DSPIC33FJ06GS101TI/SO [MICROCHIP]

High-Performance, 16-bit Digital Signal Controllers; 高性能16位数字信号控制器
DSPIC33FJ06GS101TI/SO
型号: DSPIC33FJ06GS101TI/SO
厂家: MICROCHIP    MICROCHIP
描述:

High-Performance, 16-bit Digital Signal Controllers
高性能16位数字信号控制器

控制器
文件: 总346页 (文件大小:5112K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04  
Data Sheet  
High-Performance,  
16-bit Digital Signal Controllers  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP,  
32  
PICkit, PICDEM, PICDEM.net, PICtail, PIC logo, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select  
Mode, Total Endurance, TSHARC, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS70318D-page ii  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04  
High-Performance, 16-Bit Digital Signal Controllers  
Operating Range:  
Peripheral Features:  
• Up to 40 MIPS Operation (at 3.0-3.6V):  
• Timer/Counters, up to Three 16-Bit Timers:  
- Can pair up to make one 32-bit timer  
• Input Capture (up to two channels):  
- Capture on up, down or both edges  
- 16-bit capture input functions  
- Industrial temperature range (-40°C to +85°C)  
- Extended temperature range (-40°C to +125°C)  
High-Performance DSC CPU:  
- 4-deep FIFO on each capture  
• Modified Harvard Architecture  
• C Compiler Optimized Instruction Set  
• 16-Bit Wide Data Path  
• Output Compare (up to two channels):  
- Single or Dual 16-Bit Compare mode  
- 16-Bit Glitchless PWM mode  
• 24-Bit Wide Instructions  
4-Wire SPI:  
• Linear Program Memory Addressing up to  
4M Instruction Words  
- Framing supports I/O interface to simple  
codecs  
• Linear Data Memory Addressing up to 64 Kbytes  
• 83 Base Instructions: Mostly 1 Word/1 Cycle  
- 1-deep FIFO Buffer.  
- Supports 8-bit and 16-bit data  
• Two 40-Bit Accumulators with Rounding and  
Saturation Options  
- Supports all serial clock formats and  
sampling modes  
• I2C™:  
• Flexible and Powerful Addressing modes:  
- Indirect  
- Supports Full Multi-Master Slave mode  
- Modulo  
- 7-bit and 10-bit addressing  
- Bus collision detection and arbitration  
- Integrated signal conditioning  
- Slave address masking  
- Bit-Reversed  
• Software Stack  
• 16 x 16 Fractional/Integer Multiply Operations  
• 32/16 and 16/16 Divide Operations  
• Single-Cycle Multiply and Accumulate:  
- Accumulator write back for DSP operations  
- Dual data fetch  
• UART:  
- Interrupt on address bit detect  
- Interrupt on UART error  
- Wake-up on Start bit from Sleep mode  
- 4-character TX and RX FIFO buffers  
- LIN bus support  
• Up to ±16-Bit Shifts for up to 40-Bit Data  
Digital I/O:  
- IrDA® encoding and decoding in hardware  
• Peripheral Pin Select Functionality  
- High-Speed Baud mode  
• Up to 35 Programmable Digital I/O Pins  
• Wake-up/Interrupt-on-Change for up to 30 Pins  
• Output Pins can Drive Voltage from 3.0V to 3.6V  
• Up to 5V Output with Open-Drain Configuration  
• 5V Tolerant Digital Input Pins (except RB5)  
• 16 mA Source/Sink on All PWM pins  
- Hardware Flow Control with CTS and RTS  
Interrupt Controller:  
• 5-Cycle Latency  
• Up to 35 Available Interrupt Sources  
• Up to Three External Interrupts  
• Seven Programmable Priority Levels  
• Four Processor Exceptions  
On-Chip Flash and SRAM:  
• Flash Program Memory (up to 16 Kbytes)  
• Data SRAM (up to 2 Kbytes)  
• Boot and General Security for Program Flash  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 1  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
High-Speed PWM Module Features:  
High-Speed 10-Bit ADC  
• Up to Four PWM Generators with Four to  
Eight Outputs  
• 10-Bit Resolution  
• Up to 12 Input Channels Grouped into  
Six Conversion Pairs  
• Individual Time Base and Duty Cycle for each of  
the Eight PWM Outputs  
• Two Internal Reference Monitoring Inputs  
Grouped into a Pair  
• Dead Time for Rising and Falling Edges  
• Duty Cycle Resolution of 1.04 ns  
• Dead-Time Resolution of 1.04 ns  
• Phase Shift Resolution of 1.04 ns  
• Frequency Resolution of 1.04 ns  
• PWM modes Supported:  
- Standard Edge-Aligned  
- True Independent Output  
- Complementary  
• Successive Approximation Register (SAR)  
Converters for Parallel Conversions of Analog Pairs:  
- 4 Msps for devices with two SARs  
- 2 Msps for devices with one SAR  
• Dedicated Result Buffer for each Analog Channel  
• Independent Trigger Source Section for each  
Analog Input Conversion Pair  
Power Management:  
- Center-Aligned  
• On-Chip 2.5V Voltage Regulator  
- Push-Pull  
• Switch between Clock Sources in Real Time  
• Idle, Sleep, and Doze modes with Fast Wake-up  
- Multi-Phase  
- Variable Phase  
- Fixed Off-Time  
CMOS Flash Technology:  
- Current Reset  
- Current-Limit  
• Low-Power, High-Speed Flash Technology  
• Fully Static Design  
• Independent Fault/Current-Limit Inputs for  
8 PWM Outputs  
• 3.3V (±10%) Operating Voltage  
• Industrial and Extended Temperature  
• Low-Power Consumption  
• Output Override Control  
• Special Event Trigger  
• PWM Capture Feature  
• Prescaler for Input Clock  
System Management:  
• Dual Trigger from PWM to ADC  
• PWMxL, PWMxH Output Pin Swapping  
• PWM4H, PWM4L Pins Remappable  
• Flexible Clock Options:  
- External, crystal, resonator, internal RC  
- Phase-Locked Loop (PLL) with 120 MHz VCO  
• On-the-Fly PWM Frequency, Duty Cycle and  
Phase Shift Changes  
- Primary Crystal Oscillator (OSC) in the range  
of 3 MHz to 40 MHz  
• Disabling of Individual PWM Generators  
• Leading-Edge Blanking (LEB) Functionality  
- Internal Low-Power RC (LPRC) oscillator at a  
frequency of 32 kHz  
- Internal Fast RC (FRC) oscillator at a  
frequency of 7.37 MHz  
High-Speed Analog Comparator  
• Power-on Reset (POR)  
• Up to Four Analog Comparators:  
- 20 ns response time  
• Brown-out Reset (BOR)  
• Power-up Timer (PWRT)  
- 10-bit DAC for each analog comparator  
- DACOUT pin to provide DAC output  
- Programmable output polarity  
- Selectable input source  
• Oscillator Start-up Timer (OST)  
• Watchdog Timer with its RC Oscillator  
• Fail-Safe Clock Monitor (FSCM)  
• Reset by Multiple Sources  
- ADC sample and convert capability  
• PWM Module Interface:  
• In-Circuit Serial Programming™ (ICSP™)  
• Reference Oscillator Output  
- PWM duty cycle control  
- PWM period control  
- PWM Fault detect  
DS70318D-page 2  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Application Examples  
• AC-to-DC Converters  
• Automotive HID  
• Battery Chargers  
• DC-to-DC Converters  
• Digital Lighting  
• Induction Cooking  
• LED Ballast  
• Renewable Power/Pure Sine Wave Inverters  
• Uninterruptible Power Supply (UPS)  
Packaging:  
• 18-Pin SOIC  
• 28-Pin SPDIP/SOIC/QFN-S  
• 44-Pin TQFP/QFN  
Note:  
See the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 Controller  
Families table for the exact peripheral  
features per device.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 3  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 PRODUCT  
FAMILIES  
The device names, pin counts, memory sizes and  
peripheral availability of each device are listed below.  
The following pages show their pinout diagrams.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 Controller Families  
Remappable Peripherals  
ADC  
Device  
(1)  
dsPIC33FJ06GS101 18  
dsPIC33FJ06GS102 28  
6
6
256  
8
2
2
0
0
1
1
1
1
1
1
2x2  
0
0
3
3
0
0
1
1
1
1
3
3
6
6
13  
SOIC  
256 16  
1K 16  
2K 16  
2x2  
21 SPDIP  
SOIC  
QFN-S  
dsPIC33FJ06GS202 28  
dsPIC33FJ16GS402 28  
6
2
3
1
2
1
2
1
1
1
1
2x2  
3x2  
3x2  
2
0
3
3
1
0
1
1
1
1
3
4
6
8
21 SPDIP  
SOIC  
QFN-S  
16  
21 SPDIP  
SOIC  
QFN-S  
dsPIC33FJ16GS404 44  
dsPIC33FJ16GS502 28  
16  
16  
2K 30  
2K 16  
3
3
2
2
2
2
1
1
1
1
0
4
3
3
0
1
1
1
1
2
4
6
8
8
35  
QFN  
TQFP  
(1)  
4x2  
21 SPDIP  
SOIC  
QFN-S  
(1)  
dsPIC33FJ16GS504 44  
16  
2K 30  
3
2
2
1
1
4x2  
4
3
1
1
2
6
12 35  
QFN  
TQFP  
Note 1: The PWM4H:PWM4L pins are remappable.  
2: The PWM Fault pins and PWM synchronization pins are remappable.  
3: Only two out of three interrupts are remappable.  
DS70318D-page 4  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Pin Diagrams  
18-Pin SOIC  
= Pins are up to 5V tolerant  
MCLR  
AN0/RA0  
1
2
3
4
5
18  
17  
16  
15  
14  
VDD  
VSS  
AN1/RA1  
PWM1L/RA3  
PWM1H/RA4  
AN2/RA2  
AN3/RP0(1)/CN0/RB0  
OSC1/CLKI/AN6/RP1(1)/CN1/RB1  
OSC2/CLKO/AN7/RP2(1)/CN2/RB2  
TCK/PGED2/INT0/RP3(1)/CN3/RB3  
TMS/PGEC2/RP4(1)/CN4/RB4  
VCAP/VDDCORE  
VSS  
PGEC1/SDA1/RP7(1)/CN7/RB7  
PGED1/TDI/SCL1/RP6(1)/CN6/RB6  
TDO/RP5(1)/CN5/RB5  
6
13  
7
8
12  
11  
9
10  
= Pins are up to 5V tolerant  
28-Pin SOIC, SPDIP  
MCLR  
AN0/RA0  
AN1/RA1  
1
2
3
4
5
6
7
8
28  
AVDD  
AVSS  
PWM1L/RA3  
PWM1H/RA4  
27  
26  
25  
24  
23  
22  
21  
AN2/RA2  
AN3/RP0(1)/CN0/RB0  
AN4/RP9(1)/CN9/RB9  
PWM2L/RP14(1)/CN14/RB14  
PWM2H/RP13(1)/CN13/RB13  
RP12(1)/CN12/RB12  
RP11(1)/CN11/RB11  
AN5/RP10(1)/CN10/RB10  
VSS  
OSC1/CLKIN/RP1(1)/CN1/RB1  
OSC2/CLKO/RP2(1)/CN2/RB2  
TCK/PGED2/INT0/RP3(1)/CN3/RB3  
TMS/PGEC2/RP4(1)/CN4/RB4  
VDD  
9
20  
19  
18  
17  
16  
15  
VCAP/VDDCORE  
VSS  
10  
11  
12  
13  
14  
PGEC1/SDA/RP7(1)/CN7/RB7  
PGED1/TDI/SCL/RP6(1)/CN6/RB6  
TDO/RP5(1)/CN5/RB5  
PGEC3/RP15(1)/CN15/RB15  
PGED3/RP8(1)/CN8/RB8  
= Pins are up to 5V tolerant  
28-Pin SPDIP, SOIC  
MCLR  
AN0/CMP1A/RA0  
AN1/CMP1B/RA1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AVDD  
AVSS  
PWM1L/RA3  
PWM1H/RA4  
AN2/CMP1C/CMP2A/RA2  
AN3/CMP1D/CMP2B/RP0(1)/CN0/RB0  
AN4/CMP2C/RP9(1)/CN9/RB9  
AN5/CMP2D/RP10(1)/CN10/RB10  
VSS  
PWM2L/RP14(1)/CN14/RB14  
PWM2H/RP13(1)/CN13/RB13  
TCK/RP12(1)/CN12/RB12  
TMS/RP11(1)/CN11/RB11  
OSC1/CLKIN/RP1(1)/CN1/RB1  
OSC2/CLKO/RP2(1)/CN2/RB2  
PGED2/DACOUT/INT0/RP3(1)/CN3/RB3  
PGEC2/EXTREF/RP4(1)/CN4/RB4  
VDD  
VCAP/VDDCORE  
VSS  
PGEC1/SDA/RP7(1)/CN7/RB7  
PGED1/TDI/SCL/RP6(1)/CN6/RB6  
TDO/RP5(1)/CN5/RB5  
PGEC3/RP15(1)/CN15/RB15  
PGED3/RP8(1)/CN8/RB8  
Note 1: The RPn pins can be used by any remappable peripheral. See the “dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 Controller Families” table for the list of available peripherals  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 5  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Pin Diagrams (Continued)  
28-Pin SPDIP, SOIC  
= Pins are up to 5V tolerant  
MCLR  
AN0/RA0  
AN1/RA1  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AVDD  
AVSS  
PWM1L/RA3  
PWM1H/RA4  
AN2/RA2  
AN3/RP0(1)/CN0/RB0  
AN4/RP9(1)/CN9/RB9  
AN5/RP10(1)/CN10/RB10  
VSS  
PWM2L/RP14(1)/CN14/RB14  
PWM2H/RP13(1)/CN13/RB13  
TCK/PWM3L/RP12(1)/CN12/RB12  
TMS/PWM3H/RP11(1)/CN11/RB11  
OSC1/CLKIN/AN6/RP1(1)/CN1/RB1  
OSC2/CLKO/AN7/RP2(1)/CN2/RB2  
PGED2/INT0/RP3(1)/CN3/RB3  
PGEC2/RP4(1)/CN4/RB4  
VDD  
VCAP/VDDCORE  
VSS  
PGEC1/SDA/RP7(1)/CN7/RB7  
PGED1/TDI/SCL/RP6(1)/CN6/RB6  
TDO/RP5(1)/CN5/RB5  
PGED3/RP8(1)/CN8/RB8  
PGEC3/RP15/CN15/RB15  
= Pins are up to 5V tolerant  
28-Pin SPDIP, SOIC  
MCLR  
AN0/CMP1A/RA0  
AN1/CMP1B/RA1  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
AVDD  
AVSS  
PWM1L/RA3  
PWM1H/RA4  
AN2/CMP1C/CMP2A/RA2  
AN3/CMP1D/CMP2B/RP0(1)/CN0/RB0  
AN4/CMP2C/CMP3A/RP9(1)/CN9/RB9  
AN5/CMP2D/CMP3B/RP10(1)/CN10/RB10  
VSS  
PWM2L/RP14(1)/CN14/RB14  
PWM2H/RP13(1)/CN13/RB13  
TCK/PWM3L/RP12(1)/CN12/RB12  
TMS/PWM3H/RP11(1)/CN11/RB11  
OSC1/CLKIN/AN6/CMP3C/CMP4A/RP1(1)/CN1/RB1  
OSC2/CLKO/AN7/CMP3D/CMP4B/RP2(1)/CN2/RB2  
PGED2/DACOUT/INT0/RP3(1)/CN3/RB3  
PGEC2/EXTREF/RP4(1)/CN4/RB4  
VDD  
9
20  
19  
18  
17  
16  
15  
VCAP/VDDCORE  
10  
11  
12  
13  
14  
VSS  
PGEC1/SDA/RP7(1)/CN7/RB7  
PGED1/TDI/SCL/RP6(1)/CN6/RB6  
TDO/RP5(1)/CN6/RB5  
PGEC3/RP15(1)/CN15/RB15  
CN8/RB8/PGED3/RP8(1)/CN8/RB8  
Note 1: The RPn pins can be used by any remappable peripheral. See the “dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 Controller Families” table for the list of available peripherals  
DS70318D-page 6  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Pin Diagrams (Continued)  
28-Pin QFN-S(2)  
= Pins are up to 5V tolerant  
28272625242322  
PWM2L/RP14(1)/CN14/RB14  
AN2/RA2  
AN3/RP0(1)/CN0/RB0  
AN4/RP9(1)/CN9/RB9  
AN5/RP10(1)/CN10/RB10  
VSS  
1
2
3
4
5
6
7
21  
20 PWM2H/RP13(1)/CN13/RB13  
19 TCK/RP12(1)/CN12/RB12  
TMS/RP11(1)/CN11/RB11  
dsPIC33FJ06GS102 18  
17  
16  
15  
VCAP/VDDCORE  
OSC1/CLKIN/RP1(1)/CN1/RB1  
OSC2/CLKO/RP2(1)/CN2/RB2  
VSS  
PGEC1/SDA/RP7(1)/CN7/RB7  
8
9 10 1112 13 14  
28-Pin QFN-S(2)  
= Pins are up to 5V tolerant  
28272625242322  
PWM2L/RP14(1)/CN14/RB14  
AN2/CMP1C/CMP2A/RA2  
AN3/CMP1D/CMP2B/RP0(1)/CN0/RB0  
AN4/CMP2C/RP9(1)/CN9/RB9  
AN5/CMP2D/RP10(1)/CN10/RB10  
VSS  
1
2
3
4
5
6
7
21  
20 PWM2H/RP13(1)/CN13/RB13  
19  
TCK/RP12(1)/CN12/RB12  
TMS/RP11(1)/CN11/RB11  
dsPIC33FJ06GS202 18  
17  
16  
15  
VCAP/VDDCORE  
VSS  
OSC1/CLKIN/RP1(1)/CN1/RB1  
OSC2/CLKO/RP2(1)/CN2/RB2  
PGEC1/SDA/RP7(1)/CN7/RB7  
8
9 10 111213 14  
Note 1: The RPn pins can be used by any remappable peripheral. See the “dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 Controller Families” table for the list of available peripherals.  
2: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to  
VSS externally.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 7  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Pin Diagrams (Continued)  
28-Pin QFN-S(2)  
= Pins are up to 5V tolerant  
28272625242322  
PWM2L/RP14(1)/CN14/RB14  
AN2/RA2  
1
2
3
4
5
6
7
21  
AN3/RP0(1)/CN0/RB0  
AN4/RP9(1)/CN9/RB9  
20 PWM2H/RP13(1)/CN13/RB13  
19  
TCK/PWM3L/RP12(1)/CN12/RB12  
AN5/RP10(1)/CN10/RB10  
VSS  
TMS/PWM3H/RP11(1)/CN11/RB11  
dsPIC33FJ16GS402 18  
17 VCAP/VDDCORE  
16  
15  
OSC1/CLKIN/AN6/RP1(1)/CN1/RB1  
OSC2/CLKO/AN7/RP2(1)/CN2/RB2  
VSS  
PGEC1/SDA/RP7(1)/CN7/RB7  
8
9 1011 121314  
28-Pin QFN-S(2)  
= Pins are up to 5V tolerant  
28272625242322  
PWM2L/RP14(1)/CN14/RB14  
AN2/CMP1C/CMP2A/RA2  
AN3/CMP1D/CMP2B/RP0(1)/CN0/RB0  
AN4/CMP2C/CMP3A/RP9(1)/CN9/RB9  
AN5/CMP2D/CMP3B/RP10(1)/CN10/RB10  
VSS  
1
2
3
4
5
6
7
21  
20 PWM2H/RP13(1)/CN13/RB13  
19  
TCK/PWM3L/RP12(1)/CN12/RB12  
TMS/PWM3H/RP11(1)/CN11/RB11  
dsPIC33FJ16GS502 18  
17  
16  
15  
VCAP/VDDCORE  
OSC1/CLKIN/AN6/CMP3C/CMP4A/RP1(1)/CN1/RB1  
OSC2/CLKO/AN7/CMP3D/CMP4B/RP2(1)/CN2/RB2  
VSS  
PGEC1/SDA/RP7(1)/CN7/RB7  
8
9 1011 121314  
Note 1: The RPn pins can be used by any remappable peripheral. See the “dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 Controller Families” table for the list of available peripherals.  
2: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to  
VSS externally.  
DS70318D-page 8  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Pin Diagrams (Continued)  
44-Pin QFN(2)  
= Pins are up to 5V tolerant  
44 43 42 41 40 39 38 37 36 35 34  
PGEC1/SDA/RP7(1)/CN7/RB7  
RP20(1)/CN20/RC4  
OSC2/CLKO/AN7/RP2(1)/CN2/RB2  
OSC1/CLKI/AN6/RP1(1)/CN1/RB1  
AN8/CMP4C/RP17(1)/CN17/RC1  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RP21(1)/CN21/RC5  
RP22(1)/CN22/RC6  
RP19(1)/CN19/RC3  
3
4
VSS  
VDD  
5
dsPIC33FJ16GS404  
RP26(1)/CN26/RC10  
RP25(1)/CN25/RC9  
AN5/RP10(1)/CN10/RB10  
AN4/RP9(1)/CN9/RB9  
AN3/RP0(1)/CN0/RB0  
VSS  
6
VCAP/VDDCORE  
7
TMS/PWM3H/RP11(1)/CN11/RB11  
TCK/PWM3L/RP12(1)/CN12/RB12  
PWM2H/RP13(1)/CN13/RB13  
PWM2L/RP14(1)/CN14/RB14  
8
9
10  
11  
AN2/RA2  
12 13 14 15 16 17 18 19 20 21 22  
Note 1: The RPn pins can be used by any remappable peripheral. See the “dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 Controller Families” table for the list of available peripherals.  
2: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to  
VSS externally.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 9  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Pin Diagrams (Continued)  
44-Pin QFN(2)  
= Pins are up to 5V tolerant  
44 43 42 41 40 39 38 37 36 35 34  
PGEC1/SDA/RP7(1)/CN7/RB7  
RP20(1)/CN20/RC4  
OSC2/CLKO/AN7/CMP3D/CMP4B/RP2(1)/CN2/RB2  
OSC1/CLKI/AN6/CMP3C/CMP4A/RP1(1)/CN1/RB1  
AN8/CMP4C/RP17(1)/CN17/RC1  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
RP21(1)/CN21/RC5  
RP22(1)/RN22/RC6  
RP19(1)/CN19/RC3  
3
4
VSS  
5
VDD  
dsPIC33FJ16GS504  
AN10/RP26(1)/CN26/RC10  
AN11/RP25(1)/CN25/RC9  
VSS  
6
VCAP/VDDCORE  
7
TMS/PWM3H/RP11(1)/CN11/RB11  
TCK/PWM3L/RP12(1)/CN12/RB12  
PWM2H/RP13(1)/CN13/RB13  
PWM2L/RP14(1)/CN14/RB14  
AN5/CMP2D/CMP3B/RP10(1)/CN10/RB10  
AN4/CMP2C/CMP3A/RP9(1)/CN9/RB9  
AN3/CMP1D/CMP2B/RP0(1)/CN0/RB0  
AN2/CMP1C/CMP2A/RA2  
8
9
10  
11  
12 13 14 15 16 17 18 19 20 21 22  
Note 1: The RPn pins can be used by any remappable peripheral. See the “dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 Controller Families” table for the list of available peripherals.  
2: The metal plane at the bottom of the device is not connected to any pins and is recommended to connect to VSS  
externally.  
DS70318D-page 10  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Pin Diagrams (Continued)  
44-Pin TQFP  
= Pins are up to 5V tolerant  
OSC2/CLKO/AN7/RP2(1)/CN2/RB2  
OSC1/CLKI/AN6/RP1(1)/CN1/RB1  
RP17(1)/CN17/RC1  
PGEC1/SDA/RP7(1)/CN7/RB7  
RP20(1)/CN20/RC4  
33  
32  
31  
30  
29  
28  
1
2
3
4
5
6
7
8
9
RP21(1)/CN21/RC5  
RP22(1)/CN22/RC6  
RP19(1)/CN19/RC3  
VSS  
VDD  
dsPIC33FJ16GS404  
RP26(1)/CN26/RC10  
VSS  
RP25(1)/CN25/RC9  
AN5/RP10(1)/CN10/RB10  
AN4/RP9(1)/CN9/RB9  
AN3/RP0(1)/CN0/RB0  
AN2/RA2  
VCAP/VDDCORE  
27  
26  
TMS/PWM3H/RP11(1)/CN11/RB11  
TCK/PWM3L/RP12(1)/CN12/RB12  
PWM2H/RP13(1)/CN13/RB13  
PWM2L/RP14(1)/CN14/RB14  
25  
24  
23  
10  
11  
Note 1: The RPn pins can be used by any remappable peripheral. See the “dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 Controller Families” table for the list of available peripherals  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 11  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Pin Diagrams (Continued)  
44-Pin TQFP  
= Pins are up to 5V tolerant  
OSC2/CLKO/AN7/CMP3D/CMP4B/RP2(1)/CN2/RB2  
OSC1/CLKI/AN6/CMP3C/CMP4A/RP1(1)/CN1/RB1  
AN8/CMP4C/RP17(1)/CN17/RC1  
VSS  
PGEC1/SDA/RP7(1)/CN7/RB7  
RP20(1)/CN20/RC4  
33  
32  
31  
30  
29  
28  
1
2
3
4
5
6
7
8
9
RP21(1)/CN21/RC5  
RP22(1)/CN22/RC6  
RP19(1)/CN19/RC3  
VDD  
dsPIC33FJ16GS504  
AN10/RP26(1)/CN26/RC10  
VSS  
AN11/RP25(1)/CN25/RC9  
AN5/CMP2D/CMP3B/RP10(1)/CN10/RB10  
AN4/CMP2C/CMP3A/RP9(1)/CN9/RB9  
AN3/CMP1D/CMP2B/RP0(1)/CN0/RB0  
AN2/CMP1C/CMP2A/RA2  
VCAP/VDDCORE  
27  
26  
TMS/PWM3H/RP11(1)/CN11/RB11  
TCK/PWM3L/RP12(1)/CN12/RB12  
PWM2H/RP13(1)/CN13/RB13  
PWM2L/RP14(1)/CN14/RB14  
25  
24  
23  
10  
11  
Note 1: The RPn pins can be used by any remappable peripheral. See the “dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 Controller Families” table for the list of available peripherals  
DS70318D-page 12  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Table of Contents  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 Product Families.......................................................................................... 4  
1.0 Device Overview ........................................................................................................................................................................ 15  
2.0 Guidelines for Getting Started with 16-bit Digital Signal Controllers .......................................................................................... 19  
3.0 CPU............................................................................................................................................................................................ 29  
4.0 Memory Organization................................................................................................................................................................. 41  
5.0 Flash Program Memory.............................................................................................................................................................. 81  
6.0 Resets ....................................................................................................................................................................................... 87  
7.0 Interrupt Controller ..................................................................................................................................................................... 95  
8.0 Oscillator Configuration ......................................................................................................................................................... 135  
9.0 Power-Saving Features............................................................................................................................................................ 147  
10.0 I/O Ports .................................................................................................................................................................................. 155  
11.0 Timer1 ...................................................................................................................................................................................... 183  
12.0 Timer2/3 features .................................................................................................................................................................... 185  
13.0 Input Capture............................................................................................................................................................................ 191  
14.0 Output Compare....................................................................................................................................................................... 193  
15.0 High-Speed PWM..................................................................................................................................................................... 197  
16.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 217  
2
17.0 Inter-Integrated Circuit (I C™) ................................................................................................................................................. 223  
18.0 Universal Asynchronous Receiver Transmitter (UART)........................................................................................................... 231  
19.0 High-Speed 10-bit Analog-to-Digital Converter (ADC)............................................................................................................. 237  
20.0 High-Speed Analog Comparator .............................................................................................................................................. 259  
21.0 Special Features ...................................................................................................................................................................... 263  
22.0 Instruction Set Summary.......................................................................................................................................................... 271  
23.0 Development Support............................................................................................................................................................... 279  
24.0 Electrical Characteristics.......................................................................................................................................................... 283  
25.0 Packaging Information.............................................................................................................................................................. 317  
Appendix A: Revision History............................................................................................................................................................. 329  
Index ................................................................................................................................................................................................. 337  
The Microchip Web Site..................................................................................................................................................................... 341  
Customer Change Notification Service .............................................................................................................................................. 341  
Customer Support.............................................................................................................................................................................. 341  
Reader Response.............................................................................................................................................................................. 342  
Product Identification System ............................................................................................................................................................ 343  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 13  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS70318D-page 14  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
1.0  
DEVICE OVERVIEW  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 families of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”. Please see the  
Microchip web site (www.microchip.com)  
for the latest “dsPIC33F Family Reference  
Manual” sections.  
This document contains device-specific information for  
the following dsPIC33F Digital Signal Controller (DSC)  
devices:  
• dsPIC33FJ06GS101  
• dsPIC33FJ06GS102  
• dsPIC33FJ06GS202  
• dsPIC33FJ16GS402  
• dsPIC33FJ16GS404  
• dsPIC33FJ16GS502  
• dsPIC33FJ16GS504  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 devices contain extensive Digital Signal Processor  
(DSP) functionality with a high-performance, 16-bit  
microcontroller (MCU) architecture.  
Figure 1-1 shows a general block diagram of the core  
andperipheralmodulesinthedsPIC33FJ06GS101/X02  
and dsPIC33FJ16GSX02/X04 devices. Table 1-1 lists  
the functions of the various pins shown in the pinout  
diagrams.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 15  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 1-1:  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 BLOCK DIAGRAM  
PSV & Table  
Data Access  
Control Block  
Y Data Bus  
X Data Bus  
Interrupt  
Controller  
PORTA  
16  
16  
16  
8
16  
Data Latch  
Data Latch  
X RAM  
23  
PCH PCL  
Program Counter  
Y RAM  
PCU  
PORTB  
PORTC  
23  
Address  
Latch  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
16  
23  
16  
16  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
Remappable  
Pins  
ROM Latch  
24  
16  
16  
Instruction  
Decode &  
Control  
Instruction Reg  
16  
Control Signals  
to Various Blocks  
DSP Engine  
16 x 16  
W Register Array  
Power-up  
Timer  
Timing  
Generation  
OSC2/CLKO  
OSC1/CLKI  
Divide Support  
16  
Oscillator  
Start-up Timer  
FRC/LPRC  
Oscillators  
Power-on  
Reset  
16-Bit ALU  
Precision  
Band Gap  
Reference  
Watchdog  
Timer  
16  
Brown-out  
Reset  
Voltage  
Regulator  
VCAP/VDDCORE  
VDD, VSS  
MCLR  
PWM  
4 x 2  
OC1  
OC2  
Timers  
1-3  
ADC1  
CNx  
UART1  
IC1,2  
Analog  
Comparators 1-4  
SPI1  
I2C1  
Note:  
Not all pins or features are implemented on all device pinout configurations. See pinout diagrams for the specific pins and features  
present on each device.  
DS70318D-page 16  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS  
Pin  
Buffer  
Type  
PPS  
Description  
Type  
Capable  
AN0-AN11  
CLKI  
I
I
Analog  
No  
No  
Analog input channels  
ST/CMOS  
External clock source input. Always associated with OSC1 pin  
function.  
CLKO  
O
No  
Oscillator crystal output. Connects to crystal or resonator in Crystal  
Oscillator mode. Optionally functions as CLKO in RC and EC  
modes. Always associated with OSC2 pin function.  
OSC1  
OSC2  
I
ST/CMOS  
No  
No  
Oscillator crystal input. ST buffer when configured in RC mode;  
CMOS otherwise.  
Oscillator crystal output. Connects to crystal or resonator in Crystal  
Oscillator mode. Optionally functions as CLKO in RC and EC  
modes.  
I/O  
CN0-CN29  
IC1-IC2  
I
I
ST  
ST  
No  
Change notification inputs. Can be software programmed for  
internal weak pull-ups on all inputs.  
Yes  
Capture inputs 1/2  
OCFA  
OC1-OC2  
I
O
ST  
Yes  
Yes  
Compare Fault A input (for Compare Channels 1 and 2)  
Compare Outputs 1 through 2  
INT0  
INT1  
INT2  
I
I
I
ST  
ST  
ST  
No  
Yes  
Yes  
External Interrupt 0  
External Interrupt 1  
External Interrupt 2  
RA0-RA4  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
No  
No  
No  
No  
PORTA is a bidirectional I/O port  
PORTB is a bidirectional I/O port  
PORTC is a bidirectional I/O port  
Remappable I/O pins  
RB0-RB15  
RC0-RC13  
RP0-RP29  
T1CK  
T2CK  
T3CK  
I
I
I
ST  
ST  
ST  
Yes  
Yes  
Yes  
Timer1 external clock input  
Timer2 external clock input  
Timer3 external clock input  
U1CTS  
U1RTS  
U1RX  
I
O
I
ST  
ST  
Yes  
Yes  
Yes  
Yes  
UART1 clear to send  
UART1 ready to send  
UART1 receive  
U1TX  
O
UART1 transmit  
SCK1  
SDI1  
SDO1  
SS1  
I/O  
I
O
ST  
ST  
Yes  
Yes  
Yes  
Yes  
Synchronous serial clock input/output for SPI1  
SPI1 data in  
SPI1 data out  
I/O  
ST  
SPI1 slave synchronization or frame pulse I/O  
SCL1  
SDA1  
I/O  
I/O  
ST  
ST  
No  
No  
Synchronous serial clock input/output for I2C1  
Synchronous serial data input/output for I2C1  
TMS  
TCK  
TDI  
I
I
I
TTL  
TTL  
TTL  
No  
No  
No  
No  
JTAG Test mode select pin  
JTAG test clock input pin  
JTAG test data input pin  
JTAG test data output pin  
TDO  
O
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = Transistor-Transistor Logic  
Analog = Analog input  
P = Power  
PPS = Peripheral Pin Select  
I = Input  
O = Output  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 17  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin  
Buffer  
Type  
PPS  
Description  
Type  
Capable  
CMP1A  
CMP1B  
CMP1C  
CMP1D  
CMP2A  
CMP2B  
CMP2C  
CMP2D  
CMP3A  
CMP3B  
CMP3C  
CMP3D  
CMP4A  
CMP4B  
CMP4C  
CMP4D  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Comparator 1 Channel A  
Comparator 1 Channel B  
Comparator 1 Channel C  
Comparator 1 Channel D  
Comparator 2 Channel A  
Comparator 2 Channel B  
Comparator 2 Channel C  
Comparator 2 Channel D  
Comparator 3 Channel A  
Comparator 3 Channel B  
Comparator 3 Channel C  
Comparator 3 Channel D  
Comparator 4 Channel A  
Comparator 4 Channel B  
Comparator 4 Channel C  
Comparator 4 Channel D  
DACOUT  
O
O
I
No  
Yes  
No  
DAC output voltage  
ACMP1-ACMP4  
EXTREF  
DAC trigger to PWM module  
Analog  
External voltage reference input for the reference DACs  
REFCLKO  
O
Yes  
REFCLKO output signal is a postscaled derivative of the system  
clock  
FLT1-FLT8  
SYNCI1-SYNCI2  
SYNCO1  
PWM1L  
PWM1H  
PWM2L  
PWM2H  
PWM3L  
PWM3H  
PWM4L  
I
I
ST  
ST  
Yes  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Fault Inputs to PWM module  
External synchronization signal to PWM Master Time Base  
PWM master time base for external device synchronization  
PWM1 low output  
PWM1 high output  
PWM2 low output  
PWM2 high output  
PWM3 low output  
PWM3 high output  
PWM4 low output  
O
O
O
O
O
O
O
O
O
PWM4H  
PWM4 high output  
PGED1  
PGEC1  
I/O  
I
ST  
ST  
No  
No  
Data I/O pin for programming/debugging communication Channel 1  
Clock input pin for programming/debugging communication  
Channel 1  
PGED2  
PGEC2  
I/O  
I
ST  
ST  
No  
No  
Data I/O pin for programming/debugging communication Channel 2  
Clock input pin for programming/debugging communication  
Channel 2  
PGED3  
PGEC3  
I/O  
I
ST  
ST  
No  
No  
Data I/O pin for programming/debugging communication Channel 3  
Clock input pin for programming/debugging communication  
Channel 3  
I/P  
P
ST  
P
No  
No  
Master Clear (Reset) input. This pin is an active-low Reset to the  
device.  
MCLR  
AVDD  
Positive supply for analog modules. This pin must be connected at  
all times.  
AVSS  
P
P
P
P
P
No  
No  
No  
No  
Ground reference for analog modules  
Positive supply for peripheral logic and I/O pins  
CPU logic filter capacitor connection  
VDD  
VCAP/VDDCORE  
VSS  
Ground reference for logic and I/O pins  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = Transistor-Transistor Logic  
Analog = Analog input  
P = Power  
PPS = Peripheral Pin Select  
I = Input  
O = Output  
DS70318D-page 18  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
2.2  
Decoupling Capacitors  
2.0  
GUIDELINES FOR GETTING  
STARTED WITH 16-BIT  
DIGITAL SIGNAL  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD and  
AVSS is required.  
CONTROLLERS  
Consider the following criteria when using decoupling  
capacitors:  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
Value and type of capacitor: Recommendation  
of 0.1 μF (100 nF), 10-20V. This capacitor should  
be a low-ESR and have resonance frequency in  
the range of 20 MHz and higher. It is  
dsPIC33FJ16GSX02/X04  
family  
of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the dsPIC33F Family  
Reference Manual, which is available from  
recommended that ceramic capacitors be used.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is within  
one-quarter inch (6 mm) in length.  
the  
Microchip  
website  
(www.microchip.com).  
2.1  
Basic Connection Requirements  
Getting started with the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 family of 16-bit Digital Signal  
Controllers (DSC) requires attention to a minimal set of  
device pin connections before proceeding with  
development. The following is a list of pin names, which  
must always be connected:  
Handling high frequency noise: If the board is  
experiencing high frequency noise, upward of  
tens of MHz, add a second ceramic-type capacitor  
in parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 μF to 0.001 μF. Place this  
second capacitor next to the primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible.  
For example, 0.1 μF in parallel with 0.001 μF.  
• All VDD and VSS pins  
(see Section 2.2 “Decoupling Capacitors”)  
• All AVDD and AVSS pins (regardless if ADC module  
is not used)  
(see Section 2.2 “Decoupling Capacitors”)  
• VCAP/VDDCORE  
(see Section 2.3 “Capacitor on Internal Voltage  
Regulator (VCAP/VDDCORE)”)  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum thereby reducing PCB track inductance.  
• MCLR pin  
(see Section 2.4 “Master Clear (MCLR) Pin”)  
• PGECx/PGEDx pins used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes  
(see Section 2.5 “ICSP Pins”)  
• OSC1 and OSC2 pins when external oscillator  
source is used  
(see Section 2.6 “External Oscillator Pins”)  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 19  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTION  
2.4  
Master Clear (MCLR) Pin  
The MCLR pin provides for two specific device  
functions:  
0.1 μF  
Ceramic  
• Device Reset  
VDD  
• Device programming and debugging.  
During device programming and debugging, the  
resistance and capacitance that can be added to the  
pin must be considered. Device programmers and  
debuggers drive the MCLR pin. Consequently,  
specific voltage levels (VIH and VIL) and fast signal  
transitions must not be adversely affected. Therefore,  
specific values of R and C will need to be adjusted  
based on the application and PCB requirements.  
R
R1  
MCLR  
C
dsPIC33F  
VDD  
VSS  
VDD  
For example, as shown in Figure 2-2, it is  
recommended that the capacitor C, be isolated from  
the MCLR pin during programming and debugging  
operations.  
VSS  
0.1 μF  
Ceramic  
0.1 μF  
Ceramic  
0.1 μF  
0.1 μF  
Ceramic  
Ceramic  
Place the components shown in Figure 2-2 within  
one-quarter inch (6 mm) from the MCLR pin.  
10 Ω  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
2.2.1  
TANK CAPACITORS  
On boards with power traces running longer than six  
inches in length, it is suggested to use a tank capacitor  
for integrated circuits including DSCs to supply a local  
power source. The value of the tank capacitor should  
be determined based on the trace resistance that con-  
nects the power supply source to the device, and the  
maximum current drawn by the device in the applica-  
tion. In other words, select the tank capacitor so that it  
meets the acceptable voltage sag at the device. Typical  
values range from 4.7 μF to 47 μF.  
VDD  
R
R1  
MCLR  
dsPIC33F  
JP  
C
2.3  
Capacitor on Internal Voltage  
Regulator (VCAP/VDDCORE)  
Note 1: R 10 kΩ is recommended. A suggested  
starting value is 10 kΩ. Ensure that the  
MCLR pin VIH and VIL specifications are met.  
A low-ESR (< 5 Ohms) capacitor is required on the  
VCAP/VDDCORE pin, which is used to stabilize the  
voltage regulator output voltage. The VCAP/VDDCORE  
pin must not be connected to VDD, and must have a  
capacitor between 4.7 μF and 10 μF, 16V connected to  
ground. The type can be ceramic or tantalum. Refer to  
Section 24.0 “Electrical Characteristics” for  
additional information.  
2: R1 470Ω will limit any current flowing into  
MCLR from the external capacitor C, in the  
event of MCLR pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
The placement of this capacitor should be close to the  
VCAP/VDDCORE. It is recommended that the trace  
length not exceed one-quarter inch (6 mm). Refer to  
Section 21.2 “On-Chip Voltage Regulator” for  
details.  
DS70318D-page 20  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
2.5  
ICSP Pins  
2.6  
External Oscillator Pins  
The PGECx and PGEDx pins are used for In-Circuit  
Serial Programming™ (ICSP™) and debugging  
purposes. It is recommended to keep the trace length  
between the ICSP connector and the ICSP pins on the  
device as short as possible. If the ICSP connector is  
expected to experience an ESD event, a series resistor  
is recommended, with the value in the range of a few  
tens of Ohms, not to exceed 100 Ohms.  
Many DSCs have options for at least two oscillators: a  
high-frequency primary oscillator and a low-frequency  
secondary oscillator (refer to Section 8.0 “Oscillator  
Configuration” for details).  
The oscillator circuit should be placed on the same  
side of the board as the device. Also, place the  
oscillator circuit close to the respective oscillator pins,  
not exceeding one-half inch (12 mm) distance  
between them. The load capacitors should be placed  
next to the oscillator itself, on the same side of the  
board. Use a grounded copper pour around the  
oscillator circuit to isolate them from surrounding  
circuits. The grounded copper pour should be routed  
directly to the MCU ground. Do not run any signal  
traces or power traces inside the ground pour. Also, if  
using a two-sided board, avoid any traces on the  
other side of the board where the crystal is placed. A  
suggested layout is shown in Figure 2-3.  
Pull-up resistors, series diodes, and capacitors on the  
PGECx and PGEDx pins are not recommended as they  
will interfere with the programmer/debugger  
communications to the device. If such discrete  
components are an application requirement, they  
should be removed from the circuit during program-  
ming and debugging. Alternatively, refer to the AC/DC  
characteristics and timing requirements information in  
the respective device Flash programming specification  
for information on capacitive loading limits and pin input  
voltage high (VIH) and input low (VIL) requirements.  
FIGURE 2-3:  
SUGGESTED PLACEMENT  
OF THE OSCILLATOR  
CIRCUIT  
Ensure that the “Communication Channel Select”  
(i.e., PGECx/PGEDx pins) programmed into the device  
matches the physical connections for the ICSP to  
MPLAB® ICD 2, MPLAB® ICD 3, or MPLAB® REAL  
ICE™.  
Main Oscillator  
Guard Ring  
For more information on ICD 2, ICD 3, and REAL ICE  
connection requirements, refer to the following  
documents that are available on the Microchip website.  
• “MPLAB® ICD 2 In-Circuit Debugger User's  
13  
14  
15  
16  
17  
18  
Guard Trace  
Guide” DS51331  
• “Using MPLAB® ICD 2” (poster) DS51265  
• “MPLAB® ICD 2 Design Advisory” DS51566  
• “Using MPLAB® ICD 3” (poster) DS51765  
• “MPLAB® ICD 3 Design Advisory” DS51764  
Secondary  
Oscillator  
19  
20  
• “MPLAB® REAL ICE™ In-Circuit Debugger  
User's Guide” DS51616  
• “Using MPLAB® REAL ICE™” (poster) DS51749  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 21  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
If your application needs to use certain A/D pins as  
2.7  
Oscillator Value Conditions on  
Device Start-up  
analog input pins during the debug session, the user  
application must clear the corresponding bits in the  
ADPCFG register during initialization of the ADC mod-  
ule.  
If the PLL of the target device is enabled and  
configured for the device start-up oscillator, the  
maximum oscillator source frequency must be limited  
to 4 MHz < FIN < 8 MHz to comply with device PLL  
start-up conditions. This means that if the external  
oscillator frequency is outside this range, the  
application must start up in the FRC mode first. The  
default PLL settings after a POR with an oscillator  
frequency outside this range will violate the device  
operating speed.  
When MPLAB ICD 2, ICD 3, or REAL ICE is used as a  
programmer, the user application firmware must  
correctly configure the ADPCFG register. Automatic  
initialization of these registers is only done during  
debugger operation. Failure to correctly configure the  
register(s) will result in all A/D pins being recognized as  
analog input pins, resulting in the port value being read  
as a logic '0', which may affect user application func-  
tionality.  
Once the device powers up, the application firmware  
can initialize the PLL SFRs, CLKDIV, and PLLDBF to a  
suitable value, and then perform a clock switch to the  
Oscillator + PLL clock source. Note that clock switching  
must be enabled in the device Configuration word.  
2.9  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic-low state.  
2.8  
Configuration of Analog and  
Digital Pins During ICSP  
Operations  
Alternatively, connect a 1k to 10k resistor to VSS on  
unused pins and drive the output to logic low.  
2.10 Typical Application Connection  
Examples  
If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a  
debugger, it automatically initializes all of the A/D input  
pins (ANx) as “digital” pins, by setting all bits in the  
ADPCFG register.  
Examples of typical application connections are shown  
in Figure 2-4 through Figure 2-11.  
The bits in the registers that correspond to the A/D pins  
that are initialized by MPLAB ICD 2, ICD 3, or REAL  
ICE, must not be cleared by the user application firm-  
ware; otherwise, communication errors will result  
between the debugger and the device.  
DS70318D-page 22  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 2-4:  
DIGITAL PFC  
IPFC  
VHV_BUS  
|VAC|  
k
1
k
3
VAC  
FET  
Driver  
k
2
ADC Channel  
ADC Channel  
ADC Channel PWM Output  
dsPIC33FJ06GS101  
FIGURE 2-5:  
BOOST CONVERTER IMPLEMENTATION  
IPFC  
VINPUT  
VOUTPUT  
k
1
k
3
FET  
Driver  
k
2
ADC Channel  
ADC Channel  
ADC  
Channel  
PWM  
Output  
dsPIC33FJ06GS101  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 23  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 2-6:  
SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER  
12V Input  
5V Output  
I
5V  
FET  
Driver  
k
k
k
7
2
1
ADC  
Channel  
Analog  
Comp.  
ADC  
Channel  
dsPIC33FJ06GS202  
FIGURE 2-7:  
MULTI-PHASE SYNCHRONOUS BUCK CONVERTER  
3.3V Output  
12V Input  
k
6
FET  
Driver  
FET  
Driver  
k
7
ADC  
Channel  
PWM  
PWM  
FET  
Driver  
k
k
k
3
4
5
Analog Comparator  
dsPIC33FJ06GS502  
Analog Comparator  
Analog Comparator  
ADC Channel  
DS70318D-page 24  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 2-8:  
OFF-LINE UPS  
VDC  
Full-Bridge Inverter  
Push-Pull Converter  
VOUT+  
VOUT-  
VBAT  
+
GND  
GND  
FET  
Driver  
FET  
FET  
FET  
FET  
FET  
Driver  
k
k
k
k
5
2
1
4
Driver Driver Driver Driver  
PWM  
PWM ADC ADC  
or  
PWM  
PWM PWM PWM  
ADC  
Analog Comp.  
k
3
dsPIC33FJ16GS504  
ADC  
ADC  
PWM  
ADC  
FET  
Driver  
k
6
+
Battery Charger  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 25  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 2-9:  
INTERLEAVED PFC  
VOUT+  
|VAC|  
k
VAC  
4
k
3
k
k
1
2
VOUT-  
FET  
Driver  
FET  
Driver  
ADC  
Channel  
ADC  
Channel  
ADC Channel  
ADC Channel  
ADC  
Channel  
PWM  
PWM  
dsPIC33FJ06GS202  
DS70318D-page 26  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 2-10:  
PHASE-SHIFTED FULL-BRIDGE CONVERTER  
VIN+  
Gate 6  
Gate 3  
Gate 1  
VOUT+  
VOUT-  
S1  
S3  
Gate 2  
VIN-  
Gate 4  
Gate 5  
Gate 5  
FET  
Driver  
k
2
k
1
Analog  
Ground  
Gate 1  
S1  
FET  
Driver  
PWM  
PWM  
ADC  
Channel  
PWM  
ADC  
Channel  
Gate 3  
dsPIC33FJ06GS202  
FET  
Driver  
S3  
Gate 2  
Gate 4  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 27  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
P W M  
P W M  
P W M  
P W M  
P W M  
P W M  
P W M  
P W M  
P W M  
P W M  
DS70318D-page 28  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
3.1  
Data Addressing Overview  
3.0  
CPU  
The data space can be addressed as 32K words or  
64 Kbytes and is split into two blocks, referred to as X  
and Y data memory. Each memory block has its own  
independent Address Generation Unit (AGU). The  
MCU class of instructions operates solely through  
the X memory AGU, which accesses the entire  
memory map as one linear data space. Certain DSP  
instructions operate through the X and Y AGUs to  
support dual operand reads, which splits the data  
address space into two parts. The X and Y data space  
boundary is device-specific.  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 families of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”, Section 2. “CPU”  
(DS70204), which is available from the  
Microchip web site (www.microchip.com).  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 CPU module has a 16-bit (data) modified Harvard  
architecture with an enhanced instruction set, including  
significant support for DSP. The CPU has a 24-bit  
instruction word with a variable length opcode field. The  
Program Counter (PC) is 23 bits wide and addresses up  
to 4M x 24 bits of user program memory space. The  
actual amount of program memory implemented varies  
from device to device. A single-cycle instruction prefetch  
mechanism is used to help maintain throughput and  
provides predictable execution. All instructions execute in  
a single cycle, with the exception of instructions that  
change the program flow, the double-word move (MOV.D)  
instruction and the table instructions. Overhead-free  
program loop constructs are supported using the DOand  
REPEAT instructions, both of which are interruptible at  
any point.  
Overhead-free circular buffers (Modulo Addressing  
mode) are supported in both X and Y address spaces.  
The Modulo Addressing removes the software  
boundary checking overhead for DSP algorithms.  
Furthermore, the X AGU circular addressing can be  
used with any of the MCU class of instructions. The X  
AGU also supports Bit-Reversed Addressing to greatly  
simplify input or output data reordering for radix-2 FFT  
algorithms.  
The upper 32 Kbytes of the data space memory map  
can optionally be mapped into program space at any  
16K program word boundary defined by the 8-bit  
Program Space Visibility Page (PSVPAG) register. The  
program-to-data space mapping feature lets any  
instruction access program space as if it were data  
space.  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 devices have sixteen, 16-bit working registers in the  
programmer’s model. Each of the working registers can  
serve as a data, address or address offset register. The  
sixteenth working register (W15) operates as a software  
Stack Pointer (SP) for interrupts and calls.  
3.2  
DSP Engine Overview  
The DSP engine features a high-speed, 17-bit by 17-bit  
multiplier, 40-bit ALU, two 40-bit saturating  
a
accumulators and a 40-bit bidirectional barrel shifter.  
The barrel shifter is capable of shifting a 40-bit value up  
to 16 bits, right or left, in a single cycle. The DSP  
instructions operate seamlessly with all other  
instructions and have been designed for optimal real-  
time performance. The MACinstruction and other asso-  
ciated instructions can concurrently fetch two data  
operands from memory while multiplying two W  
registers and accumulating and optionally saturating  
the result in the same cycle. This instruction  
functionality requires that the RAM data space be split  
for these instructions and linear for all others. Data  
space partitioning is achieved in a transparent and  
flexible manner through dedicating certain working  
registers to each address space.  
There are two classes of instruction in the  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 devices: MCU and DSP. These two instruction  
classes are seamlessly integrated into a single CPU.  
The instruction set includes many addressing modes  
and is designed for optimum C compiler efficiency.  
For most instructions, the dsPIC33FJ06GS101/X02  
and dsPIC33FJ16GSX02/X04 is capable of execut-  
ing a data (or program data) memory read, a work-  
ing register (data) read, a data memory write and a  
program (instruction) memory read per instruction  
cycle. As a result, three parameter instructions can  
be supported, allowing A + B = C operations to be  
executed in a single cycle.  
A block diagram of the CPU is shown in Figure 3-1,  
and  
the  
programmer’s  
model  
for  
the  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 is shown in Figure 3-2.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 29  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 supports 16/16 and 32/16 divide operations, both  
fractional and integer. All divide instructions are iterative  
operations. They must be executed within a REPEAT  
loop, resulting in a total execution time of 19 instruction  
cycles. The divide operation can be interrupted during  
any of those 19 cycles without loss of data.  
3.3  
Special MCU Features  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 features a 17-bit by 17-bit single-cycle multiplier that  
is shared by both the MCU ALU and DSP engine. The  
multiplier can perform signed, unsigned and mixed sign  
multiplication. Using a 17-bit by 17-bit multiplier for 16-bit  
by 16-bit multiplication not only allows you to perform  
mixed sign multiplication, it also achieves accurate  
results for special operations, such as (-1.0) x (-1.0).  
A 40-bit barrel shifter is used to perform up to a 16-bit  
left or right shift in a single cycle. The barrel shifter can  
be used by both MCU and DSP instructions.  
FIGURE 3-1:  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 CPU CORE  
BLOCK DIAGRAM  
PSV & Table  
Data Access  
Control Block  
Y Data Bus  
X Data Bus  
Interrupt  
Controller  
16  
Data Latch  
16  
16  
8
16  
Data Latch  
Y RAM  
23  
16  
PCH PCL  
Program Counter  
PCU  
X RAM  
23  
Address  
Latch  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
23  
16  
16  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
ROM Latch  
24  
16  
16  
Instruction  
Decode &  
Control  
Instruction Reg  
16  
Control Signals  
to Various Blocks  
DSP Engine  
16 x 16  
W Register Array  
Divide Support  
16  
16-Bit ALU  
16  
To Peripheral Modules  
DS70318D-page 30  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 3-2:  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 PROGRAMMER’S MODEL  
D15  
D0  
W0/WREG  
W1  
PUSH.SShadow  
DOShadow  
W2  
W3  
Legend  
W4  
DSP Operand  
Registers  
W5  
W6  
W7  
Working Registers  
W8  
W9  
DSP Address  
Registers  
W10  
W11  
W12/DSP Offset  
W13/DSP Write Back  
W14/Frame Pointer  
W15/Stack Pointer  
SPLIM  
Stack Pointer Limit Register  
AD15  
AD39  
ACCA  
AD31  
AD0  
DSP  
Accumulators  
ACCB  
PC22  
PC0  
0
Program Counter  
0
7
TBLPAG  
Data Table Page Address  
7
0
PSVPAG  
Program Space Visibility Page Address  
15  
0
0
RCOUNT  
REPEATLoop Counter  
DOLoop Counter  
15  
DCOUNT  
22  
0
DOSTART  
DOEND  
DOLoop Start Address  
DOLoop End Address  
22  
15  
0
Core Configuration Register  
CORCON  
OA OB SA SB OAB SAB DA DC  
SRH  
RA  
N
Z
C
IPL2 IPL1 IPL0  
OV  
STATUS Register  
SRL  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 31  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
3.4  
CPU Control Registers  
REGISTER 3-1:  
SR: CPU STATUS REGISTER  
R-0  
OA  
R-0  
OB  
R/C-0  
SA(1)  
R/C-0  
SB(1)  
R-0  
R/C-0  
SAB(1,4)  
R -0  
DA  
R/W-0  
DC  
OAB  
bit 15  
bit 8  
R/W-0(2)  
R/W-0(3)  
IPL<2:0>(2)  
R/W-0(3)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 7  
bit 0  
Legend:  
C = Clearable bit  
S = Settable bit  
‘1’ = Bit is set  
R = Readable bit  
W = Writable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
OA: Accumulator A Overflow Status bit  
1= Accumulator A overflowed  
0= Accumulator A has not overflowed  
OB: Accumulator B Overflow Status bit  
1= Accumulator B overflowed  
0= Accumulator B has not overflowed  
SA: Accumulator A Saturation ‘Sticky’ Status bit(1)  
1= Accumulator A is saturated or has been saturated at some time  
0= Accumulator A is not saturated  
SB: Accumulator B Saturation ‘Sticky’ Status bit(1)  
1= Accumulator B is saturated or has been saturated at some time  
0= Accumulator B is not saturated  
OAB: OA || OB Combined Accumulator Overflow Status bit  
1= Accumulators A or B have overflowed  
0= Neither Accumulators A or B have overflowed  
SAB: SA || SB Combined Accumulator ‘Sticky’ Status bit(1,4)  
1= Accumulators A or B are saturated or have been saturated at some time in the past  
0= Neither Accumulator A or B are saturated  
DA: DOLoop Active bit  
1= DOloop in progress  
0= DOloop not in progress  
bit 8  
DC: MCU ALU Half Carry/Borrow bit  
1= A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)  
of the result occurred  
0= No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized  
data) of the result occurred  
Note 1: This bit can be read or cleared (not set).  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level (IPL). The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS = 1(INTCON1<15>).  
4: Clearing this bit will clear SA and SB.  
DS70318D-page 32  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 3-1:  
SR: CPU STATUS REGISTER (CONTINUED)  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
bit 4  
bit 3  
bit 2  
RA: REPEATLoop Active bit  
1= REPEATloop in progress  
0= REPEATloop not in progress  
N: MCU ALU Negative bit  
1= Result was negative  
0= Result was non-negative (zero or positive)  
OV: MCU ALU Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of a magnitude that  
causes the sign bit to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 1  
bit 0  
Z: MCU ALU Zero bit  
1= An operation that affects the Z bit has set it at some time in the past  
0= The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)  
C: MCU ALU Carry/Borrow bit  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: This bit can be read or cleared (not set).  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level (IPL). The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS = 1(INTCON1<15>).  
4: Clearing this bit will clear SA and SB.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 33  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 3-2:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
US  
R/W-0  
EDT(1)  
R-0  
R-0  
R-0  
DL<2:0>  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
US: DSP Multiply Unsigned/Signed Control bit  
1= DSP engine multiplies are unsigned  
0= DSP engine multiplies are signed  
bit 11  
EDT: Early DOLoop Termination Control bit(1)  
1= Terminate executing DOloop at end of current loop iteration  
0= No effect  
bit 10-8  
DL<2:0>: DOLoop Nesting Level Status bits  
111= 7 DOloops active  
001= 1 DOloop active  
000= 0 DOloops active  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SATA: ACCA Saturation Enable bit  
1= Accumulator A saturation enabled  
0= Accumulator A saturation disabled  
SATB: ACCB Saturation Enable bit  
1= Accumulator B saturation enabled  
0= Accumulator B saturation disabled  
SATDW: Data Space Write from DSP Engine Saturation Enable bit  
1= Data space write saturation enabled  
0= Data space write saturation disabled  
ACCSAT: Accumulator Saturation Mode Select bit  
1= 9.31 saturation (super saturation)  
0= 1.31 saturation (normal saturation)  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU Interrupt Priority Level is greater than 7  
0= CPU Interrupt Priority Level is 7 or less  
PSV: Program Space Visibility in Data Space Enable bit  
1= Program space visible in data space  
0= Program space not visible in data space  
RND: Rounding Mode Select bit  
1= Biased (conventional) rounding enabled  
0= Unbiased (convergent) rounding enabled  
IF: Integer or Fractional Multiplier Mode Select bit  
1= Integer mode enabled for DSP multiply ops  
0= Fractional mode enabled for DSP multiply ops  
Note 1: This bit will always read as ‘0’.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
DS70318D-page 34  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
3.5.2  
DIVIDER  
3.5  
Arithmetic Logic Unit (ALU)  
The divide block supports 32-bit/16-bit and 16-bit/16-bit  
signed and unsigned integer divide operations with the  
following data sizes:  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 ALU is 16 bits wide and is capable of addition,  
subtraction, bit shifts and logic operations. Unless  
otherwise mentioned, arithmetic operations are 2’s  
complement in nature. Depending on the operation, the  
ALU can affect the values of the Carry (C), Zero (Z),  
Negative (N), Overflow (OV) and Digit Carry (DC) Status  
bits in the SR register. The C and DC Status bits operate  
as Borrow and Digit Borrow bits, respectively, for  
subtraction operations.  
• 32-bit signed/16-bit signed divide  
• 32-bit unsigned/16-bit unsigned divide  
• 16-bit signed/16-bit signed divide  
• 16-bit unsigned/16-bit unsigned divide  
The quotient for all divide instructions ends up in W0 and  
the remainder in W1. 16-bit signed and unsigned DIV  
instructions can specify any W register for both the 16-bit  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W  
register array or data memory, depending on the  
addressing mode of the instruction. Likewise, output  
data from the ALU can be written to the W register array  
or a data memory location.  
divisor (Wn) and any  
W register (aligned) pair  
(W(m + 1):Wm) for the 32-bit dividend. The divide  
algorithm takes one cycle per bit of divisor, so both 32-bit/  
16-bit and 16-bit/16-bit instructions take the same  
number of cycles to execute.  
3.6  
DSP Engine  
Refer to the “dsPIC30F/33F Programmer’s Reference  
Manual” (DS70157) for information on the SR bits  
affected by each instruction.  
The DSP engine consists of a high-speed, 17-bit x  
17-bit multiplier, a barrel shifter and a 40-bit adder/  
subtracter (with two target accumulators, round and  
saturation logic).  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 CPU incorporates hardware support for both multipli-  
cation and division. This includes a dedicated hardware  
multiplier and support hardware for 16-bit-divisor division.  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 is a single-cycle instruction flow architecture; there-  
fore, concurrent operation of the DSP engine with MCU  
instruction flow is not possible. However, some MCU ALU  
and DSP engine resources can be used concurrently by  
the same instruction (for example, ED, EDAC).  
3.5.1  
MULTIPLIER  
Using the high-speed, 17-bit x 17-bit multiplier of the  
DSP engine, the ALU supports unsigned, signed or  
mixed sign operation in several MCU multiplication  
modes:  
The DSP engine can also perform inherent  
accumulator-to-accumulator operations that require no  
additional data. These instructions are ADD, SUBand  
NEG.  
• 16-bit x 16-bit signed  
• 16-bit x 16-bit unsigned  
The DSP engine has options selected through bits in  
the CPU Core Control register (CORCON), as listed  
below:  
• 16-bit signed x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit unsigned  
• 16-bit unsigned x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit signed  
• 8-bit unsigned x 8-bit unsigned  
• Fractional or integer DSP multiply (IF)  
• Signed or unsigned DSP multiply (US)  
• Conventional or convergent rounding (RND)  
• Automatic saturation on/off for ACCA (SATA)  
• Automatic saturation on/off for ACCB (SATB)  
• Automatic saturation on/off for writes to data  
memory (SATDW)  
• Accumulator Saturation mode selection  
(ACCSAT)  
A block diagram of the DSP engine is shown in  
Figure 3-3.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 35  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 3-1:  
DSP INSTRUCTIONS SUMMARY  
Instruction Algebraic Operation  
ACC Write Back  
CLR  
A = 0  
Yes  
No  
ED  
A = (x – y)2  
A = A + (x – y)2  
A = A + (x * y)  
A = A + x2  
No change in A  
A = x * y  
EDAC  
MAC  
No  
Yes  
No  
MAC  
MOVSAC  
MPY  
Yes  
No  
MPY  
A = x 2  
No  
MPY.N  
MSC  
A = – x * y  
A = A – x * y  
No  
Yes  
FIGURE 3-3:  
DSP ENGINE BLOCK DIAGRAM  
S
a
40  
40-bit Accumulator A  
40-bit Accumulator B  
t
16  
40  
Round  
Logic  
u
r
a
t
Carry/Borrow Out  
Carry/Borrow In  
Saturate  
Adder  
e
Negate  
40  
40  
40  
Barrel  
Shifter  
16  
40  
Sign-Extend  
32  
16  
Zero Backfill  
32  
33  
17-Bit  
Multiplier/Scaler  
16  
16  
To/From W Array  
DS70318D-page 36  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
3.6.1  
MULTIPLIER  
3.6.2.1  
Adder/Subtracter, Overflow and  
Saturation  
The 17-bit x 17-bit multiplier is capable of signed or  
unsigned operation and can multiplex its output using a  
scaler to support either 1.31 fractional (Q31) or 32-bit  
integer results. Unsigned operands are zero-extended  
into the 17th bit of the multiplier input value. Signed  
operands are sign-extended into the 17th bit of the  
multiplier input value. The output of the 17-bit x 17-bit  
multiplier/scaler is a 33-bit value that is sign-extended  
to 40 bits. Integer data is inherently represented as a  
signed 2’s complement value, where the Most  
Significant bit (MSb) is defined as a sign bit. The range  
of an N-bit 2’s complement integer is -2N-1 to 2N-1 – 1.  
The adder/subtracter is a 40-bit adder with an optional  
zero input into one side, and either true or complement  
data into the other input.  
• In the case of addition, the Carry/Borrow input is  
active-high and the other input is true data (not  
complemented).  
• In the case of subtraction, the Carry/Borrow input  
is active-low and the other input is complemented.  
The adder/subtracter generates Overflow Status bits,  
SA/SB and OA/OB, which are latched and reflected in  
the STATUS register:  
• For a 16-bit integer, the data range is -32768  
(0x8000) to 32767 (0x7FFF) including 0.  
• Overflow from bit 39: this is a catastrophic  
overflow in which the sign of the accumulator is  
destroyed.  
• For a 32-bit integer, the data range is  
-2,147,483,648 (0x8000 0000) to 2,147,483,647  
(0x7FFF FFFF).  
• Overflow into guard bits, 32 through 39: this is a  
recoverable overflow. This bit is set whenever all  
the guard bits are not identical to each other.  
When the multiplier is configured for fractional  
multiplication, the data is represented as a 2’s  
complement fraction, where the MSb is defined as a  
sign bit and the radix point is implied to lie just after the  
sign bit (QX format). The range of an N-bit 2’s  
complement fraction with this implied radix point is -1.0  
to (1 – 21-N). For a 16-bit fraction, the Q15 data range  
is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0  
and has a precision of 3.01518x10-5. In Fractional  
mode, the 16 x 16 multiply operation generates a  
The adder has an additional saturation block that  
controls accumulator data saturation, if selected. It  
uses the result of the adder, the Overflow Status bits  
described  
previously  
and  
the  
SAT<A:B>  
(CORCON<7:6>) and ACCSAT (CORCON<4>) mode  
control bits to determine when and to what value to  
saturate.  
Six STATUS register bits support saturation and  
overflow:  
1.31 product that has a precision of 4.65661 x 10-10  
.
The same multiplier is used to support the MCU  
multiply instructions, which include integer 16-bit  
signed, unsigned and mixed sign multiply operations.  
• OA: ACCA overflowed into guard bits  
• OB: ACCB overflowed into guard bits  
• SA: ACCA saturated (bit 31 overflow and  
saturation)  
or  
ACCA overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
The MUL instruction can be directed to use byte or  
word-sized operands. Byte operands will direct a 16-bit  
result, and word operands will direct a 32-bit result to  
the specified register(s) in the W array.  
• SB: ACCB saturated (bit 31 overflow and  
saturation)  
or  
3.6.2  
DATA ACCUMULATORS AND  
ADDER/SUBTRACTER  
The data accumulator consists of a 40-bit adder/  
subtracter with automatic sign extension logic. It can  
select one of two accumulators (A or B) as its pre-  
ACCB overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
• OAB: Logical OR of OA and OB  
• SAB: Logical OR of SA and SB  
accumulation  
source  
and  
post-accumulation  
destination. For the ADDand LACinstructions, the data  
to be accumulated or loaded can be optionally scaled  
using the barrel shifter prior to accumulation.  
The OA and OB bits are modified each time data  
passes through the adder/subtracter. When set, they  
indicate that the most recent operation has overflowed  
into the accumulator guard bits (bits 32 through 39).  
The OA and OB bits can also optionally generate an  
arithmetic warning trap when set and the correspond-  
ing Overflow Trap Flag Enable bits (OVATE, OVBTE) in  
the INTCON1 register are set (refer to Section 7.0  
“Interrupt Controller”). This allows the user applica-  
tion to take immediate action, for example, to correct  
system gain.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 37  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
The SA and SB bits are modified each time data  
passes through the adder/subtracter, but can only be  
cleared by the user application. When set, they indicate  
that the accumulator has overflowed its maximum  
range (bit 31 for 32-bit saturation or bit 39 for 40-bit  
saturation) and will be saturated (if saturation is  
enabled). When saturation is not enabled, SA and SB  
default to bit 39 overflow and thus, indicate that a cata-  
strophic overflow has occurred. If the COVTE bit in the  
INTCON1 register is set, SA and SB bits will generate  
an arithmetic warning trap when saturation is disabled.  
• W13, Register Direct:  
The rounded contents of the non-target  
accumulator are written into W13 as a  
1.15 fraction.  
• [W13] + = 2, Register Indirect with Post-Increment:  
The rounded contents of the non-target  
accumulator are written into the address pointed  
to by W13 as a 1.15 fraction. W13 is then  
incremented by 2 (for a word write).  
3.6.3.1  
Round Logic  
The Overflow and Saturation Status bits can optionally  
be viewed in the STATUS Register (SR) as the logical  
OR of OA and OB (in bit OAB) and the logical OR of SA  
and SB (in bit SAB). Programmers can check one bit in  
the STATUS register to determine if either accumulator  
has overflowed, or one bit to determine if either  
accumulator has saturated. This is useful for complex  
number arithmetic, which typically uses both  
accumulators.  
The round logic is a combinational block that performs  
a conventional (biased) or convergent (unbiased)  
round function during an accumulator write (store). The  
Round mode is determined by the state of the RND bit  
in the CORCON register. It generates a 16-bit,  
1.15 data value that is passed to the data space write  
saturation logic. If rounding is not indicated by the  
instruction, a truncated 1.15 data value is stored and  
the least significant word is simply discarded.  
The device supports three Saturation and Overflow  
modes:  
Conventional rounding zero-extends bit 15 of the accu-  
mulator and adds it to the ACCxH word (bits 16 through  
31 of the accumulator).  
• Bit 39 Overflow and Saturation:  
When bit 39 overflow and saturation occurs, the  
saturation logic loads the maximally positive  
9.31 (0x7FFFFFFFFF) or maximally negative  
9.31 value (0x8000000000) into the target accumu-  
lator. The SA or SB bit is set and remains set until  
cleared by the user application. This condition is  
referred to as ‘super saturation’ and provides  
protection against erroneous data or unexpected  
algorithm problems (such as gain calculations).  
• If the ACCxL word (bits 0 through 15 of the  
accumulator) is between 0x8000 and 0xFFFF  
(0x8000 included), ACCxH is incremented.  
• If ACCxL is between 0x0000 and 0x7FFF, ACCxH  
is left unchanged.  
A consequence of this algorithm is that over a  
succession of random rounding operations, the value  
tends to be biased slightly positive.  
• Bit 31 Overflow and Saturation:  
Convergent (or unbiased) rounding operates in the  
same manner as conventional rounding, except when  
ACCxL equals 0x8000. In this case, the Least  
Significant bit (bit 16 of the accumulator) of ACCxH is  
examined:  
When bit 31 overflow and saturation occurs, the  
saturation logic then loads the maximally positive  
1.31 value (0x007FFFFFFF) or maximally nega-  
tive 1.31 value (0x0080000000) into the target  
accumulator. The SA or SB bit is set and remains  
set until cleared by the user application. When  
this Saturation mode is in effect, the guard bits are  
not used, so the OA, OB or OAB bits are never  
set.  
• If it is ‘1’, ACCxH is incremented.  
• If it is ‘0’, ACCxH is not modified.  
Assuming that bit 16 is effectively random in nature,  
this scheme removes any rounding bias that may  
accumulate.  
• Bit 39 Catastrophic Overflow:  
The bit 39 Overflow Status bit from the adder is  
used to set the SA or SB bit, which remains set  
until cleared by the user application. No saturation  
operation is performed, and the accumulator is  
allowed to overflow, destroying its sign. If the  
COVTE bit in the INTCON1 register is set, a  
catastrophic overflow can initiate a trap exception.  
The SAC and SAC.R instructions store either a  
truncated (SAC), or rounded (SAC.R) version of the  
contents of the target accumulator to data memory via  
the  
X
bus, subject to data saturation (see  
Section 3.6.3.2 “Data Space Write Saturation”). For  
the MAC class of instructions, the accumulator write-  
back operation functions in the same manner,  
addressing combined MCU (X and Y) data space  
though the X bus. For this class of instructions, the data  
is always subject to rounding.  
3.6.3  
ACCUMULATOR ‘WRITE BACK’  
The MAC class of instructions (with the exception of  
MPY, MPY.N, ED and EDAC) can optionally write a  
rounded version of the high word (bits 31 through 16)  
of the accumulator that is not targeted by the instruction  
into data space memory. The write is performed across  
the X bus into combined X and Y address space. The  
following addressing modes are supported:  
DS70318D-page 38  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
3.6.3.2  
Data Space Write Saturation  
3.6.4  
BARREL SHIFTER  
In addition to adder/subtracter saturation, writes to data  
space can also be saturated, but without affecting the  
contents of the source accumulator. The data space  
write saturation logic block accepts a 16-bit, 1.15  
fractional value from the round logic block as its input,  
together with overflow status from the original source  
(accumulator) and the 16-bit round adder. These inputs  
are combined and used to select the appropriate  
1.15 fractional value as output to write to data space  
memory.  
The barrel shifter can perform up to 16-bit arithmetic or  
logic right shifts, or up to 16-bit left shifts in a single  
cycle. The source can be either of the two DSP  
accumulators or the X bus (to support multi-bit shifts of  
register or memory data).  
The shifter requires a signed binary value to determine  
both the magnitude (number of bits) and direction of the  
shift operation. A positive value shifts the operand right.  
A negative value shifts the operand left. A value of ‘0’  
does not modify the operand.  
If the SATDW bit in the CORCON register is set, data  
(after rounding or truncation) is tested for overflow and  
adjusted accordingly:  
The barrel shifter is 40 bits wide, thereby obtaining a  
40-bit result for DSP shift operations and a 16-bit result  
for MCU shift operations. Data from the X bus is  
presented to the barrel shifter between bit positions 16  
and 31 for right shifts, and between bit positions 0 and  
16 for left shifts.  
• For input data greater than 0x007FFF, data  
written to memory is forced to the maximum  
positive 1.15 value, 0x7FFF.  
• For input data less than 0xFF8000, data written to  
memory is forced to the maximum negative  
1.15 value, 0x8000.  
The Most Significant bit of the source (bit 39) is used to  
determine the sign of the operand being tested.  
If the SATDW bit in the CORCON register is not set, the  
input data is always passed through unmodified under  
all conditions.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 39  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
NOTES:  
DS70318D-page 40  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
4.1  
Program Address Space  
4.0  
MEMORY ORGANIZATION  
The program address memory space of the  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 devices is 4M instructions. The space is  
addressable by a 24-bit value derived either from the  
23-bit Program Counter (PC) during program execution,  
or from table operation or data space remapping as  
described in Section 4.6 “Interfacing Program and  
Data Memory Spaces”.  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 families of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”, Section 4. “Program  
Memory” (DS70202), which is available  
User application access to the program memory space  
is restricted to the lower half of the address range  
(0x000000 to 0x7FFFFF). The exception is the use of  
TBLRD/TBLWT operations, which use TBLPAG<7> to  
permit access to the Configuration bits and Device ID  
sections of the configuration memory space.  
from  
the  
Microchip  
web  
site  
(www.microchip.com).  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 architecture features separate program and data  
memory spaces and buses. This architecture also allows  
the direct access to program memory from the data  
space during code execution.  
The memory maps for the dsPIC33FJ06GS101/X02  
and dsPIC33FJ16GSX02/X04 devices are shown in  
Figure 4-1.  
FIGURE 4-1:  
PROGRAM MEMORY MAPS FOR dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 DEVICES  
dsPIC33FJ06GS101/102/202  
dsPIC33FJ16GS402/404/502/504  
0x000000  
0x000002  
0x000004  
0x000000  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
0x000002  
0x000004  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
0x0000FE  
0x0000FE  
0x000100  
0x000104  
0x0001FE  
0x000200  
0x000100  
0x000104  
0x0001FE  
0x000200  
Reserved  
Alternate Vector Table  
Alternate Vector Table  
User Program  
Flash Memory  
User Program  
Flash Memory  
(1792 instructions)  
(5376 instructions)  
0x000FFE  
0x001000  
0x002BFE  
0x002C00  
Unimplemented  
Unimplemented  
(Read ‘0’s)  
(Read ‘0’s)  
0x7FFFFE  
0x800000  
0x7FFFFE  
0x800000  
Reserved  
Reserved  
0xF7FFFE  
0xF80000  
0xF80017  
0xF80018  
0xF7FFFE  
0xF80000  
0xF80017  
0xF80018  
Device Configuration  
Registers  
Device Configuration  
Registers  
Reserved  
Reserved  
0xFEFFFE  
0xFEFFFE  
DEVID (2)  
Reserved  
DEVID (2)  
Reserved  
0xFF0000  
0xFF0002  
0xFFFFFE  
0xFF0000  
0xFF0002  
0xFFFFFE  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 41  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
4.1.1  
PROGRAM MEMORY  
ORGANIZATION  
4.1.2  
INTERRUPT AND TRAP VECTORS  
All dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 devices reserve the addresses between 0x00000  
and 0x000200 for hard-coded program execution vectors.  
A hardware Reset vector is provided to redirect code exe-  
cution from the default value of the PC on device Reset to  
the actual start of code. A GOTO instruction is  
programmed by the user application at 0x000000, with  
the actual address for the start of code at 0x000002.  
The program memory space is organized in word-  
addressable blocks. Although it is treated as 24 bits  
wide, it is more appropriate to think of each address of  
the program memory as a lower and upper word, with  
the upper byte of the upper word being unimplemented.  
The lower word always has an even address, while the  
upper word has an odd address (see Figure 4-2).  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 devices also have two interrupt vector tables, located  
from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF.  
These vector tables allow each of the device interrupt  
sources to be handled by separate Interrupt Service  
Routines (ISRs). A more detailed discussion of the  
interrupt vector tables is provided in Section 7.1  
“Interrupt Vector Table”.  
Program memory addresses are always word-aligned  
on the lower word, and addresses are incremented or  
decremented by two during the code execution. This  
arrangement provides compatibility with data memory  
space addressing and makes data in the program  
memory space accessible.  
FIGURE 4-2:  
PROGRAM MEMORY ORGANIZATION  
least significant word  
PC Address  
most significant word  
23  
msw  
Address  
(lsw Address)  
16  
8
0
0x000001  
0x000003  
0x000005  
0x000007  
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
Instruction Width  
DS70318D-page 42  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
All word accesses must be aligned to an even address.  
4.2  
Data Address Space  
Misaligned word data fetches are not supported, so  
care must be taken when mixing byte and word  
operations, or translating from 8-bit MCU code. If a  
misaligned read or write is attempted, an address error  
trap is generated. If the error occurred on a read, the  
instruction underway is completed. If the error occurred  
on a write, the instruction is executed but the write does  
not occur. In either case, a trap is then executed,  
allowing the system and/or user application to examine  
the machine state prior to execution of the address  
Fault.  
The  
dsPIC33FJ06GS101/X02  
and  
dsPIC33FJ16GSX02/X04 CPU has a separate, 16-bit-  
wide data memory space. The data space is accessed  
using separate Address Generation Units (AGUs) for  
read and write operations. The data memory maps is  
shown in Figure 4-3.  
All Effective Addresses (EAs) in the data memory space  
are 16 bits wide and point to bytes within the data space.  
This arrangement gives a data space address range of  
64 Kbytes or 32K words. The lower half of the data  
memory space (that is, when EA<15> = 0) is used for  
implemented memory addresses, while the upper half  
(EA<15> = 1) is reserved for the Program Space  
Visibility area (see Section 4.6.3 “Reading Data From  
Program Memory Using Program Space Visibility”).  
All byte loads into any W register are loaded into the  
Least Significant Byte. The Most Significant Byte is not  
modified.  
A sign-extend instruction (SE) is provided to allow user  
applications to translate 8-bit signed data to 16-bit  
signed values. Alternatively, for 16-bit unsigned data,  
user applications can clear the MSB of any W register  
by executing a zero-extend (ZE) instruction on the  
appropriate address.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 devices implement up to 30 Kbytes of data  
memory. Should an EA point to a location outside of  
this area, an all-zero word or byte will be returned.  
4.2.1  
DATA SPACE WIDTH  
4.2.3  
SFR SPACE  
The data memory space is organized in byte  
addressable, 16-bit wide blocks. Data is aligned in data  
memory and registers as 16-bit words, but all data  
space EAs resolve to bytes. The Least Significant  
Bytes (LSBs) of each word have even addresses, while  
the Most Significant Bytes (MSBs) have odd  
addresses.  
The first 2 Kbytes of the near data space, from 0x0000  
to 0x07FF, is primarily occupied by Special Function  
Registers (SFRs). These are used by the  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 core and peripheral modules for controlling the  
operation of the device.  
SFRs are distributed among the modules that they  
control, and are generally grouped together by module.  
Much of the SFR space contains unused addresses;  
these are read as ‘0’.  
4.2.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
To maintain backward compatibility with PIC® MCU  
devices and improve data space memory usage  
Note:  
The actual set of peripheral features and  
interrupts varies by the device. Refer to  
the corresponding device tables and  
pinout diagrams for device-specific  
information.  
efficiency,  
the  
dsPIC33FJ06GS101/X02  
and  
dsPIC33FJ16GSX02/X04 instruction set supports both  
word and byte operations. As a consequence of byte  
accessibility, all effective address calculations are  
internally scaled to step through word-aligned memory.  
For example, the core recognizes that Post-Modified  
Register Indirect Addressing mode [Ws++] that results  
in a value of Ws + 1 for byte operations and Ws + 2 for  
word operations.  
4.2.4  
NEAR DATA SPACE  
The 8-Kbyte area between 0x0000 and 0x1FFF is  
referred to as the near data space. Locations in this  
space are directly addressable via a 13-bit absolute  
address field within all memory direct instructions.  
Additionally, the whole data space is addressable using  
MOV instructions, which support Memory Direct  
Addressing mode with a 16-bit address field, or by  
using Indirect Addressing mode using a working  
register as an Address Pointer.  
Data byte reads will read the complete word that  
contains the byte, using the LSB of any EA to  
determine which byte to select. The selected byte is  
placed onto the LSB of the data path. That is, data  
memory and registers are organized as two parallel  
byte-wide entities with shared (word) address decode  
but separate write lines. Data byte writes only write to  
the corresponding side of the array or register that  
matches the byte address.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 43  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 4-3:  
DATA MEMORY MAP FOR dsPIC33FJ06GS101/102 DEVICES WITH 256 BYTES  
OF RAM  
MSB  
Address  
LSB  
Address  
16 bits  
MSb  
LSb  
0x0000  
0x0001  
2-Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
X Data RAM (X)  
Y Data RAM (Y)  
8-Kbyte  
Near Data  
Space  
0x087F  
0x0881  
0x087E  
0x0880  
256 bytes  
SRAM Space  
0x08FF  
0x0901  
0x08FE  
0x0900  
0x1FFE  
0x2000  
0x1FFF  
0x2001  
0x8001  
0x8000  
X Data  
Optionally  
Mapped  
Unimplemented (X)  
into Program  
Memory  
0xFFFF  
0xFFFE  
DS70318D-page 44  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 4-4:  
DATA MEMORY MAP FOR dsPIC33FJ06GS202 DEVICE WITH 1-Kbyte RAM  
MSB  
Address  
LSB  
Address  
16 bits  
MSb  
LSb  
0x0000  
0x0001  
2-Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
X Data RAM (X)  
Y Data RAM (Y)  
8-Kbyte  
Near Data  
Space  
0x09FF  
0x0A01  
0x09FE  
0x0A00  
1-Kbyte  
SRAM Space  
0x0BFF  
0x0C01  
0x0BFE  
0x0C00  
0x1FFE  
0x2000  
0x1FFF  
0x2001  
0x8001  
0x8000  
X Data  
Optionally  
Mapped  
Unimplemented (X)  
into Program  
Memory  
0xFFFF  
0xFFFE  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 45  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 4-5:  
DATA MEMORY MAP FOR dsPIC33FJ16GS402/404/502/504 DEVICES WITH  
2-Kbyte RAM  
MSB  
Address  
LSB  
Address  
16 bits  
MSb  
LSb  
0x0000  
0x0001  
2-Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
X Data RAM (X)  
Y Data RAM (Y)  
8-Kbyte  
Near Data  
Space  
0x0BFF  
0x0C01  
0x0BFE  
0x0C00  
2-Kbyte  
SRAM Space  
0x0FFF  
0x1001  
0x0FFE  
0x1000  
0x1FFE  
0x2000  
0x1FFF  
0x2001  
0x8001  
0x8000  
X Data  
Optionally  
Mapped  
Unimplemented (X)  
into Program  
Memory  
0xFFFF  
0xFFFE  
DS70318D-page 46  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
The Y data space is used in concert with the X data  
space by the MAC class of instructions (CLR, ED,  
EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to  
provide two concurrent data read paths.  
4.2.5  
X AND Y DATA SPACES  
The core has two data spaces, X and Y. These data  
spaces can be considered either separate (for some  
DSP instructions), or as one unified linear address  
range (for MCU instructions). The data spaces are  
accessed using two Address Generation Units (AGUs)  
and separate data paths. This feature allows certain  
instructions to concurrently fetch two words from RAM,  
thereby enabling efficient execution of DSP algorithms,  
such as Finite Impulse Response (FIR) filtering and  
Fast Fourier Transform (FFT).  
Both the X and Y data spaces support Modulo  
Addressing mode for all instructions, subject to  
addressing mode restrictions. Bit-Reversed Addressing  
mode is only supported for writes to X data space.  
All data memory writes, including in DSP instructions,  
view data space as combined X and Y address space.  
The boundary between the X and Y data spaces is  
device-dependent and is not user-programmable.  
The X data space is used by all instructions and  
supports all addressing modes. X data space has  
separate read and write data buses. The X read data  
bus is the read data path for all instructions that view  
data space as combined X and Y address space. It is  
also the X data prefetch path for the dual operand DSP  
instructions (MACclass).  
All effective addresses are 16 bits wide and point to  
bytes within the data space. Therefore, the data space  
address range is 64 Kbytes, or 32K words, though the  
implemented memory locations vary by device.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 47  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
DS70318D-page 48  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 49  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
DS70318D-page 50  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 51  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
DS70318D-page 52  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 53  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
DS70318D-page 54  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 55  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
DS70318D-page 56  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 57  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
DS70318D-page 58  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 59  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
DS70318D-page 60  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 61  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
DS70318D-page 62  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 63  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
DS70318D-page 64  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 65  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
DS70318D-page 66  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 67  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
DS70318D-page 68  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 69  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
DS70318D-page 70  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
4.2.6  
SOFTWARE STACK  
4.3  
Instruction Addressing Modes  
In addition to its use as a working register, the W15  
register in the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 devices is also used as a  
software Stack Pointer. The Stack Pointer always  
points to the first available free word and grows from  
lower to higher addresses. It predecrements for stack  
pops and post-increments for stack pushes, as shown  
in Figure 4-6. For a PC push during any CALLinstruc-  
tion, the MSb of the PC is zero-extended before the  
push, ensuring that the MSb is always clear.  
The addressing modes shown in Table 4-48 form the  
basis of the addressing modes optimized to support the  
specific features of individual instructions. The  
addressing modes provided in the MAC class of  
instructions differ from those in the other instruction  
types.  
4.3.1  
FILE REGISTER INSTRUCTIONS  
Most file register instructions use a 13-bit address field  
(f) to directly address data present in the first 8192  
bytes of data memory (near data space). Most file  
register instructions employ a working register, W0,  
which is denoted as WREG in these instructions. The  
destination is typically either the same file register or  
WREG (with the exception of the MUL instruction),  
which writes the result to a register or register pair. The  
MOV instruction allows additional flexibility and can  
access the entire data space.  
Note:  
A PC push during exception processing  
concatenates the SRL register to the MSb  
of the PC prior to the push.  
The Stack Pointer Limit register (SPLIM) associated  
with the Stack Pointer sets an upper address boundary  
for the stack. SPLIM is uninitialized at Reset. As is the  
case for the Stack Pointer, SPLIM<0> is forced to ‘0’  
because all stack operations must be word-aligned.  
4.3.2  
MCU INSTRUCTIONS  
Whenever an EA is generated using W15 as a source  
or destination pointer, the resulting address is  
compared with the value in SPLIM. If the contents of  
the Stack Pointer (W15) and the SPLIM register are  
equal and a push operation is performed, a stack error  
trap will not occur. The stack error trap will occur on a  
subsequent push operation. For example, to cause a  
stack error trap when the stack grows beyond address  
0x1000 in RAM, initialize the SPLIM with the value  
0x0FFE.  
The three-operand MCU instructions are of the form:  
Operand 3 = Operand 1 <function> Operand 2  
where Operand 1 is always a working register (that is,  
the addressing mode can only be register direct), which  
is referred to as Wb. Operand 2 can be a W register,  
fetched from data memory, or a 5-bit literal. The result  
location can be either a W register or a data memory  
location. The following addressing modes are  
supported by MCU instructions:  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0x0800. This prevents the stack from  
interfering with the Special Function Register (SFR)  
space.  
• Register Direct  
• Register Indirect  
• Register Indirect Post-Modified  
• Register Indirect Pre-Modified  
• 5-Bit or 10-Bit Literal  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions can support different subsets  
of these addressing modes.  
FIGURE 4-6:  
CALLSTACK FRAME  
0x0000  
15  
0
PC<15:0>  
000000000  
W15 (before CALL)  
PC<22:16>  
<Free Word>  
W15 (after CALL)  
POP : [--W15]  
PUSH: [W15++]  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 71  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 4-48: FUNDAMENTAL ADDRESSING MODES SUPPORTED  
Addressing Mode  
File Register Direct  
Description  
The address of the file register is specified explicitly.  
The contents of a register are accessed directly.  
The contents of Wn forms the Effective Address (EA).  
Register Direct  
Register Indirect  
Register Indirect Post-Modified  
The contents of Wn forms the EA. Wn is post-modified (incremented or  
decremented) by a constant value.  
Register Indirect Pre-Modified  
Wn is pre-modified (incremented or decremented) by a signed constant value  
to form the EA.  
Register Indirect with Register Offset The sum of Wn and Wb forms the EA.  
(Register Indexed)  
Register Indirect with Literal Offset  
The sum of Wn and a literal forms the EA.  
4.3.3  
MOVE AND ACCUMULATOR  
INSTRUCTIONS  
4.3.4  
MACINSTRUCTIONS  
The dual source operand DSP instructions (CLR, ED,  
EDAC, MAC, MPY, MPY.N, MOVSACand MSC), also referred  
to as MACinstructions, use a simplified set of addressing  
modes to allow the user application to effectively  
manipulate the data pointers through register indirect  
tables.  
Move instructions and the DSP accumulator class of  
instructions provide a greater degree of addressing  
flexibility than other instructions. In addition to the  
addressing modes supported by most MCU  
instructions, move and accumulator instructions also  
support Register Indirect with Register Offset  
Addressing mode, also referred to as Register Indexed  
mode.  
The two-source operand prefetch registers must be  
members of the set {W8, W9, W10, W11}. For data  
reads, W8 and W9 are always directed to the X RAGU,  
and W10 and W11 are always directed to the Y AGU.  
The effective addresses generated (before and after  
modification) must, therefore, be valid addresses within  
X data space for W8 and W9 and Y data space for W10  
and W11.  
Note:  
For the MOV instructions, the addressing  
mode specified in the instruction can differ  
for the source and destination EA.  
However, the 4-bit Wb (register offset)  
field is shared by both source and  
destination (but typically only used by  
one).  
Note:  
Register Indirect with Register Offset  
Addressing mode is available only for W9  
(in X space) and W11 (in Y space).  
In summary, the following addressing modes are  
supported by move and accumulator instructions:  
In summary, the following addressing modes are  
• Register Direct  
supported by the MACclass of instructions:  
• Register Indirect  
• Register Indirect  
• Register Indirect Post-modified  
• Register Indirect Pre-modified  
• Register Indirect with Register Offset (Indexed)  
• Register Indirect with Literal Offset  
• 8-Bit Literal  
• Register Indirect Post-Modified by 2  
• Register Indirect Post-Modified by 4  
• Register Indirect Post-Modified by 6  
• Register Indirect with Register Offset (Indexed)  
• 16-Bit Literal  
4.3.5  
OTHER INSTRUCTIONS  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions may support different subsets  
of these addressing modes.  
Besides the addressing modes outlined previously, some  
instructions use literal constants of various sizes. For  
example, BRA (branch) instructions use 16-bit signed  
literals to specify the branch destination directly, whereas  
the DISIinstruction uses a 14-bit unsigned literal field. In  
some instructions, such as ADD Acc, the source of an  
operand or result is implied by the opcode itself. Certain  
operations, such as NOP, do not have any operands.  
DS70318D-page 72  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
4.4  
Modulo Addressing  
Note:  
Y
space Modulo Addressing EA  
calculations assume word-sized data (LSb  
of every EA is always clear).  
Modulo Addressing mode is a method used to provide  
an automated means to support circular data buffers  
using hardware. The objective is to remove the need  
for software to perform data address boundary checks  
when executing tightly looped code, as is typical in  
many DSP algorithms.  
The length of a circular buffer is not directly specified. It  
is determined by the difference between the  
corresponding start and end addresses. The maximum  
possible length of the circular buffer is 32K words  
(64 Kbytes).  
Modulo Addressing can operate in either data or program  
space (since the data pointer mechanism is essentially  
the same for both). One circular buffer can be supported  
in each of the X (which also provides the pointers into  
program space) and Y data spaces. Modulo Addressing  
can operate on any W register pointer. However, it is not  
advisable to use W14 or W15 for Modulo Addressing  
since these two registers are used as the Stack Frame  
Pointer and Stack Pointer, respectively.  
4.4.2  
W ADDRESS REGISTER  
SELECTION  
The Modulo and Bit-Reversed Addressing Control  
register, MODCON<15:0>, contains enable flags as  
well as a W register field to specify the W Address  
registers. The XWM and YWM fields select the  
registers that will operate with Modulo Addressing:  
In general, any particular circular buffer can be  
configured to operate in only one direction as there are  
certain restrictions on the buffer start address (for  
incrementing buffers), or end address (for  
decrementing buffers), based upon the direction of the  
buffer.  
• If XWM = 15, X RAGU and X WAGU Modulo  
Addressing is disabled.  
• If YWM = 15, Y AGU Modulo Addressing is  
disabled.  
The X Address Space Pointer W register (XWM), to  
which Modulo Addressing is to be applied, is stored in  
MODCON<3:0> (see Table 4-1). Modulo Addressing is  
enabled for X data space when XWM is set to any value  
other than ‘15’ and the XMODEN bit is set at  
MODCON<15>.  
The only exception to the usage restrictions is for  
buffers that have a power-of-two length. As these  
buffers satisfy the start and end address criteria, they  
can operate in a bidirectional mode (that is, address  
boundary checks are performed on both the lower and  
upper address boundaries).  
The Y Address Space Pointer W register (YWM) to  
which Modulo Addressing is to be applied is stored in  
MODCON<7:4>. Modulo Addressing is enabled for Y  
data space when YWM is set to any value other than  
‘15’ and the YMODEN bit is set at MODCON<14>.  
4.4.1  
START AND END ADDRESS  
The Modulo Addressing scheme requires that a  
starting and ending address be specified and loaded  
into the 16-bit Modulo Buffer Address registers:  
XMODSRT, XMODEND, YMODSRT and YMODEND  
(see Table 4-1).  
FIGURE 4-7:  
MODULO ADDRESSING OPERATION EXAMPLE  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
#0x1100, W0  
Byte  
Address  
W0, XMODSRT  
#0x1163, W0  
W0, MODEND  
#0x8001, W0  
W0, MODCON  
;set modulo start address  
;set modulo end address  
;enable W1, X AGU for modulo  
;W0 holds buffer fill value  
;point W1 to buffer  
0x1100  
MOV  
MOV  
#0x0000, W0  
#0x1110, W1  
DO  
MOV  
AGAIN, #0x31  
W0, [W1++]  
;fill the 50 buffer locations  
;fill the next location  
0x1163  
AGAIN: INC W0, W0  
;increment the fill value  
Start Addr = 0x1100  
End Addr = 0x1163  
Length = 0x0032 words  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 73  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
If the length of a bit-reversed buffer is M = 2N bytes,  
the last ‘N’ bits of the data buffer start address must  
be zeros.  
4.4.3  
MODULO ADDRESSING  
APPLICABILITY  
Modulo Addressing can be applied to the Effective  
Address (EA) calculation associated with any W  
register. Address boundaries check for addresses  
equal to:  
XB<14:0> is the Bit-Reversed Address modifier, or  
‘pivot point,’ which is typically a constant. In the case of  
an FFT computation, its value is equal to half of the FFT  
data buffer size.  
• The upper boundary addresses for incrementing  
buffers  
Note:  
All bit-reversed EA calculations assume  
word-sized data (LSb of every EA is  
always clear). The XB value is scaled  
accordingly to generate compatible (byte)  
addresses.  
• The lower boundary addresses for decrementing  
buffers  
It is important to realize that the address boundaries  
check for addresses less than or greater than the upper  
(for incrementing buffers) and lower (for decrementing  
buffers) boundary addresses (not just equal to).  
Address changes can, therefore, jump beyond  
boundaries and still be adjusted correctly.  
When enabled, Bit-Reversed Addressing is executed  
only for Register Indirect with Pre-Increment or Post-  
Increment Addressing and word-sized data writes. It  
will not function for any other addressing mode or for  
byte-sized data, and normal addresses are generated  
instead. When Bit-Reversed Addressing is active, the  
W Address Pointer is always added to the address  
modifier (XB), and the offset associated with the Regis-  
ter Indirect Addressing mode is ignored. In addition, as  
word-sized data is a requirement, the LSb of the EA is  
ignored (and always clear).  
Note:  
The modulo corrected effective address is  
written back to the register only when Pre-  
Modify or Post-Modify Addressing mode is  
used to compute the effective address.  
When an address offset (such as  
[W7 + W2]) is used, Modulo Addressing  
correction is performed but the contents of  
the register remain unchanged.  
Note:  
Modulo Addressing and Bit-Reversed  
Addressing should not be enabled  
together. If an application attempts to do so,  
Bit-Reversed Addressing will assume  
priority when active for the X WAGU and X  
WAGU; Modulo Addressing will be dis-  
abled. However, Modulo Addressing will  
continue to function in the X RAGU.  
4.5  
Bit-Reversed Addressing  
Bit-Reversed Addressing mode is intended to simplify  
data re-ordering for radix-2 FFT algorithms. It is  
supported by the X AGU for data writes only.  
The modifier, which can be a constant value or register  
contents, is regarded as having its bit order reversed. The  
address source and destination are kept in normal order.  
Thus, the only operand requiring reversal is the modifier.  
If Bit-Reversed Addressing has already been enabled  
by setting the BREN (XBREV<15>) bit, a write to the  
XBREV register should not be immediately followed by  
an indirect read operation using the W register that has  
been designated as the Bit-Reversed Pointer.  
4.5.1  
BIT-REVERSED ADDRESSING  
IMPLEMENTATION  
Bit-Reversed Addressing mode is enabled in any of  
these situations:  
• BWM bits (W register selection) in the MODCON  
register are any value other than 15 (the stack  
cannot be accessed using Bit-Reversed  
Addressing)  
• The BREN bit is set in the XBREV register  
• The addressing mode used is Register Indirect  
with Pre-Increment or Post-Increment  
DS70318D-page 74  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 4-8:  
BIT-REVERSED ADDRESS EXAMPLE  
Sequential Address  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1  
0
Bit Locations Swapped Left-to-Right  
Around Center of Binary Value  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1 b2 b3 b4  
0
Bit-Reversed Address  
Pivot Point  
XB = 0x0008 for a 16-Word Bit-Reversed Buffer  
TABLE 4-49: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)  
Normal Address Bit-Reversed Address  
A3  
A2  
A1  
A0  
Decimal  
A3  
A2  
A1  
A0  
Decimal  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
8
2
4
3
12  
2
4
5
10  
6
6
7
14  
1
8
9
9
10  
11  
12  
13  
14  
15  
5
13  
3
11  
7
15  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 75  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
4.6.1  
ADDRESSING PROGRAM SPACE  
4.6  
Interfacing Program and Data  
Memory Spaces  
Since the address ranges for the data and program  
spaces are 16 and 24 bits, respectively, a method is  
needed to create a 23-bit or 24-bit program address  
from 16-bit data registers. The solution depends on the  
interface method to be used.  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 architecture uses a 24-bit-wide program space and a  
16-bit-wide data space. The architecture is also a modi-  
fied Harvard scheme, meaning that data can also be  
present in the program space. To use this data success-  
fully, it must be accessed in a way that preserves the  
alignment of information in both spaces.  
For table operations, the 8-bit Table Page register  
(TBLPAG) is used to define a 32K word region within  
the program space. This is concatenated with a 16-bit  
EA to arrive at a full 24-bit program space address. In  
this format, the Most Significant bit of TBLPAG is used  
to determine if the operation occurs in the user memory  
(TBLPAG<7> = 0) or the configuration memory  
(TBLPAG<7> = 1).  
Aside from normal execution, the dsPIC33FJ06GS101/  
X02 and dsPIC33FJ16GSX02/X04 architecture  
provides two methods by which program space can be  
accessed during operation:  
• Using table instructions to access individual bytes  
or words anywhere in the program space  
For remapping operations, the 8-bit Program Space  
Visibility Register (PSVPAG) is used to define a  
16K word page in the program space. When the Most  
Significant bit of the EA is ‘1’, PSVPAG is concatenated  
with the lower 15 bits of the EA to form a 23-bit program  
space address. Unlike table operations, this limits  
remapping operations strictly to the user memory area.  
• Remapping a portion of the program space into  
the data space (Program Space Visibility)  
Table instructions allow an application to read or write  
to small areas of the program memory. This capability  
makes the method ideal for accessing data tables that  
need to be updated periodically. It also allows access  
to all bytes of the program word. The remapping  
method allows an application to access a large block of  
data on a read-only basis, which is ideal for look ups  
from a large table of static data. The application can  
only access the least significant word of the program  
word.  
Table 4-50 and Figure 4-9 show how the program EA is  
created for table operations and remapping accesses  
from the data EA. Here, P<23:0> refers to a program  
space word, and D<15:0> refers to a data space word.  
TABLE 4-50: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
PC<22:1>  
0
0xx xxxx xxxx xxxx xxxx xxx0  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
TBLPAG<7:0>  
0xxx xxxx  
Data EA<15:0>  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
Program Space Visibility User  
(Block Remap/Read)  
0
0
PSVPAG<7:0>  
xxxx xxxx  
Data EA<14:0>(1)  
xxx xxxx xxxx xxxx  
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of  
the address is PSVPAG<0>.  
DS70318D-page 76  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 4-9:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter(1)  
Program Counter  
23 bits  
0
0
1/0  
EA  
Table Operations(2)  
1/0  
TBLPAG  
8 bits  
16 bits  
24 bits  
Select  
1
0
EA  
Program Space Visibility(1)  
(Remapping)  
0
PSVPAG  
8 bits  
15 bits  
23 bits  
Byte Select  
User/Configuration  
Space Select  
Note 1: The Least Significant bit (LSb) of program space addresses is always fixed as ‘0’ to maintain word  
alignment of data in the program and data spaces.  
2: Table operations are not required to be word-aligned. Table read operations are permitted in the  
configuration memory space.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 77  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
- In Byte mode, either the upper or lower byte  
of the lower program word is mapped to the  
lower byte of a data address. The upper byte  
is selected when byte select is ‘1’; the lower  
byte is selected when it is ‘0’.  
4.6.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the program space without going  
through data space. The TBLRDH and TBLWTH  
instructions are the only method to read or write the  
upper 8 bits of a program space word as data.  
TBLRDH (Table Read High):  
- In Word mode, this instruction maps the entire  
upper word of a program address (P<23:16>)  
to a data address. Note that D<15:8>, the  
‘phantom byte’, will always be ‘0’.  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two 16-bit  
wide word address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space that contains the least significant  
data word. TBLRDHand TBLWTHaccess the space that  
contains the upper data byte.  
- In Byte mode, this instruction maps the upper  
or lower byte of the program word to D<7:0>  
of the data address, in the TBLRDL  
instruction. The data is always ‘0’ when the  
upper ‘phantom’ byte is selected (Byte  
Select = 1).  
Similarly, two table instructions, TBLWTHand TBLWTL,  
are used to write individual bytes or words to a program  
space address. The details of their operation are  
explained in Section 5.0 “Flash Program Memory”.  
Two table instructions are provided to move byte or  
word-sized (16-bit) data to and from program space.  
Both function as either byte or word operations.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table Page  
register (TBLPAG). TBLPAG covers the entire program  
memory space of the device, including user and  
configuration spaces. When TBLPAG<7> = 0, the table  
page is located in the user memory space. When  
TBLPAG<7> = 1, the page is located in configuration  
space.  
TBLRDL(Table Read Low):  
- In Word mode, this instruction maps the  
lower word of the program space location  
(P<15:0>) to a data address (D<15:0>).  
FIGURE 4-10:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
TBLPAG  
02  
23  
15  
0
0x000000  
23  
16  
8
0
00000000  
00000000  
00000000  
0x020000  
0x030000  
00000000  
‘Phantom’ Byte  
TBLRDH.B (Wn<0> = 0)  
TBLRDL.B (Wn<0> = 1)  
TBLRDL.B (Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register.  
Only read operations are shown; write operations are also valid in  
the user memory area.  
0x800000  
DS70318D-page 78  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
24-bit program word are used to contain the data. The  
upper 8 bits of any program space location used as  
data should be programmed with ‘1111 1111’ or  
0000 0000’ to force a NOP. This prevents possible  
issues should the area of code ever be accidentally  
executed.  
4.6.3  
READING DATA FROM PROGRAM  
MEMORY USING PROGRAM SPACE  
VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word page of the program space.  
This option provides transparent access to stored  
constant data from the data space without the need to  
use special instructions (such as TBLRDL/H).  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
Program space access through the data space occurs  
if the Most Significant bit of the data space EA is ‘1’ and  
program space visibility is enabled by setting the PSV  
bit in the Core Control register (CORCON<2>). The  
location of the program memory space to be mapped  
into the data space is determined by the Program  
Space Visibility Page register (PSVPAG). This 8-bit  
register defines any one of 256 possible pages of  
16K words in program space. In effect, PSVPAG  
functions as the upper 8 bits of the program memory  
address, with the 15 bits of the EA functioning as the  
lower bits. By incrementing the PC by 2 for each  
program memory word, the lower 15 bits of data space  
addresses directly map to the lower 15 bits in the  
corresponding program space addresses.  
For operations that use PSV and are executed outside  
aREPEATloop, theMOVand MOV.Dinstructions require  
one instruction cycle in addition to the specified  
execution time. All other instructions require two  
instruction cycles in addition to the specified execution  
time.  
For operations that use PSV, and are executed inside  
a REPEATloop, these instances require two instruction  
cycles in addition to the specified execution time of the  
instruction:  
• Execution in the first iteration  
• Execution in the last iteration  
• Execution prior to exiting the loop due to an  
interrupt  
• Execution upon re-entering the loop after an  
interrupt is serviced  
Data reads to this area add a cycle to the instruction  
being executed, since two program memory fetches  
are required.  
Any other iteration of the REPEAT loop will allow the  
instruction using PSV to access data, to execute in a  
single cycle.  
Although each data space address 8000h and higher  
maps directly into a corresponding program memory  
address (see Figure 4-11), only the lower 16 bits of the  
FIGURE 4-11:  
PROGRAM SPACE VISIBILITY OPERATION  
When CORCON<2> = 1and EA<15> = 1:  
Program Space  
Data Space  
PSVPAG  
02  
23  
15  
0
0x000000  
0x0000  
Data EA<14:0>  
0x010000  
0x018000  
The data in the page  
designated by  
PSVPAG is mapped  
into the upper half of  
the data memory  
space...  
0x8000  
PSV Area  
...while the lower 15 bits  
of the EA specify an  
exact address within  
the PSV area. This  
corresponds exactly to  
the same lower 15 bits  
of the actual program  
space address.  
0xFFFF  
0x800000  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 79  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
NOTES:  
DS70318D-page 80  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
signal controller just before shipping the product. This  
also allows the most recent firmware or a custom  
5.0  
FLASH PROGRAM MEMORY  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 families of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”, Section 5. “Flash  
Programming” (DS70191), which is  
available from the Microchip web site  
(www.microchip.com).  
firmware to be programmed.  
RTSP is accomplished using TBLRD (table read) and  
TBLWT (table write) instructions. With RTSP, the user  
application can write program memory data, either in  
blocks or ‘rows’ of 64 instructions (192 bytes) at a time,  
or a single program memory word, and erase program  
memory in blocks or ‘pages’ of 512 instructions  
(1536 bytes) at a time.  
5.1  
Table Instructions and Flash  
Programming  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 devices contain internal Flash program memory for  
storing and executing application code. The memory is  
readable, writable and erasable during normal operation  
over the entire VDD range.  
Regardless of the method used, all programming of  
Flash memory is done with the table read and table  
write instructions. These allow direct read and write  
access to the program memory space from the data  
memory while the device is in normal operating mode.  
The 24-bit target address in the program memory is  
formed using bits<7:0> of the TBLPAG register and the  
Effective Address (EA) from a W register specified in  
the table instruction, as shown in Figure 5-1.  
Flash memory can be programmed in two ways:  
• In-Circuit Serial Programming™ (ICSP™)  
programming capability  
• Run-Time Self-Programming (RTSP)  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
both Word and Byte modes.  
ICSP allows  
a
dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 device to be serially  
programmed while in the end application circuit. This is  
done with two lines for programming clock and  
programming data (one of the alternate programming  
pin pairs: PGECx/PGEDx, and three other lines for  
power (VDD), ground (VSS) and Master Clear (MCLR).  
This allows customers to manufacture boards with  
unprogrammed devices and then program the digital  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits<23:16> of program memory. TBLRDH  
and TBLWTHcan also access program memory in Word  
or Byte mode.  
FIGURE 5-1:  
ADDRESSING FOR TABLE REGISTERS  
24 bits  
Program Counter  
Using  
Program Counter  
0
0
Working Reg EA  
Using  
Table Instruction  
1/0  
TBLPAG Reg  
8 bits  
16 bits  
User/Configuration  
Space Select  
Byte  
Select  
24-bit EA  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 81  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
5.2  
RTSP Operation  
5.3  
Programming Operations  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 Flash program memory array is organized into rows  
of 64 instructions or 192 bytes. RTSP allows the user  
application to erase a page of memory, which consists of  
eight rows (512 instructions) at a time, and to program  
one row or one word at a time. Table 24-12 shows typical  
erase and programming times. The 8-row erase pages  
and single row write rows are edge-aligned from the  
beginning of program memory, on boundaries of  
1536 bytes and 192 bytes, respectively.  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. The processor stalls (waits) until the  
programming operation is finished.  
The programming time depends on the FRC accuracy  
(see Table 24-20) and the value of the FRC Oscillator  
Tuning register (see Register 8-4). Use the following  
formula to calculate the minimum and maximum values  
for the Row Write Time, Page Erase Time, and Word  
Write Cycle Time parameters (see Table 24-12).  
The program memory implements holding buffers that  
can contain 64 instructions of programming data. Prior  
to the actual programming operation, the write data  
must be loaded into the buffers sequentially. The  
instruction words loaded must always be from a group  
of 64 boundary.  
EQUATION 5-1:  
PROGRAMMING TIME  
T
-------------------------------------------------------------------------------------------------------------------------  
7.37 MHz × (FRC Accuracy)% × (FRC Tuning)%  
For example, if the device is operating at +125°C,  
the FRC accuracy will be ±5%. If the TUN<5:0> bits  
(see Register 8-4) are set to ‘b111111, the  
Minimum Row Write Time is:  
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the buffers. Programming is performed by  
setting the control bits in the NVMCON register. A total  
of 64 TBLWTL and TBLWTH instructions are required  
to load the instructions.  
11064 Cycles  
TRW = ---------------------------------------------------------------------------------------------- = 1 . 4 3 5 ms  
7.37 MHz × (1 + 0.05) × (1 0.00375)  
All of the table write operations are single-word writes  
(two instruction cycles) because only the buffers are  
and, the Maximum Row Write Time is:  
written.  
programming each row.  
A
programming cycle is required for  
11064 Cycles  
TRW = --------------------------------------------------------------------------------------------- = 1.586ms  
7.37 MHz × (1 0.05) × (1 0.00375)  
Setting the WR bit (NVMCON<15>) starts the opera-  
tion, and the WR bit is automatically cleared when the  
operation is finished.  
5.4  
Control Registers  
Two SFRs are used to read and write the program  
Flash memory: NVMCON and NVMKEY.  
The NVMCON register (Register 5-1) controls which  
blocks are to be erased, which memory type is to be  
programmed and the start of the programming cycle.  
NVMKEY is a write-only register that is used for write  
protection. To start a programming or erase sequence,  
the user application must consecutively write 0x55 and  
0xAA to the NVMKEY register. Refer to Section 5.3  
“Programming Operations” for further details.  
DS70318D-page 82  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 5-1:  
NVMCON: FLASH MEMORY CONTROL REGISTER  
R/SO-0(1)  
WR  
R/W-0(1)  
WREN  
R/W-0(1)  
WRERR  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0(1)  
bit 0  
U-0  
R/W-0(1)  
ERASE  
U-0  
U-0  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
NVMOP<3:0>(2)  
bit 7  
Legend:  
SO = Settable Only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
WR: Write Control bit  
1= Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is  
cleared by hardware once operation is complete.  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit  
1= Enable Flash program/erase operations  
0= Inhibit Flash program/erase operations  
WRERR: Write Sequence Error Flag bit  
1= An improper program or erase sequence attempt or termination has occurred (bit is set  
automatically on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
ERASE: Erase/Program Enable bit  
1= Perform the erase operation specified by NVMOP<3:0> on the next WR command  
0= Perform the program operation specified by NVMOP<3:0> on the next WR command  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
NVMOP<3:0>: NVM Operation Select bits(2)  
If ERASE = 1:  
1111= Memory bulk erase operation  
1101= Erase general segment  
0011= No operation  
0010= Memory page erase operation  
0001= No operation  
0000= Erase a single Configuration register byte  
If ERASE = 0:  
1111= No operation  
1101= No operation  
0011= Memory word program operation  
0010= No operation  
0001= Memory row program operation  
0000= Program a single Configuration register byte  
Note 1: These bits can only be Reset on POR.  
2: All other combinations of NVMOP<3:0> are unimplemented.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 83  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 5-2:  
NVMKEY: NONVOLATILE MEMORY KEY REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
W-0  
bit 7  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
NVMKEY<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
NVMKEY<7:0>: Key Register bits (write-only)  
DS70318D-page 84  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
4. Write the first 64 instructions from data RAM into  
the program memory buffers (see Example 5-2).  
5.4.1  
PROGRAMMING ALGORITHM FOR  
FLASH PROGRAM MEMORY  
5. Write the program block to Flash memory:  
One row of program Flash memory can be  
programmed at a time. To achieve this, it is necessary  
to erase the 8-row erase page that contains the desired  
row. The general process is:  
a) Set the NVMOP bits to ‘0001’ to configure  
for row programming. Clear the ERASE bit  
and set the WREN bit.  
b) Write 0x55 to NVMKEY.  
c) Write 0xAA to NVMKEY.  
1. Read eight rows of program memory  
(512 instructions) and store in data RAM.  
d) Set the WR bit. The programming cycle  
begins and the CPU stalls for the duration of  
the write cycle. When the write to Flash  
memory is done, the WR bit is cleared  
automatically.  
2. Update the program data in RAM with the  
desired new data.  
3. Erase the block (see Example 5-1):  
a) Set the NVMOP bits (NVMCON<3:0>) to  
0010’ to configure for block erase. Set the  
ERASE (NVMCON<6>) and WREN  
(NVMCON<14>) bits.  
6. Repeat steps 4 and 5, using the next available  
64 instructions from the block in data RAM by  
incrementing the value in TBLPAG, until all  
512 instructions are written back to Flash memory.  
b) Write the starting address of the page to be  
erased into the TBLPAG and W registers.  
For protection against accidental operations, the write  
initiate sequence for NVMKEY must be used to allow  
any erase or program operation to proceed. After the  
programming command has been executed, the user  
application must wait for the programming time until  
programming is complete. The two instructions  
following the start of the programming sequence  
should be NOPs, as shown in Example 5-3.  
c) Write 0x55 to NVMKEY.  
d) Write 0xAA to NVMKEY.  
e) Set the WR bit (NVMCON<15>). The erase  
cycle begins and the CPU stalls for the  
duration of the erase cycle. When the erase is  
done, the WR bit is cleared automatically.  
EXAMPLE 5-1:  
ERASING A PROGRAM MEMORY PAGE  
; Set up NVMCON for block erase operation  
MOV  
MOV  
#0x4042, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
; Initialize PM Page Boundary SFR  
; Initialize in-page EA[15:0] pointer  
; Set base address of erase block  
; Block all interrupts with priority <7  
; for next 5 instructions  
TBLWTL W0, [W0]  
DISI  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 85  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
EXAMPLE 5-2:  
LOADING THE WRITE BUFFERS  
; Set up NVMCON for row programming operations  
MOV  
MOV  
#0x4001, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000, W0  
W0, TBLPAG  
#0x6000, W0  
;
; Initialize PM Page Boundary SFR  
; An example program memory address  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
#LOW_WORD_0, W2  
#HIGH_BYTE_0, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 1st_program_word  
MOV  
MOV  
#LOW_WORD_1, W2  
#HIGH_BYTE_1, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 2nd_program_word  
MOV  
MOV  
#LOW_WORD_2, W2  
#HIGH_BYTE_2, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 63rd_program_word  
MOV  
MOV  
#LOW_WORD_31, W2  
#HIGH_BYTE_31, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
EXAMPLE 5-3:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the  
; erase command is asserted  
DS70318D-page 86  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Any active source of reset will make the SYSRST  
6.0  
RESETS  
signal active. On system Reset, some of the registers  
associated with the CPU and peripherals are forced to  
a known Reset state and some are unaffected.  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 families of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”, Section 8. “Reset”  
(DS70192), which is available from the  
Microchip web site (www.microchip.com).  
Note:  
Refer to the specific peripheral section or  
Section 3.0 “CPU” of this data sheet for  
register Reset states.  
All types of device Reset sets a corresponding status  
bit in the RCON register to indicate the type of Reset  
(see Register 6-1).  
A POR clears all the bits, except for the POR bit  
(RCON<0>), that are set. The user application can set  
or clear any bit at any time during code execution. The  
RCON bits only serve as status bits. Setting a particular  
Reset status bit in software does not cause a device  
Reset to occur.  
The Reset module combines all Reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
• POR: Power-on Reset  
• BOR: Brown-out Reset  
The RCON register also has other bits associated with  
the Watchdog Timer and device power-saving states.  
The function of these bits is discussed in other sections  
of this manual.  
• MCLR: Master Clear Pin Reset  
• SWR: Software RESETInstruction  
• WDTO: Watchdog Timer Reset  
• CM: Configuration Mismatch Reset  
• TRAPR: Trap Conflict Reset  
• IOPUWR: Illegal Condition Device Reset  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset is meaningful.  
- Illegal Opcode Reset  
- Uninitialized W Register Reset  
- Security Reset  
A simplified block diagram of the Reset module is  
shown in Figure 6-1.  
FIGURE 6-1:  
RESET SYSTEM BLOCK DIAGRAM  
RESETInstruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
BOR  
Internal  
Regulator  
SYSRST  
VDD  
POR  
VDD Rise  
Detect  
Trap Conflict  
Illegal Opcode  
Uninitialized W Register  
Configuration Mismatch  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 87  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER(1)  
R/W-0  
TRAPR  
bit 15  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CM  
R/W-0  
IOPUWR  
VREGS  
bit 8  
R/W-0  
EXTR  
R/W-0  
SWR  
R/W-0  
SWDTEN(2)  
R/W-0  
WDTO  
R/W-0  
R/W-0  
IDLE  
R/W-1  
BOR  
R/W-1  
POR  
SLEEP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit  
1= An illegal opcode detection, an illegal address mode or uninitialized W register used as an  
Address Pointer caused a Reset  
0= An illegal opcode or uninitialized W Reset has not occurred  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
CM: Configuration Mismatch Flag bit  
1= A Configuration Mismatch Reset has occurred  
0= A Configuration Mismatch Reset has NOT occurred  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
VREGS: Voltage Regulator Standby During Sleep bit  
1= Voltage regulator is active during Sleep  
0= Voltage regulator goes into Standby mode during Sleep  
EXTR: External Reset Pin (MCLR) bit  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
SWR: Software Reset Flag (Instruction) bit  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
SWDTEN: Software Enable/Disable of WDT bit(2)  
1= WDT is enabled  
0= WDT is disabled  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
SLEEP: Wake-up from Sleep Flag bit  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
IDLE: Wake-up from Idle Flag bit  
1= Device was in Idle mode  
0= Device was not in Idle mode  
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
DS70318D-page 88  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER(1) (CONTINUED)  
bit 1  
BOR: Brown-out Reset Flag bit  
1= A Brown-out Reset has occurred  
0= A Brown-out Reset has not occurred  
bit 0  
POR: Power-on Reset Flag bit  
1= A Power-up Reset has occurred  
0= A Power-up Reset has not occurred  
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 89  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
2. BOR Reset: The on-chip voltage regulator has  
a BOR circuit that keeps the device in Reset  
until VDD crosses the VBOR threshold and the  
delay, TBOR, has elapsed. The delay, TBOR,  
ensures that the voltage regulator output  
becomes stable.  
6.1  
System Reset  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 families of devices have two types of Reset:  
• Cold Reset  
• Warm Reset  
3. PWRT Timer: The programmable power-up  
timer continues to hold the processor in Reset  
for a specific period of time (TPWRT) after a  
BOR. The delay TPWRT ensures that the system  
power supplies have stabilized at the  
appropriate level for full-speed operation. After  
the delay, TPWRT, has elapsed, the SYSRST  
becomes inactive, which in turn enables the  
selected oscillator to start generating clock  
cycles.  
A cold Reset is the result of a Power-on Reset (POR)  
or a Brown-out Reset (BOR). On a cold Reset, the  
FNOSC Configuration bits in the FOSC Configuration  
register select the device clock source.  
A warm Reset is the result of all the other Reset  
sources, including the RESET instruction. On warm  
Reset, the device will continue to operate from the  
current clock source as indicated by the Current  
Oscillator Selection (COSC<2:0>) bits in the Oscillator  
Control (OSCCON<14:12>) register.  
4. Oscillator Delay: The total delay for the clock to  
be ready for various clock source selections is  
given in Table 6-1. Refer to Section 8.0  
“Oscillator Configurationfor moreinformation.  
The device is kept in a Reset state until the system  
power supplies have stabilized at appropriate levels  
and the oscillator clock is ready. The sequence in  
which this occurs is detailed below and is shown in  
Figure 6-2.  
5. When the oscillator clock is ready, the processor  
begins execution from location 0x000000. The  
user application programs a GOTOinstruction at  
the Reset address, which redirects program  
execution to the appropriate start-up routine.  
1. POR Reset: A POR circuit holds the device in  
Reset when the power supply is turned on. The  
POR circuit is active until VDD crosses the VPOR  
threshold and the delay, TPOR, has elapsed.  
6. The Fail-Safe Clock Monitor (FSCM), if enabled,  
begins to monitor the system clock when the  
system clock is ready and the delay, TFSCM,  
elapsed.  
TABLE 6-1:  
OSCILLATOR DELAY  
Oscillator  
Oscillator  
Startup Timer  
Oscillator Mode  
PLL Lock Time  
Total Delay  
Startup Delay  
(1)  
(1)  
FRC, FRCDIV16, FRCDIVN  
TOSCD  
TOSCD  
(1)  
(3)  
(1,3)  
FRCPLL  
XT  
TOSCD  
TLOCK  
TOSCD + TLOCK  
(1)  
(2)  
(1,2)  
TOSCD  
TOST  
TOSCD + TOST  
TOSCD + TOST  
(1)  
(2)  
(1,2)  
HS  
TOSCD  
TOST  
EC  
(1)  
(2)  
(3)  
XTPLL  
TOSCD  
TOST  
TLOCK  
TOSCD + TOST +  
TLOCK  
(1,2,3)  
(1)  
(2)  
(3)  
HSPLL  
TOSCD  
TOST  
TLOCK  
TOSCD + TOST +  
TLOCK  
(1,2,3)  
(3)  
(3)  
ECPLL  
LPRC  
TLOCK  
TLOCK  
(1)  
(1)  
TOSCD  
TOSCD  
Note 1: TOSCD = Oscillator start-up delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal oscillator start-up  
times vary with crystal characteristics, load capacitance, etc.  
2: TOST = Oscillator start-up timer delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a  
10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.  
3: TLOCK = PLL lock time (1.5 ms nominal) if PLL is enabled.  
DS70318D-page 90  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 6-2:  
SYSTEM RESET TIMING  
VBOR  
VPOR  
VDD  
TPOR  
1
POR Reset  
BOR Reset  
SYSRST  
TBOR  
2
3
TPWRT  
4
Oscillator Clock  
TLOCK  
TOSCD  
TOST  
6
TFSCM  
FSCM  
5
Reset  
Device Status  
Run  
Time  
Note 1: POR Reset: A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is  
active until VDD crosses the VPOR threshold and the delay, TPOR, has elapsed.  
2: BOR Reset: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses  
the VBOR threshold and the delay, TBOR, has elapsed. The delay, TBOR, ensures the voltage regulator output  
becomes stable.  
3: PWRT Timer: The programmable power-up timer continues to hold the processor in Reset for a specific period  
of time (TPWRT) after a BOR. The delay, TPWRT, ensures that the system power supplies have stabilized at the  
appropriate level for full-speed operation. After the delay, TPWRT has elapsed and the SYSRST becomes  
inactive, which in turn, enables the selected oscillator to start generating clock cycles.  
4: Oscillator Delay: The total delay for the clock to be ready for various clock source selections is given in  
Table 6-1. Refer to Section 8.0 “Oscillator Configuration” for more information.  
5: When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application  
programs a GOTOinstruction at the Reset address, which redirects program execution to the appropriate start-up  
routine.  
6: If the Fail-Safe Clock Monitor (FSCM) is enabled, it begins to monitor the system clock when the system clock is  
ready and the delay, TFSCM, has elapsed.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 91  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 6-2:  
OSCILLATOR DELAY  
Symbol  
Parameter  
POR threshold  
Value  
VPOR  
TPOR  
VBOR  
TBOR  
TPWRT  
TFSCM  
1.8V nominal  
POR extension time  
30 μs maximum  
2.5V nominal  
BOR threshold  
BOR extension time  
100 μs maximum  
Programmable power-up time delay  
Fail-Safe Clock Monitor delay  
0-128 ms nominal  
900 μs maximum  
6.2.1  
Brown-out Reset (BOR) and  
Power-up Timer (PWRT)  
Note: When the device exits the Reset  
condition (begins normal operation), the  
device operating parameters (voltage,  
frequency, temperature, etc.) must be  
within their operating ranges; otherwise,  
the device may not function correctly.  
The user application must ensure that  
the delay between the time power is first  
applied, and the time SYSRST becomes  
inactive, is long enough to get all operat-  
ing parameters within specification.  
The on-chip regulator has a Brown-out Reset (BOR)  
circuit that resets the device when the VDD is too low  
(VDD < VBOR) for proper device operation. The BOR  
circuit keeps the device in Reset until VDD crosses the  
VBOR threshold and the delay, TBOR, has elapsed. The  
delay, TBOR, ensures the voltage regulator output  
becomes stable.  
The BOR status (BOR) bit in the Reset Control  
(RCON<1>) register is set to indicate the Brown-out  
Reset.  
6.2  
Power-on Reset (POR)  
The device will not run at full speed after a BOR as the  
VDD should rise to acceptable levels for full-speed  
operation. The PWRT provides power-up time delay  
(TPWRT) to ensure that the system power supplies have  
stabilized at the appropriate levels for full-speed  
operation before the SYSRST is released.  
A Power-on Reset (POR) circuit ensures the device is  
reset from power-on. The POR circuit is active until  
VDD crosses the VPOR threshold and the delay, TPOR,  
has elapsed. The delay, TPOR, ensures the internal  
device bias circuits become stable.  
The device supply voltage characteristics must meet  
the specified starting voltage and rise rate  
requirements to generate the POR. Refer to  
Section 24.0 “Electrical Characteristics” for details.  
The power-up timer delay (TPWRT) is programmed by  
the  
Power-on  
Reset  
Timer  
Value  
Select  
(FPWRT<2:0>) bits in the POR Configuration  
(FPOR<2:0>) register, which provides eight settings  
(from 0 ms to 128 ms). Refer to Section 21.0 “Special  
Features” for further details.  
The POR status (POR) bit in the Reset Control  
(RCON<0>) register is set to indicate the Power-on  
Reset.  
Figure 6-3 shows the typical brown-out scenarios. The  
reset delay (TBOR + TPWRT) is initiated each time VDD  
rises above the VBOR trip point  
DS70318D-page 92  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 6-3:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
VDD dips before PWRT expires  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
the RESETinstruction will remain. SYSRST is released  
at the next instruction cycle and the Reset vector fetch  
will commence.  
6.3  
External Reset (EXTR)  
The external Reset is generated by driving the MCLR  
pin low. The MCLR pin is a Schmitt trigger input with an  
additional glitch filter. Reset pulses that are longer than  
the minimum pulse width will generate a Reset. Refer  
to Section 24.0 “Electrical Characteristics” for  
minimum pulse width specifications. The external  
Reset (MCLR) pin (EXTR) bit in the Reset Control  
(RCON) register is set to indicate the MCLR Reset.  
The Software Reset (SWR) flag (instruction) in the  
Reset Control (RCON<6>) register is set to indicate  
the software Reset.  
6.5  
Watchdog Time-out Reset (WDTO)  
Whenever a Watchdog time-out occurs, the device will  
asynchronously assert SYSRST. The clock source will  
remain unchanged. A WDT time-out during Sleep or  
Idle mode will wake-up the processor, but will not reset  
the processor.  
6.3.0.1  
EXTERNAL SUPERVISORY  
CIRCUIT  
Many systems have external supervisory circuits that  
generate Reset signals to reset multiple devices in the  
system. This external Reset signal can be directly  
connected to the MCLR pin to reset the device when  
the rest of system is reset.  
The Watchdog Timer Time-out (WDTO) flag in the  
Reset Control (RCON<4>) register is set to indicate  
the Watchdog Reset. Refer to Section 21.4  
“Watchdog Timer (WDT)” for more information on  
Watchdog Reset.  
6.3.0.2  
INTERNAL SUPERVISORY CIRCUIT  
When using the internal power supervisory circuit to  
reset the device, the external Reset pin (MCLR) should  
be tied directly or resistively to VDD. In this case, the  
MCLR pin will not be used to generate a Reset. The  
external Reset pin (MCLR) does not have an internal  
pull-up and must not be left unconnected.  
6.6  
Trap Conflict Reset  
If a lower priority hard trap occurs while a higher  
priority trap is being processed, a hard Trap Conflict  
Reset occurs. The hard traps include exceptions of pri-  
ority level 13 through level 15, inclusive. The address  
error (level 13) and oscillator error (level 14) traps fall  
into this category.  
6.4  
Software RESETInstruction (SWR)  
The Trap Reset (TRAPR) flag in the Reset Control  
(RCON<15>) register is set to indicate the Trap Conflict  
Reset. Refer to Section 7.0 “Interrupt Controller” for  
more information on Trap Conflict Resets.  
Whenever the RESET instruction is executed, the  
device will assert SYSRST, placing the device in a  
special Reset state. This Reset state will not  
re-initialize the clock. The clock source in effect prior to  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 93  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
each program memory section to store the data values.  
The upper 8 bits should be programmed with 3Fh,  
which is an illegal opcode value.  
6.7  
Configuration Mismatch Reset  
To maintain the integrity of the Peripheral Pin Select  
Control registers, they are constantly monitored with  
shadow registers in hardware. If an unexpected  
change in any of the registers occur (such as cell  
disturbances caused by ESD or other external events),  
a Configuration Mismatch Reset occurs.  
6.8.2  
UNINITIALIZED W REGISTER  
RESET  
Any attempt to use the uninitialized W register as an  
Address Pointer will Reset the device. The W register  
array (with the exception of W15) is cleared during all  
Resets and is considered uninitialized until written to.  
The Configuration Mismatch (CM) flag in the Reset  
Control (RCON<9>) register is set to indicate the  
Configuration Mismatch Reset. Refer to Section 10.0  
“I/O Ports” for more information on the  
Configuration Mismatch Reset.  
6.8.3  
SECURITY RESET  
If a Program Flow Change (PFC) or Vector Flow  
Change (VFC) targets a restricted location in a  
protected segment (boot and secure segment), that  
operation will cause a Security Reset.  
Note:  
The Configuration Mismatch Reset  
feature and associated Reset flag are not  
available on all devices.  
The PFC occurs when the program counter is reloaded  
as a result of a call, jump, computed jump, return,  
return from subroutine or other form of branch  
instruction.  
6.8  
Illegal Condition Device Reset  
An illegal condition device Reset occurs due to the  
following sources:  
The VFC occurs when the program counter is reloaded  
with an interrupt or trap vector.  
• Illegal Opcode Reset  
• Uninitialized W Register Reset  
• Security Reset  
Refer to Section 21.8 “Code Protection and  
CodeGuard™ Security” for more information on  
Security Reset.  
The Illegal Opcode or Uninitialized W Access Reset  
(IOPUWR) flag in the Reset Control (RCON<14>)  
register is set to indicate the illegal condition device  
Reset.  
6.9  
Using the RCON Status Bits  
The user application can read the Reset Control  
(RCON) register after any device Reset to determine  
the cause of the Reset.  
6.8.1  
ILLEGAL OPCODE RESET  
A device Reset is generated if the device attempts to  
execute an illegal opcode value that is fetched from  
program memory.  
Note: The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset will be meaningful.  
The Illegal Opcode Reset function can prevent the  
device from executing program memory sections that  
are used to store constant data. To take advantage of  
the Illegal Opcode Reset, use only the lower 16 bits of  
Table 6-3 provides a summary of the Reset flag bit  
operation.  
TABLE 6-3:  
Flag Bit  
RESET FLAG BIT OPERATION  
Set by:  
Cleared by:  
TRAPR (RCON<15>)  
IOPWR (RCON<14>)  
Trap conflict event  
POR,BOR  
Illegal opcode or uninitialized W register  
access or Security Reset  
POR,BOR  
CM (RCON<9>)  
Configuration Mismatch  
MCLR Reset  
POR,BOR  
POR  
EXTR (RCON<7>)  
SWR (RCON<6>)  
WDTO (RCON<4>)  
RESETinstruction  
WDT time-out  
POR,BOR  
PWRSAVinstruction, CLRWDTinstruction,  
POR,BOR  
SLEEP (RCON<3>)  
IDLE (RCON<2>)  
BOR (RCON<1>)  
POR (RCON<0>)  
PWRSAV #SLEEPinstruction  
PWRSAV #IDLEinstruction  
POR, BOR  
POR,BOR  
POR,BOR  
POR  
Note: All Reset flag bits can be set or cleared by user software.  
DS70318D-page 94  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
7.1.1  
ALTERNATE INTERRUPT VECTOR  
TABLE  
7.0  
INTERRUPT CONTROLLER  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 families of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
The Alternate Interrupt Vector Table (AIVT) is located  
after the IVT, as shown in Figure 7-1. Access to the  
AIVT is provided by the ALTIVT control bit  
(INTCON2<15>). If the ALTIVT bit is set, all interrupt  
and exception processes use the alternate vectors  
instead of the default vectors. The alternate vectors are  
organized in the same manner as the default vectors.  
Reference  
Manual”,  
Section  
41.  
The AIVT supports debugging by providing a means to  
“Interrupts (Part IV)” (DS70300), which  
is available on the Microchip web site  
(www.microchip.com).  
switch between an application and  
a
support  
environment without requiring the interrupt vectors to  
be reprogrammed. This feature also enables switching  
between applications for evaluation of different  
software algorithms at run time. If the AIVT is not  
needed, the AIVT should be programmed with the  
same addresses used in the IVT.  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 interrupt controller reduces the numerous peripheral  
interrupt request signals to a single interrupt request  
signal  
to  
the  
dsPIC33FJ06GS101/X02  
and  
dsPIC33FJ16GSX02/X04 CPU. It has the following  
features:  
7.2  
Reset Sequence  
• Up to eight processor exceptions and software  
traps  
A device Reset is not a true exception because the  
interrupt controller is not involved in the Reset process.  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 device clears its registers in response to a Reset,  
which forces the PC to zero. The digital signal controller  
then begins program execution at location 0x000000. A  
GOTO instruction at the Reset address can redirect  
program execution to the appropriate start-up routine.  
• Seven user-selectable priority levels  
• Interrupt Vector Table (IVT) with up to 118 vectors  
• A unique vector for each interrupt or exception  
source  
• Fixed priority within a specified user priority level  
• Alternate Interrupt Vector Table (AIVT) for debug  
support  
Note: Any unimplemented or unused vector  
locations in the IVT and AIVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
• Fixed interrupt entry and return latencies  
7.1  
Interrupt Vector Table  
The Interrupt Vector Table (IVT) is shown in Figure 7-1.  
The IVT resides in program memory, starting at location  
000004h. The IVT contains 126 vectors, consisting of  
eight nonmaskable trap vectors, plus up to 118 sources  
of interrupt. In general, each interrupt source has its own  
vector. Each interrupt vector contains a 24-bit-wide  
address. The value programmed into each interrupt  
vector location is the starting address of the associated  
Interrupt Service Routine (ISR).  
Interrupt vectors are prioritized in terms of their natural  
priority. This priority is linked to their position in the  
vector table. Lower addresses generally have a higher  
natural priority. For example, the interrupt associated  
with vector 0 will take priority over interrupts at any  
other vector address.  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 devices implement up to 35 unique interrupts and  
4 non-maskable traps. These are summarized in  
Table 7-1.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 95  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 7-1:  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 INTERRUPT VECTOR  
TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
0x000000  
0x000002  
0x000004  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000014  
~
~
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00007C  
0x00007E  
0x000080  
(1)  
Interrupt Vector Table (IVT)  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Reserved  
0x0000FC  
0x0000FE  
0x000100  
0x000102  
Reserved  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000114  
~
~
(1)  
Alternate Interrupt Vector Table (AIVT)  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00017C  
0x00017E  
0x000180  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Start of Code  
0x0001FE  
0x000200  
Note 1: See Table 7-1 for the list of implemented interrupt vectors.  
DS70318D-page 96  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 7-1:  
INTERRUPT VECTORS  
Interrupt  
Vector  
Number  
Request  
(IQR)  
IVT Address  
AIVT Address  
Interrupt Source  
Highest Natural Order Priority  
INT0 – External Interrupt 0  
IC1 – Input Capture 1  
8
9
0
1
0x000014  
0x000016  
0x000018  
0x00001A  
0x00001C  
0x00001E  
0x000020  
0x000022  
0x000024  
0x000026  
0x000028  
0x00002A  
0x00002C  
0x00002E  
0x000030  
0x000032  
0x000034  
0x000036  
0x000038  
0x00003A  
0x00003C  
0x00003E  
0x000040  
0x000042  
0x000044  
0x000046  
0x000048  
0x00004A  
0x00004C  
0x00004E  
0x000114  
0x000116  
0x000118  
0x00011A  
0x00011C  
0x00011E  
0x000120  
0x000122  
0x000124  
0x000126  
0x000128  
0x00012A  
0x00012C  
0x00012E  
0x000130  
0x000132  
0x000134  
0x000136  
0x000138  
0x00013A  
0x00013C  
0x00013E  
0x000140  
0x000142  
0x000144  
0x000146  
0x000148  
0x00014A  
0x00014C  
0x00014E  
10  
2
OC1 – Output Compare 1  
T1 – Timer1  
11  
3
12  
4
Reserved  
13  
5
IC2 – Input Capture 2  
OC2 – Output Compare 2  
T2 – Timer2  
14  
6
15  
7
16  
8
T3 – Timer3  
17  
9
SPI1E – SPI1 Fault  
SPI1 – SPI1 Transfer Done  
U1RX – UART1 Receiver  
U1TX – UART1 Transmitter  
ADC – ADC Group Convert Done  
Reserved  
18  
10  
11  
19  
20  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30-56  
57  
58-64  
65  
66-93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
21  
22  
23  
Reserved  
24  
SI2C1 – I2C1 Slave Event  
MI2C1 – I2C1 Master Event  
CMP1 – Analog Comparator 1 Interrupt  
CN – Input Change Notification Interrupt  
INT1 – External Interrupt 1  
Reserved  
25  
26  
27  
28  
29  
30  
Reserved  
31  
Reserved  
32  
Reserved  
33  
Reserved  
34  
Reserved  
35  
Reserved  
36  
Reserved  
37  
INT2 – External Interrupt 2  
Reserved  
38-64  
65  
0x000086  
0x000096  
0x000186  
0x000196  
PWM PSEM Special Event Match  
Reserved  
66-72  
73  
U1E – UART1 Error Interrupt  
Reserved  
74-101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
0x0000D0  
0x0000D2  
0x0000D4  
0x0000D6  
0x0000D8  
0x0000DA  
0x0000DC  
0x0000DE  
0x0000E0  
0x0000E2  
0x0001D0  
0x0001D2  
0x0001D4  
0x0001D6  
0x0001D8  
0x0001DA  
0x0001DC  
0x0001DE  
0x0001E0  
0x00001E2  
PWM1 – PWM1 Interrupt  
PWM2 – PWM2 Interrupt  
PWM3 – PWM3 Interrupt  
PWM4 – PWM4 Interrupt  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CMP2 – Analog Comparator 2  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 97  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 7-1:  
INTERRUPT VECTORS (CONTINUED)  
Interrupt  
Vector  
Number  
Request  
(IQR)  
IVT Address  
AIVT Address  
Interrupt Source  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
0x0000E4  
0x0000E6  
0x0000E8  
0x0000EA  
0x0000EC  
0x0000EE  
0x0000F0  
0x0000F2  
0x0000F4  
0x0000F6  
0x0000F8  
0x0000FA  
0x0000FC  
0x0000FE  
0x0001E4  
0x0001E6  
0x0001E8  
0x0001EA  
0x0001EC  
0x0001EE  
0x0001F0  
0x0001F2  
0x0001F4  
0x0001F6  
0x0001F8  
0x0001FA  
0x0001FC  
0x0001FE  
CMP3 – Analog Comparator 3  
CMP4 – Analog Comparator 4  
Reserved  
Reserved  
Reserved  
Reserved  
ADC Pair 0 Convert Done  
ADC Pair 1 Convert Done  
ADC Pair 2 Convert Done  
ADC Pair 3 Convert Done  
ADC Pair 4 Convert Done  
ADC Pair 5 Convert Done  
ADC Pair 6 Convert Done  
Reserved  
Lowest Natural Order Priority  
DS70318D-page 98  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
7.3.5  
INTTREG  
7.3  
Interrupt Control and Status  
Registers  
The INTTREG register contains the associated  
interrupt vector number and the new CPU Interrupt  
priority Level, which are latched into the Vector Number  
(VECNUM<6:0>) and Interrupt Level (ILR<3:0>) bit  
fields in the INTTREG register. The new Interrupt  
Priority Level is the priority of the pending interrupt.  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 devices implement 27 registers for the interrupt  
controller:  
• INTCON1  
• INTCON2  
• IFSx  
• IECx  
• IPCx  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the same sequence that they are  
listed in Table 7-1. For example, the INT0 (External  
Interrupt 0) is shown as having vector number 8 and a  
natural order priority of 0. Thus, the INT0IF bit is found  
in IFS0<0>, the INT0IE bit is found in IEC0<0> and the  
INT0IP bits are found in the first position of IPC0  
(IPC0<2:0>).  
• INTTREG  
7.3.1  
INTCON1 AND INTCON2  
Global interrupt control functions are controlled from  
INTCON1 and INTCON2. INTCON1 contains the  
Interrupt Nesting Disable (NSTDIS) bit as well as the  
control and status flags for the processor trap sources.  
The INTCON2 register controls the external interrupt  
request signal behavior and the use of the Alternate  
Interrupt Vector Table.  
7.3.6  
STATUS/CONTROL REGISTERS  
Although they are not specifically part of the interrupt  
control hardware, two of the CPU Control registers  
contain bits that control interrupt functionality.  
• The CPU STATUS register, SR, contains the  
IPL<2:0> bits (SR<7:5>). These bits indicate the  
current CPU interrupt Priority Level. The user can  
change the current CPU priority level by writing to  
the IPL bits.  
7.3.2  
IFSx  
The IFSx registers maintain all of the interrupt request  
flags. Each source of interrupt has a status bit, which is  
set by the respective peripherals or external signal and  
is cleared via software.  
• The CORCON register contains the IPL3 bit,  
which together with IPL<2:0>, indicates the  
current CPU priority level. IPL3 is a read-only bit  
so that trap events cannot be masked by the user  
software.  
7.3.3  
IECx  
The IECx registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
All Interrupt registers are described in Register 7-1  
through Register 7-35 in the following pages.  
7.3.4  
IPCx  
The IPCx registers are used to set the Interrupt Priority  
Level for each source of interrupt. Each user interrupt  
source can be assigned to one of eight priority levels.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 99  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-1:  
SR: CPU STATUS REGISTER(1)  
R-0  
OA  
R-0  
OB  
R/C-0  
SA  
R/C-0  
SB  
R-0  
R/C-0  
SAB  
R -0  
DA  
R/W-0  
DC  
OAB  
bit 15  
bit 8  
R/W-0(3)  
IPL2(2)  
bit 7  
R/W-0(3)  
IPL1(2)  
R/W-0(3)  
IPL0(2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 0  
Legend:  
C = Clearable bit  
S = Settable bit  
‘1’ = Bit is set  
R = Readable bit  
W = Writable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
Note 1: For complete register details, see Register 3-1.  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
REGISTER 7-2:  
CORCON: CORE CONTROL REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
US  
R/W-0  
EDT  
R-0  
R-0  
R-0  
DL<2:0>  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 3  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU Interrupt Priority Level is greater than 7  
0= CPU Interrupt Priority Level is 7 or less  
Note 1: For complete register details, see Register 3-2.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
DS70318D-page 100  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
NSTDIS  
OVAERR  
OVBERR  
COVAERR COVBERR  
OVATE  
OVBTE  
COVTE  
bit 15  
bit 8  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
SFTACERR  
DIV0ERR  
MATHERR ADDRERR  
STKERR  
OSCFAIL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
OVAERR: Accumulator A Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator A  
0= Trap was not caused by overflow of Accumulator A  
OVBERR: Accumulator B Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator B  
0= Trap was not caused by overflow of Accumulator B  
COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit  
1= Trap was caused by catastrophic overflow of Accumulator A  
0= Trap was not caused by catastrophic overflow of Accumulator A  
COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit  
1= Trap was caused by catastrophic overflow of Accumulator B  
0= Trap was not caused by catastrophic overflow of Accumulator B  
OVATE: Accumulator A Overflow Trap Enable bit  
1= Trap overflow of Accumulator A  
0= Trap disabled  
OVBTE: Accumulator B Overflow Trap Enable bit  
1= Trap overflow of Accumulator B  
0= Trap disabled  
bit 8  
COVTE: Catastrophic Overflow Trap Enable bit  
1= Trap on catastrophic overflow of Accumulator A or B enabled  
0= Trap disabled  
bit 7  
SFTACERR: Shift Accumulator Error Status bit  
1= Math error trap was caused by an invalid accumulator shift  
0= Math error trap was not caused by an invalid accumulator shift  
bit 6  
DIV0ERR: Arithmetic Error Status bit  
1= Math error trap was caused by a divide by zero  
0= Math error trap was not caused by a divide by zero  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
MATHERR: Arithmetic Error Status bit  
1= Math error trap has occurred  
0= Math error trap has not occurred  
bit 3  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 101  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)  
bit 2  
bit 1  
bit 0  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
DS70318D-page 102  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-4:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-0  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ALTIVT  
DISI  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
INT2EP  
INT1EP  
INT0EP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ALTIVT: Enable Alternate Interrupt Vector Table bit  
1= Use alternate vector table  
0= Use standard (default) vector table  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIinstruction is not active  
bit 13-3  
bit 2  
Unimplemented: Read as ‘0’  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 1  
bit 0  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 103  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0  
U-0  
U-0  
R/W-0  
ADIF  
R/W-0  
R/W-0  
R/W-0  
SPI1IF  
R/W-0  
R/W-0  
T3IF(1,2)  
U1TXIF  
U1RXIF  
SPI1EIF  
bit 15  
bit 8  
R/W-0  
T2IF(1,2)  
bit 7  
R/W-0  
OC2IF(1,2)  
R/W-0  
IC2IF  
U-0  
R/W-0  
T1IF  
R/W-0  
OC1IF  
R/W-0  
IC1IF(1)  
R/W-0  
INT0IF  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ADIF: ADC Group Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIF: UART1 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1RXIF: UART1 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1IF: SPI1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1EIF: SPI1 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
T3IF: Timer3 Interrupt Flag Status bit(1,2)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
T2IF: Timer2 Interrupt Flag Status bit(1,2)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
OC2IF: Output Compare Channel 2 Interrupt Flag Status bit(1,2)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
IC2IF: Input Capture Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1IF: Timer1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Note 1: This bit is not implemented in dsPIC33FJ06GS101/102 devices.  
2: These bits are not implemented in dsPIC33FJ06GS202 devices.  
DS70318D-page 104  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)  
bit 2  
bit 1  
bit 0  
OC1IF: Output Compare Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC1IF: Input Capture Channel 1 Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT0IF: External Interrupt 0 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Note 1: This bit is not implemented in dsPIC33FJ06GS101/102 devices.  
2: These bits are not implemented in dsPIC33FJ06GS202 devices.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 105  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1  
U-0  
U-0  
R/W-0  
INT2IF  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
INT1IF  
R/W-0  
CNIF  
R/W-0  
AC1IF(1)  
R/W-0  
R/W-0  
MI2C1IF  
SI2C1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
INT2IF: External Interrupt 2 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IF: External Interrupt 1 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
CNIF: Input Change Notification Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
AC1IF: Analog Comparator 1 Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
MI2C1IF: I2C1 Master Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Note 1: This bit is not implemented in dsPIC33FJ16GS402/404 and dsPIC33FJ06GS101/102 devices.  
DS70318D-page 106  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-7:  
IFS3: INTERRUPT FLAG STATUS REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
PSEMIF  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9  
Unimplemented: Read as ‘0’  
PSEMIF: PWM Special Event Match Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8-0  
Unimplemented: Read as ‘0’  
REGISTER 7-8:  
IFS4: INTERRUPT FLAG STATUS REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U1EIF  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-2  
bit 1  
Unimplemented: Read as ‘0’  
U1EIF: UART1 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
Unimplemented: Read as ‘0’  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 107  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-9:  
R/W-0  
PWM2IF(1)  
IFS5: INTERRUPT FLAG STATUS REGISTER 5  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
PWM1IF  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PWM2IF: PWM2 Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 14  
PWM1IF: PWM1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is not implemented in dsPIC33FJ06GS101/102 devices.  
DS70318D-page 108  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-10: IFS6: INTERRUPT FLAG STATUS REGISTER 6  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
AC4IF(1,2)  
R/W-0  
AC3IF(1,2)  
ADCP1IF  
ADCP0IF  
bit 15  
bit 8  
R/W-0  
AC2IF(2)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
PWM4IF(1,3) PWM3IF(4)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
ADCP1IF: ADC Pair 1 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
ADCP0IF: ADC Pair 0 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
AC4IF: Analog Comparator 4 Interrupt Flag Status bit(1,2)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
bit 7  
AC3IF: Analog Comparator 3 Interrupt Flag Status bit(1,2)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
AC2IF: Analog Comparator 2 Interrupt Flag Status bit(2)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6-2  
bit 1  
Unimplemented: Read as ‘0’  
PWM4IF: PWM4 Interrupt Flag Status bit(1,3)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
PWM3IF: PWM3 Interrupt Flag Status bit(4)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Note 1: These bits are unimplemented in dsPIC33FJ06GS202 devices.  
2: These bits are unimplemented in dsPIC33FJ06GS101 and dsPIC33FJ16GS502 devices.  
3: These bits are unimplemented in dsPIC33FJ16GS402/404/502 devices.  
4: These bits are unimplemented in dsPIC33FJ06101/102/202 devices.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 109  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-11: IFS7: INTERRUPT FLAG STATUS REGISTER 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADCP6IF ADCP5IF(1) ADCP4IF(1)  
ADCP3IF(2) ADCP2IF(3)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4  
Unimplemented: Read as ‘0’  
ADCP6IF: ADC Pair 6 Conversion Done Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
ADCP5IF: ADC Pair 5 Conversion Done Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
ADCP4IF: ADC Pair 4 Conversion Done Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
ADCP3IF: ADC Pair 3 Conversion Done Interrupt Flag Status bit(2)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
ADCP2IF: ADC Pair 2 Conversion Done Interrupt Flag Status bit(3)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Note 1: These bits are not implemented in dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/402/502  
devices.  
2: This bit is not implemented in dsPIC33FJ06GS102/202 devices.  
3: This bit is not implemented in dsPIC33FJ06GS101 devices.  
DS70318D-page 110  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-12: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0  
U-0  
U-0  
R/W-0  
ADIE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3IE(1,2)  
U1TXIE  
U1RXIE  
SPI1IE  
SPI1EIE  
bit 15  
bit 8  
R/W-0  
T2IE  
R/W-0  
OC2IE(1,2)  
R/W-0  
IC2IE(1,2)  
U-0  
R/W-0  
T1IE  
R/W-0  
OC1IE  
R/W-0  
IC1IE(1)  
R/W-0  
INT0IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ADIE: ADC1 Conversion Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIE: UART1 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U1RXIE: UART1 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI1IE: SPI1 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI1EIE: SPI1 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8  
T3IE: Timer3 Interrupt Enable bit(1,2)  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 7  
T2IE: Timer2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
OC2IE: Output Compare Channel 2 Interrupt Enable bit(1,2)  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 5  
IC2IE: Input Capture Channel 2 Interrupt Enable bit(1,2)  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1IE: Timer1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
Note 1: These bits are unimplemented in dsPIC33FJ06GS101/102 devices.  
2: These bits are unimplemented in dsPIC33FJ06GS202 devices.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 111  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-12: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)  
bit 2  
bit 1  
bit 0  
OC1IE: Output Compare Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC1IE: Input Capture Channel 1 Interrupt Enable bit(1)  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT0IE: External Interrupt 0 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
Note 1: These bits are unimplemented in dsPIC33FJ06GS101/102 devices.  
2: These bits are unimplemented in dsPIC33FJ06GS202 devices.  
DS70318D-page 112  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-13: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
INT2IE  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CNIE  
R/W-0  
AC1IE(1)  
R/W-0  
R/W-0  
INT1IE  
MI2C1IE  
SI2C1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
INT2IE: External Interrupt 2 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IE: External Interrupt 1 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 3  
bit 2  
bit 1  
bit 0  
CNIE: Input Change Notification Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
AC1IE: Analog Comparator 1 Interrupt Enable bit(1)  
1= Interrupt request enabled  
0= Interrupt request not enabled  
MI2C1IE: I2C1 Master Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SI2C1IE: I2C1 Slave Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
Note 1: This bit is not implemented in dsPIC33FJ06GS101/102 and dsPIC33FJ16GS402/404 devices.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 113  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-14: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
PSEMIE  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9  
Unimplemented: Read as ‘0’  
PSEMIE: PWM Special Event Match Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8-0  
Unimplemented: Read as ‘0’  
REGISTER 7-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U1EIE  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-2  
bit 1  
Unimplemented: Read as ‘0’  
U1EIE: UART1 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 0  
Unimplemented: Read as ‘0’  
DS70318D-page 114  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5  
R/W-0  
PWM2IE(1)  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
PWM1IE  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PWM2IE: PWM2 Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 14  
PWM1IE: PWM1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 13-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is unimplemented in dsPIC33FJ06GS101/102 devices.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 115  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-17: IEC6: INTERRUPT ENABLE CONTROL REGISTER 6  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
AC4IE(1,2)  
R/W-0  
AC3IE(1,2)  
ADCP1IE  
ADCP0IE  
bit 15  
bit 8  
R/W-0  
AC2IE(2)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
PWM4IE(1,3) PWM3IE(4)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
ADCP1IE: ADC Pair 1 Conversion Done Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
ADCP0IE: ADC Pair 0 Conversion Done Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0  
AC4IE: Analog Comparator 4 Interrupt Enable bit(1,2)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8  
bit 7  
AC3IE: Analog Comparator 3 Interrupt Enable bit(1,2)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
AC2IE: Analog Comparator 2 Interrupt Enable bit(2)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 6-2  
bit 1  
Unimplemented: Read as ‘0’  
PWM4IE: PWM4 Interrupt Enable bit(1,3)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 0  
PWM3IE: PWM3 Interrupt Enable bit(4)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Note 1: These bits are unimplemented in dsPIC33FJ06GS202 devices.  
2: These bits are unimplemented in dsPIC33FJ06GS101 and dsPIC33FJ16GS502 devices.  
3: These bits are unimplemented in dsPIC33FJ16GS402/404/502 devices.  
4: These bits are unimplemented in dsPIC33FJ06101/102/202 devices.  
DS70318D-page 116  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-18: IEC7: INTERRUPT ENABLE CONTROL REGISTER 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADCP6IE(3) ADCP5IE(1) ADCP4IE(1) ADCP3IE(2) ADCP2IE(3)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4  
Unimplemented: Read as ‘0’  
ADCP6IE: ADC Pair 6 Conversion Done Interrupt Enable bit(3)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit  
bit  
bit  
bit  
ADCP5IE: ADC Pair 5 Conversion Done Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
ADCP4IE: ADC Pair 4 Conversion Done Interrupt Enable bit(1)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
ADCP3IE: ADC Pair 3 Conversion Done Interrupt Enable bit(2)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
ADCP2IE: ADC Pair 2 Conversion Done Interrupt Enable bit(3)  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Note 1: These bits are not implemented in dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/402/502  
devices.  
2: This bit is not implemented in dsPIC33FJ06GS102/202 devices.  
3: This bit is not implemented in dsPIC33FJ06GS101 devices.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 117  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-19: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
T1IP<2:0>  
OC1IP<2:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
R/W-1  
R/W-0  
IC1IP<2:0>(1)  
R/W-0  
U-0  
R/W-1  
R/W-0  
INT0IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T1IP<2:0>: Timer1 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits(1)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT0IP<2:0>: External Interrupt 0 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
Note 1: These bits are unimplemented in dsPIC33FJ06GS101/102 devices.  
DS70318D-page 118  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-20: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
OC2IP<2:0>(1)  
R/W-0  
bit 8  
T2IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
IC2IP<2:0>(1,2)  
R/W-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T2IP<2:0>: Timer2 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits(1)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits(1,2)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
Note 1: These bits are not implemented in dsPIC33FJ06GS101/202 devices.  
2: These bits are not implemented in dsPIC33FJ06GS102 devices.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 119  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-21: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
U1RXIP<2:0>  
SPI1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
T3IP<2:0>(1)  
R/W-0  
bit 0  
SPI1EIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
SPI1IP<2:0>: SPI1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T3IP<2:0>: Timer3 Interrupt Priority bits(1)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
Note 1: These bits are not implemented in dsPIC33FJ06GS101/102/202 devices.  
DS70318D-page 120  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-22: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
ADIP<2:0>  
U1TXIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
ADIP<2:0>: ADC1 Conversion Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 121  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-23: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
AC1IP<2:0>(1)  
R/W-0  
bit 8  
CNIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 0  
MI2C1IP<2:0>  
SI2C1IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CNIP<2:0>: Change Notification Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
AC1IP<2:0>: Analog Comparator 1 Interrupt Priority bits(1)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
Note 1: These bits are not implemented in dsPIC33FJ06GS101/102 and dsPIC33FJ16GS402/404 devices.  
DS70318D-page 122  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-24: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
INT1IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
INT1IP<2:0>: External Interrupt 1 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
REGISTER 7-25: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7  
U-0  
U-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
INT2IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
INT2IP<2:0>: External Interrupt 2 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 123  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-26: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
PSEMIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
PSEMIP<2:0>: PWM Special Event Match Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
REGISTER 7-27: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U1EIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
U1EIP<2:0>: UART1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS70318D-page 124  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-28: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23  
U-0  
R/W-1  
R/W-0  
PWM2IP(1)  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
PWM1IP<2:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
PWM2IP<2:0>: PWM2 Interrupt Priority bits(1)  
111= Interrupt is priority 7 (highest priority)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
PWM1IP<2:0>: PWM1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: These bits are not implemented in dsPIC33FJ06GS101/102 devices.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 125  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-29: IPC24: INTERRUPT PRIORITY CONTROL REGISTER 24  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
PWM4IP(1)  
R/W-0  
U-0  
R/W-1  
R/W-0  
PWM3IP<2:0>(2)  
R/W-0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
PWM4IP<2:0>: PWM4 Interrupt Priority bits(1)  
111= Interrupt is priority 7 (highest priority)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
PWM3IP<2:0>: PWM3 Interrupt Priority bits(2)  
111= Interrupt is priority 7 (highest priority)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
Note 1: These bits are not implemented in dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices.  
2: These bits are not implemented in dsPIC33FJ06101/102/202 devices.  
DS70318D-page 126  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-30: IPC25: INTERRUPT PRIORITY CONTROL REGISTER 25  
U-0  
R/W-1  
R/W-0  
AC2IP<2:0>(1)  
R/W-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
AC2IP<2:0>: Analog Comparator 2 Interrupt Priority bits(1)  
111= Interrupt is priority 7 (highest priority)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11-01  
Unimplemented: Read as ‘0’  
Note 1: These bits are not implemented in dsPIC33FJ06GS101/102 and dsPIC33FJ16GS402/404 devices.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 127  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-31: IPC26: INTERRUPT PRIORITY CONTROL REGISTER 26  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
AC4IP<2:0>(1)  
R/W-0  
U-0  
R/W-1  
R/W-0  
AC3IP<2:0>(1,2)  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
AC4IP<2:0>: Analog Comparator 4 Interrupt Priority bits(1)  
111= Interrupt is priority 7 (highest priority)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
AC3IP<2:0>: Analog Comparator 3 Interrupt Priority bits(1,2)  
111= Interrupt is priority 7 (highest priority)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
Note 1: These bits are not implemented in dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices.  
2: These bits are not implemented in dsPIC33FJ06GS101/102 devices.  
DS70318D-page 128  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-32: IPC27: INTERRUPT PRIORITY CONTROL REGISTER 27  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
ADCP1IP<2:0>  
ADCP0IP<2:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
ADCP1IP<2:0>: ADC Pair 1 Conversion Done Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
ADCP0IP<2:0>: ADC Pair 0 Conversion Done Interrupt Priority bits(1)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 129  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-33: IPC28: INTERRUPT PRIORITY CONTROL REGISTER 28  
U-0  
R/W-1  
R/W-0  
ADCP5IP<2:0>(4)  
R/W-0  
U-0  
R/W-1  
R/W-0  
ADCP4IP<2:0>(4)  
R/W-0  
bit 8  
bit 15  
U-0  
R/W-1  
R/W-0  
ADCP3IP<2:0>(2,3)  
R/W-0  
U-0  
R/W-1  
R/W-0  
ADCP2IP<2:0>(1)  
R/W-0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
ADCP5IP<2:0>: ADC Pair 5 Conversion Done Interrupt Priority bits(4)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
ADCP4IP<2:0>: ADC Pair 4 Conversion Done Interrupt Priority bits(4)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
ADCP3IP<2:0>: ADC Pair 3 Conversion Done Interrupt Priority bits(2,3)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
ADCP2IP<2:0>: ADC Pair 2 Conversion Done Interrupt Priority bits(1)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
Note 1: These bits are not implemented in dsPIC33FJ06GS101 devices.  
2: These bits are not implemented in dsPIC33FJ06GS102 devices.  
3: These bits are not implemented in dsPIC33FJ06GS202 devices.  
4: These bits are implemented in dsPIC33FJ16GS504 devices only.  
DS70318D-page 130  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-34: IPC29: INTERRUPT PRIORITY CONTROL REGISTER 29  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
ADCP6IP<2:0>(1)  
R/W-0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
ADCP6IP<2:0>: ADC Pair 6 Conversion Done Interrupt 1 Priority bits(1)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
Note 1: These bits are not implemented in dsPIC33FJ06GS202 devices.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 131  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 7-35: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
ILR<3:0>  
bit 15  
bit 8  
bit 0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
VECNUM<6:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
ILR<3:0>: New CPU Interrupt Priority Level bits  
1111= CPU Interrupt Priority Level is 15  
0001= CPU Interrupt Priority Level is 1  
0000= CPU Interrupt Priority Level is 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
VECNUM<6:0>: Vector Number of Pending Interrupt bits  
0111111= Interrupt vector pending is number 135  
0000001= Interrupt vector pending is number 9  
0000000= Interrupt vector pending is number 8  
DS70318D-page 132  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
7.4.3  
TRAP SERVICE ROUTINE  
7.4  
Interrupt Setup Procedures  
A Trap Service Routine (TSR) is coded like an ISR,  
except that the appropriate trap status flag in the  
INTCON1 register must be cleared to avoid re-entry  
into the TSR.  
7.4.1  
INITIALIZATION  
Complete the following steps to configure an interrupt  
source at initialization:  
1. Set the NSTDIS bit (INTCON1<15>) if nested  
interrupts are not desired.  
7.4.4  
INTERRUPT DISABLE  
The following steps outline the procedure to disable all  
user interrupts:  
2. Select the user-assigned priority level for the  
interrupt source by writing the control bits in the  
appropriate IPCx register. The priority level will  
depend on the specific application and type of  
interrupt source. If multiple priority levels are not  
desired, the IPCx register control bits for all  
enabled interrupt sources can be programmed  
to the same non-zero value.  
1. Push the current SR value onto the software  
stack using the PUSHinstruction.  
2. Force the CPU to priority level 7 by inclusive  
ORing the value EOh with SRL.  
To enable user interrupts, the POP instruction can be  
used to restore the previous SR value.  
Note: At a device Reset, the IPCx registers are  
initialized such that all user interrupt  
sources are assigned to priority level 4.  
Note:  
Only user interrupts with a priority level of  
7 or lower can be disabled. Trap sources  
(level 8-level 15) cannot be disabled.  
3. Clear the interrupt flag status bit associated with  
the peripheral in the associated IFSx register.  
The DISI instruction provides a convenient way to  
disable interrupts of priority levels 1-6 for a fixed period  
of time. Level 7 interrupt sources are not disabled by  
the DISI instruction.  
4. Enable the interrupt source by setting the  
interrupt enable control bit associated with the  
source in the appropriate IECx register.  
7.4.2  
INTERRUPT SERVICE ROUTINE  
The method used to declare an ISR and initialize the  
IVT with the correct vector address depends on the  
programming language (C or assembler) and the  
language development toolsuite used to develop the  
application.  
In general, the user application must clear the interrupt  
flag in the appropriate IFSx register for the source of  
interrupt that the ISR handles. Otherwise, program will  
re-enter the ISR immediately after exiting the routine. If  
the ISR is coded in assembly language, it must be  
terminated using a RETFIE instruction to unstack the  
saved PC value, SRL value and old CPU priority level.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 133  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
NOTES:  
DS70318D-page 134  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
• An on-chip Phase-Locked Loop (PLL) to scale the  
internal operating frequency to the required  
system clock frequency  
8.0  
OSCILLATOR  
CONFIGURATION  
• An internal FRC oscillator that can also be used  
with the PLL, thereby allowing full-speed operation  
without any external clock generation hardware  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To complement  
the information in this data sheet, refer to  
the “dsPIC33F Family Reference Manual”,  
Section 42. “Oscillator (Part IV)”  
(DS70307), which is available from the  
Microchip web site (www.microchip.com).  
• Clock switching between various clock sources  
• Programmable clock postscaler for system power  
savings  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and takes fail-safe measures  
• A Clock Control register (OSCCON)  
• Nonvolatile Configuration bits for main oscillator  
selection.  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 oscillator system provides:  
• Auxiliary PLL for ADC and PWM  
• External and internal oscillator options as clock  
sources  
A simplified diagram of the oscillator system is shown  
in Figure 8-1.  
FIGURE 8-1:  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 OSCILLATOR SYSTEM  
DIAGRAM  
DOZE<2:0>  
Primary Oscillator  
OSC1  
POSCCLK  
XT, HS, EC  
S2  
FCY  
FP  
R(2)  
XTPLL, HSPLL,  
ECPLL, FRCPLL  
S3  
PLL(1)  
S1/S3  
S1  
(1)  
FVCO  
OSC2  
POSCMD<1:0>  
÷ 2  
FOSC  
FRC  
Oscillator  
FRCDIVN  
FRCCLK  
S7  
FRCDIV<2:0>  
TUN<5:0>  
FRCDIV16  
FRC  
S6  
S0  
÷ 16  
LPRC  
LPRC  
Oscillator  
S5  
Reference Clock Generation  
POSCCLK  
Clock Switch  
Reset  
Clock Fail  
S7  
REFCLKO  
÷ N  
FOSC  
RPx  
NOSC<2:0> FNOSC<2:0>  
WDT, PWRT,  
FSCM  
ROSEL  
RODIV<3:0>  
Auxiliary Clock Generation  
FRCCLK  
(1)  
FVCO  
POSCCLK  
APLL  
x16  
ACLK To PWM/ADC  
÷ N  
APSTSCLR<2:0>  
ASRCSEL  
FRCSEL  
SELACLK  
ENAPLL  
Note 1: See Section 8.1.3 “PLL Configuration” and Section 8.2 “Auxiliary Clock Generation” for FVCO values.  
2: If the Oscillator is used with XT or HS modes, an external parallel resistor with the value of 1 MΩ must be connected.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 135  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
output frequencies for device operation. PLL  
configuration is described in Section 8.1.3 “PLL Con-  
figuration”.  
8.1  
CPU Clocking System  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 devices provide six system clock options:  
The FRC frequency depends on the FRC accuracy  
(see Table 24-20) and the value of the FRC Oscillator  
Tuning register (see Register 8-4).  
• Fast RC (FRC) Oscillator  
• FRC Oscillator with PLL  
• Primary (XT, HS or EC) Oscillator  
• Primary Oscillator with PLL  
• Low-Power RC (LPRC) Oscillator  
• FRC Oscillator with Postscaler  
8.1.2  
SYSTEM CLOCK SELECTION  
The oscillator source used at a device Power-on Reset  
event is selected using Configuration bit settings. The  
oscillator Configuration bit settings are located in the  
Configuration registers in the program memory. (Refer  
to Section 21.1 “Configuration Bits” for further  
details.) The Initial Oscillator Selection Configuration  
bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary  
8.1.1  
SYSTEM CLOCK SOURCES  
The Fast RC (FRC) internal oscillator runs at a nominal  
frequency of 7.37 MHz. User software can tune the  
FRC frequency. User software can optionally specify a  
factor (ranging from 1:2 to 1:256) by which the FRC  
clock frequency is divided. This factor is selected using  
the FRCDIV<2:0> (CLKDIV<10:8>) bits.  
Oscillator  
Mode  
Select  
Configuration  
bits,  
POSCMD<1:0> (FOSC<1:0>), select the oscillator  
source that is used at a Power-on Reset. The FRC  
primary oscillator is the default (unprogrammed)  
selection.  
The primary oscillator can use one of the following as  
its clock source:  
The Configuration bits allow users to choose among  
12 different clock modes, shown in Table 8-1.  
• XT (Crystal): Crystals and ceramic resonators in  
the range of 3 MHz to 10 MHz. The crystal is  
connected to the OSC1 and OSC2 pins.  
The output of the oscillator (or the output of the PLL if  
a PLL mode has been selected), FOSC, is divided by 2  
to generate the device instruction clock (FCY) and the  
peripheral clock time base (FP). FCY defines the  
operating speed of the device and speeds up to 40  
MHz are supported by the dsPIC33FJ06GS101/X02  
and dsPIC33FJ16GSX02/X04 architecture.  
• HS (High-Speed Crystal): Crystals in the range of  
10 MHz to 40 MHz. The crystal is connected to  
the OSC1 and OSC2 pins.  
• EC (External Clock): The external clock signal is  
directly applied to the OSC1 pin.  
The LPRC internal oscIllator runs at a nominal  
frequency of 32.768 kHz. It is also used as a reference  
clock by the Watchdog Timer (WDT) and Fail-Safe  
Clock Monitor (FSCM).  
Instruction execution speed or