an interrupt occurs. This can vary from 1 sample per  
interrupt to 16 samples per interrupt.  
19.2 Conversion Operation  
After the A/D module has been configured, the sample  
acquisition is started by setting the SAMP bit. Various  
sources, such as a programmable bit, timer time-outs  
and external events, terminate acquisition and start a  
conversion. When the A/D conversion is complete, the  
result is loaded into ADCBUF0...ADCBUFF, and the  
DONE bit and the A/D Interrupt Flag, ADIF, are set after  
the number of samples specified by the SMPI bit. The  
ADC module can be configured for different interrupt  
rates as described in Section 19.3 “Selecting the  
Conversion Sequence”.  
The BUFM bit splits the 16-word results buffer into two  
8-word groups. Writing to the 8-word buffers is  
alternated on each interrupt event.  
Use of the BUFM bit depends on how much time is  
available for moving the buffers after the interrupt.  
If the processor can quickly unload a full buffer within  
the time it takes to acquire and convert one channel,  
the BUFM bit can be ‘0’ and up to 16 conversions (cor-  
responding to the 16 input channels) may be done per  
interrupt. The processor has one acquisition and  
conversion time to move the sixteen conversions.  
The following steps should be followed for doing an  
A/D conversion:  
If the processor cannot unload the buffer within the  
acquisition and conversion time, the BUFM bit should be  
1’. For example, if SMPI<3:0> (ADCON2<5:2>) = 0111,  
then eight conversions are loaded into 1/2 of the buffer,  
following which an interrupt occurs. The next eight con-  
versions are loaded into the other 1/2 of the buffer. The  
processor has the entire time between interrupts to  
move the eight conversions.  
1. Configure the A/D module:  
• Configure analog pins, voltage reference and  
digital I/O  
• Select A/D input channels  
• Select A/D conversion clock  
• Select A/D conversion trigger  
• Turn on A/D module  
The ALTS bit can be used to alternate the inputs  
selected during the sampling sequence. The input  
multiplexer has two sets of sample inputs: MUX A and  
MUX B. If the ALTS bit is ‘0’, only the MUX A inputs are  
selected for sampling. If the ALTS bit is ‘1’ and  
SMPI<3:0> = 0000 on the first sample/convert  
sequence, the MUX A inputs are selected and on the  
next acquire/convert sequence, the MUX B inputs are  
selected.  
2. Configure A/D interrupt (if required):  
• Clear ADIF bit  
• Select A/D interrupt priority  
• Set ADIE bit (for ISR processing)  
3. Start sampling  
4. Wait the required acquisition time  
5. Trigger acquisition end, start conversion:  
6. Wait for A/D conversion to complete, by either:  
• Waiting for the A/D interrupt, or  
• Waiting for the DONE bit to get set.  
7. Read A/D result buffer, clear ADIF if required  
The CSCNA bit (ADCON2<10>) allows the S/H input to  
be sequentially scanned across a selected number of  
analog inputs for the MUX A group. The inputs are  
selected by the ADCSSL register. If a particular bit in  
the ADCSSL register is ‘1’, the corresponding input is  
selected. The inputs are always scanned from lower to  
higher numbered inputs, starting after each interrupt. If  
the number of inputs selected is greater than the  
number of samples taken per interrupt, the higher  
numbered inputs are unused.  
Note:  
The ADCHS, ADPCFG and ADCSSL reg-  
isters allow the application to configure  
AN13-AN15 as analog input pins. Since  
these pins are not physically present on  
the device, conversion results from these  
pins read ‘0’.  
DS70138G-page 132  
2010 Microchip Technology Inc.  
 
 
 
 
dsPIC30F3014/4013  
The internal RC oscillator is selected by setting the  
ADRC bit.  
19.4 Programming the Start of  
Conversion Trigger  
For correct ADC conversions, the ADC conversion  
clock (TAD) must be selected to ensure a minimum TAD  
time of 334 nsec (for VDD = 5V). Refer to Section 23.0  
“Electrical Characteristics” for minimum TAD under  
other operating conditions.  
The conversion trigger terminates acquisition and  
starts the requested conversions.  
The SSRC<2:0> bits select the source of the conver-  
sion trigger. The SSRC bits provide for up to 4 alternate  
sources of conversion trigger.  
Example 19-1 shows a sample calculation for the  
ADCS<5:0> bits, assuming a device operating speed  
of 30 MIPS.  
When SSRC<2:0> = 000, the conversion trigger is  
under software control. Clearing the SAMP bit causes  
the conversion trigger.  
EXAMPLE 19-1:  
ADC CONVERSION  
CLOCK AND SAMPLING  
RATE CALCULATION  
When SSRC<2:0> = 111 (Auto-Convert mode), the  
conversion trigger is under A/D clock control. The  
SAMC bits select the number of A/D clocks between  
the start of acquisition and the start of conversion. This  
provides the fastest conversion rates on multiple  
channels. The SAMC bits must always be at least one  
clock cycle.  
Minimum TAD = 334 nsec  
TCY = 33.33 nsec (30 MIPS)  
TAD  
TCY  
ADCS<5:0> = 2  
– 1  
Other trigger sources can come from timer modules or  
external interrupts.  
334 nsec  
33.33 nsec  
= 2 •  
= 19  
– 1  
19.5 Aborting a Conversion  
Therefore,  
Clearing the ADON bit during a conversion aborts the  
current conversion and stops the sampling sequencing  
until the next sampling trigger. The ADCBUF is not  
updated with the partially completed A/D conversion  
sample. That is, the ADCBUF will continue to contain  
the value of the last completed conversion (or the last  
value written to the ADCBUF register).  
Set ADCS<5:0> = 19  
TCY  
Actual TAD =  
(ADCS<5:0> + 1)  
2
33.33 nsec  
2
=
(19 + 1)  
= 334 nsec  
If clearing of the ADON bit coincides with an auto-start,  
the clearing has a higher priority and a new conversion  
does not start.  
If SSRC<2:0> = 111and SAMC<4:0> = 00001  
Since,  
Sampling Time = Acquisition Time + Conversion Time  
= 1 TAD + 14 TAD  
19.6 Selecting the ADC Conversion  
Clock  
= 15 x 334 nsec  
The ADC conversion requires 14 TAD. The source of  
the ADC conversion clock is software selected, using a  
6-bit counter. There are 64 possible options for TAD.  
Therefore,  
1
Sampling Rate =  
(15 x 334 nsec)  
= ~200 kHz  
EQUATION 19-1: ADC CONVERSION  
CLOCK  
TAD = TCY * (0.5*(ADCS<5:0> + 1))  
2010 Microchip Technology Inc.  
DS70138G-page 133  
 
 
 
 
 
 
dsPIC30F3014/4013  
19.7  
ADC Speeds  
The dsPIC30F 12-bit ADC specifications permit a  
maximum of 200 ksps sampling rate. The table below  
summarizes the conversion speeds for the dsPIC30F  
12-bit ADC and the required operating conditions.  
TABLE 19-1: 12-BIT ADC EXTENDED CONVERSION RATES  
dsPIC30F 12-Bit ADC Conversion Rates  
TAD  
Sampling  
Speed  
Rs Max  
VDD  
Temperature  
Channels Configuration  
Minimum Time Min  
Up to 200  
ksps(1)  
334 ns  
1 TAD  
2.5 k  
4.5V to -40°C to +85°C  
5.5V  
VREF-VREF+  
CHX  
S/H  
ANx  
ADC  
Up to 100  
ksps  
668 ns  
1 TAD  
2.5 k  
3.0V to -40°C to +125°C  
5.5V  
VREF-VREF+  
or  
or  
AVSS AVDD  
CHX  
S/H  
ANx  
ADC  
ANx or VREF-  
Note 1: External VREF- and VREF+ pins must be used for correct operation. See Figure 19-2 for recommended  
circuit.  
DS70138G-page 134  
2010 Microchip Technology Inc.  
 
dsPIC30F3014/4013  
Figure 19-2 depicts the recommended circuit for the  
conversion rates above 200 ksps. The dsPIC30F3014  
is shown as an example.  
FIGURE 19-2:  
ADC VOLTAGE REFERENCE SCHEMATIC  
See Note 1  
VDD  
VDD  
VDD  
33  
1
32  
VSS 31  
VSS 30  
2
C8  
1 F  
C7  
0.1 F  
C6  
0.01 F  
3
4
VDD  
5
VDD  
VDD  
29  
28  
dsPIC30F3014  
6 VSS  
VDD  
7
8
9
27  
26  
VDD  
VDD  
AVDD  
AVDD  
AVDD  
25  
24  
23  
10  
11  
C5  
1 F  
C4  
0.1 F  
C3  
0.01 F  
VDD  
R1  
10  
R2  
10  
VDD  
C2  
0.1 F  
C1  
0.01 F  
Note 1: Ensure adequate bypass capacitors are provided on each VDD pin.  
The configuration procedures below give the required  
setup values for the conversion speeds above  
100 ksps.  
• Configure the ADC clock period to be:  
1
= 334 ns  
(14 + 1) x 200,000  
19.7.1  
200 ksps CONFIGURATION  
GUIDELINE  
by writing to the ADCS<5:0> control bits in the  
ADCON3 register.  
• Configure the sampling time to be 1 TAD by  
writing: SAMC<4:0> = 00001.  
The following configuration items are required to  
achieve a 200 ksps conversion rate.  
The following figure shows the timing diagram of the  
ADC running at 200 ksps. The TAD selection in conjunc-  
tion with the guidelines described above allows a con-  
version speed of 200 ksps. See Example 19-1 for code  
example.  
• Comply with conditions provided in Table 19-2.  
• Connect external VREF+ and VREF- pins following  
the recommended circuit shown in Figure 19-2.  
• Set SSRC<2.0> = 111in the ADCON1 register to  
enable the auto-convert option.  
• Enable automatic sampling by setting the ASAM  
control bit in the ADCON1 register.  
• Write the SMPI<3.0> control bits in the ADCON2  
register for the desired number of conversions  
between interrupts.  
2010 Microchip Technology Inc.  
DS70138G-page 135  
 
dsPIC30F3014/4013  
FIGURE 19-3:  
CONVERTING 1 CHANNEL AT 200 ksps, AUTO-SAMPLE START, 1 TAD  
SAMPLING TIME  
TSAMP  
= 1 TAD  
TSAMP  
= 1 TAD  
ADCLK  
TCONV  
TCONV  
= 14 TAD  
= 14 TAD  
SAMP  
DONE  
ADCBUF0  
ADCBUF1  
Instruction Execution BSET ADCON1, ASAM  
affect the time required to charge the capacitor, CHOLD.  
The combined impedance of the analog sources must  
therefore be small enough to fully charge the holding  
capacitor within the chosen sample time. To minimize  
the effects of pin leakage currents on the accuracy of  
the A/D converter, the maximum recommended source  
impedance, RS, is 2.5 k. After the analog input chan-  
nel is selected (changed), this sampling function must  
be completed prior to starting the conversion. The inter-  
nal holding capacitor will be in a discharged state prior  
to each sample operation.  
19.8 A/D Acquisition Requirements  
The analog input model of the 12-bit A/D converter is  
shown in Figure 19-4. The total sampling time for the  
A/D is a function of the internal amplifier settling time  
and the holding capacitor charge time.  
For the A/D converter to meet its specified accuracy,  
the Charge Holding Capacitor (CHOLD) must be  
allowed to fully charge to the voltage level on the  
analog input pin. The Source Impedance (RS), the  
Interconnect Impedance (RIC) and the Internal Sam-  
pling Switch (RSS) Impedance combine to directly  
FIGURE 19-4:  
12-BIT A/D CONVERTER ANALOG INPUT MODEL  
VDD  
RIC 250  
Sampling  
RSS 3 k  
Switch  
VT = 0.6V  
ANx  
RSS  
Rs  
CHOLD  
CPIN  
= DAC capacitance  
VA  
ILEAKAGE  
500 nA  
VT = 0.6V  
= 18 pF  
VSS  
Legend: CPIN  
= Input Capacitance  
= Threshold Voltage  
VT  
ILEAKAGE = Leakage Current at the pin due to  
various junctions  
RIC  
= Interconnect Resistance  
RSS  
= Sampling Switch Resistance  
= Sample/Hold Capacitance (from DAC)  
CHOLD  
Note: CPIN value depends on device package and is not tested. Effect of CPIN negligible if Rs 2.5 k.  
DS70138G-page 136  
2010 Microchip Technology Inc.  
 
 
dsPIC30F3014/4013  
If the A/D interrupt is enabled, the device wakes up  
from Sleep. If the A/D interrupt is not enabled, the A/D  
module is then turned off, although the ADON bit  
remains set.  
19.9 Module Power-Down Modes  
The module has two internal power modes.  
When the ADON bit is ‘1’, the module is in Active mode;  
it is fully powered and functional.  
19.10.2 A/D OPERATION DURING CPU IDLE  
MODE  
When ADON is ‘0’, the module is in Off mode. The  
digital and analog portions of the circuit are disabled for  
maximum current savings.  
The ADSIDL bit determines if the module stops or  
continues on Idle. If ADSIDL = 0, the module continues  
operation on assertion of Idle mode. If ADSIDL = 1, the  
module stops on Idle.  
In order to return to the Active mode from Off mode, the  
user must wait for the ADC circuitry to stabilize. The  
time required to stabilize is specified in Section 23.0  
“Electrical Characteristics”.  
19.11 Effects of a Reset  
19.10 A/D Operation During CPU Sleep  
and Idle Modes  
A device Reset forces all registers to their Reset state.  
This forces the A/D module to be turned off, and any  
conversion and sampling sequence is aborted. The val-  
ues that are in the ADCBUF registers are not modified.  
The A/D Result register contains unknown data after a  
Power-on Reset.  
19.10.1 A/D OPERATION DURING CPU  
SLEEP MODE  
When the device enters Sleep mode, all clock sources  
to the module are shut down and stay at logic ‘0’.  
19.12 Output Formats  
If Sleep occurs in the middle of a conversion, the  
conversion is aborted. The converter does not continue  
with a partially completed conversion on exit from  
Sleep mode.  
The A/D result is 12 bits wide. The data buffer RAM is  
also 12 bits wide. The 12-bit data can be read in one  
of four different formats. The FORM<1:0> bits select  
the format. Each of the output formats translates to a  
16-bit result on the data bus. Write data is always in  
right-justified (integer) format.  
Register contents are not affected by the device  
entering or leaving Sleep mode.  
The A/D module can operate during Sleep mode if the  
A/D clock source is set to RC (ADRC = 1). When the  
RC clock source is selected, the A/D module waits one  
instruction cycle before starting the conversion. This  
allows the SLEEP instruction to be executed which  
eliminates all digital switching noise from the conver-  
sion. (When the conversion sequence is complete, the  
DONE bit is set.)  
FIGURE 19-5:  
RAM Contents:  
Read to Bus:  
A/D OUTPUT DATA FORMATS  
d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
Signed Fractional  
d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
0
0
0
0
0
0
0
0
Fractional  
Signed Integer  
Integer  
d11 d11 d11 d11 d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
0
0
0
0
d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
2010 Microchip Technology Inc.  
DS70138G-page 137  
 
 
 
 
 
dsPIC30F3014/4013  
19.13 Configuring Analog Port Pins  
19.14 Connection Considerations  
The use of the ADPCFG and TRIS registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their correspond-  
ing TRIS bit set (input). If the TRIS bit is cleared  
(output), the digital output level (VOH or VOL) is  
converted.  
The analog inputs have diodes to VDD and VSS as ESD  
protection. This requires that the analog input be  
between VDD and VSS. If the input voltage exceeds this  
range by greater than 0.3V (either direction), one of the  
diodes becomes forward biased and it may damage the  
device if the input current specification is exceeded.  
The A/D operation is independent of the state of the  
CH0SA<3:0>/CH0SB<3:0> bits and the TRIS bits.  
An external RC filter is sometimes added for anti-  
aliasing of the input signal. The R component should be  
selected to ensure that the sampling time requirements  
are satisfied. Any external components connected (via  
high-impedance) to an analog input pin (capacitor,  
Zener diode, etc.) should have very little leakage  
current at the pin.  
When reading the PORT register, all pins configured as  
analog input channels are read as cleared.  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin that is defined as  
a digital input (including the ANx pins) may cause the  
input buffer to consume current that exceeds the  
device specifications.  
DS70138G-page 138  
2010 Microchip Technology Inc.  
 
 
TABLE 19-2: A/D CONVERTER REGISTER MAP(1)  
SFR  
Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
ADCBUF0 0280  
ADCBUF1 0282  
ADCBUF2 0284  
ADCBUF3 0286  
ADCBUF4 0288  
ADCBUF5 028A  
ADCBUF6 028C  
ADCBUF7 028E  
ADCBUF8 0290  
ADCBUF9 0292  
ADCBUFA 0294  
ADCBUFB 0296  
ADCBUFC 0298  
ADCBUFD 029A  
ADCBUFE 029C  
ADCBUFF 029E  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
SSRC<2:0>  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
ADCON1  
ADCON2  
ADCON3  
ADCHS  
02A0  
02A2  
02A4  
02A6  
ADON  
ADSIDL  
CSCNA  
FORM<1:0>  
ASAM SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
BUFS  
ADRC  
SMPI<3:0>  
SAMC<4:0>  
ADCS<5:0>  
CH0SA<3:0>  
CH0NB  
CH0SB<3:0>  
CH0NA  
ADPCFG  
ADCSSL  
02A8 PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10 PCFG9 PCFG8 PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0  
02AA CSSL15 CSSL14 CSSL13 CSSL12 CSSL11 CSSL10 CSSL9 CSSL8 CSSL7 CSSL6 CSSL5 CSSL4 CSSL3 CSSL2 CSSL1  
CSSL0  
Legend:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Note 1:  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
 
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 140  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
20.1 Oscillator System Overview  
20.0 SYSTEM INTEGRATION  
The dsPIC30F oscillator system has the following  
modules and features:  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC Pro-  
• Various external and internal oscillator options as  
clock sources  
• An on-chip PLL to boost internal operating  
frequency  
• A clock switching mechanism between various  
clock sources  
• Programmable clock postscaler for system power  
savings  
grammer’s  
Reference  
Manual”  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and takes fail-safe measures  
(DS70157).  
There are several features intended to maximize  
system reliability, minimize cost through elimination of  
external components, provide power-saving operating  
modes and offer code protection:  
• Clock Control register (OSCCON)  
• Configuration bits for main oscillator selection  
Configuration bits determine the clock source upon  
Power-on Reset (POR) and Brown-out Reset (BOR).  
Thereafter, the clock source can be changed between  
permissible clock sources. The OSCCON register  
controls the clock switching and reflects system clock  
related status bits.  
• Oscillator Selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Programmable Brown-out Reset (BOR)  
• Watchdog Timer (WDT)  
• Low-Voltage Detect  
Table 20-1 provides a summary of the dsPIC30F  
oscillator operating modes. A simplified diagram of the  
oscillator system is shown in Figure 20-1.  
• Power-Saving modes (Sleep and Idle)  
• Code Protection  
• Unit ID Locations  
• In-Circuit Serial Programming (ICSP)  
dsPIC30F devices have a Watchdog Timer which is  
permanently enabled via the Configuration bits or can  
be software controlled. It runs off its own RC oscillator  
for added reliability. There are two timers that offer  
necessary delays on power-up. One is the Oscillator  
Start-up Timer (OST), intended to keep the chip in  
Reset until the crystal oscillator is stable. The other is  
the Power-up Timer (PWRT) which provides a delay on  
power-up only, designed to keep the part in Reset while  
the power supply stabilizes. With these two timers on-  
chip, most applications need no external Reset  
circuitry.  
Sleep mode is designed to offer a very low-current  
Power-Down mode. The user can wake-up from Sleep  
through external Reset, Watchdog Timer wake-up, or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit a wide variety of  
applications. In the Idle mode, the clock sources are  
still active but the CPU is shut off. The RC oscillator  
option saves system cost while the LP crystal option  
saves power.  
2010 Microchip Technology Inc.  
DS70138G-page 141  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dsPIC30F3014/4013  
TABLE 20-1: OSCILLATOR OPERATING MODES  
Oscillator Mode  
Description  
XTL  
400 kHz-4 MHz crystal on OSC1:OSC2  
4 MHz-10 MHz crystal on OSC1:OSC2  
XT  
XT w/PLL 4x  
XT w/PLL 8x  
XT w/PLL 16x  
LP  
4 MHz-10 MHz crystal on OSC1:OSC2, 4x PLL enabled  
4 MHz-10 MHz crystal on OSC1:OSC2, 8x PLL enabled  
4 MHz-7.5 MHz crystal on OSC1:OSC2, 16x PLL enabled(1)  
32 kHz crystal on SOSCO:SOSCI(2)  
HS  
10 MHz-25 MHz crystal  
HS/2 w/PLL 4x  
HS/2 w/PLL 8x  
HS/2 w/PLL 16x  
HS/3 w/PLL 4x  
HS/3 w/PLL 8x  
HS/3 w/PLL 16x  
EC  
10 MHz-20 MHz crystal, divide by 2, 4x PLL enabled  
10 MHz-20 MHz crystal, divide by 2, 8x PLL enabled  
10 MHz-15 MHz crystal, divide by 2, 16x PLL enabled  
12 MHz-25 MHz crystal, divide by 3, 4x PLL enabled  
12 MHz-25 MHz crystal, divide by 3, 8x PLL enabled  
12 MHz-22.5 MHz crystal, divide by 3, 16x PLL enabled  
External clock input (0-40 MHz)  
ECIO  
External clock input (0-40 MHz), OSC2 pin is I/O  
External clock input (4-10 MHz), OSC2 pin is I/O, 4x PLL enabled(1)  
External clock input (4-10 MHz), OSC2 pin is I/O, 8x PLL enabled(1)  
External clock input (4-7.5 MHz), OSC2 pin is I/O, 16x PLL enabled(1)  
External RC oscillator, OSC2 pin is FOSC/4 output(3)  
External RC oscillator, OSC2 pin is I/O(3)  
EC w/PLL 4x  
EC w/PLL 8x  
EC w/PLL 16x  
ERC  
ERCIO  
FRC  
7.37 MHz internal RC oscillator  
FRC w/PLL 4x  
FRC w/PLL 8x  
FRC w/PLL 16x  
LPRC  
7.37 MHz Internal RC oscillator, 4x PLL enabled  
7.37 MHz Internal RC oscillator, 8x PLL enabled  
7.37 MHz Internal RC oscillator, 16x PLL enabled  
512 kHz internal RC oscillator  
Note 1: dsPIC30F maximum operating frequency of 120 MHz must be met.  
2: LP oscillator can be conveniently shared as system clock, as well as Real-Time Clock for Timer1.  
3: Requires external R and C. Frequency operation up to 4 MHz.  
DS70138G-page 142  
2010 Microchip Technology Inc.  
 
 
dsPIC30F3014/4013  
FIGURE 20-1:  
OSCILLATOR SYSTEM BLOCK DIAGRAM  
Oscillator Configuration bits  
PWRSAVInstruction  
Wake-up Request  
FPLL  
OSC1  
OSC2  
Primary  
PLL  
Oscillator  
x4, x8, x16  
PLL  
Lock  
COSC<2:0>  
NOSC<2:0>  
OSWEN  
Primary Osc  
Primary  
Oscillator  
Stability Detector  
Oscillator  
Start-up  
Timer  
POR Done  
Clock  
Programmable  
Switching  
and Control  
Block  
Secondary Osc  
Clock Divider  
System  
Clock  
SOSCO  
SOSCI  
Secondary  
Oscillator  
Stability Detector  
32 kHz LP  
Oscillator  
2
POST<1:0>  
4
TUN<3:0>  
Internal Fast RC  
Oscillator (FRC)  
LPRC  
Internal  
Low-Power RC  
Oscillator (LPRC)  
CF  
Fail-Safe Clock  
Monitor (FSCM)  
FCKSM<1:0>  
2
Oscillator Trap  
To Timer1  
2010 Microchip Technology Inc.  
DS70138G-page 143  
 
dsPIC30F3014/4013  
20.2.2  
OSCILLATOR START-UP TIMER  
(OST)  
20.2 Oscillator Configurations  
20.2.1  
INITIAL CLOCK SOURCE  
SELECTION  
In order to ensure that a crystal oscillator (or ceramic  
resonator) has started and stabilized, an Oscillator  
Start-up Timer is included. It is a simple 10-bit counter  
that counts 1024 TOSC cycles before releasing the  
oscillator clock to the rest of the system. The time-out  
period is designated as TOST. The TOST time is involved  
every time the oscillator has to restart (i.e., on POR,  
BOR and wake-up from Sleep). The Oscillator Start-up  
Timer is applied to the LP, XT, XTL and HS Oscillator  
modes (upon wake-up from Sleep, POR and BOR) for  
the primary oscillator.  
While coming out of Power-on Reset or Brown-out  
Reset, the device selects its clock source based on:  
a) FOS<2:0> Configuration bits that select one of  
four oscillator groups,  
b) and FPR<4:0> Configuration bits that select one  
of 13 oscillator choices within the primary group.  
The selection is as shown in Table 20-2.  
TABLE 20-2: CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator  
OSC2  
Function  
Oscillator Mode  
FOS<2:0>  
FPR<4:0>  
Source  
ECIO w/PLL 4x  
ECIO w/PLL 8x  
ECIO w/PLL 16x  
FRC w/PLL 4x  
FRC w/PLL 8x  
FRC w/PLL 16x  
XT w/PLL 4x  
XT w/PLL 8x  
XT w/PLL 16x  
HS2 w/PLL 4x  
HS2 w/PLL 8x  
HS2 w/PLL 16x  
HS3 w/PLL 4x  
HS3 w/PLL 8x  
HS3 w/PLL 16x  
ECIO  
PLL  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
X
X
X
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
1
0
X
X
X
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
1
1
0
0
0
0
0
X
X
X
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
0
1
1
0
0
0
X
X
X
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
0
0
1
1
0
0
X
X
X
I/O  
I/O  
PLL  
PLL  
I/O  
PLL  
I/O  
PLL  
I/O  
PLL  
I/O  
PLL  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
I/O  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
External  
External  
External  
External  
External  
External  
External  
Secondary  
Internal FRC  
Internal LPRC  
XT  
OSC2  
OSC2  
CLKO  
CLKO  
I/O  
HS  
EXT  
ERC  
ERCIO  
XTL  
OSC2  
(Notes 1, 2)  
(Notes 1, 2)  
(Notes 1, 2)  
LP  
FRC  
LPRC  
Note 1: The OSC2 pin is either usable as a general purpose I/O pin functionality only depending on the Primary  
Oscillator mode selection (FPR<4:0>).  
2: Note that OSC1 pin cannot be used as an I/O pin even if the secondary oscillator or an internal clock  
source is selected at all times.  
DS70138G-page 144  
2010 Microchip Technology Inc.  
 
 
 
 
dsPIC30F3014/4013  
If OSCCON<14:12> are set to ‘111’ and FPR<4:0> are  
set to ‘00101’, ‘00110’ or ‘00111’, then a PLL  
multiplier of 4, 8 or 16 (respectively) is applied.  
20.2.3  
LP OSCILLATOR CONTROL  
Enabling the LP oscillator is controlled with two  
elements:  
Note:  
When a 16x PLL is used, the FRC  
• The current oscillator group bits, COSC<2:0>.  
• The LPOSCEN bit (OSCCON register).  
frequency must not be tuned to  
frequency greater than 7.5 MHz.  
a
The LP oscillator is on (even during Sleep mode) if  
LPOSCEN = 1. The LP oscillator is the device clock if:  
TABLE 20-4: FRC TUNING  
TUN<3:0>  
• COSC<2:0> = 00(LP selected as main osc.) and  
• LPOSCEN = 1  
FRC Frequency  
Bits  
Keeping the LP oscillator on at all times allows for a fast  
switch to the 32 kHz system clock for lower power  
operation. Returning to the faster main oscillator still  
requires a start-up time  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
+10.5%  
+9.0%  
+7.5%  
+6.0%  
+4.5%  
+3.0%  
+1.5%  
20.2.4  
PHASE LOCKED LOOP (PLL)  
The PLL multiplies the clock which is generated by the  
primary oscillator. The PLL is selectable to have either  
gains of x4, x8 and x16. Input and output frequency  
ranges are summarized in Table 20-3.  
Center Frequency (oscillator is  
running at calibrated frequency)  
1111  
1110  
1101  
1100  
1011  
1010  
1001  
1000  
-1.5%  
-3.0%  
-4.5%  
-6.0%  
-7.5%  
-9.0%  
-10.5%  
-12.0%  
TABLE 20-3: PLL FREQUENCY RANGE  
PLL  
FIN  
FOUT  
Multiplier  
4 MHz-10 MHz  
4 MHz-10 MHz  
4 MHz-7.5 MHz  
x4  
x8  
16 MHz-40 MHz  
32 MHz-80 MHz  
64 MHz-120 MHz  
x16  
The PLL features a lock output which is asserted when  
the PLL enters a phase locked state. Should the loop  
fall out of lock (e.g., due to noise), the lock signal is  
rescinded. The state of this signal is reflected in the  
read-only LOCK bit in the OSCCON register.  
20.2.6  
LOW-POWER RC OSCILLATOR (LPRC)  
The LPRC oscillator is a component of the Watchdog  
Timer (WDT) and oscillates at a nominal frequency of  
512 kHz. The LPRC oscillator is the clock source for  
the Power-up Timer (PWRT) circuit, WDT and clock  
monitor circuits. It may also be used to provide a low-  
frequency clock source option for applications where  
power consumption is critical and timing accuracy is  
not required.  
20.2.5  
FAST RC OSCILLATOR (FRC)  
The FRC oscillator is a fast (7.37 MHz ±2% nominal)  
internal RC oscillator. This oscillator is intended to pro-  
vide reasonable device operating speeds without the  
use of an external crystal, ceramic resonator, or RC  
network. The FRC oscillator can be used with the PLL  
to obtain higher clock frequencies.  
The LPRC oscillator is always enabled at a Power-on  
Reset because it is the clock source for the PWRT.  
After the PWRT expires, the LPRC oscillator remains  
on if one of the following is TRUE:  
The dsPIC30F operates from the FRC oscillator when-  
ever the current oscillator selection control bits in the  
OSCCON register (OSCCON<14:12>) are set to ‘001’.  
• The Fail-Safe Clock Monitor is enabled  
• The WDT is enabled  
• The LPRC oscillator is selected as the system  
clock via the COSC<2:0> control bits in the  
OSCCON register  
The  
four-bit  
field  
specified  
by  
TUN<3:0>  
(OSCTUN<3:0>) allows the user to tune the internal  
fast RC oscillator (nominal 7.37 MHz). The user can  
tune the FRC oscillator within a range of +10.5%  
(840 kHz) and -12% (960 kHz) in steps of 1.50%  
around the factory-calibrated setting (see Table 20-4).  
If one of the above conditions is not true, the LPRC  
shuts off after the PWRT expires.  
Note:  
OSCTUN functionality has been provided  
to help customers compensate for  
temperature effects on the FRC frequency  
over a wide range of temperatures. The  
tuning step size is an approximation and is  
neither characterized nor tested.  
Note 1: OSC2 pin function is determined by the  
Primary Oscillator mode selection  
(FPR<4:0>).  
2: OSC1 pin cannot be used as an I/O pin  
even if the secondary oscillator or an  
internal clock source is selected at all  
times.  
2010 Microchip Technology Inc.  
DS70138G-page 145  
 
 
 
 
 
 
dsPIC30F3014/4013  
• NOSC<2:0>: Control bits which are written to  
indicate the new oscillator group of choice.  
20.2.7  
FAIL-SAFE CLOCK MONITOR  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue to operate even in the event of an oscillator  
failure. The FSCM function is enabled by appropriately  
programming the FCKSM Configuration bits (clock  
switch and monitor selection bits) in the FOSC Device  
Configuration register. If the FSCM function is enabled,  
the LPRC internal oscillator runs at all times (except  
during Sleep mode) and is not subject to control by the  
SWDTEN bit.  
- On POR and BOR, COSC<2:0> and  
NOSC<2:0> are both loaded with the  
Configuration bit values, FOS<2:0>.  
• LOCK: The LOCK status bit indicates a PLL lock.  
• CF: Read-only status bit indicating if a clock fail  
detect has occurred.  
• OSWEN: Control bit changes from a ‘0’ to a ‘1’  
when a clock transition sequence is initiated.  
Clearing the OSWEN control bit aborts a clock  
transition in progress (used for hang-up  
situations).  
In the event of an oscillator failure, the FSCM  
generates a clock failure trap event and switches the  
system clock over to the FRC oscillator. The user then  
has the option to either attempt to restart the oscillator  
or execute a controlled shutdown. The user may decide  
to treat the trap as a warm Reset by simply loading the  
Reset address into the oscillator fail trap vector. In this  
event, the CF (Clock Fail) status bit (OSCCON<3>) is  
also set whenever a clock failure is recognized.  
If Configuration bits, FCKSM<1:0> = 1x, then the clock  
switching and Fail-Safe Clock Monitor functions are  
disabled. This is the default Configuration bit setting.  
If clock switching is disabled, then the FOS<2:0> and  
FPR<4:0> bits directly control the oscillator selection  
and the COSC<2:0> bits do not control the clock  
selection. However, these bits reflect the clock source  
selection.  
In the event of a clock failure, the WDT is unaffected  
and continues to run on the LPRC clock.  
If the oscillator has a very slow start-up time coming out  
of POR, BOR or Sleep, it is possible that the PWRT  
timer will expire before the oscillator has started. In  
such cases, the FSCM is activated and the FSCM initi-  
ates a clock failure trap, and the COSC<2:0> bits are  
loaded with FRC oscillator selection. This effectively  
shuts off the original oscillator that was trying to start.  
Note:  
The application should not attempt to  
switch to a clock of frequency lower than  
100 kHz when the Fail-Safe Clock Monitor  
is enabled. If such clock switching is  
performed, the device may generate an  
oscillator fail trap and switch to the Fast  
RC oscillator.  
The user may detect this situation and restart the  
oscillator in the clock fail trap ISR.  
20.2.8  
PROTECTION AGAINST  
ACCIDENTAL WRITES TO OSCCON  
Upon a clock failure detection, the FSCM module  
initiates a clock switch to the FRC oscillator as follows:  
A write to the OSCCON register is intentionally made  
difficult because it controls clock switching and clock  
scaling.  
1. The COSC bits (OSCCON<14:12>) are loaded  
with the FRC oscillator selection value.  
2. CF bit is set (OSCCON<3>).  
To write to the OSCCON low byte, the following code  
sequence must be executed without any other  
instructions in between:  
3. OSWEN control bit (OSCCON<0>) is cleared.  
For the purpose of clock switching, the clock sources  
are sectioned into four groups:  
Byte Write 0x46 to OSCCON low  
Byte Write 0x57 to OSCCON low  
• Primary  
Byte write is allowed for one instruction cycle. Write the  
desired value or use bit manipulation instruction.  
• Secondary  
• Internal FRC  
• Internal LPRC  
To write to the OSCCON high byte, the following  
instructions must be executed without any other  
instructions in between:  
The user can switch between these functional groups  
but cannot switch between options within a group. If the  
primary group is selected, then the choice within the  
group is always determined by the FPR<4:0>  
Configuration bits.  
Byte Write0x78to OSCCON high  
Byte Write0x9Ato OSCCON high  
Byte write is allowed for one instruction cycle. Write the  
desired value or use bit manipulation instruction.  
The OSCCON register holds the control and status bits  
related to clock switching.  
• COSC<2:0>: Read-only status bits always reflect  
the current oscillator group in effect.  
DS70138G-page 146  
2010 Microchip Technology Inc.  
 
 
dsPIC30F3014/4013  
20.3 Oscillator Control Registers  
The oscillators are controlled with two SFRs,  
OSCCON and OSCTUN and one Configuration  
register, FOSC.  
Note:  
The description of the OSCCON and  
OSCTUN SFRs, as well as the FOSC  
Configuration register provided in this  
section are applicable only to the  
dsPIC30F3014  
and  
dsPIC30F4013  
devices in the dsPIC30F product family.  
REGISTER 20-1: OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R-y  
R-y  
R-y  
U-0  
R/W-y  
R/W-y  
R/W-y  
bit 8  
COSC<2:0>  
NOSC<2:0>  
bit 15  
R/W-0  
R/W-0  
R-0  
U-0  
R/W-0  
CF  
U-0  
R/W-0  
R/W-0  
POST<1:0>  
LOCK  
LPOSCEN  
OSWEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC<2:0>: Current Oscillator Group Selection bits (read-only)  
111= PLL oscillator; PLL source selected by FPR<4:0> bits  
011= External oscillator; OSC1/OSC2 pins; external oscillator configuration selected by FPR<4:0>  
bits  
010= LPRC internal low-power RC  
001= FRC internal fast RC  
000= LP crystal oscillator; SOSCI/SOSCO pins  
Set to FOS<2:0> values on POR or BOR. Loaded with NOSC<2:0> at the completion of a successful  
clock switch. Set to FRC value when FSCM detects a failure and switches clock to FRC.  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
NOSC<2:0>: New Oscillator Group Selection bits  
111= PLL Oscillator; PLL source selected by FPR<4:0> bits  
011= External oscillator; OSC1/OSC2 pins; external oscillator configuration selected by FPR<4:0>  
bits  
010= LPRC internal low-power RC  
001= FRC internal fast RC  
000= LP crystal oscillator; SOSCI/SOSCO pins  
Set to FOS<2:0> values on POR or BOR.  
bit 7-6  
POST<1:0>: Oscillator Postscaler Selection bits  
11= Oscillator postscaler divides clock by 64  
10= Oscillator postscaler divides clock by 16  
01= Oscillator postscaler divides clock by 4  
00= Oscillator postscaler does not alter clock  
2010 Microchip Technology Inc.  
DS70138G-page 147  
 
 
dsPIC30F3014/4013  
REGISTER 20-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)  
bit 5  
LOCK: PLL Lock Status bit (read-only)  
1= Indicates that PLL is in lock  
0= Indicates that PLL is out of lock (or disabled)  
Reset on POR or BOR. Reset when a valid clock switching sequence is initiated. Set when PLL lock  
is achieved after a PLL start. Reset when lock is lost. Read zero when PLL is not selected as a system  
clock  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CF: Clock Fail Detect bit (read/clearable by application)  
1= FSCM has detected clock failure  
0= FSCM has NOT detected clock failure  
Reset on POR or BOR. Reset when a valid clock switching sequence is initiated. Set when clock fail  
detected  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
LPOSCEN: 32 kHz Secondary (LP) Oscillator Enable bit  
1= Secondary oscillator is enabled  
0= Secondary oscillator is disabled  
Reset on POR or BOR.  
bit 0  
OSWEN: Oscillator Switch Enable bit  
1= Request oscillator switch to selection specified by NOSC<2:0> bits  
0= Oscillator switch is complete  
Reset on POR or BOR. Reset after a successful clock switch. Reset after a redundant clock switch.  
Reset after FSCM switches the oscillator to (Group 1) FRC.  
DS70138G-page 148  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
REGISTER 20-2: OSCTUN: FRC OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TUN<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3-0  
Unimplemented: Read as ‘0’  
TUN<3:0>: TUN Field Lower Two bits  
The four-bit field specified by TUN<3:0> specifies the user tuning capability for the internal fast RC  
oscillator (nominal 7.37 MHz).  
0111= Maximum frequency  
0110=  
0101=  
0100=  
0011=  
0010=  
0001=  
0000= Center frequency, oscillator is running at calibrated frequency  
1111=  
1110=  
1101=  
1100=  
1011=  
1010=  
1001=  
1000= Minimum frequency  
2010 Microchip Technology Inc.  
DS70138G-page 149  
 
dsPIC30F3014/4013  
REGISTER 20-3: FOSC: OSCILLATOR CONFIGURATION REGISTER  
U
U
U
U
U
U
U
U
bit 23  
bit 16  
R/P  
R/P  
U
U
U
R/P  
R/P  
R/P  
R/P  
FCKSM<1:0>  
FOS<2:0>  
bit 15  
bit 8  
bit 0  
U
U
U
R/P  
R/P  
R/P  
R/P  
FPR<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 23-16  
bit 15-14  
Unimplemented: Read as ‘0’  
FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits  
1x= Clock switching is disabled, Fail-Safe Clock Monitor is disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
bit 13-11  
bit 10-8  
Unimplemented: Read as ‘0’  
FOS<2:0>: Oscillator Group Selection on POR bits  
111= PLL oscillator; PLL source selected by FPR<4:0> bits (see Table 20-2)  
011= EXT: External Oscillator; OSC1/OSC2 pins; external oscillator configuration selected by  
FPR<4:0> bits  
010= LPRC: Internal Low-Power RC  
001= FRC: Internal Fast RC  
000= LPOSC: Low-Power Crystal Oscillator; SOSCI/SOSCO pins  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
FPR<4:0>: Oscillator Selection within Primary Group bits (see Table 20-2)  
DS70138G-page 150  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
Different registers are affected in different ways by var-  
ious Reset conditions. Most registers are not affected  
by a WDT wake-up since this is viewed as the resump-  
tion of normal operation. Status bits from the RCON  
register are set or cleared differently in different Reset  
situations, as indicated in Table 20-5. These bits are  
used in software to determine the nature of the Reset.  
20.4 Reset  
The dsPIC30F3014/4013 differentiates between  
various kinds of Reset:  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during Sleep  
A block diagram of the On-Chip Reset Circuit is shown  
in Figure 20-2.  
d) Watchdog Timer (WDT) Reset (during normal  
operation)  
A MCLR noise filter is provided in the MCLR Reset  
path. The filter detects and ignores small pulses.  
e) Programmable Brown-out Reset (BOR)  
f) RESETInstruction  
Internally generated Resets do not drive MCLR pin low.  
g) Reset caused by trap lockup (TRAPR)  
h) Reset caused by illegal opcode or by using an  
uninitialized W register as an Address Pointer  
(IOPUWR)  
FIGURE 20-2:  
RESET SYSTEM BLOCK DIAGRAM  
RESET  
Instruction  
Digital  
Glitch Filter  
MCLR  
Sleep or Idle  
WDT  
Module  
POR  
VDD Rise  
Detect  
S
VDD  
Brown-out  
Reset  
BOR  
BOREN  
Q
R
SYSRST  
Trap Conflict  
Illegal Opcode/  
Uninitialized W Register  
The POR circuit inserts a small delay, TPOR, which is  
nominally 10 s and ensures that the device bias  
circuits are stable. Furthermore, a user-selected  
power-up time-out (TPWRT) is applied. The TPWRT  
parameter is based on device Configuration bits and  
can be 0 ms (no delay), 4 ms, 16 ms, or 64 ms. The  
total delay is at device power-up, TPOR + TPWRT. When  
these delays have expired, SYSRST is negated on the  
next leading edge of the Q1 clock and the PC jumps to  
the Reset vector.  
20.4.1  
POR: POWER-ON RESET  
A power-on event generates an internal POR pulse  
when a VDD rise is detected. The Reset pulse occurs at  
the POR circuit threshold voltage (VPOR) which is nom-  
inally 1.85V. The device supply voltage characteristics  
must meet specified starting voltage and rise rate  
requirements. The POR pulse resets a POR timer and  
places the device in the Reset state. The POR also  
selects the device clock source identified by the  
oscillator configuration fuses.  
The timing for the SYSRST signal is shown in  
Figure 20-3 through Figure 20-5.  
2010 Microchip Technology Inc.  
DS70138G-page 151  
 
 
 
dsPIC30F3014/4013  
FIGURE 20-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TOST  
OST TIME-OUT  
TPWRT  
PWRT TIME-OUT  
INTERNAL Reset  
FIGURE 20-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TOST  
OST TIME-OUT  
TPWRT  
PWRT TIME-OUT  
INTERNAL Reset  
FIGURE 20-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TOST  
OST TIME-OUT  
TPWRT  
PWRT TIME-OUT  
INTERNAL Reset  
DS70138G-page 152  
2010 Microchip Technology Inc.  
 
 
 
dsPIC30F3014/4013  
A BOR generates a Reset pulse, which resets the  
device. The BOR selects the clock source based on the  
device Configuration bit values (FOS<2:0> and  
FPR<4:0>). Furthermore, if an oscillator mode is  
selected, the BOR activates the Oscillator Start-up  
Timer (OST). The system clock is held until OST  
expires. If the PLL is used, then the clock is held until  
the LOCK bit (OSCCON<5>) is ‘1’.  
20.4.1.1  
POR with Long Crystal Start-up Time  
(with FSCM Enabled)  
The oscillator start-up circuitry is not linked to the POR  
circuitry. Some crystal circuits (especially low-  
frequency crystals) have a relatively long start-up time.  
Therefore, one or more of the following conditions is  
possible after the POR timer and the PWRT have  
expired:  
Concurrently, the POR time-out (TPOR) and the PWRT  
time-out (TPWRT) are applied before the internal Reset is  
released. If TPWRT = 0and a crystal oscillator is being  
used, then a nominal delay of TFSCM = 100 s is applied.  
The total delay in this case is (TPOR + TFSCM).  
• The oscillator circuit has not begun to oscillate.  
• The Oscillator Start-up Timer has not expired (if a  
crystal oscillator is used).  
• The PLL has not achieved a LOCK (if PLL is  
used).  
The BOR status bit (RCON<1>) is set to indicate that a  
BOR has occurred. The BOR circuit, if enabled, contin-  
ues to operate while in Sleep or Idle modes and resets  
the device should VDD fall below the BOR threshold  
voltage.  
If the FSCM is enabled and one of the above conditions  
is true, a clock failure trap occurs. The device automat-  
ically switches to the FRC oscillator and the user can  
switch to the desired crystal oscillator in the trap ISR.  
20.4.1.2  
Operating without FSCM and PWRT  
FIGURE 20-6:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
If the FSCM is disabled and the Power-up Timer  
(PWRT) is also disabled, then the device exits rapidly  
from Reset on power-up. If the clock source is FRC,  
LPRC, ERC or EC, it will be active immediately.  
VDD  
If the FSCM is disabled and the system clock has not  
started, the device will be in a frozen state at the Reset  
vector until the system clock starts. From the user’s  
perspective, the device appears to be in Reset until a  
system clock is available.  
D
R
R1  
MCLR  
dsPIC30F  
C
20.4.2  
BOR: PROGRAMMABLE  
BROWN-OUT RESET  
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
The BOR (Brown-out Reset) module is based on an  
internal voltage reference circuit. The main purpose of  
the BOR module is to generate a device Reset when a  
brown-out condition occurs. Brown-out conditions are  
generally caused by glitches on the AC mains (i.e.,  
missing portions of the AC cycle waveform due to bad  
power transmission lines, or voltage sags due to exces-  
sive current draw when a large inductive load is turned  
on).  
2: R should be suitably chosen so as to make  
sure that the voltage drop across R does not  
violate the device’s electrical specifications.  
3: R1 should be suitably chosen so as to limit  
any current flowing into MCLR from external  
capacitor C, in the event of MCLR/VPP pin  
breakdown due to Electrostatic Discharge  
(ESD), or Electrical Overstress (EOS).  
The BOR module allows selection of one of the  
following voltage trip points (see Table 23-11):  
Note:  
Dedicated supervisory devices, such as  
the MCP1XX and MCP8XX, may also be  
used as an external Power-on Reset  
circuit.  
• 2.6V-2.71V  
• 4.1V-4.4V  
• 4.58V-4.73V  
Note:  
The BOR voltage trip points indicated here  
are nominal values provided for design  
guidance only. Refer to the Electrical  
Specifications in the specific device data  
sheet for BOR voltage limit specifications.  
2010 Microchip Technology Inc.  
DS70138G-page 153  
 
 
 
 
dsPIC30F3014/4013  
Table 20-5 shows the Reset conditions for the RCON  
register. Since the control bits within the RCON register  
are R/W, the information in the table means that all the  
bits are negated prior to the action specified in the  
condition column.  
TABLE 20-5: INITIALIZATION CONDITION FOR RCON REGISTER: CASE 1  
Program  
Condition  
TRAPR IOPUWR EXTR SWR WDTO IDLE SLEEP POR BOR  
Counter  
Power-on Reset  
0x000000  
0x000000  
0x000000  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
Brown-out Reset  
MCLR Reset during normal  
operation  
Software Reset during  
normal operation  
0x000000  
0
0
0
1
0
0
0
0
0
MCLR Reset during Sleep  
MCLR Reset during Idle  
WDT Time-out Reset  
0x000000  
0x000000  
0x000000  
PC + 2  
PC + 2(1)  
0x000004  
0x000000  
0x000000  
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
WDT Wake-up  
Interrupt Wake-up from Sleep  
Clock Failure Trap  
Trap Reset  
Illegal Operation Trap  
Legend: u= unchanged, x= unknown, – = unimplemented bit, read as ‘0’  
Note 1: When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector.  
Table 20-6 shows a second example of the bit  
conditions for the RCON register. In this case, it is not  
assumed the user has set/cleared specific bits prior to  
action specified in the condition column.  
TABLE 20-6: INITIALIZATION CONDITION FOR RCON REGISTER: CASE 2  
Program  
Condition  
TRAPR IOPUWR EXTR SWR WDTO IDLE SLEEP POR BOR  
Counter  
Power-on Reset  
0x000000  
0x000000  
0x000000  
0
u
u
0
u
u
0
u
1
0
u
0
0
u
0
0
u
0
0
u
0
1
0
u
1
1
u
Brown-out Reset  
MCLR Reset during normal  
operation  
Software Reset during  
normal operation  
0x000000  
u
u
0
1
0
0
0
u
u
MCLR Reset during Sleep  
MCLR Reset during Idle  
WDT Time-out Reset  
0x000000  
0x000000  
0x000000  
PC + 2  
PC + 2(1)  
0x000004  
0x000000  
0x000000  
u
u
u
u
u
u
1
u
u
u
u
u
u
u
u
1
1
1
0
u
u
u
u
u
u
u
0
u
u
u
u
u
0
0
1
1
u
u
u
u
0
1
0
u
u
u
u
u
1
0
0
1
1
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
WDT Wake-up  
Interrupt Wake-up from Sleep  
Clock Failure Trap  
Trap Reset  
Illegal Operation Reset  
Legend: u= unchanged, x= unknown, – = unimplemented bit, read as ‘0’  
Note 1: When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector.  
DS70138G-page 154  
2010 Microchip Technology Inc.  
 
 
 
 
dsPIC30F3014/4013  
20.5 Watchdog Timer (WDT)  
20.7 Power-Saving Modes  
There are two power-saving states that can be entered  
through the execution of a special instruction, PWRSAV;  
these are Sleep and Idle.  
20.5.1  
WATCHDOG TIMER OPERATION  
The primary function of the Watchdog Timer (WDT) is  
to reset the processor in the event of a software mal-  
function. The WDT is a free-running timer that runs off  
an on-chip RC oscillator, requiring no external compo-  
nent. Therefore, the WDT timer continues to operate  
even if the main processor clock (e.g., the crystal  
oscillator) fails.  
The format of the PWRSAVinstruction is as follows:  
PWRSAV <parameter>, where ‘parameter’ defines  
Idle or Sleep mode.  
20.7.1  
SLEEP MODE  
In Sleep mode, the clock to the CPU and peripherals is  
shut down. If an on-chip oscillator is being used, it is  
shut down.  
20.5.2  
ENABLING AND DISABLING  
THE WDT  
The Watchdog Timer can be “Enabled” or “Disabled”  
only through a Configuration bit (FWDTEN) in the  
Configuration register, FWDT.  
The Fail-Safe Clock Monitor is not functional during  
Sleep since there is no clock to monitor. However, the  
LPRC clock remains active if WDT is operational during  
Sleep.  
Setting FWDTEN = 1enables the Watchdog Timer. The  
enabling is done when programming the device. By  
default, after chip erase, FWDTEN bit = 1. Any device  
programmer capable of programming dsPIC30F  
devices allows programming of this and other  
Configuration bits.  
The brown-out protection circuit and the Low-Voltage  
Detect (LVD) circuit, if enabled, remains functional  
during Sleep.  
The processor wakes up from Sleep if at least one of  
the following conditions has occurred:  
If enabled, the WDT increments until it overflows or  
“times out”. A WDT time-out forces a device Reset  
(except during Sleep). To prevent a WDT time-out, the  
user must clear the Watchdog Timer using a CLRWDT  
instruction.  
• any interrupt that is individually enabled and  
meets the required priority level  
• any Reset (POR, BOR and MCLR)  
• WDT time-out  
If a WDT times out during Sleep, the device wakes up.  
The WDTO bit in the RCON register is cleared to  
indicate a wake-up resulting from a WDT time-out.  
On waking up from Sleep mode, the processor restarts  
the same clock that was active prior to entry into Sleep  
mode. When clock switching is enabled, bits,  
COSC<2:0>, determine the oscillator source to be  
used on wake-up. If clock switch is disabled, then there  
is only one system clock.  
Setting FWDTEN = 0 allows user software to enable/  
disable the Watchdog Timer via the SWDTEN  
(RCON<5>) control bit.  
Note:  
If a POR or BOR occurred, the selection of  
the oscillator is based on the FOS<2:0>  
and FPR<4:0> Configuration bits.  
20.6 Low-Voltage Detect  
The Low-Voltage Detect (LVD) module is used to  
detect when the VDD of the device drops below a  
threshold value, VLVD, which is determined by the  
LVDL<3:0> bits (RCON<11:8>) and is thus user pro-  
grammable. The internal voltage reference circuitry  
requires a nominal amount of time to stabilize, and the  
BGST bit (RCON<13>) indicates when the voltage  
reference has stabilized.  
If the clock source is an oscillator, the clock to the  
device is held off until OST times out (indicating a  
stable oscillator). If PLL is used, the system clock is  
held off until LOCK = 1 (indicating that the PLL is  
stable). In either case, TPOR, TLOCK and TPWRT delays  
are applied.  
If EC, FRC, LPRC or ERC oscillators are used, then a  
delay of TPOR (~ 10 s) is applied. This is the smallest  
delay possible on wake-up from Sleep.  
In some devices, the LVD threshold voltage may be  
applied externally on the LVDIN pin.  
Moreover, if the LP oscillator was active during Sleep  
and LP is the oscillator used on wake-up, then the start-  
up delay is equal to TPOR. PWRT delay and OST timer  
delay are not applied. In order to have the smallest  
possible start-up delay when waking up from Sleep,  
one of these faster wake-up options should be selected  
before entering Sleep.  
The LVD module is enabled by setting the LVDEN bit  
(RCON<12>).  
2010 Microchip Technology Inc.  
DS70138G-page 155  
 
 
 
 
 
 
dsPIC30F3014/4013  
Any interrupt that is individually enabled (using the cor-  
responding IE bit) and meets the prevailing priority level  
can wake-up the processor. The processor processes  
the interrupt and branch to the ISR. The SLEEP status  
bit in the RCON register is set upon wake-up.  
Any interrupt that is individually enabled (using the IE  
bit) and meets the prevailing priority level is able to  
wake up the processor. The processor processes the  
interrupt and branches to the ISR. The IDLE status bit  
in the RCON register is set upon wake-up.  
Any Reset other than POR sets the IDLE status bit. On  
a POR, the IDLE bit is cleared.  
Note:  
In spite of various delays applied (TPOR,  
TLOCK and TPWRT), the crystal oscillator  
(and PLL) may not be active at the end of  
the time-out (e.g., for low-frequency crys-  
tals). In such cases, if FSCM is enabled, the  
device detects this as a clock failure and  
processes the clock failure trap, the FRC  
oscillator is enabled and the user will have  
to re-enable the crystal oscillator. If FSCM  
is not enabled, the device simply suspends  
execution of code until the clock is stable  
and remain in Sleep until the oscillator clock  
has started.  
If Watchdog Timer is enabled, the processor wakes up  
from Idle mode upon WDT time-out. The Idle and  
WDTO status bits are both set.  
Unlike wake-up from Sleep, there are no time delays  
involved in wake-up from Idle.  
20.8 Device Configuration Registers  
The Configuration bits in each device Configuration  
register specify some of the device modes and are  
programmed by a device programmer, or by using the  
In-Circuit Serial Programming™ (ICSP™) feature of  
the device. Each device Configuration register is a  
24-bit register, but only the lower 16 bits of each regis-  
ter are used to hold configuration data. There are five  
device Configuration registers available to the user:  
All Resets wake up the processor from Sleep mode.  
Any Reset, other than POR, sets the Sleep status bit.  
In a POR, the SLEEP bit is cleared.  
If the Watchdog Timer is enabled, the processor wakes  
up from Sleep mode upon WDT time-out. The SLEEP  
and WDTO status bits are both set.  
1. FOSC (0xF80000): Oscillator Configuration  
Register  
20.7.2  
IDLE MODE  
2. FWDT (0xF80002): Watchdog Timer  
Configuration Register  
In Idle mode, the clock to the CPU is shut down while  
peripherals keep running. Unlike Sleep mode, the clock  
source remains active.  
3. FBORPOR (0xF80004): BOR and POR  
Configuration Register  
4. FGS (0xF8000A): General Code Segment  
Configuration Register  
Several peripherals have a control bit in each module  
that allows them to operate during Idle.  
5. FICD (0xF8000C): Debug Configuration  
Register  
The LPRC fail-safe clock remains active if clock failure  
detect is enabled.  
The placement of the Configuration bits is automati-  
cally handled when you select the device in your device  
programmer. The desired state of the Configuration bits  
may be specified in the source code (dependent on the  
language tool used), or through the programming  
interface. After the device has been programmed, the  
application software may read the Configuration bit  
values through the table read instructions. For  
additional information, please refer to the Programming  
Specifications of the device.  
The processor wakes up from Idle if at least one of the  
following conditions has occurred:  
• any interrupt that is individually enabled (IE bit is  
1’) and meets the required priority level  
• any Reset (POR, BOR, MCLR)  
• WDT time-out  
Upon wake-up from Idle mode, the clock is re-applied  
to the CPU and instruction execution begins immedi-  
ately, starting with the instruction following the PWRSAV  
instruction.  
Note:  
If the code protection Configuration fuse  
bits (FGS<GCP> and FGS<GWRP>)  
have been programmed, an erase of the  
entire code-protected device is only  
possible at voltages VDD 4.5V.  
DS70138G-page 156  
2010 Microchip Technology Inc.  
 
 
 
 
 
 
dsPIC30F3014/4013  
20.9 Peripheral Module Disable (PMD)  
Registers  
20.10 In-Circuit Debugger  
When MPLAB® ICD 2 is selected as a debugger, the in-  
circuit debugging functionality is enabled. This function  
allows simple debugging functions when used with  
MPLAB IDE. When the device has this feature enabled,  
some of the resources are not available for general  
use. These resources include the first 80 bytes of data  
RAM and two I/O pins.  
The Peripheral Module Disable (PMD) registers  
provide a method to disable a peripheral module by  
stopping all clock sources supplied to that module.  
When a peripheral is disabled via the appropriate PMD  
control bit, the peripheral is in a minimum power  
consumption state. The control and status registers  
associated with the peripheral are also disabled so  
writes to those registers have no effect and read values  
are invalid.  
One of four pairs of debug I/O pins may be selected by  
the user using configuration options in MPLAB IDE.  
These pin pairs are named EMUD/EMUC, EMUD1/  
EMUC1, EMUD2/EMUC2 and MUD3/EMUC3.  
A peripheral module is only enabled if both the  
associated bit in the PMD register is cleared and the  
peripheral is supported by the specific dsPIC DSC vari-  
ant. If the peripheral is present in the device, it is  
enabled in the PMD register by default.  
In each case, the selected EMUD pin is the Emulation/  
Debug Data line, and the EMUC pin is the Emulation/  
Debug Clock line. These pins interface to the MPLAB  
ICD 2 module available from Microchip. The selected  
pair of debug I/O pins is used by MPLAB ICD 2 to send  
commands and receive responses, as well as to send  
and receive data. To use the in-circuit debugger  
function of the device, the design must implement ICSP  
connections to MCLR, VDD, VSS, PGC, PGD and the  
selected EMUDx/EMUCx pin pair.  
Note 1: If a PMD bit is set, the corresponding  
module is disabled after a delay of 1  
instruction cycle. Similarly, if a PMD bit is  
cleared, the corresponding module is  
enabled after a delay of 1 instruction  
cycle (assuming the module control reg-  
isters are already configured to enable  
module operation).  
This gives rise to two possibilities:  
1. If EMUD/EMUC is selected as the debug I/O pin  
pair, then only a 5-pin interface is required, as  
the EMUD and EMUC pin functions are multi-  
plexed with the PGD and PGC pin functions in  
all dsPIC30F devices.  
2: In the dsPIC30F3014 device, the T4MD,  
T5MD, IC7MD, IC8MD, OC3MD,  
OC4MD and DCIMD are readable and  
writable, and are read as “1” when set.  
2. If EMUD1/EMUC1, EMUD2/EMUC2 or EMUD3/  
EMUC3 is selected as the debug I/O pin pair,  
then a 7-pin interface is required, as the  
EMUDx/EMUCx pin functions (x = 1, 2 or 3) are  
not multiplexed with the PGD and PGC pin  
functions.  
2010 Microchip Technology Inc.  
DS70138G-page 157  
 
TABLE 20-7: SYSTEM INTEGRATION REGISTER MAP(1)  
SFR  
Name  
Addr.  
Bit 15  
Bit 14  
Bit 13 Bit 12 Bit 11 Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
RCON  
0740  
TRAPR IOPUWR BGST LVDEN  
LVDL<3:0>  
EXTR SWR SWDTEN WDTO  
SLEEP  
CF  
IDLE  
BOR  
POR  
(Note 2)  
(Note 3)  
OSCCON 0742  
OSCTUN 0744  
COSC<2:0>  
NOSC<2:0>  
POST<1:0>  
LOCK  
LPOSCEN OSWEN  
TUN3  
SPI1MD  
TUN2  
TUN1  
C1MD  
TUN0 0000 0000 0000 0000  
ADCMD 0000 0000 0000 0000  
OC1MD 0000 0000 0000 0000  
PMD1  
PMD2  
0770 T5MD(4) T4MD(4) T3MD T2MD T1MD  
0772 IC8MD(4) IC7MD(4)  
— = unimplemented bit, read as ‘0’  
DCIMD(4) I2CMD U2MD  
U1MD  
IC2MD  
IC1MD  
OC4MD(4) OC3MD(4) OC2MD  
Legend:  
Note 1:  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
Reset state depends on type of Reset.  
Reset state depends on Configuration bits.  
2:  
3:  
4:  
These bits are not available in dsPIC30F3014 devices.  
TABLE 20-8: DEVICE CONFIGURATION REGISTER MAP(1)  
Name  
FOSC  
FWDT  
Address  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
F80000  
F80002  
FCKSM<1:0>  
FOS<2:0>  
FPR<4:0>  
FWDTEN  
MCLREN  
LPOL(2)  
Reserved(3)  
FWPSA<1:0>  
BORV<1:0>  
FWPSB<3:0>  
FPWRT<1:0>  
Reserved(3)  
Reserved(3)  
Reserved(4)  
GCP  
ICS<1:0>  
FBORPOR F80004  
PWMPIN(2) HPOL(2)  
BOREN  
FBS  
FSS  
FGS  
FICD  
F80006  
F80008  
F8000A  
F8000C  
Reserved(3)  
Reserved(3)  
Reserved(3)  
GWRP  
BKBUG  
COE  
Legend:  
— = unimplemented bit, read as ‘0’  
Note 1:  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
These bits are reserved (read as ‘1’ and must be programmed as ‘1’).  
Reserved bits read as ‘1’ and must be programmed as ‘1’.  
2:  
3:  
4:  
The FGS<2> bit is a read-only copy of the GCP bit (FGS<1>).  
 
 
dsPIC30F3014/4013  
Most bit-oriented instructions (including simple rotate/  
shift instructions) have two operands:  
21.0 INSTRUCTION SET SUMMARY  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC Pro-  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register  
(specified by a literal value or indirectly by the  
contents of register ‘Wb’)  
The literal instructions that involve data movement may  
use some of the following operands:  
• A literal value to be loaded into a W register or file  
register (specified by the value of ‘k’)  
grammer’s  
Reference  
Manual”  
(DS70157).  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
The dsPIC30F instruction set adds many  
enhancements to the previous PIC® MCU instruction  
sets, while maintaining an easy migration from  
MCU instruction sets.  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
PIC  
• The first source operand which is a register ‘Wb’  
without any address modifier  
Most instructions are a single program memory word  
(24 bits). Only three instructions require two program  
memory locations.  
• The second source operand which is a literal  
value  
Each single-word instruction is a 24-bit word divided  
into an 8-bit opcode which specifies the instruction  
type, and one or more operands which further specify  
the operation of the instruction.  
• The destination of the result (only if not the same  
as the first source operand) which is typically a  
register ‘Wd’ with or without an address modifier  
The MACclass of DSP instructions may use some of the  
The instruction set is highly orthogonal and is grouped  
into five basic categories:  
following operands:  
• The accumulator (A or B) to be used (required  
operand)  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• The W registers to be used as the two operands  
• The X and Y address space prefetch operations  
• The X and Y address space prefetch destinations  
• The accumulator write-back destination  
• DSP operations  
• Control operations  
Table 21-1 shows the general symbols used in  
describing the instructions.  
The other DSP instructions do not involve any  
multiplication, and may include:  
The dsPIC30F instruction set summary in Table 21-2  
lists all the instructions, along with the status flags  
affected by each instruction.  
• The accumulator to be used (required)  
• The source or destination operand (designated as  
Wso or Wdo, respectively) with or without an  
address modifier  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
• The amount of shift specified by a W register ‘Wn’  
or a literal value  
• The first source operand which is typically a  
register ‘Wb’ without any address modifier  
The control instructions may use some of the following  
operands:  
• The second source operand which is typically a  
register ‘Ws’ with or without an address modifier  
• A program memory address  
• The mode of the table read and table write  
instructions  
• The destination of the result which is typically a  
register ‘Wd’ with or without an address modifier  
All instructions are a single word, except for certain  
double word instructions, which were made double  
word instructions so that all the required information is  
available in these 48 bits. In the second word, the  
8 MSbs are ‘0’s. If this second word is executed as an  
instruction (by itself), it executes as a NOP.  
However, word or byte-oriented file register instructions  
have two operands:  
• The file register specified by the value ‘f’  
• The destination, which could either be the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
2010 Microchip Technology Inc.  
DS70138G-page 159  
 
dsPIC30F3014/4013  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or  
the program counter is changed as a result of the  
instruction. In these cases, the execution takes two  
instruction cycles with the additional instruction  
cycle(s) executed as a NOP. Notable exceptions are the  
BRA (unconditional/computed branch), indirect CALL/  
GOTO, all table reads and writes, and RETURN/RETFIE  
instructions, which are single-word instructions but take  
two or three cycles. Certain instructions that involve  
skipping over the subsequent instruction require either  
two or three cycles if the skip is performed, depending  
on whether the instruction being skipped is a single-  
word or two-word instruction. Moreover, double-word  
moves require two cycles. The double-word  
instructions execute in two instruction cycles.  
Note:  
For more details on the instruction set,  
refer to the “16-bit DSC and MCU Pro-  
grammer’s  
Reference  
Manual”  
(DS70157).  
TABLE 21-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
Register bit field  
<n:m>  
.b  
Byte mode selection  
.d  
Double-Word mode selection  
Shadow register select  
.S  
.w  
Word mode selection (default)  
One of two accumulators {A, B}  
Acc  
AWB  
bit4  
Accumulator Write-Back Destination Address register {W13, [W13]+=2}  
4-bit bit selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0x0000...0x1FFF}  
C, DC, N, OV, Z  
Expr  
f
lit1  
1-bit unsigned literal {0,1}  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
lit14  
lit16  
16-bit unsigned literal {0...65535}  
lit23  
23-bit unsigned literal {0...8388608}; LSB must be 0  
Field does not require an entry, may be blank  
None  
OA, OB, SA, SB  
PC  
DSP Status bits: AccA Overflow, AccB Overflow, AccA Saturate, AccB Saturate  
Program Counter  
Slit10  
Slit16  
Slit6  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
DS70138G-page 160  
2010 Microchip Technology Inc.  
 
dsPIC30F3014/4013  
TABLE 21-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)  
Field Description  
Wb  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register   
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Dividend, Divisor Working register pair (direct addressing)  
Wm*Wm  
Multiplicand and Multiplier working register pair for Square instructions   
{W4*W4,W5*W5,W6*W6,W7*W7}  
Wm*Wn  
Multiplicand and Multiplier working register pair for DSP instructions   
{W4*W5,W4*W6,W4*W7,W5*W6,W5*W7,W6*W7}  
Wn  
One of 16 working registers {W0..W15}  
Wnd  
Wns  
WREG  
Ws  
One of 16 destination working registers {W0..W15}  
One of 16 source working registers {W0..W15}  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Wso  
Source W register   
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
Wx  
X data space prefetch address register for DSP instructions  
{[W8]+=6, [W8]+=4, [W8]+=2, [W8], [W8]-=6, [W8]-=4, [W8]-=2,  
[W9]+=6, [W9]+=4, [W9]+=2, [W9], [W9]-=6, [W9]-=4, [W9]-=2,  
[W9+W12],none}  
Wxd  
Wy  
X data space prefetch destination register for DSP instructions {W4..W7}  
Y data space prefetch address register for DSP instructions  
{[W10]+=6, [W10]+=4, [W10]+=2, [W10], [W10]-=6, [W10]-=4, [W10]-=2,  
[W11]+=6, [W11]+=4, [W11]+=2, [W11], [W11]-=6, [W11]-=4, [W11]-=2,  
[W11+W12], none}  
Wyd  
Y data space prefetch destination register for DSP instructions {W4..W7}  
2010 Microchip Technology Inc.  
DS70138G-page 161  
dsPIC30F3014/4013  
TABLE 21-2: INSTRUCTION SET OVERVIEW  
Base Assembly  
# of  
# of  
Status Flags  
Affected  
Instr  
#
Mnemoni  
c
Assembly Syntax  
Description  
Words Cycles  
1
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
ASR  
ASR  
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
Acc  
Add Accumulators  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
f
f = f + WREG  
f,WREG  
WREG = f + WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
f
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
16-bit Signed Add to Accumulator  
f = f + WREG + (C)  
1
2
3
4
ADDC  
AND  
1
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
Wd = Wb + lit5 + (C)  
1
f = f .AND. WREG  
1
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
1
N,Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N,Z  
Wd = Wb .AND. Ws  
1
N,Z  
Wd = Wb .AND. lit5  
1
N,Z  
ASR  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
1
Ws,Wd  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
1
N,Z  
5
6
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if Greater than or Equal  
Branch if Unsigned Greater than or Equal  
Branch if Greater than  
Branch if Unsigned Greater than  
Branch if Less than or Equal  
Branch if Unsigned Less than or Equal  
Branch if Less than  
None  
None  
None  
None  
None  
None  
None  
Branch if Unsigned Less than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OA,Expr  
OB,Expr  
OV,Expr  
SA,Expr  
SB,Expr  
Expr  
Branch if Not Carry  
None  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Accumulator A Overflow  
Branch if Accumulator B Overflow  
Branch if Overflow  
None  
None  
None  
Branch if Accumulator A Saturated  
Branch if Accumulator B Saturated  
Branch Unconditionally  
Branch if Zero  
None  
None  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
7
8
BSET  
BSW  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
1
None  
Ws,Wb  
1
None  
DS70138G-page 162  
2010 Microchip Technology Inc.  
 
 
dsPIC30F3014/4013  
TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base Assembly  
# of  
# of  
Status Flags  
Affected  
Instr  
#
Mnemoni  
c
Assembly Syntax  
Description  
Words Cycles  
9
BTG  
BTG  
f,#bit4  
Ws,#bit4  
f,#bit4  
Bit Toggle f  
1
1
1
1
1
None  
None  
None  
BTG  
Bit Toggle Ws  
10  
11  
12  
BTSC  
BTSC  
Bit Test f, Skip if Clear  
Bit Test Ws, Skip if Clear  
Bit Test f, Skip if Set  
1
(2 or 3)  
BTSC  
BTSS  
BTSS  
Ws,#bit4  
f,#bit4  
Ws,#bit4  
1
1
1
1
None  
None  
None  
(2 or 3)  
BTSS  
BTST  
1
(2 or 3)  
Bit Test Ws, Skip if Set  
1
(2 or 3)  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
C
Bit Test Ws to Z  
Z
C
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Ws,Wb  
Z
13  
BTSTS  
f,#bit4  
Z
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call Subroutine  
C
Z
14  
15  
CALL  
CLR  
CALL  
CALL  
CLR  
CLR  
CLR  
CLR  
CLRWDT  
COM  
COM  
COM  
CP  
lit23  
None  
Wn  
Call Indirect Subroutine  
f = 0x0000  
None  
f
None  
WREG  
WREG = 0x0000  
None  
Ws  
Ws = 0x0000  
None  
Acc,Wx,Wxd,Wy,Wyd,AWB  
Clear Accumulator  
Clear Watchdog Timer  
f = f  
OA,OB,SA,SB  
WDTO, Sleep  
N,Z  
16  
17  
CLRWDT  
COM  
f
f,WREG  
Ws,Wd  
f
WREG = f  
N,Z  
Wd = Ws  
N,Z  
18  
CP  
Compare f with WREG  
Compare Wb with lit5  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
19  
20  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
21  
22  
23  
24  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Compare Wb with Wn, Skip if =  
Compare Wb with Wn, Skip if >  
Compare Wb with Wn, Skip if <  
Compare Wb with Wn, Skip if   
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
25  
26  
DAW  
DEC  
DAW  
Wn  
Wn = Decimal Adjust Wn  
f = f – 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
DEC  
f
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f – 1  
DEC  
Wd = Ws – 1  
27  
28  
DEC2  
DISI  
DEC2  
DEC2  
DEC2  
DISI  
f = f – 2  
f,WREG  
Ws,Wd  
#lit14  
WREG = f – 2  
Wd = Ws – 2  
Disable Interrupts for k Instruction Cycles  
2010 Microchip Technology Inc.  
DS70138G-page 163  
dsPIC30F3014/4013  
TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base Assembly  
# of  
# of  
Status Flags  
Affected  
Instr  
#
Mnemoni  
c
Assembly Syntax  
Description  
Words Cycles  
29  
DIV  
DIV.S  
DIV.SD  
DIV.U  
DIV.UD  
DIVF  
DO  
Wm,Wn  
Signed 16/16-Bit Integer Divide  
Signed 32/16-Bit Integer Divide  
Unsigned 16/16-Bit Integer Divide  
Unsigned 32/16-Bit Integer Divide  
Signed 16/16-bit Fractional Divide  
Do Code to PC+Expr, lit14 + 1 Times  
Do Code to PC+Expr, (Wn) + 1 Times  
Euclidean Distance (no accumulate)  
1
1
1
1
1
2
2
1
18  
18  
18  
18  
18  
2
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
None  
Wm,Wn  
Wm,Wn  
Wm,Wn  
30  
31  
DIVF  
DO  
Wm,Wn  
#lit14,Expr  
Wn,Expr  
DO  
2
None  
32  
33  
ED  
ED  
Wm*Wm,Acc,Wx,Wy,Wxd  
1
OA,OB,OAB,  
SA,SB,SAB  
EDAC  
EDAC  
Wm*Wm,Acc,Wx,Wy,Wxd  
Euclidean Distance  
1
1
OA,OB,OAB,  
SA,SB,SAB  
34  
35  
36  
37  
38  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
GOTO  
INC  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
Ws,Wnd  
Expr  
Swap Wns with Wnd  
Find Bit Change from Left (MSb) Side  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
Go to address  
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
None  
C
C
C
None  
Wn  
Go to indirect  
None  
39  
40  
41  
INC  
f
f = f + 1  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
INC  
f,WREG  
Ws,Wd  
WREG = f + 1  
INC  
Wd = Ws + 1  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f = f + 2  
f,WREG  
Ws,Wd  
WREG = f + 2  
Wd = Ws + 2  
f
f = f .IOR. WREG  
IOR  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
WREG = f .IOR. WREG  
Wd = lit10 .IOR. Wd  
Wd = Wb .IOR. Ws  
Wd = Wb .IOR. lit5  
Load Accumulator  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
42  
LAC  
LAC  
OA,OB,OAB,  
SA,SB,SAB  
43  
44  
LNK  
LSR  
LNK  
LSR  
LSR  
LSR  
LSR  
LSR  
MAC  
#lit14  
Link Frame Pointer  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
None  
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f
f = Logical Right Shift f  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
N,Z  
45  
46  
MAC  
MOV  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply and Accumulate  
,
AWB  
OA,OB,OAB,  
SA,SB,SAB  
MAC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate  
1
1
OA,OB,OAB,  
SA,SB,SAB  
MOV  
f,Wn  
Move f to Wn  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
None  
N,Z  
MOV  
f
Move f to f  
MOV  
f,WREG  
Move f to WREG  
N,Z  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-Bit Literal to Wn  
Move 8-Bit Literal to Wn  
Move Wn to f  
None  
None  
None  
None  
N,Z  
MOV.b  
MOV  
MOV  
Wso,Wdo  
Move Ws to Wd  
MOV  
WREG,f  
Move WREG to f  
MOV.D  
MOV.D  
MOVSAC  
Wns,Wd  
Move Double from W(ns):W(ns+1) to Wd  
Move Double from Ws to W(nd+1):W(nd)  
Prefetch and Store Accumulator  
None  
None  
None  
Ws,Wnd  
47  
MOVSAC  
Acc,Wx,Wxd,Wy,Wyd,AWB  
DS70138G-page 164  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base Assembly  
# of  
# of  
Status Flags  
Affected  
Instr  
#
Mnemoni  
c
Assembly Syntax  
Description  
Words Cycles  
48  
MPY  
MPY  
Multiply Wm by Wn to Accumulator  
Square Wm to Accumulator  
1
1
1
1
1
1
1
1
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MPY  
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd  
49  
50  
MPY.N  
MSC  
MPY.N  
-(Multiply Wm by Wn) to Accumulator  
None  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MSC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Multiply and Subtract from Accumulator  
OA,OB,OAB,  
SA,SB,SAB  
,
AWB  
51  
MUL  
MUL.SS  
MUL.SU  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)  
1
1
1
1
None  
None  
{Wnd+1, Wnd} = Signed(Wb) *  
Unsigned(Ws)  
MUL.US  
MUL.UU  
MUL.SU  
MUL.UU  
Wb,Ws,Wnd  
{Wnd+1, Wnd} = Unsigned(Wb) *  
Signed(Ws)  
1
1
1
1
1
1
1
1
None  
None  
None  
None  
None  
Wb,Ws,Wnd  
{Wnd+1, Wnd} = Unsigned(Wb) *  
Unsigned(Ws)  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
{Wnd+1, Wnd} = Signed(Wb) *  
Unsigned(lit5)  
{Wnd+1, Wnd} = Unsigned(Wb) *  
Unsigned(lit5)  
MUL  
NEG  
f
W3:W2 = f * WREG  
Negate Accumulator  
1
1
1
1
52  
NEG  
Acc  
OA,OB,OAB,  
SA,SB,SAB  
NEG  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
53  
54  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
Pop from Top-of-Stack (TOS) to  
W(nd):W(nd+1)  
None  
POP.S  
PUSH  
Pop Shadow Registers  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
All  
None  
None  
None  
None  
WDTO, Sleep  
None  
None  
None  
None  
None  
None  
None  
None  
C,N,Z  
C,N,Z  
C,N,Z  
N,Z  
55  
PUSH  
f
Push f to Top-of-Stack (TOS)  
Push Wso to Top-of-Stack (TOS)  
Push W(ns):W(ns+1) to Top-of-Stack (TOS)  
Push Shadow Registers  
1
PUSH  
Wso  
Wns  
1
PUSH.D  
PUSH.S  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
2
1
56  
57  
PWRSAV  
RCALL  
#lit1  
Expr  
Go into Sleep or Idle mode  
Relative Call  
1
2
Wn  
Computed Call  
2
58  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14+1 Times  
Repeat Next Instruction (Wn)+1 Times  
Software Device Reset  
1
1
59  
60  
61  
62  
63  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
Return from Interrupt  
3 (2)  
#lit10,Wn  
Return with Literal in Wn  
3 (2)  
Return from Subroutine  
3 (2)  
1
f
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
RLC  
f,WREG  
Ws,Wd  
f
1
RLC  
1
64  
65  
RLNC  
RRC  
RLNC  
1
RLNC  
f,WREG  
Ws,Wd  
f
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
1
N,Z  
RLNC  
1
N,Z  
RRC  
1
C,N,Z  
C,N,Z  
C,N,Z  
RRC  
f,WREG  
Ws,Wd  
1
RRC  
1
2010 Microchip Technology Inc.  
DS70138G-page 165  
dsPIC30F3014/4013  
TABLE 21-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base Assembly  
# of  
# of  
Status Flags  
Affected  
Instr  
#
Mnemoni  
c
Assembly Syntax  
Description  
Words Cycles  
66  
RRNC  
SAC  
RRNC  
RRNC  
RRNC  
SAC  
f
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Store Accumulator  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
N,Z  
f,WREG  
Ws,Wd  
N,Z  
67  
Acc,#Slit4,Wdo  
None  
None  
C,N,Z  
None  
None  
None  
SAC.R  
SE  
Acc,#Slit4,Wdo  
Store Rounded Accumulator  
Wnd = Sign-Extended Ws  
f = 0xFFFF  
68  
69  
SE  
Ws,Wnd  
f
SETM  
SETM  
SETM  
SETM  
SFTAC  
WREG  
Ws  
WREG = 0xFFFF  
Ws = 0xFFFF  
70  
71  
SFTAC  
SL  
Acc,Wn  
Arithmetic Shift Accumulator by (Wn)  
OA,OB,OAB,  
SA,SB,SAB  
SFTAC  
Acc,#Slit6  
Arithmetic Shift Accumulator by Slit6  
1
1
OA,OB,OAB,  
SA,SB,SAB  
SL  
SL  
SL  
SL  
SL  
SUB  
f
f = Left Shift f  
1
1
1
1
1
1
1
1
1
1
1
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
Ws,Wd  
WREG = Left Shift f  
Wd = Left Shift Ws  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
Acc  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
Subtract Accumulators  
N,Z  
72  
SUB  
OA,OB,OAB,  
SA,SB,SAB  
SUB  
f
f = f – WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
SUB  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f – WREG  
Wn = Wn – lit10  
SUB  
SUB  
Wd = Wb – Ws  
SUB  
Wd = Wb – lit5  
73  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
SUBBR  
SUBBR  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
f = f – WREG – (C)  
WREG = f – WREG – (C)  
Wn = Wn – lit10 – (C)  
Wd = Wb – Ws – (C)  
Wd = Wb – lit5 – (C)  
f = WREG – f  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
74  
75  
76  
SUBR  
SUBBR  
SWAP  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = WREG– f  
Wd = Ws – Wb  
Wd = lit5 – Wb  
f = WREG – f – (C)  
WREG = WREG – f – (C)  
Wd = Ws – Wb – (C)  
Wd = lit5 – Wb – (C)  
Wn = Nibble Swap Wn  
Wn = Byte Swap Wn  
Read Prog<23:16> to Wd<7:0>  
Read Prog<15:0> to Wd  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
Wn  
None  
77  
78  
79  
80  
81  
82  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
Ws,Wd  
None  
Ws,Wd  
None  
Ws,Wd  
None  
Ws,Wd  
None  
None  
XOR  
f
N,Z  
XOR  
f,WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
Wd = Wb .XOR. lit5  
Wnd = Zero-Extend Ws  
N,Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N,Z  
XOR  
N,Z  
XOR  
N,Z  
83  
ZE  
ZE  
C,Z,N  
DS70138G-page 166  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
22.1 MPLAB Integrated Development  
Environment Software  
22.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- HI-TECH C for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2010 Microchip Technology Inc.  
DS70138G-page 167  
 
 
dsPIC30F3014/4013  
22.2 MPLAB C Compilers for Various  
Device Families  
22.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
22.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
22.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
22.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS70138G-page 168  
2010 Microchip Technology Inc.  
 
 
 
 
dsPIC30F3014/4013  
22.7 MPLAB SIM Software Simulator  
22.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
22.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
22.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including low-cost, full-speed emulation, run-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
2010 Microchip Technology Inc.  
DS70138G-page 169  
 
 
dsPIC30F3014/4013  
22.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
22.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
22.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS70138G-page 170  
2010 Microchip Technology Inc.  
 
dsPIC30F3014/4013  
23.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of dsPIC30F electrical characteristics. Additional information will be provided in future  
revisions of this document as it becomes available.  
For detailed information about the dsPIC30F architecture and core, refer to the “dsPIC30F Family Reference Manual”  
(DS70046).  
Absolute maximum ratings for the dsPIC30F family are listed below. Exposure to these maximum rating conditions for  
extended periods may affect device reliability. Functional operation of the device at these or any other conditions above  
the parameters indicated in the operation listings of this specification is not implied.  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD and MCLR) (Note 1)..................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +5.5V  
Voltage on MCLR with respect to VSS ....................................................................................................... 0V to +13.25V  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin (Note 2)................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..........................................................................................................±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ...................................................................................................±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports (Note 2)....................................................................................................200 mA  
Note 1: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100W should be used when applying a “low” level to the MCLR/VPP pin, rather  
than pulling this pin directly to Vss.  
2: Maximum allowable current is a function of device maximum power dissipation. See Table 23-4  
NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Note: All peripheral electrical characteristics are specified. For exact peripherals available on specific  
devices, please refer to the dsPIC30F3014/4013 Controller Family table.  
2010 Microchip Technology Inc.  
DS70138G-page 171  
 
 
dsPIC30F3014/4013  
23.1 DC Characteristics  
TABLE 23-1: OPERATING MIPS vs. VOLTAGE  
Max MIPS  
VDD Range  
Temp Range  
dsPIC30FXXX-30I  
dsPIC30FXXX-20E  
4.5-5.5V  
4.5-5.5V  
3.0-3.6V  
3.0-3.6V  
2.5-3.0V  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
30  
15  
10  
20  
10  
TABLE 23-2: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
dsPIC30F3014-30I  
dsPIC30F4013-30I  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
dsPIC30F3014-20E  
dsPIC30F4013-20E  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+150  
+125  
°C  
°C  
Power Dissipation:  
Internal chip power dissipation:  
PINT = VDD  IDD –  
IOH  
PD  
PINT + PI/O  
W
W
I/O Pin power dissipation:  
=
 VDD VOH  IOH +  
OL  
I  
PI/O  
OL  
V
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/JA  
TABLE 23-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
Package Thermal Resistance, 40-pin DIP (P)  
Package Thermal Resistance, 44-pin TQFP (10x10x1mm)  
Package Thermal Resistance, 44-pin QFN  
JA  
JA  
JA  
47  
°C/W  
°C/W  
°C/W  
1
1
1
39.3  
27.8  
Note 1: Junction to ambient thermal resistance, Theta-ja (JA) numbers are achieved by package simulations.  
DS70138G-page 172  
2010 Microchip Technology Inc.  
 
 
 
 
 
dsPIC30F3014/4013  
TABLE 23-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
Operating Voltage(2)  
DC10  
DC11  
DC12  
DC16  
VDD  
VDD  
VDR  
VPOR  
Supply Voltage  
2.5  
3.0  
1.75  
5.5  
5.5  
V
V
V
V
Industrial temperature  
Extended temperature  
Supply Voltage  
RAM Data Retention Voltage(3)  
VDD Start Voltage  
to Ensure Internal  
VSS  
Power-on Reset Signal  
DC17  
SVDD  
VDD Rise Rate  
to Ensure Internal  
Power-on Reset Signal  
0.05  
V/ms 0-5V in 0.1 sec  
0-3V in 60 ms  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
3: This is the limit to which VDD can be lowered without losing RAM data.  
2010 Microchip Technology Inc.  
DS70138G-page 173  
 
dsPIC30F3014/4013  
TABLE 23-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical  
Max  
Units  
Conditions  
No.  
Operating Current (IDD)(1)  
DC31a  
DC31b  
DC31c  
DC31e  
DC31f  
DC31g  
DC30a  
DC30b  
DC30c  
DC30e  
DC30f  
DC30g  
DC23a  
DC23b  
DC23c  
DC23e  
DC23f  
DC23g  
DC24a  
DC24b  
DC24c  
DC24e  
DC24f  
DC24g  
DC27d  
DC27e  
DC27f  
DC29a  
DC29b  
2
2
4
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
3.3V  
5V  
2
4
0.128 MIPS  
LPRC (512 kHz)  
4
6
4
6
4
6
6
11  
11  
11  
16  
16  
16  
20  
20  
20  
31  
31  
31  
39  
39  
39  
64  
64  
64  
120  
120  
120  
170  
170  
6
3.3V  
5V  
7
1.8 MIPS  
FRC (7.37 MHz)  
11  
11  
11  
13  
13  
14  
22  
22  
22  
27  
28  
28  
46  
46  
46  
86  
85  
85  
123  
122  
3.3V  
5V  
4 MIPS  
3.3V  
5V  
10 MIPS  
5V  
5V  
20 MIPS  
30 MIPS  
Note 1: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1  
driven with external square wave from rail-to-rail. All I/O pins are configured as inputs and pulled to VDD.  
MCLR = VDD, WDT, FSCM, LVD and BOR are disabled. CPU, SRAM, program memory and data memory  
are operational. No peripheral modules are operating.  
DS70138G-page 174  
2010 Microchip Technology Inc.  
 
 
 
dsPIC30F3014/4013  
TABLE 23-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Parameter  
Typical  
No.  
Max  
Units  
Conditions  
Operating Current (IDD)(1)  
DC51a  
DC51b  
DC51c  
DC51e  
DC51f  
DC51g  
DC50a  
DC50b  
DC50c  
DC50e  
DC50f  
DC50g  
DC43a  
DC43b  
DC43c  
DC43e  
DC43f  
DC43g  
DC44a  
DC44b  
DC44c  
DC44e  
DC44f  
DC44g  
DC47d  
DC47e  
DC47f  
DC49a  
DC49b  
1.4  
1.5  
1.5  
3
3
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
3
3.3V  
5V  
3
0.128 MIPS  
LPRC (512 kHz)  
5
3
5
3
5
4
6
4
6
3.3V  
5V  
4
6
1.8 MIPS  
FRC (7.37 MHz)  
8
11  
11  
11  
11  
11  
11  
17  
17  
17  
22  
22  
22  
36  
36  
36  
65  
65  
65  
95  
95  
8
8
7
7
3.3V  
5V  
8
4 MIPS  
13  
13  
13  
16  
16  
17  
27  
27  
28  
50  
51  
52  
74  
75  
3.3V  
5V  
10 MIPS  
5V  
5V  
20 MIPS  
30 MIPS  
Note 1: Base IIDLE current is measured with core off, clock on and all modules turned off.  
2010 Microchip Technology Inc.  
DS70138G-page 175  
 
 
dsPIC30F3014/4013  
TABLE 23-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical  
Max  
Units  
Conditions  
No.  
Power-Down Current (IPD)(1)  
DC60a  
DC60b  
DC60c  
DC60e  
DC60f  
DC60g  
DC61a  
DC61b  
DC61c  
DC61e  
DC61f  
DC61g  
DC62a  
DC62b  
DC62c  
DC62e  
DC62f  
DC62g  
DC63a  
DC63b  
DC63c  
DC63e  
DC63f  
DC63g  
DC66a  
DC66b  
DC66c  
DC66e  
DC66f  
DC66g  
1
30  
60  
45  
90  
11  
11  
11  
21  
21  
21  
45  
45  
50  
51  
51  
56  
56  
27  
30  
32  
33  
35  
36  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
3
3.3V  
5V  
30  
2
Base Power-Down Current(2)  
6
55  
7
7
3.3V  
5V  
7
(2)  
Watchdog Timer Current: IWDT  
14  
14  
14  
30  
30  
33  
34  
34  
37  
37  
18  
20  
21  
22  
23  
24  
3.3V  
5V  
Timer1 w/32 kHz Crystal: ITI32(2)  
3.3V  
5V  
(2)  
BOR on: IBOR  
3.3V  
5V  
(2)  
Low-Voltage Detect: ILVD  
Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and  
pulled high. LVD, BOR, WDT, etc. are all switched off.  
2: The current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
DS70138G-page 176  
2010 Microchip Technology Inc.  
 
 
 
dsPIC30F3014/4013  
TABLE 23-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
VIL  
Input Low Voltage(2)  
DI10  
I/O Pins:  
with Schmitt Trigger Buffer  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.3 VDD  
0.8  
V
V
V
V
V
V
DI15  
DI16  
DI17  
DI18  
DI19  
MCLR  
OSC1 (in XT, HS and LP modes)  
OSC1 (in RC mode)(3)  
SDA, SCL  
SM bus disabled  
SM bus enabled  
SDA, SCL  
VIH  
Input High Voltage(2)  
DI20  
I/O Pins:  
with Schmitt Trigger Buffer  
0.8 VDD  
0.8 VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
DI25  
DI26  
DI27  
DI28  
DI29  
MCLR  
OSC1 (in XT, HS and LP modes) 0.7 VDD  
OSC1 (in RC mode)(3)  
0.9 VDD  
0.7 VDD  
2.1  
SDA, SCL  
SM bus disabled  
SM bus enabled  
SDA, SCL  
ICNPU  
IIL  
CNXX Pull-up Current(2)  
DI30  
50  
250  
400  
A VDD = 5V, VPIN = VSS  
Input Leakage Current(2,4,5)  
DI50  
DI51  
I/O Ports  
0.01  
0.50  
±1  
A VSS VPIN VDD,  
Pin at high-impedance  
Analog Input Pins  
A VSS VPIN VDD,  
Pin at high-impedance  
DI55  
DI56  
MCLR  
OSC1  
0.05  
0.05  
±5  
±5  
A VSS VPIN VDD  
A VSS VPIN VDD, XT, HS  
and LP Osc mode  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
3: In RC oscillator configuration, the OSC1/CLKl pin is a Schmitt Trigger input. It is not recommended that  
the dsPIC30F device be driven with an external clock while in RC mode.  
4: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
5: Negative current is defined as current sourced by the pin.  
2010 Microchip Technology Inc.  
DS70138G-page 177  
 
dsPIC30F3014/4013  
TABLE 23-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
VOL  
Output Low Voltage(2)  
DO10  
DO16  
I/O Ports  
0.6  
0.15  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 5V  
IOL = 2.0 mA, VDD = 3V  
IOL = 1.6 mA, VDD = 5V  
IOL = 2.0 mA, VDD = 3V  
OSC2/CLKO  
(RC or EC Oscillator mode)  
Output High Voltage(2)  
I/O Ports  
0.72  
VOH  
DO20  
DO26  
VDD – 0.7  
VDD – 0.2  
VDD – 0.7  
VDD – 0.1  
V
V
V
V
IOH = -3.0 mA, VDD = 5V  
IOH = -2.0 mA, VDD = 3V  
IOH = -1.3 mA, VDD = 5V  
IOH = -2.0 mA, VDD = 3V  
OSC2/CLKO  
(RC or EC Oscillator mode)  
Capacitive Loading Specs  
on Output Pins(2)  
DO50 COSC2  
OSC2/SOSC2 Pin  
15  
pF In XTL, XT, HS and LP modes  
when external clock is used to  
drive OSC1.  
DO56 CIO  
DO58 CB  
All I/O Pins and OSC2  
SCL, SDA  
50  
pF RC or EC Oscillator mode  
pF In I2C mode  
400  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
FIGURE 23-1:  
LOW-VOLTAGE DETECT CHARACTERISTICS  
VDD  
LV10  
LVDIF  
(LVDIF set by hardware)  
DS70138G-page 178  
2010 Microchip Technology Inc.  
 
 
 
 
 
dsPIC30F3014/4013  
TABLE 23-10: ELECTRICAL CHARACTERISTICS: LVDL  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max Units Conditions  
LVDL = 0000(2)  
V
LV10  
VPLVD  
LVDL Voltage on VDD  
Transition High-to-Low  
LVDL = 0001(2)  
LVDL = 0010(2)  
LVDL = 0011(2)  
LVDL = 0100  
LVDL = 0101  
LVDL = 0110  
LVDL = 0111  
LVDL = 1000  
LVDL = 1001  
LVDL = 1010  
LVDL = 1011  
LVDL = 1100  
LVDL = 1101  
LVDL = 1110  
LVDL = 1111  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
2.50  
2.70  
2.80  
3.00  
3.30  
3.50  
3.60  
3.80  
4.00  
4.20  
4.50  
2.65  
2.86  
2.97  
3.18  
3.50  
3.71  
3.82  
4.03  
4.24  
4.45  
4.77  
LV15  
VLVDIN  
External LVD Input Pin  
Threshold Voltage  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: These values not in usable operating range.  
FIGURE 23-2:  
BROWN-OUT RESET CHARACTERISTICS  
VDD  
(Device not in Brown-out Reset)  
BO15  
BO10  
(Device in Brown-out Reset)  
RESET (due to BOR)  
Power-up Time-out  
2010 Microchip Technology Inc.  
DS70138G-page 179  
 
 
 
 
dsPIC30F3014/4013  
TABLE 23-11: ELECTRICAL CHARACTERISTICS: BOR  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min Typ(1) Max Units  
Conditions  
BO10  
VBOR  
BOR Voltage on VDD BORV = 11(3)  
V
Not in operating  
range  
Transition  
High-to-Low(2)  
BORV = 10  
2.6  
4.1  
4.58  
5
2.71  
4.4  
V
V
BORV = 01  
BORV = 00  
4.73  
V
BO15  
VBHYS  
mV  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
3: 11’ values not in usable operating range.  
TABLE 23-12: DC CHARACTERISTICS: PROGRAM AND EEPROM  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min Typ(1)  
Max  
Units  
Conditions  
Data EEPROM Memory(2)  
Byte Endurance  
D120  
D121  
ED  
100K  
VMIN  
1M  
E/W -40C TA +85°C  
Using EECON to read/write  
VDRW  
VDD for Read/Write  
5.5  
V
VMIN = Minimum operating  
voltage  
D122  
D123  
TDEW  
Erase/Write Cycle Time  
Characteristic Retention  
0.8  
40  
2
2.6  
ms RTSP  
TRETD  
100  
Year Provided no other specifications  
are violated  
D124  
IDEW  
IDD During Programming  
Program Flash Memory(2)  
Cell Endurance  
10  
30  
mA Row Erase  
D130  
D131  
EP  
10K  
100K  
E/W -40C TA +85°C  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
D133  
D134  
D135  
VEB  
VDD for Bulk Erase  
4.5  
3.0  
0.8  
40  
5.5  
5.5  
2.6  
V
V
VPEW  
TPEW  
TRETD  
VDD for Erase/Write  
Erase/Write Cycle Time  
Characteristic Retention  
2
ms RTSP  
100  
Year Provided no other specifications  
are violated  
D137  
D138  
IPEW  
IEB  
IDD During Programming  
IDD During Programming  
10  
10  
30  
30  
mA Row Erase  
mA Bulk Erase  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
2: These parameters are characterized but not tested in manufacturing.  
23.2 AC Characteristics and Timing Parameters  
The information contained in this section defines dsPIC30F AC characteristics and timing parameters.  
DS70138G-page 180  
2010 Microchip Technology Inc.  
 
 
 
 
 
 
 
 
 
dsPIC30F3014/4013  
TABLE 23-13: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Operating voltage VDD range as described in Table 23-1.  
FIGURE 23-3:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
Legend:  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSC2  
5 pF for OSC2 output  
VSS  
FIGURE 23-4:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1  
CLKO  
OS20  
OS30 OS30  
OS25  
OS31 OS31  
OS40  
OS41  
2010 Microchip Technology Inc.  
DS70138G-page 181  
 
 
 
 
 
 
dsPIC30F3014/4013  
TABLE 23-14: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10  
FOSC  
External CLKI Frequency  
(external clocks allowed  
only in EC mode)(2)  
DC  
4
4
40  
10  
MHz  
MHz  
MHz  
MHz  
EC  
EC with 4x PLL  
EC with 8x PLL  
EC with 16x PLL  
10  
4
7.5(3)  
Oscillator Frequency(2)  
DC  
0.4  
4
4
4
4
4
10  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
kHz  
RC  
XTL  
XT  
10  
XT with 4x PLL  
XT with 8x PLL  
XT with 16x PLL  
HS  
HS/2 with 4x PLL  
HS/2 with 8x PLL  
HS/2 with 16x PLL  
HS/3 with 4x PLL  
HS/3 with 8x PLL  
HS/3 with 16x PLL  
LP  
10  
4
7.5(3)  
25  
10  
10  
10  
10  
12(4)  
12(4)  
12(4)  
20(4)  
20(4)  
15(3)  
25  
25  
22.5(3)  
32.768  
OS20  
OS25  
TOSC  
TCY  
TOSC = 1/FOSC  
See parameter OS10  
for FOSC value  
Instruction Cycle Time(2,5)  
33  
DC  
ns  
ns  
See Table 23-16  
EC  
OS30 TosL,  
TosH  
External Clock in (OSC1)  
High or Low Time(2)  
.45 x TOSC  
OS31 TosR,  
TosF  
External Clock in (OSC1)  
Rise or Fall Time(2)  
20  
ns  
EC  
OS40 TckR  
OS41 TckF  
CLKO Rise Time(2,6)  
CLKO Fall Time(2,6)  
ns  
ns  
See parameter DO31  
See parameter DO32  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
3: Limited by the PLL output frequency range.  
4: Limited by the PLL input frequency range.  
5: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at “min.”  
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the  
“Max.” cycle time limit is “DC” (no clock) for all devices.  
6: Measurements are taken in EC or ERC modes. The CLKO signal is measured on the OSC2 pin. CLKO is  
low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).  
DS70138G-page 182  
2010 Microchip Technology Inc.  
 
 
dsPIC30F3014/4013  
TABLE 23-15: PLL JITTER  
AC CHARACTERISTICS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Characteristic  
No.  
Min  
Typ(1)  
Max  
Units  
Conditions  
-40°C TA +85°C  
OS61  
x4 PLL  
x8 PLL  
x16 PLL  
0.251 0.413  
0.251 0.413  
%
%
%
%
%
%
%
%
%
%
%
VDD = 3.0 to 3.6V  
VDD = 3.0 to 3.6V  
VDD = 4.5 to 5.5V  
VDD = 4.5 to 5.5V  
VDD = 3.0 to 3.6V  
VDD = 3.0 to 3.6V  
VDD = 4.5 to 5.5V  
VDD = 4.5 to 5.5V  
VDD = 3.0 to 3.6V  
VDD = 4.5 to 5.5V  
VDD = 4.5 to 5.5V  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +85°C  
-40°C TA +125°C  
0.256  
0.256  
0.47  
0.47  
0.355 0.584  
0.355 0.584  
0.362 0.664  
0.362 0.664  
0.67  
0.92  
0.632 0.956  
0.632 0.956  
Note 1: These parameters are characterized but not tested in manufacturing.  
TABLE 23-16: INTERNAL CLOCK TIMING EXAMPLES  
Clock  
FOSC  
MIPS  
MIPS  
MIPS  
MIPS  
Oscillator  
Mode  
TCY (sec)(2)  
(MHz)(1)  
w/o PLL(3)  
w/PLL x4(3)  
w/PLL x8(3)  
w/PLL x16(3)  
EC  
0.200  
4
20.0  
1.0  
0.05  
1.0  
4.0  
10.0  
8.0  
20.0  
16.0  
10  
25  
4
0.4  
2.5  
0.16  
1.0  
6.25  
1.0  
XT  
4.0  
10.0  
8.0  
20.0  
16.0  
10  
0.4  
2.5  
Note 1: Assumption: Oscillator Postscaler is divide by 1.  
2: Instruction Execution Cycle Time: TCY = 1/MIPS.  
3: Instruction Execution Frequency: MIPS = (FOSC * PLLx)/4 [since there are 4 Q clocks per instruction  
cycle].  
2010 Microchip Technology Inc.  
DS70138G-page 183  
 
 
dsPIC30F3014/4013  
TABLE 23-17: AC CHARACTERISTICS: INTERNAL FRC ACCURACY  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature  
AC CHARACTERISTICS  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Internal FRC Accuracy @ FRC Freq. = 7.37 MHz(1)  
OS63  
FRC  
±2.00  
±5.00  
%
%
-40°C TA +85°C  
-40°C TA +125°C  
VDD = 3.0-5.5V  
VDD = 3.0-5.5V  
Note 1: Frequency calibrated at 7.372 MHz ±2%, 25°C and 5V. TUN bits (OSCCON<3:0>) can be used to  
compensate for temperature drift.  
TABLE 23-18: AC CHARACTERISTICS: INTERNAL LPRC ACCURACY  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ Freq. = 512 kHz(1)  
OS65A  
OS65B  
OS65C  
-50  
-60  
-70  
+50  
+60  
+70  
%
%
%
VDD = 5.0V, ±10%  
VDD = 3.3V, ±10%  
VDD = 2.5V  
Note 1: Change of LPRC frequency as VDD changes.  
DS70138G-page 184  
2010 Microchip Technology Inc.  
 
 
dsPIC30F3014/4013  
FIGURE 23-5:  
CLKO AND I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note: Refer to Figure 23-3 for load conditions.  
TABLE 23-19: CLKO AND I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1,2,3)  
Min  
Typ(4)  
Max  
Units  
Conditions  
DO31  
DO32  
DI35  
TIOR  
TIOF  
TINP  
TRBP  
Port Output Rise Time  
7
7
20  
20  
ns  
ns  
ns  
ns  
Port Output Fall Time  
INTx Pin High or Low Time (output)  
CNx High or Low Time (input)  
20  
DI40  
2 TCY  
Note 1: These parameters are asynchronous events not related to any internal clock edges  
2: Measurements are taken in RC mode and EC mode where CLKO output is 4 x TOSC.  
3: These parameters are characterized but not tested in manufacturing.  
4: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
2010 Microchip Technology Inc.  
DS70138G-page 185  
 
 
 
 
dsPIC30F3014/4013  
FIGURE 23-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING CHARACTERISTICS  
VDD  
SY12  
MCLR  
SY10  
Internal  
POR  
SY11  
SY30  
PWRT  
Time-out  
Oscillator  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
SY20  
SY13  
SY13  
I/O Pins  
SY35  
FSCM  
Delay  
Note: Refer to Figure 23-3 for load conditions.  
DS70138G-page 186  
2010 Microchip Technology Inc.  
 
 
 
 
dsPIC30F3014/4013  
TABLE 23-20: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max Units  
Conditions  
SY10  
SY11  
TmcL  
MCLR Pulse Width (low)  
Power-up Timer Period  
2
s  
-40°C to +85°C  
TPWRT  
2
10  
43  
4
16  
64  
8
32  
128  
ms  
-40°C to +85°C,  
VDD = 5V  
User programmable  
SY12  
SY13  
TPOR  
TIOZ  
Power-on Reset Delay  
3
10  
30  
s  
s  
-40°C to +85°C  
I/O High-Impedance from MCLR  
Low or Watchdog Timer Reset  
0.8  
1.0  
SY20  
TWDT1  
TWDT2  
TWDT3  
Watchdog Timer Time-out Period  
(no prescaler)  
1.1  
1.2  
1.3  
2.0  
2.0  
2.0  
6.6  
5.0  
4.0  
ms  
ms  
ms  
VDD = 2.5V  
VDD = 3.3V, ±10%  
VDD = 5V, ±10%  
SY25  
SY30  
SY35  
TBOR  
TOST  
Brown-out Reset Pulse Width(3)  
Oscillator Start-up Timer Period  
Fail-Safe Clock Monitor Delay  
100  
1024 TOSC  
500  
s  
s  
VDD VBOR (D034)  
TOSC = OSC1 period  
-40°C to +85°C  
TFSCM  
900  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
3: Refer to Figure 23-2 and Table 23-11 for BOR.  
FIGURE 23-7:  
BAND GAP START-UP TIME CHARACTERISTICS  
VBGAP  
0V  
Enable Band Gap(1)  
Band Gap  
Stable  
SY40  
Note 1: Note: Set LVDEN bit (RCON<12>) or FBORPOR<7>set.  
TABLE 23-21: BAND GAP START-UP TIME REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic(1)  
Band Gap Start-up Time  
Min Typ(2) Max Units  
40 65  
Conditions  
SY40  
TBGAP  
s Defined as the time between the  
instant that the band gap is enabled  
and the moment that the band gap  
reference voltage is stable  
(RCON<13> status bit)  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
2010 Microchip Technology Inc.  
DS70138G-page 187  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dsPIC30F3014/4013  
FIGURE 23-8:  
TYPE A, B AND C TIMER EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
Tx11  
Tx10  
Tx15  
OS60  
Tx20  
TMRX  
Note: Refer to Figure 23-3 for load conditions.  
TABLE 23-22: TYPE A TIMER (TIMER1) EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TTXH  
Characteristic  
Synchronous,  
Min  
Typ  
Max Units  
Conditions  
TA10  
TxCK High Time  
0.5 TCY + 20  
ns  
ns  
Must also meet  
parameter TA15  
no prescaler  
Synchronous,  
with prescaler  
10  
Asynchronous  
10  
ns  
ns  
TA11  
TA15  
TTXL  
TTXP  
TxCK Low Time  
Synchronous,  
no prescaler  
0.5 TCY + 20  
Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
ns  
Asynchronous  
10  
ns  
ns  
TxCK Input Period Synchronous,  
no prescaler  
TCY + 10  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
N = prescale  
value  
(TCY + 40)/N  
(1, 8, 64, 256)  
Asynchronous  
20  
ns  
OS60  
TA20  
Ft1  
SOSC1/T1CK Oscillator Input  
Frequency Range (oscillator  
enabled by setting bit, TCS  
(T1CON<1>)  
DC  
50  
kHz  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
Note 1: Timer1 is a Type A.  
DS70138G-page 188  
2010 Microchip Technology Inc.  
 
 
 
dsPIC30F3014/4013  
TABLE 23-23: TYPE B TIMER (TIMER2 AND TIMER4) EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TtxH  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
TB10  
TxCK High Time Synchronous, 0.5 TCY + 20  
no prescaler  
ns  
Must also meet  
parameter TB15  
Synchronous,  
with prescaler  
10  
ns  
ns  
ns  
ns  
TB11  
TB15  
TtxL  
TtxP  
TxCK Low Time  
Synchronous, 0.5 TCY + 20  
no prescaler  
Must also meet  
parameter TB15  
Synchronous,  
with prescaler  
10  
TxCK Input Period Synchronous,  
no prescaler  
TCY + 10  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
(TCY + 40)/N  
TB20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
Note 1: Timer2 and Timer4 are Type B.  
TABLE 23-24: TYPE C TIMER (TIMER3 AND TIMER5) EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TtxH  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
TC10  
TxCK High Time  
TxCK Low Time  
Synchronous  
Synchronous  
0.5 TCY + 20  
ns  
ns  
ns  
Must also meet  
parameter TC15  
TC11  
TC15  
TtxL  
TtxP  
0.5 TCY + 20  
TCY + 10  
Must also meet  
parameter TC15  
TxCK Input Period Synchronous,  
no prescaler  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
(TCY + 40)/N  
TC20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5  
TCY  
Note 1: Timer3 and Timer5 are Type C.  
2010 Microchip Technology Inc.  
DS70138G-page 189  
 
 
 
 
dsPIC30F3014/4013  
FIGURE 23-9:  
INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS  
ICX  
IC10  
IC11  
IC15  
Note: Refer to Figure 23-3 for load conditions.  
TABLE 23-25: INPUT CAPTURE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
IC10  
IC11  
IC15  
TccL  
TccH  
TccP  
ICx Input Low Time No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
ICx Input High Time No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ICx Input Period  
(2 TCY + 40)/N  
N = prescale  
value (1, 4, 16)  
Note 1: These parameters are characterized but not tested in manufacturing.  
FIGURE 23-10:  
OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS  
OCx  
(Output Compare  
or PWM Mode)  
OC10  
OC11  
Note: Refer to Figure 23-3 for load conditions.  
TABLE 23-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OC10 TccF  
OC11 TccR  
OCx Output Fall Time  
OCx Output Rise Time  
ns  
ns  
See Parameter DO32  
See Parameter DO31  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
DS70138G-page 190  
2010 Microchip Technology Inc.  
 
 
 
 
 
 
dsPIC30F3014/4013  
FIGURE 23-11:  
OCFA/OCFB  
OCx  
OCx/PWM MODULE TIMING CHARACTERISTICS  
OC20  
OC15  
TABLE 23-27: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OC15 TFD  
OC20 TFLT  
Fault Input to PWM I/O  
Change  
50  
ns  
Fault Input Pulse Width  
50  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2010 Microchip Technology Inc.  
DS70138G-page 191  
 
 
 
dsPIC30F3014/4013  
FIGURE 23-12:  
DCI MODULE (MULTICHANNEL, I2S MODES) TIMING CHARACTERISTICS  
CSCK  
(SCKE =  
0
)
)
CS11  
CS10  
CS21  
CS20  
CS20  
CS21  
CSCK  
(SCKE =  
1
COFS  
CS55 CS56  
CS35  
70  
CS51  
HIGH-Z  
CS50  
LSb  
HIGH-Z  
MSb  
CSDO  
CSDI  
CS30  
CS31  
LSb IN  
MSb IN  
CS40 CS41  
Note: Refer to Figure 23-3 for load conditions.  
DS70138G-page 192  
2010 Microchip Technology Inc.  
 
dsPIC30F3014/4013  
TABLE 23-28: DCI MODULE (MULTICHANNEL, I2S MODES) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
CS10  
TcSCKL  
CSCK Input Low Time  
(CSCK pin is an input)  
TCY/2 + 20  
ns  
CSCK Output Low Time  
(CSCK pin is an output)(3)  
30  
10  
10  
25  
25  
ns  
ns  
ns  
ns  
ns  
CS11  
TcSCKH  
CSCK Input High Time  
(CSCK pin is an input)  
TCY/2 + 20  
CSCK Output High Time  
(CSCK pin is an output)(3)  
30  
CS20  
CS21  
TcSCKF  
TcSCKR  
CSCK Output Fall Time  
(CSCK pin is an output)(4)  
CSCK Output Rise Time  
(CSCK pin is an output)(4)  
CS30  
CS31  
CS35  
CS36  
CS40  
TcSDOF  
TcSDOR  
TDV  
CSDO Data Output Fall Time(4)  
CSDO Data Output Rise Time(4)  
Clock Edge to CSDO Data Valid  
Clock Edge to CSDO Tri-Stated  
10  
20  
10  
10  
25  
25  
10  
20  
ns  
ns  
ns  
ns  
ns  
TDIV  
TCSDI  
Setup Time of CSDI Data Input  
to CSCK Edge (CSCK pin is  
input or output)  
CS41  
THCSDI  
Hold Time of CSDI Data Input to  
CSCK Edge (CSCK pin is input  
or output)  
20  
ns  
CS50  
CS51  
CS55  
TcoFSF  
TcoFSR  
TscoFS  
COFS Fall Time  
(COFS pin is output)  
20  
10  
10  
25  
25  
ns  
ns  
ns  
Note 1  
Note 1  
COFS Rise Time  
(COFS pin is output)  
Setup Time of COFS Data Input  
to CSCK edge (COFS pin is  
input)  
CS56  
CS57  
THCOFS  
TPCSCK  
Hold Time of COFS Data Input to  
CSCK Edge (COFS pin is input)  
20  
ns  
ns  
CSCK Clock Period  
100  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for CSCK is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all DCI pins.  
2010 Microchip Technology Inc.  
DS70138G-page 193  
 
 
dsPIC30F3014/4013  
FIGURE 23-13:  
DCI MODULE (AC-LINK MODE) TIMING CHARACTERISTICS  
BIT_CLK  
(CSCK)  
CS62  
CS71  
CS61  
CS60  
CS21  
CS20  
CS70  
CS72  
SYNC  
(COFS)  
CS76  
CS75  
CS80  
MSb  
LSb  
LSb  
SDOx  
(CSDO)  
CS76  
CS75  
MSb In  
SDIx  
(CSDI)  
CS65 CS66  
DS70138G-page 194  
2010 Microchip Technology Inc.  
 
dsPIC30F3014/4013  
TABLE 23-29: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1,2)  
BIT_CLK Low Time  
Min  
Typ(3)  
Max  
Units  
Conditions  
CS60  
CS61  
CS62  
CS65  
TBCLKL  
TBCLKH  
TBCLK  
TSACL  
36  
36  
40.7  
40.7  
81.4  
45  
45  
10  
ns  
ns  
ns  
ns  
BIT_CLK High Time  
BIT_CLK Period  
Bit clock is input  
Input Setup Time to  
Falling Edge of BIT_CLK  
CS66  
THACL  
Input Hold Time from  
10  
ns  
Falling Edge of BIT_CLK  
CS70  
CS71  
CS72  
CS75  
CS76  
CS80  
TSYNCLO SYNC Data Output Low Time  
TSYNCHI SYNC Data Output High Time  
19.5  
1.3  
20.8  
10  
25  
25  
15  
s  
s  
s  
ns  
ns  
ns  
Note 1  
Note 1  
TSYNC  
TRACL  
TFACL  
SYNC Data Output Period  
Note 1  
Rise Time, SYNC, SDATA_OUT  
Fall Time, SYNC, SDATA_OUT  
CLOAD = 50 pF, VDD = 5V  
CLOAD = 50 pF, VDD = 5V  
10  
TOVDACL Output Valid Delay from Rising  
Edge of BIT_CLK  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: These values assume BIT_CLK frequency is 12.288 MHz.  
3: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
FIGURE 23-14:  
SPI MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP31  
SP21  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30  
MSb In  
SP40  
LSb In  
Bit 14 - - - -1  
SP41  
Note: Refer to Figure 23-3 for load conditions.  
2010 Microchip Technology Inc.  
DS70138G-page 195  
 
 
 
 
dsPIC30F3014/4013  
TABLE 23-30: SPI MASTER MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP11  
SP20  
TscL  
TscH  
TscF  
SCKX Output Low Time(3)  
SCKX Output High Time(3)  
SCKX Output Fall Time(4  
TCY/2  
TCY/2  
ns  
ns  
ns  
See parameter  
DO32  
SP21  
SP30  
SP31  
SP35  
SP40  
SP41  
TscR  
TdoF  
TdoR  
SCKX Output Rise Time(4)  
20  
20  
30  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter  
DO31  
SDOX Data Output Fall Time(4)  
SDOX Data Output Rise Time(4)  
See parameter  
DO32  
See parameter  
DO31  
TscH2doV, SDOX Data Output Valid after  
TscL2doV SCKX Edge  
TdiV2scH, Setup Time of SDIX Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIX Data Input  
TscL2diL to SCKX Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
to SCKX Edge  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPI pins.  
FIGURE 23-15:  
SPI MODULE MASTER MODE (CKE =1) TIMING CHARACTERISTICS  
SP36  
SCKX  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP21  
SCKX  
(CKP = 1)  
SP35  
SP20  
LSb  
MSb  
SP40  
Bit 14 - - - - - -1  
SDOX  
SDIX  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
Note: Refer to Figure 23-3 for load conditions.  
DS70138G-page 196  
2010 Microchip Technology Inc.  
 
 
 
dsPIC30F3014/4013  
TABLE 23-31: SPI MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP11  
SP20  
TscL  
TscH  
TscF  
SCKX Output Low Time(3)  
SCKX Output High Time(3)  
SCKX Output Fall Time(4)  
TCY/2  
TCY/2  
ns  
ns  
ns  
See parameter  
DO32  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
TscR  
TdoF  
TdoR  
SCKX Output Rise Time(4)  
30  
20  
20  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter  
DO31  
SDOX Data Output Fall  
Time(4)  
See parameter  
DO32  
SDOX Data Output Rise  
Time(4)  
See parameter  
DO31  
TscH2do, SDOX Data Output Valid after  
TscL2doV SCKX Edge  
TdoV2sc, SDOX Data Output Setup to  
TdoV2scL First SCKX Edge  
TdiV2scH, Setup Time of SDIX Data  
TdiV2scL Input to SCKX Edge  
TscH2diL, Hold Time of SDIX Data Input  
TscL2diL  
to SCKX Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPI pins.  
FIGURE 23-16:  
SPI MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS  
SSX  
SP52  
SP50  
SCK  
(CKP =  
X
0
)
)
SP71  
SP70  
SP72  
SP73  
SP72  
SCK  
(CKP =  
X
1
SP73  
LSb  
SP35  
MSb  
SDOX  
Bit 14 - - - - - -1  
SP30,SP31  
Bit 14 - - - -1  
Note: Refer to Figure 23-3 for load conditions.  
SP51  
SDIX  
MSb In  
SP41  
LSb In  
SP40  
2010 Microchip Technology Inc.  
DS70138G-page 197  
 
 
 
dsPIC30F3014/4013  
TABLE 23-32: SPI MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscL  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
SCKX Input Low Time  
30  
30  
25  
25  
ns  
ns  
ns  
ns  
ns  
TscH  
TscF  
TscR  
TdoF  
SCKX Input High Time  
SCKX Input Fall Time(3)  
SCKX Input Rise Time(3)  
SDOX Data Output Fall Time(3)  
Seeparameter  
DO32  
SP31  
SP35  
SP40  
SP41  
SP50  
SP51  
SP52  
TdoR  
SDOX Data Output Rise Time(3)  
30  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Seeparameter  
DO31  
TscH2do, SDOX Data Output Valid after  
TscL2doV SCKX Edge  
TdiV2scH, Setup Time of SDIX Data Input  
TdiV2scL to SCKX Edge  
20  
TscH2diL, Hold Time of SDIX Data Input  
TscL2diL  
20  
120  
to SCKX Edge  
TssL2scH, SSXto SCKXor SCKXInput  
TssL2scL  
TssH2doZ SSXto SDOX Output  
10  
High-impedance(3)  
TscH2ssH SSX after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: Assumes 50 pF load on all SPI pins.  
DS70138G-page 198  
2010 Microchip Technology Inc.  
 
 
dsPIC30F3014/4013  
FIGURE 23-17:  
SPI MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS  
SP60  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP71  
SP70  
SP72  
SP73  
SP73  
SCKX  
(CKP = 1)  
SP35  
SP72  
LSb  
SP52  
Bit 14 - - - - - -1  
MSb  
SDOX  
SDIX  
SP30,SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 23-3 for load conditions.  
2010 Microchip Technology Inc.  
DS70138G-page 199  
 
dsPIC30F3014/4013  
TABLE 23-33: SPI MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscL  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
SCKX Input Low Time  
30  
30  
25  
25  
ns  
ns  
ns  
ns  
ns  
TscH  
TscF  
TscR  
TdoF  
SCKX Input High Time  
SCKX Input Fall Time(3)  
SCKX Input Rise Time(3)  
SDOX Data Output Fall Time(3)  
See parameter  
DO32  
SP31  
SP35  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
TdoR  
SDOX Data Output Rise Time(3)  
30  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter  
DO31  
TscH2do, SDOX Data Output Valid after  
TscL2doV SCKX Edge  
TdiV2scH, Setup Time of SDIX Data Input  
TdiV2scL to SCKX Edge  
20  
TscH2diL, Hold Time of SDIX Data Input  
TscL2diL to SCKX Edge  
20  
TssL2scH, SSXto SCKXor SCKXInput  
TssL2scL  
120  
TssH2doZ SSxto SDOX Output  
10  
1.5 TCY + 40  
High-Impedance(4)  
TscH2ssH SSXafter SCKX Edge  
TscL2ssH  
TssL2doV SDOX Data Output Valid after  
SCKX Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPI pins.  
DS70138G-page 200  
2010 Microchip Technology Inc.  
 
 
dsPIC30F3014/4013  
FIGURE 23-18:  
I2C™ BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCL  
SDA  
IM31  
IM34  
IM30  
IM33  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 23-3 for load conditions.  
FIGURE 23-19:  
I2C™ BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCL  
IM11  
IM26  
IM10  
IM33  
IM25  
SDA  
In  
IM45  
IM40  
IM40  
SDA  
Out  
Note: Refer to Figure 23-3 for load conditions.  
TABLE 23-34: I2C™ BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min(1)  
Max  
Units  
Conditions  
IM10  
IM11  
IM20  
TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
1 MHz mode(2) TCY/2 (BRG + 1)  
THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TF:SCL  
SDA and SCL  
Fall Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
300  
300  
100  
CB is specified to be  
from 10 to 400 pF  
Note 1: BRG is the value of the I2C Baud Rate Generator. Refer to Section 21. “Inter-Integrated Circuit™ (I2C)”  
in the “dsPIC30F Family Reference Manual” (DS70046).  
2: Maximum pin capacitance = 10 pF for all I2C pins (for 1 MHz mode only).  
2010 Microchip Technology Inc.  
DS70138G-page 201  
 
 
 
 
dsPIC30F3014/4013  
TABLE 23-34: I2C™ BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min(1)  
Max  
Units  
Conditions  
IM21  
TR:SCL  
SDA and SCL  
Rise Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
1000  
300  
300  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
pF  
CB is specified to be  
from 10 to 400 pF  
20 + 0.1 CB  
250  
100  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
IM40  
IM45  
IM50  
TSU:DAT Data Input  
Setup Time  
THD:DAT Data Input  
Hold Time  
0
0
0.9  
TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
After this period, the  
first clock pulse is  
generated  
Hold Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1)  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TAA:SCL Output Valid  
From Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
3500  
1000  
TBF:SDA Bus Free Time 100 kHz mode  
4.7  
1.3  
Time the bus must be  
free before a new  
transmission can start  
400 kHz mode  
1 MHz mode(2)  
CB  
Bus Capacitive Loading  
400  
Note 1: BRG is the value of the I2C Baud Rate Generator. Refer to Section 21. “Inter-Integrated Circuit™ (I2C)”  
in the “dsPIC30F Family Reference Manual” (DS70046).  
2: Maximum pin capacitance = 10 pF for all I2C pins (for 1 MHz mode only).  
DS70138G-page 202  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
FIGURE 23-20:  
I2C™ BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCL  
SDA  
IS34  
IS31  
IS30  
IS33  
Stop  
Condition  
Start  
Condition  
FIGURE 23-21:  
I2C™ BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS21  
IS11  
IS10  
SCL  
IS30  
IS26  
IS31  
IS33  
IS25  
SDA  
In  
IS45  
IS40  
IS40  
SDA  
Out  
2010 Microchip Technology Inc.  
DS70138G-page 203  
 
 
dsPIC30F3014/4013  
TABLE 23-35: I2C™ BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
IS10  
TLO:SCL Clock Low Time 100 kHz mode  
400 kHz mode  
4.7  
s  
s  
Device must operate at a  
minimum of 1.5 MHz  
1.3  
Device must operate at a  
minimum of 10 MHz.  
1 MHz mode(1)  
0.5  
4.0  
s  
s  
IS11  
THI:SCL  
Clock High Time 100 kHz mode  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
s  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
300  
300  
100  
1000  
300  
300  
s  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
pF  
IS20  
IS21  
IS25  
IS26  
IS30  
IS31  
IS33  
IS34  
IS40  
IS45  
IS50  
TF:SCL  
TR:SCL  
SDA and SCL  
Fall Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
SDA and SCL  
Rise Time  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
TSU:DAT Data Input  
Setup Time  
250  
100  
100  
0
THD:DAT Data Input  
Hold Time  
0
0.9  
0.3  
0
TSU:STA Start Condition  
Setup Time  
4.7  
0.6  
0.25  
4.0  
0.6  
0.25  
4.7  
0.6  
0.6  
4000  
600  
250  
0
Only relevant for Repeated  
Start condition  
THD:STA Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
THD:STO Stop Condition  
Hold Time  
TAA:SCL  
Output Valid From 100 kHz mode  
3500  
1000  
350  
Clock  
400 kHz mode  
1 MHz mode(1)  
0
0
TBF:SDA Bus Free Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
4.7  
1.3  
0.5  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus Capacitive  
Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins (for 1 MHz mode only).  
DS70138G-page 204  
2010 Microchip Technology Inc.  
 
 
dsPIC30F3014/4013  
FIGURE 23-22:  
CAN MODULE I/O TIMING CHARACTERISTICS  
CXTX Pin  
(output)  
New Value  
Old Value  
CA10 CA11  
CA20  
CXRX Pin  
(input)  
TABLE 23-36: CAN MODULE I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
CA10  
CA11  
CA20  
TioF  
TioR  
Tcwf  
Port Output Fall Time  
Port Output Rise Time  
10  
10  
25  
25  
ns  
ns  
ns  
Pulse Width to Trigger  
CAN Wake-up Filter  
500  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2010 Microchip Technology Inc.  
DS70138G-page 205  
 
 
 
dsPIC30F3014/4013  
TABLE 23-37: 12-BIT A/D MODULE SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Device Supply  
AD01 AVDD  
AD02 AVSS  
Module VDD Supply  
Module VSS Supply  
Greater of  
VDD – 0.3  
or 2.7  
Lesser of  
VDD + 0.3  
or 5.5  
V
V
VSS - 0.3  
VSS + 0.3  
Reference Inputs  
AD05  
AD06  
AD07  
VREFH  
VREFL  
VREF  
Reference Voltage High  
Reference Voltage Low  
AVSS + 2.7  
AVSS  
AVDD  
V
V
V
AVDD – 2.7  
AVDD + 0.3  
Absolute Reference  
Voltage  
AVSS – 0.3  
AD08  
IREF  
Current Drain  
200  
.001  
300  
2
A A/D operating  
A A/D off  
Analog Input  
AD10 VINH-VINL Full-Scale Input Span  
VREFL  
AVSS – 0.3  
VREFH  
AVDD + 0.3  
±0.610  
V
V
Note 1  
AD11  
AD12  
VIN  
Absolute Input Voltage  
Leakage Current  
±0.001  
A VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 5V  
Source Impedance = 2.5 k  
AD13  
Leakage Current  
±0.001  
±0.610  
A VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
Source Impedance =  
2.5 k  
AD15 RSS  
Switch Resistance  
3.2K  
18  
pF  
AD16 CSAMPLE Sample Capacitor  
AD17 RIN  
Recommended Impedance  
2.5K  
of Analog Voltage Source  
DC Accuracy  
12 data bits  
AD20 Nr  
Resolution  
bits  
AD21 INL  
Integral Nonlinearity  
<±1  
<±1  
<±1  
<±1  
+3  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 5V  
AD21A INL  
AD22 DNL  
AD22A DNL  
Integral Nonlinearity  
Differential Nonlinearity  
Differential Nonlinearity  
Gain Error  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 5V  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
AD23  
GERR  
+1.25  
+1.25  
+1.5  
+1.5  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 5V  
AD23A GERR  
Gain Error  
+3  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing  
codes.  
DS70138G-page 206  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
TABLE 23-37: 12-BIT A/D MODULE SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Offset Error  
Min.  
Typ  
Max.  
Units  
Conditions  
AD24  
AD24A EOFF  
AD25  
EOFF  
-2  
-1.5  
-1.25  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 5V  
Offset Error  
-2  
-1.5  
-1.25  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
Monotonicity(1)  
Guaranteed  
Dynamic Performance  
AD30 THD  
Total Harmonic Distortion  
-71  
68  
dB  
dB  
AD31 SINAD  
Signal to Noise and  
Distortion  
AD32 SFDR  
Spurious Free Dynamic  
Range  
83  
dB  
AD33  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
100  
kHz  
bits  
AD34 ENOB  
10.95  
11.1  
Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing  
codes.  
2010 Microchip Technology Inc.  
DS70138G-page 207  
dsPIC30F3014/4013  
FIGURE 23-23:  
12-BIT A/D CONVERSION TIMING CHARACTERISTICS  
(ASAM = 0, SSRC = 000)  
AD50  
ADCLK  
Instruction  
Execution  
Set SAMP  
Clear SAMP  
SAMP  
ch0_dischrg  
ch0_samp  
eoc  
AD61  
AD60  
TSAMP  
AD55  
DONE  
ADIF  
ADRES(0)  
1
2
3
4
5
6
7
8
9
- Software sets ADCON. SAMP to start sampling.  
- Sampling starts after discharge period.  
1
2
TSAMP is described in Section 18. “12-bit A/D Converter” of the dsPIC30F Family Reference Manual (DS70046).  
- Software clears ADCON. SAMP to start conversion.  
- Sampling ends, conversion sequence starts.  
- Convert bit 11.  
3
4
5
6
7
8
9
- Convert bit 10.  
- Convert bit 1.  
- Convert bit 0.  
- One TAD for end of conversion.  
DS70138G-page 208  
2010 Microchip Technology Inc.  
 
dsPIC30F3014/4013  
TABLE 23-38: 12-BIT A/D CONVERSION TIMING REQUIREMENTS  
Standard Operating Conditions: 2.7V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Clock Parameters  
AD50  
AD51  
TAD  
tRC  
A/D Clock Period  
A/D Internal RC Oscillator Period  
334  
1.2  
ns  
VDD = 3-5.5V (Note 1)  
1.5  
1.8  
s  
Conversion Rate  
AD55  
AD56  
AD57  
tCONV  
FCNV  
Conversion Time  
Throughput Rate  
Sampling Time  
14 TAD  
200  
ns  
ksps  
ns  
VDD = VREF = 5V  
TSAMP  
1 TAD  
VDD = 3-5.5V source  
resistance  
RS = 0-2.5 k  
Timing Parameters  
AD60  
AD61  
AD62  
AD63  
tPCS  
tPSS  
tCSS  
Conversion Start from Sample  
Trigger  
0.5 TAD  
1 TAD  
ns  
ns  
ns  
s  
Sample Start from Setting  
Sample (SAMP) Bit  
1.5  
TAD  
Conversion Completion to  
Sample Start (ASAM = 1)  
0.5 TAD  
(2)  
tDPU  
Time to Stabilize Analog Stage  
from A/D Off to A/D On  
20  
Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
2: tDPU is the time required for the ADC module to stabilize when it is turned on (ADCON1<ADON> = 1).  
During this time the ADC result is indeterminate.  
2010 Microchip Technology Inc.  
DS70138G-page 209  
 
 
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 210  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
24.0 PACKAGING INFORMATION  
24.1 Package Marking Information  
40-Lead PDIP  
Example  
dsPIC30F4013  
-30I/P  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
YYWWNNN  
e
3
0810017  
Example  
dsPIC  
44-Lead TQFP  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
30F4013  
-301/PT  
0810017  
e
3
44-Lead QFN  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
dsPIC  
30F4013  
-30I/ML  
0810017  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2010 Microchip Technology Inc.  
DS70138G-page 211  
 
 
dsPIC30F3014/4013  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒꢈꢓꢇMꢇꢔꢁꢁꢇꢕꢌꢉꢇꢖꢗꢆꢘꢇꢙꢈꢎꢐꢈꢚ  
ꢛꢗꢋꢄꢜ 4ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ5ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ5ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ366***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'6ꢓꢆꢌ5ꢆꢑꢃꢄꢑ  
N
NOTE 1  
E1  
1 2 3  
D
E
A2  
A
L
c
b1  
b
A1  
e
eB  
7ꢄꢃ&!  
ꢙ8,9.ꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ:ꢃ'ꢃ&!  
ꢔꢙ8  
8;ꢔ  
ꢔꢗ<  
8"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
8
ꢖꢕ  
ꢁꢀꢕꢕꢅ2ꢐ,  
ꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ5ꢆꢑꢈꢅꢘꢍꢃꢌ5ꢄꢈ!!  
2ꢆ!ꢈꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢐꢍꢋ"ꢇ#ꢈꢉꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ5ꢆꢑꢈꢅ>ꢃ#&ꢍ  
; ꢈꢉꢆꢇꢇꢅ:ꢈꢄꢑ&ꢍ  
ꢘꢃꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
:ꢈꢆ#ꢅꢘꢍꢃꢌ5ꢄꢈ!!  
7ꢓꢓꢈꢉꢅ:ꢈꢆ#ꢅ>ꢃ#&ꢍ  
M
M
M
M
M
M
M
M
M
M
M
M
ꢁꢎ1ꢕ  
ꢁꢀꢚ1  
M
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
:
)ꢀ  
)
ꢈ2  
ꢁꢀꢎ1  
ꢁꢕꢀ1  
ꢁ1ꢚꢕ  
ꢁꢖ?1  
ꢀꢁꢚ?ꢕ  
ꢁꢀꢀ1  
ꢁꢕꢕ?  
ꢁꢕ-ꢕ  
ꢁꢕꢀꢖ  
M
ꢁꢛꢎ1  
ꢁ1?ꢕ  
ꢎꢁꢕꢚ1  
ꢁꢎꢕꢕ  
ꢁꢕꢀ1  
ꢁꢕꢜꢕ  
ꢁꢕꢎ-  
ꢁꢜꢕꢕ  
:ꢋ*ꢈꢉꢅ:ꢈꢆ#ꢅ>ꢃ#&ꢍ  
; ꢈꢉꢆꢇꢇꢅꢝꢋ*ꢅꢐꢓꢆꢌꢃꢄꢑꢅꢅꢏ  
ꢛꢗꢋꢄꢊꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢕꢀꢕ/ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁ1ꢔꢁ  
2ꢐ,3 2ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢀꢛ2  
DS70138G-page 212  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
ꢀꢀꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ !ꢌꢑꢇ"ꢏꢅꢆꢇ#ꢉꢅꢋ$ꢅꢍ%ꢇꢒꢈ ꢓꢇMꢇ&ꢁ'&ꢁ'&ꢇꢕꢕꢇꢖꢗꢆꢘ(ꢇ)*ꢁꢁꢇꢕꢕꢇꢙ "#ꢈꢚ  
ꢛꢗꢋꢄꢜ 4ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ5ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ5ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ366***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'6ꢓꢆꢌ5ꢆꢑꢃꢄꢑ  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
β
A1  
L
L1  
7ꢄꢃ&!  
ꢔꢙ::ꢙꢔ.ꢘ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ:ꢃ'ꢃ&!  
ꢔꢙ8  
8;ꢔ  
ꢖꢖ  
ꢕꢁ?ꢕꢅ2ꢐ,  
M
ꢀꢁꢕꢕ  
M
ꢔꢗ<  
8"')ꢈꢉꢅꢋ%ꢅ:ꢈꢆ#!  
:ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
; ꢈꢉꢆꢇꢇꢅ9ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ5ꢆꢑꢈꢅꢘꢍꢃꢌ5ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅ  
4ꢋꢋ&ꢅ:ꢈꢄꢑ&ꢍ  
8
ꢗꢎ  
ꢗꢀ  
:
M
ꢀꢁꢎꢕ  
ꢀꢁꢕ1  
ꢕꢁꢀ1  
ꢕꢁꢜ1  
ꢕꢁꢚ1  
ꢕꢁꢕ1  
ꢕꢁꢖ1  
ꢕꢁꢛꢕ  
4ꢋꢋ&ꢓꢉꢃꢄ&  
4ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
:ꢀ  
ꢀꢁꢕꢕꢅꢝ.4  
-ꢁ1ꢟ  
ꢕꢟ  
ꢜꢟ  
; ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
; ꢈꢉꢆꢇꢇꢅ:ꢈꢄꢑ&ꢍ  
.
.ꢀ  
ꢒꢀ  
ꢀꢎꢁꢕꢕꢅ2ꢐ,  
ꢀꢎꢁꢕꢕꢅ2ꢐ,  
ꢀꢕꢁꢕꢕꢅ2ꢐ,  
ꢀꢕꢁꢕꢕꢅ2ꢐ,  
M
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ5ꢆꢑꢈꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ5ꢆꢑꢈꢅ:ꢈꢄꢑ&ꢍ  
:ꢈꢆ#ꢅꢘꢍꢃꢌ5ꢄꢈ!!  
:ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ2ꢋ&&ꢋ'  
ꢕꢁꢕꢚ  
ꢕꢁ-ꢕ  
ꢀꢀꢟ  
ꢕꢁꢎꢕ  
ꢕꢁꢖ1  
ꢀ-ꢟ  
)
ꢕꢁ-ꢜ  
ꢀꢎꢟ  
ꢀꢎꢟ  
ꢀꢀꢟ  
ꢀ-ꢟ  
ꢛꢗꢋꢄꢊꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ,ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢓ&ꢃꢋꢄꢆꢇ@ꢅ!ꢃAꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢎ1ꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁ1ꢔꢁ  
2ꢐ,3 2ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.43 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢜꢛ2  
2010 Microchip Technology Inc.  
DS70138G-page 213  
dsPIC30F3014/4013  
ꢀꢀꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ !ꢌꢑꢇ"ꢏꢅꢆꢇ#ꢉꢅꢋ$ꢅꢍ%ꢇꢒꢈ ꢓꢇMꢇ&ꢁ'&ꢁ'&ꢇꢕꢕꢇꢖꢗꢆꢘ(ꢇ)*ꢁꢁꢇꢕꢕꢇꢙ "#ꢈꢚ  
ꢛꢗꢋꢄꢜ 4ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ5ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ5ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ366***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'6ꢓꢆꢌ5ꢆꢑꢃꢄꢑ  
DS70138G-page 214  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
ꢀꢀꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ"ꢏꢅꢆꢇ#ꢉꢅꢋ(ꢇꢛꢗꢇꢃꢄꢅꢆꢇꢈꢅꢍ%ꢅ+ꢄꢇꢒ,ꢃꢓꢇMꢇ-'-ꢇꢕꢕꢇꢖꢗꢆꢘꢇꢙ"#ꢛꢚ  
ꢛꢗꢋꢄꢜ 4ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ5ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ5ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ366***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'6ꢓꢆꢌ5ꢆꢑꢃꢄꢑ  
D2  
D
EXPOSED  
PAD  
e
b
K
E
E2  
2
1
2
1
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
7ꢄꢃ&!  
ꢔꢙ::ꢙꢔ.ꢘ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ:ꢃ'ꢃ&!  
ꢔꢙ8  
8;ꢔ  
ꢖꢖ  
ꢕꢁꢛ1ꢅ2ꢐ,  
ꢕꢁꢚꢕ  
ꢔꢗ<  
8"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
; ꢈꢉꢆꢇꢇꢅ9ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢘꢍꢃꢌ5ꢄꢈ!!  
; ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
8
ꢗꢀ  
ꢗ-  
.
.ꢎ  
ꢕꢁ?ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕ1  
ꢕꢁꢕꢎ  
ꢕꢁꢎꢕꢅꢝ.4  
?ꢁꢕꢕꢅ2ꢐ,  
ꢛꢁꢖ1  
?ꢁꢕꢕꢅ2ꢐ,  
ꢛꢁꢖ1  
ꢕꢁ-ꢕ  
ꢕꢁꢖꢕ  
M
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
; ꢈꢉꢆꢇꢇꢅ:ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ:ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ:ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
ꢛꢁ-ꢕ  
ꢛꢁ?ꢕ  
ꢒꢎ  
)
:
ꢛꢁ-ꢕ  
ꢕꢁꢎ1  
ꢕꢁ-ꢕ  
ꢕꢁꢎꢕ  
ꢛꢁ?ꢕ  
ꢕꢁ-?  
ꢕꢁ1ꢕ  
M
C
ꢛꢗꢋꢄꢊꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ5ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁ1ꢔꢁ  
2ꢐ,3 2ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.43 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢕ-2  
2010 Microchip Technology Inc.  
DS70138G-page 215  
dsPIC30F3014/4013  
ꢀꢀꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ"ꢏꢅꢆꢇ#ꢉꢅꢋ(ꢇꢛꢗꢇꢃꢄꢅꢆꢇꢈꢅꢍ%ꢅ+ꢄꢇꢒ,ꢃꢓꢇMꢇ-'-ꢇꢕꢕꢇꢖꢗꢆꢘꢇꢙ"#ꢛꢚ  
ꢛꢗꢋꢄꢜ 4ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ5ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ5ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ366***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'6ꢓꢆꢌ5ꢆꢑꢃꢄꢑ  
DS70138G-page 216  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
• Electrical Specifications:  
APPENDIX A: REVISION HISTORY  
Revision D (June 2006)  
- Resolved TBD values for parameters DO10,  
DO16, DO20, and DO26 (see Table 23-9)  
- 10-bit High-Speed ADC tPDU timing parame-  
ter (time to stabilize) has been updated from  
20 µs typical to 20 µs maximum (see  
Table 23-38)  
Previous versions of this data sheet contained  
Advance or Preliminary Information. They were  
distributed with incomplete characterization data.  
This revision reflects these changes:  
• Revised I2C Slave Addresses  
(see Table 14-1)  
- Parameter OS65 (Internal RC Accuracy) has  
been expanded to reflect multiple Min and  
Max values for different temperatures (see  
Table 23-18)  
• Updated example for ADC Conversion Clock  
selection (see Section 19.0 “12-bit Analog-to-  
Digital Converter (ADC) Module”)  
- Parameter DC12 (RAM Data Retention Volt-  
age) has been updated to include a Min value  
(see Table 23-4)  
• Base instruction CP1 eliminated from instruction  
set (seeTable 21-2)  
- Parameter D134 (Erase/Write Cycle Time)  
has been updated to include Min and Max  
values and the Typ value has been removed  
(see Table 23-12)  
• Revised electrical characteristics:  
- Operating Current (IDD) Specifications  
(see Table 23-5)  
- Removed parameters OS62 (Internal FRC  
Jitter) and OS64 (Internal FRC Drift) and  
Note 2 from AC Characteristics (see  
Table 23-17)  
- Idle Current (IIDLE) Specifications  
(see Table 23-6)  
- Power-down Current (IPD) Specifications  
(see Table 23-7)  
- Parameter OS63 (Internal FRC Accuracy)  
has been expanded to reflect multiple Min  
and Max values for different temperatures  
(see Table 23-17)  
- I/O pin Input Specifications  
(see Table 23-8)  
- Brown Out Reset (BOR) Specifications  
(see Table 23-11)  
- Removed parameters DC27a, DC27b,  
DC47a, and DC47b (references to IDD,  
20 MIPs @ 3.3V) in Table 23-5 and  
Table 23-6  
- Watchdog Timer time-out limits  
(see Table 23-20)  
- Removed parameters CS77 and CS78  
(references to TRACL and TFACL @ 3.3V) in  
Table 23-29  
Revision E (January 2007)  
This revision includes updates to the packaging  
diagrams.  
- Updated Min and Max values and Conditions  
for parameter SY11 and updated Min, Typ,  
and Max values and Conditions for  
Revision F (April 2008)  
parameter SY20 (see Table 23-20)  
This revision reflects these updates:  
• Additional minor corrections throughout the  
document  
• Added FUSE Configuration Register (FICD)  
details (see Section 20.8 “Device Configuration  
Registers” and Table 20-8)  
• Added Note 2 in Device Configuration Registers  
table (Table 20-8)  
• Removed erroneous statement regarding genera-  
tion of CAN receive errors (see Section 17.4.5  
“Receive Errors”)  
• Updated ADC Conversion Clock and Sampling  
Rate Calculation (see Example 19-1). Minimum  
TAD is 334 nsec.  
• Updated details related to the Input Change  
Notification module:  
- Updated last sentence in the first paragraph  
of Section 7.3 “Input Change Notification  
Module”  
- Updated Table 7-2  
- Removed Table 7-3, Table 7-4, and Table 7-5  
2010 Microchip Technology Inc.  
DS70138G-page 217  
 
dsPIC30F3014/4013  
Revision G (November 2010)  
This revision includes minor typographical and  
formatting changes throughout the data sheet text.  
The major changes are referenced by their respective  
section in Table A-1.  
TABLE A-1:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
High-Performance, 16-Bit Digital  
Signal Controllers”  
Added Note 1 to all QFN pin diagrams (see Pin Diagrams).  
Section 1.0 “Device Overview”  
Removed the “DCI” peripheral block from the dsPIC30F3014 Block Diagram  
(see Figure 1-1).  
Updated the Pinout I/O Descriptions for AVDD and AVSS (see Table 1-1).  
Section 20.0 “System Integration”  
Added a note on OSCTUN functionality in Section 20.2.5 “Fast RC  
Oscillator (FRC)”.  
Updated the operating frequencies for the following Oscillator Operating  
Modes (see Table 20-1):  
• XTL  
• XT w/PLL 16x  
• HS/2 w/PLL 4x, 8x, and 16x  
• HS/3 w/PLL 4x, 8x, and 16x  
• EC w/PLL 4x, 8x, and 16x  
Section 23.0 “Electrical  
Characteristics”  
Updated the maximum value for parameter DI19 and the minimum value for  
parameter DI29 in the I/O Pin Input Specifications (see Table 23-8).  
Removed parameter D136 and updated the minimum, typical, maximum,  
and conditions for parameters D122 and D134 in the Program and  
EEPROM specifications (see Table 23-12).  
DS70138G-page 218  
2010 Microchip Technology Inc.  
 
dsPIC30F3014/4013  
INDEX  
CAN Buffers and Protocol Engine ............................ 112  
DCI Module............................................................... 122  
Dedicated Port Structure ............................................ 53  
DSP Engine................................................................ 20  
dsPIC30F3014............................................................ 11  
dsPIC30F4013............................................................ 12  
External Power-on Reset Circuit .............................. 153  
Numerics  
12-Bit Analog-to-Digital Converter (A/D) Module .............. 131  
A
A/D.................................................................................... 131  
Aborting a Conversion .............................................. 133  
ADCHS Register....................................................... 131  
ADCON1 Register..................................................... 131  
ADCON2 Register..................................................... 131  
ADCON3 Register..................................................... 131  
ADCSSL Register ..................................................... 131  
ADPCFG Register..................................................... 131  
Configuring Analog Port Pins.............................. 54, 138  
Connection Considerations....................................... 138  
Conversion Operation............................................... 132  
Effects of a Reset...................................................... 137  
Operation During CPU Idle Mode ............................. 137  
Operation During CPU Sleep Mode.......................... 137  
Output Formats......................................................... 137  
Power-Down Modes.................................................. 137  
Programming the Sample Trigger............................. 133  
Register Map............................................................. 139  
Result Buffer ............................................................. 132  
Sampling Requirements............................................ 136  
Selecting the Conversion Sequence......................... 132  
AC Characteristics ............................................................ 180  
Load Conditions........................................................ 181  
AC Temperature and Voltage Specifications.................... 181  
AC-Link Mode Operation .................................................. 128  
16-Bit Mode............................................................... 128  
20-Bit Mode............................................................... 129  
ADC  
2
I C .............................................................................. 92  
Input Capture Mode.................................................... 81  
Oscillator System...................................................... 143  
Output Compare Mode............................................... 85  
Reset System ........................................................... 151  
Shared Port Structure................................................. 54  
SPI............................................................................ 100  
SPI Master/Slave Connection................................... 100  
UART Receiver......................................................... 104  
UART Transmitter..................................................... 103  
BOR Characteristics ......................................................... 180  
BOR. See Brown-out Reset.  
Brown-out Reset  
Timing Requirements ............................................... 187  
C
C Compilers  
MPLAB C18.............................................................. 168  
CAN Module ..................................................................... 111  
Baud Rate Setting .................................................... 116  
CAN1 Register Map.................................................. 118  
Frame Types ............................................................ 111  
I/O Timing Requirements.......................................... 205  
Message Reception.................................................. 114  
Message Transmission............................................. 115  
Modes of Operation.................................................. 113  
Overview................................................................... 111  
CLKOUT and I/O Timing  
Selecting the Conversion Clock................................ 133  
ADC Conversion Speeds.................................................. 134  
Address Generator Units .................................................... 37  
Alternate Vector Table ........................................................ 64  
Analog-to-Digital Converter. See A/D.  
Requirements ........................................................... 185  
Code Examples  
Data EEPROM Block Erase ....................................... 50  
Data EEPROM Block Write ........................................ 52  
Data EEPROM Read.................................................. 49  
Data EEPROM Word Erase ....................................... 50  
Data EEPROM Word Write ........................................ 51  
Erasing a Row of Program Memory ........................... 45  
Initiating a Programming Sequence ........................... 46  
Loading Write Latches................................................ 46  
Port Write/Read.......................................................... 54  
Code Protection................................................................ 141  
Control Registers................................................................ 44  
NVMADR.................................................................... 44  
NVMADRU ................................................................. 44  
NVMCON.................................................................... 44  
NVMKEY .................................................................... 44  
Core Architecture  
Assembler  
MPASM Assembler................................................... 168  
Automatic Clock Stretch...................................................... 94  
During 10-Bit Addressing (STREN = 1) ...................... 94  
During 7-Bit Addressing (STREN = 1) ........................ 94  
Receive Mode............................................................. 94  
Transmit Mode............................................................ 94  
B
Band Gap Start-up Time  
Requirements............................................................ 187  
Barrel Shifter ....................................................................... 23  
Bit-Reversed Addressing .................................................... 40  
Example...................................................................... 40  
Implementation ........................................................... 40  
Modifier Values Table ................................................. 41  
Sequence Table (16-Entry)......................................... 41  
Block Diagrams  
Overview..................................................................... 15  
CPU Architecture Overview................................................ 15  
Customer Change Notification Service............................. 225  
Customer Notification Service .......................................... 225  
Customer Support............................................................. 225  
12-Bit A/D Functional................................................ 131  
16-Bit Timer1 Module.................................................. 67  
16-Bit Timer2 .............................................................. 73  
16-Bit Timer3 .............................................................. 73  
16-Bit Timer4 .............................................................. 78  
16-Bit Timer5 .............................................................. 78  
32-Bit Timer2/3 ........................................................... 72  
32-Bit Timer4/5 ........................................................... 77  
D
Data Accumulators and Adder/Subtracter .......................... 21  
Data Accumulators and Adder/Subtractor  
Data Space Write Saturation...................................... 23  
Overflow and Saturation............................................. 21  
2010 Microchip Technology Inc.  
DS70138G-page 219  
dsPIC30F3014/4013  
Round Logic................................................................22  
Write-Back ..................................................................22  
Data Address Space ...........................................................30  
Alignment....................................................................32  
Alignment (Figure) ......................................................32  
Effect of Invalid Memory Accesses (Table).................32  
MCU and DSP (MAC Class) Instructions Example.....31  
Memory Map ...............................................................30  
Near Data Space ........................................................33  
Software Stack............................................................33  
Spaces........................................................................32  
Width...........................................................................32  
Data Converter Interface (DCI) Module ............................121  
Data EEPROM Memory......................................................49  
Erasing........................................................................50  
Erasing, Block.............................................................50  
Erasing, Word .............................................................50  
Protection Against Spurious Write ..............................52  
Reading.......................................................................49  
Write Verify .................................................................52  
Writing.........................................................................51  
Writing, Block..............................................................51  
Writing, Word ..............................................................51  
DC Characteristics ............................................................172  
BOR ..........................................................................180  
I/O Pin Input Specifications.......................................178  
I/O Pin Output Specifications....................................178  
Idle Current (IIDLE) ....................................................175  
LVDL .........................................................................179  
Operating Current (IDD).............................................174  
Power-Down Current (IPD) ........................................176  
Program and EEPROM.............................................180  
Temperature and Voltage Specifications..................172  
DCI Module  
Synchronous Data Transfers.................................... 126  
Timing Requirements  
AC-Link Mode................................................... 195  
2
Multichannel, I S Modes................................... 193  
Transmit Slot Enable Bits ......................................... 126  
Transmit Status Bits.................................................. 127  
Transmit/Receive Shift Register ............................... 121  
Underflow Mode Control Bit...................................... 128  
Word-Size Selection Bits .......................................... 123  
Development Support....................................................... 167  
Device Configuration  
Register Map ............................................................ 158  
Device Configuration Registers  
FBORPOR................................................................ 156  
FGS .......................................................................... 156  
FOSC........................................................................ 156  
FWDT ....................................................................... 156  
Device Overview................................................................. 11  
Disabling the UART .......................................................... 105  
Divide Support .................................................................... 18  
Instructions (Table)..................................................... 18  
DSP Engine ........................................................................ 19  
Multiplier ..................................................................... 21  
Dual Output Compare Match Mode.................................... 86  
Continuous Pulse Mode.............................................. 86  
Single Pulse Mode...................................................... 86  
E
Electrical Characteristics .................................................. 171  
AC............................................................................. 180  
DC ............................................................................ 172  
Enabling and Setting Up UART  
Alternate I/O ............................................................. 105  
Enabling and Setting up UART  
Setting up Data, Parity and Stop Bit Selections........ 105  
Enabling the UART........................................................... 105  
Equations  
Bit Clock Generator...................................................125  
Buffer Alignment with Data Frames ..........................127  
Buffer Control............................................................121  
Buffer Data Alignment...............................................121  
Buffer Length Control................................................127  
COFS Pin..................................................................121  
CSCK Pin..................................................................121  
CSDI Pin ...................................................................121  
CSDO Mode Bit ........................................................128  
CSDO Pin .................................................................121  
Data Justification Control Bit.....................................126  
Device Frequencies for Common Codec CSCK Frequen-  
cies (Table) .......................................................125  
Digital Loopback Mode .............................................128  
Enable.......................................................................123  
Frame Sync Generator .............................................123  
Frame Sync Mode Control Bits.................................123  
I/O Pins .....................................................................121  
Interrupts...................................................................128  
Introduction ...............................................................121  
Master Frame Sync Operation..................................123  
Operation ..................................................................123  
Operation During CPU Idle Mode .............................128  
Operation During CPU Sleep Mode..........................128  
Receive Slot Enable Bits...........................................126  
Receive Status Bits...................................................127  
Register Map.............................................................130  
Sample Clock Edge Control Bit.................................126  
Slave Frame Sync Operation....................................124  
Slot Enable Bits Operation with Frame Sync............126  
Slot Status Bits..........................................................128  
ADC Conversion Clock............................................. 133  
Baud Rate................................................................. 107  
Bit Clock Frequency.................................................. 125  
COFSG Period.......................................................... 123  
Serial Clock Rate........................................................ 96  
Time Quantum for Clock Generation........................ 117  
Errata.................................................................................... 9  
Exception Sequence  
Trap Sources .............................................................. 62  
External Clock Timing Requirements ............................... 182  
Type A Timer ............................................................ 188  
Type B Timer ............................................................ 189  
Type C Timer............................................................ 189  
External Interrupt Requests................................................ 64  
F
Fast Context Saving ........................................................... 64  
Flash Program Memory ...................................................... 43  
I
I/0 Ports  
Register Map .............................................................. 55  
I/O Pin Specifications  
Input.......................................................................... 178  
Output....................................................................... 178  
I/O Ports.............................................................................. 53  
Parallel (PIO) .............................................................. 53  
2
I C 10-Bit Slave Mode Operation ....................................... 93  
Reception ................................................................... 94  
DS70138G-page 220  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
Transmission............................................................... 93  
LVDL Characteristics........................................................ 179  
2
I C 7-Bit Slave Mode Operation.......................................... 93  
Reception.................................................................... 93  
Transmission............................................................... 93  
M
Memory Organization ......................................................... 25  
Core Register Map ..................................................... 33  
Microchip Internet Web Site.............................................. 225  
Modes of Operation  
2
I C Master Mode Operation ................................................ 95  
Baud Rate Generator.................................................. 96  
Clock Arbitration.......................................................... 96  
Multi-Master Communication,  
Bus Collision and Bus Arbitration ....................... 96  
Reception.................................................................... 96  
Transmission............................................................... 95  
Disable...................................................................... 113  
Initialization............................................................... 113  
Listen All Messages.................................................. 113  
Listen Only................................................................ 113  
Loopback.................................................................. 113  
Normal Operation ..................................................... 113  
Modulo Addressing............................................................. 38  
Applicability................................................................. 40  
Incrementing Buffer Operation Example .................... 39  
Start and End Address ............................................... 39  
W Address Register Selection.................................... 39  
MPLAB ASM30 Assembler, Linker, Librarian................... 168  
MPLAB Integrated Development Environment Software.. 167  
MPLAB PM3 Device Programmer .................................... 170  
MPLAB REAL ICE In-Circuit Emulator System ................ 169  
MPLINK Object Linker/MPLIB Object Librarian................ 168  
2
I C Master Mode Support ................................................... 95  
I C Module .......................................................................... 91  
2
Addresses................................................................... 93  
Bus Data Timing Requirements  
Master Mode..................................................... 201  
Slave Mode....................................................... 204  
General Call Address Support .................................... 95  
Interrupts..................................................................... 95  
IPMI Support............................................................... 95  
Operating Function Description .................................. 91  
Operation During CPU Sleep and Idle Modes ............ 96  
Pin Configuration ........................................................ 91  
Programmer’s Model................................................... 91  
Register Map............................................................... 97  
Registers..................................................................... 91  
Slope Control .............................................................. 95  
Software Controlled Clock Stretching (STREN = 1).... 94  
Various Modes............................................................ 91  
N
NVM  
Register Map .............................................................. 47  
O
2
Operating Current (IDD) .................................................... 174  
Operating Frequency vs Voltage  
I S Mode Operation .......................................................... 129  
Data Justification....................................................... 129  
Frame and Data Word Length Selection................... 129  
Idle Current (IIDLE) ............................................................ 175  
In-Circuit Serial Programming (ICSP)......................... 43, 141  
Input Capture Module ......................................................... 81  
Interrupts..................................................................... 82  
Register Map............................................................... 83  
Input Capture Operation During Sleep and Idle Modes...... 82  
CPU Idle Mode............................................................ 82  
CPU Sleep Mode ........................................................ 82  
Input Capture Timing Requirements................................. 190  
Input Change Notification Module....................................... 56  
Register Map............................................................... 57  
Instruction Addressing Modes............................................. 37  
File Register Instructions ............................................ 37  
Fundamental Modes Supported.................................. 37  
MAC Instructions......................................................... 38  
MCU Instructions ........................................................ 37  
Move and Accumulator Instructions............................ 38  
Other Instructions........................................................ 38  
Instruction Set  
Overview................................................................... 162  
Summary................................................................... 159  
Internal Clock Timing Examples ....................................... 183  
Internet Address................................................................ 225  
Interrupt Controller  
Register Map............................................................... 66  
Interrupt Priority .................................................................. 60  
Traps........................................................................... 62  
Interrupt Sequence ............................................................. 63  
Interrupt Stack Frame ................................................. 63  
Interrupts............................................................................. 59  
dsPIC30FXXXX-20 (Extended) ................................ 172  
Oscillator  
Configurations .......................................................... 144  
Fail-Safe Clock Monitor .................................... 146  
Fast RC (FRC).................................................. 145  
Initial Clock Source Selection........................... 144  
Low-Power RC (LPRC) .................................... 145  
LP Oscillator Control......................................... 145  
Phase Locked Loop (PLL)................................ 145  
Start-up Timer (OST)........................................ 144  
Control Registers...................................................... 147  
Operating Modes (Table).......................................... 142  
System Overview...................................................... 141  
Oscillator Selection........................................................... 141  
Oscillator Start-up Timer  
Timing Requirements ............................................... 187  
Output Compare Interrupts................................................. 88  
Output Compare Module .................................................... 85  
Register Map dsPIC30F3014 ..................................... 89  
Register Map dsPIC30F4013 ..................................... 89  
Timing Requirements ............................................... 190  
Output Compare Operation During CPU Idle Mode ........... 88  
Output Compare Sleep Mode Operation ............................ 88  
P
Packaging Information...................................................... 211  
Marking..................................................................... 211  
Peripheral Module Disable (PMD) Registers.................... 157  
Pinout Descriptions............................................................. 13  
POR. See Power-on Reset.  
Power Saving Modes  
Sleep and Idle........................................................... 141  
Power-Down Current (IPD)................................................ 176  
Power-Saving Modes........................................................ 155  
Idle............................................................................ 156  
L
Load Conditions................................................................ 181  
Low-Voltage Detect (LVD) ................................................ 155  
2010 Microchip Technology Inc.  
DS70138G-page 221  
dsPIC30F3014/4013  
Sleep.........................................................................155  
Power-up Timer  
Timing Requirements................................................187  
Program Address Space.....................................................25  
Construction................................................................26  
Data Access from Program Memory  
Simple Output Compare Match Mode ................................ 86  
Simple PWM Mode............................................................. 86  
Input Pin Fault Protection ........................................... 86  
Period ......................................................................... 87  
Software Simulator (MPLAB SIM) .................................... 169  
Software Stack Pointer, Frame Pointer .............................. 16  
CALL Stack Frame ..................................................... 33  
SPI Module ......................................................................... 99  
Framed SPI Support................................................. 100  
Operating Function Description .................................. 99  
Operation During CPU Idle Mode............................. 101  
Operation During CPU Sleep Mode.......................... 101  
SDOx Disable ............................................................. 99  
Slave Select Synchronization ................................... 101  
SPI1 Register Map.................................................... 102  
Timing Requirements  
Using Program Space Visibility...........................28  
Data Access From Program Memory  
Using Table Instructions .....................................27  
Data Access from, Address Generation......................26  
Data Space Window into Operation............................29  
Data Table Access (lsw) .............................................27  
Data Table Access (MSB)...........................................28  
dsPIC30F3014 Memory Map ......................................25  
dsPIC30F4013 Memory Map ......................................25  
Table Instructions  
TBLRDH..............................................................27  
TBLRDL ..............................................................27  
TBLWTH .............................................................27  
TBLWTL..............................................................27  
Program and EEPROM Characteristics............................180  
Program Counter.................................................................16  
Programmable...................................................................141  
Programmer’s Model...........................................................16  
Diagram ......................................................................17  
Programming Operations....................................................45  
Algorithm for Program Flash .......................................45  
Erasing a Row of Program Memory............................45  
Initiating the Programming Sequence.........................46  
Loading Write Latches ................................................46  
Protection Against Accidental Writes to OSCCON ...........146  
Master Mode (CKE = 0).................................... 196  
Master Mode (CKE = 1).................................... 197  
Slave Mode (CKE = 0)...................................... 198  
Slave Mode (CKE = 1)...................................... 200  
Word and Byte Communication.................................. 99  
Status Bits, Their Significance and the Initialization Condition  
for RCON Register, Case 1 ...................................... 154  
Status Bits, Their Significance and the Initialization Condition  
for RCON Register, Case 2 ...................................... 154  
STATUS Register ............................................................... 16  
Symbols Used in Opcode Descriptions ............................ 160  
System Integration............................................................ 141  
Register Map ............................................................ 158  
T
Table Instruction Operation Summary................................ 43  
Temperature and Voltage Specifications  
R
Reader Response .............................................................226  
Registers  
AC............................................................................. 181  
DC ............................................................................ 172  
Timer1 Module.................................................................... 67  
16-Bit Asynchronous Counter Mode........................... 67  
16-Bit Synchronous Counter Mode............................. 67  
16-Bit Timer Mode ...................................................... 67  
Gate Operation ........................................................... 68  
Interrupt ...................................................................... 68  
Operation During Sleep Mode .................................... 68  
Prescaler .................................................................... 68  
Real-Time Clock ......................................................... 68  
Interrupts ............................................................ 68  
Oscillator Operation............................................ 68  
Register Map .............................................................. 69  
Timer2 and Timer3 Selection Mode.................................... 85  
Timer2/3 Module................................................................. 71  
16-Bit Timer Mode ...................................................... 71  
32-Bit Synchronous Counter Mode............................. 71  
32-Bit Timer Mode ...................................................... 71  
ADC Event Trigger...................................................... 74  
Gate Operation ........................................................... 74  
Interrupt ...................................................................... 74  
Operation During Sleep Mode .................................... 74  
Register Map .............................................................. 75  
Timer Prescaler .......................................................... 74  
Timer4/5 Module................................................................. 77  
Register Map .............................................................. 79  
Timing Diagrams  
OSCCON (Oscillator Control) ...................................147  
OSCTUN (Oscillator Tuning) ....................................149  
Reset......................................................................... 141, 151  
BOR, Programmable.................................................153  
Brown-out Reset (BOR)............................................141  
Oscillator Start-up Timer (OST) ................................141  
POR  
Operating without FSCM and PWRT................153  
With Long Crystal Start-up Time.......................153  
POR (Power-on Reset).............................................151  
Power-on Reset (POR) .............................................141  
Power-up Timer (PWRT) ..........................................141  
Reset Sequence..................................................................61  
Reset Sources ............................................................61  
Reset Sources  
Brown-out Reset (BOR)..............................................61  
Illegal Instruction Trap.................................................61  
Trap Lockout...............................................................61  
Uninitialized W Register Trap .....................................61  
Watchdog Time-out.....................................................61  
Reset Timing Requirements..............................................187  
Revision History ................................................................217  
Run-Time Self-Programming (RTSP) .................................43  
S
Simple Capture Event Mode ...............................................81  
Buffer Operation..........................................................82  
Hall Sensor Mode .......................................................82  
Prescaler.....................................................................81  
Timer2 and Timer3 Selection Mode............................82  
Simple OCx/PWM Mode Timing Requirements................191  
A/D Conversion  
Low-Speed (ASAM = 0, SSRC = 000).............. 208  
Band Gap Start-up Time........................................... 187  
Brown-out Reset Characteristics .............................. 179  
CAN Bit..................................................................... 116  
DS70138G-page 222  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
CAN Module I/O........................................................ 205  
CLKOUT and I/O....................................................... 185  
DCI Module  
Type C Timer External Clock.................................... 189  
Watchdog Timer ....................................................... 187  
Trap Vectors....................................................................... 63  
AC-Link Mode ................................................... 194  
Multichannel, I S Modes................................... 192  
U
2
UART Module  
External Clock........................................................... 181  
Frame Sync, AC-Link Start-Of-Frame....................... 124  
Frame Sync, Multichannel Mode .............................. 124  
Address Detect Mode............................................... 107  
Auto-Baud Support................................................... 108  
Baud Rate Generator ............................................... 107  
Enabling and Setting Up........................................... 105  
Framing Error (FERR) .............................................. 107  
Idle Status................................................................. 107  
Loopback Mode........................................................ 107  
Operation During CPU Sleep and Idle Modes.......... 108  
Overview................................................................... 103  
Parity Error (PERR).................................................. 107  
Receive Break .......................................................... 107  
Receive Buffer (UxRXB)........................................... 106  
Receive Buffer Overrun Error (OERR Bit)................ 106  
Receive Interrupt ...................................................... 106  
Receiving Data ......................................................... 106  
Receiving in 8-Bit or 9-Bit Data Mode ...................... 106  
Reception Error Handling ......................................... 106  
Transmit Break ......................................................... 106  
Transmit Buffer (UxTXB) .......................................... 105  
Transmit Interrupt ..................................................... 106  
Transmitting Data ..................................................... 105  
Transmitting in 8-Bit Data Mode............................... 105  
Transmitting in 9-Bit Data Mode............................... 105  
UART1 Register Map ............................................... 109  
UART2 Register Map ............................................... 109  
UART Operation  
2
I C Bus Data  
Master Mode..................................................... 201  
Slave Mode....................................................... 203  
I C Bus Start/Stop Bits  
Master Mode..................................................... 201  
Slave Mode....................................................... 203  
I S Interface Frame Sync.......................................... 124  
Input Capture (CAPx)................................................ 190  
Low-Voltage Detect................................................... 178  
OCx/PWM Module .................................................... 191  
Oscillator Start-up Timer........................................... 186  
Output Compare Module........................................... 190  
Power-up Timer ........................................................ 186  
PWM Output ............................................................... 87  
Reset......................................................................... 186  
SPI Module  
Master Mode (CKE = 0).................................... 195  
Master Mode (CKE = 1).................................... 196  
Slave Mode (CKE = 0)...................................... 197  
Slave Mode (CKE = 1)...................................... 199  
Time-out Sequence on Power-up  
2
2
(MCLR Not Tied to VDD), Case 1...................... 152  
Time-out Sequence on Power-up  
(MCLR Not Tied to VDD), Case 2...................... 152  
Time-out Sequence on Power-up  
Idle Mode.................................................................. 108  
Sleep Mode .............................................................. 108  
Unit ID Locations .............................................................. 141  
Universal Asynchronous Receiver Transmitter  
(MCLR Tied to VDD).......................................... 152  
Type A, B and C Timer External Clock ..................... 188  
Watchdog Timer........................................................ 186  
Timing Diagrams and Specifications  
(UART) Module......................................................... 103  
DC Characteristics - Internal RC Accuracy............... 183  
Timing Diagrams.See Timing Characteristics  
Timing Requirements  
W
Wake-up from Sleep......................................................... 141  
Wake-up from Sleep and Idle ............................................. 64  
Watchdog Timer  
Timing Requirements ............................................... 187  
Watchdog Timer (WDT)............................................ 141, 155  
Enabling and Disabling............................................. 155  
Operation.................................................................. 155  
WWW Address ................................................................. 225  
WWW, On-Line Support ....................................................... 9  
A/D Conversion  
Low-Speed........................................................ 209  
Band Gap Start-up Time........................................... 187  
Brown-out Reset ....................................................... 187  
CAN Module I/O........................................................ 205  
CLKOUT and I/O....................................................... 185  
DCI Module  
AC-Link Mode ................................................... 195  
2
Multichannel, I S Modes................................... 193  
External Clock........................................................... 182  
2
I C Bus Data (Master Mode)..................................... 201  
2
I C Bus Data (Slave Mode)....................................... 204  
Input Capture ............................................................ 190  
Oscillator Start-up Timer........................................... 187  
Output Compare Module........................................... 190  
Power-up Timer ........................................................ 187  
Reset......................................................................... 187  
Simple OCx/PWM Mode........................................... 191  
SPI Module  
Master Mode (CKE = 0).................................... 196  
Master Mode (CKE = 1).................................... 197  
Slave Mode (CKE = 0)...................................... 198  
Slave Mode (CKE = 1)...................................... 200  
Type A Timer External Clock .................................... 188  
Type B Timer External Clock .................................... 189  
2010 Microchip Technology Inc.  
DS70138G-page 223  
dsPIC30F3014/4013  
NOTES:  
DS70138G-page 224  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
2010 Microchip Technology Inc.  
DS70138G-page 225  
dsPIC30F3014/4013  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Literature Number: DS70138G  
Application (optional):  
Would you like a reply?  
Y
N
Device: dsPIC30F3014/4013  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS70138G-page 226  
2010 Microchip Technology Inc.  
dsPIC30F3014/4013  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
dsPIC30F4013AT-30I/PT-ES  
Custom ID (3 digits) or  
Engineering Sample (ES)  
Trademark  
Architecture  
Package  
= 40-pin PDIP  
PT = 44-pin TQFP (10x10)  
ML = 44-pin QFN (8x8)  
P
Flash  
S
W
= Die (Waffle Pack)  
= Die (Wafers)  
Memory Size in Bytes  
0 = ROMless  
1 = 1K to 6K  
2 = 7K to 12K  
3 = 13K to 24K  
4 = 25K to 48K  
5 = 49K to 96K  
6 = 97K to 192K  
7 = 193K to 384K  
8 = 385K to 768K  
9 = 769K and Up  
Temperature  
I = Industrial -40°C to +85°C  
E = Extended High Temp -40°C to +125°C  
Speed  
20 = 20 MIPS  
30 = 30 MIPS  
Device ID  
T = Tape and Reel  
A,B,C… = Revision Level  
Example:  
dsPIC30F4013AT-30I/PT = 30 MIPS, Industrial temp., TQFP package, Rev. A  
2010 Microchip Technology Inc.  
DS70138G-page 227  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Fax: 886-7-330-9305  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/04/10  
DS70138G-page 228  
2010 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY