DSPIC33EP64GS808T-E/SO [MICROCHIP]

16-Bit Digital Signal Controllers for Digital Power Applications with Interconnected High-Speed PWM, ADC, PGA and Comparators;
DSPIC33EP64GS808T-E/SO
型号: DSPIC33EP64GS808T-E/SO
厂家: MICROCHIP    MICROCHIP
描述:

16-Bit Digital Signal Controllers for Digital Power Applications with Interconnected High-Speed PWM, ADC, PGA and Comparators

文件: 总484页 (文件大小:5042K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
dsPIC33EPXXXGS70X/80X FAMILY  
16-Bit Digital Signal Controllers for Digital Power Applications with  
Interconnected High-Speed PWM, ADC, PGA and Comparators  
Operating Conditions  
Advanced Analog Features  
• 3.0V to 3.6V, -40°C to +85°C, DC to 70 MIPS  
• 3.0V to 3.6V, -40°C to +125°C, DC to 60 MIPS  
• High-Speed ADC module:  
- 12-bit with four dedicated SAR ADC cores  
and one shared SAR ADC core  
Flash Architecture  
- Configurable resolution (up to 12-bit) for each  
ADC core  
• Dual Partition Flash Program Memory with  
LiveUpdate:  
- Up to 3.25 Msps conversion rate per channel  
at 12-bit resolution  
- Supports programming while operating  
- Supports partition soft swap  
- 11 to 22 single-ended inputs  
- Dedicated result buffer for each analog channel  
- Flexible and independent ADC trigger sources  
- Two digital comparators  
Core: 16-Bit dsPIC33E CPU  
• Code-Efficient (C and Assembly) Architecture  
• Two 40-Bit Wide Accumulators  
- Two oversampling filters for increased  
resolution  
• Single-Cycle (MAC/MPY) with Dual Data Fetch  
• Single-Cycle Mixed-Sign MUL plus  
Hardware Divide  
Four Rail-to-Rail Comparators with Hysteresis:  
- Dedicated 12-bit Digital-to-Analog Converter  
(DAC) for each analog comparator  
• 32-Bit Multiply Support  
• Four Additional Working Register Sets (reduces  
context switching)  
- Up to two DAC reference outputs  
- Up to two external reference inputs  
• Two Programmable Gain Amplifiers:  
- Single-ended or independent ground reference  
- Five selectable gains (4x, 8x, 16x, 32x and 64x)  
- 40 MHz gain bandwidth  
Clock Management  
• ±0.9% Internal Oscillator  
• Programmable PLLs and Oscillator Clock Sources  
• Fail-Safe Clock Monitor (FSCM)  
• Independent Watchdog Timer (WDT)  
• Fast Wake-up and Start-up  
Interconnected SMPS Peripherals  
• Reduces CPU Interaction to Improve Performance  
• Flexible PWM Trigger Options for  
ADC Conversions  
Power Management  
• Low-Power Management modes (Sleep,  
Idle, Doze)  
• High-Speed Comparator Truncates PWM  
(15 ns typical):  
• Integrated Power-on Reset and Brown-out Reset  
• 0.5 mA/MHz Dynamic Current (typical)  
• 20 μA IPD Current (typical)  
- Supports Cycle-by-Cycle Current-mode control  
- Current Reset mode (variable frequency)  
Timers/Output Compare/Input Capture  
High-Speed PWM  
• Five 16-Bit and up to Two 32-Bit Timers/Counters  
• Eight PWM Generators (two outputs per generator)  
• Individual Time Base and Duty Cycle for each PWM  
• Four Output Compare (OC) modules, Configurable  
as Timers/Counters  
• 1.04 ns PWM Resolution (frequency, duty cycle,  
dead time and phase)  
• Four Input Capture (IC) modules  
• Supports Center-Aligned, Redundant, Complementary  
and True Independent Output modes  
• Independent Fault and Current-Limit Inputs  
• Output Override Control  
• PWM Support for AC/DC, DC/DC, Inverters, PFC  
and Lighting  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 1  
dsPIC33EPXXXGS70X/80X FAMILY  
Communication Interfaces  
Qualification and Class B Support  
• Two UART modules (15 Mbps):  
- Supports LIN/J2602 protocols and IrDA®  
• AEC-Q100 REVG (Grade 1, -40°C to +125°C)  
• Class B Safety Library, IEC 60730  
• Three Variable Width SPI modules with Operating  
modes:  
• The 6x6x0.55 mm UQFN Package is Designed  
and Optimized to ease IPC9592B 2nd Level  
Temperature Cycle Qualification  
- 3-wire SPI  
- 8x16 or 8x8 FIFO mode  
- I2S mode  
Debugger Development Support  
• Two I2C modules (up to 1 Mbaud) with SMBus  
Support  
• In-Circuit and In-Application Programming  
• Five Program and Three Complex  
Data Breakpoints  
• Up to Two CAN modules  
• Four-Channel DMA  
• IEEE 1149.2 Compatible (JTAG) Boundary Scan  
• Trace and Run-Time Watch  
Input/Output  
• Constant-Current Source (10 µA nominal)  
Digital Peripherals  
• Sink/Source up to 12 mA/15 mA, respectively;  
Pin-Specific for Standard VOH/VOL  
• Four Configurable Logic Cells  
• Peripheral Trigger Generator  
• 5V Tolerant Pins  
• Selectable, Open-Drain Pull-ups and Pull-Downs  
• External Interrupts on all I/O Pins  
• Peripheral Pin Select (PPS) to allow Function  
Remap with Six Virtual I/Os  
12-Bit  
ADC  
Remappable Peripherals  
Device  
dsPIC33EP128GS702 28 128K 8K 20  
5
4
4
2
3
8x2  
4
0
1
2
4
1
11  
5
2
0
4
1
1
SOIC,  
QFN-S,  
UQFN  
dsPIC33EP64GS804 44 64K 8K 33  
dsPIC33EP128GS704 44 128K 8K 33  
dsPIC33EP128GS804 44 128K 8K 33  
dsPIC33EP64GS805 48 64K 8K 33  
dsPIC33EP128GS705 48 128K 8K 33  
dsPIC33EP128GS805 48 128K 8K 33  
dsPIC33EP64GS806 64 64K 8K 51  
dsPIC33EP128GS706 64 128K 8K 51  
dsPIC33EP128GS806 64 128K 8K 51  
dsPIC33EP64GS708 80 64K 8K 67  
dsPIC33EP64GS808 80 64K 8K 67  
dsPIC33EP128GS708 80 128K 8K 67  
dsPIC33EP128GS808 80 128K 8K 67  
5
5
5
5
5
5
5
5
5
5
5
5
5
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
8x2  
8x2  
8x2  
8x2  
8x2  
8x2  
8x2  
8x2  
8x2  
8x2  
8x2  
8x2  
8x2  
4
4
4
4
4
4
4
4
4
4
4
4
4
2
0
2
2
0
2
2
0
2
0
2
0
2
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
4
4
4
4
4
4
4
4
4
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
17  
17  
17  
17  
17  
17  
22  
22  
22  
22  
22  
22  
22  
5
5
5
5
5
5
5
5
5
5
5
5
5
2
2
2
2
2
2
2
2
2
2
2
2
2
4
0
4
4
0
4
4
0
4
0
4
0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1
1
1
1
1
1
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
QFN,  
TQFP  
TQFP  
TQFP  
TQFP  
Note 1: The external clock for Timer1, Timer2 and Timer3 is remappable.  
2: PWM4 through PWM8 are remappable on 28/44/48-pin devices; on 64-pin devices, only PWM7/PWM8 are remappable.  
3: External interrupts, INT0 and INT4, are not remappable.  
DS70005258C-page 2  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Pin Diagrams  
28-Pin SOIC  
MCLR  
RA0  
RA1  
RA2  
RB0  
RB9  
AVDD  
VSS  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AVDD  
AVSS  
RA3  
2
3
4
RA4  
5
RB14  
RB13  
RB12  
RB11  
VCAP  
VSS  
6
7
8
RB1  
RB2  
RB3  
RB4  
VDD  
9
10  
11  
12  
13  
14  
RB7  
RB6  
RB5  
RB8  
RB15  
Pin  
Pin Function  
Pin  
Pin Function  
1
2
MCLR  
AN0/CMP1A/PGA1P1/RP16/RA0  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
PGEC3/SCL2/RP47/RB15  
TDO/AN19/PGA2N2/RP37/RB5  
PGED1/TDI/AN20/SCL1/RP38/RB6  
PGEC1/AN21/SDA1/RP39/RB7  
VSS  
3
AN1/CMP1B/PGA1P2/PGA2P1/RP17/RA1  
AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2  
AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0  
AN4/CMP2C/CMP3A/ISRC4/RP41/RB9  
AVDD  
4
5
6
VCAP  
7
TMS/PWM3H/RP43/RB11  
TCK/PWM3L/RP44/RB12  
PWM2H/RP45/RB13  
PWM2L/RP46/RB14  
PWM1H/RP20/RA4  
PWM1L/RP19/RA3  
AVSS  
8
VSS  
9
OSCI/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1  
OSC2/CLKO/AN7/CMP3D/CMP4B/PGA1N2/RP34/RB2(1)  
PGED2/DACOUT1/AN18/INT0/RP35/RB3  
PGEC2/ADTRG31/EXTREF1/RP36/RB4  
VDD  
10  
11  
12  
13  
14  
PGED3/SDA2/FLT31/RP40/RB8  
AVDD  
Legend: Shaded pins are up to 5 VDC tolerant.  
RPn represents remappable peripheral functions. See Table 11-12 and Table 11-13 for the complete list of remappable sources.  
Note 1: At device power-up (POR), a pulse with an amplitude around 2V and a duration greater than 500 µs, may be observed on this  
device pin independent of pull-down resistors. It is recommended not to use this pin as an output driver unless the circuit being  
driven can endure this active duration.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 3  
dsPIC33EPXXXGS70X/80X FAMILY  
Pin Diagrams (Continued)  
28-Pin QFN-S, UQFN  
28 27 26 25 24 23 22  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
RA2  
RB0  
RB9  
AVDD  
VSS  
RB14  
RB13  
RB12  
RB11  
VCAP  
VSS  
dsPIC33EP128GS702  
RB1  
RB2  
RB7  
8
9
10 11 12 13 14  
Pin  
Pin Function  
Pin  
Pin Function  
1
2
AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2  
AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0  
AN4/CMP2C/CMP3A/ISRC4/RP41/RB9  
AVDD  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
PGEC1/AN21/SDA1/RP39/RB7  
VSS  
3
VCAP  
4
TMS/PWM3H/RP46/RB11  
TCK/PWM3L/RP44/RB12  
PWM2H/RP45/RB13  
PWM2L/RP46/RB14  
PWM1H/RP20/RA4  
PWM1L/RP19/RA3  
AVSS  
5
VSS  
6
OSCI/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1  
OSC2/CLKO/AN7/CMP3D/CMP4B/PGA1N2/RP34/RB2(1)  
PGED2/DACOUT1/AN18/INT0/RP35/RB3  
PGEC2/ADTRG31/EXTREF1/RP36/RB4  
VDD  
7
8
9
10  
11  
12  
13  
14  
PGED3/SDA2/FLT31/RP40/RB8  
PGEC3/SCL2/RP47/RB15  
AVDD  
MCLR  
TDO/AN19/PGA2N2/RP37/RB5  
PGED1/TDI/AN20/SCL1/RP38/RB6  
AN0/CMP1A/PGA1P1/RP16/RA0  
AN1/CMP1B/PGA1P2/PGA2P1/RP17/RA1  
Legend: Shaded pins are up to 5 VDC tolerant.  
RPn represents remappable peripheral functions. See Table 11-12 and Table 11-13 for the complete list of remappable sources.  
Note 1: At device power-up (POR), a pulse with an amplitude around 2V and a duration greater than 500 µs, may be observed on this  
device pin independent of pull-down resistors. It is recommended not to use this pin as an output driver unless the circuit being  
driven can endure this active duration.  
DS70005258C-page 4  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Pin Diagrams (Continued)  
44-Pin QFN, TQFP  
1
33  
32 RB1  
RB7  
RC4  
RB2  
2
3
31  
30  
29  
28  
27  
26  
25  
24  
23  
RC5  
RC1  
VSS  
4
RC6  
5
RC3  
VDD  
6
VSS  
RC10  
RC9  
AVDD  
RB9  
RB0  
RA2  
dsPIC33EPXXXGSX04  
7
VCAP  
RB11  
RB12  
RB13  
RB14  
8
9
10  
11  
Pin  
Pin Function  
Pin  
Pin Function  
1
2
PGEC1/AN21/SDA1/RP39/RB7  
AN1ALT/RP52/RC4  
AN0ALT/RP53/RC5  
AN17/RP54/RC6  
RP51/RC3  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2  
AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0  
AN4/CMP2C/CMP3A/ISRC4/RP41/RB9  
AVDD  
3
4
5
AN11/PGA1N3/RP57/RC9  
EXTREF2/AN10/PGA1P4/RP58/RC10  
VDD  
6
VSS  
7
VCAP  
8
TMS/PWM3H/RP43/RB11  
TCK/PWM3L/RP44/RB12  
PWM2H/RP45/RB13  
PWM2L/RP46/RB14  
PWM1H/RP20/RA4  
PWM1L/RP19/RA3  
FLT12/RP48/RC0  
FLT11/RP61/RC13  
AVSS  
VSS  
9
AN8/CMP4C/PGA2P4/RP49/RC1  
OSCI/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1  
OSC2/CLKO/AN7/CMP3D/CMP4B/PGA1N2/RP34/RB2(1)  
PGED2/DACOUT1/AN18/INT0/RP35/RB3  
PGEC2/ADTRG31/RP36/RB4  
EXTREF1/AN9/CMP4D/RP50/RC2  
ASDA1/RP55/RC7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
ASCL1/RP56/RC8  
AVDD  
VSS  
MCLR  
VDD  
AVDD  
PGED3/SDA2/FLT31/RP40/RB8  
PGEC3/SCL2/RP47/RB15  
TDO/AN19/PGA2N2/RP37/RB5  
PGED1/TDI/AN20/SCL1/RP38/RB6  
AN14/PGA2N3/RP60/RC12  
AN0/CMP1A/PGA1P1/RP16/RA0  
AN1/CMP1B/PGA1P2/PGA2P1/RP17/RA1  
Legend: Shaded pins are up to 5 VDC tolerant.  
RPn represents remappable peripheral functions. See Table 11-12 and Table 11-13 for the complete list of remappable sources.  
Note 1: At device power-up (POR), a pulse with an amplitude around 2V and a duration greater than 500 µs, may be observed on this  
device pin independent of pull-down resistors. It is recommended not to use this pin as an output driver unless the circuit being  
driven can endure this active duration.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 5  
dsPIC33EPXXXGS70X/80X FAMILY  
Pin Diagrams (Continued)  
48-Pin TQFP  
RB7  
RC4  
RC5  
RC6  
RC3  
1
2
3
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
RB2  
RB1  
RC1  
N/C  
4
5
6
7
Vss  
VSS  
VDD  
RC10  
RC9  
AVDD  
RB9  
RB0  
RA2  
dsPIC33EPXXXGSX05  
VCAP  
RD4  
8
9
10  
11  
12  
RB11  
RB12  
RB13  
RB14  
Pin  
Pin Function  
Pin  
Pin Function  
1
2
PGEC1/AN21/SDA1/RP39/RB7  
AN1ALT/RP52/RC4  
AN0ALT/RP53/RC5  
AN17/RP54/RC6  
RP51/RC3  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2  
AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0  
AN4/CMP2C/CMP3A/ISRC4/RP41/RB9  
AVDD  
3
4
5
AN11/PGA1N3/RP57/RC9  
EXTREF2/AN10/PGA1P4/RP58/RC10  
VDD  
6
VSS  
7
VCAP  
8
RP68/RD4  
VSS  
9
TMS/PWM3H/RP43/RB11  
TCK/PWM3L/RP44/RB12  
PWM2H/RP45/RB13  
PWM2L/RP46/RB14  
PWM1H/RP20/RA4  
PWM1L/RP19/RA3  
FLT12/RP48/RC0  
FLT11/RP61/RC13  
CLC4OUT/FLT10/RP74/RD10  
AVSS  
N/C  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
AN8/CMP4C/PGA2P4/RP49/RC1  
OSCI/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1  
OSC2/CLKO/AN7/CMP3D/CMP4B/PGA1N2/RP34/RB2(1)  
PGED2/DACOUT1/AN18/INT0/RP35/RB3  
PGEC2/ADTRG31/RP36/RB4  
EXTREF1/AN9/CMP4D/RP50/RC2  
ASDA1/RP55/RC7  
ASCL1/RP56/RC8  
VSS  
AVDD  
VDD  
MCLR  
CLC3OUT/RD14  
AVDD  
PGED3/SDA2/FLT31/RP40/RB8  
PGEC3/SCL2/RP47/RB15  
TDO/AN19/PGA2N2/RP37/RB5  
PGED1/TDI/AN20/SCL1/RP38/RB6  
AN14/PGA2N3/RP60/RC12  
AN0/CMP1A/PGA1P1/RP16/RA0  
AN1/CMP1B/PGA1P2/PGA2P1/RP17/RA1  
Legend: Shaded pins are up to 5 VDC tolerant.  
RPn represents remappable peripheral functions. See Table 11-12 and Table 11-13 for the complete list of remappable sources.  
Note 1: At device power-up (POR), a pulse with an amplitude around 2V and a duration greater than 500 µs, may be observed on this  
device pin independent of pull-down resistors. It is recommended not to use this pin as an output driver unless the circuit being  
driven can endure this active duration.  
DS70005258C-page 6  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Pin Diagrams (Continued)  
64-Pin TQFP  
1
2
RD3  
RA4  
RA3  
48 RB6  
47  
RD0  
RB5  
3
46  
4
RC0  
45 RD11  
44  
43 RB8  
5
RC13  
RD10  
MCLR  
RD12  
VSS  
RB15  
6
7
8
9
42  
41  
40  
39  
38  
37  
36  
RD8  
VSS  
RD9  
RD14  
VDD  
dsPIC33EPXXXGSX06  
10  
11  
12  
13  
14  
15  
16  
VDD  
AVDD  
RC12  
RA0  
RA1  
RA2  
RC8  
RC7  
35 RC2  
34 RC14  
33 RB4  
RB0  
Pin  
Pin Function  
Pin  
Pin Function  
1
2
PWM4L/RP67/RD3  
33 PGEC2/ADTRG31/RP36/RB4  
34 RP62/RC14  
PWM1H/RP20/RA4  
PWM1L/RP19/RA3  
FLT12/RP48/RC0  
FLT11/RP61/RC13  
3
35 EXTREF1/AN9/CMP4D/RP50/RC2  
36 ASDA1/RP55/RC7  
4
5
37 ASCL1/RP56/RC8  
6
CLC4OUT/FLT10/RP74/RD10  
38  
VDD  
7
MCLR  
39 CLC3OUT/RD14  
8
T5CK/FLT9/RP76/RD12  
40 SCK3/RP73/RD9  
9
VSS  
41  
VSS  
10  
11  
VDD  
AVDD  
42 AN5/CMP2D/CMP3B/ISRC3/RP72RD8  
43 PGED3/SDA2/FLT31/RP40/RB8  
44 PGEC3/SCL2/RP47/RB15  
45 INT4/RP75/RD11  
12 AN14/PGA2N3/RP60/RC12  
13 AN0/CMP1A/PGA1P1/RP16/RA0  
14 AN1/CMP1B/PGA1P2/PGA2P1/RP17/RA1  
15 AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2  
16 AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0  
17 AN4/CMP2C/CMP3A/ISRC4/RP41/RB9  
18 AVDD  
46 TDO/AN19/PGA2N2/RP37/RB5  
47 T4CK/RP64/RD0  
48 PGED1/TDI/AN20/SCL1/RP38/RB6  
49 PGEC1/AN21/SDA1/RP39/RB7  
50 AN1ALT/RP52/RC4  
19 AVDD  
51 AN0ALT/RP53/RC5  
20 AVSS  
52 AN17/RP54/RC6  
21 AN15/RP71/RD7  
53 AN12/ISRC1/RP69/RD5  
54 PWM5H/RP70/RD6  
22 DACOUT2/AN13/RD13  
23 AN11/PGA1N3/RP57/RC9  
24 EXTREF2/AN10/PGA1P4/RP58/RC10  
55 PWM5L/RP51/RC3  
56  
57  
VCAP  
VDD  
25  
26  
VSS  
VDD  
58 PWM6H/RP68/RD4  
59 PWM6L/RD15  
27 AN8/CMP4C/PGA2P4/RP49/RC1  
28 OSCI/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1  
29 OSC2/CLKO/AN7/CMP3D/CMP4B/PGA1N2/RP34/RB2(1)  
30 AN16/RP66/RD2  
60 TMS/PWM3H/RP43/RB11  
61 TCK/PWM3L/RP44/RB12  
62 PWM2H/RP45/RB13  
63 PWM2L/RP46/RB14  
64 PWM4H/RP65/RD1  
31 ASDA2/RP63/RC15  
32 PGED2/DACOUT1/AN18/ASCL2/INT0/RP35/RB3  
Legend: Shaded pins are up to 5 VDC tolerant.  
RPn represents remappable peripheral functions. See Table 11-12 and Table 11-13 for the complete list of remappable sources.  
Note 1: At device power-up (POR), a pulse with an amplitude around 2V and a duration greater than 500 µs, may be observed on this  
device pin independent of pull-down resistors. It is recommended not to use this pin as an output driver unless the circuit being  
driven can endure this active duration.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 7  
dsPIC33EPXXXGS70X/80X FAMILY  
Pin Diagrams (Continued)  
80-Pin TQFP  
RD3  
RA4  
1
2
3
4
5
6
7
8
9
60 RB6  
59 RD0  
58 RB5  
RA3  
RD11  
RE0  
57  
RE1  
56 RB15  
55 RB8  
RC0  
RD8  
54  
53  
52  
51  
RC13  
RD10  
MCLR  
RE11  
RE10  
V
SS  
RD12 10  
dsPIC33EPXXXGSX08  
50 RD9  
11  
DD 12  
V
SS  
49 RD14  
V
48  
VDD  
RE2 13  
RE3 14  
AVDD 15  
RC12 16  
RA0 17  
RA1 18  
RA2 19  
RB0 20  
47 RC8  
46 RC7  
45 RC2  
44 RE9  
43 RE8  
42 RC14  
41 RB4  
Pin  
Pin Function  
Pin  
Pin Function  
1
2
3
4
5
6
7
8
9
PWM4L/RP67/RD3  
PWM1H/RP20/RA4  
PWM1L/RP19/RA3  
PWM8L/RE0  
41 PGEC2/ADTRG31/RP36/RB4  
42 RP62/RC14  
43 RE8  
44 RE9  
PWM8H/RE1  
45 EXTREF1/AN9/CMP4D/RP50/RC2  
46 ASDA1/RP55/RC7  
47 ASCL1/RP56/RC8  
FLT12/RP48/RC0  
FLT11/RP61/RC13  
CLC4OUT/FLT10/RP74/RD10  
48  
VDD  
MCLR  
49 CLC3OUT/RD14  
10 T5CK/FLT9/RP76/RD12  
50 SCK3/RP73/RD9  
11  
12  
VSS  
VDD  
51  
VSS  
52 FLT21/RE10  
13 FLT17/RE2  
53 FLT22/RE11  
14 FLT18/RE3  
54 AN5/CMP2D/CMP3B/ISRC3/RP72/RD8  
55 PGED3/SDA2/FLT31/RP40/RB8  
56 PGEC3/SCL2/RP47/RB15  
57 INT4/RP75/RD11  
15 AVDD  
16 AN14/PGA2N3/RP60/RC12  
17 AN0/CMP1A/PGA1P1/RP16/RA0  
18 AN1/CMP1B/PGA1P2/PGA2P1/RP17/RA1  
19 AN2/CMP1C/CMP2A/PGA1P3/PGA2P2/RP18/RA2  
20 AN3/CMP1D/CMP2B/PGA2P3/RP32/RB0  
21 AN4/CMP2C/CMP3A/ISRC4/RP41/RB9  
22 RE4  
58 TD0/AN19/PGA2N2/RP37/RB5  
59 T4CK/RP64/RD0  
60 PGED1/TDI/AN20/SCL1/RP38/RB6  
61 PGEC1/AN21/SDA1/RP39/RB7  
62 AN1ALT/RP52/RC4  
63 RE12  
23 RE5  
24 AVDD  
64 RE13  
25 AVDD  
65 AN0ALT/RP53/RC5  
66 AN17/RP54/RC6  
26 AVSS  
27 AN15/RP71/RD7  
67 AN12/ISRC1/RP69/RD5  
68 PWM5H/RP70/RD6  
69 PWM5L/RP51/RC3  
28 DACOUT2/AN13/RD13  
29 AN11/PGA1N3/RP57/RC9  
30 EXTREF2/AN10/PGA1P4/RP58/RC10  
70  
71  
VCAP  
VDD  
31  
32  
VSS  
VDD  
72 PWM6H/RP68/RD4  
73 PWM6L/RD15  
33 AN8/CMP4C/PGA2P4/RP49/RC1  
34 OSCI/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1  
35 OSC2/CLKO/AN7/CMP3D/CMP4B/PGA1N2/RP34/RB2(1)  
36 AN16/RP66/RD2  
74 PWM7L/RE14  
75 PWM7H/RE15  
76 TMS/PWM3H/RP43/RB11  
77 TCK/PWM3L/RP44/RB12  
78 PWM2H/RP45/RB13  
79 PWM2L/RP46/RB14  
80 PWM4H/RP65/RD1  
37 FLT19/RE6  
38 FLT20/RE7  
39 ASDA2/RP63/RC15  
40 PGED2/DACOUT1/AN18/ASCL2/INT0/RP35/RB3  
Legend: Shaded pins are up to 5 VDC tolerant.  
RPn represents remappable peripheral functions. See Table 11-12 and Table 11-13 for the complete list of remappable sources.  
Note 1: At device power-up (POR), a pulse with an amplitude around 2V and a duration greater than 500 µs, may be observed on this  
device pin independent of pull-down resistors. It is recommended not to use this pin as an output driver unless the circuit being  
driven can endure this active duration.  
DS70005258C-page 8  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................ 13  
2.0 Guidelines for Getting Started with 16-Bit Digital Signal Controllers.......................................................................................... 17  
3.0 CPU............................................................................................................................................................................................ 23  
4.0 Memory Organization................................................................................................................................................................. 33  
5.0 Flash Program Memory.............................................................................................................................................................. 63  
6.0 Resets ....................................................................................................................................................................................... 71  
7.0 Interrupt Controller ..................................................................................................................................................................... 75  
8.0 Direct Memory Access (DMA).................................................................................................................................................... 91  
9.0 Oscillator Configuration............................................................................................................................................................ 105  
10.0 Power-Saving Features............................................................................................................................................................ 117  
11.0 I/O Ports ................................................................................................................................................................................... 127  
12.0 Timer1 ...................................................................................................................................................................................... 171  
13.0 Timer2/3 and Timer4/5 ............................................................................................................................................................ 175  
14.0 Input Capture............................................................................................................................................................................ 179  
15.0 Output Compare....................................................................................................................................................................... 183  
16.0 High-Speed PWM..................................................................................................................................................................... 189  
17.0 Peripheral Trigger Generator (PTG) Module............................................................................................................................ 217  
18.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 233  
2
19.0 Inter-Integrated Circuit (I C)..................................................................................................................................................... 249  
20.0 Universal Asynchronous Receiver Transmitter (UART)........................................................................................................... 257  
21.0 Configurable Logic Cell (CLC).................................................................................................................................................. 263  
22.0 High-Speed, 12-Bit Analog-to-Digital Converter (ADC)............................................................................................................ 277  
23.0 Controller Area Network (CAN) Module (dsPIC33EPXXXGS80X Devices Only) .................................................................... 311  
24.0 High-Speed Analog Comparator .............................................................................................................................................. 337  
25.0 Programmable Gain Amplifier (PGA) ....................................................................................................................................... 345  
26.0 Constant-Current Source ......................................................................................................................................................... 349  
27.0 Special Features ...................................................................................................................................................................... 351  
28.0 Instruction Set Summary.......................................................................................................................................................... 365  
29.0 Development Support............................................................................................................................................................... 375  
30.0 Electrical Characteristics.......................................................................................................................................................... 379  
31.0 DC and AC Device Characteristics Graphs.............................................................................................................................. 439  
32.0 Packaging Information.............................................................................................................................................................. 443  
Appendix A: Revision History............................................................................................................................................................. 469  
Index ................................................................................................................................................................................................. 471  
The Microchip Website ...................................................................................................................................................................... 479  
Customer Change Notification Service .............................................................................................................................................. 479  
Customer Support.............................................................................................................................................................................. 479  
Product Identification System ............................................................................................................................................................ 481  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 9  
dsPIC33EPXXXGS70X/80X FAMILY  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com. We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Website; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our website at www.microchip.com to receive the most current information on all of our products.  
DS70005258C-page 10  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Referenced Sources  
This device data sheet is based on the following  
individual chapters of the “dsPIC33/PIC24 Family  
Reference Manual”. These documents should be  
considered as the general reference for the operation  
of a particular module or device feature.  
Note 1: To access the documents listed below,  
browse to the documentation section of  
the dsPIC33EPXXXGS70X/80X prod-  
uct page of the Microchip website  
(www.microchip.com) or select a family  
reference manual section from the  
following list.  
In addition to parameters, features and  
other documentation, the resulting page  
provides links to the related family  
reference manual sections.  
“dsPIC33E Enhanced CPU” (DS70005158)  
“dsPIC33E/PIC24E Program Memory” (DS70000613)  
“Data Memory” (DS70595)  
“Dual Partition Flash Program Memory” (DS70005156)  
“Flash Programming” (DS70609)  
“Reset” (DS70602)  
“Interrupts” (DS70000600)  
“Direct Memory Access (DMA)” (DS70348)  
“Oscillator Module” (DS70005131)  
“Watchdog Timer and Power-Saving Modes” (DS70615)  
“I/O Ports” (DS70000598)  
“Timers” (DS70362)  
“Input Capture with Dedicated Timer” (DS70000352)  
“Output Compare with Dedicated Timer” (DS70005159)  
“High-Speed PWM Module” (DS70000323)  
“Peripheral Trigger Generator (PTG)” (DS70000669)  
“Serial Peripheral Interface (SPI) with Audio Codec Support” (DS70005136)  
“Inter-Integrated Circuit (I2C)” (DS70000195)  
“Universal Asynchronous Receiver Transmitter (UART)” (DS70000582)  
“Configurable Logic Cell (CLC)” (DS70005298)  
“12-Bit High-Speed, Multiple SARs A/D Converter (ADC)” (DS70005213)  
“Enhanced Controller Area Network (ECAN™)” (DS70353)  
“High-Speed Analog Comparator Module” (DS70005128)  
“Programmable Gain Amplifier (PGA)” (DS70005146)  
“Device Configuration” (DS70000618)  
“Watchdog Timer and Power-Saving Modes” (DS70615)  
“CodeGuard™ Intermediate Security” (DS70005182)  
“Programming and Diagnostics” (DS70608)  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 11  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 12  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
This document contains device-specific information for  
the dsPIC33EPXXXGS70X/80X Digital Signal Controller  
(DSC) devices.  
1.0  
DEVICE OVERVIEW  
Note 1: This data sheet summarizes the features  
of the dsPIC33EPXXXGS70X/80X family  
of devices. It is not intended to be a  
comprehensive resource. To comple-  
ment the information in this data sheet,  
refer to the related section of the  
“dsPIC33/PIC24 Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
dsPIC33EPXXXGS70X/80X devices contain extensive  
Digital Signal Processor (DSP) functionality with a  
high-performance, 16-bit MCU architecture.  
Figure 1-1 shows a general block diagram of the core  
and peripheral modules. Table 1-1 lists the functions of  
the various pins shown in the pinout diagrams.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific  
register and bit information.  
FIGURE 1-1:  
dsPIC33EPXXXGS70X/80X FAMILY BLOCK DIAGRAM  
CPU  
Refer to Figure 3-1 for CPU diagram details.  
PORTA  
16  
PORTB  
PORTC  
PORTD  
PORTE  
Power-up  
Timer  
16  
Oscillator  
Timing  
Start-up  
Generation  
Timer  
OSC1/CLKI  
POR/BOR  
MCLR  
Watchdog  
Timer  
VDD, VSS  
AVDD, AVSS  
Peripheral Modules  
Input  
Captures  
1-4  
Output  
CAN  
PGA1,  
PGA2  
I2C1,  
I2C2  
ADC  
Modules  
1-2  
PTG  
Compares  
1-4  
Remappable  
Pins  
Analog  
Comparators  
1-4  
Ports  
Constant  
Current  
Source  
Timers  
1-5  
PWMs  
8x2  
UART1,  
UART2  
CLC  
1-4  
SPI1-3  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 13  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 1-1:  
Pin Name(1)  
PINOUT I/O DESCRIPTIONS  
Pin Buffer  
PPS  
Description  
Type Type  
AN0-AN21  
AN0ALT-AN1ALT  
I
I
Analog No Analog input channels.  
Analog No Alternate analog input channels.  
C1RXR  
C2RXR  
C1TX  
I
I
O
O
ST  
ST  
ST  
ST  
Yes CAN1 receive.  
Yes CAN2 receive.  
Yes CAN1 transmit.  
Yes CAN2 transmit.  
C2TX  
CLKI  
I
ST/  
CMOS  
No External clock source input. Always associated with OSC1 pin  
function.  
No Oscillator crystal output. Connects to crystal or resonator in Crystal  
Oscillator mode. Optionally functions as CLKO in RC and EC modes.  
Always associated with OSC2 pin function.  
CLKO  
O
OSC1  
OSC2  
I
ST/  
CMOS  
No Oscillator crystal input. ST buffer when configured in RC mode; CMOS  
otherwise.  
No Oscillator crystal output. Connects to crystal or resonator in Crystal  
Oscillator mode. Optionally functions as CLKO in RC and EC modes.  
I/O  
CLC1OUT  
CLC2OUT  
CLC3OUT  
CLC4OUT  
O
O
O
O
DIG  
DIG  
DIG  
DIG  
Yes CLC1 output.  
Yes CLC2 output.  
No(4) CLC3 output.  
No(4) CLC4 output.  
REFCLKO  
IC1-IC4  
O
I
Yes Reference clock output.  
ST  
Yes Capture Inputs 1 through 4.  
OCFA  
OC1-OC4  
I
O
ST  
Yes Compare Fault A input (for compare channels).  
Yes Compare Outputs 1 through 4.  
INT0  
INT1  
INT2  
INT4  
I
I
I
I
ST  
ST  
ST  
ST  
No External Interrupt 0.  
Yes External Interrupt 1.  
Yes External Interrupt 2.  
Yes External Interrupt 4.  
RA0-RA4  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
No PORTA is a bidirectional I/O port.  
No PORTB is a bidirectional I/O port.  
No PORTC is a bidirectional I/O port.  
No PORTD is a bidirectional I/O port.  
No PORTE is a bidirectional I/O port.  
RB0-RB15  
RC0-RC15  
RD0-RD15  
RE0-RE15  
T1CK  
T2CK  
T3CK  
T4CK  
T5CK  
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
Yes Timer1 external clock input.  
Yes Timer2 external clock input.  
Yes Timer3 external clock input.  
No Timer4 external clock input.  
No Timer5 external clock input.  
U1CTS  
U1RTS  
U1RX  
U1TX  
BCLK1  
I
O
I
O
O
ST  
ST  
Yes UART1 Clear-to-Send.  
Yes UART1 Ready-to-Send.  
Yes UART1 receive.  
Yes UART1 transmit.  
ST  
Yes UART1 IrDA® baud clock output.  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
PPS = Peripheral Pin Select  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
1: Not all pins are available in all package variants. See the “Pin Diagrams” section for pin availability.  
2: PWM4H/L through PWM8H/L are fixed on dsPIC33EPXXXGS708/808 devices. PWM4H/L through  
PWM6H/L are fixed on dsPIC33EPXXXGS706/806 devices.  
3: The SCK3 pin is fixed on dsPIC33EPXXXGS706/806 and dsPIC33EPXXXGS708/808 devices.  
4: PPS is available on dsPIC33EPXXXGS702 devices only.  
DS70005258C-page 14  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 1-1:  
Pin Name(1)  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Buffer  
PPS  
Description  
Type Type  
U2CTS  
U2RTS  
U2RX  
U2TX  
BCLK2  
I
O
I
O
O
ST  
ST  
Yes UART2 Clear-to-Send.  
Yes UART2 Ready-to-Send.  
Yes UART2 receive.  
Yes UART2 transmit.  
Yes UART2 IrDA baud clock output.  
ST  
SCK1  
SDI1  
SDO1  
SS1  
I/O  
I
O
ST  
ST  
Yes Synchronous serial clock input/output for SPI1.  
Yes SPI1 data in.  
Yes SPI1 data out.  
I/O  
ST  
Yes SPI1 slave synchronization or frame pulse I/O.  
SCK2  
SDI2  
SDO2  
SS2  
I/O  
I
O
ST  
ST  
Yes Synchronous serial clock input/output for SPI2.  
Yes SPI2 data in.  
Yes SPI2 data out.  
I/O  
ST  
Yes SPI2 slave synchronization or frame pulse I/O.  
SCK3  
SDI3  
SDO3  
SS3  
I/O  
I
O
ST  
ST  
Yes(3) Synchronous serial clock input/output for SPI3.  
Yes SPI3 data in.  
Yes SPI3 data out.  
Yes SPI3 slave synchronization or frame pulse I/O.  
I/O  
ST  
SCL1  
SDA1  
ASCL1  
ASDA1  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
No Synchronous serial clock input/output for I2C1.  
No Synchronous serial data input/output for I2C1.  
No Alternate synchronous serial clock input/output for I2C1.  
No Alternate synchronous serial data input/output for I2C1.  
SCL2  
SDA2  
ASCL2  
ASDA2  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
No Synchronous serial clock input/output for I2C2.  
No Synchronous serial data input/output for I2C2.  
No Alternate synchronous serial clock input/output for I2C2.  
No Alternate synchronous serial data input/output for I2C2.  
TMS  
TCK  
TDI  
I
I
I
ST  
ST  
ST  
No JTAG Test mode select pin.  
No JTAG test clock input pin.  
No JTAG test data input pin.  
No JTAG test data output pin.  
TDO  
O
FLT1-FLT8  
FLT9-FLT12  
FLT17-FLT22  
FLT31  
PWM1L-PWM3L  
PWM1H-PWM3H  
PWM4L-PWM8L(2)  
PWM4H-PWM8H(2)  
SYNCI1, SYNCI2  
SYNCO1, SYNCO2  
I
I
I
ST  
ST  
ST  
ST  
ST  
Yes PWM Fault Inputs 1 through 8.  
No PWM Fault Inputs 9 through 12.  
No PWM Fault Inputs 17 through 22.  
No PWM Fault Input 31 (Class B Fault).  
No PWM Low Outputs 1 through 3.  
No PWM High Outputs 1 through 3.  
Yes PWM Low Outputs 4 through 8.  
Yes PWM High Outputs 4 through 8.  
Yes PWM Synchronization Inputs 1 and 2.  
Yes PWM Synchronization Outputs 1 and 2.  
I
O
O
O
O
I
O
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
PPS = Peripheral Pin Select  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
1: Not all pins are available in all package variants. See the “Pin Diagrams” section for pin availability.  
2: PWM4H/L through PWM8H/L are fixed on dsPIC33EPXXXGS708/808 devices. PWM4H/L through  
PWM6H/L are fixed on dsPIC33EPXXXGS706/806 devices.  
3: The SCK3 pin is fixed on dsPIC33EPXXXGS706/806 and dsPIC33EPXXXGS708/808 devices.  
4: PPS is available on dsPIC33EPXXXGS702 devices only.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 15  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 1-1:  
Pin Name(1)  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Buffer  
PPS  
Description  
Type Type  
CMP1A-CMP4A  
CMP1B-CMP4B  
CMP1C-CMP4C  
CMP1D-CMP4D  
I
I
I
I
Analog No Comparator Channels 1A through 4A inputs.  
Analog No Comparator Channels 1B through 4B inputs.  
Analog No Comparator Channels 1C through 4C inputs.  
Analog No Comparator Channels 1D through 4D inputs.  
ACMP1-ACMP4  
O
O
Yes Analog Comparator Outputs 1-4.  
No DAC Output Voltages 1 and 2.  
DACOUT1,  
DACOUT2  
EXTREF1, EXTREF2  
PGA1P1-PGA1P4  
PGA1N1-PGA1N3  
PGA2P1-PGA2P4  
PGA2N1-PGA2N3  
ADTRG31  
I
I
I
I
I
I
Analog No External Voltage Reference Inputs 1 and 2 for the Reference DACs.  
Analog No PGA1 Positive Inputs 1 through 4.  
Analog No PGA1 Negative Inputs 1 through 3.  
Analog No PGA2 Positive Inputs 1 through 4.  
Analog No PGA2 Negative Inputs 1 through 3.  
ST  
No External ADC trigger source.  
PGED1  
PGEC1  
PGED2  
PGEC2  
PGED3  
PGEC3  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
No Data I/O pin for Programming/Debugging Communication Channel 1.  
No Clock input pin for Programming/Debugging Communication Channel 1.  
No Data I/O pin for Programming/Debugging Communication Channel 2.  
No Clock input pin for Programming/Debugging Communication Channel 2.  
No Data I/O pin for Programming/Debugging Communication Channel 3.  
No Clock input pin for Programming/Debugging Communication Channel 3.  
I
I/O  
I
I/O  
I
MCLR  
AVDD  
AVSS  
I/P  
ST  
No Master Clear (Reset) input. This pin is an active-low Reset to the  
device.  
P
P
No Positive supply for analog modules. This pin must be connected at all  
times.  
P
P
No Ground reference for analog modules. This pin must be connected at  
all times.  
VDD  
VCAP  
VSS  
P
P
P
No Positive supply for peripheral logic and I/O pins.  
No CPU logic filter capacitor connection.  
No Ground reference for logic and I/O pins.  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
PPS = Peripheral Pin Select  
Analog = Analog input  
O = Output  
P = Power  
I = Input  
1: Not all pins are available in all package variants. See the “Pin Diagrams” section for pin availability.  
2: PWM4H/L through PWM8H/L are fixed on dsPIC33EPXXXGS708/808 devices. PWM4H/L through  
PWM6H/L are fixed on dsPIC33EPXXXGS706/806 devices.  
3: The SCK3 pin is fixed on dsPIC33EPXXXGS706/806 and dsPIC33EPXXXGS708/808 devices.  
4: PPS is available on dsPIC33EPXXXGS702 devices only.  
DS70005258C-page 16  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
2.2  
Decoupling Capacitors  
2.0  
GUIDELINES FOR GETTING  
STARTED WITH 16-BIT DIGITAL  
SIGNAL CONTROLLERS  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD and  
AVSS is required.  
Note 1: This data sheet summarizes the features  
of the dsPIC33EPXXXGS70X/80X family  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the related section of  
the “dsPIC33/PIC24 Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
Consider the following criteria when using decoupling  
capacitors:  
Value and type of capacitor: Recommendation  
of 0.1 µF (100 nF), 10-20V. This capacitor should  
be a low-ESR and have resonance frequency in  
the range of 20 MHz and higher. It is  
recommended to use ceramic capacitors.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is within  
one-quarter inch (6 mm) in length.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
2.1  
Basic Connection Requirements  
Handling high-frequency noise: If the board is  
experiencing high-frequency noise, above tens  
of MHz, add a second ceramic-type capacitor in  
parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 µF to 0.001 µF. Place this  
second capacitor next to the primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible.  
For example, 0.1 µF in parallel with 0.001 µF.  
Getting started with the dsPIC33EPXXXGS70X/80X  
family requires attention to a minimal set of device pin  
connections before proceeding with development. The  
following is a list of pin names which must always be  
connected:  
• All VDD and VSS pins  
(see Section 2.2 “Decoupling Capacitors”)  
• All AVDD and AVSS pins  
regardless if ADC module is not used (see  
Section 2.2 “Decoupling Capacitors”)  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum, thereby reducing PCB track  
• VCAP  
(see Section 2.3 “CPU Logic Filter Capacitor  
Connection (VCAP)”)  
• MCLR pin  
(see Section 2.4 “Master Clear (MCLR) Pin”)  
• PGECx/PGEDx pins  
used for In-Circuit Serial Programming™ (ICSP™)  
and debugging purposes (see Section 2.5 “ICSP  
Pins”)  
inductance.  
• OSC1 and OSC2 pins  
when external oscillator source is used (see  
Section 2.6 “External Oscillator Pins”)  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 17  
dsPIC33EPXXXGS70X/80X FAMILY  
The placement of this capacitor should be close to the  
VCAP pin. It is recommended that the trace length not  
exceed one-quarter inch (6 mm). See Section 27.4  
“On-Chip Voltage Regulator” for details.  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTION  
0.1 µF  
Ceramic  
10 µF  
Tantalum  
VDD  
2.4  
Master Clear (MCLR) Pin  
R
The MCLR pin provides two specific device  
functions:  
R1  
MCLR  
• Device Reset  
C
• Device Programming and Debugging.  
dsPIC33EP  
During device programming and debugging, the  
resistance and capacitance that can be added to the  
pin must be considered. Device programmers and  
debuggers drive the MCLR pin. Consequently,  
specific voltage levels (VIH and VIL) and fast signal  
transitions must not be adversely affected. Therefore,  
specific values of R and C will need to be adjusted  
based on the application and PCB requirements.  
VDD  
VSS  
VDD  
VSS  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
(1)  
L1  
For example, as shown in Figure 2-2, it is recom-  
mended that the capacitor, C, be isolated from the  
MCLR pin during programming and debugging  
operations.  
Note 1: As an option, instead of a hard-wired connection, an  
inductor (L1) can be substituted between VDD and  
AVDD to improve ADC noise rejection. The inductor  
impedance should be less than 1and the inductor  
capacity greater than 10 mA.  
Place the components as shown in Figure 2-2, within  
one-quarter inch (6 mm) from the MCLR pin.  
Where:  
FCNV  
2
f = -------------  
(i.e., ADC Conversion Rate/2)  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
1
f = -----------------------  
2LC  
VDD  
2  
1
L = ---------------------  
(1)  
2f C  
R
(2)  
R1  
MCLR  
2.2.1  
TANK CAPACITORS  
JP  
C
On boards with power traces running longer than six  
inches in length, it is suggested to use a tank capacitor  
for integrated circuits, including DSCs, to supply a local  
power source. The value of the tank capacitor should  
be determined based on the trace resistance that con-  
nects the power supply source to the device and the  
maximum current drawn by the device in the applica-  
tion. In other words, select the tank capacitor so that it  
meets the acceptable voltage sag at the device. Typical  
values range from 4.7 µF to 47 µF.  
dsPIC33EP  
Note 1: R 10 kis recommended. A suggested  
starting value is 10 k. Ensure that the  
MCLR pin VIH and VIL specifications are met.  
2: R1 470will limit any current flowing into  
MCLR from the external capacitor, C, in the  
event of MCLR pin breakdown due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
2.3  
CPU Logic Filter Capacitor  
Connection (VCAP)  
A low-ESR (< 0.5) capacitor is required on the VCAP  
pin, which is used to stabilize the voltage regulator  
output voltage. The VCAP pin must not be connected to  
VDD and must have a capacitor greater than 4.7 µF  
(10 µF is recommended), 16V connected to ground. The  
type can be ceramic or tantalum. See Section 30.0  
“Electrical Characteristics” for additional information.  
DS70005258C-page 18  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
2.5  
ICSP Pins  
2.6  
External Oscillator Pins  
The PGECx and PGEDx pins are used for ICSP and  
debugging purposes. It is recommended to keep the  
trace length between the ICSP connector and the ICSP  
pins on the device as short as possible. If the ICSP con-  
nector is expected to experience an ESD event, a  
series resistor is recommended, with the value in the  
range of a few tens of Ohms, not to exceed 100 Ohms.  
Many DSCs have options for at least two oscillators: a  
high-frequency primary oscillator and a low-frequency  
secondary oscillator. For details, see Section 9.0  
“Oscillator Configuration” for details.  
The oscillator circuit should be placed on the same  
side of the board as the device. Also, place the  
oscillator circuit close to the respective oscillator pins,  
not exceeding one-half inch (12 mm) distance  
between them. The load capacitors should be placed  
next to the oscillator itself, on the same side of the  
board. Use a grounded copper pour around the  
oscillator circuit to isolate them from surrounding  
circuits. The grounded copper pour should be routed  
directly to the MCU ground. Do not run any signal  
traces or power traces inside the ground pour. Also, if  
using a two-sided board, avoid any traces on the  
other side of the board where the crystal is placed. A  
suggested layout is shown in Figure 2-3.  
Pull-up resistors, series diodes and capacitors on the  
PGECx and PGEDx pins are not recommended as they  
will interfere with the programmer/debugger communi-  
cations to the device. If such discrete components are  
an application requirement, they should be removed  
from the circuit during programming and debugging.  
Alternatively, refer to the AC/DC characteristics and  
timing requirements information in the respective  
device Flash programming specification for information  
on capacitive loading limits and pin Voltage Input High  
(VIH) and Voltage Input Low (VIL) requirements.  
Ensure that the “Communication Channel Select” (i.e.,  
PGECx/PGEDx pins) programmed into the device  
matches the physical connections for the ICSP  
to MPLAB® PICkit™ 3, MPLAB ICD 3, or MPLAB  
REAL ICE™.  
FIGURE 2-3:  
SUGGESTED PLACEMENT  
OF THE OSCILLATOR  
CIRCUIT  
For more information on MPLAB ICD 2, MPLAB ICD 3  
and REAL ICE connection requirements, refer to the  
following documents that are available on the  
Microchip website.  
Main Oscillator  
Guard Ring  
“Using MPLAB® ICD 3 In-Circuit Debugger”  
(poster) (DS51765)  
Guard Trace  
Oscillator Pins  
“Development Tools Design Advisory” (DS51764)  
“MPLAB® REAL ICE™ In-Circuit Emulator User’s  
Guide for MPLAB X IDE” (DS50002085)  
“Using MPLAB® REAL ICE™ In-Circuit Emulator”  
(poster) (DS51749)  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 19  
dsPIC33EPXXXGS70X/80X FAMILY  
2.7  
Oscillator Value Conditions on  
Device Start-up  
2.9  
Targeted Applications  
• Power Factor Correction (PFC)  
- Interleaved PFC  
If the PLL of the target device is enabled and  
configured for the device start-up oscillator, the  
maximum oscillator source frequency must be limited  
to 3 MHz < FIN < 5.5 MHz to comply with device PLL  
start-up conditions. This means that if the external  
oscillator frequency is outside this range, the  
application must start up in the FRC mode first. The  
default PLL settings, after a POR with an oscillator  
frequency outside this range, will violate the device  
operating speed.  
- Critical Conduction PFC  
- Bridgeless PFC  
• DC/DC Converters  
- Buck, Boost, Forward, Flyback, Push-Pull  
- Half/Full-Bridge  
- Phase-Shift Full-Bridge  
- Resonant Converters  
• DC/AC  
Once the device powers up, the application firmware  
can initialize the PLL SFRs, CLKDIV and PLLFBD, to a  
suitable value, and then perform a clock switch to the  
Oscillator + PLL clock source. Note that clock switching  
must be enabled in the device Configuration Word.  
- Half/Full-Bridge Inverter  
- Resonant Inverter  
Examples of typical application connections are shown  
in Figure 2-4 through Figure 2-6.  
2.8  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic low state.  
Alternatively, connect a 1k to 10k resistor between VSS  
and unused pins, and drive the output to logic low.  
FIGURE 2-4:  
INTERLEAVED PFC  
VOUT+  
|VAC|  
k
k
2
1
k
4
VAC  
k
3
VOUT-  
FET  
Driver  
FET  
Driver  
PGA/ADC Channel  
ADC Channel  
PWM PGA/ADC PWM PGA/ADC  
ADC  
Channel  
Channel  
Channel  
dsPIC33EPXXXGS70X/80X  
DS70005258C-page 20  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 2-5:  
PHASE-SHIFTED FULL-BRIDGE CONVERTER  
VIN+  
Gate 6  
Gate 3  
VOUT+  
S3  
Gate 1  
S1  
VOUT-  
Gate 2  
Gate 4  
Gate 5  
VIN-  
Gate 5  
FET  
Driver  
k
2
k
1
Analog  
Ground  
Gate 1  
S1  
FET  
Driver  
PWM PGA/ADC PWM  
Channel  
ADC  
Channel  
Gate 3  
S3  
dsPIC33EPXXXGS70X/80X  
PWM  
FET  
Driver  
Gate 2  
Gate 4  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 21  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 2-6:  
OFF-LINE UPS  
VDC  
Full-Bridge Inverter  
Push-Pull Converter  
V
OUT  
+
-
VBAT  
+
VOUT  
GND  
GND  
FET  
Driver  
FET  
FET  
FET  
FET  
FET  
Driver  
k
k
k
k
5
2
1
4
Driver Driver Driver Driver  
PWM  
ADC  
PWM PGA/ADC ADC  
PWM  
PWM  
PWM  
PWM  
or  
Analog Comp.  
k
ADC  
ADC  
3
dsPIC33EPXXXGS70X/80X  
PWM  
ADC  
FET  
Driver  
k
6
+
Battery Charger  
DS70005258C-page 22  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
3.2  
Instruction Set  
3.0  
CPU  
The instruction set for dsPIC33EPXXXGS70X/80X  
devices has two classes of instructions: the MCU class  
of instructions and the DSP class of instructions. These  
two instruction classes are seamlessly integrated into the  
architecture and execute from a single execution unit.  
The instruction set includes many addressing modes and  
was designed for optimum C compiler efficiency.  
Note 1: This data sheet summarizes the features  
of the dsPIC33EPXXXGS70X/80X family  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to “dsPIC33E Enhanced  
CPU” (DS70005158) in the “dsPIC33/  
PIC24 Family Reference Manual”, which  
is available from the Microchip website  
(www.microchip.com).  
3.3  
Data Space Addressing  
The base Data Space can be addressed as up to  
4K words or 8 Kbytes, and is split into two blocks,  
referred to as X and Y data memory. Each memory block  
has its own independent Address Generation Unit  
(AGU). The MCU class of instructions operates solely  
through the X memory AGU, which accesses the entire  
memory map as one linear Data Space. Certain DSP  
instructions operate through the X and Y AGUs to sup-  
port dual operand reads, which splits the data address  
space into two parts. The X and Y Data Space boundary  
is device-specific.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The dsPIC33EPXXXGS70X/80X family CPU has a 16-bit  
(data) modified Harvard architecture with an enhanced  
instruction set, including significant support for Digital  
Signal Processing (DSP). The CPU has a 24-bit  
instruction word with a variable length opcode field.  
The Program Counter (PC) is 23 bits wide and  
addresses up to 4M x 24 bits of user program memory  
space.  
The upper 32 Kbytes of the Data Space memory map  
can optionally be mapped into Program Space (PS) at  
any 16K program word boundary. The program-to-Data  
Space mapping feature, known as Program Space  
Visibility (PSV), lets any instruction access Program  
Space as if it were Data Space. Refer to “Data  
Memory” (DS70595) in the “dsPIC33/PIC24 Family  
Reference Manual” for more details on PSV and table  
accesses.  
An instruction prefetch mechanism helps maintain  
throughput and provides predictable execution. Most  
instructions execute in a single-cycle effective execu-  
tion rate, with the exception of instructions that change  
the program flow, the double-word move (MOV.D)  
instruction, PSV accesses and the table instructions.  
Overhead-free program loop constructs are supported  
using the DO and REPEAT instructions, both of which  
are interruptible at any point.  
On dsPIC33EPXXXGS70X/80X devices, overhead-free  
circular buffers (Modulo Addressing) are supported in  
both X and Y address spaces. The Modulo Addressing  
removes the software boundary checking overhead for  
DSP algorithms. The X AGU Circular Addressing can be  
used with any of the MCU class of instructions. The  
X AGU also supports Bit-Reversed Addressing to  
greatly simplify input or output data re-ordering for  
radix-2 FFT algorithms.  
3.1  
Registers  
The dsPIC33EPXXXGS70X/80X devices have sixteen,  
16-bit Working registers in the programmer’s model. Each  
of the Working registers can act as a Data, Address or  
Address Offset register. The 16th Working register (W15)  
operates as a Software Stack Pointer for interrupts and  
calls.  
3.4  
Addressing Modes  
The CPU supports these addressing modes:  
In addition, the dsPIC33EPXXXGS70X/80X devices  
include four Alternate Working register sets which consist  
of W0 through W14. The Alternate Working registers can  
be made persistent to help reduce the saving and restor-  
ing of register content during Interrupt Service Routines  
(ISRs). The Alternate Working registers can be assigned  
to a specific Interrupt Priority Level (IPL1 through IPL7) by  
configuring the CTXTx<2:0> bits in the FALTREG Config-  
uration register. The Alternate Working registers can also  
be accessed manually by using the CTXTSWPinstruction.  
The CCTXI<2:0> and MCTXI<2:0> bits in the CTXTSTAT  
register can be used to identify the current, and most  
recent, manually selected Working register sets.  
• Inherent (no operand)  
• Relative  
• Literal  
• Memory Direct  
• Register Direct  
• Register Indirect  
Each instruction is associated with a predefined  
addressing mode group, depending upon its functional  
requirements. As many as six addressing modes are  
supported for each instruction.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 23  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 3-1:  
dsPIC33EPXXXGS70X/80X FAMILY CPU BLOCK DIAGRAM  
X Address Bus  
Y Data Bus  
X Data Bus  
16  
16  
16  
16  
Data Latch  
Data Latch  
Interrupt  
Controller  
PSV and Table  
Data Access  
Control Block  
Y Data  
RAM  
X Data  
RAM  
8
16  
24  
24  
16  
Address  
Latch  
Address  
Latch  
24  
16  
16  
24  
X RAGU  
X WAGU  
PCU PCH PCL  
Program Counter  
16  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
Address Latch  
Program Memory  
Data Latch  
Y AGU  
16  
EA MUX  
16  
16  
24  
24  
16  
16-Bit  
Working Register Arrays  
16  
16  
16  
Divide  
Support  
DSP  
Engine  
16-Bit ALU  
16  
Instruction  
Decode and  
Control  
Control Signals  
to Various Blocks  
16  
Power, Reset  
and Oscillator  
Modules  
Ports  
Peripheral  
Modules  
DS70005258C-page 24  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
In addition to the registers contained in the programmer’s  
3.5  
Programmer’s Model  
model, the dsPIC33EPXXXGS70X/80X devices contain  
control registers for Modulo Addressing, Bit-Reversed  
Addressing and interrupts. These registers are  
described in subsequent sections of this document.  
The programmer’s model for the dsPIC33EPXXXGS70X/  
80X family is shown in Figure 3-2. All registers in the  
programmer’s model are memory-mapped and can be  
manipulated directly by instructions. Table 3-1 lists a  
description of each register.  
All registers associated with the programmer’s model  
are memory-mapped, as shown in Table 3-1.  
TABLE 3-1:  
PROGRAMMER’S MODEL REGISTER DESCRIPTIONS  
Register(s) Name  
Description  
W0 through W15(1)  
W0 through W14(1)  
W0 through W14(1)  
W0 through W14(1)  
W0 through W14(1)  
ACCA, ACCB  
PC  
Working Register Array  
Alternate 1 Working Register Array  
Alternate 2 Working Register Array  
Alternate 3 Working Register Array  
Alternate 4 Working Register Array  
40-Bit DSP Accumulators  
23-Bit Program Counter  
SR  
ALU and DSP Engine STATUS Register  
Stack Pointer Limit Value Register  
SPLIM  
TBLPAG  
Table Memory Page Address Register  
Extended Data Space (EDS) Read Page Register  
REPEATLoop Counter Register  
DSRPAG  
RCOUNT  
DCOUNT  
DOLoop Counter Register  
DOSTARTH(2), DOSTARTL(2)  
DOENDH, DOENDL  
CORCON  
DOLoop Start Address Register (High and Low)  
DOLoop End Address Register (High and Low)  
Contains DSP Engine, DOLoop Control and Trap Status bits  
Note 1: Memory-mapped W0 through W14 represent the value of the register in the currently active CPU context.  
2: The DOSTARTH and DOSTARTL registers are read-only.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 25  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 3-2:  
PROGRAMMER’S MODEL  
D15  
D0  
D15  
D0  
D15  
D0  
D15  
D0  
D15  
D0  
W0  
W0  
W0 (WREG) W0  
W1 W1  
W0  
W1  
W1  
W1  
W0-W3  
W2  
W3  
W4  
W2  
W3  
W4  
W2  
W3  
W4  
W5  
W2  
W3  
W4  
W2  
W3  
W4  
Alternate  
Working/Address  
Registers  
W5  
W6  
W7  
W5  
W6  
W7  
DSP Operand  
W5  
W5  
W6  
W7  
Registers  
W6 W6  
Working/Address  
Registers  
W7  
W8  
W7  
W8  
W8  
W9  
W8  
W9  
W8  
W9  
W9 W9  
DSP Address  
Registers  
W10 W10  
W11 W11  
W10 W10  
W11 W11  
W12 W12  
W10  
W11  
W12  
W12 W12  
W13 W13  
W14 W14  
W13 W13 W13  
Frame Pointer/W14 W14 W14  
0
Stack Pointer/W15  
PUSH.Sand POP.SShadows  
Nested DOStack  
Stack Pointer Limit  
0
SPLIM  
AD39  
AD31  
AD15  
AD0  
ACCA  
DSP  
Accumulators  
ACCB  
PC23  
PC0  
0
0
Program Counter  
0
7
TBLPAG  
Data Table Page Address  
9
0
DSRPAG  
X Data Space Read Page Address  
15  
0
0
RCOUNT  
DCOUNT  
REPEATLoop Counter  
15  
DOLoop Counter and Stack  
23  
0
0
DOLoop Start Address and Stack  
DOLoop End Address and Stack  
0
DOSTART  
23  
0
0
DOEND  
15  
0
0
CORCON  
CPU Core Control Register  
SRL  
OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA  
N
OV  
Z
C
STATUS Register  
DS70005258C-page 26  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
3.6.1  
KEY RESOURCES  
3.6  
CPU Resources  
“dsPIC33E Enhanced CPU” (DS70005158) in the  
“dsPIC33/PIC24 Family Reference Manual”  
Many useful resources are provided on the main prod-  
uct page of the Microchip website for the devices listed  
in this data sheet. This product page contains the latest  
updates and additional information.  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
• Development Tools  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 27  
dsPIC33EPXXXGS70X/80X FAMILY  
3.7  
CPU Control Registers  
REGISTER 3-1:  
SR: CPU STATUS REGISTER  
R/W-0  
OA  
R/W-0  
OB  
R/W-0  
SA(3)  
R/W-0  
SB(3)  
R/C-0  
OAB  
R/C-0  
SAB  
R-0  
DA  
R/W-0  
DC  
bit 15  
bit 8  
R/W-0(2)  
IPL2(1)  
bit 7  
R/W-0(2)  
IPL1(1)  
R/W-0(2)  
IPL0(1)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’= Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
OA: Accumulator A Overflow Status bit  
1= Accumulator A has overflowed  
0= Accumulator A has not overflowed  
OB: Accumulator B Overflow Status bit  
1= Accumulator B has overflowed  
0= Accumulator B has not overflowed  
SA: Accumulator A Saturation ‘Sticky’ Status bit(3)  
1= Accumulator A is saturated or has been saturated at some time  
0= Accumulator A is not saturated  
SB: Accumulator B Saturation ‘Sticky’ Status bit(3)  
1= Accumulator B is saturated or has been saturated at some time  
0= Accumulator B is not saturated  
OAB: OA || OB Combined Accumulator Overflow Status bit  
1= Accumulator A or B has overflowed  
0= Neither Accumulator A or B has overflowed  
SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit  
1= Accumulator A or B is saturated or has been saturated at some time  
0= Neither Accumulator A or B is saturated  
DA: DOLoop Active bit  
1= DOloop is in progress  
0= DOloop is not in progress  
bit 8  
DC: MCU ALU Half Carry/Borrow bit  
1= A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)  
of the result occurred  
0= No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized  
data) of the result occurred  
Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.  
3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by  
clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not  
be modified using bit operations.  
DS70005258C-page 28  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 3-1:  
SR: CPU STATUS REGISTER (CONTINUED)  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(1,2)  
111= CPU Interrupt Priority Level is 7 (15); user interrupts are disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
bit 4  
bit 3  
bit 2  
RA: REPEATLoop Active bit  
1= REPEATloop is in progress  
0= REPEATloop is not in progress  
N: MCU ALU Negative bit  
1= Result was negative  
0= Result was non-negative (zero or positive)  
OV: MCU ALU Overflow bit  
This bit is used for signed arithmetic (two’s complement). It indicates an overflow of the magnitude that  
causes the sign bit to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 1  
bit 0  
Z: MCU ALU Zero bit  
1= An operation that affects the Z bit has set it at some time in the past  
0= The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)  
C: MCU ALU Carry/Borrow bit  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.  
3: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by  
clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not  
be modified using bit operations.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 29  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 3-2:  
CORCON: CORE CONTROL REGISTER  
R/W-0  
VAR  
U-0  
R/W-0  
US1  
R/W-0  
US0  
R/W-0  
EDT(1)  
R-0  
R-0  
R-0  
DL2  
DL1  
DL0  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R-0  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
SFA  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
VAR: Variable Exception Processing Latency Control bit  
1= Variable exception processing latency is enabled  
0= Fixed exception processing latency is enabled  
bit 14  
Unimplemented: Read as ‘0’  
bit 13-12  
US<1:0>: DSP Multiply Unsigned/Signed Control bits  
11= Reserved  
10= DSP engine multiplies are mixed-sign  
01= DSP engine multiplies are unsigned  
00= DSP engine multiplies are signed  
bit 11  
EDT: Early DOLoop Termination Control bit(1)  
1= Terminates executing DOloop at the end of current loop iteration  
0= No effect  
bit 10-8  
DL<2:0>: DOLoop Nesting Level Status bits  
111= Seven DOloops are active  
001= One DOloop is active  
000= Zero DOloops are active  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
SATA: ACCA Saturation Enable bit  
1= Accumulator A saturation is enabled  
0= Accumulator A saturation is disabled  
SATB: ACCB Saturation Enable bit  
1= Accumulator B saturation is enabled  
0= Accumulator B saturation is disabled  
SATDW: Data Space Write from DSP Engine Saturation Enable bit  
1= Data Space write saturation is enabled  
0= Data Space write saturation is disabled  
ACCSAT: Accumulator Saturation Mode Select bit  
1= 9.31 saturation (super saturation)  
0= 1.31 saturation (normal saturation)  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU Interrupt Priority Level is greater than 7  
0= CPU Interrupt Priority Level is 7 or less  
Note 1: This bit is always read as ‘0’.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
DS70005258C-page 30  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 3-2:  
CORCON: CORE CONTROL REGISTER (CONTINUED)  
bit 2  
bit 1  
bit 0  
SFA: Stack Frame Active Status bit  
1= Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG  
0= Stack frame is not active; W14 and W15 address the base Data Space  
RND: Rounding Mode Select bit  
1= Biased (conventional) rounding is enabled  
0= Unbiased (convergent) rounding is enabled  
IF: Integer or Fractional Multiplier Mode Select bit  
1= Integer mode is enabled for DSP multiply  
0= Fractional mode is enabled for DSP multiply  
Note 1: This bit is always read as ‘0’.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
REGISTER 3-3:  
CTXTSTAT: CPU W REGISTER CONTEXT STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
CCTXI2  
CCTXI1  
CCTXI0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
MCTXI2  
MCTXI1  
MCTXI0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
CCTXI<2:0>: Current (W Register) Context Identifier bits  
111= Reserved  
101= Reserved  
100= Alternate Working Register Set 4 is currently in use  
011= Alternate Working Register Set 3 is currently in use  
010= Alternate Working Register Set 2 is currently in use  
001= Alternate Working Register Set 1 is currently in use  
000= Default register set is currently in use  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
MCTXI<2:0>: Manual (W Register) Context Identifier bits  
111= Reserved  
101= Reserved  
100= Alternate Working Register Set 4 was most recently manually selected  
011= Alternate Working Register Set 3 was most recently manually selected  
010= Alternate Working Register Set 2 was most recently manually selected  
001= Alternate Working Register Set 1 was most recently manually selected  
000= Default register set was most recently manually selected  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 31  
dsPIC33EPXXXGS70X/80X FAMILY  
3.8  
Arithmetic Logic Unit (ALU)  
3.9  
DSP Engine  
The dsPIC33EPXXXGS70X/80X family ALU is 16 bits  
wide and is capable of addition, subtraction, bit shifts and  
logic operations. Unless otherwise mentioned, arithmetic  
operations are two’s complement in nature. Depending  
on the operation, the ALU can affect the values of the  
Carry (C), Zero (Z), Negative (N), Overflow (OV) and  
Digit Carry (DC) Status bits in the SR register. The C  
and DC Status bits operate as Borrow and Digit Borrow  
bits, respectively, for subtraction operations.  
The DSP engine consists of a high-speed 17-bit x 17-bit  
multiplier, a 40-bit barrel shifter and a 40-bit adder/  
subtracter (with two target accumulators, round and  
saturation logic).  
The DSP engine can also perform inherent accumulator-  
to-accumulator operations that require no additional  
data. These instructions are, ADD, SUBand NEG.  
The DSP engine has options selected through bits in  
the CPU Core Control register (CORCON), as listed  
below:  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W  
register array or data memory, depending on the  
addressing mode of the instruction. Likewise, output  
data from the ALU can be written to the W register array  
or a data memory location.  
• Fractional or Integer DSP Multiply (IF)  
• Signed, Unsigned or Mixed-Sign DSP Multiply  
(USx)  
• Conventional or Convergent Rounding (RND)  
• Automatic Saturation On/Off for ACCA (SATA)  
• Automatic Saturation On/Off for ACCB (SATB)  
Refer to the “16-Bit MCU and DSC Programmer’s  
Reference Manual” (DS70000157) for information on  
the SR bits affected by each instruction.  
• Automatic Saturation On/Off for Writes to Data  
Memory (SATDW)  
The core CPU incorporates hardware support for both  
multiplication and division. This includes a dedicated  
hardware multiplier and support hardware for 16-bit  
divisor division.  
• Accumulator Saturation mode Selection  
(ACCSAT)  
TABLE 3-2:  
Instruction  
DSP INSTRUCTIONS  
SUMMARY  
3.8.1  
MULTIPLIER  
Algebraic  
ACC  
Using the high-speed, 17-bit x 17-bit multiplier, the ALU  
supports unsigned, signed or mixed-sign operation in  
several MCU Multiplication modes:  
Operation  
Write-Back  
CLR  
A = 0  
Yes  
No  
ED  
A = (x – y)2  
A = A + (x – y)2  
A = A + (x • y)  
A = A + x2  
• 16-bit x 16-bit signed  
• 16-bit x 16-bit unsigned  
EDAC  
MAC  
No  
• 16-bit signed x 5-bit (literal) unsigned  
• 16-bit signed x 16-bit unsigned  
• 16-bit unsigned x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit signed  
• 8-bit unsigned x 8-bit unsigned  
Yes  
No  
MAC  
MOVSAC  
MPY  
No change in A  
Yes  
No  
A = x • y  
MPY  
A = x2  
No  
3.8.2  
DIVIDER  
MPY.N  
MSC  
A = – x • y  
No  
A = A – x • y  
Yes  
The divide block supports 32-bit/16-bit and 16-bit/16-bit  
signed and unsigned integer divide operations with the  
following data sizes:  
• 32-bit signed/16-bit signed divide  
• 32-bit unsigned/16-bit unsigned divide  
• 16-bit signed/16-bit signed divide  
• 16-bit unsigned/16-bit unsigned divide  
The quotient for all divide instructions ends up in W0  
and the remainder in W1. 16-bit signed and unsigned  
DIV instructions can specify any W register for both  
the 16-bit divisor (Wn) and any W register (aligned)  
pair (W(m + 1):Wm) for the 32-bit dividend. The divide  
algorithm takes one cycle per bit of divisor, so both  
32-bit/16-bit and 16-bit/16-bit instructions take the  
same number of cycles to execute.  
DS70005258C-page 32  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
User application access to the program memory space  
4.0  
MEMORY ORGANIZATION  
is restricted to the lower half of the address range  
(0x000000 to 0x7FFFFF). The exception is the use of  
TBLRD operations, which use TBLPAG<7> to permit  
access to calibration data and Device ID sections of the  
configuration memory space.  
Note:  
This data sheet summarizes the features  
of the dsPIC33EPXXXGS70X/80X family  
of devices. It is not intended to be a  
comprehensive reference source. To com-  
plement the information in this data sheet,  
refer to “dsPIC33E/PIC24E Program  
Memory” (DS70000613) in the “dsPIC33/  
PIC24 Family Reference Manual”, which is  
available from the Microchip website  
(www.microchip.com).  
The program memory maps for dsPIC33EPXXXGS70X/  
80X devices not operating in Dual Partition mode are  
shown in Figure 4-1 and Figure 4-2.  
The dsPIC33EPXXXGS70X/80X devices can operate  
in a Dual Partition Flash Program Memory mode,  
where the user Program Flash Memory is arranged as  
two separate address spaces, one for each of the  
Flash partitions. The Active Partition always starts at  
address, 0x000000, and contains half of the available  
Flash memory (64k/128k, depends on device). The  
Inactive Partition always starts at address, 0x400000,  
and implements the remaining half of Flash memory.  
As shown in Figure 4-3 and Figure 4-4, the Active and  
Inactive Partitions are identical, and both contain  
unique copies of the Reset vector, Interrupt Vector  
Tables (IVT and AIVT if enabled) and the Flash  
Configuration Words.  
The dsPIC33EPXXXGS70X/80X family architecture  
features separate program and data memory spaces,  
and buses. This architecture also allows the direct  
access of program memory from the Data Space (DS)  
during code execution.  
4.1  
Program Address Space  
The program address memory space of the  
dsPIC33EPXXXGS70X/80X family devices is 4M  
instructions. The space is addressable by a 24-bit  
value derived either from the 23-bit PC during program  
execution, or from table operation or Data Space  
remapping, as described in Section 4.9 “Interfacing  
Program and Data Memory Spaces”.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 33  
dsPIC33EPXXXGS70X/80X FAMILY  
The UDID is stored in five read-only locations,  
located between 800F00h and 800F08h in the  
device configuration space. Table 4-1 lists the  
addresses of the identifier words and shows their  
contents.  
4.2  
Unique Device Identifier (UDID)  
All dsPIC33EPXXXGS70X/80X family devices are  
individually encoded during final manufacturing with  
a Unique Device Identifier or UDID. This feature  
allows for manufacturing traceability of Microchip  
Technology devices in applications where this is a  
requirement. It may also be used by the application  
manufacturer for any number of things that may  
require unique identification, such as:  
TABLE 4-1:  
UDID ADDRESSES  
Name Address Bits 23:16 Bits 15:8 Bits 7:0  
UDID1 800F00  
UDID2 800F02  
UDID3 800F04  
UDID4 800F06  
UDID5 800F08  
UDID Word 1  
UDID Word 2  
UDID Word 3  
UDID Word 4  
UDID Word 5  
• Tracking the device  
• Unique serial number  
• Unique security key  
The UDID comprises five 24-bit program words.  
When taken together, these fields form a unique  
120-bit identifier.  
FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EP64GS70X/80X DEVICES  
0x000000  
GOTOInstruction  
0x000002  
Reset Address  
0x000004  
0x0001FE  
0x000200  
Interrupt Vector Table  
User Program  
Flash Memory  
(22,016 instructions)  
0x00AF7E  
0x00AF80  
Device Configuration  
0x00AFFE  
0x00B000  
Unimplemented  
(Read ‘0’s)  
0x7FFFFE  
0x800000  
Reserved  
0x800E46  
0x800E48  
Calibration Data  
0x800E78  
0x800E7A  
0x800EFE  
0x800F00  
Reserved  
UDID  
0x800F08  
0x800F0A  
0x800F7E  
0x800F80  
Reserved  
User OTP Memory  
Reserved  
0x800FFC  
0x801000  
0xF9FFFE  
0xFA0000  
Write Latches  
0xFA0002  
0xFA0004  
Reserved  
0xFEFFFE  
0xFF0000  
0xFF0002  
0xFF0004  
DEVID  
Reserved  
0xFFFFFE  
Note: Memory areas are not shown to scale.  
DS70005258C-page 34  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 4-2: PROGRAM MEMORY MAP FOR dsPIC33EP128GS70X/80X DEVICES  
0x000000  
GOTOInstruction  
0x000002  
Reset Address  
0x000004  
0x0001FE  
0x000200  
Interrupt Vector Table  
User Program  
Flash Memory  
(44,032 instructions)  
0x01577E  
0x015780  
Device Configuration  
0x0157FE  
0x015800  
Unimplemented  
(Read ‘0’s)  
0x7FFFFE  
0x800000  
Reserved  
0x800E46  
0x800E48  
Calibration Data  
Reserved  
0x800E78  
0x800E7A  
0x800F7E  
0x800F80  
User OTP Memory  
0x800FFC  
0x801000  
Reserved  
0xF9FFFE  
0xFA0000  
Write Latches  
0xFA0002  
0xFA0004  
Reserved  
0xFEFFFE  
0xFF0000  
0xFF0002  
0xFF0004  
DEVID  
Reserved  
0xFFFFFE  
Note: Memory areas are not shown to scale.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 35  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33EP64GS70X/80X DEVICES  
(DUAL PARTITION)  
0x000000  
GOTOInstruction  
0x000002  
Reset Address  
0x000004  
0x0001FE  
0x000200  
Interrupt Vector Table  
Active Program  
Flash Memory  
Active Partition  
(11,008 instructions)  
0x00577E  
0x005780  
Device Configuration  
0x0057FE  
0x005800  
Unimplemented  
(Read ‘0’s)  
0x3FFFFE  
0x400000  
GOTOInstruction  
Reset Address  
0x400002  
0x400004  
Interrupt Vector Table  
0x4001FE  
0x400200  
Inactive Partition  
Inactive Program  
Flash Memory  
(11,008 instructions)  
0x40577E  
0x405780  
Device Configuration  
Unimplemented  
0x4057FE  
0x405800  
(Read ‘0’s)  
0x7FFFFE  
0x800000  
Reserved  
0x800E46  
0x800E48  
Calibration Data  
0x800E78  
0x800E7A  
Reserved  
User OTP Memory  
Reserved  
0x800F7E  
0x800F80  
0x800FFC  
0x800100  
0xF9FFFE  
0xFA0000  
Write Latches  
Reserved  
0xFA0002  
0xFA0004  
0xFEFFFE  
0xFF0000  
DEVID  
0xFF0002  
0xFF0004  
Reserved  
0xFFFFFE  
Note: Memory areas are not shown to scale.  
DS70005258C-page 36  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 4-4: PROGRAM MEMORY MAP FOR dsPIC33EP128GS70X/80X DEVICES  
(DUAL PARTITION)  
0x000000  
GOTOInstruction  
0x000002  
Reset Address  
0x000004  
0x0001FE  
0x000200  
Interrupt Vector Table  
Active Program  
Flash Memory  
Active Partition  
(22,016 instructions)  
0x00AB7E  
0x00AB80  
Device Configuration  
0x00ABFE  
0x00AC00  
Unimplemented  
(Read ‘0’s)  
0x3FFFFE  
0x400000  
GOTOInstruction  
Reset Address  
0x400002  
0x400004  
Interrupt Vector Table  
0x4001FE  
0x400200  
Inactive Partition  
Inactive Program  
Flash Memory  
(22,016 instructions)  
0x40AB7E  
0x40AB80  
Device Configuration  
Unimplemented  
0x40ABFE  
0x40AC00  
(Read ‘0’s)  
0x7FFFFE  
0x800000  
Reserved  
0x800E46  
0x800E48  
Calibration Data  
0x800E78  
0x800E7A  
Reserved  
User OTP Memory  
Reserved  
0x800F7E  
0x800F80  
0x800FFC  
0x800100  
0xF9FFFE  
0xFA0000  
Write Latches  
Reserved  
0xFA0002  
0xFA0004  
0xFEFFFE  
0xFF0000  
DEVID  
0xFF0002  
0xFF0004  
Reserved  
0xFFFFFE  
Note: Memory areas are not shown to scale.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 37  
dsPIC33EPXXXGS70X/80X FAMILY  
4.2.1  
PROGRAM MEMORY  
ORGANIZATION  
4.2.2  
INTERRUPT AND TRAP VECTORS  
All dsPIC33EPXXXGS70X/80X family devices reserve  
the addresses between 0x000000 and 0x000200 for  
hard-coded program execution vectors. A hardware  
Reset vector is provided to redirect code execution  
from the default value of the PC on device Reset to the  
actual start of code. A GOTOinstruction is programmed  
by the user application at address, 0x000000, of Flash  
memory, with the actual address for the start of code at  
address, 0x000002, of Flash memory.  
The program memory space is organized in word-  
addressable blocks. Although it is treated as 24 bits  
wide, it is more appropriate to think of each address of  
the program memory as a lower and upper word, with  
the upper byte of the upper word being unimplemented.  
The lower word always has an even address, while the  
upper word has an odd address (Figure 4-5).  
Program memory addresses are always word-aligned  
on the lower word, and addresses are incremented or  
decremented by two, during code execution. This  
arrangement provides compatibility with data memory  
space addressing and makes data in the program  
memory space accessible.  
A more detailed discussion of the Interrupt Vector  
Tables (IVTs) is provided in Section 7.1 “Interrupt  
Vector Table”.  
FIGURE 4-5:  
PROGRAM MEMORY ORGANIZATION  
least significant word  
PC Address  
most significant word  
23  
msw  
Address  
(lsw Address)  
16  
8
0
0x000001  
0x000003  
0x000005  
0x000007  
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
Instruction Width  
DS70005258C-page 38  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
All word accesses must be aligned to an even address.  
4.3  
Data Address Space  
Misaligned word data fetches are not supported, so  
care must be taken when mixing byte and word  
operations, or translating from 8-bit MCU code. If a  
misaligned read or write is attempted, an address error  
trap is generated. If the error occurred on a read, the  
instruction underway is completed. If the error occurred  
on a write, the instruction is executed but the write does  
not occur. In either case, a trap is then executed,  
allowing the system and/or user application to examine  
the machine state prior to execution of the address  
Fault.  
The dsPIC33EPXXXGS70X/80X family CPU has a  
separate 16-bit wide data memory space. The Data  
Space is accessed using separate Address Generation  
Units (AGUs) for read and write operations. The data  
memory map is shown in Figure 4-6.  
All Effective Addresses (EAs) in the data memory space  
are 16 bits wide and point to bytes within the Data  
Space. This arrangement gives a base Data Space  
address range of 64 Kbytes or 32K words.  
The lower half of the data memory space (i.e., when  
EA<15> = 0) is used for implemented memory  
addresses, while the upper half (EA<15> = 1) is  
reserved for the Program Space Visibility (PSV).  
All byte loads into any W register are loaded into the  
LSB; the MSB is not modified.  
A Sign-Extend (SE) instruction is provided to allow user  
applications to translate 8-bit signed data to 16-bit  
signed values. Alternatively, for 16-bit unsigned data,  
user applications can clear the MSB of any W register  
by executing a Zero-Extend (ZE) instruction on the  
appropriate address.  
dsPIC33EPXXXGS70X/80X family devices implement  
up to 12 Kbytes of data memory. If an EA points to a  
location outside of this area, an all-zero word or byte is  
returned.  
4.3.1  
DATA SPACE WIDTH  
4.3.3  
SFR SPACE  
The data memory space is organized in byte-  
addressable, 16-bit wide blocks. Data is aligned in data  
memory and registers as 16-bit words, but all Data  
Space EAs resolve to bytes. The Least Significant  
Bytes (LSBs) of each word have even addresses, while  
the Most Significant Bytes (MSBs) have odd  
addresses.  
The first 4 Kbytes of the Near Data Space, from  
0x0000 to 0x0FFF, is primarily occupied by Special  
Function Registers (SFRs). These are used by the  
dsPIC33EPXXXGS70X/80X family core and peripheral  
modules for controlling the operation of the device.  
SFRs are distributed among the modules that they  
control and are generally grouped together by module.  
Much of the SFR space contains unused addresses;  
these are read as ‘0’.  
4.3.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
To maintain backward compatibility with PIC® MCU  
devices and improve Data Space memory usage  
efficiency, the dsPIC33EPXXXGS70X/80X family  
instruction set supports both word and byte operations.  
As a consequence of byte accessibility, all Effective  
Address calculations are internally scaled to step  
through word-aligned memory. For example, the core  
recognizes that Post-Modified Register Indirect  
Addressing mode [Ws++] results in a value of Ws + 1  
for byte operations and Ws + 2 for word operations.  
Note:  
The actual set of peripheral features and  
interrupts varies by the device. Refer to  
the corresponding device tables and  
pinout diagrams for device-specific  
information.  
4.3.4  
NEAR DATA SPACE  
The 8-Kbyte area, between 0x0000 and 0x1FFF, is  
referred to as the Near Data Space. Locations in this  
space are directly addressable through a 13-bit absolute  
address field within all memory direct instructions. Addi-  
tionally, the whole Data Space is addressable using MOV  
instructions, which support Memory Direct Addressing  
mode with a 16-bit address field, or by using Indirect  
Addressing mode using a Working register as an  
Address Pointer.  
A data byte read, reads the complete word that  
contains the byte, using the LSb of any EA to determine  
which byte to select. The selected byte is placed onto  
the LSB of the data path. That is, data memory and  
registers are organized as two parallel, byte-wide  
entities with shared (word) address decode, but  
separate write lines. Data byte writes only write to the  
corresponding side of the array or register that matches  
the byte address.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 39  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 4-6: DATA MEMORY MAP FOR dsPIC33EP64GS70X/80X DEVICES  
MSB  
Address  
LSB  
Address  
16 Bits  
MSB  
LSB  
0x0000  
0x0001  
4-Kbyte  
SFR Space  
SFR Space  
0x0FFE  
0x1000  
0x0FFF  
0x1001  
8-Kbyte  
Near  
Data Space  
X Data RAM (X)  
Y Data RAM (Y)  
8-Kbyte  
SRAM Space  
0x1FFF  
0x2001  
0x1FFE  
0x2000  
0x2FFF  
0x3001  
0x2FFE  
0x3000  
0x8001  
0x8000  
X Data  
Unimplemented (X)  
Optionally  
Mapped  
into Program  
Memory  
0xFFFF  
0xFFFE  
Note:  
Memory areas are not shown to scale.  
DS70005258C-page 40  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
4.3.5  
X AND Y DATA SPACES  
4.4  
Memory Resources  
The dsPIC33EPXXXGS70X/80X core has two Data  
Spaces, X and Y. These Data Spaces can be considered  
either separate (for some DSP instructions) or as one  
unified linear address range (for MCU instructions). The  
Data Spaces are accessed using two Address Genera-  
tion Units (AGUs) and separate data paths. This feature  
allows certain instructions to concurrently fetch two  
words from RAM, thereby enabling efficient execution of  
DSP algorithms, such as Finite Impulse Response (FIR)  
filtering and Fast Fourier Transform (FFT).  
Many useful resources are provided on the main  
product page of the Microchip website for the devices  
listed in this data sheet. This product page contains the  
latest updates and additional information.  
4.4.1  
KEY RESOURCES  
“dsPIC33E/PIC24E Program Memory”  
(DS70000613) in the “dsPIC33/PIC24 Family  
Reference Manual”  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
The X Data Space is used by all instructions and  
supports all addressing modes. X Data Space has  
separate read and write data buses. The X read data  
bus is the read data path for all instructions that view  
Data Space as combined X and Y address space. It is  
also the X data prefetch path for the dual operand DSP  
instructions (MACclass).  
• All Related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
• Development Tools  
The Y Data Space is used in concert with the X Data  
Space by the MAC class of instructions (CLR, ED,  
EDAC, MAC, MOVSAC, MPY, MPY.Nand MSC) to provide  
two concurrent data read paths.  
Both the X and Y Data Spaces support Modulo Address-  
ing mode for all instructions, subject to addressing mode  
restrictions. Bit-Reversed Addressing mode is only  
supported for writes to X Data Space.  
All data memory writes, including in DSP instructions,  
view Data Space as combined X and Y address space.  
The boundary between the X and Y Data Spaces is  
device-dependent and is not user-programmable.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 41  
dsPIC33EPXXXGS70X/80X FAMILY  
4.5  
Special Function Register Maps  
TABLE 4-2:  
SFR BLOCK 000h  
Register  
Core  
Address  
All Resets  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
WREG14  
01C  
01E  
020  
022  
024  
026  
028  
02A  
02C  
02E  
030  
032  
034  
036  
038  
0000000000000000 DOSTARTL  
0000100000000000 DOSTARTH  
xxxxxxxxxxxxxxx0 DOENDL  
xxxxxxxxxxxxxxxx DOENDH  
xxxxxxxxxxxxxxxx SR  
03A  
03C  
03E  
040  
042  
044  
046  
048  
04A  
04C  
04E  
050  
052  
054  
05A  
xxxxxxxxxxxxxxx0  
0000000000xxxxxx  
xxxxxxxxxxxxxxx0  
0000000000xxxxxx  
0000000000000000  
0000000000100000  
0000000000000000  
xxxxxxxxxxxxxxx0  
xxxxxxxxxxxxxxx1  
xxxxxxxxxxxxxxx0  
xxxxxxxxxxxxxxx1  
xxxxxxxxxxxxxxxx  
00xxxxxxxxxxxxxx  
00000000xxxxxxxx  
0000000000000000  
WREG0  
WREG1  
WREG2  
WREG3  
WREG4  
WREG5  
WREG6  
WREG7  
WREG8  
WREG9  
WREG10  
WREG11  
WREG12  
WREG13  
000  
002  
004  
006  
008  
00A  
00C  
00E  
010  
012  
014  
016  
018  
01A  
0000000000000000 WREG15  
0000000000000000 SPLIM  
0000000000000000 ACCAL  
0000000000000000 ACCAH  
0000000000000000 ACCAU  
0000000000000000 ACCBL  
0000000000000000 ACCBH  
0000000000000000 ACCBU  
0000000000000000 PCL  
00000000xxxxxxxx CORCON  
xxxxxxxxxxxxxxxx MODCON  
xxxxxxxxxxxxxxxx XMODSRT  
00000000xxxxxxxx XMODEND  
0000000000000000 YMODSRT  
0000000000000000 YMODEND  
0000000000000001 XBREV  
0000000000000001 DISICNT  
xxxxxxxxxxxxxxxx TBLPAG  
xxxxxxxxxxxxxxxx CTXTSTAT  
0000000000000000 PCH  
0000000000000000 DSRPAG  
0000000000000000 DSWPAG  
0000000000000000 RCOUNT  
0000000000000000 DCOUNT  
Legend: x= unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.  
TABLE 4-3:  
SFR BLOCK 100h  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
Timers  
TMR5HLD  
116  
118  
11A  
11C  
11E  
120  
xxxxxxxxxxxxxxxx IC2CON2  
xxxxxxxxxxxxxxxx IC2BUF  
1111111111111111 IC2TMR  
1111111111111111 IC3CON1  
0000000000000000 IC3CON2  
0000000000000000 IC3BUF  
IC3TMR  
14A  
14C  
14E  
150  
152  
154  
156  
158  
15A  
15C  
15E  
0000000000001101  
xxxxxxxxxxxxxxxx  
0000000000000000  
0000000000000000  
0000000000001101  
xxxxxxxxxxxxxxxx  
0000000000000000  
0000000000000000  
0000000000001101  
xxxxxxxxxxxxxxxx  
0000000000000000  
TMR1  
PR1  
100  
102  
104  
106  
108  
10A  
10C  
10E  
110  
112  
114  
xxxxxxxxxxxxxxxx TMR5  
1111111111111111 PR4  
T1CON  
TMR2  
TMR3HLD  
TMR3  
PR2  
0000000000000000 PR5  
xxxxxxxxxxxxxxxx T4CON  
xxxxxxxxxxxxxxxx T5CON  
xxxxxxxxxxxxxxxx Input Capture  
1111111111111111 IC1CON1  
1111111111111111 IC1CON2  
0000000000000000 IC1BUF  
0000000000000000 IC1TMR  
xxxxxxxxxxxxxxxx IC2CON1  
140  
142  
144  
146  
148  
0000000000000000 IC4CON1  
0000000000001101 IC4CON2  
xxxxxxxxxxxxxxxx IC4BUF  
0000000000000000 IC4TMR  
0000000000000000  
PR3  
T2CON  
T3CON  
TMR4  
Legend: x= unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.  
DS70005258C-page 42  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 4-4:  
SFR BLOCK 200h  
Register  
Address  
All Resets  
Register  
U1STA  
Address  
All Resets  
Register  
Address  
All Resets  
I2C1 and I2C2  
I2C1CONL  
I2C1CONH  
I2C1STAT  
I2C1ADD  
I2C1MSK  
I2C1BRG  
I2C1TRN  
I2C1RCV  
I2C2CON1  
I2C2CON2  
I2C2STAT  
I2C2ADD  
I2C2MSK  
I2C2BRG  
I2C2TRN  
I2C2RCV  
222  
224  
226  
228  
230  
232  
234  
236  
238  
0000000010010000 SPI1BRGH  
0000000xxxxxxxxx SPI1IMSKL  
0000000000000000 SPI1IMSKH  
0000000000000000 SPI1URDTL  
0000000000000000 SPI1URDTH  
0000000010010000 SPI2CON1L  
0000000xxxxxxxxx SPI2CON1H  
0000000000000000 SPI2CON2L  
0000000000000000 SPI2CON2H  
SPI2STATL  
252  
254  
256  
258  
25A  
260  
262  
264  
266  
268  
26A  
26C  
26E  
270  
272  
274  
276  
278  
27A  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000101000  
0000000000000000  
0000000000000000  
0000000000000000  
000xxxxxxxxxxxxx  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
200  
202  
204  
206  
208  
20A  
20C  
20E  
210  
212  
214  
216  
218  
21A  
21C  
21E  
0001000000000000 U1TXREG  
0000000000000000 U1RXREG  
0000000000000000 U1BRG  
0000000000000000 U2MODE  
0000000000000000 U2STA  
0000000000000000 U2TXREG  
0000000011111111 U2RXREG  
0000000000000000 U2BRG  
0001000000000000 SPI  
0000000000000000 SPI1CON1L  
0000000000000000 SPI1CON1H  
0000000000000000 SPI1CON2L  
0000000000000000 SPI1CON2H  
0000000000000000 SPI1STATL  
0000000011111111 SPI1STATH  
0000000000000000 SPI1BUFL  
SPI1BUFH  
240  
242  
244  
246  
248  
24A  
24C  
24E  
250  
0000000000000000 SPI2STATH  
0000000000000000 SPI2BUFL  
0000000000000000 SPI2BUFH  
0000000000000000 SPI3STAT  
0000000000101000 SPI2BRGH  
0000000000000000 SPI2IMSKL  
0000000000000000 SPI2IMSKH  
0000000000000000 SPI2URDTL  
000xxxxxxxxxxxxx SPI2URDTH  
UART1 and UART2  
U1MODE 220  
0000000000000000 SPI1BRGL  
Legend: x= unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.  
TABLE 4-5:  
SFR BLOCK 300h  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
ADC  
ADCMP0ENH  
33A  
33C  
33E  
340  
342  
344  
346  
368  
36A  
36C  
36E  
380  
382  
384  
386  
388  
38A  
38C  
38E  
0000000000000000 ADTRIG4L  
0000000000000000 ADTRIG4H  
0000000000000000 ADCMP0CON  
0000000000000000 ADCMP1CON  
0000000000000000 ADBASE  
0000000000000000 ADLVLTRGL  
0000000000000000 ADLVLTRGH  
0000000000000000 ADCORE0L  
0000000000000000 ADCORE0H  
0000000000000000 ADCORE1L  
0000000000000000 ADCORE1H  
0000000000000000 ADCORE2L  
0000000000000000 ADCORE2H  
0000000000000000 ADCORE3L  
0000000000000000 ADCORE3H  
0000000000000000 ADEIEL  
390  
392  
3A0  
3A4  
3C0  
3D0  
3D2  
3D4  
3D6  
3D8  
3DA  
3DC  
3DE  
3E0  
3E2  
3F0  
3F2  
3F8  
3FA  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000001100000000  
0000000000000000  
0000001100000000  
0000000000000000  
0000001100000000  
0000000000000000  
0000001100000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
ADCON1L  
ADCON1H  
ADCON2L  
ADCON2H  
ADCON3L  
ADCON3H  
ADCON4L  
ADCON4H  
ADMOD0L  
ADMOD0H  
ADMOD1L  
ADIEL  
300  
302  
304  
306  
308  
30A  
30C  
30E  
310  
312  
314  
320  
322  
328  
32A  
330  
332  
338  
0000000000000000 ADCMP0LO  
0000000001100000 ADCMP0HI  
0000000000000000 ADCMP1ENL  
0000000000000000 ADCMP1ENH  
0000000000000000 ADCMP1LO  
0000000000000000 ADCMP1HI  
0000000000000000 ADFL0DAT  
0000000000000000 ADFL0CON  
0000000000000000 ADFL1DAT  
0000000000000000 ADFL1CON  
0000000000000000 ADTRIG0L  
0000000000000000 ADTRIG0H  
0000000000000000 ADTRIG1L  
0000000000000000 ADTRIG1H  
0000000000000000 ADTRIG2L  
0000000000000000 ADTRIG2H  
0000000000000000 ADTRIG3L  
0000000000000000 ADTRIG3H  
ADIEH  
ADCSS1L  
ADCSS1H  
ADSTATL  
ADSTATH  
ADCMP0ENL  
0000000000000000 ADEIEH  
0000000000000000 ADEISTATL  
0000000000000000 ADEISTATH  
Legend: x= unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 43  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 4-6:  
SFR BLOCK 400h  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
Address  
All Resets  
Register  
ADC (Continued)  
C1FCTRL  
486  
488  
48A  
48C  
48E  
490  
492  
494  
498  
49A  
0000000000000000 C1RXM2EID  
0000000000000000 C1RXF1SID  
0000000000000000 C1RXF1EID  
0000000000000000 C1RXF2SID  
0000000000000000 C1RXF2EID  
0000000000000000 C1RXF3SID  
0x000xxxxxxxxxxx C1RXF3EID  
1111111111111111 C1RXF4SID  
0000000000000000 C1RXF4EID  
0000000000000000 C1RXF5SID  
C1RXF5EID  
4BA  
4C4  
4C6  
4C8  
4CA  
4CC  
4CE  
4D0  
4D2  
4D4  
4D6  
4D8  
4DA  
4DC  
4DE  
4E0  
4E2  
4E4  
4E6  
4E8  
4EA  
4EC  
4EE  
4F0  
4F2  
4F4  
4F6  
4F8  
4FA  
4FC  
4FE  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
ADCON5L  
ADCON5H  
ADCAL0L  
400  
0000000000000000 C1FIFO  
0000000000000000 C1INTF  
0000000000000000 C1INTE  
0000000000000000 C1EC  
402  
404  
406  
40A  
40C  
40E  
410  
412  
414  
416  
418  
41A  
41C  
41E  
420  
422  
424  
426  
428  
42A  
42C  
42E  
430  
432  
434  
436  
ADCAL0H  
ADCAL1H  
ADCBUF0  
ADCBUF1  
ADCBUF2  
ADCBUF3  
ADCBUF4  
ADCBUF5  
ADCBUF6  
ADCBUF7  
ADCBUF8  
ADCBUF9  
ADCBUF10  
ADCBUF11  
ADCBUF12  
ADCBUF13  
ADCBUF14  
ADCBUF15  
ADCBUF16  
ADCBUF17  
ADCBUF18  
ADCBUF19  
ADCBUF20  
ADCBUF21  
0000000000000000 C1CFG1  
0000000000000000 C1CFG2  
0000000000000000 C1FEN1  
0000000000000000 C1FMSKSEL1  
0000000000000000 C1FMSKSEL2  
0000000000000000 CAN (WIN (C1CTRL<0>) = 0)  
0000000000000000 C1RXFUL1  
0000000000000000 C1RXFUL2  
0000000000000000 C1RXOVF1  
0000000000000000 C1RXOVF2  
0000000000000000 C1TR01CON  
0000000000000000 C1TR23CON  
0000000000000000 C1TR45CON  
0000000000000000 C1TR67CON  
0000000000000000 C1RXD  
4A0  
4A2  
4A8  
4AA  
4B0  
4B2  
4B4  
4B6  
4C0  
4C2  
0000000000000000 C1RXF6SID  
0000000000000000 C1RXF6EID  
0000000000000000 C1RXF7SID  
0000000000000000 C1RXF7EID  
0000000000000000 C1RXF8SID  
0000000000000000 C1RXF8EID  
0000000000000000 C1RXF9SID  
xxxxxxxxxxxxxxxx C1RXF9EID  
xxxxxxxxxxxxxxxx C1RXF10SID  
xxxxxxxxxxxxxxxx C1RXF10EID  
C1RXF11SID  
0000000000000000 C1TXD  
0000000000000000 CAN (WIN (C1CTR1<0>) = 1)  
0000000000000000 C1BUFPNT1  
0000000000000000 C1BUFPNT2  
0000000000000000 C1BUFPNT3  
0000000000000000 C1BUFPNT4  
0000000000000000 C1RXM0SID  
0000000000000000 C1RXM0EID  
4A0  
4A2  
4A4  
4A6  
4B0  
4B2  
4B4  
4B6  
0000000000000000 C1RXF11EID  
0000000000000000 C1RXF12SID  
0000000000000000 C1RXF12EID  
0000000000000000 C1RXF13SID  
xxxxxxxxxxxxxxxx C1RXF13EID  
xxxxxxxxxxxxxxxx C1RXF14SID  
xxxxxxxxxxxxxxxx C1RXF14EID  
xxxxxxxxxxxxxxxx C1RXF15SID  
C1RXF15EID  
CAN (WIN (C1CTRL<0>) = 0 OR 1)  
C1RXM1SID  
C1CTRL1  
C1CTRL2  
C1VEC  
480  
482  
484  
000010010000000 C1RXM1EID  
000000000000000 CAN  
000000001000000 C1RXM2SID  
4B8  
xxxxxxxxxxxxxxxx  
Legend: x= unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.  
TABLE 4-7:  
SFR BLOCK 500h  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
PGA  
PGA2CAL  
50A  
0000000000000000 CMP2DAC  
CMP3CON  
546  
548  
54A  
54C  
54E  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
ISRCCON  
PGA1CON  
PGA1CAL  
PGA2CON  
500  
504  
506  
508  
0000000000000000 Comparators  
0000000000000000 CMP1CON  
0000000000000000 CMP1DAC  
0000000000000000 CMP2CON  
540  
542  
544  
0000000000000000 CMP3DAC  
0000000000000000 CMP4CON  
0000000000000000 CMP4DAC  
Legend: x= unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.  
DS70005258C-page 44  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 4-8:  
SFR BLOCK 600h  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
SPI  
RPOR8  
678  
67A  
67C  
67E  
680  
682  
684  
686  
68A  
68C  
68E  
690  
692  
694  
696  
698  
69A  
69C  
6A0  
6A2  
6A4  
6A6  
0000000000000000 RPINR7  
0000000000000000 RPINR8  
0000000000000000 RPINR11  
0000000000000000 RPINR12  
0000000000000000 RPINR13  
0000000000000000 RPINR18  
0000000000000000 RPINR19  
0000000000000000 RPINR20  
0000000000000000 RPINR21  
0000000000000000 RPINR22  
0000000000000000 RPINR23  
0000000000000000 RPINR26  
0000000000000000 RPINR29  
0000000000000000 RPINR30  
0000000000000000 RPINR37  
0000000000000000 RPINR38  
0000000000000000 RPINR42  
0000000000000000 RPINR43  
0000000000000000 RPINR45  
0000000000000000 RPINR46  
0000000000000000  
6AE  
6B0  
6B6  
6B8  
6BA  
6C4  
6C6  
6C8  
6CA  
6CC  
6CE  
6D4  
6DA  
6DC  
6EA  
6EC  
6F4  
6F6  
6FA  
6FC  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
SPI3CON1L  
SPI3CON1H  
SPI3CON2L  
SPI3CON2H  
SPI3STATL  
SPI3STATH  
SPI3BUFL  
SPI3BUFH  
SPI3BRGL  
SPI3BRGH  
SPI3IMSKL  
SPI3IMSKH  
SPI3URDTL  
SPI3URDTH  
RPOR0  
600  
602  
604  
606  
608  
60A  
60C  
60E  
610  
612  
614  
616  
618  
61A  
668  
66A  
66C  
66E  
670  
672  
674  
0000000000000000 RPOR9  
0000000000000000 RPOR10  
0000000000000000 RPOR11  
0000000000000000 RPOR12  
0000000000101000 RPOR13  
0000000000000000 RPOR14  
0000000000000000 RPOR15  
0000000000000000 RPOR17  
000xxxxxxxxxxxxx RPOR18  
0000000000000000 RPOR19  
0000000000000000 RPOR20  
0000000000000000 RPOR21  
0000000000000000 RPOR22  
0000000000000000 RPOR23  
0000000000000000 RPOR24  
0000000000000000 RPOR25  
0000000000000000 RPOR26  
0000000000000000 RPINR0  
0000000000000000 RPINR1  
0000000000000000 RPINR2  
0000000000000000 RPINR3  
RPOR1  
RPOR2  
RPOR3  
RPOR4  
RPOR5  
RPOR6  
0000000000000000  
Legend: x= unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 45  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 4-9:  
SFR BLOCK 700h  
Register  
Address  
All Resets  
Register  
C2INTF  
Address  
All Resets  
Register  
Address  
All Resets  
NVM  
78A  
78C  
78E  
790  
792  
794  
798  
79A  
0000000000000000 C2RXF1SID  
0000000000000000 C2RXF1EID  
0000000000000000 C2RXF2SID  
0000000000000000 C2RXF2EID  
0x000xxxxxxxxxxx C2RXF3SID  
1111111111111111 C2RXF3EID  
0000000000000000 C2RXF4SID  
0000000000000000 C2RXF4EID  
7C4  
7C6  
7C8  
7CA  
7CC  
7CE  
7D0  
7D2  
7D4  
7D6  
7D8  
7DA  
7DC  
7DE  
7E0  
7E2  
7E4  
7E6  
7E8  
7EA  
7EC  
7EE  
7F0  
7F2  
7F4  
7F6  
7F8  
7FA  
7FC  
7FE  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
NVMCON  
NVMADR  
NVMADRU  
NVMKEY  
NVMSRCADR  
NVMSRCADRH  
System Control  
RCON  
728  
72A  
72C  
72E  
730  
732  
0000000000000000 C2INTE  
0000000000000000 C2EC  
0000000000000000 C2CFG1  
0000000000000000 C2CFG2  
0000000000000000 C2FEN1  
0000000000000000 C2FMSKSEL1  
C2FMSKSEL2  
740  
742  
744  
746  
748  
74C  
74E  
750  
0x00x0x01x0xxxxx CAN (WIN (C1CTR1<0>) = 0)  
C2RXF5SID  
OSCCON  
CLKDIV  
PLLFBD  
OSCTUN  
LFSR  
0000000000000000 C2RXFUL1  
0000000000000000 C2RXFUL2  
0000000000000000 C2RXOVF1  
0000000000000000 C2RXOVF2  
0000000000000000 C2TR01CON  
0000000000000000 C2TR23CON  
0000000001000000 C2TR45CON  
C2TR67CON  
7A0  
7A2  
7A8  
7AA  
7B0  
7B2  
7B4  
7B6  
7C0  
7C2  
0000000000000000 C2RXF5EID  
0000000000000000 C2RXF6SID  
0000000000000000 C2RXF6EID  
0000000000000000 C2RXF7SID  
0000000000000000 C2RXF7EID  
0000000000000000 C2RXF8SID  
0000000000000000 C2RXF8EID  
xxxxxxxxxxxxxxxx C2RXF9SID  
xxxxxxxxxxxxxxxx C2RXF9EID  
xxxxxxxxxxxxxxxx C2RXF10SID  
REFOCON  
ACLKCON  
PMD  
PMD1  
760  
762  
764  
766  
76A  
76C  
76E  
0000000000000000 C2RXD  
0000000000000000 C2TXD  
PMD2  
PMD3  
0000000000000000 CAN (WIN (C1CTR1<0>) = 1)  
C2RXF10EID  
PMD4  
0000000000000000 C2BUFPNT1  
0000000000000000 C2BUFPNT2  
0000000000000000 C2BUFPNT3  
0000000000000000 C2BUFPNT4  
7A0  
7A2  
7A4  
7A6  
7B0  
7B2  
7B4  
7B6  
7B8  
7BA  
0000000000000000 C2RXF11SID  
0000000000000000 C2RXF11EID  
0000000000000000 C2RXF12SID  
0000000000000000 C2RXF12EID  
xxxxxxxxxxxxxxxx C2RXF13SID  
xxxxxxxxxxxxxxxx C2RXF13EID  
xxxxxxxxxxxxxxxx C2RXF14SID  
xxxxxxxxxxxxxxxx C2RXF14EID  
xxxxxxxxxxxxxxxx C2RXF15SID  
xxxxxxxxxxxxxxxx C2RXF15EID  
PMD6  
PMD7  
PMD8  
CAN (WIN (C1CTR1<0>) = 0 or 1)  
C2RXM0SID  
C2CTRL1  
C2CTRL2  
C2VEC  
780  
782  
784  
786  
788  
0000010010000000 C2RXM0EID  
0000000000000000 C2RXM1SID  
0000000001000000 C2RXM1EID  
0000000000000000 C2RXM2SID  
0000000000000000 C2RXM2EID  
C2FCTRL  
C2FIFO  
Legend: x= unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.  
DS70005258C-page 46  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 4-10: SFR BLOCK 800h  
Register  
Address  
All Resets  
Register  
IEC9  
Address  
All Resets  
Register  
Address  
All Resets  
Interrupt Controller  
800  
832  
834  
836  
840  
842  
844  
846  
848  
84A  
84C  
84E  
850  
852  
856  
858  
85A  
85C  
860  
864  
86E  
870  
872  
0000000000000000 IPC26  
0000000000000000 IPC27  
0000000000000000 IPC28  
0100010001000100 IPC29  
0100010001000000 IPC35  
0100010001000100 IPC36  
0100000001000100 IPC37  
0100010001000100 IPC38  
0000000000000100 IPC39  
0100010001000000 IPC40  
0100010001000100 IPC41  
0000000001000100 IPC42  
0000010001000000 IPC43  
0000000000000000 IPC44  
0000010001000000 IPC45  
0000010000000000 IPC46  
0000000001000000 IPC47  
0000010001000000 INTCON1  
0000000001000000 INTCON2  
0100010000000000 INTCON3  
0000010001000100 INTCON4  
0100000000000000 INTTREG  
874  
876  
878  
87A  
886  
888  
88A  
88C  
88E  
890  
892  
894  
896  
898  
89A  
89C  
89E  
8C0  
8C2  
8C4  
8C6  
8C8  
0000000001000100  
0100010000000000  
0100010001000100  
0000000001000100  
0100010000000000  
0000000000000000  
0100000000000000  
0100010001000100  
0100010001000100  
0100010001000100  
0100010001000100  
0000000001000100  
0000010001000000  
0100010001000000  
0000000000000100  
0100010000000000  
0000010001000100  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
IFS0  
IFS1  
IFS2  
IFS3  
IFS4  
IFS5  
IFS6  
IFS7  
IFS8  
IFS9  
IFS10  
IFS11  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IEC5  
IEC6  
IEC7  
IEC8  
0000000000000000 IEC10  
0000000000000000 IEC11  
0000000000000000 IPC0  
0000000000000000 IPC1  
0000000000000000 IPC2  
0000000000000000 IPC3  
0000000000000000 IPC4  
0000000000000000 IPC5  
0000000000000000 IPC6  
0000000000000000 IPC7  
0000000000000000 IPC8  
0000000000000000 IPC9  
0000000000000000 IPC11  
0000000000000000 IPC12  
0000000000000000 IPC13  
0000000000000000 IPC14  
0000000000000000 IPC16  
0000000000000000 IPC18  
0000000000000000 IPC23  
0000000000000000 IPC24  
0000000000000000 IPC25  
802  
804  
806  
808  
80A  
80C  
80E  
810  
812  
814  
816  
820  
822  
824  
826  
828  
82A  
82C  
82E  
830  
Legend: x= unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.  
TABLE 4-11: SFR BLOCK 900h  
Register  
Address  
All Resets  
Register  
OC3R  
Address  
All Resets  
Register  
Address  
All Resets  
Output Compare  
OC1CON1  
OC1CON2  
OC1RS  
91A  
91C  
91E  
920  
922  
924  
926  
xxxxxxxxxxxxxxxx CLC2CONH  
0000000000000000 CLC2SEL  
0000000000000000 CLC2GLSL  
0000000000001100 CLC2GLSH  
xxxxxxxxxxxxxxxx CLC3CONL  
xxxxxxxxxxxxxxxx CLC3CONH  
0000000000000000 CLC3SEL  
CLC3GLSL  
9CE  
9D0  
9D4  
9D6  
9D8  
9DA  
9DC  
9E0  
9E2  
9E4  
9E6  
9E8  
9EC  
9EE  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
900  
902  
904  
906  
908  
90A  
90C  
90E  
910  
912  
914  
916  
918  
0000000000000000 OC3TMR  
0000000000001100 OC4CON1  
xxxxxxxxxxxxxxxx OC4CON2  
xxxxxxxxxxxxxxxx OC4RS  
0000000000000000 OC4R  
OC1R  
OC1TMR  
OC2CON1  
OC2CON2  
OC2RS  
0000000000000000 OC4TMR  
0000000000001100 CLC  
xxxxxxxxxxxxxxxx CLC1CONL  
xxxxxxxxxxxxxxxx CLC1CONH  
0000000000000000 CLC1SEL  
0000000000000000 CLC1GLSL  
0000000000001100 CLC1GLSH  
xxxxxxxxxxxxxxxx CLC2CONL  
9C0  
9C2  
9C4  
9C8  
9CA  
9CC  
0000000000000000 CLC3GLSH  
0000000000000000 CLC4CONL  
0000000000000000 CLC4CONH  
0000000000000000 CLC4SEL  
0000000000000000 CLC4GLSL  
0000000000000000 CLC4GLSH  
OC2R  
OC2TMR  
OC3CON1  
OC3CON2  
OC3RS  
Legend: x= unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 47  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 4-12: SFR BLOCK A00h  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
PTG  
PTGADJ  
AD2  
AD4  
AD6  
AD8  
ADA  
ADC  
ADE  
AE0  
AE2  
AE4  
0000000000000000 PTGQUE7  
0000000000000000 PTGQUE8  
0000000000000000 PTGQUE9  
xxxxxxxxxxxxxxxx PTGQUE10  
xxxxxxxxxxxxxxxx PTGQUE11  
xxxxxxxxxxxxxxxx PTGQUE12  
xxxxxxxxxxxxxxxx PTGQUE13  
xxxxxxxxxxxxxxxx PTGQUE14  
xxxxxxxxxxxxxxxx PTGQUE15  
xxxxxxxxxxxxxxxx  
AE6  
AE8  
AEA  
AEC  
AEE  
AF0  
AF2  
AF4  
AF6  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx  
PTGCST  
AC0  
AC2  
AC4  
AC6  
AC8  
ACA  
ACC  
ACE  
AD0  
0000000000000000 PTGL0  
PTGCON  
PTGBTE  
0000000000000000 PTGQPTR  
0000000000000000 PTGQUE0  
0000000000000000 PTGQUE1  
0000000000000000 PTGQUE2  
0000000000000000 PTGQUE3  
0000000000000000 PTGQUE4  
0000000000000000 PTGQUE5  
0000000000000000 PTGQUE6  
PTGHOLD  
PTGT0LIM  
PTGT1LIM  
PTGSDLIM  
PTGC0LIM  
PTGC1LIM  
Legend: x= unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.  
TABLE 4-13: SFR BLOCK B00h  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
DMA  
DMA1STBL  
B18  
B1A  
B1C  
B1E  
B20  
B22  
B24  
B26  
B28  
B2A  
B2C  
B2E  
B30  
0000000000000000 DMA3REQ  
0000000000000000 DMA3STAL  
0000000000000000 DMA3STAH  
0000000000000000 DMA3STBL  
0000000000000000 DMA3STBH  
0000000000000000 DMA3PAD  
0000000000000000 DMA3CNT  
0000000000000000 DMAPWC  
0000000000000000 DMARQC  
0000000000000000 DMAPPS  
0000000000000000 DMALCA  
0000000000000000 DSADRL  
0000000000000000 DSADRH  
B32  
B34  
B36  
B38  
B3A  
B3C  
B3E  
BF0  
BF2  
BF4  
BF6  
BF8  
BFA  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000001111  
0000000000000000  
0000000000000000  
DMA0CON  
DMA0REQ  
DMA0STAL  
DMA0STAH  
DMA0STBL  
DMA0STBH  
DMA0PAD  
DMA0CNT  
DMA1CON  
DMA1REQ  
DMA1STAL  
DMA1STAH  
B00  
B02  
B04  
B06  
B08  
B0A  
B0C  
B0E  
B10  
B12  
B14  
B16  
0000000000000000 DMA1STBH  
0000000000000000 DMA1PAD  
0000000000000000 DMA1CNT  
0000000000000000 DMA2CON  
0000000000000000 DMA2REQ  
0000000000000000 DMA2STAL  
0000000000000000 DMA2STAH  
0000000000000000 DMA2STBL  
0000000000000000 DMA2STBH  
0000000000000000 DMA2PAD  
0000000000000000 DMA2CNT  
0000000000000000 DMA3CON  
Legend: x= unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.  
DS70005258C-page 48  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 4-14: SFR BLOCK C00h-D00h  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
PWM  
FCLCON3  
C64  
C66  
C68  
C6A  
C6C  
C6E  
C70  
C72  
C74  
C76  
C78  
C7A  
C7C  
C7E  
C80  
C82  
C84  
C86  
C88  
C8A  
C8C  
C8E  
C90  
C92  
C94  
C96  
C98  
C9A  
C9C  
C9E  
CA0  
CA2  
CA4  
CA6  
CA8  
CAA  
CAC  
CAE  
CB0  
CB2  
CB4  
CB6  
CB8  
CBA  
CBC  
CBE  
CC0  
0000000000000000 IOCON6  
0000000000000000 FCLCON6  
0000000000000000 PDC6  
0000000000000000 PHASE6  
0000000000000000 DTR6  
0000000000000000 ALTDTR6  
0000000000000000 SDC6  
0000000000000000 SPHASE6  
0000000000000000 TRIG6  
0000000000000000 TRGCON6  
0000000000000000 STRIG6  
0000000000000000 PWMCAP6  
0000000000000000 LEBCON6  
0000000000000000 LEBDLY6  
0000000000000000 AUXCON6  
1100000000000000 PWMCON7  
0000000000000000 IOCON7  
0000000000000000 FCLCON7  
0000000000000000 PDC7  
0000000000000000 PHASE7  
0000000000000000 DTR7  
0000000000000000 ALTDTR7  
0000000000000000 SDC7  
0000000000000000 SPHASE7  
0000000000000000 TRIG7  
0000000000000000 TRGCON7  
0000000000000000 STRIG7  
0000000000000000 PWMCAP7  
0000000000000000 LEBCON7  
0000000000000000 LEBDLY7  
0000000000000000 AUXCON7  
1100000000000000 PWMCON8  
0000000000000000 IOCON8  
0000000000000000 FCLCON8  
0000000000000000 PDC8  
0000000000000000 PHASE8  
0000000000000000 ALTDTR8  
0000000000000000 SDC8  
0000000000000000 SPHASE8  
0000000000000000 TRIG8  
0000000000000000 TRGCON8  
0000000000000000 STRIG8  
0000000000000000 PWMCAP8  
0000000000000000 LEBCON8  
0000000000000000 LEBDLY8  
0000000000000000 AUXCON8  
0000000000000000  
CC2  
CC4  
CC6  
CC8  
CCA  
CCC  
CCE  
CD0  
CD2  
CD4  
CD6  
CD8  
CDA  
CDC  
CDE  
CE0  
CE2  
CE4  
CE6  
CE8  
CEA  
CEC  
CEE  
CF0  
CF2  
CF4  
CF6  
CF8  
CFA  
CFC  
CFE  
D00  
D02  
D04  
D06  
D08  
D0C  
D0E  
D10  
D12  
D14  
D16  
D18  
D1A  
D1C  
D1E  
1100000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
1100000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
1100000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
PTCON  
C00  
C02  
C04  
C06  
C0A  
C0E  
C10  
C12  
C14  
C1A  
C1E  
0000000000000000 PDC3  
0000000000000000 PHASE3  
1111111111111000 DTR3  
0000000000000000 ALTDTR3  
0000000000000000 SDC3  
0000000000000000 SPHASE3  
0000000000000000 TRIG3  
1111111111111000 TRGCON3  
0000000000000000 STRIG3  
0000000000000000 PWMCAP3  
xxxxxxxxxxxxxxxx LEBCON3  
LEBDLY3  
PTCON2  
PTPER  
SEVTCMP  
MDC  
STCON  
STCON2  
STPER  
SSEVTCMP  
CHOP  
PWMKEY  
PWM Generator  
PWMCON1  
IOCON1  
FCLCON1  
PDC1  
C20  
C22  
C24  
C26  
C28  
C2A  
C2C  
C2E  
C30  
C32  
C34  
C36  
C38  
C3A  
C3C  
C3E  
C40  
C42  
C44  
C46  
C48  
C4A  
C4C  
C4E  
C50  
C52  
C54  
C56  
C58  
C5A  
C5C  
C5E  
C60  
C62  
0000000000000000 AUXCON3  
1100000000000000 PWMCON4  
0000000000000000 IOCON4  
0000000000000000 FCLCON4  
0000000000000000 PDC4  
0000000000000000 PHASE4  
0000000000000000 DTR4  
0000000000000000 ALTDTR4  
0000000000000000 SDC4  
0000000000000000 SPHASE4  
0000000000000000 TRIG4  
0000000000000000 TRGCON4  
0000000000000000 STRIG4  
0000000000000000 PWMCAP4  
0000000000000000 LEBCON4  
0000000000000000 LEBDLY4  
0000000000000000 AUXCON4  
1100000000000000 PWMCON5  
0000000000000000 IOCON5  
0000000000000000 FCLCON5  
0000000000000000 PDC5  
0000000000000000 PHASE5  
0000000000000000 DTR5  
0000000000000000 ALTDTR5  
0000000000000000 SDC5  
0000000000000000 SPHASE5  
0000000000000000 TRIG5  
0000000000000000 TRGCON5  
0000000000000000 STRIG5  
0000000000000000 PWMCAP5  
0000000000000000 LEBCON5  
0000000000000000 LEBDLY5  
0000000000000000 AUXCON5  
1100000000000000 PWMCON6  
PHASE1  
DTR1  
ALTDTR1  
SDC1  
SPHASE1  
TRIG1  
TRGCON1  
STRIG1  
PWMCAP1  
LEBCON1  
LEBDLY1  
AUXCON1  
PWMCON2  
IOCON2  
FCLCON2  
PDC2  
PHASE2  
DTR2  
ALTDTR2  
SDC2  
SPHASE2  
TRIG2  
TRGCON2  
STRIG2  
PWMCAP2  
LEBCON2  
LEBDLY2  
AUXCON2  
PWMCON3  
IOCON3  
Legend: x= unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 49  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 4-15: SFR BLOCK E00h-F00h  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
Register  
Address  
All Resets  
PORTA  
ANSELB  
E1E  
0000001011101111 CNPDD  
ANSELD  
E3C  
E3E  
0000000000000000  
0010000110100100  
TRISA  
PORTA  
LATA  
E00  
E02  
E04  
E06  
E08  
E0A  
E0C  
E0E  
0000000000011111 PORTC  
0000000000000000 TRISC  
0000000000000000 PORTC  
0000000000000000 LATC  
0000000000000000 ODCC  
0000000000000000 CNENC  
0000000000000000 CNPUC  
0000000000000111 CNPDC  
ANSELC  
E20  
E22  
E24  
E26  
E28  
E2A  
E2C  
E2E  
1111011111111111 PORTE  
0000000000000000 TRISE  
0000000000000000 PORTE  
0000000000000000 LATE  
0000000000000000 ODCE  
0000000000000000 CNENE  
0000000000000000 CNPUE  
0001011001110110 CNPDE  
ANSELE  
E40  
E42  
E44  
E46  
E48  
E4A  
E4C  
E4E  
1111111111111111  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
0000000000000000  
ODCA  
CNENA  
CNPUA  
CNPDA  
ANSELA  
PORTB  
TRISB  
E10  
E12  
E14  
E16  
E18  
E1A  
E1C  
1111101111111111 PORTD  
0000000000000000 TRISD  
0000000000000000 PORTD  
0000000000000000 LATD  
0000000000000000 ODCD  
0000000000000000 CNEND  
0000000000000000 CNPUD  
PORTB  
LATB  
E30  
E32  
E34  
E36  
E38  
E3A  
1111111111111111 CPU  
0000000000000000 VISI  
0000000000000000 JTAG  
0000000000000000 JDATAH  
0000000000000000 JDATAL  
0000000000000000  
F88  
0000000000000000  
ODCB  
CNENB  
CNPUB  
CNPDB  
FF0  
FF2  
0000000000000000  
0000000000000000  
Legend: x= unknown or indeterminate value. Address values are in hexadecimal. Reset values are in binary.  
DS70005258C-page 50  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
The paged memory scheme provides access to  
multiple 32-Kbyte windows in the PSV memory. The  
Data Space Read Page (DSRPAG) register, in combi-  
nation with the upper half of the Data Space address,  
can provide up to 8 Mbytes of PSV address space. The  
paged data memory space is shown in Figure 4-8.  
4.5.1  
PAGED MEMORY SCHEME  
The dsPIC33EPXXXGS70X/80X family architecture  
extends the available Data Space through a paging  
scheme, which allows the available Data Space to be  
accessed using MOV instructions in a linear fashion for  
pre- and post-modified Effective Addresses (EAs).  
The upper half of the base Data Space address is  
used in conjunction with the Data Space Read Page  
(DSRPAG) register to form the Program Space  
Visibility (PSV) address.  
The Program Space (PS) can be accessed with a  
DSRPAG of 0x200 or greater. Only reads from PS are  
supported using the DSRPAG register.  
The Data Space Read Page (DSRPAG) register is  
located in the SFR space. Construction of the PSV  
address is shown in Figure 4-7. When DSRPAG<9> = 1  
and the base address bit, EA<15>  
= 1, the  
DSRPAG<8:0> bits are concatenated onto EA<14:0>  
to form the 24-bit PSV read address.  
FIGURE 4-7:  
PROGRAM SPACE VISIBILITY (PSV) READ ADDRESS GENERATION  
Byte  
Select  
16-Bit DS EA  
EA<15> = 0  
(DSRPAG = don’t care)  
0
EA  
EA  
No EDS Access  
EA<15>  
DSRPAG<9>  
1
= 1  
Select  
DSRPAG  
Generate  
PSV Address  
1
DSRPAG<8:0>  
9 Bits  
15 Bits  
24-Bit PSV EA  
Byte  
Select  
Note: DS read access when DSRPAG = 0x000 will force an address error trap.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 51  
dsPIC33EPXXXGS70X/80X FAMILY  
DS70005258C-page 52  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
When a PSV page overflow or underflow occurs,  
address within the PSV window. This creates a linear  
PSV address space, but only when using Register  
Indirect Addressing modes.  
EA<15> is cleared as a result of the register indirect EA  
calculation. An overflow or underflow of the EA in the  
PSV pages can occur at the page boundaries when:  
Exceptions to the operation described above arise  
when entering and exiting the boundaries of Page 0  
and PSV spaces. Table 4-16 lists the effects of overflow  
and underflow scenarios at different boundaries.  
• The initial address, prior to modification,  
addresses the PSV page  
• The EA calculation uses Pre- or Post-Modified  
Register Indirect Addressing; however, this does  
not include Register Offset Addressing  
In the following cases, when overflow or underflow  
occurs, the EA<15> bit is set and the DSRPAG is not  
modified; therefore, the EA will wrap to the beginning of  
the current page:  
In general, when an overflow is detected, the DSRPAG  
register is incremented and the EA<15> bit is set to keep  
the base address within the PSV window. When an  
underflow is detected, the DSRPAG register is decre-  
mented and the EA<15> bit is set to keep the base  
• Register Indirect with Register Offset Addressing  
• Modulo Addressing  
• Bit-Reversed Addressing  
TABLE 4-16: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0 AND  
PSV SPACE BOUNDARIES(2,3,4)  
Before  
After  
O/U,  
R/W  
Operation  
DS  
EA<15>  
Page  
Description  
DS  
EA<15>  
Page  
Description  
DSxPAG  
DSxPAG  
O,  
Read  
DSRPAG = 0x2FF  
1
1
1
1
1
PSV: Last lsw  
page  
DSRPAG = 0x300  
1
0
0
0
1
PSV: First MSB  
page  
[++Wn]  
or  
[Wn++]  
O,  
Read  
DSRPAG = 0x3FF  
DSRPAG = 0x001  
DSRPAG = 0x200  
DSRPAG = 0x300  
PSV: Last MSB DSRPAG = 0x3FF  
page  
See Note 1  
See Note 1  
See Note 1  
U,  
Read  
PSV page  
DSRPAG = 0x001  
[--Wn]  
or  
[Wn--]  
U,  
Read  
PSV: First lsw  
page  
DSRPAG = 0x200  
U,  
Read  
PSV: First MSB DSRPAG = 0x2FF  
page  
PSV: Last lsw  
page  
Legend: O = Overflow, U = Underflow, R = Read, W = Write  
Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x7FFF).  
2: An EDS access, with DSRPAG = 0x000, will generate an address error trap.  
3: Only reads from PS are supported using DSRPAG.  
4: Pseudolinear Addressing is not supported for large offsets.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 53  
dsPIC33EPXXXGS70X/80X FAMILY  
The Software Stack Pointer always points to the first  
available free word and fills the software stack, work-  
ing from lower toward higher addresses. Figure 4-9  
illustrates how it pre-decrements for a stack pop  
(read) and post-increments for a stack push (writes).  
4.5.2  
EXTENDED X DATA SPACE  
The lower portion of the base address space range,  
between 0x0000 and 0x7FFF, is always accessible,  
regardless of the contents of the Data Space Read  
Page register. It is indirectly addressable through the  
register indirect instructions. It can be regarded as  
being located in the default EDS Page 0 (i.e., EDS  
address range of 0x000000 to 0x007FFF with the base  
address bit, EA<15> = 0, for this address range). How-  
ever, Page 0 cannot be accessed through the upper  
32 Kbytes, 0x8000 to 0xFFFF, of base Data Space in  
combination with DSRPAG = 0x000. Consequently,  
DSRPAG is initialized to 0x001 at Reset.  
When the PC is pushed onto the stack, PC<15:0> are  
pushed onto the first available stack word, then  
PC<22:16> are pushed into the second available stack  
location. For a PC push during any CALL instruction,  
the MSB of the PC is zero-extended before the push,  
as shown in Figure 4-9. During exception processing,  
the MSB of the PC is concatenated with the lower eight  
bits of the CPU STATUS Register, SR. This allows the  
contents of SRL to be preserved automatically during  
interrupt processing.  
Note 1: DSRPAG should not be used to access  
Page 0. An EDS access with DSRPAG  
set to 0x000 will generate an address  
error trap.  
Note 1: To maintain system Stack Pointer (W15)  
coherency, W15 is never subject to  
(EDS) paging, and is therefore, restricted  
to an address range of 0x0000 to  
0xFFFF. The same applies to W14 when  
used as a Stack Frame Pointer (SFA = 1).  
2: Clearing the DSRPAG in software has no  
effect.  
The remaining PSV pages are only accessible using  
the DSRPAG register in combination with the upper  
32 Kbytes, 0x8000 to 0xFFFF, of the base address,  
where base address bit, EA<15> = 1.  
2: As the stack can be placed in, and can  
access X and Y spaces, care must be  
taken regarding its use, particularly with  
regard to local automatic variables in a C  
development environment  
4.5.3  
SOFTWARE STACK  
The W15 register serves as a dedicated Software  
Stack Pointer (SSP), and is automatically modified by  
exception processing, subroutine calls and returns;  
however, W15 can be referenced by any instruction in  
the same manner as all other W registers. This simpli-  
fies reading, writing and manipulating the Stack Pointer  
(for example, creating stack frames).  
FIGURE 4-9:  
CALL STACK FRAME  
0x0000  
15  
0
CALL SUBR  
Note: To protect against misaligned stack  
accesses, W15<0> is fixed to ‘0’ by the  
hardware.  
PC<15:1>  
W15 (before CALL)  
W15 (after CALL)  
b‘000000000’  
PC<22:16>  
<Free Word>  
W15 is initialized to 0x1000 during all Resets. This  
address ensures that the SSP points to valid RAM in all  
dsPIC33EPXXXGS70X/80X devices and permits stack  
availability for non-maskable trap exceptions. These can  
occur before the SSP is initialized by the user software.  
You can reprogram the SSP during initialization to any  
location within Data Space.  
DS70005258C-page 54  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
4.6.2  
MCU INSTRUCTIONS  
4.6  
Instruction Addressing Modes  
The three-operand MCU instructions are of the form:  
The addressing modes shown in Table 4-17 form the  
basis of the addressing modes optimized to support the  
specific features of individual instructions. The address-  
ing modes provided in the MACclass of instructions differ  
from those in the other instruction types.  
Operand 3 = Operand 1 <function> Operand 2  
where Operand 1is always a Working register (that is,  
the addressing mode can only be Register Direct),  
which is referred to as Wb. Operand 2 can be a W  
register fetched from data memory or a 5-bit literal. The  
result location can either be a W register or a data  
memory location. The following addressing modes are  
supported by MCU instructions:  
4.6.1  
FILE REGISTER INSTRUCTIONS  
Most file register instructions use a 13-bit address field (f)  
to directly address data present in the first 8192 bytes  
of data memory (Near Data Space). Most file register  
instructions employ a Working register, W0, which is  
denoted as WREG in these instructions. The destina-  
tion is typically either the same file register or WREG  
(with the exception of the MULinstruction), which writes  
the result to a register or register pair. The MOVinstruc-  
tion allows additional flexibility and can access the  
entire Data Space.  
• Register Direct  
• Register Indirect  
• Register Indirect Post-Modified  
• Register Indirect Pre-Modified  
• 5-Bit or 10-Bit Literal  
Note:  
Not all instructions support all the  
addressing modes given above. Individ-  
ual instructions can support different  
subsets of these addressing modes.  
TABLE 4-17: FUNDAMENTAL ADDRESSING MODES SUPPORTED  
Addressing Mode Description  
File Register Direct  
The address of the file register is specified explicitly.  
The contents of a register are accessed directly.  
The contents of Wn form the Effective Address (EA).  
Register Direct  
Register Indirect  
Register Indirect Post-Modified  
The contents of Wn form the EA. Wn is post-modified (incremented  
or decremented) by a constant value.  
Register Indirect Pre-Modified  
Wn is pre-modified (incremented or decremented) by a signed constant value  
to form the EA.  
Register Indirect with Register Offset The sum of Wn and Wb forms the EA.  
(Register Indexed)  
Register Indirect with Literal Offset  
The sum of Wn and a literal forms the EA.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 55  
dsPIC33EPXXXGS70X/80X FAMILY  
4.6.3  
MOVE AND ACCUMULATOR  
INSTRUCTIONS  
4.6.4  
MACINSTRUCTIONS  
The dual source operand DSP instructions (CLR, ED,  
EDAC, MAC, MPY, MPY.N, MOVSACand MSC), also referred  
to as MACinstructions, use a simplified set of addressing  
modes to allow the user application to effectively  
manipulate the Data Pointers through register indirect  
tables.  
Move instructions, and the DSP accumulator class  
of instructions, provide a greater degree of address-  
ing flexibility than other instructions. In addition to the  
addressing modes supported by most MCU  
instructions, move and accumulator instructions also  
support Register Indirect with Register Offset  
Addressing mode, also referred to as Register Indexed  
mode.  
The two-source operand prefetch registers must be  
members of the set {W8, W9, W10, W11}. For data  
reads, W8 and W9 are always directed to the X RAGU,  
and W10 and W11 are always directed to the Y AGU.  
The Effective Addresses generated (before and after  
modification) must therefore, be valid addresses within  
X Data Space for W8 and W9, and Y Data Space for  
W10 and W11.  
Note:  
For the MOV instructions, the addressing  
mode specified in the instruction can differ  
for the source and destination EA. How-  
ever, the 4-bit Wb (Register Offset) field is  
shared by both source and destination (but  
typically only used by one).  
Note:  
Register Indirect with Register Offset  
Addressing mode is available only for W9  
(in X space) and W11 (in Y space).  
In summary, the following addressing modes are  
supported by move and accumulator instructions:  
In summary, the following addressing modes are  
• Register Direct  
supported by the MACclass of instructions:  
• Register Indirect  
• Register Indirect  
• Register Indirect Post-modified  
• Register Indirect Pre-modified  
• Register Indirect with Register Offset (Indexed)  
• Register Indirect with Literal Offset  
• 8-Bit Literal  
• Register Indirect Post-Modified by 2  
• Register Indirect Post-Modified by 4  
• Register Indirect Post-Modified by 6  
• Register Indirect with Register Offset (Indexed)  
• 16-Bit Literal  
4.6.5  
OTHER INSTRUCTIONS  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions may support different subsets  
of these addressing modes.  
Besides the addressing modes outlined previously,  
some instructions use literal constants of various sizes.  
For example, BRA (branch) instructions use 16-bit  
signed literals to specify the branch destination directly,  
whereas the DISI instruction uses a 14-bit unsigned  
literal field. In some instructions, such as ULNK, the  
source of an operand or result is implied by the opcode  
itself. Certain operations, such as a NOP, do not have  
any operands.  
DS70005258C-page 56  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
4.7.1  
START AND END ADDRESS  
4.7  
Modulo Addressing  
The Modulo Addressing scheme requires that a  
starting and ending address be specified and loaded  
into the 16-bit Modulo Buffer Address registers:  
XMODSRT, XMODEND, YMODSRT and YMODEND  
(see Table 4-2).  
Modulo Addressing mode is a method of providing an  
automated means to support circular data buffers using  
hardware. The objective is to remove the need for  
software to perform data address boundary checks  
when executing tightly looped code, as is typical in  
many DSP algorithms.  
Note:  
Y space Modulo Addressing EA calcula-  
tions assume word-sized data (LSb of  
every EA is always clear).  
Modulo Addressing can operate in either Data or  
Program Space (since the Data Pointer mechanism is  
essentially the same for both). One circular buffer can be  
supported in each of the X (which also provides the point-  
ers into Program Space) and Y Data Spaces. Modulo  
Addressing can operate on any W Register Pointer. How-  
ever, it is not advisable to use W14 or W15 for Modulo  
Addressing since these two registers are used as the  
Stack Frame Pointer and Stack Pointer, respectively.  
The length of a circular buffer is not directly specified. It is  
determined by the difference between the corresponding  
start and end addresses. The maximum possible length of  
the circular buffer is 32K words (64 Kbytes).  
4.7.2  
W ADDRESS REGISTER SELECTION  
The Modulo and Bit-Reversed Addressing Control  
register, MODCON<15:0>, contains enable flags, as well  
as a W register field to specify the W Address registers.  
The XWM and YWM fields select the registers that  
operate with Modulo Addressing:  
In general, any particular circular buffer can be config-  
ured to operate in only one direction, as there are certain  
restrictions on the buffer start address (for incrementing  
buffers) or end address (for decrementing buffers),  
based upon the direction of the buffer.  
• If XWM = 1111, X RAGU and X WAGU Modulo  
The only exception to the usage restrictions is for  
buffers that have a power-of-two length. As these  
buffers satisfy the start and end address criteria, they  
can operate in a Bidirectional mode (that is, address  
boundary checks are performed on both the lower and  
upper address boundaries).  
Addressing is disabled  
• If YWM = 1111, Y AGU Modulo Addressing is  
disabled  
The X Address Space Pointer W (XWM) register, to  
which Modulo Addressing is to be applied, is stored in  
MODCON<3:0> (see Table 4-2). Modulo Addressing is  
enabled for X Data Space when XWM is set to any  
value other than ‘1111’ and the XMODEN bit is set  
(MODCON<15>).  
The Y Address Space Pointer W (YWM) register, to  
which Modulo Addressing is to be applied, is stored in  
MODCON<7:4>. Modulo Addressing is enabled for Y  
Data Space when YWM is set to any value other than  
1111’ and the YMODEN bit (MODCON<14>) is set.  
FIGURE 4-10:  
MODULO ADDRESSING OPERATION EXAMPLE  
Byte  
Address  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
#0x1100, W0  
W0, XMODSRT  
#0x1163, W0  
W0, MODEND  
#0x8001, W0  
W0, MODCON  
;set modulo start address  
;set modulo end address  
;enable W1, X AGU for modulo  
;W0 holds buffer fill value  
;point W1 to buffer  
0x1100  
MOV  
MOV  
#0x0000, W0  
#0x1110, W1  
0x1163  
DO  
MOV  
AGAIN, #0x31  
W0, [W1++]  
;fill the 50 buffer locations  
;fill the next location  
AGAIN: INC W0, W0  
;increment the fill value  
Start Addr = 0x1100  
End Addr = 0x1163  
Length = 0x0032 words  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 57  
dsPIC33EPXXXGS70X/80X FAMILY  
4.7.3  
MODULO ADDRESSING  
APPLICABILITY  
4.8.1  
BIT-REVERSED ADDRESSING  
IMPLEMENTATION  
Modulo Addressing can be applied to the Effective  
Address (EA) calculation associated with any W  
register. Address boundaries check for addresses  
equal to:  
Bit-Reversed Addressing mode is enabled when all of  
these situations are met:  
• BWMx bits (W register selection) in the MODCON  
register are any value other than ‘1111’ (the stack  
cannot be accessed using Bit-Reversed  
Addressing)  
• The upper boundary addresses for incrementing  
buffers  
• The lower boundary addresses for decrementing  
buffers  
• The BREN bit is set in the XBREV register  
• The addressing mode used is Register Indirect  
with Pre-Increment or Post-Increment  
If the length of a bit-reversed buffer is M = 2N bytes,  
the last ‘N’ bits of the data buffer start address must  
be zeros.  
It is important to realize that the address boundaries  
check for addresses less than or greater than the upper  
(for incrementing buffers) and lower (for decrementing  
buffers) boundary addresses (not just equal to).  
Address changes can therefore, jump beyond  
boundaries and still be adjusted correctly.  
XB<14:0> is the Bit-Reversed Addressing modifier, or  
‘pivot point’, which is typically a constant. In the case of  
an FFT computation, its value is equal to half of the FFT  
data buffer size.  
Note:  
The modulo corrected Effective Address  
is written back to the register only when  
Pre-Modify or Post-Modify Addressing  
mode is used to compute the Effective  
Address. When an address offset (such as  
[W7 + W2]) is used, Modulo Addressing  
correction is performed, but the contents of  
the register remain unchanged.  
Note:  
All bit-reversed EA calculations assume  
word-sized data (LSb of every EA is  
always clear). The XB value is scaled  
accordingly to generate compatible (byte)  
addresses.  
When enabled, Bit-Reversed Addressing is executed  
only for Register Indirect with Pre-Increment or Post-  
Increment Addressing and word-sized data writes. It  
does not function for any other addressing mode or for  
byte-sized data and normal addresses are generated  
instead. When Bit-Reversed Addressing is active, the  
W Address Pointer is always added to the address  
modifier (XB) and the offset associated with the  
Register Indirect Addressing mode is ignored. In  
addition, as word-sized data is a requirement, the LSb  
of the EA is ignored (and always clear).  
4.8  
Bit-Reversed Addressing  
Bit-Reversed Addressing mode is intended to simplify  
data reordering for radix-2 FFT algorithms. It is  
supported by the X AGU for data writes only.  
The modifier, which can be a constant value or register  
contents, is regarded as having its bit order reversed.  
The address source and destination are kept in normal  
order. Thus, the only operand requiring reversal is the  
modifier.  
Note:  
Modulo Addressing and Bit-Reversed  
Addressing can be enabled simultaneously  
using the same W register, but Bit-  
Reversed Addressing operation will always  
take precedence for data writes when  
enabled.  
If Bit-Reversed Addressing has already been enabled  
by setting the BREN (XBREV<15>) bit, a write to the  
XBREV register should not be immediately followed by  
an indirect read operation using the W register that has  
been designated as the Bit-Reversed Pointer.  
DS70005258C-page 58  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 4-11:  
BIT-REVERSED ADDRESSING EXAMPLE  
Sequential Address  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1  
0
Bit Locations Swapped Left-to-Right  
Around Center of Binary Value  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1 b2 b3 b4  
0
Bit-Reversed Address  
Pivot Point  
XB = 0x0008 for a 16-Word Bit-Reversed Buffer  
TABLE 4-18: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)  
Normal Address Bit-Reversed Address  
A3  
A2  
A1  
A0  
Decimal  
A3  
A2  
A1  
A0  
Decimal  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
8
2
4
3
12  
2
4
5
10  
6
6
7
14  
1
8
9
9
10  
11  
12  
13  
14  
15  
5
13  
3
11  
7
15  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 59  
dsPIC33EPXXXGS70X/80X FAMILY  
Table instructions allow an application to read or write  
to small areas of the program memory. This capability  
makes the method ideal for accessing data tables that  
need to be updated periodically. It also allows access  
to all bytes of the program word. The remapping  
method allows an application to access a large block of  
data on a read-only basis, which is ideal for look-ups  
from a large table of static data. The application can  
only access the least significant word of the program  
word.  
4.9  
Interfacing Program and Data  
Memory Spaces  
The dsPIC33EPXXXGS70X/80X family architecture  
uses a 24-bit wide Program Space (PS) and a 16-bit  
wide Data Space (DS). The architecture is also a  
modified Harvard scheme, meaning that data can also  
be present in the Program Space. To use this data  
successfully, it must be accessed in a way that preserves  
the alignment of information in both spaces.  
Aside from normal execution, the architecture of the  
dsPIC33EPXXXGS70X/80X family devices provides  
two methods by which Program Space can be  
accessed during operation:  
• Using table instructions to access individual bytes  
or words anywhere in the Program Space  
• Remapping a portion of the Program Space into  
the Data Space (Program Space Visibility)  
TABLE 4-19: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
PC<22:1>  
0
0xxx xxxx xxxx xxxx xxxx xxx0  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
TBLPAG<7:0>  
0xxx xxxx  
Data EA<15:0>  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
FIGURE 4-12:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter(1)  
0
Program Counter  
23 Bits  
0
1/0  
EA  
Table Operations(2)  
1/0  
TBLPAG  
8 Bits  
16 Bits  
24 Bits  
User/Configuration  
Space Select  
Byte Select  
Note 1: The Least Significant bit (LSb) of Program Space addresses is always fixed as ‘0’ to maintain  
word alignment of data in the Program and Data Spaces.  
2: Table operations are not required to be word-aligned. Table Read operations are permitted in the  
configuration memory space.  
DS70005258C-page 60  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TBLRDH (Table Read High):  
4.9.1  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
- In Word mode, this instruction maps the entire  
upper word of a program address (P<23:16>)  
to a data address. The ‘phantom’ byte  
(D<15:8>) is always ‘0’.  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the Program Space without going  
through Data Space. The TBLRDH and TBLWTH  
instructions are the only method to read or write the  
upper eight bits of a Program Space word as data.  
- In Byte mode, this instruction maps the upper  
or lower byte of the program word to D<7:0>  
of the data address in the TBLRDL instruc-  
tion. The data is always ‘0’ when the upper  
‘phantom’ byte is selected (Byte Select = 1).  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to Data Space addresses.  
Program memory can thus be regarded as two 16-bit  
wide word address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space that contains the least significant  
data word. TBLRDHand TBLWTHaccess the space that  
contains the upper data byte.  
In a similar fashion, two table instructions, TBLWTH  
and TBLWTL, are used to write individual bytes or  
words to a Program Space address. The details of  
their operation are explained in Section 5.0 “Flash  
Program Memory”.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table Page  
register (TBLPAG). TBLPAG covers the entire program  
memory space of the device, including user application  
and configuration spaces. When TBLPAG<7> = 0, the  
table page is located in the user memory space. When  
TBLPAG<7> = 1, the page is located in configuration  
space.  
Two table instructions are provided to move byte or  
word-sized (16-bit) data to and from Program Space.  
Both function as either byte or word operations.  
TBLRDL(Table Read Low):  
- In Word mode, this instruction maps the lower  
word of the Program Space location (P<15:0>)  
to a data address (D<15:0>)  
- In Byte mode, either the upper or lower byte  
of the lower program word is mapped to the  
lower byte of a data address. The upper byte  
is selected when Byte Select is ‘1’; the lower  
byte is selected when it is ‘0’.  
FIGURE 4-13:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
TBLPAG  
02  
23  
15  
0
0x000000  
23  
16  
8
0
00000000  
00000000  
00000000  
00000000  
0x020000  
0x030000  
‘Phantom’ Byte  
TBLRDH.B (Wn<0> = 0)  
TBLRDL.B (Wn<0> = 1)  
TBLRDL.B (Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register.  
Only read operations are shown; write operations are also valid in  
the user memory area.  
0x800000  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 61  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 62  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
manufacture boards with unprogrammed devices and  
5.0  
FLASH PROGRAM MEMORY  
then program the device just before shipping the  
product. This also allows the most recent firmware or a  
custom firmware to be programmed.  
Note 1: This data sheet summarizes the features  
of the dsPIC33EPXXXGS70X/80X family  
of devices. It is not intended to be a  
comprehensive reference source. To com-  
plement the information in this data sheet,  
refer to “Dual Partition Flash Program  
Memory” (DS70005156) in the “dsPIC33/  
PIC24 Family Reference Manual”, which is  
available from the Microchip website  
(www.microchip.com)  
Enhanced In-Circuit Serial Programming uses an  
on-board bootloader, known as the Program Executive,  
to manage the programming process. Using an SPI data  
frame format, the Program Executive can erase,  
program and verify program memory. For more informa-  
tion on Enhanced ICSP, see the device programming  
specification.  
RTSP is accomplished using TBLRD(Table Read) and  
TBLWT(Table Write) instructions. With RTSP, the user  
application can write program memory data with a  
single program memory word and erase program mem-  
ory in blocks or ‘pages’ of 512 instructions (1536 bytes)  
at a time.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
5.1  
Table Instructions and Flash  
Programming  
The dsPIC33EPXXXGS70X/80X family devices contain  
internal Program Flash Memory for storing and  
executing application code. The memory is readable,  
writable and erasable during normal operation over the  
entire VDD range.  
Regardless of the method used, all programming of  
Flash memory is done with the Table Read and Table  
Write instructions. These instructions allow direct read  
and write access to the program memory space, from  
the data memory, while the device is in normal operating  
mode. The 24-bit target address in the program memory  
is formed using bits<7:0> of the TBLPAG register and  
the Effective Address (EA) from a W register, specified  
in the table instruction, as shown in Figure 5-1. The  
TBLRDLand the TBLWTLinstructions are used to read or  
write to bits<15:0> of program memory. TBLRDL and  
TBLWTLcan access program memory in both Word and  
Byte modes. The TBLRDHand TBLWTHinstructions are  
used to read or write to bits<23:16> of program memory.  
TBLRDHand TBLWTHcan also access program memory  
in Word or Byte mode.  
Flash memory can be programmed in three ways:  
• In-Circuit Serial Programming™ (ICSP™)  
programming capability  
• Enhanced In-Circuit Serial Programming  
(Enhanced ICSP)  
• Run-Time Self-Programming (RTSP)  
ICSP allows for a dsPIC33EPXXXGS70X/80X family  
device to be serially programmed while in the end  
application circuit. This is done with a programming  
clock and programming data (PGECx/PGEDx) line,  
and three other lines for power (VDD), ground (VSS) and  
Master Clear (MCLR). This allows customers to  
FIGURE 5-1:  
ADDRESSING FOR TABLE REGISTERS  
24 Bits  
Program Counter  
Using  
Program Counter  
0
0
Working Reg EA  
Using  
Table Instruction  
1/0  
TBLPAG Reg  
8 Bits  
16 Bits  
User/Configuration  
Space Select  
Byte  
Select  
24-Bit EA  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 63  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 5-2:  
UNCOMPRESSED/  
COMPRESSED FORMAT  
5.2  
RTSP Operation  
The dsPIC33EPXXXGS70X/80X family Flash program  
memory array is organized into rows of 64 instructions  
or 192 bytes. RTSP allows the user application to erase  
a single page (8 rows or 512 instructions) of memory at  
a time and to program one row at a time. It is possible  
to program two instructions at a time as well.  
15  
7
0
Even Byte  
Address  
LSW1  
LSW2  
0x00  
MSB1  
MSB2  
The page erase and single row write blocks are  
edge-aligned, from the beginning of program  
memory, on boundaries of 1536 bytes and 192 bytes,  
respectively. Figure 30-14 in Section 30.0 “Electrical  
Characteristics” lists the typical erase and  
programming times.  
0x00  
UNCOMPRESSED FORMAT (RPDF = 0)  
Row programming is performed by loading 192 bytes  
into data memory and then loading the address of the  
first byte in that row into the NVMSRCADR register.  
Once the write has been initiated, the device will  
automatically load the write latches and increment the  
NVMSRCADR and the NVMADR(U) registers until  
all bytes have been programmed. The RPDF bit  
(NVMCON<9>) selects the format of the stored data in  
RAM to be either compressed or uncompressed. See  
Figure 5-2 for data formatting. Compressed data helps  
to reduce the amount of required RAM by using the  
upper byte of the second word for the MSB of the  
second instruction.  
15  
7
0
Even Byte  
Address  
LSW1  
MSB2  
MSB1  
LSW2  
COMPRESSED FORMAT (RPDF = 1)  
5.3  
Programming Operations  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. The processor stalls (waits) until the program-  
ming operation is finished. Setting the WR bit  
(NVMCON<15>) starts the operation and the WR bit is  
automatically cleared when the operation is finished.  
The basic sequence for RTSP word programming is to  
use the TBLWTLand TBLWTHinstructions to load two of  
the 24-bit instructions into the write latches found in  
configuration memory space. Refer to Figure 4-1  
through Figure 4-4 for write latch addresses. Program-  
ming is performed by unlocking and setting the control  
bits in the NVMCON register.  
5.3.1  
PROGRAMMING ALGORITHM FOR  
FLASH PROGRAM MEMORY  
All erase and program operations may optionally use  
the NVM interrupt to signal the successful completion  
of the operation. For example, when performing Flash  
write operations on the Inactive Partition in Dual  
Partition mode, where the CPU remains running, it is  
necessary to wait for the NVM interrupt before  
programming the next block of Flash program memory.  
Programmers can program two adjacent words  
(24 bits x 2) of Program Flash Memory at a time on  
every other word address boundary (0x000000,  
0x000004, 0x000008, etc.). To do this, it is necessary to  
erase the page that contains the desired address of the  
location the user wants to change. For protection against  
accidental operations, the write initiate sequence for  
NVMKEY must be used to allow any erase or program  
operation to proceed. After the programming command  
has been executed, the user application must wait for  
the programming time until programming is complete.  
The two instructions following the start of the  
programming sequence should be NOPs.  
DS70005258C-page 64  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
For robustness of operation, in order to execute the  
BOOTSWP instruction, it is necessary to execute the  
5.4  
Dual Partition Flash Configuration  
For dsPIC33EPXXXGS70X/80X devices operating in  
Dual Partition Flash Program Memory modes, the  
Inactive Partition can be erased and programmed with-  
out stalling the processor. The same programming  
algorithms are used for programming and erasing the  
Flash in the Inactive Partition, as described in  
Section 5.2 “RTSP Operation”. On top of the page  
erase option, the entire Flash memory of the Inactive  
Partition can be erased by configuring the  
NVMOP<3:0> bits in the NVMCON register.  
NVM unlocking sequence as follows:  
1. Write 0x55 to NVMKEY.  
2. Write 0xAA to NVMKEY.  
3. Execute the BOOTSWPinstruction.  
If the unlocking sequence is not performed, the  
BOOTSWPinstruction will be executed as a forced NOP  
and a GOTOinstruction, following the BOOTSWPinstruc-  
tion, will be executed, causing the PC to jump to that  
location in the current operating partition.  
Note 1: The application software to be loaded  
into the Inactive Partition will have the  
address of the Active Partition. The  
bootloader firmware will need to offset  
the address by 0x400000 in order to write  
to the Inactive Partition.  
The SFTSWP and P2ACTIV bits in the NVMCON  
register are used to determine a successful swap of the  
Active and Inactive Partitions, as well as which partition  
is active. After the BOOTSWPand GOTO instructions, the  
SFTSWP bit should be polled to verify the partition  
swap has occurred and then cleared for the next panel  
swap event.  
5.4.1  
FLASH PARTITION SWAPPING  
5.4.2  
DUAL PARTITION MODES  
The Boot Sequence Number is used for determining  
the Active Partition at start-up and is encoded within  
the FBTSEQ Configuration register bits. Unlike most  
Configuration registers, which only utilize the lower  
16 bits of the program memory, FBTSEQ is a 24-bit  
Configuration Word. The Boot Sequence Number  
(BSEQ) is a 12-bit value and is stored in FBTSEQ  
twice. The true value is stored in bits, FBTSEQ<11:0>,  
and its complement is stored in bits, FBTSEQ<23:12>.  
At device Reset, the sequence numbers are read and  
the partition with the lowest sequence number  
becomes the Active Partition. If one of the Boot  
Sequence Numbers is invalid, the device will select the  
partition with the valid Boot Sequence Number, or  
default to Partition 1 if both sequence numbers are  
invalid. See Section 27.0 “Special Features” for more  
information.  
While operating in Dual Partition mode, the  
dsPIC33EPXXXGS70X/80X family devices have the  
option for both partitions to have their own defined  
security segments, as shown in Figure 27-4. Alterna-  
tively, the device can operate in Protected Dual Partition  
mode, where Partition 1 becomes permanently erase/  
write-protected. Protected Dual Partition mode allows for  
a “Factory Default” mode, which provides a fail-safe  
backup image to be stored in Partition 1.  
dsPIC33EPXXXGS70X/80X family devices can also  
operate in Privileged Dual Partition mode, where addi-  
tional security protections are implemented to allow for  
protection of intellectual property when multiple parties  
have software within the device. In Privileged Dual Par-  
tition mode, both partitions place additional restrictions  
on the FBSLIM register. These prevent changes to the  
size of the Boot Segment and General Segment,  
ensuring that neither segment will be altered.  
The BOOTSWP instruction provides an alternative  
means of swapping the Active and Inactive Partitions  
(soft swap) without the need for a device Reset. The  
BOOTSWPmust always be followed by a GOTOinstruc-  
tion. The BOOTSWP instruction swaps the Active and  
Inactive Partitions, and the PC vectors to the location  
specified by the GOTO instruction in the newly Active  
Partition.  
5.5  
Flash Memory Resources  
Many useful resources are provided on the main  
product page of the Microchip website for the devices  
listed in this data sheet. This product page contains the  
latest updates and additional information.  
It is important to note that interrupts should temporarily  
be disabled while performing the soft swap sequence  
and that after the partition swap, all peripherals and  
interrupts which were enabled remain enabled. Addi-  
tionally, the RAM and stack will maintain state after the  
switch. As a result, it is recommended that applications  
using soft swaps jump to a routine that will reinitialize  
the device in order to ensure the firmware runs as  
expected. The Configuration registers will have no  
effect during a soft swap.  
5.5.1  
KEY RESOURCES  
“Dual Partition Flash Program Memory”  
(DS70005156) in the “dsPIC33/PIC24 Family  
Reference Manual”  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All Related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
• Development Tools  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 65  
dsPIC33EPXXXGS70X/80X FAMILY  
There are two NVM Address registers: NVMADRU and  
NVMADR. These two registers, when concatenated,  
form the 24-bit Effective Address (EA) of the selected  
word/row for programming operations, or the selected  
page for erase operations. The NVMADRU register is  
used to hold the upper eight bits of the EA, while the  
NVMADR register is used to hold the lower 16 bits of  
the EA.  
5.6  
Control Registers  
Five SFRs are used to write and erase the Program  
Flash Memory: NVMCON, NVMKEY, NVMADR,  
NVMADRU and NVMSRCADR/H.  
The NVMCON register (Register 5-1) selects the  
operation to be performed (page erase, word/row  
program, Inactive Partition erase), initiates the program  
or erase cycle and is used to determine the Active  
Partition in Dual Partition modes.  
For row programming operation, data to be written to  
Program Flash Memory is written into data memory  
space (RAM) at an address defined by the  
NVMSRCADR register (location of first element in row  
programming data).  
NVMKEY (Register 5-4) is a write-only register that is  
used for write protection. To start a programming or  
erase sequence, the user application must  
consecutively write 0x55 and 0xAA to the NVMKEY  
register.  
DS70005258C-page 66  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 5-1:  
NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER  
R/SO-0(1)  
WR  
R/W-0(1)  
WREN  
R/W-0(1)  
WRERR NVMSIDL(2) SFTSWP(6)  
R/W-0  
R/C-0  
R-0  
P2ACTIV(6)  
R/W-0  
RPDF  
R/C-0  
URERR  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
NVMOP3(3,4) NVMOP2(3,4) NVMOP1(3,4) NVMOP0(3,4)  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
SO = Settable Only bit  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
WR: Write Control bit(1)  
1= Initiates a Flash Memory Program or erase operation; the operation is self-timed and the bit is  
cleared by hardware once the operation is complete  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit(1)  
1= Enables Flash program/erase operations  
0= Inhibits Flash program/erase operations  
WRERR: Write Sequence Error Flag bit(1)  
1= An improper program or erase sequence attempt, or termination has occurred (bit is set automatically  
on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12  
bit 11  
NVMSIDL: NVM Stop in Idle Control bit(2)  
1= Flash voltage regulator goes into Standby mode during Idle mode  
0= Flash voltage regulator is active during Idle mode  
SFTSWP: Partition Soft Swap Status bit(6)  
1= Partitions have been successfully swapped using the BOOTSWPinstruction (soft swap)  
0= Awaiting successful partition swap using the BOOTSWPinstruction or a device Reset will determine  
the Active Partition based on the FBTSEQ register  
bit 10  
bit 9  
P2ACTIV: Partition 2 Active Status bit(6)  
1= Partition 2 Flash is mapped into the active region  
0= Partition 1 Flash is mapped into the active region  
RPDF: Row Programming Data Format bit  
1= Row data to be stored in RAM is in compressed format  
0= Row data to be stored in RAM is in uncompressed format  
Note 1: These bits can only be reset on a POR.  
2: If this bit is set, power consumption will be further reduced (IIDLE) and upon exiting Idle mode, there is a  
delay (TVREG) before Flash memory becomes operational.  
3: All other combinations of NVMOP<3:0> are unimplemented.  
4: Execution of the PWRSAVinstruction is ignored while any of the NVM operations are in progress.  
5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.  
6: Only applicable when operating in Dual Partition mode.  
7: The specific Boot mode depends on bits<1:0> of the programmed data:  
11= Single Partition Flash mode  
10= Dual Partition Flash mode  
01= Protected Dual Partition Flash mode  
00= Reserved  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 67  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 5-1:  
NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER (CONTINUED)  
bit 8  
URERR: Row Programming Data Underrun Error bit  
1= Indicates row programming operation has been terminated  
0= No data underrun error is detected  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
NVMOP<3:0>: NVM Operation Select bits(1,3,4)  
1111= Reserved  
1110= User memory bulk erase operation  
1011= Reserved  
1010= Reserved  
1001= Reserved  
1000= Boot memory double-word program operation in a Dual Partition Flash mode(7)  
0101= Reserved  
0100= Inactive Partition memory erase operation  
0011= Memory page erase operation  
0010= Memory row program operation  
0001= Memory double-word program operation(5)  
0000= Reserved  
Note 1: These bits can only be reset on a POR.  
2: If this bit is set, power consumption will be further reduced (IIDLE) and upon exiting Idle mode, there is a  
delay (TVREG) before Flash memory becomes operational.  
3: All other combinations of NVMOP<3:0> are unimplemented.  
4: Execution of the PWRSAVinstruction is ignored while any of the NVM operations are in progress.  
5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.  
6: Only applicable when operating in Dual Partition mode.  
7: The specific Boot mode depends on bits<1:0> of the programmed data:  
11= Single Partition Flash mode  
10= Dual Partition Flash mode  
01= Protected Dual Partition Flash mode  
00= Reserved  
DS70005258C-page 68  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 5-2:  
NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
NVMADR<15:8>  
bit 15  
R/W-x  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 0  
NVMADR<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
NVMADR<15:0>: Nonvolatile Memory Lower Write Address bits  
Selects the lower 16 bits of the location to program or erase in Program Flash Memory. This register  
may be read or written to by the user application.  
REGISTER 5-3:  
NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-x  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 0  
NVMADRU<23:16>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
NVMADRU<23:16>: Nonvolatile Memory Upper Write Address bits  
Selects the upper eight bits of the location to program or erase in Program Flash Memory. This register  
may be read or written to by the user application.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 69  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 5-4:  
NVMKEY: NONVOLATILE MEMORY KEY REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
W-0  
bit 7  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
NVMKEY<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
NVMKEY<7:0>: NVM Key Register bits (write-only)  
REGISTER 5-5:  
NVMSRCADR: NVM SOURCE DATA ADDRESS REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
NVMSRCADR<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
NVMSRCADR<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
NVMSRCADR<15:0>: NVM Source Data Address bits  
The RAM address of the data to be programmed into Flash when the NVMOP<3:0> bits are set to row  
programming.  
DS70005258C-page 70  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
A simplified block diagram of the Reset module is  
shown in Figure 6-1.  
6.0  
RESETS  
Note 1: This data sheet summarizes the  
features of the dsPIC33EPXXXGS70X/  
80X family of devices. It is not intended to  
be a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “Reset” (DS70602) in the  
“dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
website (www.microchip.com)  
Any active source of Reset will make the SYSRST  
signal active. On system Reset, some of the registers  
associated with the CPU and peripherals are forced to  
a known Reset state, and some are unaffected.  
Note:  
Refer to the specific peripheral section or  
Section 4.0 “Memory Organization” of  
this data sheet for register Reset states.  
All types of device Reset set a corresponding status bit  
in the RCON register to indicate the type of Reset (see  
Register 6-1).  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
A POR clears all the bits, except for the BOR and POR  
bits (RCON<1:0>) that are set. The user application  
can set or clear any bit, at any time, during code  
execution. The RCON bits only serve as status bits.  
Setting a particular Reset status bit in software does  
not cause a device Reset to occur.  
The Reset module combines all Reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
The RCON register also has other bits associated with  
the Watchdog Timer and device power-saving states.  
The function of these bits is discussed in other sections  
of this manual.  
• POR: Power-on Reset  
• BOR: Brown-out Reset  
• MCLR: Master Clear Pin Reset  
• SWR: RESETInstruction  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset is meaningful.  
• WDTO: Watchdog Timer Time-out Reset  
• CM: Configuration Mismatch Reset  
• TRAPR: Trap Conflict Reset  
• IOPUWR: Illegal Condition Device Reset  
- Illegal Opcode Reset  
For all Resets, the default clock source is determined  
by the FNOSC<2:0> bits in the FOSCSEL Configura-  
tion register. The value of the FNOSCx bits is loaded  
into the NOSC<2:0> (OSCCON<10:8>) bits on Reset,  
which in turn, initializes the system clock.  
- Uninitialized W Register Reset  
- Security Reset  
FIGURE 6-1:  
RESET SYSTEM BLOCK DIAGRAM  
RESET Instruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
BOR  
Internal  
Regulator  
SYSRST  
VDD  
POR  
VDD Rise  
Detect  
Trap Conflict  
Illegal Opcode  
Uninitialized W Register  
Security Reset  
Configuration Mismatch  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 71  
dsPIC33EPXXXGS70X/80X FAMILY  
6.1.1  
KEY RESOURCES  
6.1  
Reset Resources  
“Reset” (DS70602) in the “dsPIC33/PIC24 Family  
Reference Manual”  
Many useful resources are provided on the main  
product page of the Microchip website for the devices  
listed in this data sheet. This product page contains the  
latest updates and additional information.  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All Related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
• Development Tools  
DS70005258C-page 72  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER(1)  
R/W-0  
TRAPR  
bit 15  
R/W-0  
U-0  
U-0  
R/W-0  
U-0  
R/W-0  
CM  
R/W-0  
IOPUWR  
VREGSF  
VREGS  
bit 8  
R/W-0  
EXTR  
R/W-0  
SWR  
R/W-0  
SWDTEN(2)  
R/W-0  
WDTO  
R/W-0  
R/W-0  
IDLE  
R/W-1  
BOR  
R/W-1  
POR  
SLEEP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Register Access Reset Flag bit  
1= An illegal opcode detection, an illegal address mode or Uninitialized W register used as an  
Address Pointer caused a Reset  
0= An illegal opcode or Uninitialized W register Reset has not occurred  
bit 13-12  
bit 11  
Unimplemented: Read as ‘0’  
VREGSF: Flash Voltage Regulator Standby During Sleep bit  
1= Flash voltage regulator is active during Sleep  
0= Flash voltage regulator goes into Standby mode during Sleep  
bit 10  
bit 9  
Unimplemented: Read as ‘0’  
CM: Configuration Mismatch Flag bit  
1= A Configuration Mismatch Reset has occurred  
0= A Configuration Mismatch Reset has not occurred  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
VREGS: Voltage Regulator Standby During Sleep bit  
1= Voltage regulator is active during Sleep  
0= Voltage regulator goes into Standby mode during Sleep  
EXTR: External Reset (MCLR) Pin bit  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
SWR: Software RESET(Instruction) Flag bit  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
SWDTEN: Software Enable/Disable of WDT bit(2)  
1= WDT is enabled  
0= WDT is disabled  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the WDTEN<1:0> Configuration bits are ‘11’ (unprogrammed), the WDT is always enabled, regardless  
of the SWDTEN bit setting.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 73  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER(1) (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
SLEEP: Wake-up from Sleep Flag bit  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
IDLE: Wake-up from Idle Flag bit  
1= Device has been in Idle mode  
0= Device has not been in Idle mode  
BOR: Brown-out Reset Flag bit  
1= A Brown-out Reset has occurred  
0= A Brown-out Reset has not occurred  
POR: Power-on Reset Flag bit  
1= A Power-on Reset has occurred  
0= A Power-on Reset has not occurred  
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the WDTEN<1:0> Configuration bits are ‘11’ (unprogrammed), the WDT is always enabled, regardless  
of the SWDTEN bit setting.  
DS70005258C-page 74  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
7.1.1  
ALTERNATE INTERRUPT VECTOR  
TABLE  
7.0  
INTERRUPT CONTROLLER  
Note 1: This data sheet summarizes the  
features of the dsPIC33EPXXXGS70X/  
80X family of devices. It is not intended to  
be a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “Interrupts” (DS70000600)  
in the “dsPIC33/PIC24 Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
The Alternate Interrupt Vector Table (AIVT), shown in  
Figure 7-2, is available only when the Boot Segment is  
defined and the AIVT has been enabled. To enable the  
Alternate Interrupt Vector Table, the Configuration bit,  
AIVTDIS in the FSEC register, must be programmed  
and the AIVTEN bit must be set (INTCON2<8> = 1).  
When the AIVT is enabled, all interrupt and exception  
processes use the alternate vectors instead of the  
default vectors. The AIVT begins at the start of the last  
page of the Boot Segment, defined by BSLIM<12:0>.  
The second half of the page is no longer usable space.  
The Boot Segment must be at least two pages to  
enable the AIVT.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Note: Although the Boot Segment must be  
enabled in order to enable the AIVT,  
application code does not need to be  
present inside of the Boot Segment. The  
AIVT (and IVT) will inherit the Boot  
Segment code protection.  
The dsPIC33EPXXXGS70X/80X family interrupt  
controller reduces the numerous peripheral interrupt  
request signals to a single interrupt request signal to  
the dsPIC33EPXXXGS70X/80X family CPU.  
The interrupt controller has the following features:  
The AIVT supports debugging by providing a means to  
switch between an application and a support environ-  
ment without requiring the interrupt vectors to be  
reprogrammed. This feature also enables switching  
between applications for evaluation of different  
software algorithms at run time.  
• Six Processor Exceptions and Software Traps  
• Seven User-Selectable Priority Levels  
• Interrupt Vector Table (IVT) with a Unique Vector  
for each Interrupt or Exception Source  
• Fixed Priority within a Specified User Priority  
Level  
7.2  
Reset Sequence  
• Fixed Interrupt Entry and Return Latencies  
A device Reset is not a true exception because the  
interrupt controller is not involved in the Reset process.  
The dsPIC33EPXXXGS70X/80X family devices clear  
their registers in response to a Reset, which forces the  
PC to zero. The device then begins program execution  
at location, 0x000000. A GOTOinstruction at the Reset  
address can redirect program execution to the  
appropriate start-up routine.  
• Alternate Interrupt Vector Table (AIVT) for Debug  
Support  
7.1  
Interrupt Vector Table  
The dsPIC33EPXXXGS70X/80X family Interrupt Vector  
Table (IVT), shown in Figure 7-1, resides in program  
memory, starting at location, 000004h. The IVT con-  
tains six non-maskable trap vectors and up to  
246 sources of interrupts. In general, each interrupt  
source has its own vector. Each interrupt vector  
contains a 24-bit wide address. The value programmed  
into each interrupt vector location is the starting  
address of the associated Interrupt Service Routine  
(ISR).  
Note: Any unimplemented or unused vector  
locations in the IVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
Interrupt vectors are prioritized in terms of their natural  
priority. This priority is linked to their position in the  
vector table. Lower addresses generally have a higher  
natural priority. For example, the interrupt associated  
with Vector 0 takes priority over interrupts at any other  
vector address.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 75  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 7-1:  
dsPIC33EPXXXGS70X/80X FAMILY INTERRUPT VECTOR TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Generic Hard Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
0x000000  
0x000002  
0x000004  
0x000006  
0x000008  
0x00000A  
0x00000C  
0x00000E  
0x000010  
0x000012  
0x000014  
0x000016  
:
Generic Soft Trap Vector  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
:
:
:
:
:
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
:
0x00007C  
0x00007E  
0x000080  
:
See Table 7-1 for  
Interrupt Vector Details  
:
:
:
:
Interrupt Vector 116  
Interrupt Vector 117  
Interrupt Vector 118  
Interrupt Vector 119  
Interrupt Vector 120  
:
0x0000FC  
0x0000FE  
0x000100  
0x000102  
0x000104  
:
:
:
:
:
Interrupt Vector 244  
Interrupt Vector 245  
START OF CODE  
0x0001FC  
0x0001FE  
0x000200  
Note:  
In Dual Partition Flash modes, each partition has a dedicated Interrupt Vector Table.  
DS70005258C-page 76  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 7-2:  
dsPIC33EPXXXGS70X/80X ALTERNATE INTERRUPT VECTOR TABLE(2)  
Reserved  
BSLIM<12:0>(1) + 0x000000  
BSLIM<12:0>(1) + 0x000002  
BSLIM<12:0>(1) + 0x000004  
BSLIM<12:0>(1) + 0x000006  
BSLIM<12:0>(1) + 0x000008  
BSLIM<12:0>(1) + 0x00000A  
BSLIM<12:0>(1) + 0x00000C  
BSLIM<12:0>(1) + 0x00000E  
BSLIM<12:0>(1) + 0x000010  
BSLIM<12:0>(1) + 0x000012  
BSLIM<12:0>(1) + 0x000014  
BSLIM<12:0>(1) + 0x000016  
:
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Generic Hard Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Generic Soft Trap Vector  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
:
:
:
:
:
Interrupt Vector 52  
BSLIM<12:0>(1) + 0x00007C  
BSLIM<12:0>(1) + 0x00007E  
BSLIM<12:0>(1) + 0x000080  
:
Interrupt Vector 53  
Interrupt Vector 54  
See Table 7-1 for  
Interrupt Vector Details  
:
:
:
:
:
Interrupt Vector 116  
Interrupt Vector 117  
Interrupt Vector 118  
Interrupt Vector 119  
Interrupt Vector 120  
:
BSLIM<12:0>(1) + 0x0000FC  
BSLIM<12:0>(1) + 0x0000FE  
BSLIM<12:0>(1) + 0x000100  
BSLIM<12:0>(1) + 0x000102  
BSLIM<12:0>(1) + 0x000104  
:
:
:
:
:
Interrupt Vector 244  
Interrupt Vector 245  
BSLIM<12:0>(1) + 0x0001FC  
BSLIM<12:0>(1) + 0x0001FE  
Note 1: The address depends on the size of the Boot Segment defined by BSLIM<12:0>.  
[(BSLIM<12:0> – 1) x 0x400] + Offset.  
2: In Dual Partition Flash modes, each partition has a dedicated Alternate Interrupt Vector  
Table (if enabled).  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 77  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 7-1:  
INTERRUPT VECTOR DETAILS  
Interrupt Bit Location  
Vector  
#
IRQ  
#
Interrupt Source  
IVT Address  
Flag  
Enable  
Priority  
Highest Natural Order Priority  
INT0 – External Interrupt 0  
IC1 – Input Capture 1  
8
0
0x000014  
0x000016  
0x000018  
0x00001A  
0x00001C  
0x00001E  
0x000020  
0x000022  
0x000024  
0x000026  
0x000028  
0x00002A  
0x00002C  
0x00002E  
0x000030  
0x000032  
0x000034  
0x000036  
0x000038  
0x00003A  
0x00003C  
IFS0<0>  
INT0IF  
IEC0<0>  
INT0IE  
IPC0<2:0>  
INT0IP<2:0>  
9
1
IFS0<1>  
IC1IF  
IEC0<1>  
IC1IE  
IPC0<6:4>  
IC1IP<2:0>  
OC1 – Output Compare 1  
T1 – Timer1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
2
IFS0<2>  
OC1IF  
IEC0<2>  
OC1IE  
IPC0<10:8>  
OC1IP<2:0>  
3
IFS0<3>  
T1IF  
IEC0<3>  
T1IE  
IPC0<14:12>  
T1IP<2:0>  
DMA0 – DMA Channel 0  
IC2 – Input Capture 2  
4
IFS0<4>  
DMA0IF  
IEC0<4>  
DMA0IE  
IPC1<2:0>  
DMA0IP<2:0>  
5
IFS0<5>  
IC2IF  
IEC0<5>  
IC2IE  
IPC1<6:4>  
IC2IP<2:0>  
OC2 – Output Compare 2  
T2 – Timer2  
6
IFS0<6>  
OC2IF  
IEC0<6>  
OC2IE  
IPC1<10:8>  
OC2IP<2:0>  
7
IFS0<7>  
T2IF  
IEC0<7>  
T2IE  
IPC1<14:12>  
T2IP<2:0>  
T3 – Timer3  
8
IFS0<8>  
T3IF  
IEC0<8>  
T3IE  
IPC2<2:0>  
T3IP<2:0>  
SPI1TX – SPI1 Transfer Done  
SPI1RX – SPI1 Receive Done  
U1RX – UART1 Receiver  
U1TX – UART1 Transmitter  
ADC – ADC Global Convert Done  
DMA1 – DMA Channel 1  
NVM – NVM Write Complete  
SI2C1 – I2C1 Slave Event  
MI2C1 – I2C1 Master Event  
AC1 – Analog Comparator 1 Interrupt  
CN – Input Change Interrupt  
INT1 – External Interrupt 1  
9
IFS0<9>  
SPI1TXIF  
IEC0<9>  
SPI1TXIE  
IPC2<6:4>  
SPI1TXIP<2:0>  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
IFS0<10>  
SPI1RXIF  
IEC0<10>  
SPI1RXIE SPI1RXIP<2:0>  
IPC2<10:8>  
IFS0<11>  
U1RXIF  
IEC0<11>  
U1RXIE  
IPC2<14:12>  
U1RXIP<2:0>  
IFS0<12>  
U1TXIF  
IEC0<12>  
U1TXIE  
IPC3<2:0>  
U1TXIP<2:0>  
IFS0<13>  
ADCIF  
IEC0<13>  
ADCIE  
IPC3<6:4>  
ADCIP<2:0>  
IFS0<14>  
DMA1IF  
IEC0<14>  
DMA1IE  
IPC3<10:8>  
DMA1IP<2:0>  
IFS0<15>  
NVMIF  
IEC0<15>  
NVMIE  
IPC3<14:12>  
NVMIP<2:0>  
IFS1<0>  
SI2C1IF  
IEC1<0>  
SI2C1IE  
IPC4<2:0>  
SI2C1IP<2:0>  
IFS1<1>  
MI2C1IF  
IEC1<1>  
MI2C1IE  
IPC4<6:4>  
MI2C1IP<2:0>  
IFS1<2>  
AC1IF  
IEC1<2>  
AC1IE  
IPC4<10:8>  
AC1IP<2:0>  
IFS1<3>  
CNIF  
IEC1<3>  
CNIE  
IPC4<14:12>  
CNIP<2:0>  
IFS1<4>  
INT1IF  
IEC1<4>  
INT1IE  
IPC5<2:0>  
INT1IP<2:0>  
Reserved  
29-31  
32  
21-23 0x00003E-0x000043  
DMA2 – DMA Channel 2  
24  
25  
26  
0x00044  
0x000046  
0x000048  
IFS1<8>  
DMA2IF  
IEC1<8>  
DMA2IE  
IPC6<2:0>  
DMA2IP<2:0>  
OC3 – Output Compare 3  
OC4 – Output Compare 4  
33  
34  
IFS1<9>  
OC3IF  
IEC1<9>  
OC3IE  
IPC6<6:4>  
OC3IP<2:0>  
IFS1<10>  
OC4IF  
IEC1<10>  
OC4IE  
IPC6<10:8>  
OC4IP<2:0>  
DS70005258C-page 78  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 7-1:  
INTERRUPT VECTOR DETAILS (CONTINUED)  
Interrupt Bit Location  
Vector  
#
IRQ  
#
Interrupt Source  
IVT Address  
0x00004A  
0x00004C  
0x00004E  
0x000050  
0x000052  
0x000054  
0x000056  
0x000058  
0x000059  
0x00005A  
0x00005E  
0x000060  
Flag  
Enable  
Priority  
T4 – Timer4  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
IFS1<11>  
T4IF  
IEC1<11>  
T4IE  
IPC6<14:12>  
T4IP<2:0>  
T5 – Timer5  
IFS1<12>  
T5IF  
IEC1<12>  
T5IE  
IPC7<2:0>  
T5IP<2:0>  
INT2 – External Interrupt 2  
U2RX – UART2 Receiver  
U2TX – UART2 Transmitter  
SPI2TX – SPI2 Transfer Done  
SPI2RX – SPI2 Receive Done  
C1RX – CAN1 RX Data Ready  
C1 – CAN1 Combined Error  
DMA3 – DMA Channel 3  
IC3 – Input Capture 3  
IFS1<13>  
INT2IF  
IEC1<13>  
INT2IE  
IPC7<6:4>  
INT2IP<2:0>  
IFS1<14>  
U2RXIF  
IEC1<14>  
U2RXIE  
IPC7<10:8>  
U2RXIP<2:0>  
IFS1<15>  
U2TXIF  
IEC1<15>  
U2TXIE  
IPC7<14:12>  
U2TXIP<2:0>  
IFS2<0>  
IEC2<0>  
IPC8<2:0>  
SPI2TXIF  
SPI2TXIE SPI2TXIP<2:0>  
IEC2<1> IPC8<6:4>  
SPI2RXIE SPI2RXIP<2:0>  
IFS2<1>  
SPI2RXIF  
IFS2<2>  
C1RXIF  
IEC2<2>  
C1RXIE  
IPC8<10:8>  
C1RXIP<2:0>  
IFS2<3>  
C1IF  
IEC2<3>  
C1IE  
IPC8<14:12>  
C1IP<2:0>  
IFS2<4>  
DMA3IF  
IEC2<4>  
DMA3IE  
IPC9<2:0>  
DMA3IP<2:0>  
IFS2<5>  
IC3IF  
IEC2<5>  
IC3IE  
IPC9<6:4>  
IC3IP<2:0>  
IC4 – Input Capture 4  
IFS2<6>  
IC4IF  
IEC2<6>  
IC4IE  
IPC9<10:8>  
IC4IP<2:0>  
Reserved  
47-56  
57  
39-48 0x000062-0x000074  
SI2C2 – I2C2 Slave Event  
49  
0x000076  
IFS3<1>  
SI2C2IF  
IEC3<1>  
SI2C2IE  
IPC12<6:4>  
SI2C2IP<2:0>  
MI2C2 – I2C2 Master Event  
58  
50  
0x000078  
IFS3<2>  
MI2C2IF  
IEC3<2>  
MI2C2IE  
IPC12<10:8>  
MI2C2IP<2:0>  
Reserved  
59-61  
62  
51-53 0x00007A-0x00007E  
INT4 – External Interrupt 4  
54  
55  
56  
57  
0x000080  
0x000082  
0x000083  
0x000086  
IFS3<6>  
INT4IF  
IEC3<6>  
INT4IE  
IPC13<10:8>  
INT4IP<2:0>  
C2RX – CAN2 RX Data Ready  
C2 – CAN 2 Combined Error  
63  
64  
65  
IFS3<7>  
C2RXIF  
IEC3<7>  
C2RXIE  
IPC13<14:12>  
C2RXIP<2:0>  
IFS3<8>  
C2IF  
IEC3<8>  
C2IE  
IPC14<2:0>  
C2IP<2:0>  
PSEM – PWM Special Event Match  
IFS3<9>  
PSEMIF  
IEC3<9>  
PSEMIE  
IPC14<6:4>  
PSEMIP<2:0>  
Reserved  
66-72  
73  
58-64 0x000088-0x000094  
U1E – UART1 Error Interrupt  
65  
0x000096  
IFS4<1>  
U1EIF  
IEC4<1>  
U1EIE  
IPC16<6:4>  
U1EIP<2:0>  
U2E – UART2 Error Interrupt  
74  
66  
0x000098  
IFS4<2>  
U2EIF  
IEC4<2>  
U2EIE  
IPC16<10:8>  
U2EIP<2:0>  
Reserved  
75-77  
78  
67-69 0x00009A-0x0000A2  
C1TX – CAN1 TX Data Request  
70  
71  
72  
0x0000A0  
0x0000A  
0x0000A4  
IFS4<6>  
C1TXIF  
IEC4<6>  
C1TXIE  
IPC17<10:8>  
C1TXIP<2:0>  
C2TX – CAN2 TX Data Request  
Reserved  
79  
80  
IFS4<7>  
C2TXIF  
IEC4<7>  
C2TXIE  
IPC17<14:12>  
C2TXIP<2:0>  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 79  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 7-1:  
INTERRUPT VECTOR DETAILS (CONTINUED)  
Interrupt Bit Location  
Vector  
#
IRQ  
#
Interrupt Source  
IVT Address  
Flag  
Enable  
Priority  
PSES – PWM Secondary Special  
Event Match  
81  
73  
0x0000A6  
IFS4<9>  
PSESIF  
IEC4<9>  
PSESIE  
IPC18<6:4>  
PSESIP<2:0>  
Reserved  
82-97  
98  
74-89 0x0000A8-0x0000C6  
SPI3TX – SPI3 Transfer Done  
90  
0x0000C8  
IFS5<10>  
SPI3TXIF  
IEC5<10>  
IPC22<10:8>  
SPI3TXIE SPI3TXIP<2:0>  
IEC5<11> IPC22<14:12>  
SPI3RXIE SPI3RXIP<2:0>  
SPI3RX – SPI3 Receive Done  
99  
91  
0x0000CA  
IFS5<10>  
SPI3RXIF  
Reserved  
100-101 92-93 0x0000CC-0x0000CE  
PWM1 – PWM1 Interrupt  
102  
103  
104  
105  
106  
107  
108  
109  
94  
0x0000D0  
0x0000D2  
0x0000D4  
0x0000D6  
0x0000D8  
0x0000DA  
0x0000DC  
0x0000DE  
IFS5<14>  
PWM1IF  
IEC5<14>  
PWM1IE  
IPC23<10:8>  
PWM1IP<2:0>  
PWM2 – PWM2 Interrupt  
PWM3 – PWM3 Interrupt  
PWM4 – PWM4 Interrupt  
PWM5 – PWM5 Interrupt  
PWM6 – PWM6 Interrupt  
PWM7 – PWM7 Interrupt  
PWM8 – PWM8 Interrupt  
95  
IFS5<15>  
PWM2IF  
IEC5<15>  
PWM2IE  
IPC23<14:12>  
PWM2IP<2:0>  
96  
IFS6<0>  
PWM3IF  
IEC6<0>  
PWM3IE  
IPC24<2:0>  
PWM3IP<2:0>  
97  
IFS6<1>  
PWM4IF  
IEC6<1>  
PWM4IE  
IPC24<6:4>  
PWM4IP<2:0>  
98  
IFS6<2>  
PWM5IF  
IEC6<2>  
PWM5IE  
IPC24<10:8>  
PWM5IP<2:0>  
99  
IFS6<3>  
PWM6IF  
IEC6<3>  
PWM6IE  
IPC24<14:12>  
PWM6IP<2:0>  
100  
101  
IFS6<4>  
PWM7IF  
IEC6<4>  
PWM7IE  
IPC25<2:0>  
PWM7IP<2:0>  
IFS6<5>  
PWM8IF  
IEC6<5>  
PWM8IE  
IPC25<6:4>  
PWM8IP<2:0>  
Reserved  
110  
111  
102  
103  
0x0000E0  
0x0000E2  
AC2 – Analog Comparator 2 Interrupt  
IFS6<7>  
AC2IF  
IEC6<7>  
AC2IE  
IPC25<14:12>  
AC2IP<2:0>  
AC3 – Analog Comparator 3 Interrupt  
AC4 – Analog Comparator 4 Interrupt  
112  
113  
104  
105  
0x0000E4  
0x0000E6  
IFS6<8>  
AC3IF  
IEC6<8>  
AC3IE  
IPC26<2:0>  
AC3IP<2:0>  
IFS6<9>  
AC4IF  
IEC6<9>  
AC4IE  
IPC26<6:4>  
AC4IP<2:0>  
Reserved  
114-117 106-109 0x0000E8-0x0000EE  
AN0 Conversion Done  
118  
119  
120  
121  
122  
123  
124  
125  
110  
111  
112  
113  
114  
115  
116  
117  
0x0000F0  
0x0000F2  
0x0000F4  
0x0000F6  
0x0000F8  
0x0000FA  
0x0000FC  
0x0000FE  
IFS6<14>  
AN0IF  
IEC6<14>  
AN0IE  
IPC27<10:8>  
AN0IP<2:0>  
AN1 Conversion Done  
AN2 Conversion Done  
AN3 Conversion Done  
AN4 Conversion Done  
AN5 Conversion Done  
AN6 Conversion Done  
AN7 Conversion Done  
Reserved  
IFS6<15>  
AN1IF  
IEC6<15>  
AN1IE  
IPC27<14:12>  
AN1IP<2:0>  
IFS7<0>  
AN2IF  
IEC7<0>  
AN2IE  
IPC28<2:0>  
AN2IP<2:0>  
IFS7<1>  
AN3IF  
IEC7<1>  
AN3IE  
IPC28<6:4>  
AN3IP<2:0>  
IFS7<2>  
AN4IF  
IEC7<2>  
AN4IE  
IPC28<10:8>  
AN4IP<2:0>  
IFS7<3>  
AN5IF  
IEC7<3>  
AN5IE  
IPC28<14:12>  
AN5IP<2:0>  
IFS7<4>  
AN6IF  
IEC7<4>  
AN6IE  
IPC29<2:0>  
AN6IP<2:0>  
IFS7<5>  
AN7IF  
IEC7<5>  
AN7IE  
IPC29<6:4>  
AN7IP<2:0>  
126-131 118-123 0x000100-0x00010A  
DS70005258C-page 80  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 7-1:  
INTERRUPT VECTOR DETAILS (CONTINUED)  
Interrupt Bit Location  
Vector  
#
IRQ  
#
Interrupt Source  
IVT Address  
0x00010C  
0x00010E  
0x000110  
Flag  
Enable  
Priority  
SPI1 Error Interrupt  
SPI2 Error Interrupt  
SPI3 Error Interrupt  
132  
133  
134  
124  
125  
126  
IFS7<12>  
SPI1IF  
IEC7<12>  
SPI1IE  
IPC31<2:0>  
SPI1IP<2:0>  
IFS7<13>  
SPI2IF  
IEC7<13>  
SPI2IE  
IPC31<6:4>  
SPI2IP<2:0>  
IFS7<13>  
SPI3IF  
IEC7<13>  
SPI3IE  
IPC31<10:8>  
SPI3IP<2:0>  
Reserved  
135-145 127-137 0x000112-0x000126  
CLC1 Interrupt  
146  
147  
148  
149  
150  
151  
138  
139  
140  
141  
142  
143  
0x000128  
0x00012A  
0x00012C  
0x00012E  
0x000130  
0x000132  
IFS8<10>  
CLC1IF  
IEC8<10>  
CLC1IE  
IPC34<10:8>  
CLC1IP<2:0>  
CLC2 Interrupt  
IFS8<11>  
CLC2IF  
IEC8<11>  
CLC2IE  
IPC34<14:12>  
CLC2IP<2:0>  
CLC3 Interrupt  
IFS8<12>  
CLC3IF  
IEC8<12>  
CLC3IE  
IPC35<2:0>  
CLC3IP<2:0>  
CLC4 Interrupt  
IFS8<13>  
CLC4IF  
IEC8<13>  
CLC4IE  
IPC35<6:4>  
CLC4IP<2:0>  
ICD – ICD Application  
JTAG – JTAG Programming  
IFS8<14>  
ICDIF  
IEC8<14>  
ICDIE  
IPC35<10:8>  
ICDIP<2:0>  
IFS8<15>  
JTAGIF  
IEC8<15>  
JTAGIE  
IPC35<14:12>  
JTAGIP<2:0>  
Reserved  
152  
153  
144  
145  
0x000134  
0x000136  
PTGSTEP – PTG Step  
IFS9<1>  
IEC9<1>  
IPC36<6:4>  
PTGSTEPIF PTGSTEPIE PTGSTEP<2:0>  
IFS9<2> IEC9<2> IPC36<10:8>  
PTGWDTIF PTGWDTIE PTGWDT<2:0>  
PTGWDT – PTG WDT Time-out  
PTG0 – PTG Interrupt Trigger 0  
PTG1 – PTG Interrupt Trigger 1  
PTG2 – PTG Interrupt Trigger 2  
PTG3 – PTG Interrupt Trigger 3  
AN8 Conversion Done  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
0x000138  
0x00013A  
0x00013C  
0x00013E  
0x000140  
0x000142  
0x000144  
0x000146  
0x000148  
0x00014A  
0x00014C  
0x00014E  
0x000150  
0x000152  
IFS9<3>  
PTG0IF  
IEC9<3>  
PTG0IE  
IPC36<14:12>  
PTG0IP<2:0>  
IFS9<4>  
PTG1IF  
IEC9<4>  
PTG1IE  
IPC37<2:0>  
PTG1IP<2:0>  
IFS9<5>  
PTG2IF  
IEC9<5>  
PTG2IE  
IPC37<6:4>  
PTG2IP<2:0>  
IFS9<6>  
PTG3IF  
IEC9<6>  
PTG3IE  
IPC37<10:8>  
PTG3IP<2:0>  
IFS9<7>  
AN8IF  
IEC9<7>  
AN8IE  
IPC37<14:12>  
AN8IP<2:0>  
AN9 Conversion Done  
IFS9<8>  
AN9IF  
IEC9<8>  
AN9IE  
IPC38<2:0>  
AN9IP<2:0>  
AN10 Conversion Done  
IFS9<9>  
AN10IF  
IEC9<9>  
AN10IE  
IPC38<6:4>  
AN10IP<2:0>  
AN11 Conversion Done  
IFS9<10>  
AN11IF  
IEC9<10>  
AN11IE  
IPC38<10:8>  
AN11IP<2:0>  
AN12 Conversion Done  
IFS9<11>  
AN12IF  
IEC9<11>  
AN12IE  
IPC38<14:12>  
AN12IP<2:0>  
AN13 Conversion Done  
IFS9<12>  
AN13IF  
IEC9<12>  
AN13IE  
IPC39<2:0>  
AN13IP<2:0>  
AN14 Conversion Done  
IFS9<13>  
AN14IF  
IEC9<13>  
AN14IE  
IPC39<6:4>  
AN14IP<2:0>  
AN15 Conversion Done  
IFS9<14>  
AN15IF  
IEC9<14>  
AN15IE  
IPC39<10:8>  
AN15IP<2:0>  
AN16 Conversion Done  
IFS9<15>  
AN16IF  
IEC9<15>  
AN16IE  
IPC39<14:12>  
AN16IP<2:0>  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 81  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 7-1:  
INTERRUPT VECTOR DETAILS (CONTINUED)  
Interrupt Bit Location  
Vector  
#
IRQ  
#
Interrupt Source  
IVT Address  
0x000154  
0x000156  
0x000158  
0x00015A  
0x00015C  
Flag  
Enable  
Priority  
AN17 Conversion Done  
AN18 Conversion Done  
AN19 Conversion Done  
AN20 Conversion Done  
AN21 Conversion Done  
168  
169  
170  
171  
172  
160  
161  
162  
163  
164  
IFS10<0>  
AN17IF  
IEC10<0>  
AN17IE  
IPC40<2:0>  
AN17IP<2:0>  
IFS10<1>  
AN18IF  
IEC10<1>  
AN18IE  
IPC40<6:4>  
AN18IP<2:0>  
IFS10<2>  
AN19IF  
IEC10<2>  
AN19IE  
IPC40<10:8>  
AN19IP<2:0>  
IFS10<3>  
AN20IF  
IEC10<3>  
AN20IE  
IPC40<14:12>  
AN20IP<2:0>  
IFS10<4>  
AN21IF  
IEC10<4>  
AN21IE  
IPC41<2:0>  
AN21IP<2:0>  
Reserved  
173-180 165-172 0x00015C-0x00016C  
I2C1 – I2C1 Bus Collision  
181  
173  
0x00016E  
IFS10<13> IEC10<13>  
I2C1IF I2C1IE  
IFS10<14> IEC10<14>  
IPC43<6:4>  
I2C1IP<2:0>  
I2C2 – I2C2 Bus Collision  
182  
174  
0x000170  
IPC43<10:8>  
I2C2IP<2:0>  
I2C2IF  
I2C2IE  
Reserved  
183-184 175-176 0x000172-0x000174  
ADCMP0 – ADC Digital Comparator 0  
185  
186  
187  
188  
177  
178  
179  
180  
0x000176  
0x000178  
0x00017A  
0x00017C  
IFS11<1>  
IEC11<1>  
IPC44<6:4>  
ADCMP0IF ADCMP0IE ADCMP0IP<2:0>  
IFS11<2> IEC11<2> IPC44<10:8>  
ADCMP1IF ADCMP1IE ADCMP1IP<2:0>  
IFS11<3> IEC11<3> IPC44<14:12>  
ADFLTR0IF ADFLTR0IE ADFLTR0IP<2:0>  
IFS11<4> IEC11<4> IPC45<2:0>  
ADFLTR1IF ADFLTR1IE ADFLTR1IP<2:0>  
ADCMP1 – ADC Digital Comparator 1  
ADFLTR0 – ADC Filter 0  
ADFLTR1 – ADC Filter 1  
Reserved  
189-253 181-245 0x00017E-0x000192  
DS70005258C-page 82  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
7.4.3  
IECx  
7.3  
Interrupt Resources  
The IECx registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
Many useful resources are provided on the main prod-  
uct page of the Microchip website for the devices listed  
in this data sheet. This product page contains the latest  
updates and additional information.  
7.4.4  
IPCx  
7.3.1  
KEY RESOURCES  
The IPCx registers are used to set the Interrupt Priority  
Level (IPL) for each source of interrupt. Each user  
interrupt source can be assigned to one of seven  
priority levels.  
“Interrupts” (DS70000600) in the  
“dsPIC33/PIC24 Family Reference Manual”  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
7.4.5  
INTTREG  
The INTTREG register contains the associated  
interrupt vector number and the new CPU Interrupt  
Priority Level, which are latched into the Vector  
Number of Pending Interrupt bits (VECNUM<7:0>) and  
New CPU Interrupt Priority Level bits (ILR<3:0>) fields  
in the INTTREG register. The new Interrupt Priority  
Level is the priority of the pending interrupt.  
• All Related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
• Development Tools  
7.4  
Interrupt Control and Status  
Registers  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the same sequence as they are  
listed in Table 7-1. For example, the INT0 (External  
Interrupt 0) is shown as having Vector Number 8 and a  
natural order priority of 0. Thus, the INT0IF bit is found  
in IFS0<0>, the INT0IE bit in IEC0<0> and the  
INT0IP<2:0> bits in the first position of IPC0  
(IPC0<2:0>).  
dsPIC33EPXXXGS70X/80X family devices implement  
the following registers for the interrupt controller:  
• INTCON1  
• INTCON2  
• INTCON3  
• INTCON4  
• INTTREG  
7.4.6  
STATUS/CONTROL REGISTERS  
Although these registers are not specifically part of the  
interrupt control hardware, two of the CPU Control  
registers contain bits that control interrupt functionality.  
For more information on these registers, refer to  
“dsPIC33E Enhanced CPU” (DS70005158) in the  
“dsPIC33/PIC24 Family Reference Manual”.  
7.4.1  
INTCON1 THROUGH INTCON4  
Global interrupt control functions are controlled from  
INTCON1, INTCON2, INTCON3 and INTCON4.  
INTCON1 contains the Interrupt Nesting Disable bit  
(NSTDIS), as well as the control and status flags for the  
processor trap sources.  
• The CPU STATUS Register, SR, contains the  
IPL<2:0> bits (SR<7:5>). These bits indicate the  
current CPU Interrupt Priority Level. The user  
software can change the current CPU Interrupt  
Priority Level by writing to the IPLx bits.  
The INTCON2 register controls external interrupt  
request signal behavior, contains the Global Interrupt  
Enable bit (GIE) and the Alternate Interrupt Vector Table  
Enable bit (AIVTEN).  
• The CORCON register contains the IPL3 bit  
which, together with IPL<2:0>, also indicates the  
current CPU priority level. IPL3 is a read-only bit  
so that trap events cannot be masked by the user  
software.  
INTCON3 contains the status flags for the Auxiliary  
PLL and DOstack overflow status trap sources.  
The INTCON4 register contains the Software  
Generated Hard Trap Status bit (SGHT).  
All Interrupt registers are described in Register 7-3  
through Register 7-7 in the following pages.  
7.4.2  
IFSx  
The IFSx registers maintain all of the interrupt request  
flags. Each source of interrupt has a status bit, which is  
set by the respective peripherals or external signal and  
is cleared via software.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 83  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 7-1:  
SR: CPU STATUS REGISTER(1)  
R/W-0  
OA  
R/W-0  
OB  
R/W-0  
SA  
R/W-0  
SB  
R/C-0  
OAB  
R/C-0  
SAB  
R-0  
DA  
R/W-0  
DC  
bit 15  
bit 8  
R/W-0(3)  
IPL2(2)  
bit 7  
R/W-0(3)  
IPL1(2)  
R/W-0(3)  
IPL0(2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’= Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2,3)  
111= CPU Interrupt Priority Level is 7 (15); user interrupts are disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
Note 1: For complete register details, see Register 3-1.  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.  
DS70005258C-page 84  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 7-2:  
CORCON: CORE CONTROL REGISTER(1)  
R/W-0  
VAR  
U-0  
R/W-0  
US1  
R/W-0  
US0  
R/W-0  
EDT  
R-0  
R-0  
R-0  
DL2  
DL1  
DL0  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R-0  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
SFA  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’= Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 3  
VAR: Variable Exception Processing Latency Control bit  
1= Variable exception processing is enabled  
0= Fixed exception processing is enabled  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU Interrupt Priority Level is greater than 7  
0= CPU Interrupt Priority Level is 7 or less  
Note 1: For complete register details, see Register 3-2.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 85  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
NSTDIS  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OVAERR  
OVBERR  
COVAERR  
COVBERR  
OVATE  
OVBTE  
COVTE  
bit 8  
R/W-0  
SFTACERR  
bit 7  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
DIV0ERR  
MATHERR  
ADDRERR  
STKERR  
OSCFAIL  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
OVAERR: Accumulator A Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator A  
0= Trap was not caused by overflow of Accumulator A  
OVBERR: Accumulator B Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator B  
0= Trap was not caused by overflow of Accumulator B  
COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit  
1= Trap was caused by catastrophic overflow of Accumulator A  
0= Trap was not caused by catastrophic overflow of Accumulator A  
COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit  
1= Trap was caused by catastrophic overflow of Accumulator B  
0= Trap was not caused by catastrophic overflow of Accumulator B  
OVATE: Accumulator A Overflow Trap Enable bit  
1= Trap overflow of Accumulator A  
0= Trap is disabled  
OVBTE: Accumulator B Overflow Trap Enable bit  
1= Trap overflow of Accumulator B  
0= Trap is disabled  
bit 8  
COVTE: Catastrophic Overflow Trap Enable bit  
1= Trap on catastrophic overflow of Accumulator A or B is enabled  
0= Trap is disabled  
bit 7  
SFTACERR: Shift Accumulator Error Status bit  
1= Math error trap was caused by an invalid accumulator shift  
0= Math error trap was not caused by an invalid accumulator shift  
bit 6  
DIV0ERR: Divide-by-Zero Error Status bit  
1= Math error trap was caused by a divide-by-zero  
0= Math error trap was not caused by a divide-by-zero  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
MATHERR: Math Error Status bit  
1= Math error trap has occurred  
0= Math error trap has not occurred  
bit 3  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
DS70005258C-page 86  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)  
bit 2  
bit 1  
bit 0  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 87  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 7-4:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-1  
GIE  
R/W-0  
DISI  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWTRAP  
AIVTEN  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
INT4EP  
INT2EP  
INT1EP  
INT0EP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
GIE: Global Interrupt Enable bit  
1= Interrupts and associated IE bits are enabled  
0= Interrupts are disabled, but traps are still enabled  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIinstruction is not active  
SWTRAP: Software Trap Status bit  
1= Software trap is enabled  
0= Software trap is disabled  
bit 12-9  
bit 8  
Unimplemented: Read as ‘0’  
AIVTEN: Alternate Interrupt Vector Table Enable  
1= Uses Alternate Interrupt Vector Table  
0= Uses standard Interrupt Vector Table  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
INT4EP: External Interrupt 4 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 1  
bit 0  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
DS70005258C-page 88  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 7-5:  
INTCON3: INTERRUPT CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
NAE  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
APLL  
DOOVR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
NAE: NVM Address Error Soft Trap Status bit  
1= NVM address error soft trap has occurred  
0= NVM address error soft trap has not occurred  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
DOOVR: DOStack Overflow Soft Trap Status bit  
1= DOstack overflow soft trap has occurred  
0= DOstack overflow soft trap has not occurred  
bit 3-1  
bit 0  
Unimplemented: Read as ‘0’  
APLL: Auxiliary PLL Loss of Lock Soft Trap Status bit  
1= APLL lock soft trap has occurred  
0= APLL lock soft trap has not occurred  
REGISTER 7-6:  
INTCON4: INTERRUPT CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SGHT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-1  
bit 0  
Unimplemented: Read as ‘0’  
SGHT: Software Generated Hard Trap Status bit  
1= Software generated hard trap has occurred  
0= Software generated hard trap has not occurred  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 89  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 7-7:  
INTTREG: INTERRUPT CONTROL AND STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
ILR<3:0>  
bit 15  
bit 8  
bit 0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
VECNUM<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
ILR<3:0>: New CPU Interrupt Priority Level bits  
1111= CPU Interrupt Priority Level is 15  
0001= CPU Interrupt Priority Level is 1  
0000= CPU Interrupt Priority Level is 0  
bit 7-0  
VECNUM<7:0>: Vector Number of Pending Interrupt bits  
11111111= 255, Reserved; do not use  
00001001= 9, IC1 – Input Capture 1  
00001000= 8, INT0 – External Interrupt 0  
00000111= 7, Reserved; do not use  
00000110= 6, Generic soft error trap  
00000101= 5, Reserved; do not use  
00000100= 4, Math error trap  
00000011= 3, Stack error trap  
00000010= 2, Generic hard trap  
00000001= 1, Address error trap  
00000000= 0, Oscillator fail trap  
DS70005258C-page 90  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
The DMA Controller transfers data between Peripheral  
Data registers and Data Space SRAM.  
8.0  
DIRECT MEMORY ACCESS  
(DMA)  
In addition, DMA can access the entire data memory  
space. The data memory bus arbiter is utilized when  
either the CPU or DMA attempts to access SRAM,  
resulting in potential DMA or CPU Stalls.  
Note 1: This data sheet summarizes the features  
of the dsPIC33EPXXXGS70X/80X family  
of devices. It is not intended to be a  
comprehensive reference source. To com-  
plement the information in this data  
sheet, refer to “Direct Memory Access  
(DMA)” (DS70348) in the “dsPIC33/  
PIC24 Family Reference Manual”, which  
is available from the Microchip website  
(www.microchip.com).  
The DMA Controller supports four independent  
channels. Each channel can be configured for transfers  
to or from selected peripherals. The peripherals  
supported by the DMA Controller include:  
• CAN  
• UART  
• Input Capture  
• Output Compare  
• Timers  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Refer to Table 8-1 for a complete list of supported  
peripherals.  
FIGURE 8-1:  
PERIPHERAL TO DMA CONTROLLER  
Data Memory  
Arbiter  
PERIPHERAL  
DMA  
(see Figure 4-10)  
SRAM  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 91  
dsPIC33EPXXXGS70X/80X FAMILY  
In addition, DMA transfers can be triggered by timers as  
well as external interrupts. Each DMA channel is uni-  
directional. Two DMA channels must be allocated to read  
and write to a peripheral. If more than one channel  
receives a request to transfer data, a simple fixed priority  
scheme, based on channel number, dictates which  
channel completes the transfer and which channel, or  
channels, are left pending. Each DMA channel moves a  
block of data, after which, it generates an interrupt to the  
CPU to indicate that the block is available for processing.  
• Peripheral Indirect Addressing mode (peripheral  
generates destination address)  
• CPU Interrupt after Half or Full Block Transfer  
Complete  
• Byte or Word Transfers  
• Fixed Priority Channel Arbitration  
• Manual (software) or Automatic (peripheral DMA  
requests) Transfer Initiation  
• One-Shot or Auto-Repeat Block Transfer modes  
• Ping-Pong mode (automatic switch between two  
SRAM Start addresses after each block transfer  
complete)  
The DMA Controller provides these functional  
capabilities:  
• Four DMA Channels  
• DMA Request for each Channel can be Selected  
from any Supported Interrupt Source  
• Register Indirect with Post-Increment Addressing  
mode  
• Debug Support Features  
• Register Indirect without Post-Increment  
Addressing mode  
The peripherals that can utilize DMA are listed in  
Table 8-1.  
TABLE 8-1:  
DMA CHANNEL TO PERIPHERAL ASSOCIATIONS  
DMAxPAD Register  
(Values to Read from  
Peripheral)  
DMAxPAD Register  
(Values to Write to  
Peripheral)  
Peripheral to DMA  
DMAxREQ Register  
IRQSEL<7:0> Bits  
Association  
INT0 – External Interrupt 0  
IC1 – Input Capture 1  
IC2 – Input Capture 2  
IC3 – Input Capture 3  
IC4 – Input Capture 4  
OC1 – Output Compare 1  
00000000  
00000001  
00000101  
00100101  
00100110  
00000010  
0x0144 (IC1BUF)  
0x014C (IC2BUF)  
0x0154 (IC3BUF)  
0x015C (IC4BUF)  
0x0906 (OC1R)  
0x0904 (OC1RS)  
OC2 – Output Compare 2  
OC3 – Output Compare 3  
OC4 – Output Compare 4  
00000110  
00011001  
00011010  
0x0910 (OC2R)  
0x090E (OC2RS)  
0x091A (OC3R)  
0x0918 (OC3RS)  
0x0924 (OC4R)  
0x0922 (OC4RS)  
TMR2 – Timer2  
00000111  
00001000  
00011011  
00011100  
00001011  
00001100  
00011110  
00011111  
00100010  
01000110  
00110111  
01000111  
TMR3 – Timer3  
TMR4 – Timer4  
TMR5 – Timer5  
UART1RX – UART1 Receiver  
UART1TX – UART1 Transmitter  
UART2RX – UART2 Receiver  
UART2TX – UART2 Transmitter  
CAN1 – RX Data Ready  
CAN1 – TX Data Request  
CAN2 – RX Data Ready  
CAN2 – TX Data Request  
0x0226 (U1RXREG)  
0x0224 (U1TXREG)  
0x0236 (U2RXREG)  
0x0234 (U2TXREG)  
0x04C0 (C1RXD)  
0x07C0(C2RXD)  
0x04C2 (C1TXD)  
0x07C2 (C2TXD)  
DS70005258C-page 92  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 8-2:  
DMA CONTROLLER BLOCK DIAGRAM  
SRAM  
Peripheral Indirect Address  
DMA Controller  
DMA  
Ready  
Peripheral 1  
IRQ to DMA  
and Interrupt  
Controller  
DMA  
Channels  
Arbiter  
Modules  
0
1
2
3
CPU DMA  
DMA X-Bus  
CPU Peripheral X-Bus  
CPU DMA  
CPU DMA  
DMA  
Ready  
Peripheral 2  
DMA  
Ready  
Peripheral 3  
Non-DMA  
Peripheral  
CPU  
IRQ to DMA and  
Interrupt Controller  
Modules  
IRQ to DMA and  
Interrupt Controller  
Modules  
Note: CPU and DMA address buses are not shown for clarity.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 93  
dsPIC33EPXXXGS70X/80X FAMILY  
Additional status registers (DMAPWC, DMARQC,  
DMAPPS, DMALCA and DSADRL/H) are common to all  
DMA Controller channels. These status registers pro-  
vide information on write and request collisions, as well  
as on last address and channel access information.  
8.1  
DMA Controller Registers  
Each DMA Controller Channel x (where x = 0 through 3)  
contains the following registers:  
• 16-Bit DMA Channel x Control Register (DMAxCON)  
• 16-Bit DMA Channel x IRQ Select Register  
(DMAxREQ)  
• 32-Bit DMA Channel x Start Address Register A  
(DMAxSTAL/H)  
• 32-Bit DMA Channel x Start Address Register B  
(DMAxSTBL/H)  
• 16-Bit DMA Channel x Peripheral Address Register  
(DMAxPAD)  
The interrupt flags (DMAxIF) are located in an IFSx  
register in the interrupt controller. The corresponding  
interrupt enable control bits (DMAxIE) are located in an  
IECx register in the interrupt controller and the  
corresponding interrupt priority control bits (DMAxIP)  
are located in an IPCx register in the interrupt controller.  
• 14-Bit DMA Channel x Transfer Count Register  
(DMAxCNT)  
REGISTER 8-1:  
DMAxCON: DMA CHANNEL x CONTROL REGISTER  
R/W-0  
CHEN  
R/W-0  
SIZE  
R/W-0  
DIR  
R/W-0  
HALF  
R/W-0  
U-0  
U-0  
U-0  
NULLW  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMODE1  
AMODE0  
MODE1  
MODE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
CHEN: DMA Channel Enable bit  
1= Channel is enabled  
0= Channel is disabled  
SIZE: DMA Data Transfer Size bit  
1= Byte  
0= Word  
DIR: Transfer Direction bit (source/destination bus select)  
1= Reads from RAM address, writes to peripheral address  
0= Reads from peripheral address, writes to RAM address  
HALF: Block Transfer Interrupt Select bit  
1= Initiates interrupt when half of the data has been moved  
0= Initiates interrupt when all of the data has been moved  
NULLW: Null Data Peripheral Write Mode Select bit  
1= Null data write to peripheral in addition to RAM write (DIR bit must also be clear)  
0= Normal operation  
bit 10-6  
bit 5-4  
Unimplemented: Read as ‘0’  
AMODE<1:0>: DMA Channel Addressing Mode Select bits  
11= Reserved  
10= Peripheral Indirect mode  
01= Register Indirect without Post-Increment mode  
00= Register Indirect with Post-Increment mode  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
MODE<1:0>: DMA Channel Operating Mode Select bits  
11= One-Shot, Ping-Pong modes are enabled (one block transfer from/to each DMA buffer)  
10= Continuous, Ping-Pong modes are enabled  
01= One-Shot, Ping-Pong modes are disabled  
00= Continuous, Ping-Pong modes are disabled  
DS70005258C-page 94  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 8-2:  
DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER  
R/S-0  
FORCE(1)  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 8  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQSEL<7:0>  
bit 0  
Legend:  
S = Settable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
FORCE: Force DMA Transfer bit(1)  
1= Forces a single DMA transfer (Manual mode)  
0= Automatic DMA transfer initiation by DMA request  
bit 14-8  
bit 7-0  
Unimplemented: Read as ‘0’  
IRQSEL<7:0>: DMA Peripheral IRQ Number Select bits  
01000111= CAN2 – TX data request  
01000110= CAN1 – TX data request  
00110111= CAN2 – RX data ready  
00100110= IC4 – Input Capture 4  
00100101= IC3 – Input Capture 3  
00100010= CAN1 – RX data ready  
00011111= UART2TX – UART2 transmitter  
00011110= UART2RX – UART2 receiver  
00011100= TMR5 – Timer5  
00011011= TMR4 – Timer4  
00011010= OC4 – Output Compare 4  
00011001= OC3 – Output Compare 3  
00001100= UART1TX – UART1 transmitter  
00001011= UART1RX – UART1 receiver  
00001000= TMR3 – Timer3  
00000111= TMR2 – Timer2  
00000110= OC2 – Output Compare 2  
00000101= IC2 – Input Capture 2  
00000010= OC1 – Output Compare 1  
00000001= IC1 – Input Capture 1  
00000000= INT0 – External Interrupt 0  
Note 1: The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the  
forced DMA transfer is complete or the channel is disabled (CHEN = 0).  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 95  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 8-3:  
DMAxSTAH: DMA CHANNEL x START ADDRESS REGISTER A (HIGH)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
STA<23:16>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
STA<23:16>: DMA Primary Start Address bits (source or destination)  
REGISTER 8-4:  
DMAxSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
STA<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
STA<7:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
STA<15:0>: DMA Primary Start Address bits (source or destination)  
DS70005258C-page 96  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 8-5:  
DMAxSTBH: DMA CHANNEL x START ADDRESS REGISTER B (HIGH)  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
STB<23:16>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
STB<23:16>: DMA Secondary Start Address bits (source or destination)  
REGISTER 8-6:  
DMAxSTBL: DMA CHANNEL x START ADDRESS REGISTER B (LOW)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
STB<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
STB<7:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
STB<15:0>: DMA Secondary Start Address bits (source or destination)  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 97  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 8-7:  
DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PAD<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
PAD<7:0>  
R/W-0  
R/W-0  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PAD<15:0>: DMA Peripheral Address Register bits  
Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the  
DMA channel and should be avoided.  
REGISTER 8-8:  
DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER(1)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
CNT<13:8>(2)  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CNT<7:0>(2)  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-0  
Unimplemented: Read as ‘0’  
CNT<13:0>: DMA Transfer Count Register bits(2)  
Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the  
DMA channel and should be avoided.  
2: The number of DMA transfers = CNT<13:0> + 1.  
DS70005258C-page 98  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 8-9:  
DSADRH: DMA MOST RECENT RAM HIGH ADDRESS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
DSADR<23:16>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits  
REGISTER 8-10: DSADRL: DMA MOST RECENT RAM LOW ADDRESS REGISTER  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
DSADR<15:8>  
bit 15  
bit 8  
bit 0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
DSADR<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 99  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
PWCOL3  
PWCOL2  
PWCOL1  
PWCOL0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
PWCOL3: Channel 3 Peripheral Write Collision Flag bit  
1= Write collision is detected  
0= No write collision is detected  
bit 2  
bit 1  
bit 0  
PWCOL2: Channel 2 Peripheral Write Collision Flag bit  
1= Write collision is detected  
0= No write collision is detected  
PWCOL1: Channel 1 Peripheral Write Collision Flag bit  
1= Write collision is detected  
0= No write collision is detected  
PWCOL0: Channel 0 Peripheral Write Collision Flag bit  
1= Write collision is detected  
0= No write collision is detected  
DS70005258C-page 100  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
RQCOL3  
RQCOL2  
RQCOL1  
RQCOL0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
RQCOL3: Channel 3 Transfer Request Collision Flag bit  
1= User FORCE and interrupt-based request collision are detected  
0= No request collision is detected  
bit 2  
bit 1  
bit 0  
RQCOL2: Channel 2 Transfer Request Collision Flag bit  
1= User FORCE and interrupt-based request collision are detected  
0= No request collision is detected  
RQCOL1: Channel 1 Transfer Request Collision Flag bit  
1= User FORCE and interrupt-based request collision are detected  
0= No request collision is detected  
RQCOL0: Channel 0 Transfer Request Collision Flag bit  
1= User FORCE and interrupt-based request collision are detected  
0= No request collision is detected  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 101  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R-1  
R-1  
R-1  
R-1  
LSTCH<3:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3-0  
Unimplemented: Read as ‘0’  
LSTCH<3:0>: Last DMA Controller Channel Active Status bits  
1111= No DMA transfer has occurred since system Reset  
1110= Reserved  
0100= Reserved  
0011= Last data transfer was handled by Channel 3  
0010= Last data transfer was handled by Channel 2  
0001= Last data transfer was handled by Channel 1  
0000= Last data transfer was handled by Channel 0  
DS70005258C-page 102  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
PPST3  
PPST2  
PPST1  
PPST0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
PPST3: Channel 3 Ping-Pong Mode Status Flag bit  
1= DMA3STB register is selected  
0= DMA3STA register is selected  
bit 2  
bit 1  
bit 0  
PPST2: Channel 2 Ping-Pong Mode Status Flag bit  
1= DMA2STB register is selected  
0= DMA2STA register is selected  
PPST1: Channel 1 Ping-Pong Mode Status Flag bit  
1= DMA1STB register is selected  
0= DMA1STA register is selected  
PPST0: Channel 0 Ping-Pong Mode Status Flag bit  
1= DMA0STB register is selected  
0= DMA0STA register is selected  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 103  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 104  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
The dsPIC33EPXXXGS70X/80X family oscillator  
system provides:  
9.0  
OSCILLATOR CONFIGURATION  
Note 1: This data sheet summarizes the features  
• On-Chip Phase-Locked Loop (PLL) to Boost  
Internal Operating Frequency on Select Internal  
and External Oscillator Sources  
of the dsPIC33EPXXXGS70X/80X family  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to “Oscillator Module”  
(DS70005131) in the “dsPIC33/PIC24  
Family Reference Manual”, which is  
available from the Microchip website  
(www.microchip.com).  
• On-the-Fly Clock Switching between Various  
Clock Sources  
• Doze mode for System Power Savings  
• Fail-Safe Clock Monitor (FSCM) that Detects  
Clock Failure and Permits Safe Application  
Recovery or Shutdown  
• Configuration Bits for Clock Source Selection  
• Auxiliary PLL for ADC and PWM  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
A simplified diagram of the oscillator system is shown  
in Figure 9-1.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 105  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 9-1:  
OSCILLATOR SYSTEM DIAGRAM  
Primary Oscillator (POSC)  
DOZE<2:0>  
OSC1  
POSCCLK  
XT, HS, EC  
S2  
XTPLL, HSPLL,  
ECPLL, FRCPLL  
FPLLO  
(1)  
S3  
S1  
(2)  
S1/S3  
FCY  
PLL  
FVCO  
OSC2  
POSCMD<1:0>  
(2)  
FP  
÷ 2  
FRCCLK  
FRCDIVN  
FRC  
Oscillator  
FOSC  
S7  
REFERENCE CLOCK OUTPUT  
TUN<5:0>  
FRCDIV<2:0>  
FRCDIV16  
FRC  
POSCCLK  
FOSC  
REFCLKO  
÷ 16  
S6  
S0  
S5  
÷ N  
RPn  
RODIV<3:0>  
LPRC  
ROSEL  
LPRC  
Oscillator  
Clock Fail Clock Switch  
Reset  
S0  
NOSC<2:0>  
FNOSC<2:0>  
WDT, PWRT,  
FSCM  
AUXILIARY CLOCK GENERATOR CIRCUIT BLOCK DIAGRAM  
(1)  
FRCCLK  
FVCO  
0
1
1
ACLK  
÷ N  
PWM/ADC  
to LFSR  
1
0
1
0
APLL x 16  
POSCCLK  
GND  
0
SELACLK APSTSCLR<2:0>(4)  
ENAPLL  
ASRCSEL  
FRCSEL  
Note 1: See Figure 9-2 for the source of the FVCO signal.  
2: FP refers to the clock source for all the peripherals, while FCY (or MIPS) refers to the clock source for the CPU.  
Throughout this document, FCY and FP are used interchangeably, except in the case of Doze mode. FP and FCY  
will be different when Doze mode is used in any ratio other than 1:1.  
3: The auxiliary clock postscaler must be configured to divide-by-1 (APSTSCLR<2:0> = 111) for proper operation  
of the PWM and ADC modules.  
DS70005258C-page 106  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Instruction execution speed or device operating  
frequency, FCY, is given by Equation 9-1.  
9.1  
CPU Clocking System  
The dsPIC33EPXXXGS70X/80X family of devices  
provides six system clock options:  
EQUATION 9-1:  
DEVICE OPERATING  
FREQUENCY  
• Fast RC (FRC) Oscillator  
• FRC Oscillator with Phase-Locked Loop  
(FRCPLL)  
FCY = FOSC/2  
• FRC Oscillator with Postscaler  
• Primary (XT, HS or EC) Oscillator  
Figure 9-2 is a block diagram of the PLL module.  
Equation 9-2 provides the relationship between Input  
Frequency (FIN) and Output Frequency (FPLLO).  
Equation 9-3 provides the relationship between Input  
Frequency (FIN) and VCO Frequency (FVCO).  
• Primary Oscillator with PLL (XTPLL, HSPLL,  
ECPLL)  
• Low-Power RC (LPRC) Oscillator  
FIGURE 9-2:  
PLL BLOCK DIAGRAM  
(1)  
(1)  
FPLLO 120 MHz @ +125ºC  
0.8 MHz < FPLLI < 8.0 MHz  
(1)  
(1)  
120 MHZ < FVCO < 340 MHZ  
FPLLO 140 MHz @ +85ºC  
FPLLI  
FIN  
÷ N1  
FVCO  
FOSC  
PFD  
VCO  
÷ N2  
PLLPRE<4:0>  
PLLPOST<1:0>  
÷ M  
PLLDIV<8:0>  
Note 1: This frequency range must be met at all times.  
EQUATION 9-2:  
FPLLO CALCULATION  
PLLDIV<8:0> + 2  
M
FPLLO = FIN   
= FIN   
( ) ((PLLPRE<4:0> + 2) 2(PLLPOST<1:0> + 1)  
)
N1   
Where:  
N1 = PLLPRE<4:0> + 2  
N2 = 2 x (PLLPOST<1:0> + 1)  
M = PLLDIV<8:0> + 2  
EQUATION 9-3:  
FVCO CALCULATION  
PLLDIV<8:0> + 2  
M
N1  
FVCO = FIN   
= FIN   
( )
 
(
(PLLPRE<4:0> + 2)  
)
2016-2018 Microchip Technology Inc.  
DS70005258C-page 107  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 9-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator Mode Oscillator Source POSCMD<1:0> FNOSC<2:0>  
See  
Notes  
Fast RC Oscillator with Divide-by-n (FRCDIVN)  
Fast RC Oscillator with Divide-by-16  
Low-Power RC Oscillator (LPRC)  
Primary Oscillator (HS) with PLL (HSPLL)  
Primary Oscillator (XT) with PLL (XTPLL)  
Primary Oscillator (EC) with PLL (ECPLL)  
Primary Oscillator (HS)  
Internal  
Internal  
Internal  
Primary  
Primary  
Primary  
Primary  
Primary  
Primary  
Internal  
xx  
xx  
xx  
10  
01  
00  
10  
01  
00  
xx  
111  
110  
101  
011  
011  
011  
010  
010  
010  
001  
1, 2  
1
1
1
Primary Oscillator (XT)  
Primary Oscillator (EC)  
1
1
Fast RC Oscillator (FRC) with Divide-by-N and  
PLL (FRCPLL)  
Fast RC Oscillator (FRC)  
Internal  
xx  
000  
1
Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.  
2: This is the default Oscillator mode for an unprogrammed (erased) device.  
9.2  
Auxiliary Clock Generation  
9.3  
Reference Clock Generation  
The auxiliary clock generation is used for peripherals  
that need to operate at a frequency unrelated to the  
system clock, such as PWM or ADC.  
The reference clock output logic provides the user with  
the ability to output a clock signal based on the system  
clock or the crystal oscillator on a device pin. The user  
application can specify a wide range of clock scaling  
prior to outputting the reference clock.  
The primary oscillator and internal FRC oscillator  
sources can be used with an Auxiliary PLL (APLL) to  
obtain the auxiliary clock. The Auxiliary PLL has a fixed  
16x multiplication factor.  
9.4  
Oscillator Resources  
The auxiliary clock has the following configuration  
restrictions:  
Many useful resources are provided on the main prod-  
uct page of the Microchip website for the devices listed  
in this data sheet. This product page contains the latest  
updates and additional information.  
• For proper PWM operation, auxiliary clock  
generation must be configured for 120 MHz (see  
Parameter OS56 in Section 30.0 “Electrical Char-  
acteristics”). If a slower frequency is desired, the  
PWM Input Clock Prescaler (Divider) Select bits  
(PCLKDIV<2:0>) should be used.  
9.4.1  
KEY RESOURCES  
“Oscillator Module” (DS70005131) in the  
“dsPIC33/PIC24 Family Reference Manual”  
To achieve 1.04 ns PWM resolution, the auxiliary  
clock must use the 16x Auxiliary PLL (APLL). All  
other clock sources will have a minimum PWM  
resolution of 8 ns.  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• If the primary PLL is used as a source for the  
auxiliary clock, the primary PLL should be config-  
ured up to a maximum operation of 30 MIPS or  
less.  
• All Related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
• Development Tools  
DS70005258C-page 108  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
9.5  
Oscillator Control Registers  
REGISTER 9-1:  
OSCCON: OSCILLATOR CONTROL REGISTER(1)  
U-0  
R-0  
R-0  
R-0  
U-0  
R/W-y  
NOSC2(2)  
R/W-y  
NOSC1(2)  
R/W-y  
NOSC0(2)  
COSC2  
COSC1  
COSC0  
bit 15  
bit 8  
R/W-0  
CLKLOCK  
bit 7  
R/W-0  
R-0  
U-0  
R/W-0  
CF(3)  
U-0  
U-0  
R/W-0  
IOLOCK  
LOCK  
OSWEN  
bit 0  
Legend:  
y = Value set from Configuration bits on POR  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC<2:0>: Current Oscillator Selection bits (read-only)  
111= Fast RC Oscillator (FRC) with Divide-by-n  
110= Fast RC Oscillator (FRC) with Divide-by-16  
101= Low-Power RC Oscillator (LPRC)  
100= Reserved  
011= Primary Oscillator (XT, HS, EC) with PLL  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
NOSC<2:0>: New Oscillator Selection bits(2)  
111= Fast RC Oscillator (FRC) with Divide-by-n  
110= Fast RC Oscillator (FRC) with Divide-by-16  
101= Low-Power RC Oscillator (LPRC)  
100= Reserved  
011= Primary Oscillator (XT, HS, EC) with PLL  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 7  
CLKLOCK: Clock Lock Enable bit  
1= If (FCKSM0 = 1), then clock and PLL configurations are locked; if (FCKSM0 = 0), then clock and  
PLL configurations may be modified  
0= Clock and PLL selections are not locked, configurations may be modified  
bit 6  
bit 5  
IOLOCK: I/O Lock Enable bit  
1= I/O lock is active  
0= I/O lock is not active  
LOCK: PLL Lock Status bit (read-only)  
1= Indicates that PLL is in lock or PLL start-up timer is satisfied  
0= Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled  
Note 1: Writes to this register require an unlock sequence.  
2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not  
permitted. This applies to clock switches in either direction. In these instances, the application must switch  
to FRC mode as a transitional clock source between the two PLL modes.  
3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an  
actual oscillator failure and will trigger an oscillator failure trap.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 109  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 9-1:  
OSCCON: OSCILLATOR CONTROL REGISTER(1) (CONTINUED)  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CF: Clock Fail Detect bit(3)  
1= FSCM has detected a clock failure  
0= FSCM has not detected a clock failure  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
OSWEN: Oscillator Switch Enable bit  
1= Requests oscillator switch to the selection specified by the NOSC<2:0> bits  
0= Oscillator switch is complete  
Note 1: Writes to this register require an unlock sequence.  
2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not  
permitted. This applies to clock switches in either direction. In these instances, the application must switch  
to FRC mode as a transitional clock source between the two PLL modes.  
3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an  
actual oscillator failure and will trigger an oscillator failure trap.  
DS70005258C-page 110  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 9-2:  
CLKDIV: CLOCK DIVISOR REGISTER  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ROI  
bit 15  
DOZE2(1)  
DOZE1(1)  
DOZE0(1)  
DOZEN(2,3)  
FRCDIV2  
FRCDIV1  
FRCDIV0  
bit 8  
R/W-0  
R/W-1  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PLLPOST1 PLLPOST0  
bit 7  
PLLPRE4  
PLLPRE3  
PLLPRE2  
PLLPRE1  
PLLPRE0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts will clear the DOZEN bit and the processor clock, and the peripheral clock ratio is set to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12  
DOZE<2:0>: Processor Clock Reduction Select bits(1)  
111= FCY divided by 128  
110= FCY divided by 64  
101= FCY divided by 32  
100= FCY divided by 16  
011= FCY divided by 8 (default)  
010= FCY divided by 4  
001= FCY divided by 2  
000= FCY divided by 1  
bit 11  
DOZEN: Doze Mode Enable bit(2,3)  
1= DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks  
0= Processor clock and peripheral clock ratio is forced to 1:1  
bit 10-8  
FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits  
111= FRC divided by 256  
110= FRC divided by 64  
101= FRC divided by 32  
100= FRC divided by 16  
011= FRC divided by 8  
010= FRC divided by 4  
001= FRC divided by 2  
000= FRC divided by 1 (default)  
bit 7-6  
bit 5  
PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as ‘N2’, PLL postscaler)  
11= Output divided by 8  
10= Reserved  
01= Output divided by 4 (default)  
00= Output divided by 2  
Unimplemented: Read as ‘0’  
Note 1: The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to  
DOZE<2:0> are ignored.  
2: This bit is cleared when the ROI bit is set and an interrupt occurs.  
3: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to  
set the DOZEN bit is ignored.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 111  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 9-2:  
CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)  
bit 4-0  
PLLPRE<4:0>: PLL Phase Detector Input Divider Select bits (also denoted as ‘N1’, PLL prescaler)  
11111= Input divided by 33  
00001= Input divided by 3  
00000= Input divided by 2 (default)  
Note 1: The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to  
DOZE<2:0> are ignored.  
2: This bit is cleared when the ROI bit is set and an interrupt occurs.  
3: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to  
set the DOZEN bit is ignored.  
REGISTER 9-3:  
PLLFBD: PLL FEEDBACK DIVISOR REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PLLDIV8  
bit 15  
bit 8  
R/W-0  
bit 7  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
PLLDIV<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8-0  
Unimplemented: Read as ‘0’  
PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as ‘M’, PLL multiplier)  
111111111= 513  
000110000= 50 (default)  
000000010= 4  
000000001= 3  
000000000= 2  
DS70005258C-page 112  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 9-4:  
OSCTUN: FRC OSCILLATOR TUNING REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TUN<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: FRC Oscillator Tuning bits  
011111= Maximum frequency deviation of 1.457% (7.477 MHz)  
011110= Center frequency + 1.41% (7.474 MHz)  
000001= Center frequency + 0.047% (7.373 MHz)  
000000= Center frequency (7.37 MHz nominal)  
111111= Center frequency – 0.047% (7.367 MHz)  
100001= Center frequency – 1.457% (7.263 MHz)  
100000= Minimum frequency deviation of -1.5% (7.259 MHz)  
Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the  
FRC frequency over a wide range of temperatures. The tuning step-size is an approximation and is neither  
characterized nor tested.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 113  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 9-5:  
ACLKCON: AUXILIARY CLOCK DIVISOR CONTROL REGISTER  
R/W-0  
ENAPLL  
bit 15  
R-0  
R/W-1  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
APLLCK  
SELACLK  
APSTSCLR2 APSTSCLR1 APSTSCLR0  
bit 8  
R/W-0  
ASRCSEL  
bit 7  
R/W-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRCSEL  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
ENAPLL: Auxiliary PLL Enable bit  
1= APLL is enabled  
0= APLL is disabled  
APLLCK: APLL Locked Status bit (read-only)  
1= Indicates that Auxiliary PLL is in lock  
0= Indicates that Auxiliary PLL is not in lock  
SELACLK: Select Auxiliary Clock Source for Auxiliary Clock Divider bit  
1= Auxiliary oscillators provide the source clock for the auxiliary clock divider  
0= Primary PLL (FVCO) provides the source clock for the auxiliary clock divider  
bit 12-11  
bit 10-8  
Unimplemented: Read as ‘0’  
APSTSCLR<2:0>: Auxiliary Clock Output Divider bits  
111= Divided by 1  
110= Divided by 2  
101= Divided by 4  
100= Divided by 8  
011= Divided by 16  
010= Divided by 32  
001= Divided by 64  
000= Divided by 256  
bit 7  
ASRCSEL: Select Reference Clock Source for Auxiliary Clock bit  
1= Primary oscillator is the clock source  
0= No clock input is selected  
bit 6  
FRCSEL: Select Reference Clock Source for Auxiliary PLL bit  
1= Selects the FRC clock for Auxiliary PLL  
0= Input clock source is determined by the ASRCSEL bit setting  
bit 5-0  
Unimplemented: Read as ‘0’  
DS70005258C-page 114  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 9-6:  
REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER  
R/W-0  
ROON  
bit 15  
U-0  
R/W-0  
R/W-0  
R/W-0  
RODIV3(1)  
R/W-0  
RODIV2(1)  
R/W-0  
RODIV1(1)  
R/W-0  
RODIV0(1)  
ROSSLP  
ROSEL  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROON: Reference Oscillator Output Enable bit  
1= Reference oscillator output is enabled on the RPn pin(2)  
0= Reference oscillator output is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ROSSLP: Reference Oscillator Run in Sleep bit  
1= Reference oscillator output continues to run in Sleep  
0= Reference oscillator output is disabled in Sleep  
bit 12  
ROSEL: Reference Oscillator Source Select bit  
1= Oscillator crystal is used as the reference clock  
0= System clock is used as the reference clock  
bit 11-8  
RODIV<3:0>: Reference Oscillator Divider bits(1)  
1111= Reference clock divided by 32,768  
1110= Reference clock divided by 16,384  
1101= Reference clock divided by 8,192  
1100= Reference clock divided by 4,096  
1011= Reference clock divided by 2,048  
1010= Reference clock divided by 1,024  
1001= Reference clock divided by 512  
1000= Reference clock divided by 256  
0111= Reference clock divided by 128  
0110= Reference clock divided by 64  
0101= Reference clock divided by 32  
0100= Reference clock divided by 16  
0011= Reference clock divided by 8  
0010= Reference clock divided by 4  
0001= Reference clock divided by 2  
0000= Reference clock  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: The reference oscillator output must be disabled (ROON = 0) before writing to these bits.  
2: This pin is remappable. See Section 11.6 “Peripheral Pin Select (PPS)” for more information.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 115  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 9-7:  
LFSR: LINEAR FEEDBACK SHIFT REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
LFSR<14:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LFSR<7:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
LFSR<14:0>: Pseudorandom Data bits  
bit 14-0  
DS70005258C-page 116  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
10.1 Clock Frequency and Clock  
Switching  
10.0 POWER-SAVING FEATURES  
Note 1: This data sheet summarizes the  
features of the dsPIC33EPXXXGS70X/  
80X family of devices. It is not intended  
to be a comprehensive reference source.  
To complement the information in this data  
sheet, refer to “Watchdog Timer and  
Power-Saving Modes” (DS70615) in the  
dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
website (www.microchip.com).  
The dsPIC33EPXXXGS70X/80X family devices allow a  
wide range of clock frequencies to be selected under  
application control. If the system clock configuration is not  
locked, users can choose low-power or high-precision  
oscillators by simply changing the NOSCx bits  
(OSCCON<10:8>). The process of changing a system  
clock during operation, as well as limitations to the  
process, are discussed in more detail in Section 9.0  
“Oscillator Configuration”.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
10.2 Instruction-Based Power-Saving  
Modes  
The dsPIC33EPXXXGS70X/80X family devices have  
two special power-saving modes that are entered  
through the execution of a special PWRSAV instruc-  
tion. Sleep mode stops clock operation and halts all  
code execution. Idle mode halts the CPU and code  
execution, but allows peripheral modules to continue  
operation. The assembler syntax of the PWRSAV  
instruction is shown in Example 10-1.  
The dsPIC33EPXXXGS70X/80X family devices  
provide the ability to manage power consumption by  
selectively managing clocking to the CPU and the  
peripherals. In general, a lower clock frequency and  
a reduction in the number of peripherals being  
clocked constitutes lower consumed power.  
Note: SLEEP_MODE and IDLE_MODE are con-  
stants defined in the assembler include  
file for the selected device.  
dsPIC33EPXXXGS70X/80X family devices can  
manage power consumption in four ways:  
• Clock Frequency  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset. When  
the device exits these modes, it is said to “wake-up”.  
• Instruction-Based Sleep and Idle modes  
• Software-Controlled Doze mode  
• Selective Peripheral Control in Software  
Combinations of these methods can be used to  
selectively tailor an application’s power consumption  
while still maintaining critical application features, such  
as timing-sensitive communications.  
EXAMPLE 10-1:  
PWRSAV INSTRUCTION SYNTAX  
PWRSAV #SLEEP_MODE  
PWRSAV #IDLE_MODE  
; Put the device into Sleep mode  
; Put the device into Idle mode  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 117  
dsPIC33EPXXXGS70X/80X FAMILY  
10.2.1  
SLEEP MODE  
10.2.2  
IDLE MODE  
The following occurs in Sleep mode:  
The following occurs in Idle mode:  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
• The CPU stops executing instructions.  
• The WDT is automatically cleared.  
• The device current consumption is reduced to a  
minimum, provided that no I/O pin is sourcing  
current.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 10.4  
“Peripheral Module Disable”).  
• The Fail-Safe Clock Monitor does not operate,  
since the system clock source is disabled.  
• If the WDT or FSCM is enabled, the LPRC also  
remains active.  
• The LPRC clock continues to run in Sleep mode if  
the WDT is enabled.  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode.  
The device wakes from Idle mode on any of these  
events:  
• Some device features or peripherals can continue  
to operate. This includes items such as the Input  
Change Notification on the I/O ports or peripherals  
that use an external clock input.  
• Any interrupt that is individually enabled  
• Any device Reset  
• A WDT time-out  
On wake-up from Idle mode, the clock is reapplied to  
the CPU and instruction execution will begin (two to  
four clock cycles later), starting with the instruction  
following the PWRSAVinstruction or the first instruction  
in the ISR.  
• Any peripheral that requires the system clock  
source for its operation is disabled.  
The device wakes up from Sleep mode on any of the  
these events:  
• Any interrupt source that is individually enabled  
• Any form of device Reset  
All peripherals also have the option to discontinue  
operation when Idle mode is entered to allow for  
increased power savings. This option is selectable in  
the control register of each peripheral (for example, the  
TSIDL bit in the Timer1 Control register (T1CON<13>).  
• A WDT time-out  
On wake-up from Sleep mode, the processor restarts  
with the same clock source that was active when Sleep  
mode was entered.  
10.2.3  
INTERRUPTS COINCIDENT WITH  
POWER SAVE INSTRUCTIONS  
For optimal power savings, the internal regulator and  
the Flash regulator can be configured to go into stand-  
by when Sleep mode is entered by clearing the VREGS  
(RCON<8>) and VREGSF (RCON<11>) bits (default  
configuration).  
Any interrupt that coincides with the execution of a  
PWRSAVinstruction is held off until entry into Sleep or  
Idle mode has completed. The device then wakes up  
from Sleep or Idle mode.  
If the application requires a faster wake-up time, and  
can accept higher current requirements, the VREGS  
(RCON<8>) and VREGSF (RCON<11>) bits can be set  
to keep the internal regulator and the Flash regulator  
active during Sleep mode.  
DS70005258C-page 118  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
10.3 Doze Mode  
10.4 Peripheral Module Disable  
The preferred strategies for reducing power consump-  
tion are changing clock speed and invoking one of the  
power-saving modes. In some circumstances, this  
cannot be practical. For example, it may be necessary  
for an application to maintain uninterrupted synchro-  
nous communication, even while it is doing nothing  
else. Reducing system clock speed can introduce  
communication errors, while using a power-saving  
mode can stop communications completely.  
The Peripheral Module Disable (PMD) registers  
provide a method to disable a peripheral module by  
stopping all clock sources supplied to that module.  
When a peripheral is disabled using the appropriate  
PMD control bit, the peripheral is in a minimum power  
consumption state. The control and status registers  
associated with the peripheral are also disabled, so  
writes to those registers do not have any effect and  
read values are invalid.  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock  
continues to operate from the same source and at the  
same speed. Peripheral modules continue to be  
clocked at the same speed, while the CPU clock speed  
is reduced. Synchronization between the two clock  
domains is maintained, allowing the peripherals to  
access the SFRs while the CPU executes code at a  
slower rate.  
A peripheral module is enabled only if both the associ-  
ated bit in the PMD register is cleared and the peripheral  
is supported by the specific dsPIC® DSC variant. If the  
peripheral is present in the device, it is enabled in the  
PMD register by default.  
Note:  
If a PMD bit is set, the corresponding  
module is disabled after a delay of one  
instruction cycle. Similarly, if a PMD bit is  
cleared, the corresponding module is  
enabled after a delay of one instruction  
cycle (assuming the module control regis-  
ters are already configured to enable  
module operation).  
Doze mode is enabled by setting the DOZEN bit  
(CLKDIV<11>). The ratio between peripheral and core  
clock speed is determined by the DOZE<2:0> bits  
(CLKDIV<14:12>). There are eight possible configu-  
rations, from 1:1 to 1:128, with 1:1 being the default  
setting.  
10.5 Power-Saving Resources  
Many useful resources are provided on the main prod-  
uct page of the Microchip website for the devices listed  
in this data sheet. This product page contains the latest  
updates and additional information.  
Programs can use Doze mode to selectively reduce  
power consumption in event-driven applications. This  
allows clock-sensitive functions, such as synchronous  
communications, to continue without interruption while  
the CPU Idles, waiting for something to invoke an inter-  
rupt routine. An automatic return to full-speed CPU  
operation on interrupts can be enabled by setting the  
ROI bit (CLKDIV<15>). By default, interrupt events  
have no effect on Doze mode operation.  
10.5.1  
KEY RESOURCES  
“Watchdog Timer and Power-Saving Modes”  
(DS70615) in the “dsPIC33/PIC24 Family  
Reference Manual”  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
• Development Tools  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 119  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1  
R/W-0  
T5MD  
R/W-0  
T4MD  
R/W-0  
T3MD  
R/W-0  
T2MD  
R/W-0  
T1MD  
U-0  
R/W-0  
U-0  
PWMMD  
bit 15  
bit 8  
R/W-0  
R/W-0  
U2MD  
R/W-0  
U1MD  
R/W-0  
R/W-0  
R/W-0  
C2MD  
R/W-0  
C1MD  
R/W-0  
I2C1MD  
SPI2MD  
SPI1MD  
ADCMD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
T5MD: Timer5 Module Disable bit  
1= Timer5 module is disabled  
0= Timer5 module is enabled  
T4MD: Timer4 Module Disable bit  
1= Timer4 module is disabled  
0= Timer4 module is enabled  
T3MD: Timer3 Module Disable bit  
1= Timer3 module is disabled  
0= Timer3 module is enabled  
T2MD: Timer2 Module Disable bit  
1= Timer2 module is disabled  
0= Timer2 module is enabled  
T1MD: Timer1 Module Disable bit  
1= Timer1 module is disabled  
0= Timer1 module is enabled  
bit 10  
bit 9  
Unimplemented: Read as ‘0’  
PWMMD: PWM Module Disable bit  
1= PWM module is disabled  
0= PWM module is enabled  
bit 8  
bit 7  
Unimplemented: Read as ‘0’  
I2C1MD: I2C1 Module Disable bit  
1= I2C1 module is disabled  
0= I2C1 module is enabled  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
U2MD: UART2 Module Disable bit  
1= UART2 module is disabled  
0= UART2 module is enabled  
U1MD: UART1 Module Disable bit  
1= UART1 module is disabled  
0= UART1 module is enabled  
SPI2MD: SPI2 Module Disable bit  
1= SPI2 module is disabled  
0= SPI2 module is enabled  
SPI1MD: SPI1 Module Disable bit  
1= SPI1 module is disabled  
0= SPI1 module is enabled  
C2MD: CAN2 Module Disable bit  
1= CAN2 module is disabled  
0= CAN2 module is enabled  
DS70005258C-page 120  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)  
bit 1  
C1MD: CAN1 Module Disable bit  
1= CAN1 module is disabled  
0= CAN1 module is enabled  
bit 0  
ADCMD: ADC Module Disable bit  
1= ADC module is disabled  
0= ADC module is enabled  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 121  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IC4MD  
IC3MD  
IC2MD  
IC1MD  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OC4MD  
OC3MD  
OC2MD  
OC1MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11  
Unimplemented: Read as ‘0’  
IC4MD: Input Capture 4 Module Disable bit  
1= Input Capture 4 module is disabled  
0= Input Capture 4 module is enabled  
bit 10  
bit 9  
bit 8  
IC3MD: Input Capture 3 Module Disable bit  
1= Input Capture 3 module is disabled  
0= Input Capture 3 module is enabled  
IC2MD: Input Capture 2 Module Disable bit  
1= Input Capture 2 module is disabled  
0= Input Capture 2 module is enabled  
IC1MD: Input Capture 1 Module Disable bit  
1= Input Capture 1 module is disabled  
0= Input Capture 1 module is enabled  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
OC4MD: Output Compare 4 Module Disable bit  
1= Output Compare 4 module is disabled  
0= Output Compare 4 module is enabled  
bit 2  
bit 1  
bit 0  
OC3MD: Output Compare 3 Module Disable bit  
1= Output Compare 3 module is disabled  
0= Output Compare 3 module is enabled  
OC2MD: Output Compare 2 Module Disable bit  
1= Output Compare 2 module is disabled  
0= Output Compare 2 module is enabled  
OC1MD: Output Compare 1 Module Disable bit  
1= Output Compare 1 module is disabled  
0= Output Compare 1 module is enabled  
DS70005258C-page 122  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
CMPMD  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
I2C2MD  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10  
Unimplemented: Read as ‘0’  
CMPMD: Comparator Module Disable bit  
1= Comparator module is disabled  
0= Comparator module is enabled  
bit 9-2  
bit 1  
Unimplemented: Read as ‘0’  
I2C2MD: I2C2 Module Disable bit  
1= I2C2 module is disabled  
0= I2C2 module is enabled  
bit 0  
Unimplemented: Read as ‘0’  
REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
REFOMD  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
REFOMD: Reference Clock Module Disable bit  
1= Reference clock module is disabled  
0= Reference clock module is enabled  
bit 2-0  
Unimplemented: Read as ‘0’  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 123  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PWM8MD  
PWM7MD  
PWM6MD  
PWM5MD  
PWM4MD  
PWM3MD  
PWM2MD  
PWM1MD  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SPI3MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
PWM8MD: PWM8 Module Disable bit  
1= PWM8 module is disabled  
0= PWM8 module is enabled  
PWM7MD: PWM7 Module Disable bit  
1= PWM7 module is disabled  
0= PWM7 module is enabled  
PWM6MD: PWM6 Module Disable bit  
1= PWM6 module is disabled  
0= PWM6 module is enabled  
PWM5MD: PWM5 Module Disable bit  
1= PWM5 module is disabled  
0= PWM5 module is enabled  
PWM4MD: PWM4 Module Disable bit  
1= PWM4 module is disabled  
0= PWM4 module is enabled  
PWM3MD: PWM3 Module Disable bit  
1= PWM3 module is disabled  
0= PWM3 module is enabled  
PWM2MD: PWM2 Module Disable bit  
1= PWM2 module is disabled  
0= PWM2 module is enabled  
bit 8  
PWM1MD: PWM1 Module Disable bit  
1= PWM1 module is disabled  
0= PWM1 module is enabled  
bit 7-1  
bit 0  
Unimplemented: Read as ‘0’  
SPI3MD: SPI3 Module Disable bit  
1= SPI3 module is disabled  
0= SPI3 module is enabled  
DS70005258C-page 124  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CMP4MD  
CMP3MD  
CMP2MD  
CMP1MD  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
U-0  
DMAMD  
PTGMD  
PGA1MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11  
Unimplemented: Read as ‘0’  
CMP4MD: CMP4 Module Disable bit  
1= CMP4 module is disabled  
0= CMP4 module is enabled  
bit 10  
bit 9  
bit 8  
CMP3MD: CMP3 Module Disable bit  
1= CMP3 module is disabled  
0= CMP3 module is enabled  
CMP2MD: CMP2 Module Disable bit  
1= CMP2 module is disabled  
0= CMP2 module is enabled  
CMP1MD: CMP1 Module Disable bit  
1= CMP1 module is disabled  
0= CMP1 module is enabled  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
DMAMD: DMA Module Disable bit  
1= DMA module is disabled  
0= DMA module is enabled  
bit 3  
PTGMD: PTG Module Disable bit  
1= PTG module is disabled  
0= PTG module is enabled  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
PGA1MD: PGA1 Module Disable bit  
1= PGA1 module is disabled  
0= PGA1 module is enabled  
bit 0  
Unimplemented: Read as ‘0’  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 125  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 10-7: PMD8: PERIPHERAL MODULE DISABLE CONTROL REGISTER 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
PGA2MD  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
CLC4MD  
CLC3MD  
CLC2MD  
CLC1MD  
CCSMD  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10  
Unimplemented: Read as ‘0’  
PGA2MD: PGA2 Module Disable bit  
1= PGA2 module is disabled  
0= PGA2 module is enabled  
bit 9-6  
bit 5  
Unimplemented: Read as ‘0’  
CLC4MD: CLC4 Module Disable bit  
1= CLC4 module is disabled  
0= CLC4 module is enabled  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
CLC3MD: CLC3 Module Disable bit  
1= CLC3 module is disabled  
0= CLC3 module is enabled  
CLC2MD: CLC2 Module Disable bit  
1= CLC2 module is disabled  
0= CLC2 module is enabled  
CLC1MD: CLC1 Module Disable bit  
1= CLC1 module is disabled  
0= CLC1 module is enabled  
CCSMD: Constant-Current Source Module Disable bit  
1= Constant-current source module is disabled  
0= Constant-current source module is enabled  
Unimplemented: Read as ‘0’  
DS70005258C-page 126  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
which a port’s digital output can drive the input of a  
peripheral that shares the same pin. Figure 11-1 illus-  
11.0 I/O PORTS  
Note 1: This data sheet summarizes the features  
of the dsPIC33EPXXXGS70X/80X family  
of devices. It is not intended to be a  
comprehensive reference source. To com-  
plement the information in this data sheet,  
refer to “I/O Ports” (DS70000598) in the  
“dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
website (www.microchip.com).  
trates how ports are shared with other peripherals and  
the associated I/O pin to which they are connected.  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as a  
general purpose output pin is disabled. The I/O pin can  
be read, but the output driver for the parallel port bit is  
disabled. If a peripheral is enabled, but the peripheral is  
not actively driving a pin, that pin can be driven by a port.  
All port pins have eight registers directly associated with  
their operation as digital I/Os. The Data Direction register  
(TRISx) determines whether the pin is an input or an out-  
put. If the data direction bit is a ‘1’, then the pin is an input.  
All port pins are defined as inputs after a Reset. Reads  
from the latch (LATx), read the latch. Writes to the latch,  
write the latch. Reads from the port (PORTx), read the  
port pins, while writes to the port pins, write the latch.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Many of the device pins are shared among the periph-  
erals and the Parallel I/O ports. All I/O input ports feature  
Schmitt Trigger inputs for improved noise immunity.  
Any bit and its associated data and control registers  
that are not valid for a particular device are disabled.  
This means the corresponding LATx and TRISx  
registers, and the port pin are read as zeros. Table 11-1  
through Table 11-5 show ANSELx bits’ availability for  
device variants.  
11.1 Parallel I/O (PIO) Ports  
Generally, a Parallel I/O port that shares a pin with a  
peripheral is subservient to the peripheral. The  
peripheral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pin. The logic also prevents “loop through”, in  
When a pin is shared with another peripheral or func-  
tion that is defined as an input only, it is nevertheless  
regarded as a dedicated port because there is no  
other competing source of outputs.  
FIGURE 11-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Peripheral Module  
Output Multiplexers  
Peripheral Input Data  
Peripheral Module Enable  
Peripheral Output Enable  
Peripheral Output Data  
I/O  
1
0
Output Enable  
Output Data  
1
0
PIO Module  
Read TRISx  
Data Bus  
D
Q
I/O Pin  
WR TRISx  
CK  
TRISx Latch  
D
Q
WR LATx +  
WR PORTx  
CK  
Data Latch  
Read LATx  
Input Data  
Read PORTx  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 127  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 11-1: PORTA PIN AND ANSELA AVAILABILITY  
PORTA I/O Pins  
RA15 RA14 RA13 RA12 RA11 RA10 RA9 RA8 RA7 RA6 RA5 RA4 RA3 RA2 RA1 RA0  
Device  
dsPIC33EPXXXGSX08  
dsPIC33EPXXXGSX06  
dsPIC33EPXXXGSX05  
dsPIC33EPXXXGSX04  
dsPIC33EPXXXGS702  
ANSELA Bit Present  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
TABLE 11-2: PORTB PIN AND ANSELB AVAILABILITY  
PORTB I/O Pins  
RB15 RB14 RB13 RB12 RB11 RB10 RB9 RB8 RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0  
Device  
dsPIC33EPXXXGSX08  
dsPIC33EPXXXGSX06  
dsPIC33EPXXXGSX05  
dsPIC33EPXXXGSX04  
dsPIC33EPXXXGS702  
ANSELB Bit Present  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
TABLE 11-3: PORTC PIN AND ANSELC AVAILABILITY  
PORTC I/O Pins  
RC15 RC14 RC13 RC12 RC11 RC10 RC9 RC8 RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0  
Device  
dsPIC33EPXXXGSX08  
dsPIC33EPXXXGSX06  
dsPIC33EPXXXGSX05  
dsPIC33EPXXXGSX04  
dsPIC33EPXXXGS702  
ANSELC Bit Present  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
TABLE 11-4: PORTD PIN AND ANSELD AVAILABILITY  
PORTD I/O Pins  
RD15 RD14 RD13 RD12 RD11 RD10 RD9 RD8 RD7 RD6 RD5 RD4 RD3 RD2 RD1 RD0  
Device  
dsPIC33EPXXXGSX08  
dsPIC33EPXXXGSX06  
dsPIC33EPXXXGSX05  
dsPIC33EPXXXGSX04  
dsPIC33EPXXXGS702  
ANSELD Bit Present  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
TABLE 11-5: PORTE PIN AND ANSELE AVAILABILITY  
PORTE I/O Pins  
RE15 RE14 RE13 RE12 RE11 RE10 RE9 RE8 RE7 RE6 RE5 RE4 RE3 RE2 RE1 RE0  
Device  
dsPIC33EPXXXGSX08  
dsPIC33EPXXXGSX06  
dsPIC33EPXXXGSX05  
dsPIC33EPXXXGSX04  
dsPIC33EPXXXGS702  
ANSELE Bit Present  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
DS70005258C-page 128  
2016-2018 Microchip Technology Inc.  
11.2 I/O Port Control Register Maps  
TABLE 11-6: PORTA REGISTER MAP(1)  
File  
Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA  
TRISA<4:0>  
RA<4:0>  
PORTA  
LATA  
LATA<4:0>  
ODCA<4:0>  
CNIEA<4:0>  
CNPUA<4:0>  
CNPDA<4:0>  
ODCA  
CNENA  
CNPUA  
CNPDA  
ANSELA  
ANSA<2:0>  
Legend: — = unimplemented, read as ‘0’.  
Note 1: Refer to Table 11-1 for bit availability on each pin count variant.  
TABLE 11-7: PORTB REGISTER MAP(1)  
File  
Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
TRISB<15:11>  
RB<15:11>  
TRISB<9:0>  
RB<9:0>  
PORTB  
LATB  
LATB<15:11>  
ODCB<15:11>  
CNIEB<15:11>  
CNPUB<15:11>  
CNPDB<15:11>  
LATB<9:0>  
ODCB<9:0>  
CNIEB<9:0>  
ODCB  
CNENB  
CNPUB  
CNPDB  
ANSELB  
CNPUB<9:0>  
CNPDB<9:0>  
ANSB9  
ANSB<7:5>  
ANSB<3:0>  
Legend: — = unimplemented, read as ‘0’.  
Note 1: Refer to Table 11-2 for bit availability on each pin count variant.  
TABLE 11-8: PORTC REGISTER MAP(1)  
File  
Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISC  
TRISC<15:12>  
RC<15:12>  
TRISC<10:0>  
RC<10:0>  
PORTC  
LATC  
LATC<15:12>  
ODCC<15:12>  
CNIEC<15:12>  
CNPUC<15:12>  
CNPDC<15:12>  
LATC<10:0>  
ODCC<10:0>  
CNIEC<10:0>  
CNPUC<10:0>  
CNPDC<10:0>  
ANSC<6:4>  
ODCC  
CNENC  
CNPUC  
CNPDC  
ANSELC  
ANSC12  
ANSC<10:9>  
ANSC<2:1>  
Legend: — = unimplemented, read as ‘0’.  
Note 1: Refer to Table 11-3 for bit availability on each pin count variant.  
TABLE 11-9: PORTD REGISTER MAP(1)  
File  
Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISD  
TRISD<15:0>  
RD<15:0>  
PORTD  
LATD  
LATD<15:0>  
ODCD<15:0>  
CNIED<15:0>  
CNPUD<15:0>  
CNPDD<15:0>  
ANSD<8:7>  
ODCD  
CNEND  
CNPUD  
CNPDD  
ANSELD  
ANSD13  
ANSD5  
ANSD2  
Legend: — = unimplemented, read as ‘0’.  
Note 1: Refer to Table 11-4 for bit availability on each pin count variant.  
TABLE 11-10: PORTE REGISTER MAP(1)  
File  
Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISE  
TRISE<15:0>  
RE<15:0>  
PORTE  
LATE  
LATE<15:0>  
ODCE<15:0>  
CNIEE<15:0>  
CNPUE<15:0>  
CNPDE<15:0>  
ODCE  
CNENE  
CNPUE  
CNPDE  
ANSELE  
Legend: — = unimplemented, read as ‘0’.  
Note 1: Refer to Table 11-5 for bit availability on each pin count variant.  
dsPIC33EPXXXGS70X/80X FAMILY  
11.2.1  
OPEN-DRAIN CONFIGURATION  
11.3.1  
I/O PORT WRITE/READ TIMING  
In addition to the PORTx, LATx and TRISx registers  
for data control, port pins can also be individually  
configured for either digital or open-drain output. This  
is controlled by the Open-Drain Control x register,  
ODCx, associated with each port. Setting any of the  
bits configures the corresponding pin to act as an  
open-drain output.  
One instruction cycle is required between a port  
direction change or port write operation and a read  
operation of the same port. Typically, this instruction  
would be a NOP, as shown in Example 11-1.  
11.4 Input Change Notification (ICN)  
The Input Change Notification function of the I/O ports  
allows devices to generate interrupt requests to the  
processor in response to a Change-of-State (COS) on  
selected input pins. This feature can detect input  
Change-of-States, even in Sleep mode, when the  
clocks are disabled. Every I/O port pin can be selected  
(enabled) for generating an interrupt request on a  
Change-of-State.  
The open-drain feature allows the generation of out-  
puts other than VDD by using external pull-up resistors.  
The maximum open-drain voltage allowed on any pin  
is the same as the maximum VIH specification for that  
particular pin. See the “Pin Diagrams” section for the  
available 5V tolerant pins and Table 30-11 for the  
maximum VIH specification for each pin.  
Three control registers are associated with the ICN  
functionality of each I/O port. The CNENx registers  
contain the ICN interrupt enable control bits for each of  
the input pins. Setting any of these bits enables an ICN  
interrupt for the corresponding pins.  
11.3 Configuring Analog and Digital  
Port Pins  
The ANSELx register controls the operation of the  
analog port pins. The port pins that are to function as  
analog inputs or outputs must have their corresponding  
ANSELx and TRISx bits set. In order to use port pins for  
I/O functionality with digital modules, such as timers,  
UARTs, etc., the corresponding ANSELx bit must be  
cleared.  
Each I/O pin also has a weak pull-up and a weak  
pull-down connected to it. The pull-ups and pull-  
downs act as a current source, or sink source,  
connected to the pin, and eliminate the need for  
external resistors when push button or keypad  
devices are connected. The pull-ups and pull-downs  
are enabled separately, using the CNPUx and the  
CNPDx registers, which contain the control bits for  
each of the pins. Setting any of the control bits  
enables the weak pull-ups and/or pull-downs for the  
corresponding pins.  
The ANSELx register has a default value of 0xFFFF;  
therefore, all pins that share analog functions are  
analog (not digital) by default.  
Pins with analog functions affected by the ANSELx  
registers are listed with a buffer type of analog in the  
Pinout I/O Descriptions (see Table 1-1). Table 11-1  
through Table 11-5 show ANSELx bits’ availability for  
device variants.  
Note:  
Pull-ups and pull-downs on Input Change  
Notification pins should always be  
disabled when the port pin is configured  
as a digital output.  
If the TRISx bit is cleared (output) while the ANSELx bit  
is set, the digital output level (VOH or VOL) is converted  
by an analog peripheral, such as the ADC module or  
comparator module.  
EXAMPLE 11-1:  
PORT WRITE/READ  
EXAMPLE  
When the PORTx register is read, all pins configured as  
analog input channels are read as cleared (a low level).  
MOV  
MOV  
NOP  
0xFF00, W0  
W0, TRISB  
; Configure PORTB<15:8>  
; as inputs  
; and PORTB<7:0>  
; as outputs  
; Delay 1 cycle  
; Next Instruction  
Pins configured as digital inputs do not convert an  
analog input. Analog levels on any pin, defined as a  
digital input (including the ANx pins), can cause the  
input buffer to consume current that exceeds the  
device specifications.  
BTSS PORTB, #13  
DS70005258C-page 132  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
11.5 I/O Port Control Registers  
REGISTER 11-1: TRISx: PORTx DATA DIRECTION CONTROL REGISTER(1)  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
TRISx<15:8>  
bit 15  
R/W-1  
bit 7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 0  
TRISx<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
TRISx<15:0>: PORTx Data Direction Control bits  
1= The pin is an input  
0= The pin is an output  
Note 1: See Table 11-1, Table 11-2, Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.  
REGISTER 11-2: PORTx: I/O PORTx REGISTER(1)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PORTx<15:8>  
R/W-0  
R/W-0  
R/W-0  
PORTx<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
PORTx<15:0>: I/O PORTx bits  
1= The pin data is ‘1’  
0= The pin data is ‘0’  
Note 1: See Table 11-1, Table 11-2, Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 133  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-3: LATx: PORTx DATA LATCH REGISTER(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
LATx<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
LATx<7:0>  
R/W-0  
R/W-0  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
LATx<15:0>: PORTx Data Latch bits  
1= The latch content is ‘1’  
0= The latch content is ‘0’  
Note 1: See Table 11-1, Table 11-2, Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.  
REGISTER 11-4: ODCx: PORTx OPEN-DRAIN CONTROL REGISTER(1)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
ODCx<15:8>  
R/W-0  
R/W-0  
R/W-0  
ODCx<7:0>  
R/W-0  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
PORTx<15:0>: PORTx Open-Drain Control bits  
1= The pin acts as an open-drain output pin if TRISx is ‘0’  
0= The pin acts as a normal pin  
Note 1: See Table 11-1, Table 11-2, Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.  
DS70005258C-page 134  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-5: CNENx: INPUT CHANGE NOTIFICATION INTERRUPT ENABLE x REGISTER(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CNIEx<15:8>  
bit 15  
bit 8  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
CNIEx<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
CNIEx<15:0>: Input Change Notification Interrupt Enable x bits  
1= Enables interrupt on input change  
0= Disables interrupt on input change  
Note 1: See Table 11-1, Table 11-2, Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.  
REGISTER 11-6: CNPUx: INPUT CHANGE NOTIFICATION PULL-UP ENABLE x REGISTER(1)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
CNPUx<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CNPUx<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
CNPUx<15:0>: Input Change Notification Pull-up Enable bits  
1= Enables pull-up on PORTx pin  
0= Disables pull-up on PORTx pin  
Note 1: See Table 11-1, Table 11-2, Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 135  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-7: CNPDx: INPUT CHANGE NOTIFICATION PULL-DOWN ENABLE x REGISTER(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CNPDx<15:8>  
bit 15  
bit 8  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
CNPDx<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
CNPDx<15:0>: Input Change Notification Pull-Down Enable x bits  
1= Enables pull-down on PORTx pin  
0= Disables pull-down on PORTx pin  
Note 1: See Table 11-1, Table 11-2, Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.  
REGISTER 11-8: ANSELx: ANALOG SELECT CONTROL x REGISTER(1)  
R/W-1  
bit 15  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
ANSx<15:8>  
R/W-1  
R/W-1  
R/W-1  
ANSx<7:0>  
R/W-1  
R/W-1  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
ANSx<15:0>: Analog PORTx Enable bits  
1= Enables analog PORTx pin  
0= Enables digital PORTx pin  
Note 1: See Table 11-1, Table 11-2, Table 11-3, Table 11-4 and Table 11-5 for individual bit availability in this register.  
DS70005258C-page 136  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
In comparison, some digital only peripheral modules  
11.6 Peripheral Pin Select (PPS)  
are never included in the Peripheral Pin Select feature.  
This is because the peripheral’s function requires  
special I/O circuitry on a specific port and cannot be  
easily connected to multiple pins. One example  
includes I2C modules. A similar requirement excludes  
all modules with analog inputs, such as the ADC  
Converter.  
A major challenge in general purpose devices is  
providing the largest possible set of peripheral features,  
while minimizing the conflict of features on I/O pins.  
The challenge is even greater on low pin count devices.  
In an application where more than one peripheral  
needs to be assigned to a single pin, inconvenient  
work arounds in application code, or a complete  
redesign, may be the only option.  
A key difference between remappable and non-  
remappable peripherals is that remappable peripherals  
are not associated with a default I/O pin. The peripheral  
must always be assigned to a specific I/O pin before it  
can be used. In contrast, non-remappable peripherals  
are always available on a default pin, assuming that the  
peripheral is active and not conflicting with another  
peripheral.  
Peripheral Pin Select configuration provides an alter-  
native to these choices by enabling peripheral set  
selection and placement on a wide range of I/O pins.  
By increasing the pinout options available on a particu-  
lar device, users can better tailor the device to their  
entire application, rather than trimming the application  
to fit the device.  
When a remappable peripheral is active on a given I/O  
pin, it takes priority over all other digital I/Os and digital  
communication peripherals associated with the pin.  
Priority is given regardless of the type of peripheral that  
is mapped. Remappable peripherals never take priority  
over any analog functions associated with the pin.  
The Peripheral Pin Select configuration feature  
operates over a fixed subset of digital I/O pins. Users  
may independently map the input and/or output of most  
digital peripherals to any one of these I/O pins. Hard-  
ware safeguards are included that prevent accidental  
or spurious changes to the peripheral mapping once it  
has been established.  
11.6.3  
CONTROLLING PERIPHERAL PIN  
SELECT  
11.6.1  
AVAILABLE PINS  
Peripheral Pin Select features are controlled through  
two sets of SFRs: one to map peripheral inputs and one  
to map outputs. Because they are separately con-  
trolled, a particular peripheral’s input and output (if the  
peripheral has both) can be placed on any selectable  
function pin without constraint.  
The number of available pins is dependent on the par-  
ticular device and its pin count. Pins that support the  
Peripheral Pin Select feature include the label, “RPn”,  
in their full pin designation, where “n” is the remappable  
pin number. “RP” is used to designate pins that support  
both remappable input and output functions.  
The association of a peripheral to a peripheral-  
selectable pin is handled in two different ways,  
depending on whether an input or output is being  
mapped.  
11.6.2  
AVAILABLE PERIPHERALS  
The peripherals managed by the Peripheral Pin Select  
are all digital only peripherals. These include general  
serial communications (UART and SPI), general pur-  
pose timer clock inputs, timer-related peripherals (input  
capture and output compare) and interrupt-on-change  
inputs.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 137  
dsPIC33EPXXXGS70X/80X FAMILY  
11.6.4  
INPUT MAPPING  
11.6.4.1  
Virtual Connections  
The inputs of the Peripheral Pin Select options are  
mapped on the basis of the peripheral. That is, a control  
register associated with a peripheral dictates the pin it  
will be mapped to. The RPINRx registers are used to  
configure peripheral input mapping (see Register 11-9  
through Register 11-32). Each register contains sets of  
8-bit fields, with each set associated with one of the  
remappable peripherals. Programming a given periph-  
eral’s bit field with an appropriate 8-bit index value maps  
the RPn pin with the corresponding value, or internal  
signal, to that peripheral. See Table 11-11 for a list of  
available inputs.  
The dsPIC33EPXXXGS70X/80X devices support six  
virtual RPn pins (RP176-RP181), which are identical in  
functionality to all other RPn pins, with the exception of  
pinouts. These six pins are internal to the devices and  
are not connected to a physical device pin.  
These pins provide a simple way for inter-peripheral  
connection without utilizing a physical pin. For  
example, the output of the analog comparator can be  
connected to RP176 and the PWM Fault input can be  
configured for RP176 as well. This configuration allows  
the analog comparator to trigger PWM Faults without  
the use of an actual physical pin on the device.  
For example, Figure 11-2 illustrates remappable pin  
selection for the U1RX input.  
TABLE 11-11: REMAPPABLE SOURCES  
Remap Index  
Output Function  
FIGURE 11-2:  
REMAPPABLE INPUT FOR  
U1RX  
0
1
VSS  
CMP1  
U1RXR<7:0>  
0
2
CMP2  
VSS  
3
CMP3  
4
CMP4  
5
PWM4H  
PWM4L  
15  
6
PTGO30  
PTGO31  
Reserved  
REFO  
U1RX Input  
to Peripheral  
7
8-11  
12  
16  
RP16  
13  
SYNCO1  
SYNCO2  
PWM4L  
14  
181  
15  
RP181  
16-20  
21-31  
32-41  
42  
RP16-RP20  
Reserved  
RP32-RP41  
Reserved  
RP43-RP58  
Reserved  
RP60-RP76  
Reserved  
RP176-RP181  
Note:  
For input only, Peripheral Pin Select func-  
tionality does not have priority over TRISx  
settings. Therefore, when configuring an  
RPn pin for input, the corresponding bit in  
the TRISx register must also be configured  
for input (set to ‘1’).  
43-58  
59  
60-76  
77-175  
176-181  
DS70005258C-page 138  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 11-12: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)  
Input Name(1)  
Function Name  
Register  
Configuration Bits  
External Interrupt 1  
INT1  
INT2  
RPINR0  
RPINR1  
INT1R<7:0>  
INT2R<7:0>  
T1CKR<7:0>  
T2CKR<7:0>  
T3CKR<7:0>  
IC1R<7:0>  
External Interrupt 2  
Timer1 External Clock  
Timer2 External Clock  
Timer3 External Clock  
Input Capture 1  
Input Capture 2  
Input Capture 3  
Input Capture 4  
Output Compare Fault A  
PWM Fault 1  
T1CK  
T2CK  
T3CK  
IC1  
RPINR2  
RPINR3  
RPINR3  
RPINR7  
IC2  
RPINR7  
IC2R<7:0>  
IC3  
RPINR8  
IC3R<7:0>  
IC4  
RPINR8  
IC4R<7:0>  
OCFA  
FLT1  
FLT2  
FLT3  
FLT4  
U1RX  
U1CTS  
U2RX  
U2CTS  
SDI1  
RPINR11  
RPINR12  
RPINR12  
RPINR13  
RPINR13  
RPINR18  
RPINR18  
RPINR19  
RPINR19  
RPINR20  
RPINR20  
RPINR21  
PRINR26  
PRINR26  
RPINR29  
RPINR29  
RPINR30  
RPINR22  
RPINR22  
RPINR23  
RPINR37  
RPINR38  
RPINR42  
RPINR42  
RPINR43  
RPINR43  
RPINR45  
RPINR46  
OCFAR<7:0>  
FLT1R<7:0>  
FLT2R<7:0>  
FLT3R<7:0>  
FLT4R<7:0>  
U1RXR<7:0>  
U1CTSR<7:0>  
U2RXR<7:0>  
U2CTSR<7:0>  
SDI1R<7:0>  
SCK1R<7:0>  
SS1R<7:0>  
PWM Fault 2  
PWM Fault 3  
PWM Fault 4  
UART1 Receive  
UART1 Clear-to-Send  
UART2 Receive  
UART2 Clear-to-Send  
SPI1 Data Input  
SPI1 Clock Input  
SPI1 Slave Select  
CAN1 Receive  
SCK1  
SS1  
C1RX  
C2RX  
SDI3  
C1RXR<7:0>  
C2RXR<7:0>  
SDI3R<7:0>  
SCK3R<7:0>  
SS3R<7:0>  
CAN2 Receive  
SPI3 Data Input  
SPI3 Clock Input  
SPI3 Slave Select  
SPI2 Data Input  
SPI2 Clock Input  
SPI2 Slave Select  
PWM Synchronous Input 1  
PWM Synchronous Input 2  
PWM Fault 5  
SCK3  
SS3  
SDI2  
SDI2R<7:0>  
SCK2R<7:0>  
SS2R<7:0>  
SCK2  
SS2  
SYNCI1  
SYNCI2  
FLT5  
FLT6  
FLT7  
FLT8  
CLCINA  
CLCINB  
SYNCI1R<7:0>  
SYNCI2R<7:0>  
FLT5R<7:0>  
FLT6R<7:0>  
FLT7R<7:0>  
FLT8R<7:0>  
CLCINA<7:0>  
CLCINB<7:0>  
PWM Fault 6  
PWM Fault 7  
PWM Fault 8  
CLC Input A  
CLC Input B  
Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 139  
dsPIC33EPXXXGS70X/80X FAMILY  
11.6.5  
OUTPUT MAPPING  
11.6.5.1  
Mapping Limitations  
In contrast to inputs, the outputs of the Peripheral Pin  
Select options are mapped on the basis of the pin. In  
this case, a control register associated with a particular  
pin dictates the peripheral output to be mapped. The  
RPORx registers are used to control output mapping.  
Each register contains sets of 6-bit fields, with each set  
associated with one RPn pin (see Register 11-33  
through Register 11-56). The value of the bit field cor-  
responds to one of the peripherals and that peripheral’s  
output is mapped to the pin (see Table 11-13 and  
Figure 11-3).  
The control schema of the peripheral select pins is not  
limited to a small range of fixed peripheral configura-  
tions. There are no mutual or hardware-enforced  
lockouts between any of the peripheral mapping SFRs.  
Literally any combination of peripheral mappings,  
across any or all of the RPn pins, is possible. This  
includes both many-to-one and one-to-many mappings  
of peripheral inputs, and outputs to pins. While such  
mappings may be technically possible from a configu-  
ration point of view, they may not be supportable from  
an electrical point of view.  
A null output is associated with the output register  
Reset value of ‘0’. This is done to ensure that remap-  
pable outputs remain disconnected from all output pins  
by default.  
FIGURE 11-3: MULTIPLEXING REMAPPABLE  
OUTPUTS FOR RPn  
RPnR<6:0>  
Default  
0
U1TX Output  
1
SDO2 Output  
2
RPn  
Output Data  
CLC3OUT Output  
65  
CLC4OUT Output  
66  
DS70005258C-page 140  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 11-13: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)  
Function  
Default PORT  
RPnR<6:0>  
Output Name  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0011000  
0011001  
0011010  
0011111  
0100000  
0100001  
0101101  
0101110  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1000000  
1000001  
1000010  
RPn tied to Default Pin  
U1TX  
RPn tied to UART1 Transmit  
U1RTS  
U2TX  
RPn tied to UART1 Request-to-Send  
RPn tied to UART2 Transmit  
U2RTS  
SDO1  
RPn tied to UART2 Request-to-Send  
RPn tied to SPI1 Data Output  
SCK1  
RPn tied to SPI1 Clock Output  
SS1  
RPn tied to SPI1 Slave Select  
SDO2  
RPn tied to SPI2 Data Output  
SCK2  
RPn tied to SPI2 Clock Output  
SS2  
RPn tied to SPI2 Slave Select  
C1TX  
RPn tied to CAN1 Transmit  
C2TX  
RPn tied to CAN2 Transmit  
OC1  
RPn tied to Output Compare 1 Output  
OC2  
RPn tied to Output Compare 2 Output  
OC3  
RPn tied to Output Compare 3 Output  
OC4  
RPn tied to Output Compare 4 Output  
ACMP1  
ACMP2  
ACMP3  
SDO3  
RPn tied to Analog Comparator 1 Output  
RPn tied to Analog Comparator 2 Output  
RPn tied to Analog Comparator 3 Output  
RPn tied to SPI3 Data Output  
SCK3  
RPn tied to SPI3 Clock Output  
SS3  
RPn tied to SPI3 Slave Select  
SYNCO1  
SYNCO2  
REFCLKO  
ACMP4  
PWM4H  
PWM4L  
PWM5H  
PWM5L  
PWM6H  
PWM6L  
PWM7H  
PWM7L  
PWM8H  
PWM8L  
CLC1OUT  
CLC2OUT  
CLC3OUT(1)  
CLC4OUT(1)  
RPn tied to PWM Primary Master Time Base Sync Output  
RPn tied to PWM Secondary Master Time Base Sync Output  
RPn tied to Reference Clock Output  
RPn tied to Analog Comparator 4 Output  
RPn tied to PWM Output Pins Associated with PWM Generator 4  
RPn tied to PWM Output Pins Associated with PWM Generator 4  
RPn tied to PWM Output Pins Associated with PWM Generator 5  
RPn tied to PWM Output Pins Associated with PWM Generator 5  
RPn tied to PWM Output Pins Associated with PWM Generator 6  
RPn tied to PWM Output Pins Associated with PWM Generator 6  
RPn tied to PWM Output Pins Associated with PWM Generator 7  
RPn tied to PWM Output Pins Associated with PWM Generator 7  
RPn tied to PWM Output Pins Associated with PWM Generator 8  
RPn tied to PWM Output Pins Associated with PWM Generator 8  
RPn tied to CLC1 Output  
RPn tied to CLC2 Output  
RPn tied to CLC3 Output  
RPn tied to CLC4 Output  
Note 1: PPS outputs are only available on dsPIC33EPXXXGS702 (28-pin) devices.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 141  
dsPIC33EPXXXGS70X/80X FAMILY  
3. Most I/O pins have multiple functions. Referring to  
11.7 I/O Helpful Tips  
the device pin diagrams in this data sheet, the prior-  
ities of the functions allocated to any pins are  
indicated by reading the pin name from left-to-right.  
The left most function name takes precedence over  
any function to its right in the naming convention.  
For example: AN16/T2CK/T7CK/RC1; this indi-  
cates that AN16 is the highest priority in this  
example and will supersede all other functions to its  
right in the list. Those other functions to its right,  
even if enabled, would not work as long as any  
other function to its left was enabled. This rule  
applies to all of the functions listed for a given pin.  
1. In some cases, certain pins, as defined in  
Table 30-11 under “Injection Current”, have internal  
protection diodes to VDD and VSS. The term,  
“Injection Current”, is also referred to as “Clamp  
Current”. On designated pins, with sufficient external  
current-limiting precautions by the user, I/O pin  
input voltages are allowed to be greater or less  
than the data sheet absolute maximum ratings,  
with respect to the VSS and VDD supplies. Note  
that when the user application forward biases  
either of the high or low-side internal input clamp  
diodes, that the resulting current being injected  
into the device, that is clamped internally by the  
VDD and VSS power rails, may affect the ADC  
accuracy by four to six counts.  
4. Each pin has an internal weak pull-up resistor and  
pull-down resistor that can be configured using the  
CNPUx and CNPDx registers, respectively. These  
resistors eliminate the need for external resistors  
in certain applications. The internal pull-up is up to  
~(VDD – 0.8), not VDD. This value is still above the  
minimum VIH of CMOS and TTL devices.  
2. I/O pins that are shared with any analog input pin  
(i.e., ANx) are always analog pins, by default, after  
any Reset. Consequently, configuring a pin as an  
analog input pin automatically disables the digital  
input pin buffer and any attempt to read the digital  
input level by reading PORTx or LATx will always  
return a ‘0’, regardless of the digital logic level on  
the pin. To use a pin as a digital I/O pin on a shared  
ANx pin, the user application needs to configure the  
Analog Pin Configuration registers (i.e., ANSELx) in  
the I/O ports module by setting the appropriate bit  
that corresponds to that I/O port pin to a ‘0’.  
5. When driving LEDs directly, the I/O pin can source  
or sink more current than what is specified in the  
VOH/IOH and VOL/IOL DC characteristics specifica-  
tion. The respective IOH and IOL current rating only  
applies to maintaining the corresponding output at  
or above the VOH, and at or below the VOL levels.  
However, for LEDs, unlike digital inputs of an exter-  
nally connected device, they are not governed by  
the same minimum VIH/VIL levels. An I/O pin output  
can safely sink or source any current less than that  
listed in the Absolute Maximum Ratings in  
Section 30.0 “Electrical Characteristics”of this  
data sheet. For example:  
Note:  
Although it is not possible to use a digital  
input pin when its analog function is  
enabled, it is possible to use the digital I/O  
output function, TRISx = 0x0, while the  
analog function is also enabled. However,  
this is not recommended, particularly if the  
analog input is connected to an external  
analog voltage source, which would  
create signal contention between the  
analog signal and the output pin driver.  
VOH = 2.4V @ IOH = -8 mA and VDD = 3.3V  
The maximum output current sourced by any 8 mA  
I/O pin = 12 mA.  
LED source current < 12 mA is technically permitted.  
Refer to the VOH/IOH graphs in Section 31.0 “DC  
and AC Device Characteristics Graphs” for  
additional information.  
DS70005258C-page 142  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
6. The Peripheral Pin Select (PPS) pin mapping rules  
11.8 I/O Ports Resources  
are as follows:  
Many useful resources are provided on the main prod-  
uct page of the Microchip website for the devices listed  
in this data sheet. This product page contains the latest  
updates and additional information.  
a) Only one “output” function can be active on a  
given pin at any time, regardless if it is a  
dedicated or remappable function (one pin,  
one output).  
b) It is possible to assign a “remappable output”  
function to multiple pins and externally short or  
tie them together for increased current drive.  
11.8.1  
KEY RESOURCES  
“I/O Ports” (DS70000598) in the “dsPIC33/PIC24  
Family Reference Manual”  
c) If any “dedicated output” function is enabled  
on a pin, it will take precedence over any  
remappable “output” function.  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
d) If any “dedicated digital” (input or output) func-  
tion is enabled on a pin, any number of “input”  
remappable functions can be mapped to the  
same pin.  
• All Related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
e) If any “dedicated analog” function(s) are  
enabled on a given pin, “digital input(s)” of any  
kind will all be disabled, although a single “dig-  
ital output”, at the user’s cautionary discretion,  
can be enabled and active as long as there is  
no signal contention with an external analog  
input signal. For example, it is possible for the  
ADC to convert the digital output logic level, or  
to toggle a digital output on a comparator or  
ADC input, provided there is no external  
analog input, such as for a built-in self-test.  
• Development Tools  
f) Any number of “input” remappable functions  
can be mapped to the same pin(s) at the same  
time, including to any pin with a single output  
from either a dedicated or remappable “output”.  
g) The TRISx registers control only the digital I/O  
output buffer. Any other dedicated or remap-  
pable active “output” will automatically override  
the TRISx setting. The TRISx register does not  
control the digital logic “input” buffer. Remap-  
pable digital “inputs” do not automatically  
override TRISx settings, which means that the  
TRISx bit must be set to input for pins with only  
remappable input function(s) assigned.  
h) All analog pins are enabled by default after any  
Reset and the corresponding digital input buffer  
on the pin has been disabled. Only the Analog  
Pin Select (ANSELx) registers control the digi-  
tal input buffer, not the TRISx register. The user  
must disable the analog function on a pin using  
the Analog Pin Select registers in order to use  
any “digital input(s)” on a corresponding pin, no  
exceptions.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 143  
dsPIC33EPXXXGS70X/80X FAMILY  
11.9 Peripheral Pin Select Registers  
REGISTER 11-9: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT1R7  
INT1R6  
INT1R5  
INT1R4  
INT1R3  
INT1R2  
INT1R1  
INT1R0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
INT1R<7:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
Unimplemented: Read as ‘0’  
REGISTER 11-10: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT2R7  
INT2R6  
INT2R5  
INT2R4  
INT2R3  
INT2R2  
INT2R1  
INT2R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
INT2R<7:0>: Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
DS70005258C-page 144  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-11: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKR7  
T1CKR6  
T1CKR5  
T1CKR4  
T1CKR3  
T1CKR2  
T1CKR1  
T1CKR0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
T1CKR<7:0>: Assign Timer1 External Clock (T1CK) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
Unimplemented: Read as ‘0’  
REGISTER 11-12: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3CKR7  
T3CKR6  
T3CKR5  
T3CKR4  
T3CKR3  
T3CKR2  
T3CKR1  
T3CKR0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T2CKR7  
T2CKR6  
T2CKR5  
T2CKR4  
T2CKR3  
T2CKR2  
T2CKR1  
T2CKR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
T3CKR<7:0>: Assign Timer3 External Clock (T3CK) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
T2CKR<7:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 145  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-13: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7  
R/W-0  
IC2R7  
R/W-0  
IC2R6  
R/W-0  
IC2R5  
R/W-0  
IC2R4  
R/W-0  
IC2R3  
R/W-0  
IC2R2  
R/W-0  
IC2R1  
R/W-0  
IC2R0  
bit 15  
bit 8  
R/W-0  
IC1R7  
R/W-0  
IC1R6  
R/W-0  
IC1R5  
R/W-0  
IC1R4  
R/W-0  
IC1R3  
R/W-0  
IC1R2  
R/W-0  
IC1R1  
R/W-0  
IC1R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
IC2R<7:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
IC1R<7:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
REGISTER 11-14: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8  
R/W-0  
IC4R7  
R/W-0  
IC4R6  
R/W-0  
IC4R5  
R/W-0  
IC4R4  
R/W-0  
IC4R3  
R/W-0  
IC4R2  
R/W-0  
IC4R1  
R/W-0  
IC4R0  
bit 15  
bit 8  
R/W-0  
IC3R7  
R/W-0  
IC3R6  
R/W-0  
IC3R5  
R/W-0  
IC3R4  
R/W-0  
IC3R3  
R/W-0  
IC3R2  
R/W-0  
IC3R1  
R/W-0  
IC3R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
IC4R<7:0>: Assign Input Capture 4 (IC4) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
IC3R<7:0>: Assign Input Capture 3 (IC3) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
DS70005258C-page 146  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-15: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OCFAR7  
OCFAR6  
OCFAR5  
OCFAR4  
OCFAR3  
OCFAR2  
OCFAR1  
OCFAR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
OCFAR<7:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
REGISTER 11-16: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FLT2R0  
bit 8  
FLT2R7  
FLT2R6  
FLT2R5  
FLT2R4  
FLT2R3  
FLT2R2  
FLT2R1  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FLT1R7  
FLT1R6  
FLT1R5  
FLT1R4  
FLT1R3  
FLT1R2  
FLT1R1  
FLT1R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
FLT2R<7:0>: Assign PWM Fault 2 (FLT2) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
FLT1R<7:0>: Assign PWM Fault 1 (FLT1) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 147  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-17: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FLT4R7  
FLT4R6  
FLT4R5  
FLT4R4  
FLT4R3  
FLT4R2  
FLT4R1  
FLT4R0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FLT3R7  
FLT3R6  
FLT3R5  
FLT3R4  
FLT3R3  
FLT3R2  
FLT3R1  
FLT3R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
FLT4R<7:0>: Assign PWM Fault 4 (FLT4) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
FLT3R<7:0>: Assign PWM Fault 3 (FLT3) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
REGISTER 11-18: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U1CTSR7  
U1CTSR6  
U1CTSR5  
U1CTSR4  
U1CTSR3  
U1CTSR2  
U1CTSR1  
U1CTSR0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U1RXR7  
U1RXR6  
U1RXR5  
U1RXR4  
U1RXR3  
U1RXR2  
U1RXR1  
U1RXR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-0  
U1CTSR<7:0>: Assign UART1 Clear-to-Send (U1CTS) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
U1RXR<7:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
DS70005258C-page 148  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-19: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U2CTSR7  
U2CTSR6  
U2CTSR5  
U2CTSR4  
U2CTSR3  
U2CTSR2  
U2CTSR1  
U2CTSR0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U2RXR7  
U2RXR6  
U2RXR5  
U2RXR4  
U2RXR3  
U2RXR2  
U2RXR1  
U2RXR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-0  
U2CTSR<7:0>: Assign UART2 Clear-to-Send (U2CTS) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
U2RXR<7:0>: Assign UART2 Receive (U2RX) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
REGISTER 11-20: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SCK1INR7  
SCK1INR6  
SCK1INR5 SCK1INR4 SCK1INR3  
SCK1INR2  
SCK1INR1  
SCK1INR0  
bit 8  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SDI1R0  
bit 0  
SDI1R7  
SDI1R6  
SDI1R5  
SDI1R4  
SDI1R3  
SDI1R2  
SDI1R1  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-0  
SCK1INR<7:0>: Assign SPI1 Clock Input (SCK1) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
SDI1R<7:0>: Assign SPI1 Data Input (SDI1) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 149  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-21: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SS1R7  
SS1R6  
SS1R5  
SS1R4  
SS1R3  
SS1R2  
SS1R1  
SS1R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
SS1R<7:0>: Assign SPI1 Slave Select (SS1) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
REGISTER 11-22: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SCK2INR0  
bit 8  
SCK2INR7  
SCK2INR6  
SCK2INR5 SCK2INR4 SCK2INR3  
SCK2INR2  
SCK2INR1  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SDI2R0  
bit 0  
SDI2R7  
SDI2R6  
SDI2R5  
SDI2R4  
SDI2R3  
SDI2R2  
SDI2R1  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-0  
SCK2INR<7:0>: Assign SPI2 Clock Input (SCK2) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
SDI2R<7:0>: Assign SPI2 Data Input (SDI2) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
DS70005258C-page 150  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-23: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SS2R7  
SS2R6  
SS2R5  
SS2R4  
SS2R3  
SS2R2  
SS2R1  
SS2R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
SS2R<7:0>: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
REGISTER 11-24: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
C2RXR7  
C2RXR6  
C2RXR5  
C2RXR4  
C2RXR3  
C2RXR2  
C2RXR1  
C2RXR0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
C1RXR7  
C1RXR6  
C1RXR5  
C1RXR4  
C1RXR3  
C1RXR2  
C1RXR1  
C1RXR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
C2RXR<7:0>: Assign CAN2 Receive (C2RX) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
C1RXR<7:0>: Assign CAN1 Receive (C1RX) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 151  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-25: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SCK3R7  
SCK3R6  
SCK3R5  
SCK3R4  
SCK3R3  
SCK3R2  
SCK3R1  
SCK3R0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SDI3R7  
SDI3R6  
SDI3R5  
SDI3R4  
SDI3R3  
SDI3R2  
SDI3R1  
SDI3R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
SCK3R<7:0>: Assign SPI3 Clock Input (SCK3) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
SDI3R<7:0>: Assign SPI3 Data Input (SDI3) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
REGISTER 11-26: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SS3R7  
SS3R6  
SS3R5  
SS3R4  
SS3R3  
SS3R2  
SS3R1  
SS3R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
SS3R<7:0>: Assign SPI3 Slave Select (SS3) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
DS70005258C-page 152  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-27: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SYNCI1R0  
bit 8  
SYNCI1R7  
SYNCI1R6  
SYNCI1R5 SYNCI1R4 SYNCI1R3  
SYNCI1R2  
SYNCI1R1  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-0  
SYNCI1R<7:0>: Assign PWM Synchronization Input 1 (SYNCI1) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
Unimplemented: Read as ‘0’  
REGISTER 11-28: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SYNCI2R0  
bit 0  
SYNCI2R7  
SYNCI2R6  
SYNCI2R5 SYNCI2R4 SYNCI2R3  
SYNCI2R2  
SYNCI2R1  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
SYNCI2R<7:0>: Assign PWM Synchronization Input 2 (SYNCI2) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 153  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-29: RPINR42: PERIPHERAL PIN SELECT INPUT REGISTER 42  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FLT6R7  
FLT6R6  
FLT6R5  
FLT6R4  
FLT6R3  
FLT6R2  
FLT6R1  
FLT6R0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FLT5R7  
FLT5R6  
FLT5R5  
FLT5R4  
FLT5R3  
FLT5R2  
FLT5R1  
FLT5R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
FLT6R<7:0>: Assign PWM Fault 6 (FLT6) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
FLT5R<7:0>: Assign PWM Fault 5 (FLT5) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
REGISTER 11-30: RPINR43: PERIPHERAL PIN SELECT INPUT REGISTER 43  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FLT8R7  
FLT8R6  
FLT8R5  
FLT8R4  
FLT8R3  
FLT8R2  
FLT8R1  
FLT8R0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FLT7R7  
FLT7R6  
FLT7R5  
FLT7R4  
FLT7R3  
FLT7R2  
FLT7R1  
FLT7R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
FLT8R<7:0>: Assign PWM Fault 8 (FLT8) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
FLT7R<7:0>: Assign PWM Fault 7 (FLT7) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
DS70005258C-page 154  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-31: RPINR45: PERIPHERAL PIN SELECT INPUT REGISTER 45  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CLCINAR7  
CLCINAR6  
CLCINAR5 CLCINAR4 CLCINAR3  
CLCINAR2  
CLCINAR1 CLCINAR0  
bit 8  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-0  
CLCINAR<7:0>: Assign CLC Input A (CLCINA) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
Unimplemented: Read as ‘0’  
REGISTER 11-32: RPINR46: PERIPHERAL PIN SELECT INPUT REGISTER 46  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CLCINBR7  
CLCINBR6  
CLCINBR5 CLCINBR4 CLCINBR3  
CLCINBR2  
CLCINBR1 CLCINBR0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
CLCINBR<7:0>: Assign CLC Input B (CLCINB) to the Corresponding RPn Pin bits  
See Table 11-11 which contains a list of remappable inputs for the index value.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 155  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-33: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP17R6  
RP17R5  
RP17R4  
RP17R3  
RP17R2  
RP17R1  
RP17R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP16R6  
RP16R5  
RP16R4  
RP16R3  
RP16R2  
RP16R1  
RP16R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP17R<6:0>: Peripheral Output Function is Assigned to RP17 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP16R<6:0>: Peripheral Output Function is Assigned to RP16 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
REGISTER 11-34: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP19R6  
RP19R5  
RP19R4  
RP19R3  
RP19R2  
RP19R1  
RP19R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP18R6  
RP18R5  
RP18R4  
RP18R3  
RP18R2  
RP18R1  
RP18R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP19R<6:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP18R<6:0>: Peripheral Output Function is Assigned to RP18 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
DS70005258C-page 156  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-35: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP32R6  
RP32R5  
RP32R4  
RP32R3  
RP32R2  
RP32R1  
RP32R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP20R6  
RP20R5  
RP20R4  
RP20R3  
RP20R2  
RP20R1  
RP20R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP32R<6:0>: Peripheral Output Function is Assigned to RP32 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP20R<6:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
REGISTER 11-36: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP34R6  
RP34R5  
RP34R4  
RP34R3  
RP34R2  
RP34R1  
RP34R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP33R6  
RP33R5  
RP33R4  
RP33R3  
RP33R2  
RP33R1  
RP33R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP34R<6:0>: Peripheral Output Function is Assigned to RP34 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP33R<6:0>: Peripheral Output Function is Assigned to RP33 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 157  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-37: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP36R6  
RP36R5  
RP36R4  
RP36R3  
RP36R2  
RP36R1  
RP36R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP35R6  
RP35R5  
RP35R4  
RP35R3  
RP35R2  
RP35R1  
RP35R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP36R<6:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP35R<6:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
REGISTER 11-38: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP38R6  
RP38R5  
RP38R4  
RP38R3  
RP38R2  
RP38R1  
RP38R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP37R6  
RP37R5  
RP37R4  
RP37R3  
RP37R2  
RP37R1  
RP37R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP38R<6:0>: Peripheral Output Function is Assigned to RP38 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP37R<6:0>: Peripheral Output Function is Assigned to RP37 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
DS70005258C-page 158  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-39: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP40R6  
RP40R5  
RP40R4  
RP40R3  
RP40R2  
RP40R1  
RP40R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP39R6  
RP39R5  
RP39R4  
RP39R3  
RP39R2  
RP39R1  
RP39R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP40R<6:0>: Peripheral Output Function is Assigned to RP40 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP39R<6:0>: Peripheral Output Function is Assigned to RP39 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
REGISTER 11-40: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP43R6  
RP43R5  
RP43R4  
RP43R3  
RP43R2  
RP43R1  
RP43R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP41R6  
RP41R5  
RP41R4  
RP41R3  
RP41R2  
RP41R1  
RP41R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP43R<6:0>: Peripheral Output Function is Assigned to RP43 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP41R<6:0>: Peripheral Output Function is Assigned to RP41 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 159  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-41: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP45R6  
RP45R5  
RP45R4  
RP45R3  
RP45R2  
RP45R1  
RP45R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP44R6  
RP44R5  
RP44R4  
RP44R3  
RP44R2  
RP44R1  
RP44R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP45R<6:0>: Peripheral Output Function is Assigned to RP45 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP44R<6:0>: Peripheral Output Function is Assigned to RP44 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
REGISTER 11-42: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP47R6  
RP47R5  
RP47R4  
RP47R3  
RP47R2  
RP47R1  
RP47R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP46R6  
RP46R5  
RP46R4  
RP46R3  
RP46R2  
RP46R1  
RP46R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP47R<6:0>: Peripheral Output Function is Assigned to RP47 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP46R<6:0>: Peripheral Output Function is Assigned to RP46 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
DS70005258C-page 160  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-43: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP49R6  
RP49R5  
RP49R4  
RP49R3  
RP49R2  
RP49R1  
RP49R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP48R6  
RP48R5  
RP48R4  
RP48R3  
RP48R2  
RP48R1  
RP48R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP49R<6:0>: Peripheral Output Function is Assigned to RP49 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP48R<6:0>: Peripheral Output Function is Assigned to RP48 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
REGISTER 11-44: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP51R6  
RP51R5  
RP51R4  
RP51R3  
RP51R2  
RP51R1  
RP51R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP50R6  
RP50R5  
RP50R4  
RP50R3  
RP50R2  
RP50R1  
RP50R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP51R<6:0>: Peripheral Output Function is Assigned to RP51 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP50R<6:0>: Peripheral Output Function is Assigned to RP50 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 161  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-45: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP53R6  
RP53R5  
RP53R4  
RP53R3  
RP53R2  
RP53R1  
RP53R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP52R6  
RP52R5  
RP52R4  
RP52R3  
RP52R2  
RP52R1  
RP52R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP53R<6:0>: Peripheral Output Function is Assigned to RP53 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP52R<6:0>: Peripheral Output Function is Assigned to RP52 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
REGISTER 11-46: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP55R6  
RP55R5  
RP55R4  
RP55R3  
RP55R2  
RP55R1  
RP55R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP54R6  
RP54R5  
RP54R4  
RP54R3  
RP54R2  
RP54R1  
RP54R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP55R<6:0>: Peripheral Output Function is Assigned to RP55 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP54R<6:0>: Peripheral Output Function is Assigned to RP54 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
DS70005258C-page 162  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-47: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP57R6  
RP57R5  
RP57R4  
RP57R3  
RP57R2  
RP57R1  
RP57R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP56R6  
RP56R5  
RP56R4  
RP56R3  
RP56R2  
RP56R1  
RP56R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP57R<6:0>: Peripheral Output Function is Assigned to RP57 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP56R<6:0>: Peripheral Output Function is Assigned to RP56 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
REGISTER 11-48: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP60R6  
RP60R5  
RP60R4  
RP60R3  
RP60R2  
RP60R1  
RP60R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP58R6  
RP58R5  
RP58R4  
RP58R3  
RP58R2  
RP58R1  
RP58R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP60R<6:0>: Peripheral Output Function is Assigned to RP60 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP58R<6:0>: Peripheral Output Function is Assigned to RP58 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 163  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-49: RPOR16: PERIPHERAL PIN SELECT OUTPUT REGISTER 16  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP62R6  
RP62R5  
RP62R4  
RP62R3  
RP62R2  
RP62R1  
RP62R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP61R6  
RP61R5  
RP61R4  
RP61R3  
RP61R2  
RP61R1  
RP61R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP62R<6:0>: Peripheral Output Function is Assigned to RP62 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP61R<6:0>: Peripheral Output Function is Assigned to RP61 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
REGISTER 11-50: RPOR17: PERIPHERAL PIN SELECT OUTPUT REGISTER 17  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP64R6  
RP64R5  
RP64R4  
RP64R3  
RP64R2  
RP64R1  
RP64R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP63R6  
RP63R5  
RP63R4  
RP63R3  
RP63R2  
RP63R1  
RP63R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP64R<6:0>: Peripheral Output Function is Assigned to RP64 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP63R<6:0>: Peripheral Output Function is Assigned to RP63 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
DS70005258C-page 164  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-51: RPOR18: PERIPHERAL PIN SELECT OUTPUT REGISTER 18  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP66R6  
RP66R5  
RP66R4  
RP66R3  
RP66R2  
RP66R1  
RP66R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP65R6  
RP65R5  
RP65R4  
RP65R3  
RP65R2  
RP65R1  
RP65R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP66R<6:0>: Peripheral Output Function is Assigned to RP66 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP65R<6:0>: Peripheral Output Function is Assigned to RP65 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
REGISTER 11-52: RPOR19: PERIPHERAL PIN SELECT OUTPUT REGISTER 19  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP68R6  
RP68R5  
RP68R4  
RP68R3  
RP68R2  
RP68R1  
RP68R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP67R6  
RP67R5  
RP67R4  
RP67R3  
RP67R2  
RP67R1  
RP67R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP68R<6:0>: Peripheral Output Function is Assigned to RP68 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP67R<6:0>: Peripheral Output Function is Assigned to RP67 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 165  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-53: RPOR20: PERIPHERAL PIN SELECT OUTPUT REGISTER 20  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP70R6  
RP70R5  
RP70R4  
RP70R3  
RP70R2  
RP70R1  
RP70R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP69R6  
RP69R5  
RP69R4  
RP69R3  
RP69R2  
RP69R1  
RP69R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP70R<6:0>: Peripheral Output Function is Assigned to RP70 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP69R<6:0>: Peripheral Output Function is Assigned to RP69 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
REGISTER 11-54: RPOR21: PERIPHERAL PIN SELECT OUTPUT REGISTER 21  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP72R6  
RP72R5  
RP72R4  
RP72R3  
RP72R2  
RP72R1  
RP72R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP71R6  
RP71R5  
RP71R4  
RP71R3  
RP71R2  
RP71R1  
RP71R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP72R<6:0>: Peripheral Output Function is Assigned to RP72 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP71R<6:0>: Peripheral Output Function is Assigned to RP71 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
DS70005258C-page 166  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-55: RPOR22: PERIPHERAL PIN SELECT OUTPUT REGISTER 22  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP74R6  
RP74R5  
RP74R4  
RP74R3  
RP74R2  
RP74R1  
RP74R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP73R6  
RP73R5  
RP73R4  
RP73R3  
RP73R2  
RP73R1  
RP73R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP74R<6:0>: Peripheral Output Function is Assigned to RP74 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP73R<6:0>: Peripheral Output Function is Assigned to RP73 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
REGISTER 11-56: RPOR23: PERIPHERAL PIN SELECT OUTPUT REGISTER 23  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP76R6  
RP76R5  
RP76R4  
RP76R3  
RP76R2  
RP76R1  
RP76R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP75R6  
RP75R5  
RP75R4  
RP75R3  
RP75R2  
RP75R1  
RP75R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP76R<6:0>: Peripheral Output Function is Assigned to RP76 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP75R<6:0>: Peripheral Output Function is Assigned to RP75 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 167  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-57: RPOR24: PERIPHERAL PIN SELECT OUTPUT REGISTER 24  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP177R6  
RP177R5  
RP177R4  
RP177R3  
RP177R2  
RP177R1  
RP177R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP176R6  
RP176R5  
RP176R4  
RP176R3  
RP176R2  
RP176R1  
RP176R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP177R<6:0>: Peripheral Output Function is Assigned to RP177 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP176R<6:0>: Peripheral Output Function is Assigned to RP176 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
REGISTER 11-58: RPOR25: PERIPHERAL PIN SELECT OUTPUT REGISTER 25  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP179R6  
RP179R5  
RP179R4  
RP179R3  
RP179R2  
RP179R1  
RP179R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP178R6  
RP178R5  
RP178R4  
RP178R3  
RP178R2  
RP178R1  
RP178R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP179R<6:0>: Peripheral Output Function is Assigned to RP179 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP178R<6:0>: Peripheral Output Function is Assigned to RP178 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
DS70005258C-page 168  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 11-59: RPOR26: PERIPHERAL PIN SELECT OUTPUT REGISTER 26  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP181R6  
RP181R5  
RP181R4  
RP181R3  
RP181R2  
RP181R1  
RP181R0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP180R6  
RP180R5  
RP180R4  
RP180R3  
RP180R2  
RP180R1  
RP180R0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-8  
RP181R<6:0>: Peripheral Output Function is Assigned to RP181 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
RP180R<6:0>: Peripheral Output Function is Assigned to RP180 Output Pin bits  
(see Table 11-13 for peripheral function numbers)  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 169  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 170  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
The Timer1 module can operate in one of the following  
modes:  
12.0 TIMER1  
Note 1: This data sheet summarizes the  
features of the dsPIC33EPXXXGS70X/  
80X family of devices. It is not intended to  
be a comprehensive reference source. To  
complement the information in this data  
sheet, refer to “Timers” (DS70362) in the  
“dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
website (www.microchip.com).  
• Timer mode  
• Gated Timer mode  
• Synchronous Counter mode  
• Asynchronous Counter mode  
In Timer and Gated Timer modes, the input clock is  
derived from the internal instruction cycle clock (FCY).  
In Synchronous and Asynchronous Counter modes,  
the input clock is derived from the external clock input  
at the T1CK pin.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The Timer modes are determined by the following bits:  
• Timer1 Clock Source Select bit (TCS): T1CON<1>  
• Timer1 External Clock Input Synchronization Select  
bit (TSYNC): T1CON<2>  
• Timer1 Gated Time Accumulation Enable bit  
(TGATE): T1CON<6>  
The Timer1 module is a 16-bit timer that can operate as  
a free-running interval timer/counter.  
Timer control bit settings for different operating modes  
are provided in Table 12-1.  
The Timer1 module has the following unique features  
over other timers:  
TABLE 12-1: TIMER1 MODE SETTINGS  
• Can be Operated in Asynchronous Counter mode  
from an External Clock Source  
Mode  
Timer  
TCS  
TGATE  
TSYNC  
• The External Clock Input (T1CK) can Optionally be  
Synchronized to the Internal Device Clock and the  
Clock Synchronization is Performed after the  
prescaler  
0
0
1
0
1
x
x
x
1
Gated Timer  
Synchronous  
Counter  
A block diagram of Timer1 is shown in Figure 12-1.  
Asynchronous  
Counter  
1
x
0
FIGURE 12-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
Falling Edge  
Detect  
Gate  
Sync  
1
0
Set T1IF Flag  
(1)  
FP  
10  
00  
x1  
Prescaler  
(/n)  
T1CLK  
TGATE  
Latch  
CLK  
Data  
Reset  
TMR1  
TCKPS<1:0>  
ADC Trigger  
0
T1CK  
Equal  
Prescaler  
(/n)  
Comparator  
1
Sync  
TGATE  
TSYNC  
TCS  
TCKPS<1:0>  
PR1  
Note 1: FP is the peripheral clock.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 171  
dsPIC33EPXXXGS70X/80X FAMILY  
12.1.1  
KEY RESOURCES  
12.1 Timer1 Resources  
“Timers” (DS70362) in the “dsPIC33/PIC24  
Family Reference Manual”  
Many useful resources are provided on the main prod-  
uct page of the Microchip website for the devices listed  
in this data sheet. This product page contains the latest  
updates and additional information.  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All Related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
• Development Tools  
DS70005258C-page 172  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
12.2 Timer1 Control Register  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
TON(1)  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
TSYNC(1)  
R/W-0  
TCS(1)  
U-0  
TGATE  
TCKPS1  
TCKPS0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer1 On bit(1)  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Timer1 Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
TCKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit(1)  
When TCS = 1:  
1= Synchronizes external clock input  
0= Does not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit(1)  
1= External clock is from pin, T1CK (on the rising edge)  
0= Internal clock (FP)  
Unimplemented: Read as ‘0’  
Note 1: When Timer1 is enabled in External Synchronous Counter mode (TCS = 1, TSYNC = 1, TON = 1), any  
attempts by user software to write to the TMR1 register are ignored.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 173  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 174  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Individually, all four of the 16-bit timers can function as  
13.0 TIMER2/3 AND TIMER4/5  
synchronous timers or counters. They also offer the  
features listed previously, except for the event trigger;  
this is implemented only with Timer2/3. The operating  
modes and enabled features are determined by setting  
the appropriate bit(s) in the T2CON, T3CON, T4CON  
and T5CON registers. T2CON and T4CON are shown  
in generic form in Register 13-1. T3CON and T5CON  
are shown in Register 13-2.  
Note 1: This data sheet summarizes the features of  
the dsPIC33EPXXXGS70X/80X family of  
devices. It is not intended to be a  
comprehensive reference source. To com-  
plement the information in this data sheet,  
refer to “Timers” (DS70362) in the  
“dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
website (www.microchip.com).  
For 32-bit timer/counter operation, Timer2 and Timer4  
are the least significant word (lsw); Timer3 and Timer5  
are the most significant word (msw) of the 32-bit timers.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Note:  
For 32-bit operation, T3CON and T5CON  
control bits are ignored. Only T2CON and  
T4CON control bits are used for setup and  
control. Timer2 and Timer4 clock and gate  
inputs are utilized for the 32-bit timer  
modules, but an interrupt is generated  
with the Timer3 and Timer5 interrupt flags.  
The Timer2/3 and Timer4/5 modules are 32-bit timers,  
which can also be configured as four independent  
16-bit timers with selectable operating modes.  
A block diagram for an example 32-bit timer pair  
(Timer2/3 and Timer4/5) is shown in Figure 13-2.  
As 32-bit timers, Timer2/3 and Timer4/5 operate in  
three modes:  
13.1 Timer Resources  
• Two Independent 16-Bit Timers (e.g., Timer2 and  
Timer3) with all 16-Bit Operating modes (except  
Asynchronous Counter mode)  
Many useful resources are provided on the main prod-  
uct page of the Microchip website for the devices listed  
in this data sheet. This product page contains the latest  
updates and additional information.  
• Single 32-Bit Timer  
• Single 32-Bit Synchronous Counter  
They also support these features:  
13.1.1  
KEY RESOURCES  
• Timer Gate Operation  
“Timers” (DS70362) in the “dsPIC33/PIC24  
Family Reference Manual”  
• Selectable Prescaler Settings  
• Timer Operation during Idle and Sleep modes  
• Interrupt on a 32-Bit Period Register Match  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• Time Base for Input Capture and Output Compare  
modules (Timer2 and Timer3 only)  
• All Related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
• Development Tools  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 175  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 13-1:  
TIMERx BLOCK DIAGRAM (x = 2 THROUGH 5)  
Falling Edge  
Detect  
Gate  
Sync  
1
0
Set TxIF Flag  
(1)  
10  
00  
x1  
FP  
Prescaler  
(/n)  
TxCLK  
Reset  
TGATE  
Latch  
CLK  
Data  
TMRx  
TCKPS<1:0>  
TxCK  
ADC  
Prescaler  
(/n)  
Trigger(2)  
Sync  
Equal  
Comparator  
TGATE  
TCS  
TCKPS<1:0>  
PRx  
Note 1: FP is the peripheral clock.  
2: The ADC trigger is only available on TMR2.  
FIGURE 13-2:  
TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)  
Falling Edge  
Detect  
Gate  
Sync  
1
0
Set TyIF Flag  
PRx  
PRy  
TGATE  
Data  
Equal  
Reset  
Comparator  
(1)  
FP  
10  
00  
x1  
Prescaler  
(/n)  
CLK  
lsw  
TMRx  
msw  
TMRy  
Latch  
TCKPS<1:0>  
TxCK  
Prescaler  
(/n)  
Sync  
TMRyHLD  
TGATE  
TCS  
TCKPS<1:0>  
Data Bus<15:0>  
Note 1: Timerx is a Type B timer (x = 2 and 4).  
2: Timery is a Type C timer (y = 3 and 5).  
DS70005258C-page 176  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
13.2 Timer2/3 and Timer4/5 Control Registers  
REGISTER 13-1: TxCON: (TIMER2 AND TIMER4) CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32  
U-0  
R/W-0  
TCS(1)  
U-0  
TGATE  
TCKPS1  
TCKPS0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timerx On bit  
When T32 = 1:  
1= Starts 32-bit Timerx/y  
0= Stops 32-bit Timerx/y  
When T32 = 0:  
1= Starts 16-bit Timerx  
0= Stops 16-bit Timerx  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Timerx Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timerx Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
bit 3  
TCKPS<1:0>: Timerx Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
T32: 32-Bit Timer Mode Select bit  
1= Timerx and Timery form a single 32-bit timer  
0= Timerx and Timery act as two 16-bit timers  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timerx Clock Source Select bit(1)  
1= External clock is from pin, TxCK (on the rising edge)  
0= Internal clock (FP)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: The TxCK pin is not available on all devices. Refer to the Pin Diagramssection for the available pins.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 177  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 13-2: TyCON: (TIMER3 AND TIMER5) CONTROL REGISTER  
R/W-0  
TON(1)  
U-0  
R/W-0  
TSIDL(2)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
TGATE(1)  
R/W-0  
TCKPS1(1) TCKPS0(1)  
R/W-0  
U-0  
U-0  
R/W-0  
TCS(1,3)  
U-0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
TON: Timery On bit(1)  
1= Starts 16-bit Timery  
0= Stops 16-bit Timery  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Timery Stop in Idle Mode bit(2)  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timery Gated Time Accumulation Enable bit(1)  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
TCKPS<1:0>: Timery Input Clock Prescale Select bits(1)  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timery Clock Source Select bit(1,3)  
1= External clock is from pin, TyCK (on the rising edge)  
0= Internal clock (FP)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When 32-bit operation is enabled (TxCON<3> = 1), these bits have no effect on Timery operation; all timer  
functions are set through TxCON.  
2: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL  
bit must be cleared to operate the 32-bit timer in Idle mode.  
3: The TyCK pin is not available on all devices. See the Pin Diagramssection for the available pins.  
DS70005258C-page 178  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Key features of the input capture module include:  
14.0 INPUT CAPTURE  
• Hardware-Configurable for 32-Bit Operation in All  
modes by Cascading Two Adjacent modules  
• Synchronous and Trigger modes of Output  
Compare Operation, with up to 21 User-Selectable  
Trigger/Sync Sources available  
• A 4-Level FIFO Buffer for Capturing and Holding  
Timer Values for Several Events  
• Configurable Interrupt Generation  
Note 1: This data sheet summarizes the  
features of the dsPIC33EPXXXGS70X/  
80X family of devices. It is not intended  
to be  
a
comprehensive reference  
source. To complement the information  
in this data sheet, refer to “Input  
Capture with Dedicated Timer”  
(DS70000352) in the “dsPIC33/PIC24  
Family Reference Manual”, which is  
available from the Microchip website  
(www.microchip.com).  
• Up to Six Clock Sources available for each module,  
Driving a Separate Internal 16-Bit Counter  
14.1 Input Capture Resources  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
Many useful resources are provided on the main prod-  
uct page of the Microchip website for the devices listed  
in this data sheet. This product page contains the latest  
updates and additional information.  
14.1.1  
KEY RESOURCES  
The input capture module is useful in applications  
requiring frequency (period) and pulse measurements.  
The dsPIC33EPXXXGS70X/80X devices support four  
input capture channels.  
“Input Capture with Dedicated Timer”  
(DS70000352) in the “dsPIC33/PIC24 Family  
Reference Manual”  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All Related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
• Development Tools  
FIGURE 14-1:  
INPUT CAPTURE x MODULE BLOCK DIAGRAM  
ICM<2:0>  
ICI<1:0>  
Event and  
Set ICxIF  
Edge Detect Logic  
Prescaler  
Counter  
1:1/4/16  
and  
Interrupt  
Logic  
Clock Synchronizer  
ICx Pin  
ICTSEL<2:0>  
Increment  
16  
Clock  
Select  
ICx Clock  
Sources  
4-Level FIFO Buffer  
ICxTMR  
16  
Reset  
16  
Trigger and  
Sync Logic  
Trigger and  
Sync Sources  
ICxBUF  
System Bus  
ICOV, ICBNE  
SYNCSEL<4:0>(1)  
Note 1: The trigger/sync source is enabled by default and is set to Timer3 as a source. This timer must be enabled for  
proper ICx module operation or the trigger/sync source must be changed to another source option.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 179  
dsPIC33EPXXXGS70X/80X FAMILY  
14.2 Input Capture Registers  
REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
ICSIDL  
ICTSEL2  
ICTSEL1  
ICTSEL0  
bit 15  
bit 8  
U-0  
R/W-0  
ICI1  
R/W-0  
ICI0  
HC/HS/R-0  
ICOV  
HC/HS/R-0  
ICBNE  
R/W-0  
ICM2  
R/W-0  
ICM1  
R/W-0  
ICM0  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
HS = Hardware Settable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ICSIDL: Input Capture x Stop in Idle Control bit  
1= Input capture will halt in CPU Idle mode  
0= Input capture will continue to operate in CPU Idle mode  
bit 12-10  
ICTSEL<2:0>: Input Capture x Timer Select bits  
111= Peripheral clock (FP) is the clock source of the ICx  
110= Reserved  
101= Reserved  
100= T1CLK is the clock source of the ICx (only the synchronous clock is supported)  
011= T5CLK is the clock source of the ICx  
010= T4CLK is the clock source of the ICx  
001= T2CLK is the clock source of the ICx  
000= T3CLK is the clock source of the ICx  
bit 9-7  
bit 6-5  
Unimplemented: Read as ‘0’  
ICI<1:0>: Number of Captures per Interrupt Select bits (this field is not used if ICM<2:0> = 001or 111)  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture x Overflow Status Flag bit (read-only)  
1= Input capture buffer overflow has occurred  
0= No input capture buffer overflow has occurred  
bit 3  
ICBNE: Input Capture x Buffer Not Empty Status bit (read-only)  
1= Input capture buffer is not empty, at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM<2:0>: Input Capture x Mode Select bits  
111= Input Capture x functions as an interrupt pin only in CPU Sleep and Idle modes (rising edge  
detect only, all other control bits are not applicable)  
110= Unused (module is disabled)  
101= Capture mode, every 16th rising edge (Prescaler Capture mode)  
100= Capture mode, every 4th rising edge (Prescaler Capture mode)  
011= Capture mode, every rising edge (Simple Capture mode)  
010= Capture mode, every falling edge (Simple Capture mode)  
001= Capture mode, every rising and falling edge (Edge Detect mode, ICI<1:0> is not used in this mode)  
000= Input Capture x is turned off  
DS70005258C-page 180  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
IC32  
bit 15  
bit 8  
R/W-0  
ICTRIG(2) TRIGSTAT(3)  
HS/R/W-0  
U-0  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-1  
SYNCSEL4(4) SYNCSEL3(4) SYNCSEL2(4) SYNCSEL1(4) SYNCSEL0(4)  
bit 7  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
IC32: Input Capture x 32-Bit Timer Mode Select bit (Cascade mode)  
1= Odd ICx and even ICx form a single 32-bit input capture module(1)  
0= Cascade module operation is disabled  
bit 7  
ICTRIG: Input Capture x Trigger Operation Select bit(2)  
1= Input source is used to trigger the input capture timer (Trigger mode)  
0= Input source is used to synchronize the input capture timer to a timer of another module  
(Synchronization mode)  
bit 6  
bit 5  
TRIGSTAT: Timer Trigger Status bit(3)  
1= ICxTMR has been triggered and is running  
0= ICxTMR has not been triggered and is being held clear  
Unimplemented: Read as ‘0’  
Note 1: The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.  
2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.  
3: This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and  
cleared in software.  
4: Do not use the ICx module as its own sync or trigger source.  
5: This option should only be selected as a trigger source and not as a synchronization source.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 181  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)  
bit 4-0  
SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits(4)  
11111= No sync or trigger source for ICx  
11110= Reserved  
11101= Reserved  
11100= Reserved  
11011= CMP4 module synchronizes or triggers ICx(5)  
11010= CMP3 module synchronizes or triggers ICx(5)  
11001= CMP2 module synchronizes or triggers ICx(5)  
11000= CMP1 module synchronizes or triggers ICx(5)  
10111= Reserved  
10110= Reserved  
10101= Reserved  
10100= Reserved  
10011= IC4 module interrupt synchronizes or triggers ICx  
10010= IC3 module interrupt synchronizes or triggers ICx  
10001= IC2 module interrupt synchronizes or triggers ICx  
10000= IC1 module interrupt synchronizes or triggers ICx  
01111= Timer5 synchronizes or triggers ICx  
01110= Timer4 synchronizes or triggers ICx  
01101= Timer3 synchronizes or triggers ICx (default)  
01100= Timer2 synchronizes or triggers ICx  
01011= Timer1 synchronizes or triggers ICx  
01010= Reserved  
01001= Reserved  
01000= IC4 module synchronizes or triggers ICx  
00111= IC3 module synchronizes or triggers ICx  
00110= IC2 module synchronizes or triggers ICx  
00101= IC1 module synchronizes or triggers ICx  
00100= OC4 module synchronizes or triggers ICx  
00011= OC3 module synchronizes or triggers ICx  
00010= OC2 module synchronizes or triggers ICx  
00001= OC1 module synchronizes or triggers ICx  
00000= No sync or trigger source for ICx  
Note 1: The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.  
2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.  
3: This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and  
cleared in software.  
4: Do not use the ICx module as its own sync or trigger source.  
5: This option should only be selected as a trigger source and not as a synchronization source.  
DS70005258C-page 182  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
single output pulse, or a sequence of output pulses, by  
15.0 OUTPUT COMPARE  
changing the state of the output pin on the compare  
match events. The output compare module can also  
generate interrupts on compare match events.  
Note 1: This data sheet summarizes the features  
of the dsPIC33EPXXXGS70X/80X family  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to “Output Compare with  
Dedicated Timer” (DS70005159) in  
the “dsPIC33/PIC24 Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
15.1 Output Compare Resources  
Many useful resources are provided on the main prod-  
uct page of the Microchip website for the devices listed  
in this data sheet. This product page contains the latest  
updates and additional information.  
15.1.1  
KEY RESOURCES  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
“Output Compare with Dedicated Timer”  
(DS70005159) in the “dsPIC33/PIC24 Family  
Reference Manual”  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
The output compare module can select one of six  
available clock sources for its time base. The module  
compares the value of the timer with the value of one or  
two Compare registers, depending on the operating  
mode selected. The state of the output pin changes  
when the timer value matches the Compare register  
value. The output compare module generates either a  
• All Related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
• Development Tools  
FIGURE 15-1:  
OUTPUT COMPARE x MODULE BLOCK DIAGRAM  
OCxCON1  
OCxCON2  
OCxR  
Rollover/Reset  
OCxR Buffer  
Comparator  
OCx Pin  
Match  
Event  
Increment  
Clock  
Select  
OCx Clock  
Sources  
OCx Output and  
Fault Logic  
OCxTMR  
Comparator  
OCxRS Buffer  
Rollover  
Reset  
OCFA  
Match  
Event  
Match Event  
Trigger and  
Sync Logic  
Trigger and  
Sync Sources  
SYNCSEL<4:0>  
Trigger(1)  
Rollover/Reset  
OCx Synchronization/Trigger Event  
OCx Interrupt  
OCxRS  
Reset  
Note 1: The trigger/sync source is enabled by default and is set to Timer2 as a source. This timer must be enabled for  
proper OCx module operation or the trigger/sync source must be changed to another source option.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 183  
dsPIC33EPXXXGS70X/80X FAMILY  
15.2 Output Compare Control Registers  
REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
OCSIDL  
OCTSEL2  
OCTSEL1  
OCTSEL0  
bit 15  
bit 8  
R/W-0  
U-0  
U-0  
HSC/R/W-0  
OCFLTA  
R/W-0  
R/W-0  
OCM2  
R/W-0  
OCM1  
R/W-0  
OCM0  
ENFLTA  
TRIGMODE  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
OCSIDL: Output Compare x Stop in Idle Mode Control bit  
1= Output Compare x halts in CPU Idle mode  
0= Output Compare x continues to operate in CPU Idle mode  
bit 12-10  
OCTSEL<2:0>: Output Compare x Clock Select bits  
111= Peripheral clock (FP)  
110= Reserved  
101= Reserved  
100= T1CLK is the clock source of the OCx (only the synchronous clock is supported)  
011= T5CLK is the clock source of the OCx  
010= T4CLK is the clock source of the OCx  
001= T3CLK is the clock source of the OCx  
000= T2CLK is the clock source of the OCx  
bit 9-8  
bit 7  
Unimplemented: Read as ‘0’  
ENFLTA: Fault A Input Enable bit  
1= Output Compare Fault A input (OCFA) is enabled  
0= Output Compare Fault A input (OCFA) is disabled  
bit 6-5  
bit 4  
Unimplemented: Read as ‘0’  
OCFLTA: PWM Fault A Condition Status bit  
1= PWM Fault A condition on the OCFA pin has occurred  
0= No PWM Fault A condition on the OCFA pin has occurred  
bit 3  
TRIGMODE: Trigger Status Mode Select bit  
1= TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software  
0= TRIGSTAT is cleared only by software  
Note 1: OCxR and OCxRS are double-buffered in PWM mode only.  
DS70005258C-page 184  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)  
bit 2-0  
OCM<2:0>: Output Compare x Mode Select bits  
111= Center-Aligned PWM mode: Output is set high when OCxTMR = OCxR and set low when  
OCxTMR = OCxRS(1)  
110= Edge-Aligned PWM mode: Output is set high when OCxTMR = 0and set low when OCxTMR = OCxR(1)  
101= Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously  
on alternate matches of OCxR and OCxRS  
100= Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of  
OCxR and OCxRS for one cycle  
011= Single Compare mode: Compare event with OCxR, continuously toggles OCx pin  
010= Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx  
pin low  
001= Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx  
pin high  
000= Output compare channel is disabled  
Note 1: OCxR and OCxRS are double-buffered in PWM mode only.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 185  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
OC32  
FLTMD  
FLTOUT  
FLTTRIEN  
OCINV  
bit 15  
bit 8  
R/W-0  
HS/R/W-0  
TRIGSTAT  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
OCTRIG  
OCTRIS  
SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0  
bit 0  
bit 7  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
FLTMD: Fault Mode Select bit  
1= Fault mode is maintained until the Fault source is removed; the corresponding OCFLTA bit is  
cleared in software and a new PWMx period starts  
0= Fault mode is maintained until the Fault source is removed and a new PWMx period starts  
bit 14  
bit 13  
bit 12  
FLTOUT: Fault Out bit  
1= PWMx output is driven high on a Fault  
0= PWMx output is driven low on a Fault  
FLTTRIEN: Fault Output State Select bit  
1= OCx pin is tri-stated on a Fault condition  
0= OCx pin I/O state is defined by the FLTOUT bit on a Fault condition  
OCINV: Output Compare x Invert bit  
1= OCx output is inverted  
0= OCx output is not inverted  
bit 11-9  
bit 8  
Unimplemented: Read as ‘0’  
OC32: Cascade Two OCx Modules Enable bit (32-bit operation)  
1= Cascade module operation is enabled  
0= Cascade module operation is disabled  
bit 7  
bit 6  
bit 5  
OCTRIG: Output Compare x Trigger/Sync Select bit  
1= Triggers OCx from the source designated by the SYNCSELx bits  
0= Synchronizes OCx with the source designated by the SYNCSELx bits  
TRIGSTAT: Timer Trigger Status bit  
1= Timer source has been triggered and is running  
0= Timer source has not been triggered and is being held clear  
OCTRIS: Output Compare x Output Pin Direction Select bit  
1= OCx is tri-stated  
0= OCx module drives the OCx pin  
Note 1: Do not use the OCx module as its own synchronization or trigger source.  
2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module  
as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.  
3: For each OCMPx instance, a different PTG trigger out is used:  
OCMP1 – PTG trigger out [0]  
OCMP2 – PTG trigger out [1]  
OCMP3 – PTG trigger out [2]  
OCMP4 – PTG trigger out [3]  
DS70005258C-page 186  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)  
bit 4-0  
SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits  
11111= OCxRS compare event is used for synchronization  
11110= INT2 pin synchronizes or triggers OCx  
11101= INT1 pin synchronizes or triggers OCx  
11100= Reserved  
11011= CMP4 module synchronizes or triggers OCx  
11010= CMP3 module synchronizes or triggers OCx  
11001= CMP2 module synchronizes or triggers OCx  
11000= CMP1 module synchronizes or triggers OCx  
10111= Reserved  
10110= Reserved  
10101= Reserved  
10100= Reserved  
10011= IC4 input capture interrupt event synchronizes or triggers OCx  
10010= IC3 input capture interrupt event synchronizes or triggers OCx  
10001= IC2 input capture interrupt event synchronizes or triggers OCx  
10000= IC1 input capture interrupt event synchronizes or triggers OCx  
01111= Timer5 synchronizes or triggers OCx  
01110= Timer4 synchronizes or triggers OCx  
01101= Timer3 synchronizes or triggers OCx  
01100= Timer2 synchronizes or triggers OCx (default)  
01011= Timer1 synchronizes or triggers OCx  
01010= PTG Trigger Output x(3)  
01001= Reserved  
01000= IC4 input capture event synchronizes or triggers OCx  
00111= IC3 input capture event synchronizes or triggers OCx  
00110= IC2 input capture event synchronizes or triggers OCx  
00101= IC1 input capture event synchronizes or triggers OCx  
00100= OC4 module synchronizes or triggers OCx(1,2)  
00011= OC3 module synchronizes or triggers OCx(1,2)  
00010= OC2 module synchronizes or triggers OCx(1,2)  
00001= OC1 module synchronizes or triggers OCx(1,2)  
00000= No sync or trigger source for OCx  
Note 1: Do not use the OCx module as its own synchronization or trigger source.  
2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module  
as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.  
3: For each OCMPx instance, a different PTG trigger out is used:  
OCMP1 – PTG trigger out [0]  
OCMP2 – PTG trigger out [1]  
OCMP3 – PTG trigger out [2]  
OCMP4 – PTG trigger out [3]  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 187  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 188  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Figure 16-1 conceptualizes the PWM module in a  
16.0 HIGH-SPEED PWM  
simplified block diagram. Figure 16-2 illustrates how  
the module hardware is partitioned for each PWMx  
output pair for the Complementary PWM mode.  
Note:  
This data sheet summarizes the features  
of the dsPIC33EPXXXGS70X/80X family  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to “High-Speed PWM  
Module” (DS70000323) in the “dsPIC33/  
PIC24 Family Reference Manual”, which  
is available from the Microchip website  
(www.microchip.com).  
The PWM module contains eight PWM generators. The  
module has up to 16 PWMx output pins: PWM1H/  
PWM1L through PWM8H/PWM8L. For complementary  
outputs, these 16 I/O pins are grouped into high/low  
pairs. PWM1 through PWM6 can be used to trigger an  
ADC conversion.  
16.2 Feature Description  
The high-speed PWM on dsPIC33EPXXXGS70X/80X  
devices supports a wide variety of PWM modes and  
output formats. This PWM module is ideal for power  
conversion applications, such as:  
The PWM module is designed for applications that  
require:  
• High resolution at high PWM frequencies  
• The ability to drive Standard Edge-Aligned,  
Center-Aligned, Complementary mode and  
Push-Pull mode outputs  
• AC/DC Converters  
• DC/DC Converters  
• Power Factor Correction  
• Uninterruptible Power Supply (UPS)  
• Inverters  
• The ability to create multiphase PWM outputs  
Two common, medium power converter topologies are  
push-pull and half-bridge. These designs require the  
PWM output signal to be switched between alternate  
pins, as provided by the Push-Pull PWM mode.  
• Battery Chargers  
• Digital Lighting  
Phase-shifted PWM describes the situation where  
each PWM generator provides outputs, but the phase  
relationship between the generator outputs is  
specifiable and changeable.  
16.1 Features Overview  
The high-speed PWM module incorporates the  
following features:  
Multiphase PWM is often used to improve DC/DC  
Converter load transient response, and reduce the size  
of output filter capacitors and inductors. Multiple DC/DC  
Converters are often operated in parallel, but phase  
shifted in time. A single PWM output, operating at  
250 kHz, has a period of 4 s but an array of four PWM  
channels, staggered by 1 s each, yields an effective  
switching frequency of 1 MHz. Multiphase PWM  
applications typically use a fixed-phase relationship.  
• Eight PWMx Generators with Two Outputs per  
Generator  
• Two Master Time Base modules  
• Individual Time Base and Duty Cycle for each  
PWM Output  
• Duty Cycle, Dead Time, Phase Shift and a  
Frequency Resolution of 1.04 ns  
• Independent Fault and Current-Limit Inputs  
• Redundant Output  
Variable phase PWM is useful in Zero Voltage  
Transition (ZVT) power converters. Here, the PWM  
duty cycle is always 50% and the power flow is  
controlled by varying the relative phase shift between  
the two PWM generators.  
• True Independent Output  
• Center-Aligned PWM mode  
• Output Override Control  
• Chop mode (also known as Gated mode)  
• Special Event Trigger  
• Dual Trigger from PWMx to Analog-to-Digital  
Converter (ADC)  
• PWMxL and PWMxH Output Pin Swapping  
• Independent PWMx Frequency, Duty Cycle and  
Phase-Shift Changes  
• Enhanced Leading-Edge Blanking (LEB) Functionality  
• PWM Capture Functionality  
Note:  
Duty cycle, dead time, phase shift and  
frequency resolution is 8.32 ns in  
Center-Aligned PWM mode.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 189  
dsPIC33EPXXXGS70X/80X FAMILY  
To gain write access to these locked registers, the user  
application must write two consecutive values (0xABCD  
and 0x4321) to the PWMKEY register to perform the  
unlock operation. The write access to the IOCONx or  
FCLCONx registers must be the next SFR access  
following the unlock process. There can be no other SFR  
accesses during the unlock process and subsequent  
write access. To write to both the IOCONx and  
FCLCONx registers requires two unlock operations.  
16.2.1  
WRITE-PROTECTED REGISTERS  
On dsPIC33EPXXXGS70X/80X family devices, write  
protection is implemented for the IOCONx and FCLCONx  
registers. The write protection feature prevents any inad-  
vertent writes to these registers. This protection feature  
can be controlled by the PWMLOCK Configuration bit  
(FDEVOPT<0>). The default state of the write protection  
feature is enabled (PWMLOCK = 1). The write protection  
feature can be disabled by configuring PWMLOCK = 0.  
The correct unlocking sequence is described in  
Example 16-1.  
EXAMPLE 16-1:  
PWM WRITE-PROTECTED REGISTER UNLOCK SEQUENCE  
; Writing to FCLCON1 register requires unlock sequence  
mov #0xabcd, w10  
mov #0x4321, w11  
mov #0x0000, w0  
mov w10, PWMKEY  
mov w11, PWMKEY  
mov w0, FCLCON1  
; Load first unlock key to w10 register  
; Load second unlock key to w11 register  
; Load desired value of FCLCON1 register in w0  
; Write first unlock key to PWMKEY register  
; Write second unlock key to PWMKEY register  
; Write desired value to FCLCON1 register  
; Set PWM ownership and polarity using the IOCON1 register  
; Writing to IOCON1 register requires unlock sequence  
mov #0xabcd, w10  
mov #0x4321, w11  
mov #0xF000, w0  
mov w10, PWMKEY  
mov w11, PWMKEY  
mov w0, IOCON1  
; Load first unlock key to w10 register  
; Load second unlock key to w11 register  
; Load desired value of IOCON1 register in w0  
; Write first unlock key to PWMKEY register  
; Write second unlock key to PWMKEY register  
; Write desired value to IOCON1 register  
16.3.1  
KEY RESOURCES  
16.3 PWM Resources  
“High-Speed PWM Module” (DS70000323) in  
the “dsPIC33/PIC24 Family Reference Manual”  
Many useful resources are provided on the main prod-  
uct page of the Microchip website for the devices listed  
in this data sheet. This product page contains the latest  
updates and additional information.  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All Related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
• Development Tools  
DS70005258C-page 190  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 16-1:  
HIGH-SPEED PWM MODULE ARCHITECTURAL DIAGRAM  
SYNCI1/SYNCI2  
Data Bus  
Primary and Secondary  
Master Time Base  
SYNCO1/SYNCO2  
Synchronization Signal  
PWM1 Interrupt  
PWM1H  
PWM  
Generator 1  
PWM1L  
Fault, Current Limit  
Synchronization Signal  
PWM2 Interrupt  
PWM2H  
PWM  
Generator 2  
PWM2L  
CPU  
Fault, Current Limit  
PWM3 through PWM7  
Synchronization Signal  
PWM8 Interrupt  
PWM8H  
PWM  
Generator 8  
PWM8L  
Primary Trigger  
Secondary Trigger  
Fault and  
Current Limit  
ADC Module  
Special Event Trigger  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 191  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 16-2:  
SIMPLIFIED CONCEPTUAL BLOCK DIAGRAM OF THE HIGH-SPEED PWM  
PTCON, PTCON2  
STCON, STCON2  
Module Control and Timing  
SYNCI1  
SYNCI2  
PWMKEY  
SYNCO1  
PTPER  
SEVTCMP  
Comparator  
Special Event Compare Trigger  
Special Event  
Comparator  
Postscaler  
Special Event Trigger  
Master Time Base Counter  
Clock  
Prescaler  
PMTMR  
STPER  
Primary Master Time Base  
SYNCO2  
SEVTCMP  
Special Event Compare Trigger  
Special Event  
Postscaler  
Comparator  
Comparator  
Special Event Trigger  
Master Time Base Counter  
Clock  
SMTMR  
MDC  
Prescaler  
Secondary Master Time Base  
Master Duty Cycle Register  
PDCx  
PWM Generator 1  
MUX  
PWMx Output Mode  
Comparator  
Control Logic  
PWMCAPx  
ADC Trigger  
User Override Logic  
Pin  
Control  
Logic  
Dead-Time  
Logic  
PTMRx  
PWM1H  
PWM1L  
Current-Limit  
Override Logic  
Comparator  
PHASEx  
SDCx  
TRIGx  
Fault Override Logic  
Secondary PWMx  
MUX  
Fault and  
Current-Limit  
Logic  
Interrupt  
Logic  
Comparator  
FLTx  
ADC Trigger  
Comparator  
STMRx  
SPHASEx  
STRIGx  
FCLCONx  
LEBCONx  
IOCONx  
ALTDTRx  
DTRx  
PWMCONx  
AUXCONx  
TRGCONx  
PWMxH  
PWMxL  
FLTx  
PWM Generator 1 – PWM Generator 8  
DS70005258C-page 192  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-1: PTCON: PWM TIME BASE CONTROL REGISTER  
R/W-0  
PTEN  
U-0  
R/W-0  
HSC/R-0  
SESTAT  
R/W-0  
SEIEN  
R/W-0  
EIPU(1)  
R/W-0  
R/W-0  
PTSIDL  
SYNCPOL(1) SYNCOEN(1)  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SYNCEN(1) SYNCSRC2(1) SYNCSRC1(1) SYNCSRC0(1) SEVTPS3(1) SEVTPS2(1) SEVTPS1(1) SEVTPS0(1)  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PTEN: PWM Module Enable bit  
1= PWM module is enabled  
0= PWM module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
PTSIDL: PWM Time Base Stop in Idle Mode bit  
1= PWM time base halts in CPU Idle mode  
0= PWM time base runs in CPU Idle mode  
bit 12  
bit 11  
bit 10  
bit 9  
SESTAT: Special Event Interrupt Status bit  
1= Special event interrupt is pending  
0= Special event interrupt is not pending  
SEIEN: Special Event Interrupt Enable bit  
1= Special event interrupt is enabled  
0= Special event interrupt is disabled  
EIPU: Enable Immediate Period Updates bit(1)  
1= Active Period register is updated immediately  
0= Active Period register updates occur on PWM cycle boundaries  
SYNCPOL: Synchronize Input and Output Polarity bit(1)  
1= SYNCIx/SYNCO1 polarity is inverted (active-low)  
0= SYNCIx/SYNCO1 is active-high  
bit 8  
SYNCOEN: Primary Time Base Synchronization Enable bit(1)  
1= SYNCO1 output is enabled  
0= SYNCO1 output is disabled  
bit 7  
SYNCEN: External Time Base Synchronization Enable bit(1)  
1= External synchronization of primary time base is enabled  
0= External synchronization of primary time base is disabled  
bit 6-4  
SYNCSRC<2:0>: Synchronous Source Selection bits(1)  
111= Reserved  
101= Reserved  
100= Reserved  
011= PTG Trigger Output 17  
010= PTG Trigger Output 16  
001= SYNCI2  
000= SYNCI1  
Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user  
application must program the Period register with a value that is slightly larger than the expected period of  
the external synchronization input signal.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 193  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-1: PTCON: PWM TIME BASE CONTROL REGISTER (CONTINUED)  
bit 3-0  
SEVTPS<3:0>: PWM Special Event Trigger Output Postscaler Select bits(1)  
1111= 1:16 postscaler generates a Special Event Trigger on every sixteenth compare match event  
0001= 1:2 postscaler generates a Special Event Trigger on every second compare match event  
0000= 1:1 postscaler generates a Special Event Trigger on every compare match event  
Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user  
application must program the Period register with a value that is slightly larger than the expected period of  
the external synchronization input signal.  
REGISTER 16-2: PTCON2: PWM CLOCK DIVIDER SELECT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
PCLKDIV<2:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits(1)  
111= Reserved  
110= Divide-by-64, maximum PWM timing resolution  
101= Divide-by-32, maximum PWM timing resolution  
100= Divide-by-16, maximum PWM timing resolution  
011= Divide-by-8, maximum PWM timing resolution  
010= Divide-by-4, maximum PWM timing resolution  
001= Divide-by-2, maximum PWM timing resolution  
000= Divide-by-1, maximum PWM timing resolution (power-on default)  
Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
DS70005258C-page 194  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-3: PTPER: PWM PRIMARY MASTER TIME BASE PERIOD REGISTER(1,2)  
R/W-1  
bit 15  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
PTPER<15:8>  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
PTPER<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PTPER<15:0>: Primary Master Time Base (PMTMR) Period Value bits  
Note 1: The PWMx time base has a minimum value of 0x0010 and a maximum value of 0xFFF8.  
2: Any period value that is less than 0x0028 must have the Least Significant three bits set to ‘0’, thus yielding  
a period resolution at 8.32 ns (at fastest auxiliary clock rate).  
REGISTER 16-4: SEVTCMP: PWM SPECIAL EVENT COMPARE REGISTER(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SEVTCMP<12:5>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
SEVTCMP<4:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
SEVTCMP<12:0>: Special Event Compare Count Value bits  
Unimplemented: Read as ‘0’  
Note 1: One LSB = 1.04 ns (at fastest auxiliary clock rate); therefore, the minimum SEVTCMP resolution is 8.32 ns.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 195  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-5: STCON: PWM SECONDARY MASTER TIME BASE CONTROL REGISTER  
U-0  
U-0  
U-0  
HSC/R-0  
SESTAT  
R/W-0  
SEIEN  
R/W-0  
EIPU(1)  
R/W-0  
R/W-0  
SYNCOEN  
bit 8  
SYNCPOL  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SEVTPS0  
bit 0  
SYNCEN  
SYNCSRC2 SYNCSRC1 SYNCSRC0  
SEVTPS3  
SEVTPS2  
SEVTPS1  
bit 7  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
SESTAT: Special Event Interrupt Status bit  
1= Secondary special event interrupt is pending  
0= Secondary special event interrupt is not pending  
bit 11  
bit 10  
bit 9  
SEIEN: Special Event Interrupt Enable bit  
1= Secondary special event interrupt is enabled  
0= Secondary special event interrupt is disabled  
EIPU: Enable Immediate Period Updates bit(1)  
1= Active Secondary Period register is updated immediately  
0= Active Secondary Period register updates occur on PWMx cycle boundaries  
SYNCPOL: Synchronize Input and Output Polarity bit  
1= SYNCIx/SYNCO2 polarity is inverted (active-low)  
0= SYNCIx/SYNCO2 polarity is active-high  
bit 8  
SYNCOEN: Secondary Master Time Base Synchronization Enable bit  
1= SYNCO2 output is enabled  
0= SYNCO2 output is disabled  
bit 7  
SYNCEN: External Secondary Master Time Base Synchronization Enable bit  
1= External synchronization of secondary time base is enabled  
0= External synchronization of secondary time base is disabled  
bit 6-4  
SYNCSRC<2:0>: Secondary Time Base Sync Source Selection bits  
111= Reserved  
101= Reserved  
100= Reserved  
011= PTG Trigger Output 17  
010= PTG Trigger Output 16  
001= SYNCI2  
000= SYNCI1  
bit 3-0  
SEVTPS<3:0>: PWMx Secondary Special Event Trigger Output Postscaler Select bits  
1111= 1:16 postcaler  
0001= 1:2 postcaler  
0000= 1:1 postscaler  
Note 1: This bit only applies to the secondary master time base period.  
DS70005258C-page 196  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-6: STCON2: PWM SECONDARY CLOCK DIVIDER SELECT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
PCLKDIV<2:0>(1)  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits(1)  
111= Reserved  
110= Divide-by-64, maximum PWM timing resolution  
101= Divide-by-32, maximum PWM timing resolution  
100= Divide-by-16, maximum PWM timing resolution  
011= Divide-by-8, maximum PWM timing resolution  
010= Divide-by-4, maximum PWM timing resolution  
001= Divide-by-2, maximum PWM timing resolution  
000= Divide-by-1, maximum PWM timing resolution (power-on default)  
Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
REGISTER 16-7: STPER: PWM SECONDARY MASTER TIME BASE PERIOD REGISTER(1,2)  
R/W-1  
bit 15  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
STPER<15:8>  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
STPER<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
STPER<15:0>: Secondary Master Time Base (SMTMR) Period Value bits  
Note 1: The PWMx time base has a minimum value of 0x0010 and a maximum value of 0xFFF8.  
2: Any period value that is less than 0x0028 must have the Least Significant 3 bits set to ‘0’, thus yielding a  
period resolution at 8.32 ns (at fastest auxiliary clock rate).  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 197  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-8: SSEVTCMP: PWM SECONDARY SPECIAL EVENT COMPARE REGISTER(1)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSEVTCMP<12:5>  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
SSEVTCMP<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
SSEVTCMP<12:0>: Special Event Compare Count Value bits  
Unimplemented: Read as ‘0’  
Note 1: One LSB = 1.04 ns (at fastest auxiliary clock rate); therefore, the minimum SSEVTCMP resolution is 8.32 ns.  
REGISTER 16-9: CHOP: PWM CHOP CLOCK GENERATOR REGISTER(1)  
R/W-0  
CHPCLKEN  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CHOPCLK6 CHOPCLK5  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
CHOPCLK4 CHOPCLK3 CHOPCLK2 CHOPCLK1 CHOPCLK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CHPCLKEN: Enable Chop Clock Generator bit  
1= Chop clock generator is enabled  
0= Chop clock generator is disabled  
bit 14-10  
bit 9-3  
Unimplemented: Read as ‘0’  
CHOPCLK<6:0>: Chop Clock Divider bits  
Value is in 8.32 ns increments. The frequency of the chop clock signal is given by:  
Chop Frequency = 1/(16.64 * (CHOP<7:3> + 1) * Primary Master PWM Input Clock Period).  
bit 2-0  
Unimplemented: Read as ‘0’  
Note 1: The chop clock generator operates with the primary PWM clock prescaler (PCLKDIV<2:0>) in the  
PTCON2 register (Register 16-2).  
DS70005258C-page 198  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-10: MDC: PWM MASTER DUTY CYCLE REGISTER(1,2)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
MDC<15:8>  
R/W-0  
R/W-0  
R/W-0  
MDC<7:0>  
R/W-0  
R/W-0  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
MDC<15:0>: PWM Master Duty Cycle Value bits  
Note 1: The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008,  
while the maximum pulse width generated corresponds to a value of Period – 0x0008.  
2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 to 40 ns, depending on the mode of  
operation), PWM duty cycle resolution will increase from one to three LSBs.  
REGISTER 16-11: PWMKEY: PWM PROTECTION LOCK/UNLOCK KEY REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PWMKEY<15:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PWMKEY<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PWMKEY<15:0>: PWM Protection Lock/Unlock Key Value bits  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 199  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-12: PWMCONx: PWMx CONTROL REGISTER (x = 1 to 8)  
HSC/R-0  
FLTSTAT(1)  
bit 15  
HSC/R-0  
CLSTAT(1)  
HSC/R-0  
R/W-0  
R/W-0  
CLIEN  
R/W-0  
R/W-0  
ITB(3)  
R/W-0  
MDCS(3)  
TRGSTAT  
FLTIEN  
TRGIEN  
bit 8  
R/W-0  
DTC1  
R/W-0  
DTC0  
U-0  
U-0  
R/W-0  
MTBS  
R/W-0  
CAM(2,3,4)  
R/W-0  
XPRES(5)  
R/W-0  
IUE  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
FLTSTAT: Fault Interrupt Status bit(1)  
1= Fault interrupt is pending  
0= No Fault interrupt is pending  
This bit is cleared by setting FLTIEN = 0.  
CLSTAT: Current-Limit Interrupt Status bit(1)  
1= Current-limit interrupt is pending  
0= No current-limit interrupt is pending  
This bit is cleared by setting CLIEN = 0.  
TRGSTAT: Trigger Interrupt Status bit  
1= Trigger interrupt is pending  
0= No trigger interrupt is pending  
This bit is cleared by setting TRGIEN = 0.  
bit 12  
bit 11  
bit 10  
bit 9  
FLTIEN: Fault Interrupt Enable bit  
1= Fault interrupt is enabled  
0= Fault interrupt is disabled and the FLTSTAT bit is cleared  
CLIEN: Current-Limit Interrupt Enable bit  
1= Current-limit interrupt is enabled  
0= Current-limit interrupt is disabled and the CLSTAT bit is cleared  
TRGIEN: Trigger Interrupt Enable bit  
1= A trigger event generates an interrupt request  
0= Trigger event interrupts are disabled and the TRGSTAT bit is cleared  
ITB: Independent Time Base Mode bit(3)  
1= PHASEx/SPHASEx registers provide the time base period for this PWMx generator  
0= PTPER register provides timing for this PWMx generator  
bit 8  
MDCS: Master Duty Cycle Register Select bit(3)  
1= MDC register provides duty cycle information for this PWMx generator  
0= PDCx and SDCx registers provide duty cycle information for this PWMx generator  
Note 1: Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.  
2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the  
CAM bit is ignored.  
3: These bits should not be changed after the PWMx is enabled by setting PTEN (PTCON<15>) = 1.  
4: Center-Aligned mode ignores the Least Significant three bits of the Duty Cycle, Phase and Dead-Time  
registers. The highest Center-Aligned mode resolution available is 8.32 ns with the clock prescaler set to  
the fastest clock.  
5: Configure CLMOD (FCLCONx<8>) = 0and ITB (PWMCONx<9>) = 1to operate in External Period Reset mode.  
DS70005258C-page 200  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-12: PWMCONx: PWMx CONTROL REGISTER (x = 1 to 8) (CONTINUED)  
bit 7-6  
DTC<1:0>: Dead-Time Control bits  
11= Reserved  
10= Dead-time function is disabled  
01= Negative dead time is actively applied for Complementary Output mode  
00= Positive dead time is actively applied for all Output modes  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
MTBS: Master Time Base Select bit  
1= PWMx generator uses the secondary master time base for synchronization and the clock source for  
the PWMx generation logic (if secondary time base is available)  
0= PWMx generator uses the primary master time base for synchronization and the clock source for the  
PWMx generation logic  
bit 2  
bit 1  
bit 0  
CAM: Center-Aligned Mode Enable bit(2,3,4)  
1= Center-Aligned mode is enabled  
0= Edge-Aligned mode is enabled  
XPRES: External PWMx Reset Control bit(5)  
1= Current-limit source resets the time base for this PWMx generator if it is in Independent Time Base mode  
0= External pins do not affect the PWMx time base  
IUE: Immediate Update Enable bit  
1= Updates to the active Duty Cycle, Phase Offset, Dead-Time and local Time Base Period registers are  
immediate  
0= Updates to the active Duty Cycle, Phase Offset, Dead-Time and local Time Base Period registers are  
synchronized to the local PWMx time base  
Note 1: Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.  
2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the  
CAM bit is ignored.  
3: These bits should not be changed after the PWMx is enabled by setting PTEN (PTCON<15>) = 1.  
4: Center-Aligned mode ignores the Least Significant three bits of the Duty Cycle, Phase and Dead-Time  
registers. The highest Center-Aligned mode resolution available is 8.32 ns with the clock prescaler set to  
the fastest clock.  
5: Configure CLMOD (FCLCONx<8>) = 0and ITB (PWMCONx<9>) = 1to operate in External Period Reset mode.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 201  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-13: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER (x = 1 to 8)(1,2,3)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PDCx<15:8>  
R/W-0  
R/W-0  
R/W-0  
PDCx<7:0>  
R/W-0  
R/W-0  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PDCx<15:0>: PWMx Generator Duty Cycle Value bits  
Note 1: In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In the  
Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both  
the PWMxH and PWMxL.  
2: The smallest pulse width that can be generated on the PWMx output corresponds to a value of 0x0008,  
while the maximum pulse width generated corresponds to a value of Period – 0x0008.  
3: As the duty cycle gets closer to 0% or 100% of the PWM period (0 to 40 ns, depending on the mode of  
operation), PWMx duty cycle resolution will increase from one to three LSBs.  
REGISTER 16-14: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER (x = 1 to 8)(1,2,3)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SDCx<15:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0 R/W-0  
SDCx<7:0>  
R/W-0  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
SDCx<15:0>: PWMx Secondary Duty Cycle for PWMxL Output Pin bits  
Note 1: The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the  
SDCx register controls the PWMxL duty cycle.  
2: The smallest pulse width that can be generated on the PWMx output corresponds to a value of 0x0008,  
while the maximum pulse width generated corresponds to a value of Period – 0x0008.  
3: As the duty cycle gets closer to 0% or 100% of the PWM period (0 to 40 ns, depending on the mode of  
operation), PWMx duty cycle resolution will increase from one to three LSBs.  
DS70005258C-page 202  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-15: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER (x = 1 to 8)(1,2)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PHASEx<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PHASEx<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PHASEx<15:0>: PWMx Phase-Shift Value or Independent Time Base Period for the PWMx Generator bits  
Note 1: If PWMCONx<9> = 0, the following applies based on the mode of operation:  
• Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01or 10);  
PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs  
• True Independent Output mode (IOCONx<11:10> = 11); PHASEx<15:0> = Phase-shift value for  
PWMxH only  
• When the PHASEx/SPHASEx registers provide the phase shift with respect to the master time base;  
therefore, the valid range is 0x0000 through period  
2: If PWMCONx<9> = 1, the following applies based on the mode of operation:  
• Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01or 10);  
PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL  
• True Independent Output mode (IOCONx<11:10> = 11); PHASEx<15:0> = Independent time base  
period value for PWMxH only  
• When the PHASEx/SPHASEx registers provide the local period, the valid range is 0x0000-0xFFF8  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 203  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-16: SPHASEx: PWMx SECONDARY PHASE-SHIFT REGISTER (x = 1 to 8)(1,2)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
SPHASEx<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SPHASEx<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
SPHASEx<15:0>: Secondary Phase Offset for PWMxL Output Pin bits  
(used in Independent PWM mode only)  
Note 1: If PWMCONx<9> = 0, the following applies based on the mode of operation:  
• Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01or 10);  
SPHASEx<15:0> = Not used  
• True Independent Output mode (IOCONx<11:10> = 11), SPHASEx<15:0> = Phase-shift value for  
PWMxL only  
2: If PWMCONx<9> = 1, the following applies based on the mode of operation:  
• Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01or 10);  
SPHASEx<15:0> = Not used  
• True Independent Output mode (IOCONx<11:10> = 11); SPHASEx<15:0> = Independent time base  
period value for PWMxL only  
• When the PHASEx/SPHASEx registers provide the local period, the valid range of values is  
0x0010-0xFFF8  
DS70005258C-page 204  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-17: DTRx: PWMx DEAD-TIME REGISTER (x = 1 to 8)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
DTRx<13:8>  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0 R/W-0  
DTRx<7:0>  
R/W-0  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-0  
Unimplemented: Read as ‘0’  
DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits  
REGISTER 16-18: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER (x = 1 to 8)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ALTDTRx<13:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ALTDTRx<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-0  
Unimplemented: Read as ‘0’  
ALTDTRx<13:0>: Unsigned 14-Bit Alternate Dead-Time Value for PWMx Dead-Time Unit bits  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 205  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-19: TRGCONx: PWMx TRIGGER CONTROL REGISTER (x = 1 to 8)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
TRGDIV3  
TRGDIV2  
TRGDIV1  
TRGDIV0  
bit 15  
bit 8  
R/W-0  
DTM(1)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TRGSTRT5 TRGSTRT4 TRGSTRT3 TRGSTRT2 TRGSTRT1 TRGSTRT0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-12  
TRGDIV<3:0>: Trigger # Output Divider bits  
1111= Trigger output for every 16th trigger event  
1110= Trigger output for every 15th trigger event  
1101= Trigger output for every 14th trigger event  
1100= Trigger output for every 13th trigger event  
1011= Trigger output for every 12th trigger event  
1010= Trigger output for every 11th trigger event  
1001= Trigger output for every 10th trigger event  
1000= Trigger output for every 9th trigger event  
0111= Trigger output for every 8th trigger event  
0110= Trigger output for every 7th trigger event  
0101= Trigger output for every 6th trigger event  
0100= Trigger output for every 5th trigger event  
0011= Trigger output for every 4th trigger event  
0010= Trigger output for every 3rd trigger event  
0001= Trigger output for every 2nd trigger event  
0000= Trigger output for every trigger event  
bit 11-8  
bit 7  
Unimplemented: Read as ‘0’  
DTM: Dual Trigger Mode bit(1)  
1= Secondary trigger event is combined with the primary trigger event to create a PWM trigger  
0= Secondary trigger event is not combined with the primary trigger event to create a PWM trigger;  
two separate PWM triggers are generated  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-0  
TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits  
111111= Wait 63 PWM cycles before generating the first trigger event after the module is enabled  
000010= Wait 2 PWM cycles before generating the first trigger event after the module is enabled  
000001= Wait 1 PWM cycle before generating the first trigger event after the module is enabled  
000000= Wait 0 PWM cycles before generating the first trigger event after the module is enabled  
Note 1: The secondary PWMx generator cannot generate PWM trigger interrupts.  
DS70005258C-page 206  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-20: IOCONx: PWMx I/O CONTROL REGISTER (x = 1 to 8)  
R/W-1  
PENH  
R/W-1  
PENL  
R/W-0  
POLH  
R/W-0  
POLL  
R/W-0  
PMOD1(1)  
R/W-0  
PMOD0(1)  
R/W-0  
R/W-0  
OVRENH  
OVRENL  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CLDAT1(2)  
R/W-0  
CLDAT0(2)  
R/W-0  
SWAP  
R/W-0  
OVRDAT1  
OVRDAT0  
FLTDAT1(2) FLTDAT0(2)  
OSYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PENH: PWMxH Output Pin Ownership bit  
1= PWMx module controls the PWMxH pin  
0= GPIO module controls the PWMxH pin  
bit 14  
PENL: PWMxL Output Pin Ownership bit  
1= PWMx module controls the PWMxL pin  
0= GPIO module controls the PWMxL pin  
bit 13  
POLH: PWMxH Output Pin Polarity bit  
1= PWMxH pin is active-low  
0= PWMxH pin is active-high  
bit 12  
POLL: PWMxL Output Pin Polarity bit  
1= PWMxL pin is active-low  
0= PWMxL pin is active-high  
bit 11-10  
PMOD<1:0>: PWMx I/O Pin Mode bits(1)  
11= PWMx I/O pin pair is in the True Independent Output mode  
10= PWMx I/O pin pair is in the Push-Pull Output mode  
01= PWMx I/O pin pair is in the Redundant Output mode  
00= PWMx I/O pin pair is in the Complementary Output mode  
bit 9  
OVRENH: Override Enable for PWMxH Pin bit  
1= OVRDAT1 provides data for output on the PWMxH pin  
0= PWMx generator provides data for the PWMxH pin  
bit 8  
OVRENL: Override Enable for PWMxL Pin bit  
1= OVRDAT0 provides data for output on the PWMxL pin  
0= PWMx generator provides data for the PWMxL pin  
bit 7-6  
bit 5-4  
OVRDAT<1:0>: Data for PWMxH, PWMxL Pins if Override is Enabled bits  
If OVRENH = 1, OVRDAT1 provides data for the PWMxH pin.  
If OVRENL = 1, OVRDAT0 provides data for the PWMxL pin.  
FLTDAT<1:0>: State for PWMxH and PWMxL Pins if FLTMOD<1:0> are Enabled bits(2)  
IFLTMOD (FCLCONx<15>) = 0: Normal Fault mode:  
If Fault is active, then FLTDAT1 provides the state for the PWMxH pin.  
If Fault is active, then FLTDAT0 provides the state for the PWMxL pin.  
IFLTMOD (FCLCONx<15>) = 1: Independent Fault mode:  
If current limit is active, then FLTDAT1 provides the state for the PWMxH pin.  
If Fault is active, then FLTDAT0 provides the state for the PWMxL pin.  
Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).  
2: State represents the active/inactive state of the PWMx depending on the POLH and POLL bits settings.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 207  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-20: IOCONx: PWMx I/O CONTROL REGISTER (x = 1 to 8) (CONTINUED)  
bit 3-2  
CLDAT<1:0>: State for PWMxH and PWMxL Pins if CLMOD is Enabled bits(2)  
IFLTMOD (FCLCONx<15>) = 0: Normal Fault mode:  
If current limit is active, then CLDAT1 provides the state for the PWMxH pin.  
If current limit is active, then CLDAT0 provides the state for the PWMxL pin.  
IFLTMOD (FCLCONx<15>) = 1: Independent Fault mode:  
CLDAT<1:0> bits are ignored.  
bit 1  
bit 0  
SWAP: SWAP PWMxH and PWMxL Pins bit  
1= PWMxH output signal is connected to the PWMxL pins; PWMxL output signal is connected to the  
PWMxH pins  
0= PWMxH and PWMxL pins are mapped to their respective pins  
OSYNC: Output Override Synchronization bit  
1= Output overrides via the OVRDAT<1:0> bits are synchronized to the PWMx time base  
0= Output overrides via the OVRDAT<1:0> bits occur on the next CPU clock boundary  
Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).  
2: State represents the active/inactive state of the PWMx depending on the POLH and POLL bits settings.  
REGISTER 16-21: TRIGx: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER (x = 1 to 8)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TRGCMP<12:5>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
TRGCMP<4:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
TRGCMP<12:0>: Trigger Compare Value bits  
When the primary PWMx functions in the local time base, this register contains the compare values  
that can trigger the ADC module.  
Unimplemented: Read as ‘0’  
DS70005258C-page 208  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-22: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER  
(x = 1 to 8)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IFLTMOD  
CLSRC4  
CLSRC3  
CLSRC2  
CLSRC1  
CLSRC0  
CLPOL(1)  
CLMOD  
bit 15  
bit 8  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
FLTSRC4  
FLTSRC3  
FLTSRC2  
FLTSRC1  
FLTSRC0  
FLTPOL(1)  
FLTMOD1  
FLTMOD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
IFLTMOD: Independent Fault Mode Enable bit  
1= Independent Fault mode: Current-limit input maps FLTDAT1 to the PWMxH output and the Fault  
input maps FLTDAT0 to the PWMxL output; the CLDAT<1:0> bits are not used for override functions  
0= Normal Fault mode: Current-Limit mode maps CLDAT<1:0> bits to the PWMxH and PWMxL  
outputs; the PWM Fault mode maps FLTDAT<1:0> to the PWMxH and PWMxL outputs  
bit 14-10  
CLSRC<4:0>: Current-Limit Control Signal Source Select for PWMx Generator bits  
11111= FLT31  
10001= Reserved  
10000= Analog Comparator 4  
01111= Analog Comparator 3  
01110= Analog Comparator 2  
01101= Analog Comparator 1  
01100= Fault 12  
01011= Fault 11  
01010= Fault 10  
01001= Fault 9  
01000= Fault 8  
00111= Fault 7  
00110= Fault 6  
00101= Fault 5  
00100= Fault 4  
00011= Fault 3  
00010= Fault 2  
00001= Fault 1  
00000= Reserved  
bit 9  
bit 8  
CLPOL: Current-Limit Polarity for PWMx Generator bit(1)  
1= The selected current-limit source is active-low  
0= The selected current-limit source is active-high  
CLMOD: Current-Limit Mode Enable for PWMx Generator bit  
1= Current-Limit mode is enabled  
0= Current-Limit mode is disabled  
Note 1: These bits should be changed only when PTEN = 0(PTCON<15>).  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 209  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-22: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER  
(x = 1 to 8) (CONTINUED)  
bit 7-3  
FLTSRC<4:0>: Fault Control Signal Source Select for PWMx Generator bits  
11111= Fault 31 (Default)  
11110-10111= Reserved  
10110= Fault 22  
10101= Fault 21  
10100= Fault 20  
10011= Fault 19  
10010= Fault 18  
10001= Fault 17  
10000= Analog Comparator 4  
01111= Analog Comparator 3  
01110= Analog Comparator 2  
01101= Analog Comparator 1  
01100= Fault 12  
01011= Fault 11  
01010= Fault 10  
01001= Fault 9  
01000= Fault 8  
00111= Fault 7  
00110= Fault 6  
00101= Fault 5  
00100= Fault 4  
00011= Fault 3  
00010= Fault 2  
00001= Fault 1  
00000= Reserved  
bit 2  
FLTPOL: Fault Polarity for PWMx Generator bit(1)  
1= The selected Fault source is active-low  
0= The selected Fault source is active-high  
bit 1-0  
FLTMOD<1:0>: Fault Mode for PWMx Generator bits  
11= Fault input is disabled  
10= Reserved  
01= The selected Fault source forces the PWMxH, PWMxL pins to FLTDATx values (cycle)  
00= The selected Fault source forces the PWMxH, PWMxL pins to FLTDATx values (latched condition)  
Note 1: These bits should be changed only when PTEN = 0(PTCON<15>).  
DS70005258C-page 210  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-23: STRIGx: PWMx SECONDARY TRIGGER COMPARE VALUE REGISTER (x = 1 to 8)(1)  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
STRGCMP<12:5>  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
STRGCMP<4:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
STRGCMP<12:0>: Secondary Trigger Compare Value bits  
When the secondary PWMx functions in the local time base, this register contains the compare values  
that can trigger the ADC module.  
bit 2-0  
Unimplemented: Read as ‘0’  
Note 1: STRIGx cannot generate the PWM trigger interrupts.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 211  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-24: LEBCONx: PWMx LEADING-EDGE BLANKING (LEB) CONTROL REGISTER  
(x = 1 to 8)  
R/W-0  
PHR  
R/W-0  
PHF  
R/W-0  
PLR  
R/W-0  
PLF  
R/W-0  
R/W-0  
U-0  
U-0  
FLTLEBEN  
CLLEBEN  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
BCH(1)  
R/W-0  
BCL(1)  
R/W-0  
BPHH  
R/W-0  
BPHL  
R/W-0  
BPLH  
R/W-0  
BPLL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
PHR: PWMxH Rising Edge Trigger Enable bit  
1= Rising edge of PWMxH will trigger the Leading-Edge Blanking counter  
0= Leading-Edge Blanking ignores the rising edge of PWMxH  
PHF: PWMxH Falling Edge Trigger Enable bit  
1= Falling edge of PWMxH will trigger the Leading-Edge Blanking counter  
0= Leading-Edge Blanking ignores the falling edge of PWMxH  
PLR: PWMxL Rising Edge Trigger Enable bit  
1= Rising edge of PWMxL will trigger the Leading-Edge Blanking counter  
0= Leading-Edge Blanking ignores the rising edge of PWMxL  
PLF: PWMxL Falling Edge Trigger Enable bit  
1= Falling edge of PWMxL will trigger the Leading-Edge Blanking counter  
0= Leading-Edge Blanking ignores the falling edge of PWMxL  
FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit  
1= Leading-Edge Blanking is applied to the selected Fault input  
0= Leading-Edge Blanking is not applied to the selected Fault input  
CLLEBEN: Current-Limit Leading-Edge Blanking Enable bit  
1= Leading-Edge Blanking is applied to the selected current-limit input  
0= Leading-Edge Blanking is not applied to the selected current-limit input  
bit 9-6  
bit 5  
Unimplemented: Read as ‘0’  
BCH: Blanking in Selected Blanking Signal High Enable bit(1)  
1= State blanking (of current-limit and/or Fault input signals) when the selected blanking signal is high  
0= No blanking when the selected blanking signal is high  
bit 4  
bit 3  
bit 2  
BCL: Blanking in Selected Blanking Signal Low Enable bit(1)  
1= State blanking (of current-limit and/or Fault input signals) when the selected blanking signal is low  
0= No blanking when the selected blanking signal is low  
BPHH: Blanking in PWMxH High Enable bit  
1= State blanking (of current-limit and/or Fault input signals) when the PWMxH output is high  
0= No blanking when the PWMxH output is high  
BPHL: Blanking in PWMxH Low Enable bit  
1= State blanking (of current-limit and/or Fault input signals) when the PWMxH output is low  
0= No blanking when the PWMxH output is low  
Note 1: The blanking signal is selected via the BLANKSEL<3:0> bits in the AUXCONx register.  
DS70005258C-page 212  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-24: LEBCONx: PWMx LEADING-EDGE BLANKING (LEB) CONTROL REGISTER  
(x = 1 to 8) (CONTINUED)  
bit 1  
BPLH: Blanking in PWMxL High Enable bit  
1= State blanking (of current-limit and/or Fault input signals) when the PWMxL output is high  
0= No blanking when the PWMxL output is high  
bit 0  
BPLL: Blanking in PWMxL Low Enable bit  
1= State blanking (of current-limit and/or Fault input signals) when the PWMxL output is low  
0= No blanking when the PWMxL output is low  
Note 1: The blanking signal is selected via the BLANKSEL<3:0> bits in the AUXCONx register.  
REGISTER 16-25: LEBDLYx: PWMx LEADING-EDGE BLANKING DELAY REGISTER (x = 1 to 8)  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LEB<8:5>  
bit 15  
bit 8  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
LEB<4:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-3  
Unimplemented: Read as ‘0’  
LEB<8:0>: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits  
The value is in 8.32 ns increments.  
bit 2-0  
Unimplemented: Read as ‘0’  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 213  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-26: AUXCONx: PWMx AUXILIARY CONTROL REGISTER (x = 1 to 8)  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
HRPDIS  
HRDDIS  
BLANKSEL3 BLANKSEL2 BLANKSEL1 BLANKSEL0  
bit 8  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN  
CHOPLEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
HRPDIS: High-Resolution PWMx Period Disable bit  
1= High-resolution PWMx period is disabled to reduce power consumption  
0= High-resolution PWMx period is enabled  
HRDDIS: High-Resolution PWMx Duty Cycle Disable bit  
1= High-resolution PWMx duty cycle is disabled to reduce power consumption  
0= High-resolution PWMx duty cycle is enabled  
bit 13-12  
bit 11-8  
Unimplemented: Read as ‘0’  
BLANKSEL<3:0>: PWMx State Blank Source Select bits  
The selected state blank signal will block the current-limit and/or Fault input signals  
(if enabled via the BCH and BCL bits in the LEBCONx register).  
1001= Reserved  
1000= PWM8H is selected as the state blank source  
0111= PWM7H is selected as the state blank source  
0110= PWM6H is selected as the state blank source  
0101= PWM5H is selected as the state blank source  
0100= PWM4H is selected as the state blank source  
0011= PWM3H is selected as the state blank source  
0010= PWM2H is selected as the state blank source  
0001= PWM1H is selected as the state blank source  
0000= No state blanking  
bit 7-6  
bit 5-2  
Unimplemented: Read as ‘0’  
CHOPSEL<3:0>: PWMx Chop Clock Source Select bits  
The selected signal will enable and disable (chop) the selected PWMx outputs.  
1001= Reserved  
1000= PWM8H is selected as the chop clock source  
0111= PWM7H is selected as the chop clock source  
0110= PWM6H is selected as the chop clock source  
0101= PWM5H is selected as the chop clock source  
0100= PWM4H is selected as the chop clock source  
0011= PWM3H is selected as the chop clock source  
0010= PWM2H is selected as the chop clock source  
0001= PWM1H is selected as the chop clock source  
0000= Chop clock generator is selected as the chop clock source  
bit 1  
bit 0  
CHOPHEN: PWMxH Output Chopping Enable bit  
1= PWMxH chopping function is enabled  
0= PWMxH chopping function is disabled  
CHOPLEN: PWMxL Output Chopping Enable bit  
1= PWMxL chopping function is enabled  
0= PWMxL chopping function is disabled  
DS70005258C-page 214  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 16-27: PWMCAPx: PWMx PRIMARY TIME BASE CAPTURE REGISTER (x = 1 to 8)  
R-0  
bit 15  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
PWMCAP<12:5>(1,2,3,4)  
bit 8  
bit 0  
R-0  
R-0  
R-0  
R-0  
U-0  
U-0  
U-0  
PWMCAP<4:0>(1,2,3,4)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
PWMCAP<12:0>: PWMx Primary Time Base Capture Value bits(1,2,3,4)  
The value in this register represents the captured PWMx time base value when a leading edge is  
detected on the current-limit input.  
bit 2-0  
Unimplemented: Read as ‘0’  
Note 1: The capture feature is only available on a primary output (PWMxH).  
2: This feature is active only after LEB processing on the current-limit input signal is complete.  
3: The minimum capture resolution is 8.32 ns.  
4: This feature can be used when the XPRES bit (PWMCONx<1>) is set to ‘0’.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 215  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 216  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
The PTG module has the following major features:  
17.0 PERIPHERAL TRIGGER  
• Multiple Clock Sources  
GENERATOR (PTG) MODULE  
• Two 16-Bit General Purpose Timers  
• Two 16-Bit General Limit Counters  
Note 1: This data sheet summarizes the features  
of the dsPIC33EPXXXGS70X/80X family  
of devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to “Peripheral Trigger  
Generator (PTG)” (DS70000669) in  
the “dsPIC33/PIC24 Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
• Configurable for Rising or Falling Edge Triggering  
• Generates Processor Interrupts to include:  
- Four configurable processor interrupts  
- Interrupt on a Step event in Single-Step mode  
- Interrupt on a PTG Watchdog Timer time-out  
• Able to Receive Trigger Signals from these  
Peripherals:  
- ADC  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
- PWM  
- Output Compare  
- Input Capture  
- Comparator  
- INT2  
• Able to Trigger or Synchronize to these  
Peripherals:  
17.1 Module Introduction  
- Watchdog Timer  
- Output Compare  
- Input Capture  
- ADC  
The Peripheral Trigger Generator (PTG) provides a  
means to schedule complex, high-speed peripheral  
operations that would be difficult to achieve using soft-  
ware. The PTG module uses 8-bit commands, called  
“Steps”, that the user writes to the PTG Queue register  
(PTGQUE0-PTQUE15) which performs operations,  
such as wait for input signal, generate output trigger  
and wait for timer.  
- PWM  
- Comparator  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 217  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 17-1:  
PTG BLOCK DIAGRAM  
PTGHOLD  
PTGL0<15:0>  
PTGTxLIM<15:0>  
PTGCxLIM<15:0>  
PTGSDLIM<15:0>  
PTGADJ  
PTG General  
Purpose  
PTG Step  
Delay Timer  
PTG Loop  
Counter x  
Timerx  
Step Command  
PTGBTE<15:0>  
PTGCST<15:0>  
PTGCON<15:0>  
PTGDIV<4:0>  
PTGCLK<2:0>  
Step Command  
PTGO0  
PTGO31  
FP  
TAD  
T1CLK  
T2CLK  
T3CLK  
FOSC  
PTG Control Logic  
Step Command  
Step Command  
PTG0IF  
PWM  
OC1  
OC2  
IC1  
PTG3IF  
CMPx  
ADC  
INT2  
CNVCHSEL<5:0>  
PTGQPTR<4:0>  
PTG Watchdog  
Timer(1)  
PTGWDTIF  
PTGQUE0  
PTGQUE1  
Command  
Decoder  
PTGQUE14  
PTGQUE15  
PTGSTEPIF  
Note 1: This is a dedicated Watchdog Timer for the PTG module and is independent of the device Watchdog Timer.  
DS70005258C-page 218  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
17.2 PTG Control Registers  
REGISTER 17-1: PTGCST: PTG CONTROL/STATUS REGISTER  
R/W-0  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PTGEN  
PTGSIDL  
PTGTOGL  
PTGSWT(2) PTGSSEN  
PTGIVIS  
bit 15  
bit 8  
R/W-0  
HS-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
PTGSTRT  
PTGWDTO  
PTGITM1(1) PTGITM0(1)  
bit 7  
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
PTGEN: PTG Module Enable bit  
1= PTG module is enabled  
0= PTG module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
PTGSIDL: PTG Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12  
PTGTOGL: PTG TRIG Output Toggle Mode bit  
1= Toggles the state of the PTGOx for each execution of the PTGTRIGcommand  
0= Each execution of the PTGTRIGcommand will generate a single PTGOx pulse determined by the  
value in the PTGPWDx bits  
bit 11  
bit 10  
Unimplemented: Read as ‘0’  
PTGSWT: PTG Software Trigger bit(2)  
1= Triggers the PTG module  
0= No action (clearing this bit will have no effect)  
bit 9  
bit 8  
PTGSSEN: PTG Enable Single-Step bit  
1= Enables Single-Step mode  
0= Disables Single-Step mode  
PTGIVIS: PTG Counter/Timer Visibility Control bit  
1= Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the current values of their  
corresponding Counter/Timer registers (PTGSD, PTGCx, PTGTx)  
0= Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the value previously written to  
those PTG Limit registers  
bit 7  
PTGSTRT: Start PTG Sequencer bit  
1= Starts to sequentially execute commands (Continuous mode)  
0= Stops executing commands  
bit 6  
PTGWDTO: PTG Watchdog Timer Time-out Status bit  
1= PTG Watchdog Timer has timed out  
0= PTG Watchdog Timer has not timed out.  
bit 5-2  
Unimplemented: Read as ‘0’  
Note 1: These bits apply to the PTGWHIand PTGWLOcommands only.  
2: This bit is only used with the PTGCTRLStep command software trigger option.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 219  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 17-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)  
bit 1-0  
PTGITM<1:0>: PTG Input Trigger Command Operating Mode bits(1)  
11= Single level detect with Step delay is not executed on exit of command (regardless of PTGCTRL  
command)  
10= Single level detect with Step delay is executed on exit of command  
01= Continuous edge detect with Step delay is not executed on exit of command (regardless of  
PTGCTRL command)  
00= Continuous edge detect with Step delay is executed on exit of command  
Note 1: These bits apply to the PTGWHIand PTGWLOcommands only.  
2: This bit is only used with the PTGCTRLStep command software trigger option.  
DS70005258C-page 220  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 17-2: PTGCON: PTG CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTGCLK2  
PTGCLK1  
PTGCLK0  
PTGDIV4  
PTGDIV3  
PTGDIV2  
PTGDIV1  
PTGDIV0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
PTGWDT0  
bit 0  
PTGPWD3  
PTGPWD2  
PTGPWD1 PTGPWD0  
PTGWDT2  
PTGWDT1  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-13  
PTGCLK<2:0>: Select PTG Module Clock Source bits  
111= CLC2  
110= CLC1  
101= PTG module clock source will be T3CLK  
100= PTG module clock source will be T2CLK  
011= PTG module clock source will be T1CLK  
010= PTG module clock source will be TAD  
001= PTG module clock source will be FOSC  
000= PTG module clock source will be FP  
bit 12-8  
PTGDIV<4:0>: PTG Module Clock Prescaler (divider) bits  
11111= Divide-by-32  
11110= Divide-by-31  
00001= Divide-by-2  
00000= Divide-by-1  
bit 7-4  
PTGPWD<3:0>: PTG Trigger Output Pulse-Width bits  
1111= All trigger outputs are 16 PTG clock cycles wide  
1110= All trigger outputs are 15 PTG clock cycles wide  
0001= All trigger outputs are 2 PTG clock cycles wide  
0000= All trigger outputs are 1 PTG clock cycle wide  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
PTGWDT<2:0>: Select PTG Watchdog Timer Time-out Count Value bits  
111= Watchdog Timer will time-out after 512 PTG clocks  
110= Watchdog Timer will time-out after 256 PTG clocks  
101= Watchdog Timer will time-out after 128 PTG clocks  
100= Watchdog Timer will time-out after 64 PTG clocks  
011= Watchdog Timer will time-out after 32 PTG clocks  
010= Watchdog Timer will time-out after 16 PTG clocks  
001= Watchdog Timer will time-out after 8 PTG clocks  
000= Watchdog Timer is disabled  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 221  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 17-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER(1,2)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADCTS1  
IC4TSS  
IC3TSS  
IC2TSS  
IC1TSS  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OC4CS  
OC3CS  
OC2CS  
OC1CS  
OC4TSS  
OC3TSS  
OC2TSS  
OC1TSS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
ADCTS1: Sample Trigger PTGO12 for ADCx bit  
1= Generates trigger when the broadcast command is executed  
0= Does not generate trigger when the broadcast command is executed  
bit 11  
bit 10  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
IC4TSS: Trigger/Synchronization Source for IC4 bit  
1= Generates trigger/synchronization when the broadcast command is executed  
0= Does not generate trigger/synchronization when the broadcast command is executed  
IC3TSS: Trigger/Synchronization Source for IC3 bit  
1= Generates trigger/synchronization when the broadcast command is executed  
0= Does not generate trigger/synchronization when the broadcast command is executed  
IC2TSS: Trigger/Synchronization Source for IC2 bit  
1= Generates trigger/synchronization when the broadcast command is executed  
0= Does not generate trigger/synchronization when the broadcast command is executed  
IC1TSS: Trigger/Synchronization Source for IC1 bit  
1= Generates trigger/synchronization when the broadcast command is executed  
0= Does not generate trigger/synchronization when the broadcast command is executed  
OC4CS: Clock Source for OC4 bit  
1= Generates clock pulse when the broadcast command is executed  
0= Does not generate clock pulse when the broadcast command is executed  
OC3CS: Clock Source for OC3 bit  
1= Generates clock pulse when the broadcast command is executed  
0= Does not generate clock pulse when the broadcast command is executed  
OC2CS: Clock Source for OC2 bit  
1= Generates clock pulse when the broadcast command is executed  
0= Does not generate clock pulse when the broadcast command is executed  
OC1CS: Clock Source for OC1 bit  
1= Generates clock pulse when the broadcast command is executed  
0= Does not generate clock pulse when the broadcast command is executed  
OC4TSS: Trigger/Synchronization Source for OC4 bit  
1= Generates trigger/synchronization when the broadcast command is executed  
0= Does not generate trigger/synchronization when the broadcast command is executed  
OC3TSS: Trigger/Synchronization Source for OC3 bit  
1= Generates trigger/synchronization when the broadcast command is executed  
0= Does not generate trigger/synchronization when the broadcast command is executed  
Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1and  
PTGSTRT = 1).  
2: This register is only used with the PTGCTRL OPTION= 1111Step command.  
DS70005258C-page 222  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 17-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER(1,2) (CONTINUED)  
bit 1  
OC2TSS: Trigger/Synchronization Source for OC2 bit  
1= Generates trigger/synchronization when the broadcast command is executed  
0= Does not generate trigger/synchronization when the broadcast command is executed  
bit 0  
OC1TSS: Trigger/Synchronization Source for OC1 bit  
1= Generates trigger/synchronization when the broadcast command is executed  
0= Does not generate trigger/synchronization when the broadcast command is executed  
Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1and  
PTGSTRT = 1).  
2: This register is only used with the PTGCTRL OPTION= 1111Step command.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 223  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 17-4: PTGT0LIM: PTG TIMER0 LIMIT REGISTER(1)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PTGT0LIM<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTGT0LIM<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PTGT0LIM<15:0>: PTG Timer0 Limit Register bits  
General purpose Timer0 Limit register (effective only with a PTGT0Step command).  
Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1and  
PTGSTRT = 1).  
REGISTER 17-5: PTGT1LIM: PTG TIMER1 LIMIT REGISTER(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTGT1LIM<15:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTGT1LIM<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PTGT1LIM<15:0>: PTG Timer1 Limit Register bits  
General purpose Timer1 Limit register (effective only with a PTGT1Step command).  
Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1and  
PTGSTRT = 1).  
DS70005258C-page 224  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 17-6: PTGSDLIM: PTG STEP DELAY LIMIT REGISTER(1,2)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PTGSDLIM<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTGSDLIM<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PTGSDLIM<15:0>: PTG Step Delay Limit Register bits  
Holds a PTG Step delay value, representing the number of additional PTG clocks, between the start  
of a Step command and the completion of a Step command.  
Note 1: A base Step delay of one PTG clock is added to any value written to the PTGSDLIM register  
(Step Delay = (PTGSDLIM) + 1).  
2: This register is read-only when the PTG module is executing Step commands (PTGEN = 1and  
PTGSTRT = 1).  
REGISTER 17-7: PTGC0LIM: PTG COUNTER 0 LIMIT REGISTER(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTGC0LIM<15:8>  
bit 15  
R/W-0  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTGC0LIM<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PTGC0LIM<15:0>: PTG Counter 0 Limit Register bits  
May be used to specify the loop count for the PTGJMPC0Step command or as a limit register for the  
General Purpose Counter 0.  
Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1and  
PTGSTRT = 1).  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 225  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 17-8: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER(1)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PTGC1LIM<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTGC1LIM<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PTGC1LIM<15:0>: PTG Counter 1 Limit Register bits  
May be used to specify the loop count for the PTGJMPC1Step command or as a limit register for the  
General Purpose Counter 1.  
Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1and  
PTGSTRT = 1).  
REGISTER 17-9: PTGHOLD: PTG HOLD REGISTER(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTGHOLD<15:8>  
bit 15  
R/W-0  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTGHOLD<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PTGHOLD<15:0>: PTG General Purpose Hold Register bits  
Holds user-supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 register  
with the PTGCOPYcommand.  
Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1and  
PTGSTRT = 1).  
DS70005258C-page 226  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 17-10: PTGADJ: PTG ADJUST REGISTER(1)  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PTGADJ<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTGADJ<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PTGADJ<15:0>: PTG Adjust Register bits  
This register holds user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or  
PTGL0 register with the PTGADDcommand.  
Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1and  
PTGSTRT = 1).  
REGISTER 17-11: PTGL0: PTG LITERAL 0 REGISTER(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
PTGL0<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
PTGL0<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PTGL0<15:0>: PTG Literal 0 Register bits  
This register holds the 6-bit value to be written to the CNVCHSEL<5:0> bits (ADCON3L<5:0>) with  
the PTGCTRLStep command.  
Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1and  
PTGSTRT = 1).  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 227  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 17-12: PTGQPTR: PTG STEP QUEUE POINTER REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTGQPTR<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
PTGQPTR<4:0>: PTG Step Queue Pointer Register bits  
This register points to the currently active Step command in the Step queue.  
Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1and  
PTGSTRT = 1).  
REGISTER 17-13: PTGQUEx: PTG STEP QUEUE REGISTER x (x = 0-15)(1,3)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
STEP(2x + 1)<7:0>(2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
STEP(2x)<7:0>(2)  
R/W-0  
R/W-0  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
STEP(2x + 1)<7:0>: PTG Step Queue Pointer Register bits(2)  
A queue location for storage of the STEP(2x +1) command byte.  
STEP(2x)<7:0>: PTG Step Queue Pointer Register bits(2)  
A queue location for storage of the STEP(2x) command byte.  
Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1and  
PTGSTRT = 1).  
2: Refer to Table 17-1 for the Step command encoding.  
3: The Step registers maintain their values on any type of Reset.  
DS70005258C-page 228  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
17.3 Step Commands and Format  
TABLE 17-1: PTG STEP COMMAND FORMAT  
Step Command Byte:  
STEPx<7:0>  
CMD<3:0>  
OPTION<3:0>  
bit 7  
bit 4 bit 3  
bit 0  
bit 7-4  
Step  
Command  
CMD<3:0>  
Command Description  
0000  
0001  
PTGCTRL  
PTGADD  
Execute control command as described by OPTION<3:0>  
Add contents of PTGADJ register to target register as described by  
OPTION<3:0>  
PTGCOPY  
PTGSTRB  
PTGWHI  
PTGWLO  
Copy contents of PTGHOLD register to target register as described by  
OPTION<3:0>  
001x  
0100  
0101  
Copy the value contained in CMD0:OPTION<3:0> to the CNVCHSEL<5:0> bits  
(ADCON3L<5:0>)  
Wait for a low-to-high edge input from selected PTG trigger input as described  
by OPTION<3:0>  
Wait for a high-to-low edge input from selected PTG trigger input as described  
by OPTION<3:0>  
0110  
0111  
100x  
101x  
Reserved  
PTGIRQ  
Reserved  
Generate individual interrupt request as described by OPTION<3:0>  
Generate individual trigger output as described by <<CMD0>:OPTION<3:0>>  
PTGTRIG  
PTGJMP  
Copy the value indicated in <<CMD0>:OPTION<3:0>> to the PTG Queue  
Pointer (PTGQPTR) and jump to that Step queue  
110x  
PTGJMPC0  
PTGC0 = PTGC0LIM: Increment the PTG Queue Pointer (PTGQPTR)  
PTGC0 PTGC0LIM: Increment PTG Counter 0 (PTGC0) and copy the value  
indicated in <<CMD0>:OPTION<3:0>> to the PTG Queue Pointer (PTGQPTR)  
and jump to that Step queue  
111x  
PTGJMPC1  
PTGC1 = PTGC1LIM: Increment the PTG Queue Pointer (PTGQPTR)  
PTGC1 PTGC1LIM: Increment PTG Counter 1 (PTGC1) and copy the value  
indicated in <<CMD0>:OPTION<3:0>> to the PTG Queue Pointer (PTGQPTR)  
and jump to that Step queue  
Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOPinstruction).  
2: Refer to Table 17-2 for the trigger output descriptions.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 229  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 17-1: PTG STEP COMMAND FORMAT (CONTINUED)  
bit 3-0  
Step  
Command  
OPTION<3:0>  
Option Description  
PTGCTRL(1)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
Reserved  
Reserved  
Disable PTG Step Delay Timer (PTGSD)  
Reserved  
Reserved  
Reserved  
Enable PTG Step Delay Timer (PTGSD)  
Reserved  
Start and wait for the PTG Timer0 to match the PTG Timer0 Limit register  
Start and wait for the PTG Timer1 to match the PTG Timer1 Limit register  
Reserved  
Wait for software trigger bit transition from low-to-high before continuing  
(PTGSWT = 0to 1)  
1100  
1101  
1110  
1111  
Copy contents of the PTG Counter 0 register to the CNVCHSEL<5:0> bits  
(ADCON3L<5:0>)  
Copy contents of the PTG Counter 1 register to the CNVCHSEL<5:0> bits  
(ADCON3L<5:0>)  
Copy contents of the PTG Literal 0 register to the CNVCHSEL<5:0> bits  
(ADCON3L<5:0>)  
Generate the triggers indicated in the PTG Broadcast Trigger Enable register  
(PTGBTE)  
PTGADD(1)  
0000  
0001  
0010  
0011  
0100  
Add contents of PTGADJ register to the PTG Counter 0 Limit register (PTGC0LIM)  
Add contents of PTGADJ register to the PTG Counter 1 Limit register (PTGC1LIM)  
Add contents of PTGADJ register to the PTG Timer0 Limit register (PTGT0LIM)  
Add contents of PTGADJ register to the PTG Timer1 Limit register (PTGT1LIM)  
Add contents of PTGADJ register to the PTG Step Delay Limit register  
(PTGSDLIM)  
0101  
0110  
0111  
1000  
Add contents of PTGADJ register to the PTG Literal 0 register (PTGL0)  
Reserved  
Reserved  
PTGCOPY(1)  
Copy contents of PTGHOLD register to the PTG Counter 0 Limit register  
(PTGC0LIM)  
1001  
Copy contents of PTGHOLD register to the PTG Counter 1 Limit register  
(PTGC1LIM)  
1010  
1011  
1100  
Copy contents of PTGHOLD register to the PTG Timer0 Limit register (PTGT0LIM)  
Copy contents of PTGHOLD register to the PTG Timer1 Limit register (PTGT1LIM)  
Copy contents of PTGHOLD register to the PTG Step Delay Limit register  
(PTGSDLIM)  
1101  
1110  
1111  
Copy contents of PTGHOLD register to the PTG Literal 0 register (PTGL0)  
Reserved  
Reserved  
Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOPinstruction).  
2: Refer to Table 17-2 for the trigger output descriptions.  
DS70005258C-page 230  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 17-1: PTG STEP COMMAND FORMAT (CONTINUED)  
bit 3-0  
Step  
Command  
OPTION<3:0>  
Option Description  
PTGWHI(1) or  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0001  
0010  
0011  
0100  
PWM Special Event Trigger  
PTGWLO(1)  
PWM master time base synchronization output  
PWM1 interrupt  
PWM2 interrupt  
PWM3 interrupt  
PWM4 interrupt  
PWM5 interrupt  
OC1 trigger event  
OC2 trigger event  
IC1 trigger event  
CMP1 trigger event  
CMP2 trigger event  
CMP3 trigger event  
CMP4 trigger event  
ADC conversion done interrupt  
INT2 external interrupt  
Generate PTG Interrupt 0  
Generate PTG Interrupt 1  
Generate PTG Interrupt 2  
Generate PTG Interrupt 3  
Reserved  
PTGIRQ(1)  
1111  
00000  
00001  
Reserved  
PTGO0  
PTGO1  
PTGTRIG(2)  
11110  
11111  
PTGO30  
PTGO31  
Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOPinstruction).  
2: Refer to Table 17-2 for the trigger output descriptions.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 231  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 17-2: PTG OUTPUT DESCRIPTIONS  
PTG Output  
PTG Output Description  
Number  
PTGO0  
Trigger/synchronization source for OC1  
Trigger/synchronization source for OC2  
Trigger/synchronization source for OC3  
Trigger/synchronization source for OC4  
Clock source for OC1  
Clock source for OC2  
Clock source for OC3  
Clock source for OC4  
Trigger/synchronization source for IC1  
Trigger/synchronization source for IC2  
Trigger/synchronization source for IC3  
Trigger/synchronization source for IC4  
Sample trigger for ADC  
Reserved  
PTGO1  
PTGO2  
PTGO3  
PTGO4  
PTGO5  
PTGO6  
PTGO7  
PTGO8  
PTGO9  
PTGO10  
PTGO11  
PTGO12  
PTGO13  
PTGO14  
PTGO15  
PTGO16  
PTGO17  
PTGO18  
PTGO19  
PTGO20  
PTGO21  
PTGO22  
PTGO23  
PTGO24  
PTGO25  
PTGO26  
PTGO27  
PTGO28  
PTGO29  
PTGO30  
PTGO31  
Reserved  
Reserved  
PWM time base synchronous source for PWM3  
PWM time base synchronous source for PWM4  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CLC1 input  
CLC2 input  
CLC3 input  
CLC4 input  
PTG output to PPS input selection, RPI6  
PTG output to PPS input selection, RPI7  
DS70005258C-page 232  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
The SPI serial interface consists of four pins:  
18.0 SERIAL PERIPHERAL  
• SDIx: Serial Data Input  
INTERFACE (SPI)  
• SDOx: Serial Data Output  
• SCKx: Shift Clock Input or Output  
Note:  
This data sheet summarizes the features of  
the dsPIC33EPXXXGS70X/80X family of  
devices. It is not intended to be a compre-  
hensive reference source. To complement  
the information in this data sheet, refer to  
“Serial Peripheral Interface (SPI) with  
Audio Codec Support” (DS70005136) in  
the “dsPIC33/PIC24 Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
• SSx: Active-Low Slave Select or Frame  
Synchronization I/O Pulse  
The SPI module can be configured to operate using  
two, three or four pins. In the 3-pin mode, SSx is not  
used. In the 2-pin mode, both SDOx and SSx are not  
used.  
The SPI module has the ability to generate three inter-  
rupts, reflecting the events that occur during the data  
communication. The following types of interrupts can  
be generated:  
The Serial Peripheral Interface (SPI) module is a  
synchronous serial interface useful for communicating  
with other peripheral or microcontroller devices. These  
peripheral devices may be serial EEPROMs, shift  
registers, display drivers, A/D Converters, etc. The SPI  
module is compatible with the Motorola® SPI and SIOP  
interfaces. All devices in the dsPIC33EPXXXGS70X/80X  
family include three SPI modules.  
1. Receive interrupts are signalled by SPIxRXIF.  
This event occurs when:  
- RX watermark interrupt  
- SPIROV = 1  
- SPIRBF = 1  
- SPIRBE = 1  
The module supports operation in two buffer modes. In  
Standard mode, data is shifted through a single serial  
buffer. In Enhanced Buffer mode, data is shifted  
through a FIFO buffer. The FIFO level depends on the  
configured mode.  
provided the respective mask bits are enabled in  
SPIxIMSKL/H.  
2. Transmit interrupts are signalled by SPIxTXIF.  
This event occurs when:  
- TX watermark interrupt  
- SPITUR = 1  
Variable length data can be transmitted and received,  
from 2 to 32 bits.  
- SPITBF = 1  
Note:  
Do not perform Read-Modify-Write opera-  
tions (such as bit-oriented instructions) on  
the SPIxBUF register in either Standard or  
Enhanced Buffer mode.  
- SPITBE = 1  
provided the respective mask bits are enabled in  
SPIxIMSKL/H.  
3. General interrupts are signalled by SPIxIF. This  
event occurs when  
The module also supports a basic framed SPI protocol  
while operating in either Master or Slave mode. A total  
of four framed SPI configurations are supported.  
- FRMERR = 1  
- SPIBUSY = 1  
- SRMT = 1  
SPI3 also supports Audio modes. Four different Audio  
modes are available.  
• I2S  
provided the respective mask bits are enabled in  
SPIxIMSKL/H.  
• Left Justified  
• Right Justified  
• PCM/DSP  
Block diagrams of the module in Standard and Enhanced  
modes are shown in Figure 18-1 and Figure 18-2.  
In each of these modes, the serial clock is free-running  
and audio data is always transferred.  
Note:  
In this section, the SPI modules are  
referred to together as SPIx, or separately  
as SPI1, SPI2 or SPI3. Special Function  
Registers will follow a similar notation. For  
example, SPIxCON1 and SPIxCON2  
refer to the control registers for any of the  
three SPI modules.  
If an audio protocol data transfer takes place between  
two devices, then usually one device is the master and  
the other is the slave. However, audio data can be  
transferred between two slaves. Because the audio  
protocols require free-running clocks, the master can  
be a third party controller. In either case, the master  
generates two free-running clocks: SCKx and LRC  
(Left, Right Channel Clock/SSx/FSYNC).  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 233  
dsPIC33EPXXXGS70X/80X FAMILY  
To set up the SPIx module for the Standard Master  
mode of operation:  
To set up the SPIx module for the Standard Slave mode  
of operation:  
1. If using interrupts:  
1. Clear the SPIxBUF registers.  
2. If using interrupts:  
a) Clear the interrupt flag bits in the respective  
IFSx register.  
a) Clear the SPIxBUFL and SPIxBUFH  
registers.  
b) Set the interrupt enable bits in the  
respective IECx register.  
b) Set the interrupt enable bits in the  
respective IECx register.  
c) Write the SPIxIP bits in the respective IPCx  
register to set the interrupt priority.  
c) Write the SPIxIP bits in the respective IPCx  
register to set the interrupt priority.  
2. Write the desired settings to the SPIxCON1L  
and SPIxCON1H registers with the MSTEN bit  
(SPIxCON1L<5>) = 1.  
3. Write the desired settings to the SPIxCON1L,  
SPIxCON1H and SPIxCON2L registers with  
the MSTEN bit (SPIxCON1L<5>) = 0.  
3. Clear the SPIROV bit (SPIxSTATL<6>).  
4. Enable SPIx operation by setting the SPIEN bit  
(SPIxCON1L<15>).  
4. Clear the SMP bit.  
5. If the CKE bit (SPIxCON1L<8>) is set, then the  
SSEN bit (SPIxCON1L<7>) must be set to  
enable the SSx pin.  
5. Write the data to be transmitted to the SPIxBUFL  
and SPIxBUFH registers. Transmission (and  
reception) will start as soon as data is written to  
the SPIxBUFL and SPIxBUFH registers.  
6. Clear the SPIROV bit (SPIxSTATL<6>).  
7. Enable SPIx operation by setting the SPIEN bit  
(SPIxCON1L<15>).  
FIGURE 18-1:  
SPIx MODULE BLOCK DIAGRAM (STANDARD MODE)  
Internal  
Data Bus  
Write  
Read  
SPIxRXB  
SPIxTXB  
SPIxURDT  
MSb  
Receive  
Transmit  
SPIxRXSR  
SPIxTXSR  
MSb  
SDIx  
0
1
Shift  
Control  
SDOx  
TXELM<5:0> = 6’b0  
URDTEN  
SSx & FSYNC  
Control  
Clock  
Control  
Edge  
Select  
MCLKEN  
REFO  
SSx/FSYNC  
SCKx  
Baud Rate  
Generator  
Peripheral Clock  
Edge  
Select  
Clock  
Control  
Enable Master Clock  
DS70005258C-page 234  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
To set up the SPIx module for the Enhanced Buffer  
Master mode of operation:  
To set up the SPIx module for the Enhanced Buffer  
Slave mode of operation:  
1. If using interrupts:  
1. Clear the SPIxBUFL and SPIxBUFH registers.  
2. If using interrupts:  
a) Clear the interrupt flag bits in the respective  
IFSx register.  
a) Clear the interrupt flag bits in the respective  
IFSx register.  
b) Set the interrupt enable bits in the  
respective IECx register.  
b) Set the interrupt enable bits in the  
respective IECx register.  
c) Write the SPIxIP bits in the respective IPCx  
register.  
c) Write the SPIxIP bits in the respective IPCx  
register to set the interrupt priority.  
2. Write the desired settings to the SPIxCON1L,  
SPIxCON1H and SPIxCON2L registers with  
MSTEN (SPIxCON1L<5>) = 1.  
3. Write the desired settings to the SPIxCON1L,  
SPIxCON1H and SPIxCON2L registers with the  
MSTEN bit (SPIxCON1L<5>) = 0.  
3. Clear the SPIROV bit (SPIxSTATL<6>).  
4. Select Enhanced Buffer mode by setting the  
ENHBUF bit (SPIxCON1L<0>).  
4. Clear the SMP bit.  
5. If the CKE bit is set, then the SSEN bit must be  
set, thus enabling the SSx pin.  
5. Enable SPIx operation by setting the SPIEN bit  
(SPIxCON1L<15>).  
6. Clear the SPIROV bit (SPIxSTATL<6>).  
6. Write the data to be transmitted to the  
SPIxBUFL and SPIxBUFH registers. Transmis-  
sion (and reception) will start as soon as data is  
written to the SPIxBUFL and SPIxBUFH  
registers.  
7. Select Enhanced Buffer mode by setting the  
ENHBUF bit (SPIxCON1L<0>).  
8. Enable SPIx operation by setting the SPIEN bit  
(SPIxCON1L<15>).  
FIGURE 18-2:  
SPIx MODULE BLOCK DIAGRAM (ENHANCED MODE)  
Internal  
Data Bus  
Write  
Read  
SPIxRXB  
SPIxTXB  
SPIxURDT  
MSb  
Transmit  
Receive  
SPIxRXSR  
SPIxTXSR  
MSb  
SDIx  
0
1
Shift  
Control  
SDOx  
TXELM<5:0> = 6’b0  
URDTEN  
SSx & FSYNC  
Control  
Clock  
Control  
Edge  
Select  
MCLKEN  
SSx/FSYNC  
SCKx  
REFO  
Baud Rate  
Generator  
Peripheral Clock  
Edge  
Select  
Clock  
Control  
Enable Master Clock  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 235  
dsPIC33EPXXXGS70X/80X FAMILY  
To set up the SPIx module for Audio mode:  
3. Write the desired settings to the SPIxCON1L,  
SPIxCON1H and SPIxCON2L registers with  
AUDEN (SPIxCON1H<15>) = 1.  
1. Clear the SPIxBUFL and SPIxBUFH registers.  
2. If using interrupts:  
4. Clear the SPIROV bit (SPIxSTATL<6>).  
a) Clear the interrupt flag bits in the respective  
IFSx register.  
5. Enable SPIx operation by setting the SPIEN bit  
(SPIxCON1L<15>).  
b) Set the interrupt enable bits in the  
respective IECx register.  
6. Write the data to be transmitted to the SPIxBUFL  
and SPIxBUFH registers. Transmission (and  
reception) will start as soon as data is written to  
the SPIxBUFL and SPIxBUFH registers.  
a) Write the SPIxIP bits in the respective IPCx  
register to set the interrupt priority.  
REGISTER 18-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW  
R/W-0  
SPIEN  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE(1)  
SPISIDL  
DISSDO  
MODE32(1,4) MODE16(1,4)  
bit 15  
bit 8  
R/W-0  
SSEN(2)  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
MCLKEN(3)  
R/W-0  
SPIFE  
R/W-0  
MSTEN  
DISSDI  
DISSCK  
ENHBUF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SPIEN: SPIx On bit  
1= Enables module  
0= Turns off and resets module, disables clocks, disables interrupt event generation, allows SFR  
modifications  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: SPIx Stop in Idle Mode bit  
1= Halts in CPU Idle mode  
0= Continues to operate in CPU Idle mode  
bit 12  
DISSDO: Disable SDOx Output Port bit  
1= SDOx pin is not used by the module; pin is controlled by port function  
0= SDOx pin is controlled by the module  
bit 11-10  
MODE32 and MODE16: Serial Word Length Select bits(1,4)  
MODE32 MODE16  
AUDEN  
Communication  
1
0
0
1
1
0
0
x
1
0
1
0
1
0
32-Bit  
0
16-Bit  
8-Bit  
24-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame  
32-Bit Data, 32-Bit FIFO, 32-Bit Channel/64-Bit Frame  
16-Bit Data, 16-Bit FIFO, 32-Bit Channel/64-Bit Frame  
16-Bit FIFO, 16-Bit Channel/32-Bit Frame  
1
Note 1: When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value.  
2: When FRMEN = 1, SSEN is not used.  
3: MCLKEN can only be written when the SPIEN bit = 0.  
4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.  
DS70005258C-page 236  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 18-1: SPIxCON1L: SPIx CONTROL REGISTER 1 LOW (CONTINUED)  
bit 9  
SMP: SPIx Data Input Sample Phase bit  
Master Mode:  
1= Input data is sampled at the end of data output time  
0= Input data is sampled at the middle of data output time  
Slave Mode:  
Input data is always sampled at the middle of data output time, regardless of the SMP setting.  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
CKE: SPIx Clock Edge Select bit(1)  
1= Transmit happens on transition from active clock state to Idle clock state  
0= Transmit happens on transition from Idle clock state to active clock state  
SSEN: Slave Select Enable bit (Slave mode)(2)  
1= SSx pin is used by the macro in Slave mode; SSx pin is used as the slave select input  
0= SSx pin is not used by the macro (SSx pin will be controlled by the port I/O)  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level; active state is a low level  
0= Idle state for clock is a low level; active state is a high level  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
DISSDI: Disable SDIx Input Port bit  
1= SDIx pin is not used by the module; pin is controlled by port function  
0= SDIx pin is controlled by the module  
DISSCK: Disable SCKx Output Port bit  
1= SCKx pin is not used by the module; pin is controlled by port function  
0= SCKx pin is controlled by the module  
MCLKEN: Master Clock Enable bit(3)  
1= REFO is used by the Baud Rate Generator (BRG)  
0= Peripheral clock is used by the BRG  
SPIFE: Frame Sync Pulse Edge Select bit  
1= Frame Sync pulse (Idle-to-active edge) coincides with the first bit clock  
0= Frame Sync pulse (Idle-to-active edge) precedes the first bit clock  
ENHBUF: Enhanced Buffer Enable bit  
1= Enhanced Buffer mode is enabled  
0= Enhanced Buffer mode is disabled  
Note 1: When AUDEN (SPIxCON1H<15>) = 1, this module functions as if CKE = 0, regardless of its actual value.  
2: When FRMEN = 1, SSEN is not used.  
3: MCLKEN can only be written when the SPIEN bit = 0.  
4: This channel is not meaningful for DSP/PCM mode as LRC follows FRMSYPW.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 237  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 18-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AUDEN(1) SPISGNEXT  
IGNROV  
IGNTUR  
AUDMONO(2) URDTEN(3) AUDMOD1(4) AUDMOD0(4)  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FRMEN  
FRMSYNC  
FRMPOL  
MSSEN  
FRMSYPW  
FRMCNT2  
FRMCNT1  
FRMCNT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
AUDEN: Audio Codec Support Enable bit(1)  
1= Audio protocol is enabled; MSTEN controls the direction of both SCKx and frame (a.k.a. LRC), and  
this module functions as if FRMEN = 1, FRMSYNC = MSTEN, FRMCNT<2:0> = 001and SMP = 0,  
regardless of their actual values  
0= Audio protocol is disabled  
bit 14  
bit 13  
SPISGNEXT: SPIx Sign-Extend RX FIFO Read Data Enable bit  
1= Data from RX FIFO is sign-extended  
0= Data from RX FIFO is not sign-extended  
IGNROV: Ignore Receive Overflow bit  
1= A Receive Overflow (ROV) is NOT a critical error; during ROV, data in the FIFO is not overwritten  
by the receive data  
0= A ROV is a critical error that stops SPI operation  
bit 12  
IGNTUR: Ignore Transmit Underrun bit  
1= A Transmit Underrun (TUR) is NOT a critical error and data indicated by URDTEN is transmitted  
until the SPIxTXB is not empty  
0= A TUR is a critical error that stops SPI operation  
bit 11  
bit 10  
bit 9-8  
AUDMONO: Audio Data Format Transmit bit(2)  
1= Audio data is mono (i.e., each data word is transmitted on both left and right channels)  
0= Audio data is stereo  
URDTEN: Transmit Underrun Data Enable bit(3)  
1= Transmits data out of SPIxURDT register during Transmit Underrun conditions  
0= Transmits the last received data during Transmit Underrun conditions  
AUDMOD<1:0>: Audio Protocol Mode Selection bits(4)  
11= PCM/DSP mode  
10= Right Justified mode: This module functions as if SPIFE = 1, regardless of its actual value  
01= Left Justified mode: This module functions as if SPIFE = 1, regardless of its actual value  
00= I2S mode: This module functions as if SPIFE = 0, regardless of its actual value  
bit 7  
FRMEN: Framed SPIx Support bit  
1= Framed SPIx support is enabled (SSx pin is used as the FSYNC input/output)  
0= Framed SPIx support is disabled  
Note 1: AUDEN can only be written when the SPIEN bit = 0.  
2: AUDMONO can only be written when the SPIEN bit = 0and is only valid for AUDEN = 1.  
3: URDTEN is only valid when IGNTUR = 1.  
4: The AUDMOD<1:0> bits can only be written when the SPIEN bit = 0and are only valid when AUDEN = 1.  
When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.  
DS70005258C-page 238  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 18-2: SPIxCON1H: SPIx CONTROL REGISTER 1 HIGH (CONTINUED)  
bit 6  
bit 5  
bit 4  
FRMSYNC: Frame Sync Pulse Direction Control bit  
1= Frame Sync pulse input (slave)  
0= Frame Sync pulse output (master)  
FRMPOL: Frame Sync/Slave Select Polarity bit  
1= Frame Sync pulse/slave select is active-high  
0= Frame Sync pulse/slave select is active-low  
MSSEN: Master Mode Slave Select Enable bit  
1= SPIx slave select support is enabled with polarity determined by FRMPOL (SSx pin is automatically  
driven during transmission in Master mode)  
0= Slave select SPIx support is disabled (SSx pin will be controlled by port I/O)  
bit 3  
FRMSYPW: Frame Sync Pulse-Width bit  
1= Frame Sync pulse is one serial word length wide (as defined by MODE<32,16>/WLENGTH<4:0>)  
0= Frame Sync pulse is one clock (SCK) wide  
bit 2-0  
FRMCNT<2:0>: Frame Sync Pulse Counter bits  
Controls the number of serial words transmitted per Sync pulse.  
111= Reserved  
110= Reserved  
101= Generates a Frame Sync pulse on every 32 serial words  
100= Generates a Frame Sync pulse on every 16 serial words  
011= Generates a Frame Sync pulse on every 8 serial words  
010= Generates a Frame Sync pulse on every 4 serial words  
001= Generates a Frame Sync pulse on every 2 serial words (value used by audio protocols)  
000= Generates a Frame Sync pulse on each serial word  
Note 1: AUDEN can only be written when the SPIEN bit = 0.  
2: AUDMONO can only be written when the SPIEN bit = 0and is only valid for AUDEN = 1.  
3: URDTEN is only valid when IGNTUR = 1.  
4: The AUDMOD<1:0> bits can only be written when the SPIEN bit = 0and are only valid when AUDEN = 1.  
When NOT in PCM/DSP mode, this module functions as if FRMSYPW = 1, regardless of its actual value.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 239  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 18-3: SPIxCON2L: SPIx CONTROL REGISTER 2 LOW  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
WLENGTH<4:0>(1,2)  
R/W-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
WLENGTH<4:0>: Variable Word Length bits(1,2)  
11111= 32-bit data  
11110= 31-bit data  
11101= 30-bit data  
11100= 29-bit data  
11011= 28-bit data  
11010= 27-bit data  
11001= 26-bit data  
11000= 25-bit data  
10111= 24-bit data  
10110= 23-bit data  
10101= 22-bit data  
10100= 21-bit data  
10011= 20-bit data  
10010= 19-bit data  
10001= 18-bit data  
10000= 17-bit data  
01111= 16-bit data  
01110= 15-bit data  
01101= 14-bit data  
01100= 13-bit data  
01011= 12-bit data  
01010= 11-bit data  
01001= 10-bit data  
01000= 9-bit data  
00111= 8-bit data  
00110= 7-bit data  
00101= 6-bit data  
00100= 5-bit data  
00011= 4-bit data  
00010= 3-bit data  
00001= 2-bit data  
00000= See MODE<32,16> bits in SPIxCON1L<11:10>  
Note 1: These bits are effective when AUDEN = 0only.  
2: Varying the length by changing these bits does not affect the depth of the TX/RX FIFO.  
DS70005258C-page 240  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 18-4: SPIxSTATL: SPIx STATUS REGISTER LOW  
U-0  
U-0  
U-0  
HS/R/C-0  
FRMERR  
HSC/R-0  
SPIBUSY  
U-0  
U-0  
HSC/R-0  
SPITUR(1)  
bit 15  
bit 8  
HSC/R-0  
SRMT  
HS/R/C-0  
SPIROV  
HSC/R-1  
SPIRBE  
U-0  
HSC/R-1  
SPITBE  
U-0  
HSC/R-0  
SPITBF  
HSC/R-0  
SPIRBF  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented, read as ‘0’  
HSC = Hardware Settable/Clearable bit  
‘0’ = Bit is cleared HS = Hardware Settable bit  
R = Readable bit  
-n = Value at POR  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
FRMERR: SPIx Frame Error Status bit  
1= Frame error is detected  
0= No frame error is detected  
bit 11  
SPIBUSY: SPIx Activity Status bit  
1= Module is currently busy with some transactions  
0= No ongoing transactions (at time of read)  
bit 10-9  
bit 8  
Unimplemented: Read as ‘0’  
SPITUR: SPIx Transmit Underrun Status bit(1)  
1= Transmit buffer has encountered a Transmit Underrun condition  
0= Transmit buffer does not have a Transmit Underrun condition  
bit 7  
bit 6  
bit 5  
SRMT: Shift Register Empty Status bit  
1= No current or pending transactions (i.e., neither SPIxTXB or SPIxTXSR contains data to transmit)  
0= Current or pending transactions  
SPIROV: SPIx Receive Overflow Status bit  
1= A new byte/half-word/word has been completely received when the SPIxRXB was full  
0= No overflow  
SPIRBE: SPIx RX Buffer Empty Status bit  
1= RX buffer is empty  
0= RX buffer is not empty  
Standard Buffer mode:  
Automatically set in hardware when SPIxBUF is read from, reading SPIxRXB. Automatically cleared in  
hardware when SPIx transfers data from SPIxRXSR to SPIxRXB.  
Enhanced Buffer mode:  
Indicates RXELM<5:0> = 000000.  
bit 4  
Unimplemented: Read as ‘0’  
Note 1: SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the  
Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by  
software.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 241  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 18-4: SPIxSTATL: SPIx STATUS REGISTER LOW (CONTINUED)  
bit 3  
SPITBE: SPIx Transmit Buffer Empty Status bit  
1= SPIxTXB is empty  
0= SPIxTXB is not empty  
Standard Buffer mode:  
Automatically set in hardware when SPIx transfers data from SPIxTXB to SPIxTXSR. Automatically  
cleared in hardware when SPIxBUF is written, loading SPIxTXB.  
Enhanced Buffer mode:  
Indicates TXELM<5:0> = 000000.  
bit 2  
Unimplemented: Read as ‘0’  
bit 1  
SPITBF: SPIx Transmit Buffer Full Status bit  
1= SPIxTXB is full  
0= SPIxTXB not full  
Standard Buffer mode:  
Automatically set in hardware when SPIxBUF is written, loading SPIxTXB. Automatically cleared in  
hardware when SPIx transfers data from SPIxTXB to SPIxTXSR.  
Enhanced Buffer mode:  
Indicates TXELM<5:0> = 111111.  
bit 0  
SPIRBF: SPIx Receive Buffer Full Status bit  
1= SPIxRXB is full  
0= SPIxRXB is not full  
Standard Buffer mode:  
Automatically set in hardware when SPIx transfers data from SPIxRXSR to SPIxRXB. Automatically  
cleared in hardware when SPIxBUF is read from, reading SPIxRXB.  
Enhanced Buffer mode:  
Indicates RXELM<5:0> = 111111.  
Note 1: SPITUR is cleared when SPIEN = 0. When IGNTUR = 1, SPITUR provides dynamic status of the  
Transmit Underrun condition, but does not stop RX/TX operation and does not need to be cleared by  
software.  
DS70005258C-page 242  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 18-5: SPIxSTATH: SPIx STATUS REGISTER HIGH  
U-0  
U-0  
HSC/R-0  
RXELM5(3)  
HSC/R-0  
RXELM4(2)  
HSC/R-0  
RXELM3(1)  
HSC/R-0  
RXELM2  
HSC/R-0  
RXELM1  
HSC/R-0  
RXELM0  
bit 15  
bit 8  
U-0  
U-0  
HSC/R-0  
TXELM5(3)  
HSC/R-0  
TXELM4(2)  
HSC/R-0  
TXELM3(1)  
HSC/R-0  
TXELM2  
HSC/R-0  
TXELM1  
HSC/R-0  
TXELM0  
bit 7  
bit 0  
Legend:  
HSC = Hardware Settable/Clearable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
bit 7-6  
Unimplemented: Read as ‘0’  
RXELM<5:0>: Receive Buffer Element Count bits (valid in Enhanced Buffer mode)(1,2,3)  
Unimplemented: Read as ‘0’  
bit 5-0  
TXELM<5:0>: Transmit Buffer Element Count bits (valid in Enhanced Buffer mode)(1,2,3)  
Note 1: RXELM3 and TXELM3 bits are only present when FIFODEPTH = 8 or higher.  
2: RXELM4 and TXELM4 bits are only present when FIFODEPTH = 16 or higher.  
3: RXELM5 and TXELM5 bits are only present when FIFODEPTH = 32.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 243  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 18-6: SPIxIMSKL: SPIx INTERRUPT MASK REGISTER LOW  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
SPITUREN  
bit 8  
FRMERREN  
BUSYEN  
bit 15  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
SPIRBFEN  
bit 0  
SRMTEN  
SPIROVEN  
SPIRBEN  
SPITBEN  
SPITBFEN  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
FRMERREN: Enable Interrupt Events via FRMERR bit  
1= Frame error generates an interrupt event  
0= Frame error does not generate an interrupt event  
bit 11  
BUSYEN: Enable Interrupt Events via SPIBUSY bit  
1= SPIBUSY generates an interrupt event  
0= SPIBUSY does not generate an interrupt event  
bit 10-9  
bit 8  
Unimplemented: Read as ‘0’  
SPITUREN: Enable Interrupt Events via SPITUR bit  
1= Transmit Underrun (TUR) generates an interrupt event  
0= Transmit Underrun does not generate an interrupt event  
bit 7  
bit 6  
bit 5  
SRMTEN: Enable Interrupt Events via SRMT bit  
1= Shift Register Empty (SRMT) generates interrupt events  
0= Shift Register Empty does not generate interrupt events  
SPIROVEN: Enable Interrupt Events via SPIROV bit  
1= SPIx Receive Overflow (ROV) generates an interrupt event  
0= SPIx Receive Overflow does not generate an interrupt event  
SPIRBEN: Enable Interrupt Events via SPIRBE bit  
1= SPIx RX buffer empty generates an interrupt event  
0= SPIx RX buffer empty does not generate an interrupt event  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
SPITBEN: Enable Interrupt Events via SPITBE bit  
1= SPIx transmit buffer empty generates an interrupt event  
0= SPIx transmit buffer empty does not generate an interrupt event  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
SPITBFEN: Enable Interrupt Events via SPITBF bit  
1= SPIx transmit buffer full generates an interrupt event  
0= SPIx transmit buffer full does not generate an interrupt event  
bit 0  
SPIRBFEN: Enable Interrupt Events via SPIRBF bit  
1= SPIx receive buffer full generates an interrupt event  
0= SPIx receive buffer full does not generate an interrupt event  
DS70005258C-page 244  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 18-7: SPIxIMSKH: SPIx INTERRUPT MASK REGISTER HIGH  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
(1)  
(1,4)  
(1,3)  
(1,2)  
(1)  
(1)  
RXWIEN  
RXMSK5  
RXMSK4  
RXMSK3  
RXMSK2  
RXMSK1  
RXMSK0  
bit 15  
bit 8  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
(1)  
(1,4)  
(1,3)  
(1,2)  
(1)  
(1)  
TXWIEN  
TXMSK5  
TXMSK4  
TXMSK3  
TXMSK2  
TXMSK1  
TXMSK0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
RXWIEN: Receive Watermark Interrupt Enable bit  
1= Triggers receive buffer element watermark interrupt when RXMSK<5:0> RXELM<5:0>  
0= Disables receive buffer element watermark interrupt  
bit 14  
Unimplemented: Read as ‘0’  
bit 13-8  
RXMSK<5:0>: RX Buffer Mask bits(1,2,3,4)  
RX mask bits; used in conjunction with the RXWIEN bit.  
TXWIEN: Transmit Watermark Interrupt Enable bit  
bit 7  
1= Triggers transmit buffer element watermark interrupt when TXMSK<5:0> = TXELM<5:0>  
0= Disables transmit buffer element watermark interrupt  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-0  
TXMSK<5:0>: TX Buffer Mask bits(1,2,3,4)  
TX mask bits; used in conjunction with the TXWIEN bit.  
Note 1: Mask values higher than FIFODEPTH are not valid. The module will not trigger a match for any value in  
this case.  
2: RXMSK2 and TXMSK2 bits are only present when FIFODEPTH = 8 or higher.  
3: RXMSK3 and TXMSK3 bits are only present when FIFODEPTH = 16 or higher.  
4: RXMSK4 and TXMSK4 bits are only present when FIFODEPTH = 32.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 245  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 18-3:  
SPIx MASTER/SLAVE CONNECTION (STANDARD MODE)  
Processor 1 (SPIx Master)  
Processor 2 (SPIx Slave)  
SDOx  
SDIx  
Serial Receive Buffer  
Serial Transmit Buffer  
(2)  
(2)  
(SPIxRXB)  
(SPIxTXB)  
SDIx  
SDOx  
SDIx  
Shift Register  
(SPIxRXSR)  
Shift Register  
(SPIxTXSR)  
LSb  
LSb  
MSb  
MSb  
MSb  
MSb  
LSb  
LSb  
SDOx  
Shift Register  
(SPIxRXSR)  
Shift Register  
(SPIxTXSR)  
Serial Clock  
Serial Transmit Buffer  
SCKx  
SCKx  
Serial Receive Buffer  
(2)  
(2)  
(SPIxTXB)  
(SPIxRXB)  
(1)  
SSx  
SPIx Buffer  
(SPIxBUF)  
SPIx Buffer  
(SPIxBUF)  
(2)  
(2)  
MSTEN (SPIxCON1L<5>) = 1)  
MSSEN (SPIxCON1H<4>) =  
1and MSTEN (SPIxCON1L<5>) = 0  
Note 1: Using the SSx pin in Slave mode of operation is optional.  
2: User must write transmit data to read the received data from SPIxBUF. The SPIxTXB and SPIxRXB registers  
are memory-mapped to SPIxBUF.  
DS70005258C-page 246  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 18-4:  
SPIx MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)  
Processor 1 (SPIx Master)  
Processor 2 (SPIx Slave)  
SDOx  
SDIx  
Serial Transmit FIFO  
Serial Receive FIFO  
(2)  
(2)  
(SPIxRXB)  
(SPIxTXB)  
SDIx  
SDOx  
SDIx  
Shift Register  
(SPIxRXSR)  
Shift Register  
(SPIxTXSR)  
LSb  
LSb  
MSb  
MSb  
MSb  
MSb  
LSb  
LSb  
SDOx  
Shift Register  
(SPIxRXSR)  
Shift Register  
(SPIxTXSR)  
Serial Clock  
SCKx  
Serial Transmit FIFO  
SCKx  
Serial Receive FIFO  
(2)  
(2)  
(SPIxTXB)  
(SPIxRXB)  
(1)  
SSx  
SPIx Buffer  
(SPIxBUF)  
SPIx Buffer  
(SPIxBUF)  
(2)  
(2)  
MSTEN (SPIxCON1L<5>) = 1)  
MSSEN (SPIxCON1H<4>) =  
1
and MSTEN (SPIxCON1L<5>) =  
0
Note 1: Using the SSx pin in Slave mode of operation is optional.  
2: User must write transmit data to read the received data from SPIxBUF. The SPIxTXB and SPIxRXB registers  
are memory-mapped to SPIxBUF.  
FIGURE 18-5:  
SPIx MASTER, FRAME MASTER CONNECTION DIAGRAM  
PIC24F  
Processor 2  
(SPIx Master, Frame Master)  
SDOx  
SDIx  
SDOx  
SDIx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 247  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 18-6:  
FIGURE 18-7:  
FIGURE 18-8:  
SPIx MASTER, FRAME SLAVE CONNECTION DIAGRAM  
PIC24F  
Processor 2  
SPIx Master, Frame Slave)  
SDOx  
SDIx  
SDOx  
SDIx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
SPIx SLAVE, FRAME MASTER CONNECTION DIAGRAM  
PIC24F  
(SPIx Slave, Frame Master)  
Processor 2  
SDOx  
SDIx  
SDOx  
SDIx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
SPIx SLAVE, FRAME SLAVE CONNECTION DIAGRAM  
PIC24F  
(SPIx Slave, Frame Slave)  
Processor 2  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
EQUATION 18-1: RELATIONSHIP BETWEEN DEVICE AND SPIx CLOCK SPEED  
FPB  
Baud Rate =  
(2 * (SPIxBRG + 1))  
Where:  
FPB is the Peripheral Bus Clock Frequency.  
DS70005258C-page 248  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
The I2C module offers the following key features:  
• I2C Interface supporting both Master and Slave  
modes of Operation  
19.0 INTER-INTEGRATED CIRCUIT  
2
(I C)  
• I2C Slave mode Supports 7 and 10-Bit Addressing  
• I2C Master mode Supports 7 and 10-Bit Addressing  
• I2C Port allows Bidirectional Transfers between  
Master and Slaves  
• Serial Clock Synchronization for I2C Port can be  
used as a Handshake Mechanism to Suspend  
and Resume Serial Transfer (SCLREL control)  
• I2C Supports Multi-Master Operation, Detects Bus  
Collision and Arbitrates Accordingly  
Note 1: This data sheet summarizes the  
features of the dsPIC33EPXXXGS70X/  
80X family of devices. It is not intended  
to be a comprehensive reference source.  
To complement the information in this  
data sheet, refer to “Inter-Integrated  
Circuit (I2C)” (DS70000195) in the  
“dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
website (www.microchip.com).  
• System Management Bus (SMBus) Support  
• Alternate I2C Pin Mapping (ASCLx/ASDAx)  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
2
19.1 I C Resources  
Many useful resources are provided on the main prod-  
uct page of the Microchip website for the devices listed  
in this data sheet. This product page contains the latest  
updates and additional information.  
The dsPIC33EPXXXGS70X/80X family of devices  
contains two Inter-Integrated Circuit (I2C) modules:  
I2C1 and I2C2.  
19.1.1  
KEY RESOURCES  
The I2C module provides complete hardware support  
for both Slave and Multi-Master modes of the I2C serial  
communication standard, with a 16-bit interface.  
“Inter-Integrated Circuit (I2C)” (DS70000195) in  
the “dsPIC33/PIC24 Family Reference Manual”  
The I2C module has a 2-pin interface:  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• The SCLx/ASCLx pin is clock  
• The SDAx/ASDAx pin is data  
• All Related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
• Development Tools  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 249  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 19-1:  
I2Cx BLOCK DIAGRAM (x = 1 OR 2)  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx/ASCLx  
SDAx/ASDAx  
I2CxRSR  
LSb  
Address Match  
Write  
Read  
Match Detect  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
Read  
Write  
Collision  
Detect  
I2CxCONH  
I2CxCONL  
Acknowledge  
Generation  
Read  
Write  
Clock  
Stretching  
Read  
Write  
Read  
I2CxTRN  
LSb  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
FP/2  
I2CxBRG  
DS70005258C-page 250  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
2
19.2 I C Control Registers  
REGISTER 19-1: I2CxCONL: I2Cx CONTROL REGISTER LOW  
R/W-0  
I2CEN  
U-0  
R/W-0  
HC/R/W-1  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
STRICT  
DISSLW  
bit 15  
bit 8  
R/W-0  
GCEN  
R/W-0  
R/W-0  
HC/R/W-0  
ACKEN  
HC/R/W-0  
RCEN  
HC/R/W-0  
PEN  
HC/R/W-0  
RSEN  
HC/R/W-0  
SEN  
STREN  
ACKDT  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
‘1’ = Bit is set  
bit 15  
I2CEN: I2Cx Enable bit  
1= Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins  
0= Disables the I2Cx module; all I2C pins are controlled by port functions  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: I2Cx Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12  
SCLREL: SCLx Release Control bit (when operating as I2C slave)  
1= Releases SCLx clock  
0= Holds SCLx clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software can write ‘0’ to initiate stretch and write ‘1’ to release clock). It is cleared by hard-  
ware at the beginning of every slave data byte transmission. It is cleared by hardware at the end of every  
slave address byte reception. It is cleared by hardware at the end of every slave data byte reception.  
If STREN = 0:  
Bit is R/S (i.e., software can only write ‘1’ to release clock). It is cleared by hardware at the beginning  
of every slave data byte transmission. It is cleared by hardware at the end of every slave address byte  
reception.  
bit 11  
STRICT: Strict I2Cx Reserved Address Enable bit  
1= Strict Reserved Addressing is Enabled:  
In Slave mode, the device will NACK any reserved address. In Master mode, the device is allowed  
to generate addresses within the reserved address space.  
0= Reserved Addressing is Acknowledged:  
In Slave mode, the device will ACK any reserved address. In Master mode, the device should not  
address a slave device with a reserved address.  
bit 10  
bit 9  
bit 8  
A10M: 10-Bit Slave Address bit  
1= I2CxADD is a 10-bit slave address  
0= I2CxADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control is disabled  
0= Slew rate control is enabled  
SMEN: SMBus Input Levels bit  
1= Enables I/O pin thresholds compliant with SMBus specification  
0= Disables SMBus input thresholds  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 251  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 19-1: I2CxCONL: I2Cx CONTROL REGISTER LOW (CONTINUED)  
bit 7  
GCEN: General Call Enable bit (when operating as I2C slave)  
1= Enables interrupt when a general call address is received in I2CxRSR (module is enabled for reception)  
0= General call address is disabled  
bit 6  
STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with the SCLREL bit.  
1= Enables software controlled clock stretching  
0= Disables software controlled clock stretching  
bit 5  
bit 4  
ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive)  
Value that is transmitted when the software initiates an Acknowledge sequence.  
1= Sends NACK during Acknowledge  
0= Sends ACK during Acknowledge  
ACKEN: Acknowledge Sequence Enable bit  
(when operating as I2C master, applicable during master receive)  
1= Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit; it is  
cleared by hardware at the end of the master Acknowledge sequence  
0= Acknowledge sequence is not in progress  
bit 3  
bit 2  
bit 1  
bit 0  
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C; it is cleared by hardware at the end of the eighth bit of the master  
receive data byte  
0= Receive sequence is not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiates Stop condition on SDAx and SCLx pins; it is cleared by hardware at the end of the master  
Stop sequence  
0= Stop condition is not in progress  
RSEN: Repeated Start Condition Enable bit (when operating as I2C master)  
1= Initiates Repeated Start condition on SDAx and SCLx pins; it is cleared by hardware at the end of  
the master Repeated Start sequence  
0= Repeated Start condition is not in progress  
SEN: Start Condition Enable bit (when operating as I2C master)  
1= Initiates Start condition on SDAx and SCLx pins; it is cleared by hardware at the end of the master  
Start sequence  
0= Start condition is not in progress  
DS70005258C-page 252  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 19-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-0  
PCIE  
R/W-0  
SCIE  
R/W-0  
BOEN  
R/W-0  
R/W-0  
R/W-0  
AHEN  
R/W-0  
DHEN  
SDAHT  
SBCDE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6  
Unimplemented: Read as ‘0’  
PCIE: Stop Condition Interrupt Enable bit (I2C Slave mode only)  
1= Enables interrupt on detection of Stop condition  
0= Stop detection interrupts are disabled  
bit 5  
bit 4  
SCIE: Start Condition Interrupt Enable bit (I2C Slave mode only)  
1= Enables interrupt on detection of Start or Restart conditions  
0= Start detection interrupts are disabled  
BOEN: Buffer Overwrite Enable bit (I2C Slave mode only)  
1= I2CxRCV is updated and ACK is generated for a received address/data byte, ignoring the state of  
the I2COV only if the RBF bit = 0  
0= I2CxRCV is only updated when I2COV is clear  
bit 3  
bit 2  
SDAHT: SDAx Hold Time Selection bit  
1= Minimum of 300 ns hold time on SDAx after the falling edge of SCLx  
0= Minimum of 100 ns hold time on SDAx after the falling edge of SCLx  
SBCDE: Slave Mode Bus Collision Detect Enable bit (I2C Slave mode only)  
1= Enables slave bus collision interrupts  
0= Slave bus collision interrupts are disabled  
If the rising edge of SCLx and SDAx is sampled low when the module is in a high state, the BCL bit is  
set and the bus goes Idle. This Detection mode is only valid during data and ACK transmit sequences.  
bit 1  
bit 0  
AHEN: Address Hold Enable bit (I2C Slave mode only)  
1= Following the 8th falling edge of SCLx for a matching received address byte, the SCLREL  
(I2CxCONL<12>) bit will be cleared and SCLx will be held low  
0= Address holding is disabled  
DHEN: Data Hold Enable bit (I2C Slave mode only)  
1= Following the 8th falling edge of SCLx for a received data byte, the slave hardware clears the  
SCLREL (I2CxCONL<12>) bit and SCLx is held low  
0= Data holding is disabled  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 253  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 19-3: I2CxSTAT: I2Cx STATUS REGISTER  
HSC/R-0  
HSC/R-0  
TRSTAT  
HSC/R-0  
ACKTIM  
U-0  
U-0  
HS/R/C-0  
BCL  
HSC/R-0  
GCSTAT  
HSC/R-0  
ADD10  
ACKSTAT  
bit 15  
bit 8  
HS/R/C-0  
IWCOL  
HS/R/C-0  
I2COV  
HSC/R-0  
D_A  
HSC/R/C-0 HSC/R/C-0  
HSC/R-0  
R_W  
HSC/R-0  
RBF  
HSC/R-0  
TBF  
P
S
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
HS = Hardware Settable bit  
R = Readable bit  
-n = Value at POR  
HSC = Hardware Settable/Clearable bit  
U = Unimplemented bit, read as ‘0’  
bit 15  
ACKSTAT: Acknowledge Status bit (when operating as I2C master, applicable to master transmit operation)  
1= NACK was received from slave  
0= ACK was received from slave  
It is set or cleared by hardware at the end of a slave Acknowledge.  
bit 14  
TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
It is set by hardware at the beginning of master transmission. It is cleared by hardware at the end of slave  
Acknowledge.  
bit 13  
ACKTIM: Acknowledge Time Status bit (I2C Slave mode only)  
1= I2C bus is an Acknowledge sequence, set on the 8th falling edge of SCLx  
0= Not an Acknowledge sequence, cleared on the 9th rising edge of SCLx  
bit 12-11  
bit 10  
Unimplemented: Read as ‘0’  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No bus collision detected  
It is set by hardware at detection of a bus collision.  
bit 9  
bit 8  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
It is set by hardware when address matches the general call address. It is cleared by hardware at Stop  
detection.  
ADD10: 10-Bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
It is set by hardware at the match of the 2nd byte of the matched 10-bit address. It is cleared by hardware  
at Stop detection.  
bit 7  
bit 6  
IWCOL: I2Cx Write Collision Detect bit  
1= An attempt to write to the I2CxTRN register failed because the I2C module is busy  
0= No collision  
It is set by hardware at the occurrence of a write to I2CxTRN while busy (cleared by software).  
I2COV: I2Cx Receive Overflow Flag bit  
1= A byte was received while the I2CxRCV register was still holding the previous byte  
0= No overflow  
It is set by hardware at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).  
DS70005258C-page 254  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 19-3: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)  
D_A: Data/Address bit (I2C Slave mode only)  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was a device address  
It is cleared by hardware at a device address match. It is set by hardware by reception of a slave byte.  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
It is set or cleared by hardware when a Start, Repeated Start or Stop is detected.  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
It is set or cleared by hardware when a Start, Repeated Start or Stop is detected.  
R_W: Read/Write Information bit (I2C Slave mode only)  
1= Read – Indicates data transfer is output from the slave  
0= Write – Indicates data transfer is input to the slave  
It is set or cleared by hardware after reception of an I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive is complete, I2CxRCV is full  
0= Receive is not complete, I2CxRCV is empty  
It is set by hardware when I2CxRCV is written with a received byte. It is cleared by hardware when  
software reads I2CxRCV.  
bit 0  
TBF: Transmit Buffer Full Status bit  
1= Transmit is in progress, I2CxTRN is full  
0= Transmit is complete, I2CxTRN is empty  
It is set by hardware when software writes to I2CxTRN. It is cleared by hardware at completion of a data  
transmission.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 255  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 19-4: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK<9:8>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AMSK<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
AMSK<9:0>: Address Mask Select bits  
For 10-Bit Address:  
1= Enables masking for bit Ax of incoming message address; bit match is not required in this position  
0= Disables masking for bit Ax; bit match is required in this position  
For 7-Bit Address (I2CxMSK<6:0> only):  
1= Enables masking for bit Ax + 1 of incoming message address; bit match is not required in this position  
0= Disables masking for bit Ax + 1; bit match is required in this position  
DS70005258C-page 256  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
The primary features of the UARTx module are:  
20.0 UNIVERSAL ASYNCHRONOUS  
• Full-Duplex, 8 or 9-Bit Data Transmission through  
the UxTX and UxRX Pins  
RECEIVER TRANSMITTER  
(UART)  
• Even, Odd or No Parity Options (for 8-bit data)  
• One or Two Stop bits  
Note 1: This data sheet summarizes the  
features of the dsPIC33EPXXXGS70X/  
80X family of devices. It is not intended  
• Hardware Flow Control Option with UxCTS and  
UxRTS Pins  
to be  
a
comprehensive reference  
• Fully Integrated Baud Rate Generator with  
16-Bit Prescaler  
source. To complement the information  
in this data sheet, refer to “Universal  
Asynchronous Receiver Transmitter  
(UART)” (DS70000582) in the “dsPIC33/  
PIC24 Family Reference Manual”, which  
is available from the Microchip website  
(www.microchip.com).  
• Baud Rates Ranging from 4.375 Mbps to 67 bps in  
16x mode at 70 MIPS  
• Baud Rates Ranging from 17.5 Mbps to 267 bps in  
4x mode at 70 MIPS  
• 4-Deep First-In First-Out (FIFO) Transmit Data  
Buffer  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• 4-Deep FIFO Receive Data Buffer  
• Parity, Framing and Buffer Overrun Error Detection  
• Support for 9-Bit mode with Address Detect  
(9th bit = 1)  
• Transmit and Receive Interrupts  
• A Separate Interrupt for all UARTx Error Conditions  
• Loopback mode for Diagnostic Support  
• Support for Sync and Break Characters  
• Support for Automatic Baud Rate Detection  
• IrDA® Encoder and Decoder Logic  
The dsPIC33EPXXXGS70X/80X family of devices  
contains two UART modules.  
The Universal Asynchronous Receiver Transmitter  
(UART) module is one of the serial I/O modules avail-  
able in the dsPIC33EPXXXGS70X/80X device family.  
The UART is a full-duplex, asynchronous system that  
can communicate with peripheral devices, such as  
personal computers, LIN/J2602, RS-232 and RS-485  
interfaces. The module also supports a hardware flow  
control option with the UxCTS and UxRTS pins, and  
also includes an IrDA® encoder and decoder.  
• 16x Baud Clock Output for IrDA Support  
A simplified block diagram of the UARTx module is  
shown in Figure 20-1. The UARTx module consists of  
these key hardware elements:  
• Baud Rate Generator  
• Asynchronous Transmitter  
• Asynchronous Receiver  
FIGURE 20-1:  
UARTx SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
®
IrDA  
Hardware Flow Control  
UARTx Receiver  
UxRTS/BCLKx  
UxCTS  
UxRX  
UARTx Transmitter  
UxTX  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 257  
dsPIC33EPXXXGS70X/80X FAMILY  
20.1 UART Helpful Tips  
20.2 UART Resources  
1. In multi-node, direct connect UART networks,  
UART receive inputs react to the complemen-  
tary logic level defined by the URXINV bit  
(UxMODE<4>), which defines the Idle state, the  
default of which is logic high (i.e., URXINV = 0).  
Because remote devices do not initialize at the  
same time, it is likely that one of the devices,  
because the RX line is floating, will trigger a Start  
bit detection and will cause the first byte received,  
after the device has been initialized, to be invalid.  
To avoid this situation, the user should use a pull-  
up or pull-down resistor on the RX pin depending  
on the value of the URXINV bit.  
Many useful resources are provided on the main prod-  
uct page of the Microchip website for the devices listed  
in this data sheet. This product page contains the latest  
updates and additional information.  
20.2.1  
KEY RESOURCES  
“Universal Asynchronous Receiver  
Transmitter (UART)” (DS70000582) in the  
“dsPIC33/PIC24 Family Reference Manual”  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
a) If URXINV = 0, use a pull-up resistor on the  
UxRX pin.  
• All Related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
b) If URXINV = 1, use a pull-down resistor on  
the UxRX pin.  
• Development Tools  
2. The first character received on a wake-up from  
Sleep mode, caused by activity on the UxRX pin  
of the UARTx module, will be invalid. In Sleep  
mode, peripheral clocks are disabled. By the  
time the oscillator system has restarted and  
stabilized from Sleep mode, the baud rate bit  
sampling clock, relative to the incoming UxRX  
bit timing, is no longer synchronized, resulting in  
the first character being invalid; this is to be  
expected.  
DS70005258C-page 258  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
20.3 UART Control Registers  
REGISTER 20-1: UxMODE: UARTx MODE REGISTER  
R/W-0  
UARTEN(1)  
bit 15  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN(2)  
R/W-0  
U-0  
R/W-0  
UEN1  
R/W-0  
UEN0  
RTSMD  
bit 8  
HC/R/W-0  
WAKE  
R/W-0  
HC/R/W-0  
ABAUD  
R/W-0  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
LPBACK  
URXINV  
PDSEL1  
PDSEL0  
STSEL  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
UARTEN: UARTx Enable bit(1)  
1= UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>  
0= UARTx is disabled; all UARTx pins are controlled by PORT latches; UARTx power consumption is  
minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: UARTx Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA® Encoder and Decoder Enable bit(2)  
1= IrDA encoder and decoder are enabled  
0= IrDA encoder and decoder are disabled  
RTSMD: Mode Selection for UxRTS Pin bit  
1= UxRTS pin is in Simplex mode  
0= UxRTS pin is in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
bit 9-8  
UEN<1:0>: UARTx Pin Enable bits  
11= UxTX, UxRX and BCLKx pins are enabled and used; UxCTS pin is controlled by PORT latches  
10= UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01= UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by PORT latches  
00= UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLKx pins are controlled by  
PORT latches  
bit 7  
bit 6  
WAKE: Wake-up on Start Bit Detect During Sleep Mode Enable bit  
1= UARTx continues to sample the UxRX pin, interrupt is generated on the falling edge; bit is cleared  
in hardware on the following rising edge  
0= No wake-up is enabled  
LPBACK: UARTx Loopback Mode Select bit  
1= Enables Loopback mode  
0= Loopback mode is disabled  
Note 1: Refer to “Universal Asynchronous Receiver Transmitter (UART)” (DS70000582) in the  
“dsPIC33/PIC24 Family Reference Manual” for information on enabling the UARTx module for receive or  
transmit operation.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 259  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 20-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
bit 5  
ABAUD: Auto-Baud Enable bit  
1= Enables baud rate measurement on the next character – requires reception of a Sync field (55h)  
before other data; cleared in hardware upon completion  
0= Baud rate measurement is disabled or completed  
bit 4  
URXINV: UARTx Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
bit 3  
BRGH: High Baud Rate Enable bit  
1= BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)  
0= BRG generates 16 clocks per bit period (16x baud clock, Standard mode)  
bit 2-1  
PDSEL<1:0>: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit  
1= Two Stop bits  
0= One Stop bit  
Note 1: Refer to “Universal Asynchronous Receiver Transmitter (UART)” (DS70000582) in the  
“dsPIC33/PIC24 Family Reference Manual” for information on enabling the UARTx module for receive or  
transmit operation.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
DS70005258C-page 260  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
R/W-0  
UTXISEL1  
bit 15  
R/W-0  
R/W-0  
U-0  
HC/R/W-0  
UTXBRK  
R/W-0  
UTXEN(1)  
R-0  
R-1  
UTXINV  
UTXISEL0  
UTXBF  
TRMT  
bit 8  
R/W-0  
URXISEL1  
bit 7  
R/W-0  
R/W-0  
R-1  
R-0  
R-0  
R/C-0  
R-0  
URXISEL0  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HC = Hardware Clearable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
bit 15,13  
UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits  
11= Reserved; do not use  
10= Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the  
transmit buffer becomes empty  
01= Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations  
are completed  
00= Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least  
one character open in the transmit buffer)  
bit 14  
UTXINV: UARTx Transmit Polarity Inversion bit  
If IREN = 0:  
1= UxTX Idle state is ‘0’  
0= UxTX Idle state is ‘1’  
If IREN = 1:  
1= IrDA® encoded, UxTX Idle state is ‘1’  
0= IrDA encoded, UxTX Idle state is ‘0’  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: UARTx Transmit Break bit  
1= Sends Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;  
cleared by hardware upon completion  
0= Sync Break transmission is disabled or completed  
bit 10  
UTXEN: UARTx Transmit Enable bit(1)  
1= Transmit is enabled, UxTX pin is controlled by UARTx  
0= Transmit is disabled, any pending transmission is aborted and buffer is reset; UxTX pin is controlled  
by the PORT  
bit 9  
UTXBF: UARTx Transmit Buffer Full Status bit (read-only)  
1= Transmit buffer is full  
0= Transmit buffer is not full, at least one more character can be written  
bit 8  
TRMT: Transmit Shift Register Empty bit (read-only)  
1= Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift Register is not empty, a transmission is in progress or queued  
bit 7-6  
URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits  
11= Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has four data characters)  
10= Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has three data characters)  
0x= Interrupt is set when any character is received and transferred from the UxRSR to the receive  
buffer; receive buffer has one or more characters  
Note 1: Refer to “Universal Asynchronous Receiver Transmitter (UART)” (DS70000582) in the “dsPIC33/  
PIC24 Family Reference Manual” for information on enabling the UARTx module for transmit operation.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 261  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)  
1= Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect  
0= Address Detect mode is disabled  
RIDLE: Receiver Idle bit (read-only)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (read-only)  
1= Parity error has been detected for the current character (character at the top of the receive FIFO)  
0= Parity error has not been detected  
FERR: Framing Error Status bit (read-only)  
1= Framing error has been detected for the current character (character at the top of the receive FIFO)  
0= Framing error has not been detected  
OERR: Receive Buffer Overrun Error Status bit (clear/read-only)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed; clearing a previously set OERR bit (10transition) resets the  
receiver buffer and the UxRSR to the empty state  
bit 0  
URXDA: UARTx Receive Buffer Data Available bit (read-only)  
1= Receive buffer has data, at least one more character can be read  
0= Receive buffer is empty  
Note 1: Refer to “Universal Asynchronous Receiver Transmitter (UART)” (DS70000582) in the “dsPIC33/  
PIC24 Family Reference Manual” for information on enabling the UARTx module for transmit operation.  
DS70005258C-page 262  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
The Configurable Logic Cell (CLC) module allows the  
21.0 CONFIGURABLE LOGIC CELL  
(CLC)  
user to specify combinations of signals as inputs to a  
logic function and to use the logic output to control  
other peripherals or I/O pins. This provides greater flex-  
ibility and potential in embedded designs, since the  
CLC module can operate outside the limitations of  
software execution and supports a vast amount of  
output designs.  
Note:  
This data sheet summarizes the features  
of the dsPIC33EPXXXGS70X/80X family  
devices. It is not intended to be a  
comprehensive reference source. To com-  
plement the information in this data sheet,  
refer to “Configurable Logic Cell (CLC)”  
(DS70005298) in the “dsPIC33/PIC24  
Family Reference Manual”, which is  
available from the Microchip website  
(www.microchip.com).  
There are four input gates to the selected logic func-  
tion. These four input gates select from a pool of up to  
32 signals that are selected using four data source  
selection multiplexers. Figure 21-1 shows an overview  
of the module. Figure 21-3 shows the details of the data  
source multiplexers and logic input gate connections.  
FIGURE 21-1:  
CLCx MODULE  
DS1<2:0>  
DS2<2:0>  
DS3<2:0>  
G1POL  
G2POL  
G3POL  
DS4<2:0> G4POL  
D
Q
LCOUT  
FCY  
CLK  
MODE<2:0>  
LCOE  
LCEN  
CLC  
Inputs  
(32)  
Gate 1  
TRISx Control  
CLCx  
Input  
Data  
Selection  
Gates  
CLCx  
Output  
Gate 2  
Gate 3  
Gate 4  
Logic  
Logic  
Output  
Function  
LCPOL  
Interrupt  
det  
See Figure 21-2  
Set  
CLCxIF  
See Figure 21-3  
INTP  
INTN  
Interrupt  
det  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 263  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 21-2:  
CLCx LOGIC FUNCTION COMBINATORIAL OPTIONS  
AND – OR  
OR – XOR  
Gate 1  
Gate 2  
Gate 3  
Gate 4  
Gate 1  
Gate 2  
Gate 3  
Gate 4  
Logic Output  
Logic Output  
MODE<2:0> = 000  
MODE<2:0> = 001  
4-Input AND  
S-R Latch  
Gate 1  
Gate 1  
Gate 2  
Gate 3  
Gate 4  
Logic Output  
S
R
Q
Gate 2  
Gate 3  
Gate 4  
Logic Output  
MODE<2:0> = 011  
MODE<2:0> = 010  
1-Input D Flip-Flop with S and R  
2-Input D Flip-Flop with R  
Gate 4  
Gate 4  
Gate 2  
D
Q
Logic Output  
S
R
Logic Output  
Gate 2  
Gate 1  
Gate 3  
D
Q
Gate 1  
Gate 3  
R
MODE<2:0> = 101  
MODE<2:0> = 100  
J-K Flip-Flop with R  
1-Input Transparent Latch with S and R  
Gate 4  
Gate 2  
Gate 1  
Gate 4  
Gate 3  
J
Q
Logic Output  
S
Gate 2  
Gate 1  
Gate 3  
D
Q
Logic Output  
K
R
LE  
R
MODE<2:0> = 110  
MODE<2:0> = 111  
DS70005258C-page 264  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 21-3:  
CLCx INPUT SOURCE SELECTION DIAGRAM  
Data Selection  
000  
Input 0  
Input 1  
Input 2  
Input 3  
Input 4  
Input 5  
Input 6  
Input 7  
Data Gate 1  
Data 1 Non-Inverted  
G1D1T  
G1D1N  
G1D2T  
Data 1  
Inverted  
111  
000  
DS1x (CLCxSEL<2:0>)  
G1D2N  
G1D3T  
G1D3N  
G1D4T  
Gate 1  
Input 8  
Input 9  
G1POL  
(CLCxCONH<0>)  
Input 10  
Input 11  
Input 12  
Input 13  
Input 14  
Input 15  
Data 2 Non-Inverted  
Data 2  
Inverted  
111  
000  
G1D4N  
DS2x (CLCxSEL<6:4>)  
Input 16  
Input 17  
Input 18  
Input 19  
Input 20  
Input 21  
Input 22  
Input 23  
Data Gate 2  
Gate 2  
Data 3 Non-Inverted  
(Same as Data Gate 1)  
Data Gate 3  
Data 3  
Inverted  
111  
000  
Gate 3  
Gate 4  
DS3x (CLCxSEL<10:8>)  
(Same as Data Gate 1)  
Data Gate 4  
Input 24  
Input 25  
Input 26  
Input 27  
Input 28  
Input 29  
Input 30  
Input 31  
(Same as Data Gate 1)  
Data 4 Non-Inverted  
Data 4  
Inverted  
111  
DS4x (CLCxSEL<14:12>)  
Note: All controls are undefined at power-up.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 265  
dsPIC33EPXXXGS70X/80X FAMILY  
The CLCx Input MUX Select register (CLCxSEL)  
21.1 Control Registers  
allows the user to select up to four data input sources  
using the four data input selection multiplexers. Each  
multiplexer has a list of eight data sources available.  
The CLCx module is controlled by the following registers:  
• CLCxCONL  
• CLCxCONH  
• CLCxSEL  
The CLCx Gate Logic Input Select registers  
(CLCxGLSL and CLCxGLSH) allow the user to select  
which outputs from each of the selection MUXes are  
used as inputs to the input gates of the logic cell. Each  
data source MUX outputs both a true and a negated  
version of its output. All of these eight signals are  
enabled, ORed together by the logic cell input gates.  
• CLCxGLSL  
• CLCxGLSH  
The CLCx Control registers (CLCxCONL and  
CLCxCONH) are used to enable the module and inter-  
rupts, control the output enable bit, select output polarity  
and select the logic function. The CLCx Control registers  
also allow the user to control the logic polarity of not only  
the cell output, but also some intermediate variables.  
REGISTER 21-1: CLCxCONL: CLCx CONTROL REGISTER (LOW)  
R/W-0  
LCEN  
U-0  
U-0  
U-0  
R/W-0  
INTP  
R/W-0  
INTN  
U-0  
U-0  
bit 15  
bit 8  
R-0  
R-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
LCOE  
LCOUT  
LCPOL  
MODE2  
MODE1  
MODE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
LCEN: CLCx Enable bit  
1= CLCx is enabled and mixing input signals  
0= CLCx is disabled and has logic zero outputs  
bit 14-12  
bit 11  
Unimplemented: Read as ‘0’  
INTP: CLCx Positive Edge Interrupt Enable bit  
1= Interrupt will be generated when a rising edge occurs on LCOUT  
0= Interrupt will not be generated  
bit 10  
INTN: CLCx Negative Edge Interrupt Enable bit  
1= Interrupt will be generated when a falling edge occurs on LCOUT  
0= Interrupt will not be generated  
bit 9-8  
bit 7  
Unimplemented: Read as ‘0’  
LCOE: CLCx Port Enable bit  
1= CLCx port pin output is enabled  
0= CLCx port pin output is disabled  
bit 6  
LCOUT: CLCx Data Output Status bit  
1= CLCx output high  
0= CLCx output low  
bit 5  
LCPOL: CLCx Output Polarity Control bit  
1= The output of the module is inverted  
0= The output of the module is not inverted  
bit 4-3  
Unimplemented: Read as ‘0’  
DS70005258C-page 266  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 21-1: CLCxCONL: CLCx CONTROL REGISTER (LOW) (CONTINUED)  
bit 2-0  
MODE<2:0>: CLCx Mode bits  
111= Single Input Transparent Latch with S and R  
110= JK Flip-Flop with R  
101= Two-Input D Flip-Flop with R  
100= Single Input D Flip-Flop with S and R  
011= SR Latch  
010= Four-Input AND  
001= Four-Input OR-XOR  
000= Four-Input AND-OR  
REGISTER 21-2: CLCxCONH: CLCx CONTROL REGISTER (HIGH)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
G4POL  
G3POL  
G2POL  
G1POL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
G4POL: Gate 4 Polarity Control bit  
1= Channel 4 logic output is inverted when applied to the logic cell  
0= Channel 4 logic output is not inverted  
bit 2  
bit 1  
bit 0  
G3POL: Gate 3 Polarity Control bit  
1= Channel 3 logic output is inverted when applied to the logic cell  
0= Channel 3 logic output is not inverted  
G2POL: Gate 2 Polarity Control bit  
1= Channel 2 logic output is inverted when applied to the logic cell  
0= Channel 2 logic output is not inverted  
G1POL: Gate 1 Polarity Control bit  
1= Channel 1 logic output is inverted when applied to the logic cell  
0= Channel 1 logic output is not inverted  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 267  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 21-3: CLCxSEL: CLCx INPUT MUX SELECT REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
DS4<2:0>  
DS3<2:0>  
bit 15  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
DS2<2:0>  
DS1<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
DS4<2:0>: Data Selection MUX 4 Signal Selection bits  
See Table 21-1 for input selections.  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
DS3<2:0>: Data Selection MUX 3 Signal Selection bits  
See Table 21-1 for input selections.  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
DS2<2:0>: Data Selection MUX 2 Signal Selection bits  
See Table 21-1 for input selections.  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DS1<2:0>: Data Selection MUX 1 Signal Selection bits  
See Table 21-1 for input selections.  
DS70005258C-page 268  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 21-1: CLC1 MULTIPLEXER INPUT SOURCES  
DSx<2:0>  
Signal Source  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
CLCINA  
System Clock  
Timer1 Match  
PWM1H  
PWM5L  
High-Speed PWM Clock  
Timer2 Match  
Timer3 Match  
CLCINB  
CLC2 Out  
CMP1 Out  
UART1 TX Out  
ADC End-of-Conversion  
DMA Channel 0 Interrupt  
PWM1L  
PWM5H  
CLCINA  
CLC1 Out  
CMP2 Out  
SPI1 SDO Out  
UART1 RX  
PWM2H  
PWM6L  
OCMP2 Sync Output  
CLCINB  
CLC2 Out  
CMP3 Out  
SDI1  
PTGO26  
ECAN1  
PWM2L  
PWM6H  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 269  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 21-2: CLC2 MULTIPLEXER INPUT SOURCES  
DSx<2:0>  
000  
Signal Source  
CLCINA  
System Clock  
Timer1 Match  
PWM3H  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
PWM7L  
High-Speed PWM Clock  
Timer2 Match  
Timer3 Match  
CLCINB  
CLC1 Out  
CMP1 Out  
UART2 TX Out  
ADC End-of-Conversion  
DMA Channel 0 Interrupt  
PWM3L  
PWM7H  
CLCINA  
CLC2 Out  
CMP2 Out  
SPI2 SDO Out  
UART2 RX  
PWM4H  
PWM8L  
OCMP2 Sync Output  
CLCINB  
CLC1 Out  
CMP3 Out  
SDI2  
PTGO27  
ECAN1  
PWM4L  
PWM8H  
DS70005258C-page 270  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 21-3: CLC3 MULTIPLEXER INPUT SOURCES  
DSx<2:0>  
Signal Source  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
CLCINA  
System Clock  
Timer1 Match  
PWM5H  
REFO1 Clock Output  
High-Speed PWM Clock  
Timer2 Match  
PWM3L  
CLCINB  
CLC4 Out  
CMP1 Out  
PWM5L  
ADC End-of-Conversion  
PWM3H  
ICAP1 Sync Output  
ICAP2 Sync Output  
CLCINA  
CLC3 Out  
CMP2 Out  
PWM6H  
UART1 RX  
DMA Channel 1 Interrupt  
OCMP1 Sync Output  
PWM4L  
CLCINB  
CLC4 Out  
CMP3 Out  
PWM6L  
PTGO28  
PWM4H  
PC_PWM  
OCMP3 Sync Output  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 271  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 21-4: CLC4 MULTIPLEXER INPUT SOURCES  
DSx<2:0>  
000  
Signal Source  
CLCINA  
PWM7H  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
000  
001  
010  
011  
100  
101  
110  
111  
Timer1 Match  
INTOSC/LPRC Clock  
REFO1 Clock Output  
High-Speed PWM Clock  
Timer2 Match  
PWM1L  
CLCINB  
CLC3 Out  
CMP1 Out  
PWM7L  
ADC End-of-Conversion  
PWM1H  
ICAP1 Sync Output  
ICAP2 Sync Output  
CLCINA  
CLC4 Out  
CMP2 Out  
PWM8H  
UART2 RX  
DMA Channel 1 Interrupt  
OCMP1 Sync Output  
PWM2L  
CLCINB  
CLC3 Out  
CMP3 Out  
PWM8L  
PTGO29  
PWM2H  
PWM Sync Output  
OCMP3 Sync Output  
DS70005258C-page 272  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 21-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
G2D4T  
G2D4N  
G2D3T  
G2D3N  
G2D2T  
G2D2N  
G2D1T  
G2D1N  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
G1D4T  
G1D4N  
G1D3T  
G1D3N  
G1D2T  
G1D2N  
G1D1T  
G1D1N  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
G2D4T: Gate 2 Data Source 4 True Enable bit  
1= Data Source 4 non-inverted signal is enabled for Gate 2  
0= Data Source 4 non-inverted signal is disabled for Gate 2  
G2D4N: Gate 2 Data Source 4 Negated Enable bit  
1= Data Source 4 inverted signal is enabled for Gate 2  
0= Data Source 4 inverted signal is disabled for Gate 2  
G2D3T: Gate 2 Data Source 3 True Enable bit  
1= Data Source 3 non-inverted signal is enabled for Gate 2  
0= Data Source 3 non-inverted signal is disabled for Gate 2  
G2D3N: Gate 2 Data Source 3 Negated Enable bit  
1= Data Source 3 inverted signal is enabled for Gate 2  
0= Data Source 3 inverted signal is disabled for Gate 2  
G2D2T: Gate 2 Data Source 2 True Enable bit  
1= Data Source 2 non-inverted signal is enabled for Gate 2  
0= Data Source 2 non-inverted signal is disabled for Gate 2  
G2D2N: Gate 2 Data Source 2 Negated Enable bit  
1= Data Source 2 inverted signal is enabled for Gate 2  
0= Data Source 2 inverted signal is disabled for Gate 2  
G2D1T: Gate 2 Data Source 1 True Enable bit  
1= Data Source 1 non-inverted signal is enabled for Gate 2  
0= Data Source 1 non-inverted signal is disabled for Gate 2  
bit 8  
G2D1N: Gate 2 Data Source 1 Negated Enable bit  
1= Data Source 1 inverted signal is enabled for Gate 2  
0= Data Source 1 inverted signal is disabled for Gate 2  
bit 7  
G1D4T: Gate 1 Data Source 4 True Enable bit  
1= Data Source 4 non-inverted signal is enabled for Gate 1  
0= Data Source 4 non-inverted signal is disabled for Gate 1  
bit 6  
G1D4N: Gate 1 Data Source 4 Negated Enable bit  
1= Data Source 4 inverted signal is enabled for Gate 1  
0= Data Source 4 inverted signal is disabled for Gate 1  
bit 5  
G1D3T: Gate 1 Data Source 3 True Enable bit  
1= Data Source 3 non-inverted signal is enabled for Gate 1  
0= Data Source 3 non-inverted signal is disabled for Gate 1  
bit 4  
G1D3N: Gate 1 Data Source 3 Negated Enable bit  
1= Data Source 3 inverted signal is enabled for Gate 1  
0= Data Source 3 inverted signal is disabled for Gate 1  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 273  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 21-4: CLCxGLSL: CLCx GATE LOGIC INPUT SELECT LOW REGISTER (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
G1D2T: Gate 1 Data Source 2 True Enable bit  
1= Data Source 2 non-inverted signal is enabled for Gate 1  
0= Data Source 2 non-inverted signal is disabled for Gate 1  
G1D2N: Gate 1 Data Source 2 Negated Enable bit  
1= Data Source 2 inverted signal is enabled for Gate 1  
0= Data Source 2 inverted signal is disabled for Gate 1  
G1D1T: Gate 1 Data Source 1 True Enable bit  
1= Data Source 1 non-inverted signal is enabled for Gate 1  
0= Data Source 1 non-inverted signal is disabled for Gate 1  
G1D1N: Gate 1 Data Source 1 Negated Enable bit  
1= Data Source 1 inverted signal is enabled for Gate 1  
0= Data Source 1 inverted signal is disabled for Gate 1  
DS70005258C-page 274  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 21-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
G4D4T  
G4D4N  
G4D3T  
G4D3N  
G4D2T  
G4D2N  
G4D1T  
G4D1N  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
G3D4T  
G3D4N  
G3D3T  
G3D3N  
G3D2T  
G3D2N  
G3D1T  
G3D1N  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
G4D4T: Gate 4 Data Source 4 True Enable bit  
1= Data Source 4 non-inverted signal is enabled for Gate 4  
0= Data Source 4 non-inverted signal is disabled for Gate 4  
G4D4N: Gate 4 Data Source 4 Negated Enable bit  
1= Data Source 4 inverted signal is enabled for Gate 4  
0= Data Source 4 inverted signal is disabled for Gate 4  
G4D3T: Gate 4 Data Source 3 True Enable bit  
1= Data Source 3 non-inverted signal is enabled for Gate 4  
0= Data Source 3 non-inverted signal is disabled for Gate 4  
G4D3N: Gate 4 Data Source 3 Negated Enable bit  
1= Data Source 3 inverted signal is enabled for Gate 4  
0= Data Source 3 inverted signal is disabled for Gate 4  
G4D2T: Gate 4 Data Source 2 True Enable bit  
1= Data Source 2 non-inverted signal is enabled for Gate 4  
0= Data Source 2 non-inverted signal is disabled for Gate 4  
G4D2N: Gate 4 Data Source 2 Negated Enable bit  
1= Data Source 2 inverted signal is enabled for Gate 4  
0= Data Source 2 inverted signal is disabled for Gate 4  
G4D1T: Gate 4 Data Source 1 True Enable bit  
1= Data Source 1 non-inverted signal is enabled for Gate 4  
0= Data Source 1 non-inverted signal is disabled for Gate 4  
bit 8  
G4D1N: Gate 4 Data Source 1 Negated Enable bit  
1= Data Source 1 inverted signal is enabled for Gate 4  
0= Data Source 1 inverted signal is disabled for Gate 4  
bit 7  
G3D4T: Gate 3 Data Source 4 True Enable bit  
1= Data Source 4 non-inverted signal is enabled for Gate 3  
0= Data Source 4 non-inverted signal is disabled for Gate 3  
bit 6  
G3D4N: Gate 3 Data Source 4 Negated Enable bit  
1= Data Source 4 inverted signal is enabled for Gate 3  
0= Data Source 4 inverted signal is disabled for Gate 3  
bit 5  
G3D3T: Gate 3 Data Source 3 True Enable bit  
1= Data Source 3 non-inverted signal is enabled for Gate 3  
0= Data Source 3 non-inverted signal is disabled for Gate 3  
bit 4  
G3D3N: Gate 3 Data Source 3 Negated Enable bit  
1= Data Source 3 inverted signal is enabled for Gate 3  
0= Data Source 3 inverted signal is disabled for Gate 3  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 275  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 21-5: CLCxGLSH: CLCx GATE LOGIC INPUT SELECT HIGH REGISTER (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
G3D2T: Gate 3 Data Source 2 True Enable bit  
1= Data Source 2 non-inverted signal is enabled for Gate 3  
0= Data Source 2 non-inverted signal is disabled for Gate 3  
G3D2N: Gate 3 Data Source 2 Negated Enable bit  
1= Data Source 2 inverted signal is enabled for Gate 3  
0= Data Source 2 inverted signal is disabled for Gate 3  
G3D1T: Gate 3 Data Source 1 True Enable bit  
1= Data Source 1 non-inverted signal is enabled for Gate 3  
0= Data Source 1 non-inverted signal is disabled for Gate 3  
G3D1N: Gate 3 Data Source 1 Negated Enable bit  
1= Data Source 1 inverted signal is enabled for Gate 3  
0= Data Source 1 inverted signal is disabled for Gate 3  
DS70005258C-page 276  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
• Simultaneous Sampling of up to Five Analog Inputs  
22.0 HIGH-SPEED, 12-BIT  
• Channel Scan Capability  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
• Multiple Conversion Trigger Options for each  
Core, including:  
Note 1: This data sheet summarizes the features of  
the dsPIC33EPXXXGS70X/80X family of  
devices. It is not intended to be a compre-  
hensive reference source. To complement  
the information in this data sheet, refer to  
“12-Bit High-Speed, Multiple SARs A/D  
Converter (ADC)” (DS70005213) in the  
“dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
website (www.microchip.com).  
- PWM1 through PWM6 (primary and  
secondary triggers, and current-limit event  
trigger)  
- PWM Special Event Trigger  
- Timer1/Timer2 period match  
- Output Compare 1 and event trigger  
- External pin trigger event (ADTRG31)  
- Software trigger  
• Two Integrated Digital Comparators with  
Dedicated Interrupts:  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
- Multiple comparison options  
- Assignable to specific analog inputs  
• Two Oversampling Filters with Dedicated  
Interrupts:  
- Provide increased resolution  
- Assignable to a specific analog input  
dsPIC33EPXXXGS70X/80X devices have a high-speed,  
12-bit Analog-to-Digital Converter (ADC) that features  
a low conversion latency, high resolution and over-  
sampling capabilities to improve performance in  
AC/DC, DC/DC power converters.  
The module consists of five independent SAR ADC  
cores. Simplified block diagrams of the multiple SARs  
12-bit ADC are shown in Figure 22-1, Figure 22-2 and  
Figure 22-3.  
The analog inputs (channels) are connected through  
multiplexers and switches to the Sample-and-Hold  
(S&H) circuit of each ADC core. The core uses the  
channel information (the output format, the Measure-  
ment mode and the input number) to process the analog  
sample. When conversion is complete, the result is  
stored in the result buffer for the specific analog input,  
and passed to the digital filter and digital comparator if  
they were configured to use data from this particular  
channel.  
22.1 Features Overview  
The high-speed, 12-bit multiple SARs Analog-to-Digital  
Converter (ADC) includes the following features:  
• Five ADC Cores: Four Dedicated Cores and  
One Shared (common) Core  
• User-Configurable Resolution of up to 12 Bits for  
each Core  
• Up to 3.25 Msps Conversion Rate per Channel at  
12-Bit Resolution  
The ADC module can sample up to five inputs at a time  
(four inputs from the dedicated SAR cores and one  
from the shared SAR core). If multiple ADC inputs  
request conversion on the shared core, the module will  
convert them in a sequential manner, starting with the  
lowest order input.  
• Low Latency Conversion  
• Up to 22 Analog Input Channels, with a Separate  
16-Bit Conversion Result Register for each Input  
• Conversion Result can be Formatted as Unsigned  
or Signed Data, on a per Channel Basis, for All  
Channels  
The ADC provides each analog input the ability to  
specify its own trigger source. This capability allows the  
ADC to sample and convert analog inputs that are  
associated with PWM generators operating on  
independent time bases.  
• Single-Ended and Pseudodifferential  
Conversions are available on All ADC Cores  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 277  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 22-1:  
ADC MODULE BLOCK DIAGRAM  
AVDD AVSS  
Voltage Reference  
(REFSEL<2:0>)  
AN0  
AN7  
Reference  
Output Data  
Clock  
Dedicated  
ADC Core 0  
(2)  
(1)  
Digital Comparator 0  
Digital Comparator 1  
PGA1  
AN0ALT  
ADCMP0 Interrupt  
ADCMP1 Interrupt  
AN1  
Reference  
Output Data  
Clock  
AN18  
Dedicated  
ADC Core 1  
(2)  
(1)  
PGA2  
AN1ALT  
Digital Filter 0  
Digital Filter 1  
ADFL0DAT  
ADFLTR0 Interrupt  
ADFLTR1 Interrupt  
Reference  
Output Data  
Clock  
ADFL1DAT  
AN2  
Dedicated  
ADC Core 2  
(2)  
V
BG Reference(1)  
AN11  
Reference  
Output Data  
Clock  
ADCBUF0  
ADCBUF1  
AN3  
ADCAN0 Interrupt  
ADCAN1 Interrupt  
Dedicated  
ADC Core 3  
(2)  
AN15  
ADCBUF21  
ADCAN21 Interrupt  
Reference  
Output Data  
Clock  
AN4  
Shared  
ADC Core  
AN21  
Divider  
(CLKDIV<5:0>)  
Clock Selection  
(CLKSEL<1:0>)  
Instruction FRC  
Clock  
AUX  
Clock  
Note 1: PGA1, PGA2 and the Band Gap Reference (VBG) are internal analog inputs and are not available on device pins.  
2: If the dedicated core uses an alternate channel, then shared core function cannot be used.  
DS70005258C-page 278  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 22-2:  
DEDICATED ADC CORES 0 TO 3 BLOCK DIAGRAM  
Positive Input  
Positive Input  
Selection  
+
PGAx  
Reference  
(CxCHS<1:0>)  
Alternate  
Positive Input  
12-Bit SAR  
ADC  
Sample-  
and-Hold  
Output Data  
Negative Input  
Selection  
Negative Input  
(1)  
(DIFFx)  
ADC Core  
Clock Divider  
(ADCS<6:0> bits)  
Clock  
Trigger Stops  
Sampling  
AVSS  
Note 1: The DIFFx bit for the corresponding positive input channel must be set in order to use the negative differential input.  
FIGURE 22-3:  
SHARED ADC CORE BLOCK DIAGRAM  
AN4  
+
Reference  
12-Bit  
SAR  
ADC  
AN21  
Output Data  
Shared  
Sample-  
Analog Channel Number  
from Current Trigger  
and-Hold  
ADC Core  
Clock Divider  
(SHRADC<6:0> bits)  
Clock  
(1)  
Negative Input  
AN9  
Selection  
(1)  
(DIFFx)  
SHRSAMC<9:0>  
Sampling Time  
AVSS  
Note 1: Differential-mode conversion is not available for the shared ADC core in dsPIC33EPXXGS70X/80X  
devices. For all other devices, the DIFFx bit for the corresponding positive input channel must be set to use  
AN9 as the negative differential input.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 279  
dsPIC33EPXXXGS70X/80X FAMILY  
22.2.1  
KEY RESOURCES  
22.2 Analog-to-Digital Converter  
Resources  
“12-Bit High-Speed, Multiple SARs A/D  
Converter (ADC)” (DS70005213) in the  
“dsPIC33/PIC24 Family Reference Manual”  
Many useful resources are provided on the main  
product page of the Microchip website for the devices  
listed in this data sheet. This product page contains the  
latest updates and additional information.  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All Related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
• Development Tools  
REGISTER 22-1: ADCON1L: ADC CONTROL REGISTER 1 LOW  
R/W-0  
ADON(1)  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ADSIDL  
bit 15  
bit 8  
bit 0  
R/W-0  
NRE(2)  
r-0  
r-0  
r-0  
r-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ADON: ADC Enable bit(1)  
1= ADC module is enabled  
0= ADC module is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: ADC Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
NRE: Noise Reduction Enable bit(2)  
1= Holds conversion process for one TADCORE when another core completes conversion to reduce  
noise between cores  
0= Noise reduction feature is disabled  
bit 6-3  
bit 2-0  
Reserved: Maintain as ‘0’  
Unimplemented: Read as ‘0’  
Note 1: Set the ADON bit only after the ADC module has been configured. Changing ADC Configuration bits when  
ADON = 1will result in unpredictable behavior.  
2: If the NRE bit in the ADCON1L register is set, the end of conversion time is adjusted to reduce the noise  
between ADC cores. Depending on the number of cores converting and the priority of the input, a few  
additional TADs may be inserted, making the conversion time slightly less deterministic.  
DS70005258C-page 280  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-2: ADCON1H: ADC CONTROL REGISTER 1 HIGH  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
r-0  
bit 15  
bit 8  
bit 0  
R/W-0  
FORM  
R/W-1  
R/W-1  
r-0  
r-0  
r-0  
r-0  
r-0  
SHRRES1  
SHRRES0  
bit 7  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Reserved: Maintain as ‘0’  
FORM: Fractional Data Output Format bit  
1= Fractional  
0= Integer  
bit 6-5  
bit 4-0  
SHRRES<1:0>: Shared ADC Core Resolution Selection bits  
11= 12-bit resolution  
10= 10-bit resolution  
01= 8-bit resolution  
00= 6-bit resolution  
Reserved: Maintain as ‘0’  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 281  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-3: ADCON2L: ADC CONTROL REGISTER 2 LOW  
R/W-0  
R/W-0  
r-0  
R/W-0  
EIEN  
r-0  
R/W-0  
R/W-0  
R/W-0  
REFCIE  
REFERCIE  
SHREISEL2(1) SHREISEL1(1) SHREISEL0(1)  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SHRADCS<6:0>  
bit 7  
bit 0  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
REFCIE: Band Gap and Reference Voltage Ready Common Interrupt Enable bit  
1= Common interrupt will be generated when the band gap will become ready  
0= Common interrupt is disabled for the band gap ready event  
REFERCIE: Band Gap or Reference Voltage Error Common Interrupt Enable bit  
1= Common interrupt will be generated when a band gap or reference voltage error is detected  
0= Common interrupt is disabled for the band gap and reference voltage error event  
bit 13  
bit 12  
Reserved: Maintain as ‘0’  
EIEN: Early Interrupts Enable bit  
1= The early interrupt feature is enabled for the input channel interrupts (when the EISTATx flag is set)  
0= The individual interrupts are generated when conversion is done (when the ANxRDY flag is set)  
bit 11  
Reserved: Maintain as ‘0’  
bit 10-8  
SHREISEL<2:0>: Shared Core Early Interrupt Time Selection bits(1)  
111= Early interrupt is set and interrupt is generated eight TADCORE clocks prior to when the data is ready  
110= Early interrupt is set and interrupt is generated seven TADCORE clocks prior to when the data is ready  
101= Early interrupt is set and interrupt is generated six TADCORE clocks prior to when the data is ready  
100= Early interrupt is set and interrupt is generated five TADCORE clocks prior to when the data is ready  
011= Early interrupt is set and interrupt is generated four TADCORE clocks prior to when the data is ready  
010= Early interrupt is set and interrupt is generated three TADCORE clocks prior to when the data is ready  
001= Early interrupt is set and interrupt is generated two TADCORE clocks prior to when the data is ready  
000= Early interrupt is set and interrupt is generated one TADCORE clock prior to when the data is ready  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
SHRADCS<6:0>: Shared ADC Core Input Clock Divider bits  
These bits determine the number of TCORESRC (Source Clock Periods) for one shared TADCORE (Core  
Clock Period).  
1111111= 254 Source Clock Periods  
0000011= 6 Source Clock Periods  
0000010= 4 Source Clock Periods  
0000001= 2 Source Clock Periods  
0000000= 2 Source Clock Periods  
Note 1: For the 6-bit shared ADC core resolution (SHRRES<1:0> = 00), the SHREISEL<2:0> settings,  
from ‘100’ to ‘111’, are not valid and should not be used. For the 8-bit shared ADC core resolution  
(SHRRES<1:0> = 01), the SHREISEL<2:0> settings, ‘110’ and ‘111’, are not valid and should not be used.  
DS70005258C-page 282  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-4: ADCON2H: ADC CONTROL REGISTER 2 HIGH  
HSC/R-0  
REFRDY  
HSC/R-0  
REFERR  
r-0  
r-0  
r-0  
r-0  
R/W-0  
R/W-0  
SHRSAMC<9:8>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SHRSAMC<7:0>  
bit 7  
bit 0  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
HSC = Hardware Settable/Clearable bit  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
bit 14  
REFRDY: Band Gap and Reference Voltage Ready Flag bit  
1= Band gap is ready  
0= Band gap is not ready  
REFERR: Band Gap or Reference Voltage Error Flag bit  
1= Band gap was removed after the ADC module was enabled (ADON = 1)  
0= No band gap error was detected  
bit 13-10  
bit 9-0  
Reserved: Maintain as ‘0’  
SHRSAMC<9:0>: Shared ADC Core Sample Time Selection bits  
These bits specify the number of shared ADC Core Clock Periods (TADCORE) for the shared ADC core  
sample time.  
1111111111= 1025 TADCORE  
0000000001= 3 TADCORE  
0000000000= 2 TADCORE  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 283  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-5: ADCON3L: ADC CONTROL REGISTER 3 LOW  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
HSC/R-0  
R/W-0  
HSC/R-0  
REFSEL2  
REFSEL1  
REFSEL0  
SUSPEND  
SUSPCIE  
SUSPRDY  
SHRSAMP  
CNVRTCH  
bit 15  
bit 8  
R/W-0  
HSC/R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SWLCTRG  
SWCTRG CNVCHSEL5 CNVCHSEL4 CNVCHSEL3 CNVCHSEL2 CNVCHSEL1 CNVCHSEL0  
bit 0  
bit 7  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware Settable/Clearable bit  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
REFSEL<2:0>: ADC Reference Voltage Selection bits  
Value  
VREFH  
VREFL  
000  
AVDD  
AVSS  
001-111= Unimplemented: Do not use  
bit 12  
bit 11  
SUSPEND: All ADC Cores Triggers Disable bit  
1= All new trigger events for all ADC cores are disabled  
0= All ADC cores can be triggered  
SUSPCIE: Suspend All ADC Cores Common Interrupt Enable bit  
1= Common interrupt will be generated when ADC core triggers are suspended (SUSPEND bit = 1)  
and all previous conversions are finished (SUSPRDY bit becomes set)  
0= Common interrupt is not generated for suspend ADC cores event  
bit 10  
bit 9  
SUSPRDY: All ADC Cores Suspended Flag bit  
1= All ADC cores are suspended (SUSPEND bit = 1) and have no conversions in progress  
0= ADC cores have previous conversions in progress  
SHRSAMP: Shared ADC Core Sampling Direct Control bit  
This bit should be used with the individual channel conversion trigger controlled by the CNVRTCH bit.  
It connects an analog input, specified by the CNVCHSEL<5:0> bits, to the shared ADC core and allows  
extending the sampling time. This bit is not controlled by hardware and must be cleared before the  
conversion starts (setting CNVRTCH to ‘1’).  
1= Shared ADC core samples an analog input specified by the CNVCHSEL<5:0> bits  
0= Sampling is controlled by the shared ADC core hardware  
bit 8  
bit 7  
bit 6  
CNVRTCH: Software Individual Channel Conversion Trigger bit  
1= Single trigger is generated for an analog input specified by the CNVCHSEL<5:0> bits; when the bit  
is set, it is automatically cleared by hardware on the next instruction cycle  
0= Next individual channel conversion trigger can be generated  
SWLCTRG: Software Level-Sensitive Common Trigger bit  
1= Triggers are continuously generated for all channels with the software, level-sensitive common  
trigger selected as a source in the ADTRIGxL and ADTRIGxH registers  
0= No software, level-sensitive common triggers are generated  
SWCTRG: Software Common Trigger bit  
1= Single trigger is generated for all channels with the software, common trigger selected as a source  
in the ADTRIGxL and ADTRIGxH registers; when the bit is set, it is automatically cleared by  
hardware on the next instruction cycle  
0= Ready to generate the next software common trigger  
bit 5-0  
CNVCHSEL <5:0>: Channel Number Selection for Software Individual Channel Conversion Trigger bits  
These bits define a channel to be converted when the CNVRTCH bit is set.  
DS70005258C-page 284  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-6: ADCON3H: ADC CONTROL REGISTER 3 HIGH  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CLKSEL1  
CLKSEL0  
CLKDIV5  
CLKDIV4  
CLKDIV3  
CLKDIV2  
CLKDIV1  
CLKDIV0  
bit 15  
bit 8  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
C3EN  
R/W-0  
C2EN  
R/W-0  
C1EN  
R/W-0  
C0EN  
SHREN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
CLKSEL<1:0>: ADC Module Clock Source Selection bits  
11= APLL  
10= FRC  
01= FOSC (System Clock x 2)  
00= FSYS (System Clock)  
bit 13-8  
CLKDIV<5:0>: ADC Module Clock Source Divider bits  
The divider forms a TCORESRC clock used by all ADC cores (shared and dedicated) from the TSRC ADC  
module clock source selected by the CLKSEL<1:0> bits. Then, each ADC core individually divides the  
TCORESRC clock to get a core-specific TADCORE clock using the ADCS<6:0> bits in the ADCORExH  
register or the SHRADCS<6:0> bits in the ADCON2L register.  
111111= 64 Source Clock Periods  
000011= 4 Source Clock Periods  
000010= 3 Source Clock Periods  
000001= 2 Source Clock Periods  
000000= 1 Source Clock Period  
bit 7  
SHREN: Shared ADC Core Enable bit  
1= Shared ADC core is enabled  
0= Shared ADC core is disabled  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
C3EN: Dedicated ADC Core 3 Enable bits  
1= Dedicated ADC Core 3 is enabled  
0= Dedicated ADC Core 3 is disabled  
bit 2  
bit 1  
bit 0  
C2EN: Dedicated ADC Core 2 Enable bits  
1= Dedicated ADC Core 2 is enabled  
0= Dedicated ADC Core 2 is disabled  
C1EN: Dedicated ADC Core 1 Enable bits  
1= Dedicated ADC Core 1 is enabled  
0= Dedicated ADC Core 1 is disabled  
C0EN: Dedicated ADC Core 0 Enable bits  
1= Dedicated ADC Core 0 is enabled  
0= Dedicated ADC Core 0 is disabled  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 285  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-7: ADCON4L: ADC CONTROL REGISTER 4 LOW  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SAMC3EN  
SAMC2EN  
SAMC1EN  
SAMC0EN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
SAMC3EN: Dedicated ADC Core 3 Conversion Delay Enable bit  
1= After trigger, the conversion will be delayed and the ADC core will continue sampling during the  
time specified by the SAMC<9:0> bits in the ADCORE3L register  
0= After trigger, the sampling will be stopped immediately and the conversion will be started on the  
next core clock cycle  
bit 2  
bit 1  
bit 0  
SAMC2EN: Dedicated ADC Core 2 Conversion Delay Enable bit  
1= After trigger, the conversion will be delayed and the ADC core will continue sampling during the  
time specified by the SAMC<9:0> bits in the ADCORE2L register  
0= After trigger, the sampling will be stopped immediately and the conversion will be started on the  
next core clock cycle  
SAMC1EN: Dedicated ADC Core 1 Conversion Delay Enable bit  
1= After trigger, the conversion will be delayed and the ADC core will continue sampling during the  
time specified by the SAMC<9:0> bits in the ADCORE1L register  
0= After trigger, the sampling will be stopped immediately and the conversion will be started on the  
next core clock cycle  
SAMC0EN: Dedicated ADC Core 0 Conversion Delay Enable bit  
1= After trigger, the conversion will be delayed and the ADC core will continue sampling during the  
time specified by the SAMC<9:0> bits in the ADCORE0L register  
0= After trigger, the sampling will be stopped immediately and the conversion will be started on the  
next core clock cycle  
DS70005258C-page 286  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-8: ADCON4H: ADC CONTROL REGISTER 4 HIGH  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
C3CHS1  
C3CHS0  
C2CHS1  
C2CHS0  
C1CHS1  
C1CHS0  
C0CHS1  
C0CHS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-8  
bit 7-6  
Unimplemented: Read as ‘0’  
C3CHS<1:0>: Dedicated ADC Core 3 Input Channel Selection bits  
1x= Reserved  
01= AN15 (differential negative input when DIFF3 (ADMOD0L<7>) = 1)  
00= AN3  
bit 5-4  
bit 3-2  
bit 1-0  
C2CHS<1:0>: Dedicated ADC Core 2 Input Channel Selection bits  
11= Reserved  
10= VREF band gap  
01= AN11 (differential negative input when DIFF2 (ADMOD0L<5>) = 1)  
00= AN2  
C1CHS<1:0>: Dedicated ADC Core 1 Input Channel Selection bits  
11= AN1ALT  
10= PGA2  
01= AN18 (differential negative input when DIFF1 (ADMOD0L<3>) = 1)  
00= AN1  
C0CHS<1:0>: Dedicated ADC Core 0 Input Channel Selection bits  
11= AN0ALT  
10= PGA1  
01= AN7 (differential negative input when DIFF0 (ADMOD0L<1>) = 1)  
00= AN0  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 287  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-9: ADCON5L: ADC CONTROL REGISTER 5 LOW  
HSC/R-0  
SHRRDY  
U-0  
U-0  
U-0  
HSC/R-0  
C3RDY  
HSC/R-0  
C2RDY  
HSC/R-0  
C1RDY  
HSC/R-0  
C0RDY  
bit 15  
bit 8  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SHRPWR  
C3PWR  
C2PWR  
C1PWR  
C0PWR  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware Settable/Clearable bit  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SHRRDY: Shared ADC Core Ready Flag bit  
1= ADC core is powered and ready for operation  
0= ADC core is not ready for operation  
bit 14-12  
bit 11  
Unimplemented: Read as ‘0’  
C3RDY: Dedicated ADC Core 3 Ready Flag bit  
1= ADC core is powered and ready for operation  
0= ADC core is not ready for operation  
bit 10  
bit 9  
bit 8  
bit 7  
C2RDY: Dedicated ADC Core 2 Ready Flag bit  
1= ADC core is powered and ready for operation  
0= ADC core is not ready for operation  
C1RDY: Dedicated ADC Core 1 Ready Flag bit  
1= ADC core is powered and ready for operation  
0= ADC core is not ready for operation  
C0RDY: Dedicated ADC Core 0 Ready Flag bit  
1= ADC core is powered and ready for operation  
0= ADC core is not ready for operation  
SHRPWR: Shared ADC Core x Power Enable bit  
1= ADC Core x is powered  
0= ADC Core x is off  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
C3PWR: Dedicated ADC Core 3 Power Enable bit  
1= ADC core is powered  
0= ADC core is off  
bit 2  
bit 1  
bit 0  
C2PWR: Dedicated ADC Core 2 Power Enable bit  
1= ADC core is powered  
0= ADC core is off  
C1PWR: Dedicated ADC Core 1 Power Enable bit  
1= ADC core is powered  
0= ADC core is off  
C0PWR: Dedicated ADC Core 0 Power Enable bit  
1= ADC core is powered  
0= ADC core is off  
DS70005258C-page 288  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-10: ADCON5H: ADC CONTROL REGISTER 5 HIGH  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
WARMTIME<3:0>  
bit 15  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
C3CIE  
R/W-0  
C2CIE  
R/W-0  
C1CIE  
R/W-0  
C0CIE  
SHRCIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
WARMTIME<3:0>: ADC Dedicated Core x Power-up Delay bits  
These bits determine the power-up delay in the number of the Core Source Clock Periods (TCORESRC)  
for all ADC cores.  
1111= 32768 Source Clock Periods  
1110= 16384 Source Clock Periods  
1101= 8192 Source Clock Periods  
1100= 4096 Source Clock Periods  
1011= 2048 Source Clock Periods  
1010= 1024 Source Clock Periods  
1001= 512 Source Clock Periods  
1000= 256 Source Clock Periods  
0111= 128 Source Clock Periods  
0110= 64 Source Clock Periods  
0101= 32 Source Clock Periods  
0100= 16 Source Clock Periods  
00xx= 16 Source Clock Periods  
bit 7  
SHRCIE: Shared ADC Core Ready Common Interrupt Enable bit  
1= Common interrupt will be generated when ADC core is powered and ready for operation  
0= Common interrupt is disabled for an ADC core ready event  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
C3CIE: Dedicated ADC Core 3 Ready Common Interrupt Enable bit  
1= Common interrupt will be generated when ADC Core 3 is powered and ready for operation  
0= Common interrupt is disabled for an ADC Core 3 ready event  
bit 2  
bit 1  
bit 0  
C2CIE: Dedicated ADC Core 2 Ready Common Interrupt Enable bit  
1= Common interrupt will be generated when ADC Core 2 is powered and ready for operation  
0= Common interrupt is disabled for an ADC Core 2 ready event  
C1CIE: Dedicated ADC Core 1 Ready Common Interrupt Enable bit  
1= Common interrupt will be generated when ADC Core 1 is powered and ready for operation  
0= Common interrupt is disabled for an ADC Core 1 ready event  
C0CIE: Dedicated ADC Core 0 Ready Common Interrupt Enable bit  
1= Common interrupt will be generated when ADC Core 0 is powered and ready for operation  
0= Common interrupt is disabled for an ADC Core 0 ready event  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 289  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-11: ADCORExL: DEDICATED ADC CORE x CONTROL REGISTER LOW (x = 0 to 3)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
SAMC<9:8>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SAMC<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
SAMC<9:0>: Dedicated ADC Core x Conversion Delay Selection bits  
These bits determine the time between the trigger event and the start of conversion in the number of  
the Core Clock Periods (TADCORE). During this time, the ADC Core x still continues sampling. This  
feature is enabled by the SAMCxEN bits in the ADCON4L register.  
1111111111= 1025 TADCORE  
0000000001= 3 TADCORE  
0000000000= 2 TADCORE  
DS70005258C-page 290  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-12: ADCORExH: DEDICATED ADC CORE x CONTROL REGISTER HIGH (x = 0 to 3)(1)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
RES1  
R/W-1  
RES0  
EISEL2  
EISEL1  
EISEL0  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADCS<6:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-10  
Unimplemented: Read as ‘0’  
EISEL<2:0>: ADC Core x Early Interrupt Time Selection bits  
111= Early interrupt is set and an interrupt is generated eight TADCORE clocks prior to when the data is ready  
110= Early interrupt is set and an interrupt is generated seven TADCORE clocks prior to when the data is ready  
101= Early interrupt is set and an interrupt is generated six TADCORE clocks prior to when the data is ready  
100= Early interrupt is set and an interrupt is generated five TADCORE clocks prior to when the data is ready  
011= Early interrupt is set and an interrupt is generated four TADCORE clocks prior to when the data is ready  
010= Early interrupt is set and an interrupt is generated three TADCORE clocks prior to when the data is ready  
001= Early interrupt is set and an interrupt is generated two TADCORE clocks prior to when the data is ready  
000= Early interrupt is set and an interrupt is generated one TADCORE clock prior to when the data is ready  
bit 9-8  
RES<1:0>: ADC Core x Resolution Selection bits  
11= 12-bit resolution  
10= 10-bit resolution  
01= 8-bit resolution  
00= 6-bit resolution  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
ADCS<6:0>: ADC Core x Input Clock Divider bits  
These bits determine the number of Source Clock Periods (TCORESRC) for one Core Clock Period  
(TADCORE).  
1111111= 254 Source Clock Periods  
0000011= 6 Source Clock Periods  
0000010= 4 Source Clock Periods  
0000001= 2 Source Clock Periods  
0000000= 2 Source Clock Periods  
Note 1: For the 6-bit ADC core resolution (RES<1:0> = 00), the EISEL<2:0> bits settings, from ‘100’ to ‘111’, are  
not valid and should not be used. For the 8-bit ADC core resolution (RES<1:0> = 01), the EISEL<2:0> bits  
settings, ‘110’ and ‘111’, are not valid and should not be used.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 291  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-13: ADLVLTRGL: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER LOW  
R/W-0  
bit 15  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
LVLEN<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LVLEN<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
LVLEN<15:0>: Level Trigger for Corresponding Analog Input Enable bits  
1= Input trigger is level-sensitive  
0= Input trigger is edge-sensitive  
REGISTER 22-14: ADLVLTRGH: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER HIGH  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LVLEN<21:16>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
LVLEN<21:16>: Level Trigger for Corresponding Analog Input Enable bits  
1= Input trigger is level-sensitive  
0= Input trigger is edge-sensitive  
DS70005258C-page 292  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-15: ADEIEL: ADC EARLY INTERRUPT ENABLE REGISTER LOW  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
EIEN<15:8>  
R/W-0  
R/W-0  
R/W-0  
EIEN<7:0>  
R/W-0  
R/W-0  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
EIEN<15:0>: Early Interrupt Enable for Corresponding Analog Inputs bits  
1= Early interrupt is enabled for the channel  
0= Early interrupt is disabled for the channel  
REGISTER 22-16: ADEIEH: ADC EARLY INTERRUPT ENABLE REGISTER HIGH  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EIEN<21:16>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
EIEN<21:16>: Early Interrupt Enable for Corresponding Analog Inputs bits  
1= Early interrupt is enabled for the channel  
0= Early interrupt is disabled for the channel  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 293  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-17: ADEISTATL: ADC EARLY INTERRUPT STATUS REGISTER LOW  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
EISTAT<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
EISTAT<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
EISTAT<15:0>: Early Interrupt Status for Corresponding Analog Inputs bits  
1= Early interrupt was generated  
0= Early interrupt was not generated since the last ADCBUFx read  
REGISTER 22-18: ADEISTATH: ADC EARLY INTERRUPT STATUS REGISTER HIGH  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
EISTAT<21:16>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
EISTAT<21:16>: Early Interrupt Status for Corresponding Analog Inputs bits  
1= Early interrupt was generated  
0= Early interrupt was not generated since the last ADCBUFx read  
DS70005258C-page 294  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-19: ADMOD0L: ADC INPUT MODE CONTROL REGISTER 0 LOW  
R/W-0  
DIFF7  
R/W-0  
SIGN7  
R/W-0  
DIFF6  
R/W-0  
SIGN6  
R/W-0  
DIFF5  
R/W-0  
SIGN5  
R/W-0  
DIFF4  
R/W-0  
SIGN4  
bit 15  
bit 8  
R/W-0  
DIFF3  
R/W-0  
SIGN3  
R/W-0  
DIFF2  
R/W-0  
SIGN2  
R/W-0  
DIFF1  
R/W-0  
SIGN1  
R/W-0  
DIFF0  
R/W-0  
SIGN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-1(odd) DIFF<7:0>: Differential-Mode for Corresponding Analog Inputs bits  
1= Channel is differential  
0= Channel is single-ended  
bit 14-0 (even) SIGN<7:0>: Output Data Sign for Corresponding Analog Inputs bits  
1= Channel output data is signed  
0= Channel output data is unsigned  
REGISTER 22-20: ADMOD0H: ADC INPUT MODE CONTROL REGISTER 0 HIGH  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DIFF15  
SIGN15  
DIFF14  
SIGN14  
DIFF13  
SIGN13  
DIFF12  
SIGN12  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DIFF9  
R/W-0  
SIGN9  
R/W-0  
DIFF8  
R/W-0  
SIGN8  
DIFF11  
SIGN11  
DIFF10  
SIGN10  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-1(odd) DIFF<15:8>: Differential-Mode for Corresponding Analog Inputs bits  
1= Channel is differential  
0= Channel is single-ended  
bit 14-0 (even) SIGN<15:8>: Output Data Sign for Corresponding Analog Inputs bits  
1= Channel output data is signed  
0= Channel output data is unsigned  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 295  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-21: ADMOD1L: ADC INPUT MODE CONTROL REGISTER 1 LOW  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DIFF21  
SIGN21  
DIFF20  
SIGN20  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DIFF19  
SIGN19  
DIFF18  
SIGN18  
DIFF17  
SIGN17  
DIFF16  
SIGN16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
Unimplemented: Read as ‘0’  
bit 11-1(odd) DIFF<21:16>: Differential-Mode for Corresponding Analog Inputs bits  
1= Channel is differential  
0= Channel is single-ended  
bit 10-0 (even) SIGN<21:16>: Output Data Sign for Corresponding Analog Inputs bits  
1= Channel output data is signed  
0= Channel output data is unsigned  
DS70005258C-page 296  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-22: ADIEL: ADC INTERRUPT ENABLE REGISTER LOW  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
IE<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IE<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
IE<15:0>: Common Interrupt Enable bits  
1= Common and individual interrupts are enabled for the corresponding channel  
0= Common and individual interrupts are disabled for the corresponding channel  
REGISTER 22-23: ADIEH: ADC INTERRUPT ENABLE REGISTER HIGH  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IE<21:16>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
IE<21:16>: Common Interrupt Enable bits  
1= Common and individual interrupts are enabled for the corresponding channel  
0= Common and individual interrupts are disabled for the corresponding channel  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 297  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-24: ADSTATL: ADC DATA READY STATUS REGISTER LOW  
HSC/R-0  
bit 15  
HSC/R-0  
HSC/R-0  
HSC/R-0  
HSC/R-0  
HSC/R-0  
HSC/R-0  
HSC/R-0  
HSC/R-0  
bit 8  
HSC/R-0  
AN<15:8>RDY  
HSC/R-0  
HSC/R-0  
HSC/R-0  
HSC/R-0  
HSC/R-0  
HSC/R-0  
AN<7:0>RDY  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware Settable/Clearable bit  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
AN<15:0>RDY: Common Interrupt Enable for Corresponding Analog Inputs bits  
1= Channel conversion result is ready in the corresponding ADCBUFx register  
0= Channel conversion result is not ready  
REGISTER 22-25: ADSTATH: ADC DATA READY STATUS REGISTER HIGH  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
HSC/R-0  
HSC/R-0  
HSC/R-0  
HSC/R-0  
HSC/R-0  
HSC/R-0  
bit 0  
AN<21:16>RDY  
bit 7  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware Settable/Clearable bit  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
AN<21:16>RDY: Common Interrupt Enable for Corresponding Analog Inputs bits  
1= Channel conversion result is ready in the corresponding ADCBUFx register  
0= Channel conversion result is not ready  
DS70005258C-page 298  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-26: ADTRIGxL: ADC CHANNEL TRIGGER x SELECTION REGISTER LOW  
(x = 0 to 5)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
TRGSRC(4x+1)<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TRGSRC(4x)<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
TRGSRC(4x+1)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits  
11111= ADTRG31  
11110= PTG Trigger Output 12  
11101= PWM Generator 6 current-limit trigger  
11100= PWM Generator 5 current-limit trigger  
11011= PWM Generator 4 current-limit trigger  
11010= PWM Generator 3 current-limit trigger  
11001= PWM Generator 2 current-limit trigger  
11000= PWM Generator 1 current-limit trigger  
10111= Output Compare 2 trigger  
10110= Output Compare 1 trigger  
10101= CLC2 output  
10100= PWM Generator 6 secondary trigger  
10011= PWM Generator 5 secondary trigger  
10010= PWM Generator 4 secondary trigger  
10001= PWM Generator 3 secondary trigger  
10000= PWM Generator 2 secondary trigger  
01111= PWM Generator 1 secondary trigger  
01110= PWM secondary Special Event Trigger  
01101= Timer2 period match  
01100= Timer1 period match  
01011= CLC1 output  
01010= PWM Generator 6 primary trigger  
01001= PWM Generator 5 primary trigger  
01000= PWM Generator 4 primary trigger  
00111= PWM Generator 3 primary trigger  
00110= PWM Generator 2 primary trigger  
00101= PWM Generator 1 primary trigger  
00100= PWM Special Event Trigger  
00011= Reserved  
00010= Level software trigger  
00001= Common software trigger  
00000= No trigger is enabled  
bit 7-5  
Unimplemented: Read as ‘0’  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 299  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-26: ADTRIGxL: ADC CHANNEL TRIGGER x SELECTION REGISTER LOW  
(x = 0 to 5) (CONTINUED)  
bit 4-0  
TRGSRC(4x)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits  
11111= ADTRG31  
11110= PTG Trigger Output 30  
11101= PWM Generator 6 current-limit trigger  
11100= PWM Generator 5 current-limit trigger  
11011= PWM Generator 4 current-limit trigger  
11010= PWM Generator 3 current-limit trigger  
11001= PWM Generator 2 current-limit trigger  
11000= PWM Generator 1 current-limit trigger  
10111= Output Compare 2 trigger  
10110= Output Compare 1 trigger  
10101= CLC2 output  
10100= PWM Generator 6 secondary trigger  
10011= PWM Generator 5 secondary trigger  
10010= PWM Generator 4 secondary trigger  
10001= PWM Generator 3 secondary trigger  
10000= PWM Generator 2 secondary trigger  
01111= PWM Generator 1 secondary trigger  
01110= PWM secondary Special Event Trigger  
01101= Timer2 period match  
01100= Timer1 period match  
01011= CLC1 output  
01010= PWM Generator 6 primary trigger  
01001= PWM Generator 5 primary trigger  
01000= PWM Generator 4 primary trigger  
00111= PWM Generator 3 primary trigger  
00110= PWM Generator 2 primary trigger  
00101= PWM Generator 1 primary trigger  
00100= PWM Special Event Trigger  
00011= Reserved  
00010= Level software trigger  
00001= Common software trigger  
00000= No trigger is enabled  
DS70005258C-page 300  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-27: ADTRIGxH: ADC CHANNEL TRIGGER x SELECTION REGISTER HIGH  
(x = 0 to 5)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
TRGSRC(4x+3)<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TRGSRC(4x+2)<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
TRGSRC(4x+3)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits  
11111= ADTRG31  
11110= PTG Trigger Output 30  
11101= PWM Generator 6 current-limit trigger  
11100= PWM Generator 5 current-limit trigger  
11011= PWM Generator 4 current-limit trigger  
11010= PWM Generator 3 current-limit trigger  
11001= PWM Generator 2 current-limit trigger  
11000= PWM Generator 1 current-limit trigger  
10111= Output Compare 2 trigger  
10110= Output Compare 1 trigger  
10101= CLC2 output  
10100= PWM Generator 6 secondary trigger  
10011= PWM Generator 5 secondary trigger  
10010= PWM Generator 4 secondary trigger  
10001= PWM Generator 3 secondary trigger  
10000= PWM Generator 2 secondary trigger  
01111= PWM Generator 1 secondary trigger  
01110= PWM secondary Special Event Trigger  
01101= Timer2 period match  
01100= Timer1 period match  
01011= CLC1 output  
01010= PWM Generator 6 primary trigger  
01001= PWM Generator 5 primary trigger  
01000= PWM Generator 4 primary trigger  
00111= PWM Generator 3 primary trigger  
00110= PWM Generator 2 primary trigger  
00101= PWM Generator 1 primary trigger  
00100= PWM Special Event Trigger  
00011= Reserved  
00010= Level software trigger  
00001= Common software trigger  
00000= No trigger is enabled  
bit 7-5  
Unimplemented: Read as ‘0’  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 301  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-27: ADTRIGxH: ADC CHANNEL TRIGGER x SELECTION REGISTER HIGH  
(x = 0 to 5) (CONTINUED)  
bit 4-0  
TRGSRC(4x+2)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits  
11111= ADTRG31  
11110= PTG Trigger Output 30  
11101= PWM Generator 6 current-limit trigger  
11100= PWM Generator 5 current-limit trigger  
11011= PWM Generator 4 current-limit trigger  
11010= PWM Generator 3 current-limit trigger  
11001= PWM Generator 2 current-limit trigger  
11000= PWM Generator 1 current-limit trigger  
10111= Output Compare 2 trigger  
10110= Output Compare 1 trigger  
10101= CLC2 output  
10100= PWM Generator 6 secondary trigger  
10011= PWM Generator 5 secondary trigger  
10010= PWM Generator 4 secondary trigger  
10001= PWM Generator 3 secondary trigger  
10000= PWM Generator 2 secondary trigger  
01111= PWM Generator 1 secondary trigger  
01110= PWM secondary Special Event Trigger  
01101= Timer2 period match  
01100= Timer1 period match  
01011= CLC1 output  
01010= PWM Generator 6 primary trigger  
01001= PWM Generator 5 primary trigger  
01000= PWM Generator 4 primary trigger  
00111= PWM Generator 3 primary trigger  
00110= PWM Generator 2 primary trigger  
00101= PWM Generator 1 primary trigger  
00100= PWM Special Event Trigger  
00011= Reserved  
00010= Level software trigger  
00001= Common software trigger  
00000= No trigger is enabled  
DS70005258C-page 302  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-28: ADCAL0L: ADC CALIBRATION REGISTER 0 LOW  
HSC/R-0  
U-0  
U-0  
U-0  
r-0  
R/W-0  
R/W-0  
R/W-0  
CAL1RDY  
CAL1DIFF  
CAL1EN  
CAL1RUN  
bit 15  
bit 8  
HSC/R-0  
U-0  
U-0  
U-0  
r-0  
R/W-0  
R/W-0  
R/W-0  
CAL0RDY  
CAL0DIFF  
CAL0EN  
CAL0RUN  
bit 7  
bit 0  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
HSC = Hardware Settable/Clearable bit  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
CAL1RDY: Dedicated ADC Core 1 Calibration Status Flag bit  
1= Dedicated ADC Core 1 calibration is finished  
0= Dedicated ADC Core 1 calibration is in progress  
bit 14-12  
bit 11  
Unimplemented: Read as ‘0’  
Reserved: Maintain as ‘0’  
bit 10  
CAL1DIFF: Dedicated ADC Core 1 Differential-Mode Calibration bit  
1= Dedicated ADC Core 1 will be calibrated in Differential Input mode  
0= Dedicated ADC Core 1 will be calibrated in Single-Ended Input mode  
bit 9  
bit 8  
bit 7  
CAL1EN: Dedicated ADC Core 1 Calibration Enable bit  
1= Dedicated ADC Core 1 calibration bits (CALxRDY, CALxDIFF and CALxRUN) can be accessed by  
software  
0= Dedicated ADC Core 1 calibration bits are disabled  
CAL1RUN: Dedicated ADC Core 1 Calibration Start bit  
1= If this bit is set by software, the dedicated ADC Core 1 calibration cycle is started; this bit is  
automatically cleared by hardware  
0= Software can start the next calibration cycle  
CAL0RDY: Dedicated ADC Core 0 Calibration Status Flag bit  
1= Dedicated ADC Core 0 calibration is finished  
0= Dedicated ADC Core 0 calibration is in progress  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
Reserved: Maintain as ‘0’  
bit 2  
CAL0DIFF: Dedicated ADC Core 0 Differential-Mode Calibration bit  
1= Dedicated ADC Core 0 will be calibrated in Differential Input mode  
0= Dedicated ADC Core 0 will be calibrated in Single-Ended Input mode  
bit 1  
bit 0  
CAL0EN: Dedicated ADC Core 0 Calibration Enable bit  
1= Dedicated ADC Core 0 calibration bits (CALxRDY, CALxDIFF and CALxRUN) can be accessed by  
software  
0= Dedicated ADC Core 0 calibration bits are disabled  
CAL0RUN: Dedicated ADC Core 0 Calibration Start bit  
1= If this bit is set by software, the dedicated ADC Core 0 calibration cycle is started; this bit is  
automatically cleared by hardware  
0= Software can start the next calibration cycle  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 303  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-29: ADCAL0H: ADC CALIBRATION REGISTER 0 HIGH  
HSC/R-0  
U-0  
U-0  
U-0  
r-0  
R/W-0  
R/W-0  
R/W-0  
CAL3RDY  
CAL3DIFF  
CAL3EN  
CAL3RUN  
bit 15  
bit 8  
HSC/R-0  
U-0  
U-0  
U-0  
r-0  
R/W-0  
R/W-0  
R/W-0  
CAL2RDY  
CAL2DIFF  
CAL2EN  
CAL2RUN  
bit 7  
bit 0  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
HSC = Hardware Settable/Clearable bit  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
CAL3RDY: Dedicated ADC Core 3 Calibration Status Flag bit  
1= Dedicated ADC Core 3 calibration is finished  
0= Dedicated ADC Core 3 calibration is in progress  
bit 14-12  
bit 11  
Unimplemented: Read as ‘0’  
Reserved: Maintain as ‘0’  
bit 10  
CAL3DIFF: Dedicated ADC Core 3 Differential-Mode Calibration bit  
1= Dedicated ADC Core 3 will be calibrated in Differential Input mode  
0= Dedicated ADC Core 3 will be calibrated in Single-Ended Input mode  
bit 9  
bit 8  
bit 7  
CAL3EN: Dedicated ADC Core 3 Calibration Enable bit  
1= Dedicated ADC Core 3 calibration bits (CALxRDY, CALxDIFF and CALxRUN) can be accessed by  
software  
0= Dedicated ADC Core 3 calibration bits are disabled  
CAL3RUN: Dedicated ADC Core 3 Calibration Start bit  
1= If this bit is set by software, the dedicated ADC Core 3 calibration cycle is started; this bit is  
automatically cleared by hardware  
0= Software can start the next calibration cycle  
CAL2RDY: Dedicated ADC Core 2 Calibration Status Flag bit  
1= Dedicated ADC Core 2 calibration is finished  
0= Dedicated ADC Core 2 calibration is in progress  
bit 6-4  
bit 3  
Unimplemented: Read as ‘0’  
Reserved: Maintain as ‘0’  
bit 2  
CAL2DIFF: Dedicated ADC Core 2 Differential-Mode Calibration bit  
1= Dedicated ADC Core 2 will be calibrated in Differential Input mode  
0= Dedicated ADC Core 2 will be calibrated in Single-Ended Input mode  
bit 1  
bit 0  
CAL2EN: Dedicated ADC Core 2 Calibration Enable bit  
1= Dedicated ADC Core 2 calibration bits (CALxRDY, CALxDIFF and CALxRUN) can be accessed by  
software  
0= Dedicated ADC Core 2 calibration bits are disabled  
CAL2RUN: Dedicated ADC Core 2 Calibration Start bit  
1= If this bit is set by software, the dedicated ADC Core 2 calibration cycle is started; this bit is  
automatically cleared by hardware  
0= Software can start the next calibration cycle  
DS70005258C-page 304  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-30: ADCAL1H: ADC CALIBRATION REGISTER 1 HIGH  
HS/R/W-0  
CSHRRDY  
bit 15  
U-0  
U-0  
U-0  
r-0  
R/W-0  
R/W-0  
R/W-0  
CSHRRUN  
bit 8  
CSHRDIFF  
CSHREN  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
HS = Hardware Settable bit  
R = Readable bit  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
CSHRRDY: Shared ADC Core Calibration Status Flag bit  
1= Shared ADC core calibration is finished  
0= Shared ADC core calibration is in progress  
bit 14-12  
bit 11  
Unimplemented: Read as ‘0’  
Reserved: Maintain as ‘0’  
bit 10  
CSHRDIFF: Shared ADC Core Differential-Mode Calibration bit  
1= Shared ADC core will be calibrated in Differential Input mode  
0= Shared ADC core will be calibrated in Single-Ended Input mode  
bit 9  
CSHREN: Shared ADC Core Calibration Enable bit  
1= Shared ADC core calibration bits (CSHRRDY, CSHRDIFF and CSHRRUN) can be accessed by  
software  
0= Shared ADC core calibration bits are disabled  
bit 8  
CSHRRUN: Shared ADC Core Calibration Start bit  
1= If this bit is set by software, the shared ADC core calibration cycle is started; this bit is cleared  
automatically by hardware  
0= Software can start the next calibration cycle  
bit 7-0  
Unimplemented: Read as ‘0’  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 305  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-31: ADCMPxCON: ADC DIGITAL COMPARATOR x CONTROL REGISTER (x = 0 or 1)  
U-0  
U-0  
U-0  
HSC/R-0  
HSC/R-0  
HSC/R-0  
HSC/R-0  
HSC/R-0  
CHNL<4:0>  
bit 15  
bit 8  
R/W-0  
R/W-0  
IE  
HC/HS/R-0  
STAT  
R/W-0  
BTWN  
R/W-0  
HIHI  
R/W-0  
HILO  
R/W-0  
LOHI  
R/W-0  
LOLO  
CMPEN  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware Settable/Clearable bit  
‘0’ = Bit is cleared HS = Hardware Settable bit  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
CHNL<4:0>: Input Channel Number bits  
If the comparator has detected an event for a channel, this channel number is written to these bits.  
11111= Reserved  
10110= Reserved  
10101= AN21  
10100= AN20  
00001= AN1  
00000= AN0  
bit 7  
bit 6  
bit 5  
CMPEN: Comparator Enable bit  
1= Comparator is enabled  
0= Comparator is disabled and the STAT status bit is cleared  
IE: Comparator Common ADC Interrupt Enable bit  
1= Common ADC interrupt will be generated if the comparator detects a comparison event  
0= Common ADC interrupt will not be generated for the comparator  
STAT: Comparator Event Status bit  
This bit is cleared by hardware when the channel number is read from the CHNL<4:0> bits.  
1= A comparison event has been detected since the last read of the CHNL<4:0> bits  
0= A comparison event has not been detected since the last read of the CHNL<4:0> bits  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
BTWN: Between Low/High Comparator Event bit  
1= Generates a comparator event when ADCMPxLO ADCBUFx < ADCMPxHI  
0= Does not generate a digital comparator event when ADCMPxLO ADCBUFx < ADCMPxHI  
HIHI: High/High Comparator Event bit  
1= Generates a digital comparator event when ADCBUFx ADCMPxHI  
0= Does not generate a digital comparator event when ADCBUFx ADCMPxHI  
HILO: High/Low Comparator Event bit  
1= Generates a digital comparator event when ADCBUFx < ADCMPxHI  
0= Does not generate a digital comparator event when ADCBUFx < ADCMPxHI  
LOHI: Low/High Comparator Event bit  
1= Generates a digital comparator event when ADCBUFx ADCMPxLO  
0= Does not generate a digital comparator event when ADCBUFx ADCMPxLO  
LOLO: Low/Low Comparator Event bit  
1= Generates a digital comparator event when ADCBUFx < ADCMPxLO  
0= Does not generate a digital comparator event when ADCBUFx < ADCMPxLO  
DS70005258C-page 306  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-32: ADCMPxENL: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER  
LOW (x = 0 or 1)  
R/W-0  
bit 15  
R/W/0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
CMPEN<15:8>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CMPEN<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
CMPEN<15:0>: Comparator Enable for Corresponding Input Channels bits  
1= Conversion result for corresponding channel is used by the comparator  
0= Conversion result for corresponding channel is not used by the comparator  
REGISTER 22-33: ADCMPxENH: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER  
HIGH (x = 0 or 1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CMPEN<21:16>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
CMPEN<21:16>: Comparator Enable for Corresponding Input Channels bits  
1= Conversion result for corresponding channel is used by the comparator  
0= Conversion result for corresponding channel is not used by the comparator  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 307  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-34: ADFLxCON: ADC DIGITAL FILTER x CONTROL REGISTER  
(x = 0 or 1)  
R/W-0  
FLEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IE  
HSC/R-0  
RDY  
MODE1  
MODE0  
OVRSAM2  
OVRSAM1  
OVRSAM0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FLCHSEL<4:0>  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
HSC = Hardware Settable/Clearable bit  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
FLEN: Filter Enable bit  
1= Filter is enabled  
0= Filter is disabled and the RDY bit is cleared  
bit 14-13  
MODE<1:0>: Filter Mode bits  
11= Averaging mode  
10= Reserved  
01= Reserved  
00= Oversampling mode  
bit 12-10  
OVRSAM<2:0>: Filter Averaging/Oversampling Ratio bits  
If MODE<1:0> = 00:  
111= 128x (16-bit result in the ADFLxDAT register is in 12.4 format)  
110= 32x (15-bit result in the ADFLxDAT register is in 12.3 format)  
101= 8x (14-bit result in the ADFLxDAT register is in 12.2 format)  
100= 2x (13-bit result in the ADFLxDAT register is in 12.1 format)  
011= 256x (16-bit result in the ADFLxDAT register is in 12.4 format)  
010= 64x (15-bit result in the ADFLxDAT register is in 12.3 format)  
001= 16x (14-bit result in the ADFLxDAT register is in 12.2 format)  
000= 4x (13-bit result in the ADFLxDAT register is in 12.1 format)  
If MODE<1:0> = 11(12-bit result in the ADFLxDAT register in all instances):  
111= 256x  
110= 128x  
101= 64x  
100= 32x  
011= 16x  
010= 8x  
001= 4x  
000= 2x  
bit 9  
bit 8  
IE: Filter Common ADC Interrupt Enable bit  
1= Common ADC interrupt will be generated when the filter result will be ready  
0= Common ADC interrupt will not be generated for the filter  
RDY: Oversampling Filter Data Ready Flag bit  
This bit is cleared by hardware when the result is read from the ADFLxDAT register.  
1= Data in the ADFLxDAT register is ready  
0= The ADFLxDAT register has been read and new data in the ADFLxDAT register is not ready  
bit 7-5  
Unimplemented: Read as ‘0’  
DS70005258C-page 308  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 22-34: ADFLxCON: ADC DIGITAL FILTER x CONTROL REGISTER  
(x = 0 or 1) (CONTINUED)  
bit 4-0  
FLCHSEL<4:0>: Oversampling Filter Input Channel Selection bits  
11111= Reserved  
10110= Reserved  
10101= AN21  
10100= AN20  
00001= AN1  
00000= AN0  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 309  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 310  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
The CAN module features are as follows:  
23.0 CONTROLLER AREA  
• Implementation of the CAN Protocol, CAN 1.2,  
CAN 2.0A and CAN 2.0B  
NETWORK (CAN) MODULE  
(dsPIC33EPXXXGS80X  
DEVICES ONLY)  
• Standard and Extended Data Frames  
• 0-8 Bytes of Data Length  
Note 1: This data sheet summarizes the features  
of the dsPIC33EPXXXGS70X/80X family  
of devices. It is not intended to be a  
comprehensive reference source. To com-  
plement the information in this data sheet,  
refer to “Enhanced Controller Area  
Network (ECAN™)” (DS70353) in the  
“dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
website (www.microchip.com).  
• Programmable Bit Rate, up to 1 Mbit/sec  
• Automatic Response to Remote Transmission  
Requests  
• Up to Eight Transmit Buffers with Application  
Specified Prioritization and Abort Capability (each  
buffer can contain up to 8 bytes of data)  
• Up to 32 Receive Buffers (each buffer can contain  
up to 8 bytes of data)  
• Up to 16 Full (Standard/Extended Identifier)  
Acceptance Filters  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Three Full Acceptance Filter Masks  
• DeviceNet™ Addressing Support  
• Programmable Wake-up Functionality with  
Integrated Low-Pass Filter  
• Programmable Loopback mode supports  
Self-Test Operation  
• Signaling via Interrupt Capabilities for All CAN  
Receiver and Transmitter Error States  
23.1 Overview  
The Controller Area Network (CAN) module is a serial  
interface, useful for communicating with other CAN  
modules or microcontroller devices. This interface/  
protocol was designed to allow communications within  
noisy environments. The dsPIC33EPXXXGS80X  
devices contain two CAN modules.  
• Programmable Clock Source  
• Programmable Link to Input Capture 2 (IC2)  
module for Timestamping and Network  
Synchronization  
• Low-Power Sleep and Idle modes  
The CAN bus module consists of a protocol engine and  
message buffering/control. The CAN protocol engine  
handles all functions for receiving and transmitting  
messages on the CAN bus. Messages are transmitted  
by first loading the appropriate data registers. Status  
and errors can be checked by reading the appropriate  
registers. Any message detected on the CAN bus is  
checked for errors and then matched against filters to  
see if it should be received and stored in one of the  
receive registers.  
The CAN module is a communication controller, imple-  
menting the CAN 2.0 A/B protocol, as defined in the  
BOSCH CAN specification. The module supports  
CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B  
Active versions of the protocol. The module implemen-  
tation is a full CAN system. The CAN specification is  
not covered within this data sheet. The reader can refer  
to the BOSCH CAN specification for further details.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 311  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 23-1:  
CANx MODULE BLOCK DIAGRAM  
RxF15 Filter  
RxF14 Filter  
RxF13 Filter  
RxF12 Filter  
RxF11 Filter  
RxF10 Filter  
RxF9 Filter  
RxF8 Filter  
RxF7 Filter  
RxF6 Filter  
RxF5 Filter  
RxF4 Filter  
RxF3 Filter  
RxF2 Filter  
RxF1 Filter  
RxF0 Filter  
DMA Controller  
TRB7 TX/RX Buffer Control Register  
TRB6 TX/RX Buffer Control Register  
TRB5 TX/RX Buffer Control Register  
TRB4 TX/RX Buffer Control Register  
TRB3 TX/RX Buffer Control Register  
TRB2 TX/RX Buffer Control Register  
TRB1 TX/RX Buffer Control Register  
TRB0 TX/RX Buffer Control Register  
RxM2 Mask  
RxM1 Mask  
RxM0 Mask  
Transmit Byte  
Sequencer  
Message Assembly  
Buffer  
Control  
Configuration  
Logic  
CPU  
Bus  
CAN Protocol  
Engine  
Interrupts  
CxTX  
CxRX  
Modes are requested by setting the REQOP<2:0> bits  
(CxCTRL1<10:8>). Entry into a mode is Acknowledged  
by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>).  
The module does not change the mode and the  
OPMODEx bits until a change in mode is acceptable,  
generally during bus Idle time, which is defined as at least  
eleven consecutive recessive bits.  
23.2 Modes of Operation  
The CANx module can operate in one of several  
operation modes selected by the user. These modes  
include:  
• Initialization mode  
• Disable mode  
• Normal Operation mode  
• Listen Only mode  
• Listen All Messages mode  
• Loopback mode  
DS70005258C-page 312  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
23.3 CAN Control Registers  
REGISTER 23-1: CxCTRL1: CANx CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
CSIDL  
R/W-0  
ABAT  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
CANCKS  
REQOP2  
REQOP1  
REQOP0  
bit 15  
bit 8  
R-1  
R-0  
R-0  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
WIN  
OPMODE2  
OPMODE1 OPMODE0  
CANCAP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CSIDL: CANx Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12  
ABAT: Abort All Pending Transmissions bit  
1= Signals all transmit buffers to abort transmission  
0= Module will clear this bit when all transmissions are aborted  
bit 11  
CANCKS: CANx Module Clock (FCAN) Source Select bit  
1= FCAN is equal to 2 * FP  
0= FCAN is equal to FP  
bit 10-8  
REQOP<2:0>: Request Operation Mode bits  
111= Set Listen All Messages mode  
110= Reserved  
101= Reserved  
100= Set Configuration mode  
011= Set Listen Only mode  
010= Set Loopback mode  
001= Set Disable mode  
000= Set Normal Operation mode  
bit 7-5  
OPMODE<2:0>: Operation Mode bits  
111= Module is in Listen All Messages mode  
110= Reserved  
101= Reserved  
100= Module is in Configuration mode  
011= Module is in Listen Only mode  
010= Module is in Loopback mode  
001= Module is in Disable mode  
000= Module is in Normal Operation mode  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CANCAP: CANx Message Receive Timer Capture Event Enable bit  
1= Enables input capture based on CAN message receive  
0= Disables CAN capture  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
WIN: SFR Map Window Select bit  
1= Uses filter window  
0= Uses buffer window  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 313  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-2: CxCTRL2: CANx CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
DNCNT<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
DNCNT<4:0>: DeviceNet™ Filter Bit Number bits  
10010-11111= Invalid selection  
10001= Compare up to Data Byte 3, bit 6 with EID<17>  
00001= Compare up to Data Byte 1, bit 7 with EID<0>  
00000= Do not compare data bytes  
DS70005258C-page 314  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-3: CxVEC: CANx INTERRUPT CODE REGISTER  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
FILHIT4  
FILHIT3  
FILHIT2  
FILHIT1  
FILHIT0  
bit 15  
bit 8  
U-0  
R-1  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
ICODE6  
ICODE5  
ICODE4  
ICODE3  
ICODE2  
ICODE1  
ICODE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
FILHIT<4:0>: Filter Hit Number bits  
10000-11111= Reserved  
01111= Filter 15  
00001= Filter 1  
00000= Filter 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
ICODE<6:0>: Interrupt Flag Code bits  
1000101-1111111= Reserved  
1000100= FIFO almost full interrupt  
1000011= Receiver overflow interrupt  
1000010= Wake-up interrupt  
1000001= Error interrupt  
1000000= No interrupt  
0010000-0111111= Reserved  
0001111= RB15 buffer interrupt  
0001001= RB9 buffer interrupt  
0001000= RB8 buffer interrupt  
0000111= TRB7 buffer interrupt  
0000110= TRB6 buffer interrupt  
0000101= TRB5 buffer interrupt  
0000100= TRB4 buffer interrupt  
0000011= TRB3 buffer interrupt  
0000010= TRB2 buffer interrupt  
0000001= TRB1 buffer interrupt  
0000000= TRB0 buffer interrupt  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 315  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-4: CxFCTRL: CANx FIFO CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DMABS2  
DMABS1  
DMABS0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
FSA4  
R/W-0  
FSA3  
R/W-0  
FSA2  
R/W-0  
FSA1  
R/W-0  
FSA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-13  
DMABS<2:0>: DMA Buffer Size bits  
111= Reserved  
110= 32 buffers in RAM  
101= 24 buffers in RAM  
100= 16 buffers in RAM  
011= 12 buffers in RAM  
010= 8 buffers in RAM  
001= 6 buffers in RAM  
000= 4 buffers in RAM  
bit 12-5  
bit 4-0  
Unimplemented: Read as ‘0’  
FSA<4:0>: FIFO Area Starts with Buffer bits  
11111= Receive Buffer RB31  
11110= Receive Buffer RB30  
00001= Transmit/Receive Buffer TRB1  
00000= Transmit/Receive Buffer TRB0  
DS70005258C-page 316  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-5: CxFIFO: CANx FIFO STATUS REGISTER  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
FBP5  
FBP4  
FBP3  
FBP2  
FBP1  
FBP0  
bit 15  
bit 8  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
FNRB5  
FNRB4  
FNRB3  
FNRB2  
FNRB1  
FNRB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FBP<5:0>: FIFO Buffer Pointer bits  
011111= RB31 buffer  
011110= RB30 buffer  
000001= TRB1 buffer  
000000= TRB0 buffer  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
FNRB<5:0>: FIFO Next Read Buffer Pointer bits  
011111= RB31 buffer  
011110= RB30 buffer  
000001= TRB1 buffer  
000000= TRB0 buffer  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 317  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-6: CxINTF: CANx INTERRUPT FLAG REGISTER  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
TXBO  
TXBP  
RXBP  
TXWAR  
RXWAR  
EWARN  
bit 15  
bit 8  
R/C-0  
IVRIF  
R/C-0  
R/C-0  
U-0  
R/C-0  
R/C-0  
R/C-0  
RBIF  
R/C-0  
TBIF  
WAKIF  
ERRIF  
FIFOIF  
RBOVIF  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be Written to Clear bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
TXBO: Transmitter in Error State Bus Off bit  
1= Transmitter is in Bus Off state  
0= Transmitter is not in Bus Off state  
bit 12  
bit 11  
bit 10  
bit 9  
TXBP: Transmitter in Error State Bus Passive bit  
1= Transmitter is in Bus Passive state  
0= Transmitter is not in Bus Passive state  
RXBP: Receiver in Error State Bus Passive bit  
1= Receiver is in Bus Passive state  
0= Receiver is not in Bus Passive state  
TXWAR: Transmitter in Error State Warning bit  
1= Transmitter is in Error Warning state  
0= Transmitter is not in Error Warning state  
RXWAR: Receiver in Error State Warning bit  
1= Receiver is in Error Warning state  
0= Receiver is not in Error Warning state  
bit 8  
EWARN: Transmitter or Receiver in Error State Warning bit  
1= Transmitter or receiver is in Error Warning state  
0= Transmitter or receiver is not in Error Warning state  
bit 7  
IVRIF: Invalid Message Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
WAKIF: Bus Wake-up Activity Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
ERRIF: Error Interrupt Flag bit (multiple sources in CxINTF<13:8> register)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
FIFOIF: FIFO Almost Full Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
RBOVIF: RX Buffer Overflow Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70005258C-page 318  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-6: CxINTF: CANx INTERRUPT FLAG REGISTER (CONTINUED)  
bit 1  
RBIF: RX Buffer Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
TBIF: TX Buffer Interrupt Flag bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
REGISTER 23-7: CxINTE: CANx INTERRUPT ENABLE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
IVRIE  
R/W-0  
R/W-0  
ERRIE  
U-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
TBIE  
WAKIE  
FIFOIE  
RBOVIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
IVRIE: Invalid Message Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 6  
bit 5  
WAKIE: Bus Wake-up Activity Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
ERRIE: Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
FIFOIE: FIFO Almost Full Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 2  
bit 1  
bit 0  
RBOVIE: RX Buffer Overflow Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
RBIE: RX Buffer Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
TBIE: TX Buffer Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 319  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-8: CxEC: CANx TRANSMIT/RECEIVE ERROR COUNT REGISTER  
R-0  
TERRCNT7 TERRCNT6 TERRCNT5 TERRCNT4 TERRCNT3 TERRCNT2 TERRCNT1 TERRCNT0  
bit 15 bit 8  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
RERRCNT7 RERRCNT6 RERRCNT5 RERRCNT4 RERRCNT3 RERRCNT2 RERRCNT1 RERRCNT0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
TERRCNT<7:0>: Transmit Error Count bits  
RERRCNT<7:0>: Receive Error Count bits  
REGISTER 23-9: CxCFG1: CANx BAUD RATE CONFIGURATION REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
SJW1  
R/W-0  
SJW0  
R/W-0  
BRP5  
R/W-0  
BRP4  
R/W-0  
BRP3  
R/W-0  
BRP2  
R/W-0  
BRP1  
R/W-0  
BRP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-6  
Unimplemented: Read as ‘0’  
SJW<1:0>: Synchronization Jump Width bits  
11= Length is 4 x TQ  
10= Length is 3 x TQ  
01= Length is 2 x TQ  
00= Length is 1 x TQ  
bit 5-0  
BRP<5:0>: Baud Rate Prescaler bits  
11 1111= TQ = 2 x 64 x 1/FCAN  
00 0010= TQ = 2 x 3 x 1/FCAN  
00 0001= TQ = 2 x 2 x 1/FCAN  
00 0000= TQ = 2 x 1 x 1/FCAN  
DS70005258C-page 320  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-10: CxCFG2: CANx BAUD RATE CONFIGURATION REGISTER 2  
U-0  
R/W-x  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WAKFIL  
SEG2PH2  
SEG2PH1  
SEG2PH0  
bit 15  
bit 8  
R/W-x  
R/W-x  
SAM  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SEG2PHTS  
SEG1PH2  
SEG1PH1  
SEG1PH0  
PRSEG2  
PRSEG1  
PRSEG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
WAKFIL: Select CAN Bus Line Filter for Wake-up bit  
1= Uses CAN bus line filter for wake-up  
0= CAN bus line filter is not used for wake-up  
bit 13-11  
bit 10-8  
Unimplemented: Read as ‘0’  
SEG2PH<2:0>: Phase Segment 2 bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
bit 7  
SEG2PHTS: Phase Segment 2 Time Select bit  
1= Freely programmable  
0= Maximum of SEG1PHx bits or Information Processing Time (IPT), whichever is greater  
bit 6  
SAM: Sample of the CAN Bus Line bit  
1= Bus line is sampled three times at the sample point  
0= Bus line is sampled once at the sample point  
bit 5-3  
SEG1PH<2:0>: Phase Segment 1 bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
bit 2-0  
PRSEG<2:0>: Propagation Time Segment bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 321  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-11: CxFEN1: CANx ACCEPTANCE FILTER ENABLE REGISTER 1  
R/W-1  
bit 15  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
FLTEN<15:8>  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FLTEN<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
FLTEN<15:0>: Enable Filter n to Accept Messages bits  
1= Enables Filter n  
0= Disables Filter n  
REGISTER 23-12: CxBUFPNT1: CANx FILTERS 0-3 BUFFER POINTER REGISTER 1  
R/W-0  
F3BP3  
R/W-0  
F3BP2  
R/W-0  
F3BP1  
R/W-0  
F3BP0  
R/W-0  
F2BP3  
R/W-0  
F2BP2  
R/W-0  
F2BP1  
R/W-0  
F2BP0  
bit 15  
bit 8  
R/W-0  
F1BP3  
R/W-0  
F1BP2  
R/W-0  
F1BP1  
R/W-0  
F1BP0  
R/W-0  
F0BP3  
R/W-0  
F0BP2  
R/W-0  
F0BP1  
R/W-0  
F0BP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
F3BP<3:0>: RX Buffer Mask for Filter 3 bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
bit 11-8  
bit 7-4  
bit 3-0  
F2BP<3:0>: RX Buffer Mask for Filter 2 bits (same values as bits 15-12)  
F1BP<3:0>: RX Buffer Mask for Filter 1 bits (same values as bits 15-12)  
F0BP<3:0>: RX Buffer Mask for Filter 0 bits (same values as bits 15-12)  
DS70005258C-page 322  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-13: CxBUFPNT2: CANx FILTERS 4-7 BUFFER POINTER REGISTER 2  
R/W-0  
F7BP3  
R/W-0  
F7BP2  
R/W-0  
F7BP1  
R/W-0  
F7BP0  
R/W-0  
F6BP3  
R/W-0  
F6BP2  
R/W-0  
F6BP1  
R/W-0  
F6BP0  
bit 15  
bit 8  
R/W-0  
F5BP3  
R/W-0  
F5BP2  
R/W-0  
F5BP1  
R/W-0  
F5BP0  
R/W-0  
F4BP3  
R/W-0  
F4BP2  
R/W-0  
F4BP1  
R/W-0  
F4BP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
F7BP<3:0>: RX Buffer Mask for Filter 7 bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
bit 11-8  
bit 7-4  
bit 3-0  
F6BP<3:0>: RX Buffer Mask for Filter 6 bits (same values as bits 15-12)  
F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bits 15-12)  
F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bits 15-12)  
REGISTER 23-14: CxBUFPNT3: CANx FILTERS 8-11 BUFFER POINTER REGISTER 3  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F11BP3  
F11BP2  
F11BP1  
F11BP0  
F10BP3  
F10BP2  
F10BP1  
F10BP0  
bit 15  
bit 8  
R/W-0  
F9BP3  
R/W-0  
F9BP2  
R/W-0  
F9BP1  
R/W-0  
F9BP0  
R/W-0  
F8BP3  
R/W-0  
F8BP2  
R/W-0  
F8BP1  
R/W-0  
F8BP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
F11BP<3:0>: RX Buffer Mask for Filter 11 bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
bit 11-8  
bit 7-4  
bit 3-0  
F10BP<3:0>: RX Buffer Mask for Filter 10 bits (same values as bits 15-12)  
F9BP<3:0>: RX Buffer Mask for Filter 9 bits (same values as bits 15-12)  
F8BP<3:0>: RX Buffer Mask for Filter 8 bits (same values as bits 15-12)  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 323  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-15: CxBUFPNT4: CANx FILTERS 12-15 BUFFER POINTER REGISTER 4  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F15BP3  
F15BP2  
F15BP1  
F15BP0  
F14BP3  
F14BP2  
F14BP1  
F14BP0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F13BP3  
F13BP2  
F13BP1  
F13BP0  
F12BP3  
F12BP2  
F12BP1  
F12BP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
F15BP<3:0>: RX Buffer Mask for Filter 15 bits  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
bit 11-8  
bit 7-4  
bit 3-0  
F14BP<3:0>: RX Buffer Mask for Filter 14 bits (same values as bits 15-12)  
F13BP<3:0>: RX Buffer Mask for Filter 13 bits (same values as bits 15-12)  
F12BP<3:0>: RX Buffer Mask for Filter 12 bits (same values as bits 15-12)  
DS70005258C-page 324  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-16: CxRXFnSID: CANx ACCEPTANCE FILTER n STANDARD IDENTIFIER  
REGISTER (n = 0-15)  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 15  
bit 8  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
U-0  
R/W-x  
EXIDE  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
SID<10:0>: Standard Identifier bits  
1= Message address bit, SIDx, must be ‘1’ to match filter  
0= Message address bit, SIDx, must be ‘0’ to match filter  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
EXIDE: Extended Identifier Enable bit  
If MIDE = 1:  
1= Matches only messages with Extended Identifier addresses  
0= Matches only messages with Standard Identifier addresses  
If MIDE = 0:  
Ignores EXIDE bit.  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID<17:16>: Extended Identifier bits  
1= Message address bit, EIDx, must be ‘1’ to match filter  
0= Message address bit, EIDx, must be ‘0’ to match filter  
REGISTER 23-17: CxRXFnEID: CANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER  
REGISTER (n = 0-15)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
EID<15:8>  
bit 15  
R/W-x  
bit 7  
R/W-x  
R/W-x  
R/W-x R/W-x  
EID<7:0>  
R/W-x  
R/W-x  
R/W-x  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
EID<15:0>: Extended Identifier bits  
1= Message address bit, EIDx, must be ‘1’ to match filter  
0= Message address bit, EIDx, must be ‘0’ to match filter  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 325  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-18: CxFMSKSEL1: CANx FILTERS 7-0 MASK SELECTION REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F7MSK1  
F7MSK0  
F6MSK1  
F6MSK0  
F5MSK1  
F5MSK0  
F4MSK1  
F4MSK0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F3MSK1  
F3MSK0  
F2MSK1  
F2MSK0  
F1MSK1  
F1MSK0  
F0MSK1  
F0MSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
F7MSK<1:0>: Mask Source for Filter 7 bits  
11= Reserved  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
bit 13-12  
bit 11-10  
bit 9-8  
F6MSK<1:0>: Mask Source for Filter 6 bits (same values as bits 15-14)  
F5MSK<1:0>: Mask Source for Filter 5 bits (same values as bits 15-14)  
F4MSK<1:0>: Mask Source for Filter 4 bits (same values as bits 15-14)  
F3MSK<1:0>: Mask Source for Filter 3 bits (same values as bits 15-14)  
F2MSK<1:0>: Mask Source for Filter 2 bits (same values as bits 15-14)  
F1MSK<1:0>: Mask Source for Filter 1 bits (same values as bits 15-14)  
F0MSK<1:0>: Mask Source for Filter 0 bits (same values as bits 15-14)  
bit 7-6  
bit 5-4  
bit 3-2  
bit 1-0  
DS70005258C-page 326  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-19: CxFMSKSEL2: CANx FILTERS 15-8 MASK SELECTION REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F15MSK1  
F15MSK0  
F14MSK1  
F14MSK0  
F13MSK1  
F13MSK0  
F12MSK1  
F12MSK0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F11MSK1  
F11MSK0  
F10MSK1  
F10MSK0  
F9MSK1  
F9MSK0  
F8MSK1  
F8MSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-14  
F15MSK<1:0>: Mask Source for Filter 15 bits  
11= Reserved  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
bit 13-12  
bit 11-10  
bit 9-8  
F14MSK<1:0>: Mask Source for Filter 14 bits (same values as bits 15-14)  
F13MSK<1:0>: Mask Source for Filter 13 bits (same values as bits 15-14)  
F12MSK<1:0>: Mask Source for Filter 12 bits (same values as bits 15-14)  
F11MSK<1:0>: Mask Source for Filter 11 bits (same values as bits 15-14)  
F10MSK<1:0>: Mask Source for Filter 10 bits (same values as bits 15-14)  
F9MSK<1:0>: Mask Source for Filter 9 bits (same values as bits 15-14)  
F8MSK<1:0>: Mask Source for Filter 8 bits (same values as bits 15-14)  
bit 7-6  
bit 5-4  
bit 3-2  
bit 1-0  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 327  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-20: CxRXMnSID: CANx ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER  
REGISTER (n = 0-2)  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 15  
bit 8  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
U-0  
R/W-x  
MIDE  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
SID<10:0>: Standard Identifier bits  
1= Includes bit, SIDx, in filter comparison  
0= Bit, SIDx, is a don’t care in filter comparison  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
MIDE: Identifier Receive Mode bit  
1= Matches only message types (standard or extended address) that correspond to the EXIDE bit in  
the filter  
0= Matches either standard or extended address message if filters match  
(i.e., if (Filter SIDx) = (Message SIDx) or if (Filter SIDx/EIDx) = (Message SIDx/EIDx))  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID<17:16>: Extended Identifier bits  
1= Includes bit, EIDx, in filter comparison  
0= Bit, EIDx, is a don’t care in filter comparison  
REGISTER 23-21: CxRXMnEID: CANx ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER  
REGISTER (n = 0-2)  
R/W-x  
bit 15  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
R/W-x  
EID<15:8>  
R/W-x  
R/W-x  
R/W-x  
EID<7:0>  
R/W-x  
R/W-x  
R/W-x  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
EID<15:0>: Extended Identifier bits  
1= Includes bit, EIDx, in filter comparison  
0= Bit, EIDx, is a don’t care in filter comparison  
DS70005258C-page 328  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-22: CxRXFUL1: CANx RECEIVE BUFFER FULL REGISTER 1  
R/C-0  
bit 15  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
bit 8  
R/C-0  
RXFUL<15:8>  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL<7:0>  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be Written to Clear bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-0  
RXFUL<15:0>: Receive Buffer n Full bits  
1= Buffer is full (set by module)  
0= Buffer is empty (cleared by user software)  
REGISTER 23-23: CxRXFUL2: CANx RECEIVE BUFFER FULL REGISTER 2  
R/C-0  
bit 15  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
bit 8  
R/C-0  
RXFUL<31:24>  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL<23:16>  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be Written to Clear bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-0  
RXFUL<31:16>: Receive Buffer n Full bits  
1= Buffer is full (set by module)  
0= Buffer is empty (cleared by user software)  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 329  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-24: CxRXOVF1: CANx RECEIVE BUFFER OVERFLOW REGISTER 1  
R/C-0  
bit 15  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
bit 8  
R/C-0  
RXOVF<15:8>  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF<7:0>  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be Written to Clear bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-0  
RXOVF<15:0>: Receive Buffer n Overflow bits  
1= Module attempted to write to a full buffer (set by module)  
0= No overflow condition (cleared by user software)  
REGISTER 23-25: CxRXOVF2: CANx RECEIVE BUFFER OVERFLOW REGISTER 2  
R/C-0  
bit 15  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
bit 8  
R/C-0  
RXOVF<31:24>  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF<23:16>  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be Written to Clear bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15-0  
RXOVF<31:16>: Receive Buffer n Overflow bits  
1= Module attempted to write to a full buffer (set by module)  
0= No overflow condition (cleared by user software)  
DS70005258C-page 330  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 23-26: CxTRmnCON: CANx TX/RX BUFFER mn CONTROL REGISTER  
(m = 0,2,4,6; n = 1,3,5,7)  
R/W-0  
R-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TXENn  
TXABTn  
TXLARBn  
TXERRn  
TXREQn  
RTRENn  
TXnPRI1  
TXnPRI0  
bit 15  
bit 8  
R/W-0  
R-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TXENm  
TXABTm(1) TXLARBm(1) TXERRm(1) TXREQm  
RTRENm  
TXmPRI1  
TXmPRI0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
See Definition for bits 7-0, controls Buffer n.  
TXENm: TX/RX Buffer m Selection bit  
1= Buffer, TRBm, is a transmit buffer  
0= Buffer, TRBm, is a receive buffer  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1-0  
TXABTm: Message Aborted bit(1)  
1= Message was aborted  
0= Message completed transmission successfully  
TXLARBm: Message Lost Arbitration bit(1)  
1= Message lost arbitration while being sent  
0= Message did not lose arbitration while being sent  
TXERRm: Error Detected During Transmission bit(1)  
1= A bus error occurred while the message was being sent  
0= A bus error did not occur while the message was being sent  
TXREQm: Message Send Request bit  
1= Requests that a message be sent; the bit automatically clears when the message is successfully sent  
0= Clearing the bit to ‘0’ while set requests a message abort  
RTRENm: Auto-Remote Transmit Enable bit  
1= When a remote transmit is received, TXREQx will be set  
0= When a remote transmit is received, TXREQx will be unaffected  
TXmPRI<1:0>: Message Transmission Priority bits  
11= Highest message priority  
10= High intermediate message priority  
01= Low intermediate message priority  
00= Lowest message priority  
Note 1: This bit is cleared when TXREQmn is set.  
Note:  
The buffers, SIDx, EIDx, DLCx, Data Field and Receive Status registers, are located in DMA RAM.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 331  
dsPIC33EPXXXGS70X/80X FAMILY  
23.4 CAN Message Buffers  
CAN Message Buffers are part of RAM memory. They  
are not CAN Special Function Registers. The user  
application must directly write into the RAM area that is  
configured for CAN Message Buffers. The location and  
size of the buffer area is defined by the user  
application.  
BUFFER 21-1:  
CANx MESSAGE BUFFER WORD 0  
U-0  
U-0  
U-0  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
bit 15  
bit 8  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
R/W-x  
SRR  
R/W-x  
IDE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
SID<10:0>: Standard Identifier bits  
SRR: Substitute Remote Request bit  
When IDE = 0:  
1= Message will request remote transmission  
0= Normal message  
When IDE = 1:  
The SRR bit must be set to ‘1’.  
bit 0  
IDE: Extended Identifier bit  
1= Message will transmit an Extended Identifier  
0= Message will transmit a Standard Identifier  
BUFFER 21-2:  
CANx MESSAGE BUFFER WORD 1  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
EID<17:14>  
bit 15  
bit 8  
R/W-x  
bit 0  
R/W-x  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
EID<13:6>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-0  
Unimplemented: Read as ‘0’  
EID<17:6>: Extended Identifier bits  
DS70005258C-page 332  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
(
BUFFER 21-3:  
CANx MESSAGE BUFFER WORD 2  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
R/W-x  
RTR  
R/W-x  
RB1  
bit 15  
bit 8  
U-x  
U-x  
U-x  
R/W-x  
RB0  
R/W-x  
DLC3  
R/W-x  
DLC2  
R/W-x  
DLC1  
R/W-x  
DLC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9  
EID<5:0>: Extended Identifier bits  
RTR: Remote Transmission Request bit  
When IDE = 1:  
1= Message will request remote transmission  
0= Normal message  
When IDE = 0:  
The RTR bit is ignored.  
bit 8  
RB1: Reserved Bit 1  
User must set this bit to ‘0’ per CAN protocol.  
Unimplemented: Read as ‘0’  
RB0: Reserved Bit 0  
bit 7-5  
bit 4  
User must set this bit to ‘0’ per CAN protocol.  
DLC<3:0>: Data Length Code bits  
bit 3-0  
BUFFER 21-4:  
CAN  
R/W-x  
x MESSAGE BUFFER WORD 3  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
Byte 1<15:8>  
bit 15  
R/W-x  
bit 7  
bit 8  
R/W-x  
bit 0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
Byte 0<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Byte 1<15:8>: CANx Message Byte 1 bits  
Byte 0<7:0>: CANx Message Byte 0 bits  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 333  
dsPIC33EPXXXGS70X/80X FAMILY  
BUFFER 21-5:  
CAN  
R/W-x  
x MESSAGE BUFFER WORD 4  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
R/W-x  
Byte 3<15:8>  
bit 15  
R/W-x  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
Byte 2<7:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Byte 3<15:8>: CANx Message Byte 3 bits  
Byte 2<7:0>: CANx Message Byte 2 bits  
BUFFER 21-6:  
CAN  
R/W-x  
x MESSAGE BUFFER WORD 5  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
Byte 5<15:8>  
bit 15  
R/W-x  
bit 7  
bit 8  
R/W-x  
bit 0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
Byte 4<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Byte 5<15:8>: CANx Message Byte 5 bits  
Byte 4<7:0>: CANx Message Byte 4 bits  
DS70005258C-page 334  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
BUFFER 21-7:  
CAN  
R/W-x  
x MESSAGE BUFFER WORD 6  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
R/W-x  
Byte 7<15:8>  
bit 15  
R/W-x  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
Byte 6<7:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Byte 7<15:8>: CANx Message Byte 7 bits  
Byte 6<7:0>: CANx Message Byte 6 bits  
BUFFER 21-8:  
CANx MESSAGE BUFFER WORD 7  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
FILHIT<4:0>(1)  
R/W-x  
R/W-x  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
FILHIT<4:0>: Filter Hit Code bits(1)  
Encodes number of filter that resulted in writing this buffer.  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: Only written by module for receive buffers, unused for transmit buffers.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 335  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 336  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
24.1 Features Overview  
24.0 HIGH-SPEED ANALOG  
COMPARATOR  
The Switch Mode Power Supply (SMPS) comparator  
module offers the following major features:  
Note 1: This data sheet summarizes the  
features of the dsPIC33EPXXXGS70X/  
80X family of devices. It is not intended  
to be a comprehensive reference source.  
To complement the information in this data  
sheet, refer to “High-Speed Analog  
Comparator Module” (DS70005128) in  
the “dsPIC33/PIC24 Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
• Four Rail-to-Rail Analog Comparators  
• Dedicated 12-Bit DAC for each Analog  
Comparator  
• Up to Six Selectable Input Sources per  
Comparator:  
- Four external inputs  
- Two internal inputs from the PGAx module  
• Programmable Comparator Hysteresis  
• Programmable Output Polarity  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Up to Two DAC Outputs to Device Pins  
• Multiple Voltage References for the DAC:  
- External References (EXTREF1 or  
EXTREF2)  
- AVDD  
• Interrupt Generation Capability  
• Functional Support for PWMx:  
- PWM duty cycle control  
- PWM period control  
The high-speed analog comparator module monitors  
current and/or voltage transients that may be too fast  
for the CPU and ADC to capture.  
- PWM Fault detected  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 337  
dsPIC33EPXXXGS70X/80X FAMILY  
The analog comparator input pins are typically shared  
24.2 Module Description  
with pins used by the Analog-to-Digital Converter (ADC)  
module. Both the comparator and the ADC can use the  
same pins at the same time. This capability enables a  
user to measure an input voltage with the ADC and  
detect voltage transients with the comparator.  
Figure 24-1 shows a functional block diagram of one  
analog comparator from the high-speed analog  
comparator module. The analog comparator provides  
high-speed operation with a typical delay of 15 ns. The  
negative input of the comparator is always connected  
to the DACx circuit. The positive input of the compara-  
tor is connected to an analog multiplexer that selects  
the desired source pin.  
FIGURE 24-1:  
HIGH-SPEED ANALOG COMPARATOR x MODULE BLOCK DIAGRAM  
INSELx  
ALTINP  
PWM Trigger  
(remappable I/O)  
PGA1OUT  
PGA2OUT  
(1)  
CMPxA  
(1)  
Status  
CMPxB  
CMPxC  
(1)  
0
1
Pulse Stretcher  
and  
Digital Filter  
CMPx  
(1)  
(1)  
CMPxD  
Interrupt  
Request  
EXTREF  
RANGE  
CMPPOL  
AVDD  
(1)  
(2)  
DACOE  
DACx  
EXTREF1  
(2,3)  
EXTREF2  
DAC1/  
DAC3  
12  
CMREFx  
Output  
Buffer  
DACOUT1  
PGA1OUT  
PGAOEN  
DBCC bit  
FDEVOPT<6>  
DACOE  
DAC2/  
DAC4  
Output  
Buffer  
(3)  
DACOUT2  
PGA2OUT  
PGAOEN  
Note 1: x = 1-4  
2: EXTREF1 is connected to DAC1/DAC3. EXTREF2 is connected to DAC2/DAC4.  
3: Not available on all devices.  
DS70005258C-page 338  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Each DACx has an output enable bit, DACOE, in the  
24.3 Module Applications  
CMPxCON register that enables the DACx reference  
voltage to be routed to an external output pin  
(DACOUTx). Refer to Figure 24-1 for connecting the  
DACx output voltage to the DACOUTx pins.  
This module provides a means for the SMPS dsPIC®  
DSC devices to monitor voltage and currents in a  
power conversion application. The ability to detect  
transient conditions and stimulate the dsPIC DSC  
processor and/or peripherals, without requiring the  
processor and ADC to constantly monitor voltages or  
currents, frees the dsPIC DSC to perform other tasks.  
Note 1: Ensure that multiple DACOE bits are not  
set in software. The output on the  
DACOUTx pin will be indeterminate if  
multiple comparators enable the DACx  
output.  
The comparator module has a high-speed comparator  
and an associated 12-bit DAC that provides a  
programmable reference voltage to the inverting input  
of the comparator. The polarity of the comparator out-  
put is user-programmable. The output of the module  
can be used in the following modes:  
2: DACOUT2 is not available on all devices.  
24.5 Pulse Stretcher and Digital Logic  
The analog comparator can respond to very fast tran-  
sient signals. After the comparator output is given the  
desired polarity, the signal is passed to a pulse  
stretching circuit. The pulse stretching circuit has an  
asynchronous set function and a delay circuit that  
ensures the minimum pulse width is three system clock  
cycles wide to allow the attached circuitry to properly  
respond to a narrow pulse event.  
• Generate an Interrupt  
• Trigger an ADC Sample and Convert Process  
• Truncate the PWM Signal (current limit)  
• Truncate the PWM Period (current minimum)  
• Disable the PWM Outputs (Fault latch)  
The output of the comparator module may be used in  
multiple modes at the same time, such as: 1) generate  
an interrupt, 2) have the ADC take a sample and con-  
vert it, and 3) truncate the PWM output in response to  
a voltage being detected beyond its expected value.  
The pulse stretcher circuit is followed by a digital filter.  
The digital filter is enabled via the FLTREN bit in the  
CMPxCON register. The digital filter operates with the  
clock specified via the FCLKSEL bit in the CMPxCON  
register. The comparator signal must be stable in a high  
or low state, for at least three of the selected clock  
cycles, for it to pass through the digital filter.  
The comparator module can also be used to wake-up the  
system from Sleep or Idle mode when the analog input  
voltage exceeds the programmed threshold voltage.  
24.4 Digital-to-Analog Comparator (DAC)  
Each analog comparator has a dedicated 12-bit DAC  
that is used to program the comparator threshold voltage  
via the CMPxDAC register. The DAC voltage reference  
source is selected using the EXTREF and RANGE bits  
in the CMPxCON register.  
The EXTREF bit selects either the external voltage ref-  
erence, EXTREFx, or an internal source as the voltage  
reference source. The EXTREFx input enables users to  
connect to a voltage reference that better suits their  
application. The RANGE bit enables AVDD as the  
voltage reference source for the DAC when an internal  
voltage reference is selected.  
Note:  
EXTREF2 is not available on all devices.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 339  
dsPIC33EPXXXGS70X/80X FAMILY  
24.6 Hysteresis  
24.7 Analog Comparator Resources  
An additional feature of the module is hysteresis con-  
trol. Hysteresis can be enabled or disabled and its  
amplitude can be controlled by the HYSSEL<1:0> bits  
in the CMPxCON register. Three different values are  
available: 15 mV, 30 mV and 45 mV. It is also possible  
to select the edge (rising or falling) to which hysteresis  
is to be applied.  
Many useful resources are provided on the main prod-  
uct page of the Microchip website for the devices listed  
in this data sheet. This product page contains the latest  
updates and additional information.  
24.7.1  
KEY RESOURCES  
“High-Speed Analog Comparator Module”  
(DS70005128) in the “dsPIC33/PIC24 Family  
Reference Manual”  
Hysteresis control prevents the comparator output from  
continuously changing state because of small  
perturbations (noise) at the input (see Figure 24-2).  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
FIGURE 24-2:  
HYSTERESIS CONTROL  
Output  
• All Related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
• Development Tools  
Hysteresis Range  
(15 mV/30 mV/45 mV)  
Input  
DS70005258C-page 340  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 24-1: CMPxCON: COMPARATOR x CONTROL REGISTER  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CMPON  
CMPSIDL  
HYSSEL1  
HYSSEL0  
FLTREN  
FCLKSEL  
DACOE  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
HS/HC-0  
R/W-0  
R/W-0  
R/W-0  
INSEL1  
INSEL0  
EXTREF  
HYSPOL  
CMPSTAT  
ALTINP  
CMPPOL  
RANGE  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit HS = Hardware Settable bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
CMPON: Comparator Operating Mode bit  
1= Comparator module is enabled  
0= Comparator module is disabled (reduces power consumption)  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
CMPSIDL: Comparator Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode.  
0= Continues module operation in Idle mode  
If a device has multiple comparators, any CMPSIDL bit set to ‘1’ disables all comparators while in Idle mode.  
bit 12-11  
HYSSEL<1:0>: Comparator Hysteresis Select bits  
11= 45 mV hysteresis  
10= 30 mV hysteresis  
01= 15 mV hysteresis  
00= No hysteresis is selected  
bit 10  
bit 9  
FLTREN: Digital Filter Enable bit  
1= Digital filter is enabled  
0= Digital filter is disabled  
FCLKSEL: Digital Filter and Pulse Stretcher Clock Select bit  
1= Digital filter and pulse stretcher operate with the PWM clock  
0= Digital filter and pulse stretcher operate with the system clock  
bit 8  
DACOE: DACx Output Enable bit  
1= DACx analog voltage is connected to the DACOUTx pin(1)  
0= DACx analog voltage is not connected to the DACOUTx pin  
bit 7-6  
INSEL<1:0>: Input Source Select for Comparator bits  
If ALTINP = 0, Select from Comparator Inputs:  
11= Selects CMPxD input pin  
10= Selects CMPxC input pin  
01= Selects CMPxB input pin  
00= Selects CMPxA input pin  
If ALTINP = 1, Select from Alternate Inputs:  
11= Reserved  
10= Reserved  
01= Selects PGA2 output  
00= Selects PGA1 output  
Note 1: DACOUTx can be associated only with a single comparator at any given time. The software must ensure  
that multiple comparators do not enable the DACx output by setting their respective DACOE bit.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 341  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 24-1: CMPxCON: COMPARATOR x CONTROL REGISTER (CONTINUED)  
bit 5  
EXTREF: Enable External Reference bit  
1= External source provides reference to DACx (maximum DAC voltage is determined by the external  
voltage source)  
0= AVDD provides reference to DACx (maximum DAC voltage is AVDD)  
bit 4  
HYSPOL: Comparator Hysteresis Polarity Select bit  
1= Hysteresis is applied to the falling edge of the comparator output  
0= Hysteresis is applied to the rising edge of the comparator output  
bit 3  
bit 2  
CMPSTAT: Comparator Current State bit  
Reflects the current output state of Comparator x, including the setting of the CMPPOL bit.  
ALTINP: Alternate Input Select bit  
1= INSEL<1:0> bits select alternate inputs  
0= INSEL<1:0> bits select comparator inputs  
bit 1  
bit 0  
CMPPOL: Comparator Output Polarity Control bit  
1= Output is inverted  
0= Output is non-inverted  
RANGE: DACx Output Voltage Range Select bit  
1= AVDD is the maximum DACx output voltage  
0= Unimplemented, do not use  
Note 1: DACOUTx can be associated only with a single comparator at any given time. The software must ensure  
that multiple comparators do not enable the DACx output by setting their respective DACOE bit.  
DS70005258C-page 342  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 24-2: CMPxDAC: COMPARATOR x DAC CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
CMREF<11:8>  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CMREF<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-0  
Unimplemented: Read as ‘0’  
CMREF<11:0>: Comparator Reference Voltage Select bits  
111111111111  
= ([CMREF<11:0>] * (AVDD)/4096) volts (EXTREF = 0)  
or ([CMREF<11:0>] * (EXTREF)/4096) volts (EXTREF = 1)  
000000000000  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 343  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 344  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
The dsPIC33EPXXXGS70X/80X family devices have  
25.0 PROGRAMMABLE GAIN  
two Programmable Gain Amplifiers (PGA1, PGA2).  
The PGA is an op amp-based, non-inverting amplifier  
with user-programmable gains. The output of the PGA  
can be connected to a number of dedicated Sample-  
and-Hold inputs of the Analog-to-Digital Converter and/  
or to the high-speed analog comparator module. The  
PGA has five selectable gains and may be used as a  
ground referenced amplifier (single-ended) or used  
with an independent ground reference point.  
AMPLIFIER (PGA)  
Note 1: This data sheet summarizes the  
features of the dsPIC33EPXXXGS70X/  
80X family of devices. It is not intended  
to be a comprehensive reference source.  
To complement the information in this data  
sheet, refer to “Programmable Gain  
Amplifier (PGA)” (DS70005146) in the  
“dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
website (www.microchip.com).  
Key features of the PGA module include:  
• Single-Ended or Independent Ground Reference  
• Selectable Gains: 4x, 8x, 16x, 32x and 64x  
• High Gain Bandwidth  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
• Rail-to-Rail Output Voltage  
• Wide Input Voltage Range  
FIGURE 25-1:  
PGAx MODULE BLOCK DIAGRAM  
GAIN<2:0> = 6  
Gain of 64x  
Gain of 32x  
GAIN<2:0> = 5  
GAIN<2:0> = 4  
GAIN<2:0> = 3  
Gain of 16x  
Gain of 8x  
GAIN<2:0> = 2  
Gain of 4x  
PGAx Negative Input  
PGAxOUT  
AMPx  
PGAx Positive Input  
+
PGACAL<5:0>  
Note 1: x = 1 and 2.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 345  
dsPIC33EPXXXGS70X/80X FAMILY  
input source. To provide an independent ground  
reference, the PGAxN2 and PGAxN3 pins are available  
as the negative input source to the PGAx module.  
25.1 Module Description  
The Programmable Gain Amplifiers are used to amplify  
small voltages (i.e., voltages across burden/shunt  
resistors) to improve the signal-to-noise ratio of the  
measured signal. The PGAx output voltage can be  
read by any of the four dedicated Sample-and-Hold  
circuits on the ADC module. The output voltage can  
also be fed to the comparator module for overcurrent/  
voltage protection. Figure 25-2 shows a functional  
block diagram of the PGAx module. Refer to  
Section 22.0 “High-Speed, 12-Bit Analog-to-Digital  
Converter (ADC)” and Section 24.0 “High-Speed  
Analog Comparator” for more interconnection details.  
Note 1: Not all PGA positive/negative inputs are  
available on all devices. Refer to the  
specific device pinout for available input  
source pins.  
The output voltage of the PGAx module can be  
connected to the DACOUTx pin by setting the  
PGAOEN bit in the PGAxCON register. When the  
PGAOEN bit is enabled, the output voltage of PGA1 is  
connected to DACOUT1 and PGA2 is connected to  
DACOUT2. For devices with a single DACOUTx pin,  
the output voltage of PGA2 can be connected to  
DACOUT1 by configuring the DBCC Configuration bit  
in the FDEVOPT register (FDEVOPT<6>).  
The gain of the PGAx module is selectable via the  
GAIN<2:0> bits in the PGAxCON register. There are  
five selectable gains, ranging from 4x to 64x. The  
SELPI<2:0> and SELNI<2:0> bits in the PGAxCON  
register select one of four positive/negative inputs to  
the PGAx module. For single-ended applications, the  
SELNI<2:0> bits will select the ground as the negative  
If both the DACx output voltage and PGAx output volt-  
age are connected to the DACOUTx pin, the resulting  
output voltage would be a combination of signals.  
There is no assigned priority between the PGAx  
module and the DACx module.  
FIGURE 25-2:  
PGAx FUNCTIONAL BLOCK DIAGRAM  
INSEL<1:0>  
(CMPCONx)  
SELPI<2:0>  
(1)  
(1)  
PGAxCON  
PGAxCAL  
+
PGAEN GAIN<2:0>  
(1)  
PGAxP1  
DACx  
(1)  
PGAxP2  
PGACAL<5:0>  
(1)  
PGAxP3  
CxCHS<1:0>  
(ADCON4H)  
(1)  
PGAxP4  
ADC  
S&H  
+
(1)  
PGAx  
GND  
(1)  
PGAxN2  
(1,3)  
PGAxN3  
GND  
PGAOEN  
(2)  
SELNI<2:0>  
To DACOUTx Pin  
Note 1: x = 1 and 2.  
2: The DACOUT2 device pin is only available on 64-pin devices.  
3: The PGAxN3 input is not available on 28-pin devices.  
DS70005258C-page 346  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
25.2.1  
KEY RESOURCES  
25.2 PGA Resources  
“Programmable Gain Amplifier (PGA)”  
(DS70005146) in the “dsPIC33/PIC24 Family  
Reference Manual”  
Many useful resources are provided on the main prod-  
uct page of the Microchip website for the devices listed  
in this data sheet. This product page contains the latest  
updates and additional information.  
• Code Samples  
• Application Notes  
• Software Libraries  
• Webinars  
• All Related “dsPIC33/PIC24 Family Reference  
Manual” Sections  
• Development Tools  
REGISTER 25-1: PGAxCON: PGAx CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PGAEN  
PGAOEN  
SELPI2  
SELPI1  
SELPI0  
SELNI2  
SELNI1  
SELNI0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
GAIN2  
R/W-0  
GAIN1  
R/W-0  
GAIN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
PGAEN: PGAx Enable bit  
1= PGAx module is enabled  
0= PGAx module is disabled (reduces power consumption)  
bit 14  
PGAOEN: PGAx Output Enable bit  
1= PGAx output is connected to the DACOUTx pin  
0= PGAx output is not connected to the DACOUTx pin  
bit 13-11  
SELPI<2:0>: PGAx Positive Input Selection bits  
111= Reserved  
110= Reserved  
101= Reserved  
100= Reserved  
011= PGAxP4  
010= PGAxP3  
001= PGAxP2  
000= PGAxP1  
bit 10-8  
SELNI<2:0>: PGAx Negative Input Selection bits  
111= Reserved  
110= Reserved  
101= Reserved  
100= Reserved  
011= Ground (Single-Ended mode)  
010= PGAxN3  
001= PGAxN2  
000= Ground (Single-Ended mode)  
bit 7-3  
Unimplemented: Read as ‘0’  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 347  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 25-1: PGAxCON: PGAx CONTROL REGISTER (CONTINUED)  
bit 2-0  
GAIN<2:0>: PGAx Gain Selection bits  
111= Reserved  
110= Gain of 64x  
101= Gain of 32x  
100= Gain of 16x  
011= Gain of 8x  
010= Gain of 4x  
001= Reserved  
000= Reserved  
REGISTER 25-2: PGAxCAL: PGAx CALIBRATION REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PGACAL<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
PGACAL<5:0>: PGAx Offset Calibration bits  
The calibration values for PGA1 and PGA2 must be copied from Flash addresses, 0x800E48 and  
0x800E4C, respectively, into these bits before the module is enabled. Refer to the calibration data  
address table (Table 27-3) in Section 27.0 “Special Features” for more information.  
DS70005258C-page 348  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
26.1 Features Overview  
26.0 CONSTANT-CURRENT  
SOURCE  
The constant-current source module offers the following  
major features:  
Note 1: This data sheet summarizes the  
features of the dsPIC33EPXXXGS70X/  
80X family of devices. It is not intended  
to be a comprehensive reference source.  
To complement the information in this data  
sheet, refer to the related section of the  
“dsPIC33/PIC24 Family Reference Man-  
ual”, which is available from the Microchip  
website (www.microchip.com).  
• Constant-Current Generator (10 µA nominal)  
• Internal Selectable Connection to One of Four Pins  
• Enable/Disable bit  
26.2 Module Description  
Figure 26-1 shows a functional block diagram of the  
constant-current source module. It consists of a  
precision current generator with a nominal value of  
10 µA. The module can be enabled and disabled using  
the ISRCEN bit in the ISRCCON register. The output  
of the current generator is internally connected to a  
device pin. The dsPIC33EPXXXGS70X/80X family  
can have up to four selectable current source pins.  
The OUTSEL<2:0> bits in the ISRCCON register allow  
selection of the target pin.  
2: Some registers and associated bits  
described in this section may not be  
available on all devices. Refer to  
Section 4.0 “Memory Organization” in  
this data sheet for device-specific register  
and bit information.  
The constant-current source module is a precision  
current generator and is used in conjunction with the  
ADC module to measure the resistance of external  
resistors connected to device pins.  
The current source is calibrated during testing.  
FIGURE 26-1:  
CONSTANT-CURRENT SOURCE MODULE BLOCK DIAGRAM  
Constant-Current Source  
ISRC1  
ISRC2  
M
U
X
ISRC3  
ISRC4  
ISRCEN  
OUTSEL<2:0>  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 349  
dsPIC33EPXXXGS70X/80X FAMILY  
26.3 Current Source Control Register  
REGISTER 26-1: ISRCCON: CONSTANT-CURRENT SOURCE CONTROL REGISTER  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
ISRCEN  
OUTSEL2(1) OUTSEL1(1) OUTSEL0(1)  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ISRCCAL0  
bit 0  
ISRCCAL5 ISRCCAL4 ISRCCAL3  
ISRCCAL2  
ISRCCAL1  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ISRCEN: Constant-Current Source Enable bit  
1= Current source is enabled  
0= Current source is disabled  
bit 14-11  
bit 10-8  
Unimplemented: Read as ‘0’  
OUTSEL<2:0>: Output Constant-Current Select bits(1)  
111= Reserved  
110= Reserved  
101= Reserved  
100= Reserved  
011= Input pin, ISRC4 (AN4)  
010= Input pin, ISRC3 (AN5)  
001= Input pin, ISRC2 (AN6)  
000= Input pin, ISRC1 (AN12)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
ISRCCAL<5:0>: Constant-Current Source Calibration bits  
The calibration value must be copied from Flash address, 0x800E78, into these bits before the  
module is enabled. Refer to the calibration data address table (Table 27-3) in Section 27.0 “Special  
Features” for more information.  
Note 1: ISRC1 and ISCR3 are not available on 28, 44 and 48-pin packages. Refer to the “Pin Diagrams” section  
for availability.  
DS70005258C-page 350  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
27.1 Configuration Bits  
27.0 SPECIAL FEATURES  
In dsPIC33EPXXXGS70X/80X family devices, the  
Configuration Words are implemented as volatile  
memory. This means that configuration data must be  
programmed each time the device is powered up.  
Configuration data is stored at the end of the on-chip  
program memory space, known as the Flash Configura-  
tion Words. Their specific locations are shown in  
Table 27-1 with detailed descriptions in Table 27-2. The  
configuration data is automatically loaded from the Flash  
Configuration Words to the proper Configuration  
Shadow registers during device Resets.  
Note: This data sheet summarizes the features of  
the dsPIC33EPXXXGS70X/80X family of  
devices. It is not intended to be a compre-  
hensive reference source. To complement  
the information in this data sheet, refer to  
“Device Configuration” (DS70000618),  
“Watchdog Timer and Power-Saving  
Modes” (DS70615) and “CodeGuard™  
Intermediate Security” (DS70005182) in  
the “dsPIC33/PIC24 Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
For devices operating in Dual Partition Flash modes, the  
BSEQx bits (FBTSEQ<11:0>) determine which panel is  
the Active Partition at start-up and the Configuration  
Words from that panel are loaded into the Configuration  
Shadow registers.  
The dsPIC33EPXXXGS70X/80X family devices  
include several features intended to maximize  
application flexibility and reliability, and minimize cost  
through elimination of external components. These are:  
Note:  
Configuration data is reloaded on all types  
of device Resets.  
• Flexible Configuration  
• Watchdog Timer (WDT)  
When creating applications for these devices, users  
should always specifically allocate the location of the  
Flash Configuration Words for configuration data in  
their code for the compiler. This is to make certain that  
program code is not stored in this address when the  
code is compiled. Program code executing out of  
configuration space will cause a device Reset.  
• Code Protection and CodeGuard™ Security  
• JTAG Boundary Scan Interface  
• In-Circuit Serial Programming™ (ICSP™)  
• In-Circuit Emulation  
• Brown-out Reset (BOR)  
Note:  
Performing a page erase operation on the  
last page of program memory clears the  
Flash Configuration Words.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 351  
TABLE 27-1: CONFIGURATION REGISTER MAP(3)  
Device  
Memory  
Size  
Name  
Address  
Bits 23-16  
Bit 15  
Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(Kbytes)  
00AF80  
015780  
00AF90  
015790  
00AF90  
015794  
00AF98  
015798  
00AF9C  
01579C  
00AFA0  
0157A0  
00AFA4  
0157A4  
00AFA8  
0157A8  
64  
128  
64  
FSEC  
AIVTDIS  
CSS<2:0>  
CWRP  
GSS<1:0>  
GWRP  
BSEN  
BSS<1:0>  
BWRP  
FBSLIM  
FSIGN  
FOSCSEL  
FOSC  
BSLIM<12:0>  
128  
64  
Reserved(2)  
128  
64  
IESO  
FNOSC<2:0>  
128  
64  
PLLKEN  
FCKSM<1:0>  
IOL1WAY  
WDTPRE  
OSCIOFNC  
POSCMD<1:0>  
128  
64  
FWDT  
FPOR  
WDTWIN<1:0>  
WINDIS  
WDTEN<1:0>  
WDTPOST<3:0>  
128  
64  
JTAGEN  
Reserved(1)  
128  
64  
FICD  
BTSWP  
Reserved(1)  
ICS<1:0>  
128  
64  
FDEVOPT 00AFAC  
0157AC  
DBCC  
ALTI2C2 ALTI2C1 Reserved(1)  
PWMLOCK  
128  
64  
FALTREG 00AFB0  
0157B0  
CTXT4<2:0>  
CTXT3<3:0>  
CTXT2 <2:0>  
CTXT1 <2:0>  
128  
64  
FBTSEQ 00AFFC  
IBSEQ<11:0>  
BSEQ<11:0>  
0157FC  
FBOOT(4) 801000  
128  
BTMODE<1:0>  
Note 1: These bits are reserved and must be programmed as ‘1’.  
2: This bit is reserved and must be programmed as ‘0’.  
3: When operating in Dual Partition Flash mode, each partition will have dedicated Configuration registers. On a device Reset, the configuration values of the Active Partition are read at start-up, but during a soft  
swap condition, the configuration settings of the newly Active Partition are ignored.  
4: FBOOT resides in configuration memory space.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 27-2: CONFIGURATION BITS DESCRIPTION  
Bit Field  
BSS<1:0>  
Description  
Boot Segment Code-Protect Level bits  
11= Boot Segment is not code-protected other than BWRP  
10= Standard security  
0x= High security  
BSEN  
Boot Segment Control bit  
1= No Boot Segment is enabled  
0= Boot Segment size is determined by the BSLIM<12:0> bits  
BWRP  
Boot Segment Write-Protect bit  
1= Boot Segment can be written  
0= Boot Segment is write-protected  
BSLIM<12:0>  
Boot Segment Flash Page Address Limit bits  
Contains the last active Boot Segment page. The value to be programmed is the inverted  
page address, such that programming additional ‘0’s can only increase the Boot Segment  
size (i.e., 0x1FFD = 2 Pages or 1024 IW).  
GSS<1:0>  
General Segment Code-Protect Level bits  
11= User program memory is not code-protected  
10= Standard security  
0x= High security  
GWRP  
General Segment Write-Protect bit  
1= User program memory is not write-protected  
0= User program memory is write-protected  
CWRP  
Configuration Segment Write-Protect bit  
1= Configuration data is not write-protected  
0= Configuration data is write-protected  
CSS<2:0>  
Configuration Segment Code-Protect Level bits  
111= Configuration data is not code-protected  
110= Standard security  
10x= Enhanced security  
0xx= High security  
BTSWP  
BOOTSWPInstruction Enable/Disable bit  
1= BOOTSWPinstruction is disabled  
0= BOOTSWPinstruction is enabled  
BSEQ<11:0>  
IBSEQ<11:0>  
Boot Sequence Number bits (Dual Partition modes only)  
Relative value defining which partition will be active after device Reset; the partition  
containing a lower boot number will be active.  
Inverse Boot Sequence Number bits (Dual Partition modes only)  
The one’s complement of BSEQ<11:0>; must be calculated by the user and written for  
device programming. If BSEQx and IBSEQx are not complements of each other, the Boot  
Sequence Number is considered to be invalid.  
AIVTDIS(1)  
IESO  
Alternate Interrupt Vector Table bit  
1= Alternate Interrupt Vector Table is disabled  
0= Alternate Interrupt Vector Table is enabled if INTCON2<8> = 1  
Two-Speed Oscillator Start-up Enable bit  
1= Starts up device with FRC, then automatically switches to the user-selected oscillator  
source when ready  
0= Starts up device with the user-selected oscillator source  
PWMLOCK  
PWMx Lock Enable bit  
1= Certain PWMx registers may only be written after a key sequence  
0= PWMx registers may be written without a key sequence  
Note 1: The Boot Segment must be present to use the Alternate Interrupt Vector Table.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 353  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 27-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)  
Bit Field  
FNOSC<2:0>  
Description  
Oscillator Selection bits  
111= Fast RC Oscillator with Divide-by-N (FRCDIVN)  
110= Fast RC Oscillator with Divide-by-16  
101= Low-Power RC Oscillator (LPRC)  
100= Reserved; do not use  
011= Primary Oscillator with PLL module (XT+PLL, HS+PLL, EC+PLL)  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator with Divide-by-N with PLL module (FRCPLL)  
000= Fast RC Oscillator (FRC)  
FCKSM<1:0>  
Clock Switching Mode bits  
1x= Clock switching is disabled, Fail-Safe Clock Monitor is disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
IOL1WAY  
Peripheral Pin Select Configuration bit  
1= Allows only one reconfiguration  
0= Allows multiple reconfigurations  
OSCIOFNC  
POSCMD<1:0>  
OSC2 Pin Function bit (except in XT and HS modes)  
1= OSC2 is the clock output  
0= OSC2 is a general purpose digital I/O pin  
Primary Oscillator Mode Select bits  
11= Primary Oscillator is disabled  
10= HS Crystal Oscillator mode  
01= XT Crystal Oscillator mode  
00= EC (External Clock) mode  
WDTEN<1:0>  
Watchdog Timer Enable bits  
11= Watchdog Timer is always enabled (LPRC oscillator cannot be disabled; clearing the  
SWDTEN bit in the RCON register will have no effect)  
10= Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by  
clearing the SWDTEN bit in the RCON register)  
01= Watchdog Timer is enabled only while device is active and is disabled while in Sleep  
mode; software control is disabled in this mode  
00= Watchdog Timer and SWDTEN bit are disabled  
WINDIS  
Watchdog Timer Window Enable bit  
1= Watchdog Timer is in Non-Window mode  
0= Watchdog Timer is in Window mode  
PLLKEN  
PLL Lock Enable bit  
1= PLL lock is enabled  
0= PLL lock is disabled  
WDTPRE  
Watchdog Timer Prescaler bit  
1= 1:128  
0= 1:32  
WDTPOST<3:0>  
Watchdog Timer Postscaler bits  
1111= 1:32,768  
1110= 1:16,384  
0001= 1:2  
0000= 1:1  
Note 1: The Boot Segment must be present to use the Alternate Interrupt Vector Table.  
DS70005258C-page 354  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 27-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)  
Bit Field  
Description  
WDTWIN<1:0>  
Watchdog Timer Window Select bits  
11= WDT window is 25% of the WDT period  
10= WDT window is 37.5% of the WDT period  
01= WDT window is 50% of the WDT period  
00= WDT window is 75% of the WDT period  
ALTI2C1  
ALTI2C2  
JTAGEN  
ICS<1:0>  
Alternate I2C1 Pin bit  
1= I2C1 is mapped to the SDA1/SCL1 pins  
0= I2C1 is mapped to the ASDA1/ASCL1 pins  
Alternate I2C2 Pin bit  
1= I2C2 is mapped to the SDA2/SCL2 pins  
0= I2C2 is mapped to the ASDA2/ASCL2 pins  
JTAG Enable bit  
1= JTAG is enabled  
0= JTAG is disabled  
ICD Communication Channel Select bits  
11= Communicates on PGEC1 and PGED1  
10= Communicates on PGEC2 and PGED2  
01= Communicates on PGEC3 and PGED3  
00= Reserved, do not use  
DBCC  
DACx Output Cross Connection Select bit  
1= No cross connection between DAC outputs  
0= Interconnects DACOUT1 and DACOUT2  
CTXT1<2:0>  
Alternate Working Register Set 1 Interrupt Priority Level (IPL) Select bits  
111= Reserved  
110= Assigned to IPL of 7  
101= Assigned to IPL of 6  
100= Assigned to IPL of 5  
011= Assigned to IPL of 4  
010= Assigned to IPL of 3  
001= Assigned to IPL of 2  
000= Assigned to IPL of 1  
CTXT2<2:0>  
Alternate Working Register Set 2 Interrupt Priority Level (IPL) Select bits  
111= Reserved  
110= Assigned to IPL of 7  
101= Assigned to IPL of 6  
100= Assigned to IPL of 5  
011= Assigned to IPL of 4  
010= Assigned to IPL of 3  
001= Assigned to IPL of 2  
000= Assigned to IPL of 1  
CTXT3<2:0>  
Alternate Working Register Set 3 Interrupt Priority Level (IPL) Select bits  
111= Reserved  
110= Assigned to IPL of 7  
101= Assigned to IPL of 6  
100= Assigned to IPL of 5  
011= Assigned to IPL of 4  
010= Assigned to IPL of 3  
001= Assigned to IPL of 2  
000= Assigned to IPL of 1  
Note 1: The Boot Segment must be present to use the Alternate Interrupt Vector Table.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 355  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 27-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)  
Bit Field  
CTXT4<2:0>  
Description  
Alternate Working Register Set 4 Interrupt Priority Level (IPL) Select bits  
111= Reserved  
110= Assigned to IPL of 7  
101= Assigned to IPL of 6  
100= Assigned to IPL of 5  
011= Assigned to IPL of 4  
010= Assigned to IPL of 3  
001= Assigned to IPL of 2  
000= Assigned to IPL of 1  
BTMODE<1:0>  
Boot Mode Configuration bits  
11= Single Partition mode  
10= Dual Partition mode  
01= Protected Dual Partition mode  
00= Privileged Dual Partition mode  
Note 1: The Boot Segment must be present to use the Alternate Interrupt Vector Table.  
DS70005258C-page 356  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
The dsPIC33EPXXXGS70X/80X devices have two  
27.2 Device Calibration and  
Identification registers near the end of configuration  
memory space that store the Device ID (DEVID) and  
Device Revision (DEVREV). These registers are used  
to determine the mask, variant and manufacturing  
information about the device. These registers are  
read-only and are shown in Register 27-1 and  
Register 27-2.  
Identification  
The PGAx and current source modules on the  
dsPIC33EPXXXGS70X/80X family devices require  
Calibration Data registers to improve performance of  
the module over a wide operating range. These  
Calibration registers are read-only and are stored in  
configuration memory space. Prior to enabling the  
module, the calibration data must be read (TBLPAG  
and Table Read instruction) and loaded into its respec-  
tive SFR registers. The device calibration addresses  
are shown in Table 27-3.  
TABLE 27-3: DEVICE CALIBRATION ADDRESSES(1)  
Calibration  
Name  
Address Bits 23-16 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
PGA1CAL  
800E48  
PGA1 Calibration Data  
PGA2 Calibration Data  
PGA2CAL 800E4C  
ISRCCAL 800E78  
Current Source Calibration Data  
Note 1: The calibration data must be copied into its respective SFR registers prior to enabling the module.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 357  
dsPIC33EPXXXGS70X/80X FAMILY  
REGISTER 27-1: DEVID: DEVICE ID REGISTER  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
DEVID<23:16>  
bit 23  
bit 15  
bit 7  
bit 16  
bit 8  
bit 0  
R
R
DEVID<15:8>  
R
R
DEVID<7:0>  
Legend: R = Read-Only bit  
bit 23-0 DEVID<23:0>: Device Identifier bits  
U = Unimplemented bit  
REGISTER 27-2: DEVREV: DEVICE REVISION REGISTER  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
DEVREV<23:16>  
bit 23  
bit 15  
bit 7  
bit 16  
bit 8  
bit 0  
R
R
DEVREV<15:8>  
R
R
DEVREV<7:0>  
Legend: R = Read-only bit  
bit 23-0 DEVREV<23:0>: Device Revision bits  
U = Unimplemented bit  
DS70005258C-page 358  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
27.3 User OTP Memory  
27.5 Brown-out Reset (BOR)  
The dsPIC33EPXXXGS70X/80X family devices contain  
64 words of user One-Time-Programmable (OTP) mem-  
ory, located at addresses, 0x800F80 through 0x800FFC.  
The user OTP Words can be used for storing checksum,  
code revisions, product information, such as serial  
numbers, system manufacturing dates, manufacturing lot  
numbers and other application-specific information.  
These words can only be written once at program time  
and not at run time; they can be read at run time.  
The Brown-out Reset (BOR) module is based on an  
internal voltage reference circuit that monitors the reg-  
ulated supply voltage, VCAP. The main purpose of the  
BOR module is to generate a device Reset when a  
brown-out condition occurs. Brown-out conditions are  
generally caused by glitches on the AC mains (for  
example, missing portions of the AC cycle waveform  
due to bad power transmission lines or voltage sags  
due to excessive current draw when a large inductive  
load is turned on).  
27.4 On-Chip Voltage Regulator  
A BOR generates a Reset pulse which resets the  
device. The BOR selects the clock source based on the  
device Configuration bit values (FNOSC<2:0> and  
POSCMD<1:0>).  
All the dsPIC33EPXXXGS70X/80X family devices power  
their core digital logic at a nominal 1.8V. This can create  
a conflict for designs that are required to operate at a  
higher typical voltage, such as 3.3V. To simplify system  
design, all devices in the dsPIC33EPXXXGS70X/80X  
family incorporate an on-chip regulator that allows the  
device to run its core logic from VDD.  
If an Oscillator mode is selected, the BOR activates the  
Oscillator Start-up Timer (OST). The system clock is  
held until OST expires. If the PLL is used, the clock is  
held until the LOCK bit (OSCCON<5>) is ‘1’.  
Concurrently, the Power-up Timer (PWRT) Time-out  
(TPWRT) is applied before the internal Reset is released.  
If TPWRT = 0and a crystal oscillator is being used, then a  
nominal delay of TFSCM is applied. The total delay in this  
case is TFSCM. Refer to Parameter SY35 in Table 30-23  
of Section 30.0 “Electrical Characteristics” for specific  
TFSCM values.  
The regulator provides power to the core from the other  
VDD pins. A low-ESR (less than 1 Ohm) capacitor (such  
as tantalum or ceramic) must be connected to the VCAP  
pin (Figure 27-1). This helps to maintain the stability of  
the regulator. The recommended value for the filter  
capacitor is provided in Table 30-5, located in  
Section 30.0 “Electrical Characteristics”.  
The BOR status bit (RCON<1>) is set to indicate that a  
BOR has occurred. The BOR circuit continues to oper-  
ate while in Sleep or Idle modes and resets the device  
should VDD fall below the BOR threshold voltage.  
Note:  
It is important for the low-ESR capacitor to  
be placed as close as possible to the VCAP  
pin.  
FIGURE 27-1:  
CONNECTIONS FOR THE  
ON-CHIP VOLTAGE  
REGULATOR(1,2,3)  
3.3V  
dsPIC33EP  
VDD  
VCAP  
VSS  
CEFC  
Note 1: These are typical operating voltages. Refer  
to Table 30-5 located in Section 30.0  
“Electrical Characteristics” for the full  
operating ranges of VDD and VCAP.  
2: It is important for the low-ESR capacitor  
to be placed as close as possible to the  
VCAP pin.  
3: Typical VCAP pin voltage = 1.8V when  
VDD VDDMIN.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 359  
dsPIC33EPXXXGS70X/80X FAMILY  
27.6.2  
SLEEP AND IDLE MODES  
27.6 Watchdog Timer (WDT)  
If the WDT is enabled, it continues to run during Sleep or  
Idle modes. When the WDT time-out occurs, the device  
wakes and code execution continues from where the  
PWRSAV instruction was executed. The corresponding  
SLEEP or IDLE bit (RCON<3:2>) needs to be cleared in  
software after the device wakes up.  
For dsPIC33EPXXXGS70X/80X family devices, the  
WDT is driven by the LPRC oscillator. When the WDT  
is enabled, the clock source is also enabled.  
27.6.1  
PRESCALER/POSTSCALER  
The nominal WDT clock source from LPRC is 32 kHz.  
This feeds a prescaler that can be configured for either  
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.  
The prescaler is set by the WDTPRE Configuration  
bit. With a 32 kHz input, the prescaler yields a WDT  
Time-out Period (TWDT), as shown in Parameter SY12  
in Table 30-23.  
27.6.3  
ENABLING WDT  
The WDT is enabled or disabled by the WDTEN<1:0>  
Configuration bits in the FWDT Configuration register.  
When the WDTEN<1:0> Configuration bits have been  
programmed to ‘0b11’, the WDT is always enabled.  
The WDT can be optionally controlled in software  
when the WDTEN<1:0> Configuration bits have been  
programmed to ‘0b10’. The WDT is enabled in soft-  
ware by setting the SWDTEN control bit (RCON<5>).  
The SWDTEN control bit is cleared on any device  
Reset. The software WDT option allows the user appli-  
cation to enable the WDT for critical code segments  
and disables the WDT during non-critical segments for  
maximum power savings.  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the WDTPOST<3:0>  
Configuration bits (FWDT<3:0>), which allow the  
selection of 16 settings, from 1:1 to 1:32,768. Using the  
prescaler and postscaler time-out periods, ranges from  
1 ms to 131 seconds can be achieved.  
The WDT, prescaler and postscaler are reset:  
• On any device Reset  
The WDT Time-out flag bit, WDTO (RCON<4>), is not  
automatically cleared following a WDT time-out. To  
detect subsequent WDT events, the flag must be  
cleared in software.  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSCx bits) or by hardware  
(i.e., Fail-Safe Clock Monitor)  
27.6.4  
WDT WINDOW  
• When a PWRSAVinstruction is executed  
(i.e., Sleep or Idle mode is entered)  
The Watchdog Timer has an optional Windowed mode,  
enabled by programming the WINDIS bit in the WDT  
Configuration register (FWDT<7>). In the Windowed  
mode (WINDIS = 0), the WDT should be cleared based  
on the settings in the programmable Watchdog Timer  
Window select bits (WDTWIN<1:0>).  
• When the device exits Sleep or Idle mode to  
resume normal operation  
• By a CLRWDTinstruction during normal execution  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
FIGURE 27-2:  
WDT BLOCK DIAGRAM  
All Device Resets  
Transition to New Clock Source  
Exit Sleep or Idle Mode  
PWRSAVInstruction  
CLRWDTInstruction  
Watchdog Timer  
Sleep/Idle  
WDTPOST<3:0>  
WDTPRE  
SWDTEN  
WDT  
Wake-up  
WDTEN<1:0>  
1
RS  
RS  
Prescaler  
Postscaler  
(Divide-by-N1)  
(Divide-by-N2)  
LPRC Clock  
WDT  
Reset  
0
WINDIS  
WDT Window Select  
WDTWIN<1:0>  
CLRWDTInstruction  
DS70005258C-page 360  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
27.7 JTAG Interface  
27.10 Code Protection and  
CodeGuard™ Security  
The dsPIC33EPXXXGS70X/80X family devices imple-  
ment a JTAG interface, which supports boundary scan  
device testing. Detailed information on this interface is  
provided in future revisions of the document.  
dsPIC33EPXXXGS70X/80X devices offer multiple levels  
of security for protecting individual intellectual property.  
The program Flash protection can be broken up into  
three segments: Boot Segment (BS), General Segment  
(GS) and Configuration Segment (CS). Boot Segment  
has the highest security privilege and can be thought to  
have limited restrictions when accessing other segments.  
General Segment has the least security and is intended  
for the end user system code. Configuration Segment  
contains only the device user configuration data which is  
located at the end of the program memory space.  
Note: Refer to “Programming and Diagnostics”  
(DS70608) in the “dsPIC33/PIC24 Family  
Reference Manual” for further information on  
usage, configuration and operation of the  
JTAG interface.  
27.8  
In-Circuit Serial Programming™  
(ICSP™)  
The code protection features are controlled by the  
Configuration registers, FSEC and FBSLIM. The FSEC  
register controls the code-protect level for each  
segment and if that segment is write-protected. The  
size of BS and GS will depend on the BSLIM<12:0> bits  
setting and if the Alternate Interrupt Vector Table (AIVT)  
is enabled. The BSLIM<12:0> bits define the number of  
pages for BS with each page containing 512 IW. The  
smallest BS size is one page, which will consist of the  
Interrupt Vector Table (IVT) and 256 IW of code  
protection.  
The dsPIC33EPXXXGS70X/80X family devices can be  
serially programmed while in the end application circuit.  
This is done with two lines for clock and data, and three  
other lines for power, ground and the programming  
sequence. Serial programming allows customers to  
manufacture boards with unprogrammed devices and  
then program the device just before shipping the  
product. Serial programming also allows the most recent  
firmware or a custom firmware to be programmed.  
Refer to the “dsPIC33E/PIC24E Flash Programming  
Specification for Devices with Volatile Configuration  
Bits” (DS70663) for details about In-Circuit Serial  
Programming™ (ICSP™).  
If the AIVT is enabled, the last page of BS will contain  
the AIVT and will not contain any BS code. With AIVT  
enabled, the smallest BS size is now two pages  
(1024 IW), with one page for the IVT and BS code, and  
the other page for the AIVT. Write protection of the BS  
does not cover the AIVT. The last page of BS can  
always be programmed or erased by BS code. The  
General Segment will start at the next page and will  
consume the rest of program Flash except for the Flash  
Configuration Words. The IVT will assume GS security  
only if BS is not enabled. The IVT is protected from  
being programmed or page erased when either  
security segment has enabled write protection.  
Any of the three pairs of programming clock/data pins  
can be used:  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
27.9 In-Circuit Debugger  
When MPLAB® ICD 3 or REAL ICE™ emulator is  
selected as a debugger, the in-circuit debugging function-  
ality is enabled. This function allows simple debugging  
functions when used with MPLAB IDE. Debugging func-  
tionality is controlled through the PGECx (Emulation/  
Debug Clock) and PGEDx (Emulation/Debug Data) pin  
functions.  
Note:  
Refer to “CodeGuard™ Intermediate  
Security” (DS70005182) in the “dsPIC33/  
PIC24 Family Reference Manual” for further  
information on usage, configuration and  
operation of CodeGuard Security.  
Any of the three pairs of debugging clock/data pins can  
be used:  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
To use the in-circuit debugger function of the device,  
the design must implement ICSP connections to  
MCLR, VDD, VSS and the PGECx/PGEDx pin pair. In  
addition, when the feature is enabled, some of the  
resources are not available for general use. These  
resources include the first 80 bytes of data RAM and  
two I/O pins (PGECx and PGEDx).  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 361  
dsPIC33EPXXXGS70X/80X FAMILY  
The different device security segments are shown in  
Figure 27-3. Here, all three segments are shown but  
are not required. If only basic code protection is  
required, then GS can be enabled independently or  
combined with CS, if desired.  
Privileged Dual Partition mode performs the same  
function as Protected Dual Partition mode, except  
additional constraints are applied in an effort to prevent  
code in the Boot Segment and General Segment from  
being used against each other.  
FIGURE 27-3:  
SECURITY SEGMENTS  
EXAMPLE FOR  
FIGURE 27-4:  
SECURITY SEGMENTS  
EXAMPLE FOR  
dsPIC33EPXXXGS70X/80X  
DEVICES  
dsPIC33EP64GS70X/80X  
DEVICES (DUAL  
PARTITION MODES)  
0x000000  
IVT  
0x000000  
0x000200  
IVT  
0x000200  
IVT and AIVT  
Assume  
BS Protection  
BS  
IVT and AIVT  
Assume  
BS Protection  
BS  
(2)  
AIVT + 256 IW  
(2)  
AIVT + 256IW  
BSLIM<12:0>  
BSLIM<12:0>  
GS  
GS  
(1)  
CS  
0x0XXX00  
(1)  
CS  
0x005800  
Unimplemented  
Note 1: If CS is write-protected, the last page  
(GS + CS) of program memory will be  
protected from an erase condition.  
(read ‘0’s)  
0x400000  
IVT  
2: The last half (256 IW) of the last page of  
BS is unusable program memory.  
0x400200  
IVT and AIVT  
Assume  
BS  
BS Protection  
dsPIC33EPXXXGS70X/80X family devices can be  
operated in Dual Partition mode, where security is  
required for each partition. When operating in Dual Par-  
tition mode, the Active and Inactive Partitions both  
contain unique copies of the Reset vector, Interrupt  
Vector Tables (IVT and AIVT, if enabled) and the Flash  
Configuration Words. Both partitions have the three  
security segments described previously. Code may not  
be executed from the Inactive Partition, but it may be  
programmed by, and read from, the Active Partition,  
subject to defined code protection. Figure 27-4 and  
Figure 27-5 show the different security segments for  
devices operating in Dual Partition mode.  
(2)  
AIVT + 256 IW  
BSLIM<12:0>  
GS  
(1)  
CS  
0x405800  
Note 1: If CS is write-protected, the last page  
(GS + CS) of program memory will be  
protected from an erase condition.  
The device may also operate in a Protected Dual  
Partition mode or in Privileged Dual Partition mode. In  
Protected Dual Partition mode, Partition 1 is perma-  
nently erase/write-protected. This implementation  
allows for a “Factory Default” mode, which provides a  
fail-safe backup image to be stored in Partition 1. For  
example, a fail-safe bootloader can be placed in  
Partition 1, along with a fail-safe backup code image,  
which can be used or rewritten into Partition 2 in the  
event of a failed Flash update to Partition 2.  
2: The last half (256 IW) of the last page of  
BS is unusable program memory.  
DS70005258C-page 362  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 27-5:  
SECURITY SEGMENTS  
EXAMPLE FOR  
dsPIC33EP128GS70X/80X  
DEVICES (DUAL  
PARTITION MODES)  
0x000000  
IVT  
0x000200  
IVT and AIVT  
Assume  
BS Protection  
BS  
(2)  
AIVT + 256IW  
BSLIM<12:0>  
GS  
(1)  
CS  
0x00AC00  
Unimplemented  
(read ‘0’s)  
0x400000  
IVT  
0x400200  
IVT and AIVT  
Assume  
BS Protection  
BS  
(2)  
AIVT + 256 IW  
BSLIM<12:0>  
GS  
(1)  
CS  
0x40AC00  
Note 1: If CS is write-protected, the last page  
(GS + CS) of program memory will be  
protected from an erase condition.  
2: The last half (256 IW) of the last page of  
BS is unusable program memory.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 363  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 364  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Most bit-oriented instructions (including simple rotate/  
shift instructions) have two operands:  
28.0 INSTRUCTION SET SUMMARY  
Note: This data sheet summarizes the  
features of the dsPIC33EPXXXGS70X/  
80X family of devices. It is not intended to  
be a comprehensive reference source. To  
complement the information in this data  
sheet, refer to the related section of the  
dsPIC33/PIC24 Family Reference Manual”,  
which is available from the Microchip  
web site (www.microchip.com).  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register (specified  
by a literal value or indirectly by the contents of  
register ‘Wb’)  
The literal instructions that involve data movement can  
use some of the following operands:  
• A literal value to be loaded into a W register or file  
register (specified by ‘k’)  
The dsPIC33EP instruction set is almost identical to  
that of the dsPIC30F and dsPIC33F.  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
Most instructions are a single program memory word  
(24 bits). Only three instructions require two program  
memory locations.  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
Each single-word instruction is a 24-bit word, divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction.  
• The first source operand, which is a register ‘Wb’  
without any address modifier  
• The second source operand, which is a literal  
value  
The instruction set is highly orthogonal and is grouped  
into five basic categories:  
• The destination of the result (only if not the same  
as the first source operand), which is typically a  
register ‘Wd’ with or without an address modifier  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
The MACclass of DSP instructions can use some of the  
following operands:  
• DSP operations  
• The accumulator (A or B) to be used (required  
operand)  
• Control operations  
Table 28-1 lists the general symbols used in describing  
the instructions.  
• The W registers to be used as the two operands  
• The X and Y address space prefetch operations  
• The X and Y address space prefetch destinations  
• The accumulator write back destination  
The dsPIC33E instruction set summary in Table 28-2  
lists all the instructions, along with the status flags  
affected by each instruction.  
The other DSP instructions do not involve any  
multiplication and can include:  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
• The accumulator to be used (required)  
• The source or destination operand (designated as  
Wso or Wdo, respectively) with or without an  
address modifier  
• The first source operand, which is typically a  
register ‘Wb’ without any address modifier  
• The second source operand, which is typically a  
register ‘Ws’ with or without an address modifier  
• The amount of shift specified by a W register ‘Wn’  
or a literal value  
• The destination of the result, which is typically a  
register ‘Wd’ with or without an address modifier  
The control instructions can use some of the following  
operands:  
However, word or byte-oriented file register instructions  
have two operands:  
• A program memory address  
• The mode of the Table Read and Table Write  
instructions  
• The file register specified by the value ‘f’  
• The destination, which could be either the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 365  
dsPIC33EPXXXGS70X/80X FAMILY  
Most instructions are a single word. Certain double-word  
instructions are designed to provide all the required  
information in these 48 bits. In the second word, the  
eight MSbs are ‘0’s. If this second word is executed as  
an instruction (by itself), it executes as a NOP.  
these cases, the execution takes multiple instruction  
cycles, with the additional instruction cycle(s) executed  
as a NOP. Certain instructions that involve skipping over  
the subsequent instruction require either two or three  
cycles if the skip is performed, depending on whether  
the instruction being skipped is a single-word or two-  
word instruction. Moreover, double-word moves require  
two cycles.  
The double-word instructions execute in two instruction  
cycles.  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
Program Counter is changed as a result of the  
instruction, or a PSV or Table Read is performed. In  
Note:  
For more details on the instruction set, refer  
to the “16-Bit MCU and DSC Programmer’s  
Reference Manual” (DS70000157).  
TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
a {b, c, d}  
<n:m>  
.b  
a is selected from the set of values b, c, d  
Register bit field  
Byte mode selection  
.d  
Double-Word mode selection  
Shadow register select  
.S  
.w  
Word mode selection (default)  
One of two accumulators {A, B}  
Acc  
AWB  
bit4  
Accumulator Write-Back Destination Address register {W13, [W13]+ = 2}  
4-bit bit selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0x0000...0x1FFF}  
C, DC, N, OV, Z  
Expr  
f
lit1  
1-bit unsigned literal {0,1}  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
lit14  
lit16  
16-bit unsigned literal {0...65535}  
lit23  
23-bit unsigned literal {0...8388608}; LSb must be ‘0’  
Field does not require an entry, can be blank  
DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate  
Program Counter  
None  
OA, OB, SA, SB  
PC  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0...W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register   
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Dividend, Divisor Working register pair (Direct Addressing)  
DS70005258C-page 366  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)  
Field  
Description  
Wm*Wm  
Wm*Wn  
Multiplicand and Multiplier Working register pair for Square instructions   
{W4 * W4,W5 * W5,W6 * W6,W7 * W7}  
Multiplicand and Multiplier Working register pair for DSP instructions   
{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}  
Wn  
One of 16 Working registers {W0...W15}  
Wnd  
Wns  
WREG  
Ws  
One of 16 Destination Working registers {W0...W15}  
One of 16 Source Working registers {W0...W15}  
W0 (Working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Wso  
Source W register   
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
Wx  
X Data Space Prefetch Address register for DSP instructions  
{[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2,  
[W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2,  
[W9 + W12], none}  
Wxd  
Wy  
X Data Space Prefetch Destination register for DSP instructions {W4...W7}  
Y Data Space Prefetch Address register for DSP instructions  
{[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2,  
[W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2,  
[W11 + W12], none}  
Wyd  
Y Data Space Prefetch Destination register for DSP instructions {W4...W7}  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 367  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 28-2: INSTRUCTION SET OVERVIEW  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles(1)  
1
ADD  
ADD  
Acc  
Add Accumulators  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
ADD  
f
f = f + WREG  
ADD  
f,WREG  
WREG = f + WREG  
ADD  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
f
Wd = lit10 + Wd  
ADD  
Wd = Wb + Ws  
ADD  
Wd = Wb + lit5  
ADD  
16-bit Signed Add to Accumulator  
f = f + WREG + (C)  
2
3
4
5
ADDC  
AND  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
Wd = Wb + lit5 + (C)  
f = f .AND. WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
AND  
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
Wd = Wb .AND. Ws  
N,Z  
AND  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
N,Z  
AND  
N,Z  
AND  
Wd = Wb .AND. lit5  
N,Z  
ASR  
ASR  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
ASR  
f,WREG  
ASR  
Ws,Wd  
ASR  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
ASR  
N,Z  
BCLR  
BCLR  
BCLR  
BOOTSWP  
None  
Bit Clear Ws  
None  
6
7
BOOTSWP  
BRA  
Swap the Active and Inactive Program  
Flash Space  
None  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
C,Expr  
Branch if Carry  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 (4)  
1 (4)  
1 (4)  
1 (4)  
1 (4)  
1 (4)  
1 (4)  
1 (4)  
1 (4)  
1 (4)  
1 (4)  
1 (4)  
1 (4)  
1 (4)  
1 (4)  
1 (4)  
1 (4)  
1 (4)  
1 (4)  
4
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if Greater Than or Equal  
Branch if Unsigned Greater Than or Equal  
Branch if Greater Than  
Branch if Unsigned Greater Than  
Branch if Less Than or Equal  
Branch if Unsigned Less Than or Equal  
Branch if Less Than  
Branch if Unsigned Less Than  
Branch if Negative  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OA,Expr  
OB,Expr  
OV,Expr  
SA,Expr  
SB,Expr  
Expr  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Accumulator A Overflow  
Branch if Accumulator B Overflow  
Branch if Overflow  
Branch if Accumulator A Saturated  
Branch if Accumulator B Saturated  
Branch Unconditionally  
Branch if Zero  
Z,Expr  
1 (4)  
4
Wn  
Computed Branch  
8
BSET  
f,#bit4  
Ws,#bit4  
Bit Set f  
1
Bit Set Ws  
1
Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.  
DS70005258C-page 368  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles(1)  
9
BSW  
BSW.C  
BSW.Z  
BTG  
Ws,Wb  
Write C bit to Ws<Wb>  
1
1
1
1
1
1
1
1
1
None  
None  
None  
None  
None  
Ws,Wb  
Write Z bit to Ws<Wb>  
Bit Toggle f  
10  
11  
BTG  
f,#bit4  
Ws,#bit4  
f,#bit4  
BTG  
Bit Toggle Ws  
BTSC  
BTSC  
Bit Test f, Skip if Clear  
1
(2 or 3)  
BTSC  
BTSS  
BTSS  
Ws,#bit4  
f,#bit4  
Ws,#bit4  
Bit Test Ws, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1
1
None  
None  
None  
(2 or 3)  
12  
13  
BTSS  
BTST  
1
(2 or 3)  
Bit Test Ws, Skip if Set  
1
(2 or 3)  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
4
4
1
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
C
Bit Test Ws to Z  
Z
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
C
Ws,Wb  
Z
14  
15  
16  
BTSTS  
CALL  
CLR  
f,#bit4  
Z
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call Subroutine  
C
Z
CALL  
CALL  
CALL.L  
CLR  
lit23  
SFA  
Wn  
Call Indirect Subroutine  
Call Indirect Subroutine (long address)  
f = 0x0000  
SFA  
Wn  
SFA  
f
None  
CLR  
WREG  
WREG = 0x0000  
None  
CLR  
Ws  
Ws = 0x0000  
None  
CLR  
Acc,Wx,Wxd,Wy,Wyd,AWB  
Clear Accumulator  
Clear Watchdog Timer  
OA,OB,SA,SB  
WDTO,Sleep  
17  
18  
CLRWDT  
COM  
CLRWDT  
COM  
COM  
f
f = f  
1
1
1
1
N,Z  
N,Z  
f,WREG  
WREG = f  
COM  
CP  
Ws,Wd  
Wd = Ws  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
19  
CP  
f
Compare f with WREG  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
CP  
Wb,#lit8  
Compare Wb with lit8  
CP  
Wb,Ws  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
20  
21  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
f
Ws  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit8, with Borrow  
f
Wb,#lit8  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
22  
23  
24  
25  
CPSEQ  
CPSEQ  
Wb,Wn  
Compare Wb with Wn, Skip if =  
1
1
None  
(2 or 3)  
CPBEQ  
CPSGT  
CPBEQ  
CPSGT  
Wb,Wn,Expr  
Wb,Wn  
Compare Wb with Wn, Branch if =  
Compare Wb with Wn, Skip if >  
1
1
1 (5)  
None  
None  
1
(2 or 3)  
CPBGT  
CPSLT  
CPBGT  
CPSLT  
Wb,Wn,Expr  
Wb,Wn  
Compare Wb with Wn, Branch if >  
Compare Wb with Wn, Skip if <  
1
1
1 (5)  
None  
None  
1
(2 or 3)  
CPBLT  
CPSNE  
CPBLT  
CPSNE  
Wb,Wn,Expr  
Wb,Wn  
Compare Wb with Wn, Branch if <  
1
1
1 (5)  
None  
None  
Compare Wb with Wn, Skip if   
1
(2 or 3)  
CPBNE  
CPBNE  
Wb,Wn,Expr  
Compare Wb with Wn, Branch if   
1
1 (5)  
None  
Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 369  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles(1)  
26  
CTXTSWP  
CTXTSWP #1it3  
CTXTSWP Wn  
Switch CPU Register Context to Context  
Defined by lit3  
1
1
2
2
None  
None  
Switch CPU Register Context to Context  
Defined by Wn  
27  
28  
DAW  
DEC  
DAW  
Wn  
Wn = Decimal Adjust Wn  
f = f – 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
C
DEC  
f
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
DEC  
f,WREG  
Ws,Wd  
WREG = f – 1  
1
DEC  
Wd = Ws – 1  
1
29  
DEC2  
DEC2  
DEC2  
DEC2  
DISI  
DIV.S  
DIV.SD  
DIV.U  
DIV.UD  
DIVF  
DO  
f
f = f – 2  
1
f,WREG  
Ws,Wd  
WREG = f – 2  
1
Wd = Ws – 2  
1
30  
31  
DISI  
DIV  
#lit14  
Wm,Wn  
Disable Interrupts for k Instruction Cycles  
Signed 16/16-bit Integer Divide  
Signed 32/16-bit Integer Divide  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Signed 16/16-bit Fractional Divide  
Do Code to PC + Expr, lit15 + 1 Times  
Do Code to PC + Expr, (Wn) + 1 Times  
Euclidean Distance (no accumulate)  
1
18  
18  
18  
18  
18  
2
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
None  
Wm,Wn  
Wm,Wn  
Wm,Wn  
32  
33  
DIVF  
DO  
Wm,Wn  
#lit15,Expr  
Wn,Expr  
Wm*Wm,Acc,Wx,Wy,Wxd  
DO  
2
None  
34  
35  
ED  
ED  
1
OA,OB,OAB,  
SA,SB,SAB  
EDAC  
EDAC  
Wm*Wm,Acc,Wx,Wy,Wxd  
Euclidean Distance  
1
1
OA,OB,OAB,  
SA,SB,SAB  
36  
37  
38  
39  
40  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
GOTO  
GOTO.L  
INC  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
Ws,Wnd  
Expr  
Swap Wns with Wnd  
Find Bit Change from Left (MSb) Side  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
Go to Address  
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
None  
C
C
C
None  
Wn  
Go to Indirect  
None  
Wn  
Go to Indirect (long address)  
f = f + 1  
None  
41  
42  
43  
INC  
f
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
INC  
f,WREG  
Ws,Wd  
WREG = f + 1  
INC  
Wd = Ws + 1  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f = f + 2  
f,WREG  
Ws,Wd  
WREG = f + 2  
Wd = Ws + 2  
f
f = f .IOR. WREG  
IOR  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
WREG = f .IOR. WREG  
Wd = lit10 .IOR. Wd  
Wd = Wb .IOR. Ws  
Wd = Wb .IOR. lit5  
Load Accumulator  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
44  
LAC  
LAC  
OA,OB,OAB,  
SA,SB,SAB  
45  
46  
LNK  
LSR  
LNK  
LSR  
LSR  
LSR  
LSR  
LSR  
MAC  
#lit14  
Link Frame Pointer  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
SFA  
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f
f = Logical Right Shift f  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Multiply and Accumulate  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
N,Z  
47  
MAC  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB  
OA,OB,OAB,  
SA,SB,SAB  
MAC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd  
Square and Accumulate  
1
1
OA,OB,OAB,  
SA,SB,SAB  
Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.  
DS70005258C-page 370  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles(1)  
48  
MOV  
MOV  
f,Wn  
Move f to Wn  
Move f to f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
MOV  
f
MOV  
f,WREG  
Move f to WREG  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-bit Literal to Wn  
Move 8-bit Literal to Wn  
MOV.b  
MOV  
Move Wn to f  
MOV  
Wso,Wdo  
WREG,f  
Move Ws to Wd  
MOV  
Move WREG to f  
MOV.D  
MOV.D  
MOVPAG  
MOVPAG  
Wns,Wd  
Move Double from W(ns):W(ns + 1) to Wd  
Move Double from Ws to W(nd + 1):W(nd)  
Move 10-bit Literal to DSRPAG  
Move 8-bit Literal to TBLPAG  
Move Ws<9:0> to DSRPAG  
Move Ws<7:0> to TBLPAG  
Prefetch and Store Accumulator  
Multiply Wm by Wn to Accumulator  
Ws,Wnd  
49  
MOVPAG  
#lit10,DSRPAG  
#lit8,TBLPAG  
MOVPAGW Ws, DSRPAG  
MOVPAGW Ws, TBLPAG  
50  
51  
MOVSAC  
MPY  
MOVSAC  
MPY  
Acc,Wx,Wxd,Wy,Wyd,AWB  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
OA,OB,OAB,  
SA,SB,SAB  
MPY  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd  
Square Wm to Accumulator  
1
1
OA,OB,OAB,  
SA,SB,SAB  
52  
53  
MPY.N  
MSC  
MPY.N  
MSC  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
-(Multiply Wm by Wn) to Accumulator  
Multiply and Subtract from Accumulator  
1
1
1
1
None  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd,AWB  
OA,OB,OAB,  
SA,SB,SAB  
54  
MUL  
MUL.SS  
Wb,Ws,Wnd  
{Wnd + 1, Wnd} = Signed(Wb) *  
Signed(Ws)  
1
1
None  
MUL.SS  
MUL.SU  
Wb,Ws,Acc  
Wb,Ws,Wnd  
Accumulator = Signed(Wb) * Signed(Ws)  
1
1
1
1
None  
None  
{Wnd + 1, Wnd} = Signed(Wb) *  
Unsigned(Ws)  
MUL.SU  
Wb,Ws,Acc  
Accumulator = Signed(Wb) *  
Unsigned(Ws)  
1
1
None  
MUL.SU  
MUL.US  
Wb,#lit5,Acc  
Wb,Ws,Wnd  
Accumulator = Signed(Wb) * Unsigned(lit5)  
1
1
1
1
None  
None  
{Wnd + 1, Wnd} = Unsigned(Wb) *  
Signed(Ws)  
MUL.US  
MUL.UU  
MUL.UU  
MUL.UU  
Wb,Ws,Acc  
Wb,Ws,Wnd  
Wb,#lit5,Acc  
Wb,Ws,Acc  
Accumulator = Unsigned(Wb) *  
Signed(Ws)  
1
1
1
1
1
1
1
1
None  
None  
None  
None  
{Wnd + 1, Wnd} = Unsigned(Wb) *  
Unsigned(Ws)  
Accumulator = Unsigned(Wb) *  
Unsigned(lit5)  
Accumulator = Unsigned(Wb) *  
Unsigned(Ws)  
MULW.SS Wb,Ws,Wnd  
MULW.SU Wb,Ws,Wnd  
MULW.US Wb,Ws,Wnd  
MULW.UU Wb,Ws,Wnd  
Wnd = Signed(Wb) * Signed(Ws)  
Wnd = Signed(Wb) * Unsigned(Ws)  
Wnd = Unsigned(Wb) * Signed(Ws)  
Wnd = Unsigned(Wb) * Unsigned(Ws)  
1
1
1
1
1
1
1
1
1
1
None  
None  
None  
None  
None  
MUL.SU  
Wb,#lit5,Wnd  
{Wnd + 1, Wnd} = Signed(Wb) *  
Unsigned(lit5)  
MUL.SU  
MUL.UU  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
Wnd = Signed(Wb) * Unsigned(lit5)  
1
1
1
1
None  
None  
{Wnd + 1, Wnd} = Unsigned(Wb) *  
Unsigned(lit5)  
MUL.UU  
MUL  
Wb,#lit5,Wnd  
f
Wnd = Unsigned(Wb) * Unsigned(lit5)  
W3:W2 = f * WREG  
1
1
1
1
None  
None  
Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 371  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles(1)  
55  
NEG  
NEG  
Acc  
Negate Accumulator  
1
1
OA,OB,OAB,  
SA,SB,SAB  
NEG  
NEG  
f
f = f + 1  
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
None  
56  
57  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
Pop from Top-of-Stack (TOS) to  
W(nd):W(nd + 1)  
None  
POP.S  
PUSH  
Pop Shadow Registers  
1
1
1
1
1
1
1
2
All  
58  
PUSH  
f
Push f to Top-of-Stack (TOS)  
Push Wso to Top-of-Stack (TOS)  
None  
None  
None  
PUSH  
Wso  
Wns  
PUSH.D  
Push W(ns):W(ns + 1) to Top-of-Stack  
(TOS)  
PUSH.S  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
Push Shadow Registers  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
None  
WDTO,Sleep  
SFA  
59  
60  
PWRSAV  
RCALL  
#lit1  
Expr  
Wn  
Go into Sleep or Idle mode  
Relative Call  
4
Computed Call  
4
SFA  
61  
REPEAT  
#lit15  
Wn  
Repeat Next Instruction lit15 + 1 Times  
Repeat Next Instruction (Wn) + 1 Times  
Software Device Reset  
1
None  
None  
None  
SFA  
1
62  
63  
64  
65  
66  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
Return from Interrupt  
6 (5)  
6 (5)  
6 (5)  
1
#lit10,Wn  
Return with Literal in Wn  
SFA  
Return from Subroutine  
SFA  
f
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Store Accumulator  
C,N,Z  
C,N,Z  
C,N,Z  
N,Z  
RLC  
f,WREG  
1
RLC  
Ws,Wd  
1
67  
68  
69  
70  
RLNC  
RRC  
RLNC  
RLNC  
RLNC  
RRC  
f
1
f,WREG  
1
N,Z  
Ws,Wd  
1
N,Z  
f
1
C,N,Z  
C,N,Z  
C,N,Z  
N,Z  
RRC  
f,WREG  
1
RRC  
Ws,Wd  
1
RRNC  
SAC  
RRNC  
RRNC  
RRNC  
SAC  
f
1
f,WREG  
1
N,Z  
Ws,Wd  
1
N,Z  
Acc,#Slit4,Wdo  
1
None  
None  
C,N,Z  
None  
None  
None  
SAC.R  
SE  
Acc,#Slit4,Wdo  
Store Rounded Accumulator  
Wnd = Sign-Extended Ws  
f = 0xFFFF  
1
71  
72  
SE  
Ws,Wnd  
f
1
SETM  
SETM  
SETM  
SETM  
SFTAC  
1
WREG  
Ws  
WREG = 0xFFFF  
1
Ws = 0xFFFF  
1
73  
SFTAC  
Acc,Wn  
Arithmetic Shift Accumulator by (Wn)  
1
OA,OB,OAB,  
SA,SB,SAB  
SFTAC  
Acc,#Slit6  
Arithmetic Shift Accumulator by Slit6  
1
1
OA,OB,OAB,  
SA,SB,SAB  
Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.  
DS70005258C-page 372  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles(1)  
74  
SL  
SL  
SL  
SL  
SL  
SL  
SUB  
f
f = Left Shift f  
1
1
1
1
1
1
1
1
1
1
1
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
WREG = Left Shift f  
Ws,Wd  
Wd = Left Shift Ws  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
Acc  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
Subtract Accumulators  
N,Z  
75  
SUB  
OA,OB,OAB,  
SA,SB,SAB  
SUB  
f
f = f – WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
SUB  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f – WREG  
Wn = Wn – lit10  
SUB  
SUB  
Wd = Wb – Ws  
SUB  
Wd = Wb – lit5  
76  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
SUBBR  
SUBBR  
SUBBR  
f = f – WREG – (C)  
WREG = f – WREG – (C)  
Wn = Wn – lit10 – (C)  
Wd = Wb – Ws – (C)  
Wd = Wb – lit5 – (C)  
f = WREG – f  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
77  
78  
SUBR  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = WREG – f  
Wd = Ws – Wb  
Wd = lit5 – Wb  
SUBBR  
f = WREG – f – (C)  
WREG = WREG – f – (C)  
Wd = Ws – Wb – (C)  
f,WREG  
Wb,Ws,Wd  
SUBBR  
SWAP.b  
SWAP  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
Wb,#lit5,Wd  
Wn  
Wd = lit5 – Wb – (C)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
5
5
2
2
1
1
1
1
1
1
1
C,DC,N,OV,Z  
None  
None  
None  
None  
None  
None  
SFA  
79  
SWAP  
Wn = Nibble Swap Wn  
Wn = Byte Swap Wn  
Wn  
80  
81  
82  
83  
84  
85  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Read Prog<23:16> to Wd<7:0>  
Read Prog<15:0> to Wd  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
XOR  
f
N,Z  
XOR  
f,WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
N,Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N,Z  
XOR  
Wd = Wb .XOR. Ws  
N,Z  
XOR  
Wd = Wb .XOR. lit5  
N,Z  
86  
ZE  
ZE  
Wnd = Zero-Extend Ws  
C,Z,N  
Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 373  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 374  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
29.1 MPLAB X Integrated Development  
Environment Software  
29.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers (MCU) and dsPIC® digital  
signal controllers (DSC) are supported with a full range  
of software and hardware development tools:  
The MPLAB X IDE is a single, unified graphical user  
interface for Microchip and third-party software, and  
hardware development tool that runs on Windows®,  
Linux and Mac OS® X. Based on the NetBeans IDE,  
MPLAB X IDE is an entirely new IDE with a host of free  
software components and plug-ins for high-  
performance application development and debugging.  
Moving between tools and upgrading from software  
simulators to hardware debugging and programming  
tools is simple with the seamless user interface.  
• Integrated Development Environment  
- MPLAB® X IDE Software  
• Compilers/Assemblers/Linkers  
- MPLAB XC Compiler  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
With complete project management, visual call graphs,  
a configurable watch window and a feature-rich editor  
that includes code completion and context menus,  
MPLAB X IDE is flexible and friendly enough for new  
users. With the ability to support multiple tools on  
multiple projects with simultaneous debugging, MPLAB  
X IDE is also suitable for the needs of experienced  
users.  
• Simulators  
- MPLAB X SIM Software Simulator  
• Emulators  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers/Programmers  
- MPLAB ICD 3  
Feature-Rich Editor:  
- PICkit™ 3  
• Color syntax highlighting  
• Device Programmers  
- MPLAB PM3 Device Programmer  
• Smart code completion makes suggestions and  
provides hints as you type  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits and Starter Kits  
• Automatic code formatting based on user-defined  
rules  
• Third-party development tools  
• Live parsing  
User-Friendly, Customizable Interface:  
• Fully customizable interface: toolbars, toolbar  
buttons, windows, window placement, etc.  
• Call graph window  
Project-Based Workspaces:  
• Multiple projects  
• Multiple tools  
• Multiple configurations  
• Simultaneous debugging sessions  
File History and Bug Tracking:  
• Local file history feature  
• Built-in support for Bugzilla issue tracker  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 375  
dsPIC33EPXXXGS70X/80X FAMILY  
29.2 MPLAB XC Compilers  
29.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB XC Compilers are complete ANSI C  
compilers for all of Microchip’s 8, 16 and 32-bit MCU  
and DSC devices. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use. MPLAB XC Compilers run on Windows,  
Linux or MAC OS X.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler. It can link  
relocatable objects from precompiled libraries, using  
directives from a linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
debug information that is optimized to the MPLAB X  
IDE.  
The free MPLAB XC Compiler editions support all  
devices and commands, with no time or memory  
restrictions, and offer sufficient code optimization for  
most applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
MPLAB XC Compilers include an assembler, linker and  
utilities. The assembler generates relocatable object  
files that can then be archived or linked with other relo-  
catable object files and archives to create an execut-  
able file. MPLAB XC Compiler uses the assembler to  
produce its object file. Notable features of the assem-  
bler include:  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
29.5 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command-line interface  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC DSC devices. MPLAB XC Compiler  
uses the assembler to produce its object file. The  
assembler generates relocatable object files that can  
then be archived or linked with other relocatable object  
files and archives to create an executable file. Notable  
features of the assembler include:  
• Rich directive set  
• Flexible macro language  
• MPLAB X IDE compatibility  
29.3 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command-line interface  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code, and COFF files for  
debugging.  
• Rich directive set  
• Flexible macro language  
• MPLAB X IDE compatibility  
The MPASM Assembler features include:  
• Integration into MPLAB X IDE projects  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multipurpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS70005258C-page 376  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
29.6 MPLAB X SIM Software Simulator  
29.8 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB X SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB ICD 3 In-Circuit Debugger System is  
Microchip’s most cost-effective, high-speed hardware  
debugger/programmer for Microchip Flash DSC and  
MCU devices. It debugs and programs PIC Flash  
microcontrollers and dsPIC DSCs with the powerful,  
yet easy-to-use graphical user interface of the  
MPLAB IDE.  
The MPLAB ICD 3 In-Circuit Debugger probe is  
connected to the design engineer’s PC using a high-  
speed USB 2.0 interface and is connected to the target  
with a connector compatible with the MPLAB ICD 2 or  
MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3  
supports all MPLAB ICD 2 headers.  
The MPLAB X SIM Software Simulator fully supports  
symbolic debugging using the MPLAB XC Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
29.9 PICkit 3 In-Circuit Debugger/  
Programmer  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC and dsPIC Flash microcontrollers at a most  
affordable price point using the powerful graphical user  
interface of the MPLAB IDE. The MPLAB PICkit 3 is  
connected to the design engineer’s PC using a full-  
speed USB interface and can be connected to the  
target via a Microchip debug (RJ-11) connector (com-  
patible with MPLAB ICD 3 and MPLAB REAL ICE). The  
connector uses two device I/O pins and the Reset line  
to implement in-circuit debugging and In-Circuit Serial  
Programming™ (ICSP™).  
29.7 MPLAB REAL ICE In-Circuit  
Emulator System  
The MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs all 8, 16 and 32-bit MCU, and DSC devices  
with the easy-to-use, powerful graphical user interface of  
the MPLAB X IDE.  
The emulator is connected to the design engineer’s  
PC using a high-speed USB 2.0 interface and is  
connected to the target with either a connector  
compatible with in-circuit debugger systems (RJ-11)  
or with the new high-speed, noise tolerant, Low-  
Voltage Differential Signal (LVDS) interconnection  
(CAT5).  
29.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages, and a mod-  
ular, detachable socket assembly to support various  
package types. The ICSP cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices, and incorporates an MMC card for file  
storage and data applications.  
The emulator is field upgradable through future firmware  
downloads in MPLAB X IDE. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including full-speed emulation, run-time variable  
watches, trace analysis, complex breakpoints, logic  
probes, a ruggedized probe interface and long (up to  
three meters) interconnection cables.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 377  
dsPIC33EPXXXGS70X/80X FAMILY  
29.11 Demonstration/Development  
Boards, Evaluation Kits and  
Starter Kits  
29.12 Third-Party Development Tools  
Microchip also offers a great collection of tools from  
third-party vendors. These tools are carefully selected  
to offer good value and unique functionality.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully  
functional systems. Most boards include prototyping  
areas for adding custom circuitry and provide applica-  
tion firmware and source code for examination and  
modification.  
• Device Programmers and Gang Programmers  
from companies, such as SoftLog and CCS  
• Software Tools from companies, such as Gimpel  
and Trace Systems  
• Protocol Analyzers from companies, such as  
Saleae and Total Phase  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
• Demonstration Boards from companies, such as  
MikroElektronika, Digilent® and Olimex  
• Embedded Ethernet Solutions from companies,  
such as EZ Web Lynx, WIZnet and IPLogika®  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™  
demonstration/development board series of circuits,  
Microchip has a line of evaluation kits and demonstra-  
®
tion software for analog filter design, KEELOQ security  
ICs, CAN, IrDA®, PowerSmart battery management,  
SEEVAL® evaluation system, Sigma-Delta ADC, flow  
rate sensing, plus many more.  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS70005258C-page 378  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
30.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of the dsPIC33EPXXXGS70X/80X family electrical characteristics. Additional  
information will be provided in future revisions of this document as it becomes available.  
Absolute maximum ratings for the dsPIC33EPXXXGS70X/80X family are listed below. Exposure to these maximum  
rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any  
other conditions above the parameters indicated in the operation listings of this specification, is not implied.  
(1)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS .......................................................................................................... -0.3V to +4.0V  
Voltage on any pin that is not 5V tolerant with respect to VSS(3)..................................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS when VDD 3.0V(3)................................................... -0.3V to +5.5V  
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V(3)................................................... -0.3V to +3.6V  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin(2)...........................................................................................................................300 mA  
Maximum current sunk/sourced by any 4x I/O pin..................................................................................................15 mA  
Maximum current sunk/sourced by any 8x I/O pin..................................................................................................25 mA  
Maximum current sunk by all ports(2)....................................................................................................................200 mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those, or any other conditions  
above those indicated in the operation listings of this specification, is not implied. Exposure to maximum  
rating conditions for extended periods may affect device reliability.  
2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).  
3: See the Pin Diagramssection for the 5V tolerant pins.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 379  
dsPIC33EPXXXGS70X/80X FAMILY  
30.1 DC Characteristics  
TABLE 30-1: OPERATING MIPS vs. VOLTAGE  
Maximum MIPS  
VDD Range  
(in Volts)  
Temperature Range  
(in °C)  
Characteristic  
dsPIC33EPXXXGS70X/80X Family  
3.0V to 3.6V(1)  
3.0V to 3.6V(1)  
-40°C to +85°C  
-40°C to +125°C  
70  
60  
Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, PGAs and comparators)  
may have degraded performance. Device functionality is tested but not characterized. Refer to  
Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.  
TABLE 30-2: THERMAL OPERATING CONDITIONS  
Rating  
Industrial Temperature Devices  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
Extended Temperature Devices  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+140  
+125  
°C  
°C  
Power Dissipation:  
Internal Chip Power Dissipation:  
PINT = VDD x (IDD IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
I/O = ({VDD VOH} x IOH) + (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/JA  
TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ.  
Max.  
Unit  
Notes  
Package Thermal Resistance, 80-Pin TQFP 12x12x1 mm  
Package Thermal Resistance, 64-Pin TQFP 10x10x1 mm  
Package Thermal Resistance, 48-Pin TQFP 7x7x1 mm  
Package Thermal Resistance, 44-Pin QFN 8x8 mm  
Package Thermal Resistance, 44-Pin TQFP 10x10x1 mm  
Package Thermal Resistance, 28-Pin QFN-S 6x6x0.9 mm  
Package Thermal Resistance, 28-Pin UQFN 6x6x0.55 mm  
Package Thermal Resistance, 28-Pin SOIC 7.50 mm  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
JA  
53.0  
49.0  
63.0  
29.0  
50.0  
30.0  
26.0  
70.0  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
1
1
1
1
Note 1: Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations.  
DS70005258C-page 380  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)(1)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Conditions  
Operating Voltage  
DC10  
DC12  
VDD  
VDR  
Supply Voltage  
RAM Retention Voltage(2)  
3.0  
3.6  
1.95  
2.0  
V
V
V
V
+25°C, +85°C, +125°C  
-40°C  
DC16  
DC17  
VPOR  
SVDD  
VDD Start Voltage  
to Ensure Internal  
Power-on Reset Signal  
VSS  
VDD Rise Rate  
1.0  
V/ms 0V-3V in 3 ms  
to Ensure Internal  
Power-on Reset Signal  
Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, PGAs and comparators) may  
have degraded performance. Device functionality is tested but not characterized. Refer to  
Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.  
2: This is the limit to which VDD may be lowered and the RAM contents will always be retained.  
TABLE 30-5: FILTER CAPACITOR (CEFC) SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated):  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristics  
Min.  
Typ.  
Max.  
Units  
Comments  
CEFC  
External Filter Capacitor  
Value(1)  
4.7  
10  
F  
Capacitor must have a low  
series resistance (<1 Ohm)  
Note 1: Typical VCAP Voltage = 1.8 volts when VDD VDDMIN.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 381  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typ.  
Max.  
Units  
Conditions  
No.  
Operating Current (IDD)(1)  
DC20d  
DC20a  
DC20b  
DC20c  
DC22d  
DC22a  
DC22b  
DC22c  
DC24d  
DC24a  
DC24b  
DC24c  
DC25d  
DC25a  
DC25b  
DC25c  
DC26d  
DC26a  
DC26b  
DC27d  
DC27a  
DC27b  
8
13  
13  
13  
13  
20  
20  
20  
20  
30  
30  
30  
30  
42  
42  
42  
42  
46  
46  
46  
75  
75  
75  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
8
3.3V  
3.3V  
3.3V  
3.3V  
10 MIPS  
20 MIPS  
40 MIPS  
8
8
12  
12  
12  
12  
19  
19  
19  
19  
27  
27  
27  
27  
30  
30  
30  
57  
57  
57  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
60 MIPS  
70 MIPS  
+25°C  
+85°C  
-40°C  
3.3V  
3.3V  
70 MIPS  
(Note 2)  
+25°C  
+85°C  
Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption. The test conditions for all IDD measurements are as follows:  
• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from  
rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
• CLKO is configured as an I/O input pin in the Configuration Word  
• All I/O pins are configured as inputs and pulled to VSS  
• MCLR = VDD, WDT and FSCM are disabled  
• CPU, SRAM, program memory and data memory are operational  
• No peripheral modules are operating or being clocked (all defined PMDx bits are set)  
• CPU is executing while(1)statement  
• JTAG is disabled  
2: For this specification, the following test conditions apply:  
• APLL clock is enabled  
• All 8 PWMs enabled and operating at maximum speed (PTCON2<2:0> = 000), PTPER = 1000h,  
50% duty cycle  
• All other peripherals are disabled (corresponding PMDx bits are set)  
DS70005258C-page 382  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Parameter  
Typ.  
Max.  
Units  
Conditions  
No.  
Idle Current (IIDLE)(1)  
DC40d  
DC40a  
DC40b  
DC40c  
DC42d  
DC42a  
DC42b  
DC42c  
DC44d  
DC44a  
DC44b  
DC44c  
DC45d  
DC45a  
DC45b  
DC45c  
DC46d  
DC46a  
DC46b  
2
2
4
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
3.3V  
10 MIPS  
20 MIPS  
40 MIPS  
2
4
2
4
3
6
3
6
+25°C  
+85°C  
+125°C  
-40°C  
4
7
4
7
6
12  
12  
12  
12  
17  
17  
17  
17  
20  
20  
20  
6
+25°C  
+85°C  
+125°C  
-40°C  
6
6
9
9
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
60 MIPS  
70 MIPS  
9
9
10  
10  
10  
+25°C  
+85°C  
Note 1: Base Idle current (IIDLE) is measured as follows:  
CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with  
external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
CLKO is configured as an I/O input pin in the Configuration Word  
All I/O pins are configured as inputs and pulled to VSS  
MCLR = VDD, WDT and FSCM are disabled  
No peripheral modules are operating or being clocked (all defined PMDx bits are set)  
The NVMSIDL bit (NVMCON<12>) = 1(i.e., Flash regulator is set to standby while the device is in Idle  
mode)  
The VREGSF bit (RCON<11>) = 0(i.e., Flash regulator is set to standby while the device is in Sleep mode)  
JTAG is disabled  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 383  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typ.  
Max.  
Units  
Conditions  
No.  
Power-Down Current (IPD)(1)  
DC60d  
DC60a  
DC60b  
DC60c  
15  
20  
110  
150  
A  
A  
A  
A  
-40°C  
+25°C  
+85°C  
+125°C  
3.3V  
150  
500  
500  
1200  
Note 1: IPD (Sleep) current is measured as follows:  
CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with  
external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
CLKO is configured as an I/O input pin in the Configuration Word  
All I/O pins are configured as inputs and pulled to VSS  
MCLR = VDD, WDT and FSCM are disabled  
All peripheral modules are disabled (PMDx bits are all set)  
The VREGS bit (RCON<8>) = 0(i.e., core regulator is set to standby while the device is in Sleep mode)  
The VREGSF bit (RCON<11>) = 0(i.e., Flash regulator is set to standby while the device is in Sleep mode)  
JTAG is disabled  
TABLE 30-9: DC CHARACTERISTICS: WATCHDOG TIMER DELTA CURRENT (IWDT)(1)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter No.  
Typ.  
Max.  
Units  
Conditions  
DC61d  
DC61a  
DC61b  
DC61c  
1
1
2
2
10  
10  
17  
20  
A  
A  
A  
A  
-40°C  
+25°C  
+85°C  
+125°C  
3.3V  
Note 1: The IWDT current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current. All parameters are characterized but not tested during manufacturing.  
DS70005258C-page 384  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-10: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Doze  
Ratio  
Parameter No.  
Typ.  
Max.  
Units  
Conditions  
Doze Current (IDOZE)(1)  
DC73a(2)  
DC73g  
20  
10  
20  
10  
20  
10  
20  
10  
40  
22  
40  
22  
40  
22  
40  
22  
1:2  
1:128  
1:2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
3.3V  
FOSC = 140 MHz  
FOSC = 140 MHz  
FOSC = 140 MHz  
FOSC = 120 MHz  
DC70a(2)  
3.3V  
3.3V  
3.3V  
DC70g  
1:128  
1:2  
DC71a(2)  
DC71g  
DC72a(2)  
1:128  
1:2  
DC72g  
1:128  
Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption. The test conditions for all IDOZE measurements are as follows:  
Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square  
wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)  
CLKO is configured as an I/O input pin in the Configuration Word  
All I/O pins are configured as inputs and pulled to VSS  
MCLR = VDD, WDT and FSCM are disabled  
CPU, SRAM, program memory and data memory are operational  
No peripheral modules are operating or being clocked (all defined PMDx bits are set)  
CPU is executing while(1)statement  
JTAG is disabled  
2: These parameter are characterized but not tested in manufacturing.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 385  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Input Low Voltage  
Min.  
Typ.(1) Max.  
Units  
Conditions  
VIL  
DI10  
DI18  
DI19  
Any I/O Pin and MCLR  
I/O Pins with SDAx, SCLx  
I/O Pins with SDAx, SCLx  
Input High Voltage  
VSS  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
0.8  
V
V
V
SMBus disabled  
SMBus enabled  
VIH  
DI20  
I/O Pins Not 5V Tolerant(4)  
0.8 VDD  
0.8 VDD  
VDD  
5.5  
V
V
I/O Pins 5V Tolerant and  
MCLR(4)  
5V Tolerant I/O Pins with  
SDAx, SCLx(4)  
0.8 VDD  
2.1  
5.5  
5.5  
V
V
SMBus disabled  
5V Tolerant I/O Pins with  
SDAx, SCLx(4)  
SMBus enabled  
I/O Pins with SDAx, SCLx Not 0.8 VDD  
5V Tolerant(4)  
VDD  
VDD  
550  
400  
V
SMBus disabled  
I/O Pins with SDAx, SCLx Not  
5V Tolerant(4)  
2.1  
100  
100  
V
SMBus enabled  
DI30  
DI31  
ICNPU  
ICNPD  
Input Change Notification  
Pull-up Current  
230  
230  
A  
A  
VDD = 3.3V, VPIN = VSS  
VDD = 3.3V, VPIN = VDD  
Input Change Notification  
Pull-Down Current(5)  
Note 1: Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current can be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See the Pin Diagramssection for the 5V tolerant I/O pins.  
5: VIL Source < (VSS – 0.3). Characterized but not tested.  
6: VIH Source > (VDD + 0.3) for pins that are not 5V tolerant only.  
7: Digital 5V tolerant pins do not have internal high-side diodes to VDD and cannot tolerate any “positive”  
input injection current.  
8: | Injection Currents | > 0 can affect the ADC results by approximately 4-6 counts.  
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted  
provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit. Characterized but not tested.  
DS70005258C-page 386  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ.(1) Max.  
Units  
Conditions  
IIL  
Input Leakage Current(2,3)  
DI50  
DI51  
I/O Pins 5V Tolerant(4)  
-1  
-1  
+1  
+1  
A  
A  
VSS VPIN VDD,  
pin at high-impedance  
I/O Pins Not 5V Tolerant(4)  
I/O Pins Not 5V Tolerant(4)  
I/O Pins Not 5V Tolerant(4)  
I/O Pins Not 5V Tolerant(4)  
VSS VPIN VDD,  
pin at high-impedance,  
-40°C TA +85°C  
DI51a  
DI51b  
DI51c  
-1  
-1  
-1  
+1  
+1  
+1  
A  
A  
A  
Analog pins shared with  
external reference pins,  
-40°C TA +85°C  
VSS VPIN VDD,  
pin at high-impedance,  
-40°C TA +125°C  
Analog pins shared with  
external reference pins,  
-40°C TA +125°C  
DI55  
DI56  
MCLR  
OSC1  
-5  
-5  
+5  
+5  
A  
A  
VSS VPIN VDD  
VSS VPIN VDD,  
XT and HS modes  
Note 1: Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current can be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See the Pin Diagramssection for the 5V tolerant I/O pins.  
5: VIL Source < (VSS – 0.3). Characterized but not tested.  
6: VIH Source > (VDD + 0.3) for pins that are not 5V tolerant only.  
7: Digital 5V tolerant pins do not have internal high-side diodes to VDD and cannot tolerate any “positive”  
input injection current.  
8: | Injection Currents | > 0 can affect the ADC results by approximately 4-6 counts.  
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted  
provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit. Characterized but not tested.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 387  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ.(1) Max.  
Units  
Conditions  
DI60a IICL  
Input Low Injection Current  
0
-5(5,8)  
mA All pins except VDD, VSS,  
AVDD, AVSS, MCLR, VCAP  
and RB7  
DI60b IICH  
Input High Injection Current  
0
+5(6,7,8)  
mA All pins except VDD, VSS,  
AVDD, AVSS, MCLR, VCAP,  
RB7 and all 5V tolerant  
pins(7)  
DI60c IICT  
Total Input Injection Current  
(sum of all I/O and control  
pins)  
-20(9)  
+20(9)  
mA Absolute instantaneous  
sum of all ± input injection  
currents from all I/O pins  
( | IICL | + | IICH | )  IICT  
Note 1: Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current can be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See the Pin Diagramssection for the 5V tolerant I/O pins.  
5: VIL Source < (VSS – 0.3). Characterized but not tested.  
6: VIH Source > (VDD + 0.3) for pins that are not 5V tolerant only.  
7: Digital 5V tolerant pins do not have internal high-side diodes to VDD and cannot tolerate any “positive”  
input injection current.  
8: | Injection Currents | > 0 can affect the ADC results by approximately 4-6 counts.  
9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted  
provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit. Characterized but not tested.  
DS70005258C-page 388  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param. Symbol  
Characteristic  
Min.  
Typ.  
Max. Units  
Conditions  
DO10 VOL  
Output Low Voltage  
0.4  
0.4  
V
V
VDD = 3.3V,  
IOL 6 mA, -40°C TA +85°C,  
IOL 5 mA, +85°C TA +125°C  
4x Sink Driver Pins(2)  
Output Low Voltage  
VDD = 3.3V,  
IOL 12 mA, -40°C TA +85°C,  
IOL 8 mA, +85°C TA +125°C  
8x Sink Driver Pins(3)  
DO20 VOH  
DO20A VOH1  
Output High Voltage  
2.4  
2.4  
V
V
V
IOH -10 mA, VDD = 3.3V  
4x Source Driver Pins(2)  
Output High Voltage  
IOH -15 mA, VDD = 3.3V  
8x Source Driver Pins(3)  
Output High Voltage  
1.5(1)  
2.0(1)  
3.0(1)  
1.5(1)  
2.0(1)  
3.0(1)  
IOH -14 mA, VDD = 3.3V  
IOH -12 mA, VDD = 3.3V  
IOH -7 mA, VDD = 3.3V  
IOH -22 mA, VDD = 3.3V  
IOH -18 mA, VDD = 3.3V  
IOH -10 mA, VDD = 3.3V  
4x Source Driver Pins(2)  
Output High Voltage  
V
8x Source Driver Pins(3)  
Note 1: Parameters are characterized but not tested.  
2: Includes RA0-RA2, RB0-RB1, RB9, RC1-RC2, RC9-RC10, RC12, RD7, RD8, RE4-RE5, RE8-RE9 and  
RE12-RE13 pins.  
3: Includes all I/O pins that are not 4x driver pins (see Note 2).  
TABLE 30-13: ELECTRICAL CHARACTERISTICS: BOR  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)(1)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.(2)  
Typ.  
Max.  
Units  
Conditions  
BO10  
VBOR  
BOR Event on VDD Transition  
High-to-Low  
2.65  
2.95  
V
VDD (Notes 2 and 3)  
Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality  
is tested, but not characterized. Analog modules (ADC, PGAs and comparators) may have degraded  
performance.  
2: Parameters are for design guidance only and are not tested in manufacturing.  
3: The VBOR specification is relative to VDD.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 389  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-14: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min. Typ.(1) Max. Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
10,000  
3.0  
3.6  
3.6  
E/W -40C to +125C  
VPR  
VDD for Read  
V
V
D132b VPEW  
VDD for Self-Timed Write  
Characteristic Retention  
3.0  
D134  
D135  
D136  
TRETD  
20  
Year Provided no other specifications  
are violated, -40C to +125C  
IDDP  
Supply Current during  
Programming(2)  
10  
mA  
mA  
IPEAK  
Instantaneous Peak Current  
During Start-up  
150  
20.1  
20.3  
47.3  
47.9  
679  
687  
D137a TPE  
D137b TPE  
D138a TWW  
D138b TWW  
D139a TRW  
D139b TRW  
Page Erase Time  
Page Erase Time  
Word Write Cycle Time  
Word Write Cycle Time  
Row Write Time  
19.7  
19.5  
46.5  
46.0  
667  
660  
ms TPE = 146893 FRC cycles,  
TA = +85°C (Note 3)  
ms TPE = 146893 FRC cycles,  
TA = +125°C (Note 3)  
µs TWW = 346 FRC cycles,  
TA = +85°C (Note 3)  
µs TWW = 346 FRC cycles,  
TA = +125°C (Note 3)  
µs TRW = 4965 FRC cycles,  
TA = +85°C (Note 3)  
Row Write Time  
µs TRW = 4965 FRC cycles,  
TA = +125°C (Note 3)  
Note 1: Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated.  
2: Parameter characterized but not tested in manufacturing.  
3: Other conditions: FRC = 7.37 MHz, TUN<5:0> = 011111(for Minimum), TUN<5:0> = 100000(for  
Maximum). This parameter depends on the FRC accuracy (see Table 30-20) and the value of the FRC  
Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and  
Maximum time, see Section 5.3 “Programming Operations”.  
DS70005258C-page 390  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
30.2 AC Characteristics and Timing  
Parameters  
This section defines the dsPIC33EPXXXGS70X/80X  
family AC characteristics and timing parameters.  
TABLE 30-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Operating voltage VDD range as described in Section 30.1 “DC Characteristics”.  
FIGURE 30-1:  
Load Condition 1 – for all pins except OSC2  
VDD/2  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
VSS  
TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param  
Symbol  
Characteristic  
Min.  
Typ. Max. Units  
Conditions  
No.  
DO50 COSCO  
OSC2 Pin  
15  
pF In XT and HS modes, when  
external clock is used to drive  
OSC1  
DO56 CIO  
DO58 CB  
All I/O Pins and OSC2  
SCLx, SDAx  
50  
pF EC mode  
pF In I2C mode  
400  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 391  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-2:  
EXTERNAL CLOCK TIMING  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
OSC1  
OS20  
OS30 OS30  
OS31 OS31  
OS25  
CLKO  
OS41  
OS40  
TABLE 30-17: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Sym  
No.  
Characteristic  
Min.  
Typ.(1)  
Max.  
Units  
Conditions  
OS10  
FIN  
External CLKI Frequency  
(External clocks allowed only  
in EC and ECPLL modes)  
DC  
60  
MHz EC  
Oscillator Crystal Frequency  
3.5  
10  
10  
40  
MHz XT  
MHz HS  
OS20  
OS25  
TOSC  
TCY  
TOSC = 1/FOSC  
8.33  
7.14  
DC  
DC  
ns  
ns  
ns  
ns  
ns  
+125°C  
TOSC = 1/FOSC  
+85°C  
+125°C  
+85°C  
EC  
Instruction Cycle Time(2)  
Instruction Cycle Time(2)  
16.67  
DC  
14.28  
DC  
OS30  
OS31  
TosL, External Clock in (OSC1)  
TosH High or Low Time  
0.45 x TOSC  
0.55 x TOSC  
TosR, External Clock in (OSC1)  
TosF Rise or Fall Time  
20  
ns  
EC  
OS40  
OS41  
OS42  
TckR CLKO Rise Time(3,4)  
5.2  
5.2  
12  
ns  
ns  
TckF  
GM  
CLKO Fall Time(3,4)  
External Oscillator  
mA/V HS, VDD = 3.3V,  
TA = +25°C  
Transconductance(4)  
6
mA/V XT, VDD = 3.3V,  
TA = +25°C  
Note 1: Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated.  
2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type, under standard operating conditions,  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at  
“Minimum” values with an external clock applied to the OSC1 pin. When an external clock input is used,  
the “Maximum” cycle time limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.  
4: This parameter is characterized but not tested in manufacturing.  
DS70005258C-page 392  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ.(1)  
Max.  
Units  
Conditions  
OS50  
FPLLI  
PLL Voltage Controlled Oscillator  
(VCO) Input Frequency Range  
0.8  
8.0  
MHz ECPLL, XTPLL modes  
OS51  
OS52  
OS53  
FVCO  
TLOCK  
DCLK  
On-Chip VCO System Frequency 120  
340  
3.1  
3
MHz  
ms  
%
PLL Start-up Time (Lock Time)  
CLKO Stability (Jitter)(2)  
0.9  
-3  
1.5  
0.5  
Note 1: Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for  
individual time bases, or communication clocks used by the application, use the following formula:  
DCLK  
Effective Jitter = -------------------------------------------------------------------------------------------  
FOSC  
--------------------------------------------------------------------------------------  
Time Base or Communication Clock  
For example, if FOSC = 120 MHz and the SPIx bit rate = 10 MHz, the effective jitter is as follows:  
DCLK  
DCLK  
DCLK  
3.464  
Effective Jitter = ------------- = ------------- = -------------  
120  
--------  
10  
12  
TABLE 30-19: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS56  
OS57  
OS58  
FHPOUT On-Chip 16x PLL CCO  
Frequency  
112  
118  
120  
MHz  
FHPIN  
On-Chip 16x PLL Phase  
Detector Input Frequency  
7.0  
7.37  
7.5  
10  
MHz  
µs  
TSU  
Frequency Generator Lock  
Time  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested in manufacturing.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 393  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-20: INTERNAL FRC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Conditions  
No.  
Internal FRC Accuracy @ FRC Frequency = 7.37 MHz(1)  
F20a  
FRC  
-2  
-0.9  
-2  
0.5  
0.5  
1
+2  
+0.9  
+2  
%
%
%
-40°C TA -10°C  
-10°C TA +85°C  
VDD = 3.0-3.6V  
VDD = 3.0-3.6V  
F20b  
FRC  
+85°C TA +125°C VDD = 3.0-3.6V  
Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.  
TABLE 30-21: INTERNAL LPRC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Conditions  
LPRC @ 32.768 kHz(1)  
F21a LPRC  
-30  
-20  
-30  
+30  
+20  
+30  
%
%
%
-40°C TA -10°C  
-10°C TA +85°C  
VDD = 3.0-3.6V  
VDD = 3.0-3.6V  
F21b LPRC  
+85°C TA +125°C VDD = 3.0-3.6V  
Note 1: This is the change of the LPRC frequency as VDD changes.  
DS70005258C-page 394  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-3:  
I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
Old Value  
New Value  
DO31  
DO32  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-22: I/O TIMING REQUIREMENTS  
AC CHARACTERISTICS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ.(1)  
Max.  
Units  
Conditions  
DO31  
TIOR  
TIOF  
TINP  
TRBP  
Port Output Rise Time  
20  
2
5
5
10  
10  
ns  
ns  
DO32  
DI35  
DI40  
Port Output Fall Time  
INTx Pin High or Low Time (input)  
CNx High or Low Time (input)  
ns  
TCY  
Note 1: Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated.  
FIGURE 30-4:  
BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS  
MCLR  
TMCLR  
(SY20)  
BOR  
TBOR  
Various Delays (depending on configuration)  
(SY30)  
Reset Sequence  
CPU Starts Fetching Code  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 395  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-23: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Power-up Period  
Min.  
Typ.(2)  
Max. Units  
Conditions  
SY00 TPU  
SY10 TOST  
SY12 TWDT  
400  
1024 TOSC  
600  
µs  
Oscillator Start-up Time  
TOSC = OSC1 period  
Watchdog Timer  
Time-out Period  
0.81  
1.22 ms WDTPRE = 0,  
WDTPOST<3:0> = 0000,  
using LPRC tolerances indicated in  
F21 (see Table 30-21) at +85°C  
3.25  
0.68  
4.88 ms WDTPRE = 1,  
WDTPOST<3:0> = 0000,  
using LPRC tolerances indicated in  
F21 (see Table 30-21) at +85°C  
SY13 TIOZ  
I/O High-Impedance from  
MCLR Low or Watchdog  
Timer Reset  
0.72  
1.2  
µs  
SY20 TMCLR  
SY30 TBOR  
SY35 TFSCM  
MCLR Pulse Width (low)  
BOR Pulse Width (low)  
2
1
µs  
µs  
Fail-Safe Clock Monitor  
Delay  
500  
900  
µs -40°C to +85°C  
SY36 TVREG  
Voltage Regulator  
Standby-to-Active mode  
Transition Time  
30  
µs  
SY37 TOSCDFRC FRC Oscillator Start-up  
Delay  
48  
µs  
µs  
SY38 TOSCDLPRC LPRC Oscillator Start-up  
Delay  
70  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated.  
DS70005258C-page 396  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-5:  
TIMER1-TIMER5 EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
Tx10  
Tx11  
Tx15  
Tx20  
OS60  
TMRx  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-24: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(2)  
Min.  
Typ.  
Max.  
Units  
Conditions  
TA10 TTXH  
TA11 TTXL  
T1CK High Synchronous mode  
Time  
Greater of:  
20 or  
(TCY + 20)/N  
ns Must also meet  
Parameter TA15,  
N = Prescale Value  
(1, 8, 64, 256)  
Asynchronous mode  
35  
ns  
T1CK Low Synchronous mode  
Time  
Greater of:  
20 or  
(TCY + 20)/N  
ns Must also meet  
Parameter TA15,  
N = Prescale Value  
(1, 8, 64, 256)  
Asynchronous mode  
10  
ns  
TA15 TTXP  
OS60 Ft1  
T1CK Input Synchronous mode  
Period  
Greater of:  
40 or  
ns N = Prescale Value  
(1, 8, 64, 256)  
(2 TCY + 40)/N  
T1CK Oscillator Input Frequency  
Range (oscillator enabled by  
setting bit, TCS (T1CON<1>))  
DC  
50  
kHz  
TA20 TCKEXTMRL Delay from External T1CK Clock 0.75 TCY + 40  
Edge to Timer Increment  
1.75 TCY + 40 ns  
Note 1: Timer1 is a Type A timer.  
2: These parameters are characterized but not tested in manufacturing.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 397  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-25: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min.  
Typ.  
Max.  
Units  
Conditions  
TB10 TtxH  
TB11 TtxL  
TB15 TtxP  
TxCK High Synchronous mode Greater of:  
ns Must also meet  
Parameter TB15,  
N = Prescale Value  
(1, 8, 64, 256)  
Time  
20 or  
(TCY + 20)/N  
TxCK Low Synchronous mode Greater of:  
ns Must also meet  
Parameter TB15,  
N = Prescale Value  
(1, 8, 64, 256)  
Time  
20 or  
(TCY + 20)/N  
TxCK Input Synchronous mode Greater of:  
ns N = Prescale Value  
(1, 8, 64, 256)  
Period  
40 or  
(2 TCY + 40)/N  
TB20 TCKEXTMRL Delay from External TxCK  
Clock Edge to Timer Increment  
0.75 TCY + 40  
1.75 TCY + 40  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
TABLE 30-26: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TtxH  
Characteristic(1)  
Min.  
Typ.  
Max.  
Units  
Conditions  
TC10  
TxCK High  
Synchronous  
Synchronous  
TCY + 20  
ns  
Must also meet  
Parameter TC15  
Time  
TC11  
TC15  
TC20  
TtxL  
TtxP  
TxCK Low  
Time  
TCY + 20  
2 TCY + 40  
0.75 TCY + 40  
ns  
ns  
ns  
Must also meet  
Parameter TC15  
TxCK Input  
Period  
Synchronous  
with Prescaler  
N = Prescale Value  
(1, 8, 64, 256)  
TCKEXTMRL Delay from External TxCK  
Clock Edge to Timer Increment  
1.75 TCY + 40  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70005258C-page 398  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-6:  
INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS  
ICx  
IC10  
IC11  
IC15  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-27: INPUT CAPTURE x MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param.  
No.  
Symbol Characteristics(1)  
Min.  
Max.  
Units  
Conditions  
IC10  
TCCL  
TCCH  
TCCP  
ICx Input Low Time  
ICx Input High Time  
ICx Input Period  
Greater of:  
12.5 + 25 or  
(0.5 TCY/N) + 25  
ns  
Must also meet  
Parameter IC15  
IC11  
IC15  
Greater of:  
12.5 + 25 or  
(0.5 TCY/N) + 25  
ns  
ns  
Must also meet  
Parameter IC15  
N = Prescale Value  
(1, 4, 16)  
Greater of:  
25 + 50 or  
(1 TCY/N) + 50  
Note 1: These parameters are characterized but not tested in manufacturing.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 399  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-7:  
OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS  
OCx  
(Output Compare  
or PWM Mode)  
OC11  
Note: Refer to Figure 30-1 for load conditions.  
OC10  
TABLE 30-28: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min.  
Typ.  
Max.  
Units  
Conditions  
OC10 TccF  
OC11 TccR  
OCx Output Fall Time  
OCx Output Rise Time  
ns  
ns  
See Parameter DO32  
See Parameter DO31  
Note 1: These parameters are characterized but not tested in manufacturing.  
FIGURE 30-8:  
OCx/PWMx MODULE TIMING CHARACTERISTICS  
OC20  
OCFA  
OCx  
OC15  
TABLE 30-29: OCx/PWMx MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min.  
Typ.  
Max.  
Units  
Conditions  
OC15  
OC20  
TFD  
Fault Input to PWMx I/O Change  
Fault Input Pulse Width  
TCY + 20  
ns  
ns  
TFLT  
TCY + 20  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70005258C-page 400  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-9:  
HIGH-SPEED PWMx MODULE FAULT TIMING CHARACTERISTICS  
MP30  
Fault Input  
(active-low)  
MP20  
PWMx  
FIGURE 30-10:  
HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS  
MP11 MP10  
PWMx  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-30: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min.  
Typ.  
Max.  
Units  
Conditions  
MP10  
MP11  
MP20  
TFPWM  
TRPWM  
TFD  
PWMx Output Fall Time  
PWMx Output Rise Time  
15  
ns  
ns  
ns  
See Parameter DO32  
See Parameter DO31  
Fault Input to PWMx  
I/O Change  
MP30  
TFH  
Fault Input Pulse Width  
15  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 401  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-31: SPI1, SPI2 AND SPI3 MAXIMUM DATA/CLOCK RATE SUMMARY(1)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Master  
Transmit Only  
(Half-Duplex)  
Master  
Slave  
Maximum  
Data Rate  
Transmit/Receive Transmit/Receive  
(Full-Duplex)  
CKE  
CKP  
SMP  
(Full-Duplex)  
15 MHz  
9 MHz  
Table 30-32  
0,1  
1
0,1  
0,1  
0,1  
0
0,1  
1
Table 30-33  
9 MHz  
Table 30-34  
0
1
15 MHz  
11 MHz  
15 MHz  
11 MHz  
Table 30-35  
Table 30-36  
Table 30-37  
Table 30-38  
1
0
1
1
0
0
1
0
0
0
0
Note 1: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices  
with a remappable SCK3 pin.  
FIGURE 30-11:  
SPI1, SPI2 AND SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY,  
CKE = 0) TIMING CHARACTERISTICS(1,2)  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
MSb  
Bit 14 - - - - - -1  
LSb  
SDOx  
SP30, SP31  
SP30, SP31  
Note 1: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices with  
a remappable SCK3 pin.  
2: Refer to Figure 30-1 for load conditions.  
DS70005258C-page 402  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-12:  
SPI1, SPI2 AND SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY,  
CKE = 1) TIMING CHARACTERISTICS(1,2)  
SP36  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35  
MSb  
Bit 14 - - - - - -1  
LSb  
SDOx  
SP30, SP31  
Note 1: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices  
with a remappable SCK3 pin.  
2: Refer to Figure 30-1 for load conditions.  
TABLE 30-32: SPI1, SPI2 AND SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY)  
TIMING REQUIREMENTS(5)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic(1)  
Min.  
Typ.(2) Max.  
Units  
Conditions  
SP10  
SP20  
FscP  
TscF  
Maximum SCKx Frequency  
SCKx Output Fall Time  
15  
MHz (Note 3)  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
(Note 4)  
SP21  
SP30  
SP31  
SP35  
SP36  
TscR  
TdoF  
TdoR  
SCKx Output Rise Time  
30  
6
20  
See Parameter DO31  
(Note 4)  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
(Note 4)  
See Parameter DO31  
(Note 4)  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdiV2scH, SDOx Data Output Setup to  
TdiV2scL  
First SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
5: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices  
with a remappable SCK3 pin.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 403  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-13:  
SPI1, SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x,  
SMP = 1) TIMING CHARACTERISTICS(1,2)  
SP36  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP21  
MSb  
Bit 14 - - - - - -1  
SP30, SP31  
LSb  
SDOx  
SDIx  
SP40  
MSb In  
SP41  
Bit 14 - - - -1  
LSb In  
Note 1: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05  
devices with a remappable SCK3 pin.  
2: Refer to Figure 30-1 for load conditions.  
TABLE 30-33: SPI1, SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)  
TIMING REQUIREMENTS(5)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param.  
Symbol  
FscP  
Characteristic(1)  
Min. Typ.(2) Max. Units  
Conditions  
SP10  
SP20  
SP21  
SP30  
SP31  
SP35  
Maximum SCKx Frequency  
SCKx Output Fall Time  
6
9
MHz (Note 3)  
TscF  
TscR  
TdoF  
TdoR  
20  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32 (Note 4)  
See Parameter DO31 (Note 4)  
See Parameter DO32 (Note 4)  
See Parameter DO31 (Note 4)  
SCKx Output Rise Time  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
SP36  
SP40  
SP41  
TdoV2sc, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
30  
30  
ns  
ns  
ns  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
5: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices  
with a remappable SCK3 pin.  
DS70005258C-page 404  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-14:  
SPI1, SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x,  
SMP = 1) TIMING CHARACTERISTICS(1,2)  
SCKx  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKx  
(CKP = 1)  
SP35 SP36  
MSb  
Bit 14 - - - - - -1  
LSb  
SDOx  
SDIx  
SP30, SP31  
SP30, SP31  
LSb In  
MSb In  
SP40 SP41  
Bit 14 - - - -1  
Note 1: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices with  
a remappable SCK3 pin.  
2: Refer to Figure 30-1 for load conditions.  
TABLE 30-34: SPI1, SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)  
TIMING REQUIREMENTS(5)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param.  
Symbol  
FscP  
Characteristic(1)  
Min. Typ.(2) Max. Units  
Conditions  
MHz -40ºC to +125ºC (Note 3)  
SP10  
SP20  
SP21  
SP30  
SP31  
SP35  
Maximum SCKx Frequency  
SCKx Output Fall Time  
6
9
TscF  
TscR  
TdoF  
TdoR  
20  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32 (Note 4)  
See Parameter DO31 (Note 4)  
See Parameter DO32 (Note 4)  
See Parameter DO31 (Note 4)  
SCKx Output Rise Time  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
SP36  
SP40  
SP41  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
30  
30  
ns  
ns  
ns  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
5: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices  
with a remappable SCK3 pin.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 405  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-15:  
SPI1, SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)  
TIMING CHARACTERISTICS(1,2)  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP70  
SP73  
SP72  
SCKx  
(CKP = 1)  
SP36  
SP72  
SP73  
SP35  
SDOx  
SDIx  
MSb  
Bit 14 - - - - - -1  
LSb  
SP30, SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note 1: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices with  
a remappable SCK3 pin.  
2: Refer to Figure 30-1 for load conditions.  
DS70005258C-page 406  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-35: SPI1, SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)  
TIMING REQUIREMENTS(5)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic(1)  
Min.  
Typ.(2) Max. Units  
Conditions  
MHz (Note 3)  
SP70  
SP72  
FscP  
TscF  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
(Note 4)  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
TscR  
TdoF  
TdoR  
SCKx Input Rise Time  
6
20  
50  
50  
See Parameter DO31  
(Note 4)  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
(Note 4)  
See Parameter DO31  
(Note 4)  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
TssL2scH, SSx to SCKx or SCKx   
TssL2scL Input  
to SCKx Edge  
30  
120  
TssH2doZ SSx to SDOx Output  
10  
1.5 TCY + 40  
(Note 4)  
(Note 4)  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must  
not violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
5: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices  
with a remappable SCK3 pin.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 407  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-16:  
SPI1, SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)  
TIMING CHARACTERISTICS(1,2)  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP73  
SP72  
SP70  
SCKx  
(CKP = 1)  
SP36  
SP35  
SP72  
SP73  
SDOx  
SDIx  
MSb  
Bit 14 - - - - - -1  
LSb  
SP30, SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note 1: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices with  
a remappable SCK3 pin.  
2: Refer to Figure 30-1 for load conditions.  
DS70005258C-page 408  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-36: SPI1, SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)  
TIMING REQUIREMENTS(5)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic(1)  
Min.  
Typ.(2) Max. Units  
Conditions  
MHz (Note 3)  
SP70  
SP72  
FscP  
TscF  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
11  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
(Note 4)  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
TscR  
TdoF  
TdoR  
SCKx Input Rise Time  
6
20  
50  
50  
See Parameter DO31  
(Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
(Note 4)  
See Parameter DO31  
(Note 4)  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
TssL2scH, SSx to SCKx or SCKx   
TssL2scL Input  
to SCKx Edge  
30  
120  
TssH2doZ SSx to SDOx Output  
10  
1.5 TCY + 40  
(Note 4)  
(Note 4)  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
5: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices  
with a remappable SCK3 pin.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 409  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-17:  
SPI1, SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)  
TIMING CHARACTERISTICS(1,2)  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP70  
SP73  
SP72  
SP72  
SP73  
SCKx  
(CKP = 1)  
SP35 SP36  
SDOx  
SDIx  
MSb  
Bit 14 - - - - - -1  
LSb  
SP51  
SP30, SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note 1: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices  
with a remappable SCK3 pin.  
2: Refer to Figure 30-1 for load conditions.  
DS70005258C-page 410  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-37: SPI1, SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)  
TIMING REQUIREMENTS(5)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic(1)  
Min.  
Typ.(2) Max. Units  
Conditions  
MHz (Note 3)  
SP70  
SP72  
FscP  
TscF  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
(Note 4)  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
TscR  
TdoF  
TdoR  
SCKx Input Rise Time  
6
20  
50  
See Parameter DO31  
(Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
(Note 4)  
See Parameter DO31  
(Note 4)  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
TssL2scH, SSx to SCKx or SCKx   
TssL2scL Input  
to SCKx Edge  
30  
120  
TssH2doZ SSx to SDOx Output  
10  
(Note 4)  
(Note 4)  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
1.5 TCY + 40  
TscL2ssH  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must  
not violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
5: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices  
with a remappable SCK3 pin.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 411  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-18:  
SPI1, SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)  
TIMING CHARACTERISTICS(1,2)  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP70  
SP73  
SP72  
SP72  
SP73  
SCKx  
(CKP = 1)  
SP35 SP36  
MSb  
Bit 14 - - - - - -1  
LSb  
SDOx  
SDIx  
SP30, SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note 1: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices  
with a remappable SCK3 pin.  
2: Refer to Figure 30-1 for load conditions.  
DS70005258C-page 412  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-38: SPI1, SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)  
TIMING REQUIREMENTS(5)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic(1)  
Min.  
Typ.(2) Max. Units  
Conditions  
MHz (Note 3)  
SP70  
SP72  
FscP  
TscF  
Maximum SCKx Input Frequency  
SCKx Input Fall Time  
11  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
(Note 4)  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
TscR  
TdoF  
TdoR  
SCKx Input Rise Time  
6
20  
50  
See Parameter DO31  
(Note 4)  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See Parameter DO32  
(Note 4)  
See Parameter DO31  
(Note 4)  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2scH, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
30  
TdiV2scH, Setup Time of SDIx Data Input  
30  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
TssL2scH, SSx to SCKx or SCKx   
TssL2scL Input  
to SCKx Edge  
30  
120  
TssH2doZ SSx to SDOx Output  
10  
(Note 4)  
(Note 4)  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
1.5 TCY + 40  
TscL2ssH  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
5: Pertaining to SPI3: dsPIC33EPXXXGS702, dsPIC33EPXXXGSX04 and dsPIC33EPXXXGSX05 devices  
with a remappable SCK3 pin.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 413  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-39: SPI3 MAXIMUM DATA/CLOCK RATE SUMMARY(1)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Master  
Transmit Only  
(Half-Duplex)  
Master  
Slave  
Maximum  
Data Rate  
Transmit/Receive Transmit/Receive  
(Full-Duplex)  
CKE  
CKP  
SMP  
(Full-Duplex)  
25 MHz  
25 MHz  
25 MHz  
25 MHz  
25 MHz  
25 MHz  
25 MHz  
Table 30-40  
0,1  
1
0,1  
0,1  
0,1  
0
0,1  
1
Table 30-41  
Table 30-42  
0
1
Table 30-43  
Table 30-44  
Table 30-45  
Table 30-46  
1
0
1
1
0
0
1
0
0
0
0
Note 1: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.  
FIGURE 30-19:  
SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0)  
TIMING CHARACTERISTICS(1,2)  
SCK3  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCK3  
(CKP = 1)  
SP35  
MSb  
Bit 14 - - - - - -1  
LSb  
SDO3  
SP30, SP31  
SP30, SP31  
Note 1: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.  
2: Refer to Figure 30-1 for load conditions.  
DS70005258C-page 414  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-20:  
SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1)  
TIMING CHARACTERISTICS(1,2)  
SP36  
SCK3  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCK3  
(CKP = 1)  
SP35  
MSb  
Bit 14 - - - - - -1  
LSb  
SDO3  
SP30, SP31  
Note 1: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.  
2: Refer to Figure 30-1 for load conditions.  
TABLE 30-40: SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS(5)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic(1)  
Min.  
Typ.(2) Max.  
Units  
Conditions  
SP10  
SP20  
FscP  
TscF  
Maximum SCK3 Frequency  
SCK3 Output Fall Time  
25  
MHz (Note 3)  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
(Note 4)  
SP21  
SP30  
SP31  
SP35  
SP36  
TscR  
TdoF  
TdoR  
SCK3 Output Rise Time  
20  
6
20  
See Parameter DO31  
(Note 4)  
SDO3 Data Output Fall Time  
SDO3 Data Output Rise Time  
See Parameter DO32  
(Note 4)  
See Parameter DO31  
(Note 4)  
TscH2doV, SDO3 Data Output Valid after  
TscL2doV SCK3 Edge  
TdiV2scH, SDO3 Data Output Setup to  
TdiV2scL  
First SCK3 Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCK3 is 66.7 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPI3 pins.  
5: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 415  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-21:  
SPI3 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)  
TIMING CHARACTERISTICS(1,2)  
SP36  
SCK3  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCK3  
(CKP = 1)  
SP35  
MSb  
Bit 14 - - - - - -1  
SP30, SP31  
LSb  
SDO3  
SDI3  
SP40  
MSb In  
SP41  
Bit 14 - - - -1  
LSb In  
Note 1: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.  
2: Refer to Figure 30-1 for load conditions.  
TABLE 30-41: SPI3 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)  
TIMING REQUIREMENTS(5)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param.  
Symbol  
FscP  
Characteristic(1)  
Min. Typ.(2) Max. Units  
Conditions  
SP10  
SP20  
SP21  
SP30  
SP31  
SP35  
Maximum SCK3 Frequency  
SCK3 Output Fall Time  
6
25  
20  
MHz (Note 3)  
TscF  
TscR  
TdoF  
TdoR  
ns See Parameter DO32 (Note 4)  
ns See Parameter DO31 (Note 4)  
ns See Parameter DO32 (Note 4)  
SCK3 Output Rise Time  
SDO3 Data Output Fall Time  
SDO3 Data Output Rise Time  
ns  
ns  
See Parameter DO31 (Note 4)  
TscH2doV, SDO3 Data Output Valid after  
TscL2doV SCK3 Edge  
SP36  
SP40  
SP41  
TdoV2sc, SDO3 Data Output Setup to  
TdoV2scL First SCK3 Edge  
20  
20  
15  
ns  
ns  
ns  
TdiV2scH, Setup Time of SDI3 Data  
TdiV2scL Input to SCK3 Edge  
TscH2diL, Hold Time of SDI3 Data Input  
TscL2diL  
to SCK3 Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCK3 is 100 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPI3 pins.  
5: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.  
DS70005258C-page 416  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-22:  
SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)  
TIMING CHARACTERISTICS(1,2)  
SCK3  
(CKP = 0)  
SP10  
SP21  
SP20  
SP20  
SP21  
SCK3  
(CKP = 1)  
SP35SP36  
MSb  
Bit 14 - - - - - -1  
LSb  
SDO3  
SD3  
SP30, SP31  
SP30, SP31  
LSb In  
MSb In  
SP40 SP41  
Bit 14 - - - -1  
Note 1: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.  
2: Refer to Figure 30-1 for load conditions.  
TABLE 30-42: SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)  
TIMING REQUIREMENTS(5)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic(1)  
Min. Typ.(2) Max. Units  
Conditions  
MHz -40ºC to +125ºC (Note 3)  
SP10  
SP20  
SP21  
SP30  
SP31  
SP35  
FscP  
TscF  
TscR  
TdoF  
TdoR  
Maximum SCK3 Frequency  
SCK3 Output Fall Time  
6
25  
20  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32 (Note 4)  
See Parameter DO31 (Note 4)  
See Parameter DO32 (Note 4)  
See Parameter DO31 (Note 4)  
SCK3 Output Rise Time  
SDO3 Data Output Fall Time  
SDO3 Data Output Rise Time  
TscH2doV, SDO3 Data Output Valid after  
TscL2doV SCK3 Edge  
SP36  
SP40  
SP41  
TdoV2scH, SDO3 Data Output Setup to  
TdoV2scL First SCK3 Edge  
20  
20  
20  
ns  
ns  
ns  
TdiV2scH, Setup Time of SDI3 Data  
TdiV2scL Input to SCK3 Edge  
TscH2diL, Hold Time of SDI3 Data Input  
TscL2diL to SCK3Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCK3 is 100 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPI3 pins.  
5: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 417  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-23:  
SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)  
TIMING CHARACTERISTICS(1,2)  
SP60  
SS3  
SP52  
SP50  
SCK3  
(CKP = 0)  
SP70  
SP73  
SP72  
SCK3  
(CKP = 1)  
SP36  
SP35  
SP72  
SP73  
SDO3  
SDI3  
MSb  
Bit 14 - - - - - -1  
LSb  
SP30, SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note 1: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.  
2: Refer to Figure 30-1 for load conditions.  
DS70005258C-page 418  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-43: SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)  
TIMING REQUIREMENTS(5)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param. Symbol  
Characteristic(1)  
Min.  
Typ.(2) Max. Units  
Conditions  
MHz (Note 3)  
SP70  
SP72  
FscP  
TscF  
Maximum SCK3 Input Frequency  
SCK3 Input Fall Time  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
(Note 4)  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
TscR  
TdoF  
TdoR  
SCK3 Input Rise Time  
6
20  
50  
50  
See Parameter DO31  
(Note 4)  
SDO3 Data Output Fall Time  
SDO3 Data Output Rise Time  
See Parameter DO32  
(Note 4)  
See Parameter DO31  
(Note 4)  
TscH2doV, SDO3 Data Output Valid after  
TscL2doV SCK3 Edge  
TdoV2scH, SDO3 Data Output Setup to  
TdoV2scL First SCK3 Edge  
20  
TdiV2scH, Setup Time of SDI3 Data Input  
20  
TdiV2scL  
TscH2diL, Hold Time of SDI3 Data Input  
TscL2diL to SCK3 Edge  
TssL2scH, SS3 to SCK3 or SCK3   
TssL2scL Input  
to SCK3 Edge  
15  
120  
TssH2doZ SS3 to SDO3 Output  
10  
1.5 TCY + 40  
(Note 4)  
(Note 4)  
High-Impedance  
TscH2ssH SS3 after SCK3 Edge  
TscL2ssH  
TssL2doV SDO3 Data Output Valid after  
SS3 Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCK3 is 66.7 ns. Therefore, the SCK3 clock generated by the master must  
not violate this specification.  
4: Assumes 50 pF load on all SPI3 pins.  
5: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 419  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-24:  
SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)  
TIMING CHARACTERISTICS(1,2)  
SP60  
SS3  
SP52  
SP50  
SCK3  
(CKP = 0)  
SP70  
SP73  
SP72  
SCK3  
(CKP = 1)  
SP36  
SP35  
SP72  
SP73  
SDO3  
SDI3  
MSb  
Bit 14 - - - - - -1  
LSb  
SP30, SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note 1: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.  
2: Refer to Figure 30-1 for load conditions.  
DS70005258C-page 420  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-44: SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)  
TIMING REQUIREMENTS(5)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param. Symbol  
Characteristic(1)  
Min.  
Typ.(2) Max. Units  
Conditions  
MHz (Note 3)  
SP70  
SP72  
FscP  
TscF  
Maximum SCK3 Input Frequency  
SCK3 Input Fall Time  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
(Note 4)  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
TscR  
TdoF  
TdoR  
SCK3 Input Rise Time  
6
20  
50  
50  
See Parameter DO31  
(Note 4)  
SDO3 Data Output Fall Time  
SDO3 Data Output Rise Time  
See Parameter DO32  
(Note 4)  
See Parameter DO31  
(Note 4)  
TscH2doV, SDO3 Data Output Valid after  
TscL2doV SCK3 Edge  
TdoV2scH, SDO3 Data Output Setup to  
TdoV2scL First SCK3 Edge  
20  
TdiV2scH, Setup Time of SDI3 Data Input  
20  
TdiV2scL  
TscH2diL, Hold Time of SDI3 Data Input  
TscL2diL to SCK3 Edge  
TssL2scH, SS3 to SCK3 or SCK3   
TssL2scL Input  
to SCK3 Edge  
15  
120  
TssH2doZ SS3 to SDO3 Output  
10  
1.5 TCY + 40  
(Note 4)  
(Note 4)  
High-Impedance  
TscH2ssH, SS3 after SCK3 Edge  
TscL2ssH  
TssL2doV SDO3 Data Output Valid after  
SS3 Edge  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCK3 is 91 ns. Therefore, the SCK3 clock generated by the master must  
not violate this specification.  
4: Assumes 50 pF load on all SPI3 pins.  
5: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 421  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-25:  
SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)  
TIMING CHARACTERISTICS(1,2)  
SS3  
SP52  
SP50  
SCK3  
(CKP = 0)  
SP70  
SP73  
SP72  
SP72  
SCK3  
(CKP = 1)  
SP73  
SP35 SP36  
MSb  
Bit 14 - - - - - -1  
LSb  
SDO3  
SDI3  
SP51  
SP30, SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note 1: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.  
2: Refer to Figure 30-1 for load conditions.  
DS70005258C-page 422  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-45: SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)  
TIMING REQUIREMENTS(5)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param. Symbol  
Characteristic(1)  
Min.  
Typ.(2) Max. Units  
Conditions  
MHz (Note 3)  
SP70  
SP72  
FscP  
TscF  
Maximum SCK3 Input Frequency  
SCK3 Input Fall Time  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
(Note 4)  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
TscR  
TdoF  
TdoR  
SCK3 Input Rise Time  
6
20  
50  
See Parameter DO31  
(Note 4)  
SDO3 Data Output Fall Time  
SDO3 Data Output Rise Time  
See Parameter DO32  
(Note 4)  
See Parameter DO31  
(Note 4)  
TscH2doV, SDO3 Data Output Valid after  
TscL2doV SCK3 Edge  
TdoV2scH, SDO3 Data Output Setup to  
TdoV2scL First SCK3 Edge  
20  
TdiV2scH, Setup Time of SDI3 Data Input  
20  
TdiV2scL  
TscH2diL, Hold Time of SDI3 Data Input  
TscL2diL to SCK3 Edge  
TssL2scH, SS3 to SCK3 or SCK3   
TssL2scL Input  
to SCK3 Edge  
15  
120  
TssH2doZ SS3 to SDO3 Output  
10  
(Note 4)  
(Note 4)  
High-Impedance  
TscH2ssH, SS3 after SCK3 Edge  
1.5 TCY + 40  
TscL2ssH  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCK3 is 66.7 ns. Therefore, the SCK3 clock generated by the master must  
not violate this specification.  
4: Assumes 50 pF load on all SPI3 pins.  
5: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 423  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-26:  
SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)  
TIMING CHARACTERISTICS(1,2)  
SS3  
SP52  
SP50  
SCK3  
(CKP = 0)  
SP70  
SP73  
SP72  
SP72  
SCK3  
(CKP = 1)  
SP73  
SP35 SP36  
SDO3  
SDI3  
MSb  
Bit 14 - - - - - -1  
LSb  
SP51  
SP30, SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note 1: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.  
2: Refer to Figure 30-1 for load conditions.  
DS70005258C-page 424  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-46: SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)  
TIMING REQUIREMENTS(5)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param. Symbol  
Characteristic(1)  
Min.  
Typ.(2) Max. Units  
Conditions  
MHz (Note 3)  
SP70  
SP72  
FscP  
TscF  
Maximum SCK3 Input Frequency  
SCK3 Input Fall Time  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Parameter DO32  
(Note 4)  
SP73  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
SP50  
SP51  
SP52  
TscR  
TdoF  
TdoR  
SCK3 Input Rise Time  
6
20  
50  
See Parameter DO31  
(Note 4)  
SDO3 Data Output Fall Time  
SDO3 Data Output Rise Time  
See Parameter DO32  
(Note 4)  
See Parameter DO31  
(Note 4)  
TscH2doV, SDO3 Data Output Valid after  
TscL2doV SCK3 Edge  
TdoV2scH, SDO3 Data Output Setup to  
TdoV2scL First SCK3 Edge  
20  
TdiV2scH, Setup Time of SDI3 Data Input  
20  
TdiV2scL  
TscH2diL, Hold Time of SDI3 Data Input  
TscL2diL to SCK3 Edge  
TssL2scH, SS3 to SCK3 or SCK3   
TssL2scL Input  
to SCK3 Edge  
15  
120  
TssH2doZ SS3 to SDO3 Output  
10  
(Note 4)  
(Note 4)  
High-Impedance  
TscH2ssH, SS3 after SCK1 Edge  
1.5 TCY + 40  
TscL2ssH  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCK3 is 91 ns. Therefore, the SCK3 clock generated by the master must  
not violate this specification.  
4: Assumes 50 pF load on all SPI3 pins.  
5: For dsPIC33EPXXXGSX06 and dsPIC33EPXXXGSX08 devices with a fixed SCK3 pin.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 425  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-27:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCLx  
IM31  
IM34  
IM30  
IM33  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 30-1 for load conditions.  
FIGURE 30-28:  
I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCLx  
IM26  
IM11  
IM25  
IM33  
IM10  
SDAx  
In  
IM40  
IM40  
IM45  
SDAx  
Out  
Note: Refer to Figure 30-1 for load conditions.  
DS70005258C-page 426  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-47: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(4)  
Min.(1)  
Max.  
Units  
Conditions  
IM10  
IM11  
IM20  
IM21  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
IM40  
IM45  
TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 2)  
400 kHz mode TCY/2 (BRG + 2)  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
pF  
ns  
1 MHz mode(2) TCY/2 (BRG + 2)  
THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 2)  
400 kHz mode TCY/2 (BRG + 2)  
1 MHz mode(2) TCY/2 (BRG + 2)  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
300  
300  
100  
1000  
300  
300  
CB is specified to be  
from 10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
SDAx and SCLx 100 kHz mode  
CB is specified to be  
from 10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
20 + 0.1 CB  
250  
100  
40  
0
TSU:DAT Data Input  
Setup Time  
THD:DAT Data Input  
Hold Time  
0
0.9  
0.2  
TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 2)  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode TCY/2 (BRG + 2)  
1 MHz mode(2) TCY/2 (BRG + 2)  
THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 2)  
Hold Time  
After this period, the  
first clock pulse is  
generated  
400 kHz mode  
1 MHz mode(2) TCY/2 (BRG + 2)  
TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 2)  
TCY/2 (BRG +2)  
Setup Time  
400 kHz mode TCY/2 (BRG + 2)  
1 MHz mode(2) TCY/2 (BRG + 2)  
100 kHz mode TCY/2 (BRG + 2)  
400 kHz mode TCY/2 (BRG + 2)  
1 MHz mode(2) TCY/2 (BRG + 2)  
THD:STO Stop Condition  
Hold Time  
TAA:SCL Output Valid  
from Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
3500  
1000  
400  
TBF:SDA Bus Free Time 100 kHz mode  
4.7  
1.3  
0.5  
Time the bus must be  
free before a new  
transmission can start  
400 kHz mode  
1 MHz mode(2)  
IM50  
IM51  
CB  
Bus Capacitive Loading  
Pulse Gobbler Delay  
400  
390  
TPGD  
65  
(Note 3)  
Note 1: BRG is the value of the I2C Baud Rate Generator.  
2: Maximum Pin Capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
3: Typical value for this parameter is 130 ns.  
4: These parameters are characterized but not tested in manufacturing.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 427  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-29:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCLx  
IS31  
IS34  
IS30  
IS33  
SDAx  
Stop  
Condition  
Start  
Condition  
FIGURE 30-30:  
I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS11  
IS21  
IS10  
IS26  
SCLx  
IS30  
IS33  
IS25  
IS31  
SDAx  
In  
IS45  
IS40  
IS40  
SDAx  
Out  
DS70005258C-page 428  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-48: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic(3)  
Min.  
Max. Units  
Conditions  
IS10  
TLO:SCL Clock Low Time 100 kHz mode  
400 kHz mode  
4.7  
1.3  
0.5  
4.0  
µs  
µs  
µs  
1 MHz mode(1)  
IS11  
THI:SCL Clock High Time 100 kHz mode  
µs  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1 MHz mode(1)  
0.6  
µs  
Device must operate at a  
minimum of 10 MHz  
0.5  
300  
300  
100  
1000  
300  
300  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
pF  
ns  
IS20  
IS21  
IS25  
IS26  
IS30  
IS31  
IS33  
IS34  
IS40  
IS45  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
SDAx and SCLx 100 kHz mode  
Rise Time  
CB is specified to be from  
10 to 400 pF  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
TSU:DAT Data Input  
Setup Time  
250  
100  
100  
0
THD:DAT Data Input  
Hold Time  
0
0.9  
0.3  
0
TSU:STA Start Condition  
Setup Time  
4.7  
0.6  
0.25  
4.0  
0.6  
0.25  
4.7  
0.6  
0.6  
4
Only relevant for Repeated  
Start condition  
THD:STA Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
THD:STO Stop Condition  
Hold Time  
0.6  
0.25  
0
TAA:SCL Output Valid from 100 kHz mode  
3500  
1000  
350  
Clock  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
0
0
TBF:SDA Bus Free Time  
4.7  
1.3  
0.5  
Time the bus must be free  
before a new transmission  
can start  
IS50  
IS51  
CB  
Bus Capacitive Loading  
Pulse Gobbler Delay  
400  
390  
TPGD  
65  
(Note 2)  
Note 1: Maximum Pin Capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
2: Typical value for this parameter is 130 ns.  
3: These parameters are characterized but not tested in manufacturing.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 429  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-31:  
CANx MODULE I/O TIMING CHARACTERISTICS  
CxTX Pin  
(output)  
Old Value  
New Value  
CA10 CA11  
CA20  
CxRX Pin  
(input)  
TABLE 30-49: CANx MODULE I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min.  
Typ.(2) Max.  
Units  
Conditions  
CA10  
CA11  
CA20  
TIOF  
TIOR  
TCWF  
Port Output Fall Time  
Port Output Rise Time  
ns  
ns  
ns  
See Parameter DO32  
See Parameter DO31  
Pulse Width to Trigger  
CAN Wake-up Filter  
120  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
DS70005258C-page 430  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
FIGURE 30-32:  
UARTx MODULE I/O TIMING CHARACTERISTICS  
UA20  
UxRX  
UXTX  
MSb In  
UA10  
Bits 6-1  
LSb In  
TABLE 30-50: UARTx MODULE I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +125°C  
Param  
Symbol  
No.  
Characteristic(1)  
UARTx Baud Time  
Min. Typ.(2) Max. Units  
Conditions  
UA10  
UA11  
UA20  
TUABAUD  
FBAUD  
TCWF  
66.67  
15  
ns  
Mbps  
ns  
UARTx Baud Frequency  
Start Bit Pulse Width to Trigger  
UARTx Wake-up  
500  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
TABLE 30-51: ANALOG CURRENT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
AC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Param  
Symbol  
No.  
Characteristic(1)  
Min. Typ.(2) Max. Units  
Conditions  
AVD01 IDD  
Analog Modules Current  
Consumption  
9
mA Characterized data with the  
following modules enabled:  
APLL, 5 ADC Cores, 2 PGAs  
and 4 Analog Comparators  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ.” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 431  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-52: ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)(5)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
AVDD  
Characteristics  
Min.  
Typical  
Max.  
Units  
Conditions  
Device Supply  
AD01  
Module VDD Supply  
Greater of:  
VDD – 0.3  
or 3.0  
Lesser of:  
VDD + 0.3  
or 3.6  
V
V
Within 300 mV of VDD at  
all times, including device  
power-up  
AD02  
AVSS  
Module VSS Supply  
VSS  
VSS + 0.3  
Reference Inputs  
AD06  
AD07  
VREFL  
VREF  
Reference Voltage Low  
AVSS  
V
V
(Note 1)  
(Note 3)  
Absolute Reference  
2.7  
AVDD  
Voltage (VREFH – VREFL)  
AD08  
IREF  
Reference Input Current  
5
10  
µA ADC operating or in standby  
Analog Input  
AD12 VINH-VINL Full-Scale Input Span  
AVSS  
AVSS – 0.3  
AVDD  
AVDD + 0.3  
V
V
AD14  
AD17  
VIN  
RIN  
Absolute Input Voltage  
Recommended  
100  
For minimum sampling  
Impedance of Analog  
Voltage Source  
time (Note 1)  
AD66  
VBG  
Internal Voltage  
1.2  
V
Reference Source  
ADC Accuracy: Pseudodifferential Input  
AD20a Nr  
AD21a INL  
AD22a DNL  
Resolution  
12  
bits  
Integral Nonlinearity  
> -3  
> -1  
< 3  
< 1  
LSb AVSS = 0V, AVDD = 3.3V  
Differential Nonlinearity  
LSb AVSS = 0V, AVDD = 3.3V  
(Note 2)  
AD23a GERR  
Gain Error  
(Dedicated Core)  
> 0  
> 5  
> 0  
> 2  
8
15  
5
< 15  
< 22  
< 10  
< 13  
LSb AVSS = 0V, AVDD = 3.3V  
Gain Error  
(Shared Core)  
LSb  
AD24a EOFF  
Offset Error  
(Dedicated Core)  
LSb AVSS = 0V, AVDD = 3.3V  
LSb  
Offset Error  
(Shared Core)  
8
AD25a  
Monotonicity  
Guaranteed  
Note 1: These parameters are not characterized or tested in manufacturing.  
2: No missing codes, limits based on characterization results.  
3: These parameters are characterized but not tested in manufacturing.  
4: Characterized with a 15 kHz sine wave.  
5: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless  
otherwise stated, module functionality is ensured, but not characterized.  
DS70005258C-page 432  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-52: ADC MODULE SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)(5)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristics  
Min.  
Typical  
Max.  
Units  
Conditions  
ADC Accuracy: Single-Ended Input  
AD20b Nr  
AD21b INL  
AD22b DNL  
Resolution  
12  
bits  
Integral Nonlinearity  
Differential Nonlinearity  
> 5  
< 5  
< 1  
LSb AVSS = 0V, AVDD = 3.3V  
> -1  
LSb AVSS = 0V, AVDD = 3.3V  
(Note 2)  
AD23b GERR  
Gain Error  
(Dedicated Core)  
> 0  
> 5  
> 2  
> 5  
8
< 15  
< 22  
< 15  
< 22  
LSb AVSS = 0V, AVDD = 3.3V  
Gain Error  
(Shared Core)  
15  
9
LSb  
AD24b EOFF  
Offset Error  
(Dedicated Core)  
LSb AVSS = 0V, AVDD = 3.3V  
LSb  
Offset Error  
(Shared Core)  
17  
AD25b  
Monotonicity  
Guaranteed  
Dynamic Performance  
AD31b SINAD  
AD34b ENOB  
Signal-to-Noise and  
Distortion  
63  
> 65  
dB (Notes 3, 4)  
bits (Notes 3, 4)  
Effective Number of Bits  
10.3  
Note 1: These parameters are not characterized or tested in manufacturing.  
2: No missing codes, limits based on characterization results.  
3: These parameters are characterized but not tested in manufacturing.  
4: Characterized with a 15 kHz sine wave.  
5: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless  
otherwise stated, module functionality is ensured, but not characterized.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 433  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-53: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)(2)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol Characteristics  
Min. Typ.(1) Max. Units  
Conditions  
Clock Parameters  
AD50 TAD  
AD51 FTP  
ADC Clock Period 14.28  
ns  
Throughput Rate  
SH0-SH3  
SH4  
3.25 Msps 70 MHz ADC clock, 12 bits, no pending  
conversion at time of trigger  
3.25 Msps  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless  
otherwise stated, module functionality is ensured, but not characterized.  
TABLE 30-54: HIGH-SPEED ANALOG COMPARATOR MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)(2)  
AC/DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Comments  
CM10  
CM11  
VIOFF  
VICM  
Input Offset Voltage  
-35  
0
±5  
35  
mV  
V
Input Common-Mode  
Voltage Range(1)  
AVDD  
CM13 CMRR Common-Mode  
Rejection Ratio  
60  
dB  
CM14  
TRESP  
Large Signal Response  
15  
ns V+ input step of 100 mV while  
V- input is held at AVDD/2. Delay  
measured from analog input pin to  
PWMx output pin.  
CM15  
CM16  
VHYST  
TON  
Input Hysteresis  
5
10  
20  
1
mV Depends on HYSSEL<1:0>  
µs  
Comparator Enabled to  
Valid Output  
Note 1: These parameters are for design guidance only and are not tested in manufacturing.  
2: The comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless  
otherwise stated, module functionality is tested, but not characterized.  
DS70005258C-page 434  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-55: DACx MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)(2)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC/DC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Comments  
DA01  
DA02  
DA03  
DA04  
DA05  
DA06  
DA07  
EXTREF External Voltage Reference(1)  
1
12  
AVDD  
V
CVRES  
INL  
Resolution  
bits  
LSB  
LSB  
LSB  
%
Integral Nonlinearity Error  
Differential Nonlinearity Error  
Offset Error  
-16  
-1.8  
-8  
-12  
±1  
0
1.8  
15  
0
DNL  
EOFF  
EG  
3
Gain Error  
-1.2  
-0.5  
700  
TSET  
Settling Time(1)  
ns  
Output with 2% of desired  
output voltage with a  
10-90% or 90-10% step  
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
2: The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless  
otherwise stated, module functionality is tested, but not characterized.  
TABLE 30-56: DACx OUTPUT (DACOUTx PIN) SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)(1)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Comments  
DA11 RLOAD  
DA11a CLOAD  
DA12 IOUT  
Resistive Output Load  
Impedance  
10k  
Ohm  
Output Load  
Capacitance  
300  
35  
pF Including output pin  
capacitance  
Output Current Drive  
Strength  
µA Sink and source  
DA13 VRANGE Output Drive Voltage AVSS + 250 mV  
AVDD – 900 mV  
V
Range at Current  
Drive of 300 µA  
DA14 VLRANGE Output Drive Voltage  
Range at Reduced  
AVSS + 50 mV  
AVDD – 500 mV  
1.3 x IOUT  
V
Current Drive of 50 µA  
DA15 IDD  
Current Consumed  
when Module is  
Enabled  
µA Module will always  
consume this current,  
even if no load is  
connected to the output  
DA30 VOFFSET Input Offset Voltage  
5  
mV  
Note 1: The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless  
otherwise stated, module functionality is tested, but not characterized.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 435  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-57: PGAx MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)(1)  
AC/DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Units  
Comments  
PA01  
PA02  
VIN  
Input Voltage Range  
AVSS – 0.3  
AVSS  
AVDD + 0.3  
AVDD – 1.6  
V
V
VCM  
Common-Mode Input  
Voltage Range  
PA03  
PA04  
VOS  
VOS  
Input Offset Voltage  
-10  
10  
mV  
Input Offset Voltage Drift  
with Temperature  
15  
µV/C  
PA05  
PA06  
PA07  
RIN+  
RIN-  
Input Impedance of  
Positive Input  
>1M || 7 pF  
10k || 7 pF  
|| pF  
|| pF  
Input Impedance of  
Negative Input  
GERR  
Gain Error  
-2  
-3  
-4  
2
3
%
%
%
%
Gain = 4x, 8x  
Gain = 16x  
4
Gain = 32x, 64x  
PA08  
PA09  
LERR  
IDD  
Gain Nonlinearity Error  
Current Consumption  
0.5  
% of full scale,  
Gain = 16x  
2.0  
mA  
Module is enabled with  
a 2-volt P-P output  
voltage swing  
PA10a BW  
PA10b  
Small Signal  
Bandwidth (-3 dB)  
G = 4x  
10  
5
MHz  
MHz  
MHz  
MHz  
MHz  
µs  
G = 8x  
PA10c  
G = 16x  
G = 32x  
G = 64x  
2.5  
PA10d  
1.25  
0.625  
0.4  
PA10e  
PA11  
OST  
Output Settling Time to 1%  
of Final Value  
Gain = 16x, 100 mV  
input step change  
PA12 SR  
Output Slew Rate  
40  
1
10  
V/µs Gain = 16x  
PA13  
PA14  
TGSEL  
TON  
Gain Selection Time  
Module Turn On/Setting Time  
µs  
µs  
Note 1: The PGAx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless  
otherwise stated, module functionality is tested, but not characterized.  
DS70005258C-page 436  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
TABLE 30-58: CONSTANT-CURRENT SOURCE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)(1)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ.  
Max. Units  
Conditions  
CC01 IDD  
Current Consumption  
30  
±3  
µA  
%
CC02 IREG  
Regulation of Current with  
Voltage On  
CC03 IOUT  
Current Output at Terminal  
10  
µA  
Note 1: The constant-current source module is functional at VBORMIN < VDD < VDDMIN, but with degraded  
performance. Unless otherwise stated, module functionality is tested, but not characterized.  
TABLE 30-59: DMA MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min.  
Typ.(1)  
Max.  
Units  
Conditions  
(2)  
1 TCY  
DM1  
DMA Byte/Word Transfer Latency  
ns  
Note 1: These parameters are characterized, but not tested in manufacturing.  
2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 437  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 438  
2016-2018 Microchip Technology Inc.  
31.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS  
Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes  
only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating  
range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
FIGURE 31-1:  
VOH – 4x DRIVER PINS  
FIGURE 31-3:  
VOL – 4x DRIVER PINS  
3.6V  
3.6V  
3.3V  
3.3V  
3V  
3V  
Absolute Maximum  
Absolute Maximum  
FIGURE 31-2:  
VOH – 8x DRIVER PINS  
FIGURE 31-4:  
VOL – 8x DRIVER PINS  
3.6V  
3.6V  
3.3V  
3.3V  
3V  
3V  
Absolute Maximum  
Absolute Maximum  
FIGURE 31-5:  
TYPICAL IPD CURRENT @ VDD = 3.3V  
FIGURE 31-7:  
TYPICAL IDOZE CURRENT @ VDD = 3.3V, +25°C  
300  
30.0  
25.0  
20.0  
250  
200  
150  
100  
50  
15.0  
10.0  
5.0  
0
0.0  
-40 -30 -20 -10  
0
10 20  
30 40  
50 60  
70 80  
90 100 110 120  
1:1  
1:2  
1:64  
1:128  
Temperature (°C)  
Doze Ratio  
FIGURE 31-6:  
TYPICAL IDD CURRENT @ VDD = 3.3V, +25°C  
FIGURE 31-8:  
TYPICAL IIDLE CURRENT @ VDD = 3.3V, +25°C  
12.0  
30  
10.0  
8.0  
6.0  
4.0  
2.0  
25  
20  
15  
10  
0.0  
10  
5
20  
30  
40  
50  
60  
70  
10  
20  
30  
40  
50  
60  
70  
MIPS  
MIPS  
FIGURE 31-9:  
TYPICAL FRC FREQUENCY @ VDD = 3.3V  
FIGURE 31-10:  
TYPICAL LPRC FREQUENCY @ VDD = 3.3V  
7400  
34.4  
34.2  
34  
7350  
7300  
7250  
7200  
33.8  
33.6  
33.4  
33.2  
33  
7150  
-40  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 442  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
32.0 PACKAGING INFORMATION  
32.1 Package Marking Information  
28-Lead SOIC (7.50 mm)  
Example  
dsPIC33EP128GS702  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
1810017  
YYWWNNN  
28-Lead UQFN (6x6x0.55 mm)  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
33EP128  
GS702  
1810017  
28-Lead QFN-S (6x6x0.9 mm)  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
33EP128  
GS702  
1810017  
44-Lead TQFP (10x10x1 mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
dsPIC33EP  
64GS804  
1810017  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 443  
dsPIC33EPXXXGS70X/80X FAMILY  
32.1 Package Marking Information (Continued)  
44-Lead QFN (8x8 mm)  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
dsPIC33EP  
64GS804  
1810017  
48-Lead TQFP (7x7x1.0 mm)  
Example  
1
E1P64GS  
8051810  
XXXXXXX  
XXXYYWW  
NNN  
017  
64-Lead TQFP (10x10x1 mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
dsPIC33EP  
64GS806  
1810017  
80-Lead TQFP (12x12x1 mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
dsPIC33EP64  
GS808  
1810017  
DS70005258C-page 444  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
32.2 Package Details  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 445  
dsPIC33EPXXXGS70X/80X FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70005258C-page 446  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 447  
dsPIC33EPXXXGS70X/80X FAMILY  
28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN]  
With 4.65x4.65 mm Exposed Pad and Corner Anchors  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
B
E
N
NOTE 1  
1
2
(DATUM B)  
(DATUM A)  
2X  
0.10 C  
2X  
0.10 C  
TOP VIEW  
A
A1  
C
0.10 C  
28X  
SEATING  
PLANE  
(A3)  
SIDE VIEW  
0.08 C  
8X b1  
8X b2  
0.10  
C A B  
D2  
0.10  
C A B  
E2  
2
1
28X K  
2X P  
N
NOTE 1  
e
L
28X b  
0.10  
0.05  
C A B  
C
BOTTOM VIEW  
Microchip Technology Drawing C04-385 Rev C Sheet 1 of 2  
DS70005258C-page 448  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN]  
With 4.65x4.65 mm Exposed Pad and Corner Anchors  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Number of Terminals  
Pitch  
Overall Height  
Standoff  
Terminal Thickness  
Overall Width  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Exposed Pad Corner Chamfer  
Terminal Width  
Corner Anchor Pad  
Corner Pad, Metal Free Zone  
Terminal Length  
Terminal-to-Exposed-Pad  
N
28  
0.65 BSC  
0.50  
e
A
A1  
A3  
E
E2  
D
D2  
P
b
0.45  
0.00  
0.55  
0.05  
0.02  
0.127 REF  
6.00 BSC  
4.65  
6.00 BSC  
4.65  
4.55  
4.75  
4.55  
-
4.75  
-
0.35  
0.30  
0.40  
0.20  
0.40  
-
0.25  
0.35  
0.15  
0.30  
0.20  
0.35  
0.43  
0.25  
0.50  
-
b1  
b2  
L
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-385 Rev C Sheet 2 of 2  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 449  
dsPIC33EPXXXGS70X/80X FAMILY  
28-Lead Ultra Thin Plastic Quad Flat, No Lead Package (2N) - 6x6x0.55 mm Body [UQFN]  
With 4.65x4.65 mm Exposed Pad and Corner Anchors  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
C2  
Y2  
EV  
28  
Y3  
1
X1  
ØV  
2
Y4  
G1  
C1  
EV  
G2  
Y1  
X4  
X3  
E
SILK SCREEN  
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
E
MILLIMETERS  
NOM  
0.65 BSC  
MIN  
MAX  
Contact Pitch  
Optional Center Pad Width  
Optional Center Pad Length  
Contact Pad Spacing  
X2  
Y2  
C1  
C2  
X1  
Y1  
X3  
Y3  
X4  
Y4  
G1  
G2  
V
4.75  
4.75  
6.00  
6.00  
Contact Pad Spacing  
Contact Pad Width (X28)  
Contact Pad Length (X28)  
Corner Anchor (X4)  
0.35  
0.80  
1.00  
1.00  
0.35  
0.35  
Corner Anchor (X4)  
Corner Anchor Chamfer (X4)  
Corner Anchor Chamfer (X4)  
Contact Pad to Pad (X28)  
Contact Pad to Center Pad (X28)  
Thermal Via Diameter  
0.20  
0.20  
0.33  
1.20  
Thermal Via Pitch  
EV  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during  
reflow process  
Microchip Technology Drawing C04-2385B  
Note:  
Corner anchor pads are not connected internally and are designed as mechanical features when the  
package is soldered to the PCB.  
DS70005258C-page 450  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 451  
dsPIC33EPXXXGS70X/80X FAMILY  
DS70005258C-page 452  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢆꢇꢐꢉꢅꢋꢑꢇꢒꢓꢇꢃꢄꢅꢆꢇꢈꢅꢍꢔꢅꢕꢄꢇꢖꢗꢗꢘꢇMꢇꢙꢚꢙꢚꢛꢜ ꢇ!!ꢇ"ꢓꢆ#ꢇ$ꢎꢐꢒꢂ%&  
'ꢌꢋ(ꢇꢛꢜ)ꢛꢇ!!ꢇ*ꢓ+ꢋꢅꢍꢋꢇꢃꢄ+ꢕꢋ(  
ꢒꢓꢋꢄ, ꢀꢁꢂꢃ ꢄꢅꢃ!ꢁ" ꢃꢆ#ꢂꢂꢅꢇ ꢃꢈꢉꢆ$ꢉꢊꢅꢃ%ꢂꢉ&ꢋꢇꢊ"'ꢃꢈꢌꢅꢉ"ꢅꢃ"ꢅꢅꢃ ꢄꢅꢃꢍꢋꢆꢂꢁꢆꢄꢋꢈꢃ(ꢉꢆ$ꢉꢊꢋꢇꢊꢃꢎꢈꢅꢆꢋ)ꢋꢆꢉ ꢋꢁꢇꢃꢌꢁꢆꢉ ꢅ%ꢃꢉ ꢃ  
ꢄ  ꢈ*++&&&ꢏ!ꢋꢆꢂꢁꢆꢄꢋꢈꢏꢆꢁ!+ꢈꢉꢆ$ꢉꢊꢋꢇꢊ  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 453  
dsPIC33EPXXXGS70X/80X FAMILY  
44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
D1  
B
E
NOTE 2  
(DATUM A)  
(DATUM B)  
E1  
A
A
NOTE 1  
2X  
N
0.20 H A B  
2X  
1 2 3  
0.20 H A B  
4X 11 TIPS  
TOP VIEW  
0.20 C A B  
A
A2  
C
SEATING PLANE  
0.10 C  
A1  
SIDE VIEW  
1 2 3  
N
NOTE 1  
44 X b  
0.20  
C A B  
e
BOTTOM VIEW  
Microchip Technology Drawing C04-076C Sheet 1 of 2  
DS70005258C-page 454  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
H
c
θ
L
(L1)  
SECTION A-A  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
44  
0.80 BSC  
-
MAX  
Number of Leads  
Lead Pitch  
Overall Height  
Standoff  
N
e
A
A1  
-
1.20  
0.15  
1.05  
0.05  
0.95  
-
Molded Package Thickness  
Overall Width  
A2  
E
1.00  
12.00 BSC  
10.00 BSC  
12.00 BSC  
10.00 BSC  
0.37  
Molded Package Width  
Overall Length  
E1  
D
Molded Package Length  
Lead Width  
D1  
b
c
0.30  
0.09  
0.45  
0.45  
0.20  
0.75  
Lead Thickness  
Lead Length  
Footprint  
-
L
L1  
θ
0.60  
1.00 REF  
3.5°  
Foot Angle  
0°  
7°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Exact shape of each corner is optional.  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-076C Sheet 2 of 2  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 455  
dsPIC33EPXXXGS70X/80X FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70005258C-page 456  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
B
E
N
NOTE 1  
1
2
(DATUM B)  
(DATUM A)  
2X  
0.20 C  
2X  
TOP VIEW  
0.20 C  
A1  
0.10 C  
0.08 C  
C
A
SEATING  
PLANE  
44X  
0.10  
A3  
SIDE VIEW  
L
C A B  
D2  
0.10  
C A B  
E2  
K
2
1
NOTE 1  
N
44X b  
0.07  
0.05  
C A B  
C
e
BOTTOM VIEW  
Microchip Technology Drawing C04-103D Sheet 1 of 2  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 457  
dsPIC33EPXXXGS70X/80X FAMILY  
44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Number of Pins  
Pitch  
Overall Height  
Standoff  
Terminal Thickness  
Overall Width  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Terminal Width  
Terminal Length  
N
44  
0.65 BSC  
0.90  
e
A
A1  
A3  
E
E2  
D
D2  
b
L
0.80  
0.00  
1.00  
0.05  
0.02  
0.20 REF  
8.00 BSC  
6.45  
8.00 BSC  
6.45  
0.30  
0.40  
-
6.25  
6.60  
6.25  
0.20  
0.30  
0.20  
6.60  
0.35  
0.50  
-
Terminal-to-Exposed-Pad  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-103D Sheet 2 of 2  
DS70005258C-page 458  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
C1  
X2  
EV  
44  
G2  
1
2
ØV  
EV  
C2  
Y2  
G1  
Y1  
SILK SCREEN  
E
X1  
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
E
MILLIMETERS  
NOM  
0.65 BSC  
MIN  
MAX  
Contact Pitch  
Optional Center Pad Width  
Optional Center Pad Length  
Contact Pad Spacing  
X2  
Y2  
C1  
C2  
X1  
Y1  
G1  
G2  
V
6.60  
6.60  
8.00  
8.00  
Contact Pad Spacing  
Contact Pad Width (X44)  
Contact Pad Length (X44)  
Contact Pad to Contact Pad (X40)  
Contact Pad to Center Pad (X44)  
Thermal Via Diameter  
0.35  
0.85  
0.30  
0.28  
0.33  
1.20  
Thermal Via Pitch  
EV  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during  
reflow process  
Microchip Technology Drawing No. C04-2103C  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 459  
dsPIC33EPXXXGS70X/80X FAMILY  
48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
48X TIPS  
0.20 C A-B D  
D
D1  
D1  
2
D
A
B
E1 E  
E1  
2
A
A
E1  
4
N
1
2
NOTE 1  
4X  
D1  
0.20 H A-B D  
4
48x b  
0.08  
C A-B D  
e
TOP VIEW  
0.10 C  
H
C
A2  
A1  
A
SEATING  
PLANE  
0.08 C  
SIDE VIEW  
Microchip Technology Drawing C04-300-PT Rev A Sheet 1 of 2  
DS70005258C-page 460  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
H
c
E
T
L
(L1)  
SECTION A-A  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
48  
0.50 BSC  
-
MAX  
Number of Leads  
Lead Pitch  
Overall Height  
Standoff  
N
e
A
A1  
-
1.20  
0.15  
1.05  
0.75  
0.05  
0.95  
0.45  
-
Molded Package Thickness  
A2  
L
1.00  
0.60  
1.00 REF  
3.5°  
Foot Length  
Footprint  
Foot Angle  
L1  
I
0°  
7°  
Overall Width  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
E
D
E1  
D1  
c
b
D
E
9.00 BSC  
9.00 BSC  
7.00 BSC  
7.00 BSC  
-
0.22  
12°  
12°  
0.09  
0.17  
11°  
0.16  
0.27  
13°  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
11°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.25mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
5. Datums A-B and D to be determined at center line between leads where leads exit  
plastic body at datum plane H  
Microchip Technology Drawing C04-300-PT Rev A Sheet 2 of 2  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 461  
dsPIC33EPXXXGS70X/80X FAMILY  
48-Lead Thin Quad Flatpack (PT) - 7x7x1.0 mm Body [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
C1  
G
C2  
SILK SCREEN  
48  
Y1  
1 2  
X1  
E
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Contact Pitch  
E
0.50 BSC  
8.40  
8.40  
Contact Pad Spacing  
Contact Pad Spacing  
Contact Pad Width (X48)  
C1  
C2  
X1  
0.30  
1.50  
Contact Pad Length (X48)  
Distance Between Pads  
Y1  
G
0.20  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during  
reflow process  
Microchip Technology Drawing C04-2300-PT Rev A  
DS70005258C-page 462  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
D1/2  
D
NOTE 2  
E1/2  
A
B
E1  
E
A
A
SEE DETAIL 1  
4X N/4 TIPS  
N
1
3
0.20 C A-B D  
2
4X  
NOTE 1  
0.20 H A-B D  
TOP VIEW  
A2  
A
0.05  
C
SEATING  
PLANE  
A1  
C A-B D  
64 X b  
0.08  
0.08 C  
e
SIDE VIEW  
Microchip Technology Drawing C04-085C Sheet 1 of 2  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 463  
dsPIC33EPXXXGS70X/80X FAMILY  
64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
H
c
E
T
L
(L1)  
X=A—B OR D  
X
SECTION A-A  
e/2  
DETAIL 1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
64  
0.50 BSC  
-
1.00  
-
MAX  
Number of Leads  
Lead Pitch  
Overall Height  
N
e
A
-
1.20  
1.05  
0.15  
0.75  
Molded Package Thickness  
Standoff  
A2  
A1  
L
0.95  
0.05  
0.45  
Foot Length  
0.60  
Footprint  
Foot Angle  
L1  
I
1.00 REF  
3.5°  
0°  
7°  
Overall Width  
Overall Length  
E
D
E1  
D1  
c
b
D
E
12.00 BSC  
12.00 BSC  
10.00 BSC  
10.00 BSC  
-
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0.09  
0.17  
11°  
0.20  
0.27  
13°  
0.22  
12°  
12°  
11°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.25mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-085C Sheet 2 of 2  
DS70005258C-page 464  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 465  
dsPIC33EPXXXGS70X/80X FAMILY  
ꢁꢛꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ-(ꢌ+ꢇꢎꢏꢅꢆꢇꢐꢉꢅꢋ.ꢅꢍꢔꢇꢖꢈ-ꢘꢇMꢇ/ꢀꢚ/ꢀꢚ/ꢇ!!ꢇ"ꢓꢆ#ꢑꢇꢀꢜꢛꢛꢇ!!ꢇ$-ꢎꢐꢈ&  
ꢒꢓꢋꢄ, ꢀꢁꢂꢃ ꢄꢅꢃ!ꢁ" ꢃꢆ#ꢂꢂꢅꢇ ꢃꢈꢉꢆ$ꢉꢊꢅꢃ%ꢂꢉ&ꢋꢇꢊ"'ꢃꢈꢌꢅꢉ"ꢅꢃ"ꢅꢅꢃ ꢄꢅꢃꢍꢋꢆꢂꢁꢆꢄꢋꢈꢃ(ꢉꢆ$ꢉꢊꢋꢇꢊꢃꢎꢈꢅꢆꢋ)ꢋꢆꢉ ꢋꢁꢇꢃꢌꢁꢆꢉ ꢅ%ꢃꢉ ꢃ  
ꢄ  ꢈ*++&&&ꢏ!ꢋꢆꢂꢁꢆꢄꢋꢈꢏꢆꢁ!+ꢈꢉꢆ$ꢉꢊꢋꢇꢊ  
D
D1  
E
e
E1  
N
b
NOTE 1  
123  
α
NOTE 2  
A
c
φ
A2  
β
A1  
L1  
L
7ꢇꢋ "  
ꢍꢚ88ꢚꢍ3ꢘ3ꢙꢎ  
ꢔꢋ!ꢅꢇ"ꢋꢁꢇꢃ8ꢋ!ꢋ "  
ꢍꢚ9  
M
ꢕꢏꢛ4  
ꢕꢏꢕ4  
ꢕꢏꢖ4  
9:ꢍ  
,ꢕ  
ꢕꢏ4ꢕꢃ6ꢎ0  
M
ꢐꢏꢕꢕ  
M
ꢍꢗ;  
9#!/ꢅꢂꢃꢁ)ꢃ8ꢅꢉ%"  
8ꢅꢉ%ꢃ(ꢋ ꢆꢄ  
:-ꢅꢂꢉꢌꢌꢃ<ꢅꢋꢊꢄ  
ꢍꢁꢌ%ꢅ%ꢃ(ꢉꢆ$ꢉꢊꢅꢃꢘꢄꢋꢆ$ꢇꢅ""  
ꢎ ꢉꢇ%ꢁ))ꢃꢃ  
ꢀꢁꢁ ꢃ8ꢅꢇꢊ ꢄ  
9
ꢗꢒ  
ꢗꢐ  
8
ꢐꢏꢒꢕ  
ꢐꢏꢕ4  
ꢕꢏꢐ4  
ꢕꢏꢜ4  
ꢕꢏ>ꢕ  
ꢀꢁꢁ ꢈꢂꢋꢇ  
ꢀꢁꢁ ꢃꢗꢇꢊꢌꢅ  
8ꢐ  
ꢐꢏꢕꢕꢃꢙ3ꢀ  
ꢓꢏ4ꢝ  
ꢕꢝ  
ꢜꢝ  
:-ꢅꢂꢉꢌꢌꢃ@ꢋ% ꢄ  
:-ꢅꢂꢉꢌꢌꢃ8ꢅꢇꢊ ꢄ  
3
3ꢐ  
ꢔꢐ  
ꢐꢖꢏꢕꢕꢃ6ꢎ0  
ꢐꢖꢏꢕꢕꢃ6ꢎ0  
ꢐꢒꢏꢕꢕꢃ6ꢎ0  
ꢐꢒꢏꢕꢕꢃ6ꢎ0  
M
ꢍꢁꢌ%ꢅ%ꢃ(ꢉꢆ$ꢉꢊꢅꢃ@ꢋ% ꢄ  
ꢍꢁꢌ%ꢅ%ꢃ(ꢉꢆ$ꢉꢊꢅꢃ8ꢅꢇꢊ ꢄ  
8ꢅꢉ%ꢃꢘꢄꢋꢆ$ꢇꢅ""  
8ꢅꢉ%ꢃ@ꢋ% ꢄ  
ꢍꢁꢌ%ꢃꢔꢂꢉ) ꢃꢗꢇꢊꢌꢅꢃ  
ꢍꢁꢌ%ꢃꢔꢂꢉ) ꢃꢗꢇꢊꢌꢅꢃ6ꢁ  ꢁ!  
ꢕꢏꢕꢛ  
ꢕꢏꢐꢜ  
ꢐꢐꢝ  
ꢕꢏꢒꢕ  
ꢕꢏꢒꢜ  
ꢐꢓꢝ  
/
ꢕꢏꢒꢒ  
ꢐꢒꢝ  
ꢐꢒꢝ  
ꢐꢐꢝ  
ꢐꢓꢝ  
ꢒꢓꢋꢄꢊ,  
ꢐꢏ (ꢋꢇꢃꢐꢃ-ꢋ"#ꢉꢌꢃꢋꢇ%ꢅ.ꢃ)ꢅꢉ #ꢂꢅꢃ!ꢉꢑꢃ-ꢉꢂꢑ'ꢃ/# ꢃ!#" ꢃ/ꢅꢃꢌꢁꢆꢉ ꢅ%ꢃ&ꢋ ꢄꢋꢇꢃ ꢄꢅꢃꢄꢉ ꢆꢄꢅ%ꢃꢉꢂꢅꢉꢏ  
ꢒꢏ 0ꢄꢉ!)ꢅꢂ"ꢃꢉ ꢃꢆꢁꢂꢇꢅꢂ"ꢃꢉꢂꢅꢃꢁꢈ ꢋꢁꢇꢉꢌ1ꢃ"ꢋ2ꢅꢃ!ꢉꢑꢃ-ꢉꢂꢑꢏ  
ꢓꢏ ꢔꢋ!ꢅꢇ"ꢋꢁꢇ"ꢃꢔꢐꢃꢉꢇ%ꢃ3ꢐꢃ%ꢁꢃꢇꢁ ꢃꢋꢇꢆꢌ#%ꢅꢃ!ꢁꢌ%ꢃ)ꢌꢉ"ꢄꢃꢁꢂꢃꢈꢂꢁ ꢂ#"ꢋꢁꢇ"ꢏꢃꢍꢁꢌ%ꢃ)ꢌꢉ"ꢄꢃꢁꢂꢃꢈꢂꢁ ꢂ#"ꢋꢁꢇ"ꢃ"ꢄꢉꢌꢌꢃꢇꢁ ꢃꢅ.ꢆꢅꢅ%ꢃꢕꢏꢒ4ꢃ!!ꢃꢈꢅꢂꢃ"ꢋ%ꢅꢏ  
ꢖꢏ ꢔꢋ!ꢅꢇ"ꢋꢁꢇꢋꢇꢊꢃꢉꢇ%ꢃ ꢁꢌꢅꢂꢉꢇꢆꢋꢇꢊꢃꢈꢅꢂꢃꢗꢎꢍ3ꢃ5ꢐꢖꢏ4ꢍꢏ  
6ꢎ0* 6ꢉ"ꢋꢆꢃꢔꢋ!ꢅꢇ"ꢋꢁꢇꢏꢃꢘꢄꢅꢁꢂꢅ ꢋꢆꢉꢌꢌꢑꢃꢅ.ꢉꢆ ꢃ-ꢉꢌ#ꢅꢃ"ꢄꢁ&ꢇꢃ&ꢋ ꢄꢁ# ꢃ ꢁꢌꢅꢂꢉꢇꢆꢅ"ꢏ  
ꢙ3ꢀ* ꢙꢅ)ꢅꢂꢅꢇꢆꢅꢃꢔꢋ!ꢅꢇ"ꢋꢁꢇ'ꢃ#"#ꢉꢌꢌꢑꢃ&ꢋ ꢄꢁ# ꢃ ꢁꢌꢅꢂꢉꢇꢆꢅ'ꢃ)ꢁꢂꢃꢋꢇ)ꢁꢂ!ꢉ ꢋꢁꢇꢃꢈ#ꢂꢈꢁ"ꢅ"ꢃꢁꢇꢌꢑꢏ  
ꢍꢋꢆꢂꢁꢆꢄꢋꢈ ꢆꢄꢇꢁꢌꢁꢊꢑ ꢔꢂꢉ&ꢋꢇꢊ 0ꢕꢖꢞꢕꢛꢒ6  
DS70005258C-page 466  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 467  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 468  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Revision C (October 2018)  
APPENDIX A: REVISION HISTORY  
• Sections:  
Revision A (May 2016)  
- Adds Note 1 to all “Pin Diagrams”.  
This is the initial version of the document.  
- Updates Section 2.5 “ICSP Pins”,  
Section 4.5.2 “Extended X Data Space”,  
Section 8.0 “Direct Memory Access  
(DMA)”, Section 11.7 “I/O Helpful Tips”,  
Section 16.2 “Feature Description”,  
Section 24.1 “Features Overview” and  
Section 24.3 “Module Applications”.  
Revision B (January 2017)  
• Sections:  
- Updates Note 1 in Section 5.0 “Flash  
Program Memory”.  
Tables:  
Tables:  
- Updates the device description table on  
page 2.  
- Updates Table 1-1, Table 4-9, Table 4-15,  
Table 8-1, Table 21-1, Table 21-2, Table 21-3,  
Table 21-4, Table 30-11, Table 30-56 and  
Table 30-57.  
- Updates Table 1-1, Table 4-2, Table 4-11,  
Table 7-1, Table 8-1, Table 11-11,  
Table 11-13, Table 17-1, Table 30-3,  
Table 30-4, Table 30-6, Table 30-7,  
Table 30-8, Table 30-9, Table 30-10,  
Table 30-11, Table 30-52, Table 30-54 and  
Table 30-55.  
• Registers:  
- Updates Register 3-2, Register 5-1,  
Register 9-4, Register 9-5, Register 10-1,  
Register 11-8, Register 14-1, Register 16-1,  
Register 16-2, Register 16-3, Register 16-4,  
Register 16-5, Register 16-6, Register 16-7,  
Register 16-8, Register 16-9, Register 16-10,  
Register 16-11, Register 16-13,  
- Adds Table 11-6, Table 11-7, Table 11-8,  
Table 11-9 and Table 11-10.  
• Figures:  
Register 16-14, Register 16-16,  
- Updates the Pin Function tables in the Pin  
Diagram figures on pages 5 through 8.  
Register 16-22, Register 19-1, Register 19-3,  
Register 21-3, Register 22-1, Register 22-28,  
Register 22-29, Register 22-30 and  
Register 26-1.  
- Updates Figure 4-1, Figure 17-1, Figure 18-1  
and Figure 18-2.  
• Registers:  
• Figures:  
- Updates Register 3-3, Register 16-5,  
Register 17-11, Register 18-1 and  
Register 19-2.  
- Updates Figure 16-2, Figure 18-1,  
Figure 18-2 and Figure 30-30.  
- Adds Register 11-1, Register 11-2,  
Register 11-3, Register 11-4, Register 11-5,  
Register 11-6, Register 11-7 and  
Register 11-8.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 469  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 470  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
INDEX  
Assembler  
A
MPASM Assembler .................................................. 376  
MPLAB Assembler, Linker, Librarian........................ 376  
Absolute Maximum Ratings .............................................. 379  
AC Characteristics ............................................................ 391  
ADC Specifications ................................................... 432  
Analog Current Specifications................................... 431  
Analog-to-Digital Conversion Requirements............. 434  
Auxiliary PLL Clock................................................... 393  
CANx I/O Requirements ........................................... 430  
Capacitive Loading Requirements on  
B
Bit-Reversed Addressing.................................................... 58  
Example...................................................................... 59  
Implementation........................................................... 58  
Sequence Table (16-Entry) ........................................ 59  
Block Diagrams  
Output Pins....................................................... 391  
DMA Module Requirements...................................... 437  
External Clock Requirements ................................... 392  
High-Speed PWMx Requirements............................ 401  
I/O Requirements...................................................... 395  
I2Cx Bus Data Requirements (Master Mode)........... 427  
I2Cx Bus Data Requirements (Slave Mode)............. 429  
Input Capture x Requirements.................................. 399  
Internal FRC Accuracy.............................................. 394  
Internal LPRC Accuracy............................................ 394  
Load Conditions........................................................ 391  
OCx/PWMx Module Requirements........................... 400  
Output Compare x Requirements ............................. 400  
PLL Clock.................................................................. 393  
Reset, WDT, OST, PWRT Requirements................. 396  
SPI1, SPI2 and SPI3 Master Mode (Full-Duplex,  
CKE = 0, CKP = x, SMP = 1) Requirements ........ 405  
SPI1, SPI2 and SPI3 Master Mode (Full-Duplex,  
CKE = 1, CKP = x, SMP = 1) Requirements ........ 404  
SPI1, SPI2 and SPI3 Master Mode (Half-Duplex,  
Transmit Only) Requirements ............................... 403  
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,  
CKE = 0, CKP = 0, SMP = 0) Requirements........ 413  
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,  
CKE = 0, CKP = 1, SMP = 0) Requirements........ 411  
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,  
CKE = 1, CKP = 0, SMP = 0) Requirements........ 407  
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,  
CKE = 1, CKP = 1, SMP = 0) Requirements........ 409  
SPI3 Master Mode (Full-Duplex, CKE = 0,  
CKP = x, SMP = 1) Requirements.................... 417  
SPI3 Master Mode (Full-Duplex, CKE = 1,  
CKP = x, SMP = 1) Requirements.................... 416  
SPI3 Master Mode (Half-Duplex, Transmit Only)  
Requirements ................................................... 415  
SPI3 Slave Mode (Full-Duplex, CKE = 0,  
CKP = 0, SMP = 0) Requirements.................... 425  
SPI3 Slave Mode (Full-Duplex, CKE = 0,  
CKP = 1, SMP = 0) Requirements.................... 423  
SPI3 Slave Mode (Full-Duplex, CKE = 1,  
CKP = 0, SMP = 0) Requirements.................... 419  
SPI3 Slave Mode (Full-Duplex, CKE = 1,  
16-Bit Timer1 Module ............................................... 171  
ADC Module ............................................................. 278  
Addressing for Table Registers .................................. 63  
CALL Stack Frame ..................................................... 54  
CANx Module ........................................................... 312  
CLCx Input Source Selection ................................... 265  
CLCx Logic Function Combinatorial Options............ 264  
CLCx Module............................................................ 263  
Connections for On-Chip Voltage Regulator ............ 359  
Constant-Current Source.......................................... 349  
CPU Core ................................................................... 24  
Data Access from Program Space  
Address Generation............................................ 60  
Dedicated ADC Cores 0-3........................................ 279  
DMA Controller........................................................... 93  
dsPIC33EPXXGS70X/80X Family.............................. 13  
High-Speed Analog Comparator x............................ 338  
High-Speed PWM Architecture................................. 191  
Hysteresis Control .................................................... 340  
I2Cx Module ............................................................. 250  
Input Capture x......................................................... 179  
Interleaved PFC.......................................................... 20  
MCLR Pin Connections .............................................. 18  
Multiplexing Remappable Outputs for RPn .............. 140  
Off-Line UPS .............................................................. 22  
Oscillator System...................................................... 106  
Output Compare x Module ....................................... 183  
Peripheral to DMA Controller...................................... 91  
PGAx Functions........................................................ 346  
PGAx Module ........................................................... 345  
Phase-Shifted Full-Bridge Converter.......................... 21  
PLL Module .............................................................. 107  
Programmer’s Model .................................................. 26  
PSV Read Address Generation.................................. 51  
PTG Module ............................................................. 218  
Recommended Minimum Connection ........................ 18  
Remappable Input for U1RX .................................... 138  
Reset System ............................................................. 71  
Security Segments for dsPIC33EP128GS70X/80X  
(Dual Partition Modes)...................................... 363  
Security Segments for dsPIC33EP64GS70X/80X  
(Dual Partition Modes)...................................... 362  
Security Segments for  
CKP = 1, SMP = 0) Requirements.................... 421  
Temperature and Voltage Specifications.................. 391  
Timer1 External Clock Requirements ....................... 397  
Timer2/Timer4 External Clock Requirements........... 398  
Timer3/Timer5 External Clock Requirements........... 398  
UARTx I/O Requirements ......................................... 431  
AC/DC Characteristics  
DACx Specifications ................................................. 435  
High-Speed Analog Comparator Specifications........ 434  
PGAx Specifications ................................................. 436  
Analog-to-Digital Converter. See ADC.  
dsPIC33EPXXXGS70X/80X............................. 362  
Shared ADC Core..................................................... 279  
Shared Port Structure............................................... 127  
Simplified Conceptual of High-Speed PWM............. 192  
SPIx Master, Frame Master Connection .................. 247  
SPIx Master, Frame Slave Connection .................... 248  
SPIx Master/Slave Connection  
(Enhanced Buffer Modes)................................. 247  
SPIx Master/Slave Connection (Standard Mode)..... 246  
SPIx Module (Enhanced Mode)................................ 235  
Arithmetic Logic Unit (ALU)................................................. 32  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 471  
dsPIC33EPXXXGS70X/80X FAMILY  
SPIx Module (Standard Mode)..................................234  
SPIx Slave, Frame Master Connection.....................248  
D
Data Address Space........................................................... 39  
SPIx Slave, Frame Slave Connection.......................248  
Suggested Oscillator Circuit Placement......................19  
Timerx (x = 2 through 5)............................................176  
Type B/Type C Timer Pair (32-Bit Timer)..................176  
UARTx Module..........................................................257  
Watchdog Timer (WDT)............................................360  
Brown-out Reset (BOR) ............................................ 351, 359  
Memory Map for dsPIC33EP64GS70X/80X  
Devices............................................................... 40  
Near Data Space ........................................................ 39  
Organization, Alignment ............................................. 39  
SFR Space ................................................................. 39  
Width .......................................................................... 39  
Data Space  
Extended X................................................................. 54  
Paged Data Memory Space (figure)........................... 52  
Paged Memory Scheme ............................................. 51  
C
C Compilers  
MPLAB XC................................................................376  
CAN Module  
DC Characteristics  
Brown-out Reset (BOR)............................................ 389  
Constant-Current Source Specifications................... 437  
DACx Output (DACOUTx Pin) Specifications........... 435  
Doze Current (IDOZE)................................................ 385  
I/O Pin Input Specifications....................................... 386  
I/O Pin Output Specifications.................................... 389  
Idle Current (IIDLE) .................................................... 383  
Operating Current (IDD) ............................................ 382  
Operating MIPS vs. Voltage ..................................... 380  
Power-Down Current (IPD)........................................ 384  
Program Memory...................................................... 390  
Temperature and Voltage Specifications.................. 381  
Watchdog Timer Delta Current (IWDT).................... 384  
DC/AC Characteristics  
Control Registers ......................................................313  
Message Buffers.......................................................332  
Word 0 ..............................................................332  
Word 1 ..............................................................332  
Word 2 ..............................................................333  
Word 3 ..............................................................333  
Word 4 ..............................................................334  
Word 5 ..............................................................334  
Word 6 ..............................................................335  
Word 7 ..............................................................335  
Modes of Operation ..................................................312  
Overview ...................................................................311  
CAN Module (CAN)...........................................................311  
CLC  
Graphs and Tables ................................................... 439  
Demo/Development Boards, Evaluation and  
Control Registers ......................................................266  
Code Examples  
Starter Kits................................................................ 378  
Development Support....................................................... 375  
Device Calibration............................................................. 357  
Addresses................................................................. 357  
and Identification ...................................................... 357  
Device Programmer  
MPLAB PM3 ............................................................. 377  
Direct Memory Access. See DMA.  
DMA Controller  
Port Write/Read ........................................................132  
PWM Write-Protected Register  
Unlock Sequence..............................................190  
PWRSAVInstruction Syntax........................................117  
Code Protection ........................................................ 351, 361  
CodeGuard Security.................................................. 351, 361  
Configurable Logic Cell (CLC) ..........................................263  
Configurable Logic Cell. See CLC.  
Configuration Bits..............................................................351  
Description ................................................................353  
Configuration Register Map ..............................................352  
Constant-Current Source ..................................................349  
Control Register........................................................350  
Description ................................................................349  
Features Overview....................................................349  
Controller Area Network. See CAN.  
Channel to Peripheral Associations............................ 92  
Control Registers........................................................ 94  
DMAxCNT .......................................................... 94  
DMAxCON.......................................................... 94  
DMAxPAD .......................................................... 94  
DMAxREQ.......................................................... 94  
DMAxSTAL/H ..................................................... 94  
DMAxSTBL/H ..................................................... 94  
Supported Peripherals................................................ 91  
Doze Mode ....................................................................... 119  
DSP Engine ........................................................................ 32  
CPU  
Addressing Modes ......................................................23  
Clocking System Options..........................................107  
Fast RC (FRC) Oscillator..................................107  
FRC Oscillator with PLL (FRCPLL)...................107  
FRC Oscillator with Postscaler .........................107  
Low-Power RC (LPRC) Oscillator.....................107  
Primary (XT, HS, EC) Oscillator........................107  
Primary Oscillator with PLL  
E
Electrical Characteristics .................................................. 379  
AC............................................................................. 391  
Equations  
Device Operating Frequency.................................... 107  
FPLLO Calculation ..................................................... 107  
FVCO Calculation ...................................................... 107  
Relationship Between Device and  
(XTPLL, HSPLL, ECPLL)..........................107  
Control Registers ........................................................28  
Data Space Addressing ..............................................23  
Instruction Set.............................................................23  
Registers.....................................................................23  
Resources...................................................................27  
Customer Change Notification Service .............................478  
Customer Notification Service...........................................478  
Customer Support.............................................................478  
SPIx Clock Speed............................................. 248  
Errata.................................................................................. 10  
DS70005258C-page 472  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Input Change Notification (ICN)........................................ 132  
Instruction Addressing Modes ............................................ 55  
F
Filter Capacitor (CEFC) Specifications............................... 381  
Flash Program Memory ...................................................... 63  
and Table Instructions................................................. 63  
Control Registers ........................................................ 66  
Dual Partition Flash Configuration .............................. 65  
Operations .................................................................. 64  
Resources................................................................... 65  
RTSP Operation.......................................................... 64  
Flexible Configuration ....................................................... 351  
File Register Instructions............................................ 55  
Fundamental Modes Supported ................................. 55  
MAC Instructions ........................................................ 56  
MCU Instructions........................................................ 55  
Move and Accumulator Instructions ........................... 56  
Other Instructions ....................................................... 56  
Instruction Set Summary .................................................. 365  
Overview................................................................... 368  
Symbols Used in Opcode Descriptions .................... 366  
Instruction-Based Power-Saving Modes........................... 117  
Idle............................................................................ 118  
Sleep ........................................................................ 118  
G
Getting Started Guidelines.................................................. 17  
Connection Requirements .......................................... 17  
CPU Logic Filter Capacitor Connection (VCAP) .......... 18  
Decoupling Capacitors................................................ 17  
External Oscillator Pins............................................... 19  
ICSP Pins.................................................................... 19  
Master Clear (MCLR) Pin............................................ 18  
Oscillator Value Conditions on Start-up...................... 20  
Targeted Applications ................................................. 20  
Unused I/Os................................................................ 20  
2
Inter-Integrated Circuit (I C) ............................................. 249  
Control Registers...................................................... 251  
Resources ................................................................ 249  
2
Inter-Integrated Circuit. See I C.  
Internet Address ............................................................... 478  
Interrupt Controller  
Alternate Interrupt Vector Table (AIVT)...................... 75  
Control and Status Registers...................................... 83  
INTCON1............................................................ 83  
INTCON2............................................................ 83  
INTCON3............................................................ 83  
INTCON4............................................................ 83  
INTTREG............................................................ 83  
Interrupt Vector Details............................................... 78  
Interrupt Vector Table (IVT)........................................ 75  
Reset Sequence......................................................... 75  
Resources .................................................................. 83  
Interrupts Coincident with Power Save Instructions ......... 118  
H
High-Speed Analog Comparator  
Applications............................................................... 339  
Description................................................................ 338  
Digital-to-Analog Comparator (DAC) ........................ 339  
Features Overview.................................................... 337  
Hysteresis ................................................................. 340  
Pulse Stretcher and Digital Logic.............................. 339  
Resources................................................................. 340  
High-Speed PWM  
Features.................................................................... 189  
Resources................................................................. 190  
Write-Protected Registers......................................... 190  
High-Speed, 12-Bit Analog-to-Digital  
J
JTAG Boundary Scan Interface........................................ 351  
JTAG Interface ................................................................. 361  
L
Converter (ADC) ....................................................... 277  
Control Registers ...................................................... 280  
Features Overview.................................................... 277  
Resources................................................................. 280  
Leading-Edge Blanking (LEB) .......................................... 189  
LPRC Oscillator  
Use with WDT........................................................... 360  
M
I
Memory Organization ......................................................... 33  
Resources .................................................................. 41  
Special Function Register Maps................................. 42  
Microchip Internet Web Site.............................................. 478  
Modulo Addressing............................................................. 57  
Applicability................................................................. 58  
Operation Example..................................................... 57  
Start and End Address ............................................... 57  
W Address Register Selection.................................... 57  
MPLAB REAL ICE In-Circuit Emulator System ................ 377  
MPLAB X Integrated Development  
I/O Ports............................................................................ 127  
Configuring Analog/Digital Port Pins......................... 132  
Control Registers ...................................................... 133  
Helpful Tips............................................................... 142  
Open-Drain Configuration......................................... 132  
Parallel I/O (PIO)....................................................... 127  
Register Maps........................................................... 129  
PORTA ............................................................. 129  
PORTB ............................................................. 129  
PORTC ............................................................. 130  
PORTD ............................................................. 130  
PORTE ............................................................. 131  
Resources................................................................. 143  
Write/Read Timing .................................................... 132  
In-Circuit Debugger........................................................... 361  
MPLAB ICD 3............................................................ 377  
PICkit 3 Programmer ................................................ 377  
In-Circuit Emulation........................................................... 351  
In-Circuit Serial Programming (ICSP)....................... 351, 361  
Input Capture .................................................................... 179  
Control Registers ...................................................... 180  
Resources................................................................. 179  
Environment Software .............................................. 375  
MPLINK Object Linker/MPLIB Object Librarian................ 376  
Multiplexer Input Sources  
CLC1 ........................................................................ 269  
CLC2 ........................................................................ 270  
CLC3 ........................................................................ 271  
CLC4 ........................................................................ 272  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 473  
dsPIC33EPXXXGS70X/80X FAMILY  
ADCAL0L (ADC Calibration 0 Low).......................... 303  
ADCAL1H (ADC Calibration 1 High)......................... 305  
ADCMPxCON (ADC Digital Comparator x  
Control)............................................................. 306  
ADCMPxENH (ADC Digital Comparator x  
Channel Enable High) ...................................... 307  
ADCMPxENL (ADC Digital Comparator x  
Channel Enable Low) ....................................... 307  
ADCON1H (ADC Control 1 High) ............................. 281  
ADCON1L (ADC Control 1 Low)............................... 280  
ADCON2H (ADC Control 2 High) ............................. 283  
ADCON2L (ADC Control 2 Low)............................... 282  
ADCON3H (ADC Control 3 High) ............................. 285  
ADCON3L (ADC Control 3 Low)............................... 284  
ADCON4H (ADC Control 4 High) ............................. 287  
ADCON4L (ADC Control 4 Low)............................... 286  
ADCON5H (ADC Control 5 High) ............................. 289  
ADCON5L (ADC Control 5 Low)............................... 288  
ADCORExH (Dedicated ADC Core x  
O
Oscillator  
Control Registers ......................................................109  
Resources.................................................................108  
Oscillator Configuration.....................................................105  
Output Compare................................................................183  
Control Registers ......................................................184  
Resources.................................................................183  
P
Packaging .........................................................................443  
Details.......................................................................445  
Marking .....................................................................443  
Peripheral Module Disable (PMD).....................................119  
Peripheral Pin Select (PPS)..............................................137  
Available Peripherals ................................................137  
Available Pins ...........................................................137  
Control ......................................................................137  
Control Registers ......................................................144  
Input Mapping ...........................................................138  
Output Mapping ........................................................140  
Output Selection for Remappable Pins.....................141  
Selectable Input Sources..........................................139  
Peripheral Trigger Generator (PTG) Module.....................217  
Peripheral Trigger Generator. See PTG.  
Pinout I/O Descriptions (table) ............................................14  
Power-Saving Features.....................................................117  
Clock Frequency and Switching................................117  
Resources.................................................................119  
Program Address Space.....................................................33  
Construction................................................................60  
Data Access from Program Memory Using  
Control High) .................................................... 291  
ADCORExL (Dedicated ADC Core x  
Control Low) ..................................................... 290  
ADEIEH (ADC Early Interrupt Enable High) ............. 293  
ADEIEL (ADC Early Interrupt Enable Low)............... 293  
ADEISTATH (ADC Early Interrupt Status High) ....... 294  
ADEISTATL (ADC Early Interrupt Status Low)......... 294  
ADFLxCON (ADC Digital Filter x Control) ................ 308  
ADIEH (ADC Interrupt Enable High)......................... 297  
ADIEL (ADC Interrupt Enable Low) .......................... 297  
ADLVLTRGH (ADC Level-Sensitive Trigger  
Control High) .................................................... 292  
ADLVLTRGL (ADC Level-Sensitive Trigger  
Control Low) ..................................................... 292  
ADMOD0H (ADC Input Mode Control 0 High).......... 295  
ADMOD0L (ADC Input Mode Control 0 Low) ........... 295  
ADMOD1L (ADC Input Mode Control 1 Low) ........... 296  
ADSTATH (ADC Data Ready Status High) .............. 298  
ADSTATL (ADC Data Ready Status Low)................ 298  
ADTRIGxH (ADC Channel Trigger x  
Table Instructions................................................61  
Memory Map (dsPIC33EP128GS70X/80X Devices,  
Dual Partition) .....................................................37  
Memory Map (dsPIC33EP128GS70X/80X  
Devices)..............................................................35  
Memory Map (dsPIC33EP64GS70X/80X Devices,  
Dual Partition) .....................................................36  
Memory Map  
Selection High) ................................................. 301  
ADTRIGxL (ADC Channel Trigger x  
(dsPIC33EP64GS70X/80X Devices) ..................34  
Table Read High Instructions (TBLRDH) .....................61  
Table Read Low Instructions (TBLRDL) ......................61  
Program Memory  
Interfacing with Data Memory Spaces ........................60  
Organization................................................................38  
Reset Vector ...............................................................38  
Programmable Gain Amplifier (PGA)................................345  
Description ................................................................346  
Resources.................................................................347  
Programmable Gain Amplifier. See PGA.  
Programmer’s Model...........................................................25  
Register Descriptions..................................................25  
PTG  
Control Registers ......................................................219  
Introduction ...............................................................217  
Output Descriptions ..................................................232  
Step Commands and Format....................................229  
Pulse-Width Modulator. See PWM.  
Selection Low).................................................. 299  
ALTDTRx (PWMx Alternate Dead-Time).................. 205  
ANSELx (Analog Select Control x) ........................... 136  
AUXCONx (PWMx Auxiliary Control) ....................... 214  
CHOP (PWM Chop Clock Generator) ...................... 198  
CLCxCONH (CLCx Control High)............................. 267  
CLCxCONL (CLCx Control Low) .............................. 266  
CLCxGLSH (CLCx Gate Logic  
Input Select High)............................................. 275  
CLCxGLSL (CLCx Gate Logic Input Select Low) ..... 273  
CLCxSEL (CLCx Input MUX Select)......................... 268  
CLKDIV (Clock Divisor) ............................................ 111  
CMPxCON (Comparator x Control) .......................... 341  
CMPxDAC (Comparator x DAC Control).................. 343  
CNENx (Input Change Notification  
Interrupt Enable x)............................................ 135  
CNPDx (Input Change Notification  
Pull-Down Enable x)......................................... 136  
CNPUx (Input Change Notification  
R
Pull-up Enable x) .............................................. 135  
CORCON (Core Control)...................................... 30, 85  
CTXTSTAT (CPU W Register Context Status)........... 31  
CxBUFPNT1 (CANx Filters 0-3 Buffer Pointer 1) ..... 322  
CxBUFPNT2 (CANx Filters 4-7 Buffer Pointer 2) ..... 323  
Referenced Sources ...........................................................11  
Registers  
ACLKCON (Auxiliary Clock Divisor Control).............114  
ADCAL0L (ADC Calibration 0 High) .........................304  
DS70005258C-page 474  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
CxBUFPNT3 (CANx Filters 8-11  
Buffer Pointer 3)................................................ 323  
CxBUFPNT4 (CANx Filters 12-15  
INTTREG (Interrupt Control and Status) .................... 90  
IOCONx (PWMx I/O Control).................................... 207  
ISRCCON (Constant-Current Source Control)......... 350  
LATx (PORTx Data Latch)........................................ 134  
LEBCONx (PWMx Leading-Edge  
Buffer Pointer 4)................................................ 324  
CxCFG1 (CANx Baud Rate Configuration 1)............ 320  
CxCFG2 (CANx Baud Rate Configuration 2)............ 321  
CxCTRL1 (CANx Control 1)...................................... 313  
CxCTRL2 (CANx Control 2)...................................... 314  
CxEC (CANx Transmit/Receive Error Count) ........... 320  
CxFCTRL (CANx FIFO Control) ............................... 316  
CxFEN1 (CANx Acceptance Filter Enable 1)............ 322  
CxFIFO (CANx FIFO Status) .................................... 317  
CxFMSKSEL1 (CANx Filters 7-0  
Mask Selection 1) ............................................. 326  
CxFMSKSEL2 (CANx Filters 15-8  
Mask Selection 2) ............................................. 327  
CxINTE (CANx Interrupt Enable).............................. 319  
CxINTF (CANx Interrupt Flag) .................................. 318  
CxRXFnEID (CANx Acceptance Filter n  
Blanking Control).............................................. 212  
LEBDLYx (PWMx Leading-Edge  
Blanking Delay) ................................................ 213  
LFSR (Linear Feedback Shift).................................. 116  
MDC (PWM Master Duty Cycle)............................... 199  
NVMADR (Nonvolatile Memory Lower Address)........ 69  
NVMADRU (Nonvolatile Memory Upper Address) ..... 69  
NVMCON (Nonvolatile Memory (NVM) Control) ........ 67  
NVMKEY (Nonvolatile Memory Key).......................... 70  
NVMSRCADR (NVM Source Data Address).............. 70  
OCxCON1 (Output Compare x Control 1)................ 184  
OCxCON2 (Output Compare x Control 2)................ 186  
ODCx (PORTx Open-Drain Control) ........................ 134  
OSCCON (Oscillator Control)................................... 109  
OSCTUN (FRC Oscillator Tuning)............................ 113  
PDCx (PWMx Generator Duty Cycle)....................... 202  
PGAxCAL (PGAx Calibration) .................................. 348  
PGAxCON (PGAx Control)....................................... 347  
PHASEx (PWMx Primary Phase-Shift)..................... 203  
PLLFBD (PLL Feedback Divisor) ............................. 112  
PMD1 (Peripheral Module Disable Control 1) .......... 120  
PMD2 (Peripheral Module Disable Control 2) .......... 122  
PMD3 (Peripheral Module Disable Control 3) .......... 123  
PMD4 (Peripheral Module Disable Control 4) .......... 123  
PMD6 (Peripheral Module Disable Control 6) .......... 124  
PMD7 (Peripheral Module Disable Control 7) .......... 125  
PMD8 (Peripheral Module Disable Control 8) .......... 126  
PORTx (I/O PORTx)................................................. 133  
PTCON (PWM Time Base Control).......................... 193  
PTCON2 (PWM Clock Divider Select)...................... 194  
PTGADJ (PTG Adjust).............................................. 227  
PTGBTE (PTG Broadcast Trigger Enable)............... 222  
PTGC0LIM (PTG Counter 0 Limit) ........................... 225  
PTGC1LIM (PTG Counter 1 Limit) ........................... 226  
PTGCON (PTG Control)........................................... 221  
PTGCST (PTG Control/Status) ................................ 219  
PTGHOLD (PTG Hold)............................................. 226  
PTGL0 (PTG Literal 0).............................................. 227  
PTGQPTR (PTG Step Queue Pointer)..................... 228  
PTGQUEx (PTG Step Queue x)............................... 228  
PTGSDLIM (PTG Step Delay Limit) ......................... 225  
PTGT0LIM (PTG Timer0 Limit) ................................ 224  
PTGT1LIM (PTG Timer1 Limit) ................................ 224  
PTPER (PWM Primary Master  
Extended Identifier)........................................... 325  
CxRXFnSID (CANx Acceptance Filter n  
Standard Identifier) ........................................... 325  
CxRXFUL1 (CANx Receive Buffer Full 1)................. 329  
CxRXFUL2 (CANx Receive Buffer Full 2)................. 329  
CxRXMnEID (CANx Acceptance Filter Mask n  
Extended Identifier)........................................... 328  
CxRXMnSID (CANx Acceptance Filter Mask n  
Standard Identifier) ........................................... 328  
CxRXOVF1 (CANx Receive Buffer Overflow 1)........ 330  
CxRXOVF2 (CANx Receive Buffer Overflow 2)........ 330  
CxTRmnCON (CANx TX/RX Buffer mn Control) ...... 331  
CxVEC (CANx Interrupt Code) ................................. 315  
DEVID (Device ID).................................................... 358  
DEVREV (Device Revision)...................................... 358  
DMALCA (DMA Last Channel Active Status) ........... 102  
DMAPPS (DMA Ping-Pong Status) .......................... 103  
DMAPWC (DMA Peripheral Write  
Collision Status)................................................ 100  
DMARQC (DMA Request Collision Status) .............. 101  
DMAxCNT (DMA Channel x Transfer Count) ............. 98  
DMAxCON (DMA Channel x Control)......................... 94  
DMAxPAD (DMA Channel x Peripheral Address)....... 98  
DMAxREQ (DMA Channel x IRQ Select) ................... 95  
DMAxSTAH (DMA Channel x  
Start Address A, High) ........................................ 96  
DMAxSTAL (DMA Channel x  
Start Address A, Low)......................................... 96  
DMAxSTBH (DMA Channel x  
Start Address B, High) ........................................ 97  
DMAxSTBL (DMA Channel x  
Time Base Period)............................................ 195  
PWMCAPx (PWMx Primary  
Start Address B, Low)......................................... 97  
DSADRH (DMA Most Recent RAM High Address)..... 99  
DSADRL (DMA Most Recent RAM Low Address)...... 99  
DTRx (PWMx Dead-Time)........................................ 205  
FCLCONx (PWMx Fault Current-Limit Control)........ 209  
I2CxCONH (I2Cx Control High) ................................ 253  
I2CxCONL (I2Cx Control Low).................................. 251  
I2CxMSK (I2Cx Slave Mode Address Mask) ............ 256  
I2CxSTAT (I2Cx Status) ........................................... 254  
ICxCON1 (Input Capture x Control 1)....................... 180  
ICxCON2 (Input Capture x Control 2)....................... 181  
INTCON1 (Interrupt Control 1).................................... 86  
INTCON2 (Interrupt Control 2).................................... 88  
INTCON3 (Interrupt Control 3).................................... 89  
INTCON4 (Interrupt Control 4).................................... 89  
Time Base Capture) ......................................... 215  
PWMCONx (PWMx Control) .................................... 200  
PWMKEY (PWM Protection Lock/Unlock Key) ........ 199  
RCON (Reset Control)................................................ 73  
REFOCON (Reference Oscillator Control)............... 115  
RPINR0 (Peripheral Pin Select Input 0) ................... 144  
RPINR1 (Peripheral Pin Select Input 1) ................... 144  
RPINR11 (Peripheral Pin Select Input 11) ............... 147  
RPINR12 (Peripheral Pin Select Input 12) ............... 147  
RPINR13 (Peripheral Pin Select Input 13) ............... 148  
RPINR18 (Peripheral Pin Select Input 18) ............... 148  
RPINR19 (Peripheral Pin Select Input 19) ............... 149  
RPINR2 (Peripheral Pin Select Input 2) ................... 145  
RPINR20 (Peripheral Pin Select Input 20) ............... 149  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 475  
dsPIC33EPXXXGS70X/80X FAMILY  
RPINR21 (Peripheral Pin Select Input 21)................150  
RPINR22 (Peripheral Pin Select Input 22)................150  
RPINR23 (Peripheral Pin Select Input 23)................151  
RPINR26 (Peripheral Pin Select Input 26)................151  
RPINR29 (Peripheral Pin Select Input 29)................152  
RPINR3 (Peripheral Pin Select Input 3)....................145  
RPINR30 (Peripheral Pin Select Input 30)................152  
RPINR37 (Peripheral Pin Select Input 37)................153  
RPINR38 (Peripheral Pin Select Input 38)................153  
RPINR42 (Peripheral Pin Select Input 42)................154  
RPINR43 (Peripheral Pin Select Input 43)................154  
RPINR45 (Peripheral Pin Select Input 45)................155  
RPINR46 (Peripheral Pin Select Input 46)................155  
RPINR7 (Peripheral Pin Select Input 7)....................146  
RPINR8 (Peripheral Pin Select Input 8)....................146  
RPOR0 (Peripheral Pin Select Output 0)..................156  
RPOR1 (Peripheral Pin Select Output 1)..................156  
RPOR10 (Peripheral Pin Select Output 10)..............161  
RPOR11 (Peripheral Pin Select Output 11)..............161  
RPOR12 (Peripheral Pin Select Output 12)..............162  
RPOR13 (Peripheral Pin Select Output 13)..............162  
RPOR14 (Peripheral Pin Select Output 14)..............163  
RPOR15 (Peripheral Pin Select Output 15)..............163  
RPOR16 (Peripheral Pin Select Output 16)..............164  
RPOR17 (Peripheral Pin Select Output 17)..............164  
RPOR18 (Peripheral Pin Select Output 18)..............165  
RPOR19 (Peripheral Pin Select Output 19)..............165  
RPOR2 (Peripheral Pin Select Output 2)..................157  
RPOR20 (Peripheral Pin Select Output 20)..............166  
RPOR21 (Peripheral Pin Select Output 21)..............166  
RPOR22 (Peripheral Pin Select Output 22)..............167  
RPOR23 (Peripheral Pin Select Output 23)..............167  
RPOR24 (Peripheral Pin Select Output 24)..............168  
RPOR25 (Peripheral Pin Select Output 25)..............168  
RPOR26 (Peripheral Pin Select Output 26)..............169  
RPOR3 (Peripheral Pin Select Output 3)..................157  
RPOR4 (Peripheral Pin Select Output 4)..................158  
RPOR5 (Peripheral Pin Select Output 5)..................158  
RPOR6 (Peripheral Pin Select Output 6)..................159  
RPOR7 (Peripheral Pin Select Output 7)..................159  
RPOR8 (Peripheral Pin Select Output 8)..................160  
RPOR9 (Peripheral Pin Select Output 9)..................160  
SDCx (PWMx Secondary Duty Cycle) ......................202  
SEVTCMP (PWM Special Event Compare)..............195  
SPHASEx (PWMx Secondary Phase-Shift)..............204  
SPIxCON1H (SPIx Control 1 High)...........................238  
SPIxCON1L (SPIx Control 1 Low) ............................236  
SPIxCON2L (SPIx Control 2 Low) ............................240  
SPIxIMSKH (SPIx Interrupt Mask High)....................245  
SPIxIMSKL (SPIx Interrupt Mask Low) .....................244  
SPIxSTATH (SPIx Status High)................................243  
SPIxSTATL (SPIx Status Low) .................................241  
SR (CPU STATUS)...............................................28, 84  
SSEVTCMP (PWM Secondary  
STRIGx (PWMx Secondary Trigger  
Compare Value) ............................................... 211  
T1CON (Timer1 Control) .......................................... 173  
TRGCONx (PWMx Trigger Control) ......................... 206  
TRIGx (PWMx Primary Trigger Compare Value)...... 208  
TRISx (PORTx Data Direction Control) .................... 133  
TxCON (Timer2/4 Control)........................................ 177  
TyCON (Timer3/5 Control)........................................ 178  
UxMODE (UARTx Mode).......................................... 259  
UxSTA (UARTx Status and Control)......................... 261  
Resets................................................................................. 71  
Brown-out Reset (BOR).............................................. 71  
Configuration Mismatch Reset (CM)........................... 71  
Illegal Condition Reset (IOPUWR).............................. 71  
Illegal Opcode..................................................... 71  
Security............................................................... 71  
Uninitialized W Register ..................................... 71  
Master Clear (MCLR) Pin Reset................................. 71  
Power-on Reset (POR)............................................... 71  
RESETInstruction (SWR)............................................ 71  
Resources .................................................................. 72  
Trap Conflict Reset (TRAPR) ..................................... 71  
Watchdog Timer Time-out Reset (WDTO) ................. 71  
Revision History................................................................ 469  
S
Serial Peripheral Interface (SPI)....................................... 233  
Serial Peripheral Interface. See SPI.  
SFR Blocks  
000h............................................................................ 42  
100h............................................................................ 42  
200h............................................................................ 43  
300h............................................................................ 43  
400h............................................................................ 44  
500h............................................................................ 44  
600h............................................................................ 45  
700h............................................................................ 46  
800h............................................................................ 47  
900h............................................................................ 47  
A00h ........................................................................... 48  
B00h ........................................................................... 48  
C00h-D00h ................................................................. 49  
E00h-F00h.................................................................. 50  
Software Simulator  
MPLAB X SIM........................................................... 377  
Special Features of the CPU ............................................ 351  
T
Thermal Operating Conditions.......................................... 380  
Thermal Packaging Characteristics.................................. 380  
Third-Party Development Tools........................................ 378  
Timer1............................................................................... 171  
Control Register........................................................ 173  
Mode Settings........................................................... 171  
Resources ................................................................ 172  
Timer2/3 and Timer4/5 ..................................................... 175  
Control Registers...................................................... 177  
Resources ................................................................ 175  
Special Event Compare)...................................198  
STCON (PWM Secondary Master  
Time Base Control)...........................................196  
STCON2 (PWM Secondary  
Clock Divider Select).........................................197  
STPER (PWM Secondary Master  
Time Base Period) ............................................197  
DS70005258C-page 476  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
Timing Diagrams  
BOR and Master Clear Reset Characteristics .......... 395  
CANx I/O................................................................... 430  
U
UART  
Unique Device Identifier (UDID) ......................................... 34  
Universal Asynchronous Receiver  
External Clock........................................................... 392  
High-Speed PWMx Fault Characteristics.................. 401  
High-Speed PWMx Module Characteristics.............. 401  
I/O Characteristics .................................................... 395  
I2Cx Bus Data (Master Mode) .................................. 426  
I2Cx Bus Data (Slave Mode) .................................... 428  
I2Cx Bus Start/Stop Bits (Master Mode)................... 426  
I2Cx Bus Start/Stop Bits (Slave Mode)..................... 428  
Input Capture x (ICx) Characteristics........................ 399  
OCx/PWMx Characteristics ...................................... 400  
Output Compare x (OCx) Characteristics ................. 400  
SPI1, SPI2 and SPI3 Master Mode (Full-Duplex,  
CKE = 0, CKP = x, SMP = 1)............................ 405  
SPI1, SPI2 and SPI3 Master Mode (Full-Duplex,  
CKE = 1, CKP = x, SMP = 1)............................ 404  
SPI1, SPI2 and SPI3 Master Mode (Half-Duplex,  
Transmit Only, CKE = 0)................................... 402  
SPI1, SPI2 and SPI3 Master Mode (Half-Duplex,  
Transmit Only, CKE = 1)................................... 403  
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,  
CKE = 0, CKP = 0, SMP = 0)............................ 412  
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,  
CKE = 0, CKP = 1, SMP = 0)............................ 410  
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,  
CKE = 1, CKP = 0, SMP = 0)............................ 406  
SPI1, SPI2 and SPI3 Slave Mode (Full-Duplex,  
CKE = 1, CKP = 1, SMP = 0)............................ 408  
SPI3 Master Mode (Full-Duplex, CKE = 0,  
Transmitter (UART) .................................................. 257  
Control Registers...................................................... 259  
Helpful Tips............................................................... 258  
Resources ................................................................ 258  
Universal Asynchronous Receiver Transmitter. See UART.  
User OTP Memory............................................................ 359  
V
Voltage Regulator (On-Chip) ............................................ 359  
W
Watchdog Timer (WDT)............................................ 351, 360  
Programming Considerations................................... 360  
WWW Address ................................................................. 478  
WWW, On-Line Support ..................................................... 10  
CKP = x, SMP = 1) ........................................... 417  
SPI3 Master Mode (Full-Duplex, CKE = 1,  
CKP = x, SMP = 1) ........................................... 416  
SPI3 Master Mode (Half-Duplex,  
Transmit Only, CKE = 0)................................... 414  
SPI3 Master Mode (Half-Duplex,  
Transmit Only, CKE = 1)................................... 415  
SPI3 Slave Mode (Full-Duplex, CKE = 0,  
CKP = 0, SMP = 0) ........................................... 424  
SPI3 Slave Mode (Full-Duplex, CKE = 0,  
CKP = 1, SMP = 0) ........................................... 422  
SPI3 Slave Mode (Full-Duplex, CKE = 1,  
CKP = 0, SMP = 0) ........................................... 418  
SPI3 Slave Mode (Full-Duplex, CKE = 1,  
CKP = 1, SMP = 0) ........................................... 420  
Timer1-Timer5 External Clock Characteristics ......... 397  
UARTx I/O Characteristics........................................ 431  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 477  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 478  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
THE MICROCHIP WEBSITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This website is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the website contains the following information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
Customers  
should  
contact  
their  
distributor,  
representative or Field Application Engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the website  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip website at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 479  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 480  
2016-2018 Microchip Technology Inc.  
dsPIC33EPXXXGS70X/80X FAMILY  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
dsPIC 33 EP 64 GS8 04 T - I / PT XXX  
dsPIC33EP64GS804-I/PT:  
dsPIC33, Enhanced Performance,  
64-Kbyte Program Memory, SMPS,  
44-Pin, Industrial Temperature,  
TQFP Package.  
Microchip Trademark  
Architecture  
Flash Memory Family  
Program Memory Size (Kbyte)  
Product Group  
Pin Count  
Tape and Reel Flag (if applicable)  
Temperature Range  
Package  
Pattern  
Architecture:  
33  
=
=
=
16-Bit Digital Signal Controller  
Enhanced Performance  
SMPS Family  
Flash Memory Family:  
Product Group:  
Pin Count:  
EP  
GS  
02  
04  
05  
06  
08  
=
=
=
=
=
28-pin  
44-pin  
48-pin  
64-pin  
80-pin  
Temperature Range:  
Package:  
I
=
=
-40C to +85C (Industrial)  
-40C to +125C (Extended)  
E
ML  
MM  
2N  
PT  
PT  
PT  
PT  
SO  
=
=
=
=
=
=
=
=
Plastic Quad, No Lead Package – (44-pin) 8x8 mm body (QFN)  
Plastic Quad, No Lead Package – (28-pin) 6x6 mm body (QFN-S)  
Plastic Quad Flat, No Lead Package – (28-pin) 6x6 mm body (UQFN)  
Plastic Thin Quad Flatpack – (44-pin) 10x10 mm body (TQFP)  
Plastic Thin Quad Flatpack – (48-pin) 7x7 mm body (TQFP)  
Plastic Thin Quad Flatpack – (64-pin) 10x10 mm body (TQFP)  
Plastic Thin Quad Flatpack – (80-pin) 12x12 mm body (TQFP)  
Plastic Small Outline, Wide – (28-pin) 7.50 mm body (SOIC)  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 481  
dsPIC33EPXXXGS70X/80X FAMILY  
NOTES:  
DS70005258C-page 482  
2016-2018 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BitCloud, chipKIT, chipKIT logo,  
CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo,  
JukeBlox, KeeLoq, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, SAM-BA, SpyNIC, SST, SST Logo,  
SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, INICnet, Inter-Chip Connectivity,  
JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi,  
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,  
MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation,  
PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon,  
QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O,  
SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
© 2018, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-3795-6  
== ISO/TS 16949 ==  
2016-2018 Microchip Technology Inc.  
DS70005258C-page 483  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS70005258C-page 484  
2016-2018 Microchip Technology Inc.  
08/15/18  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY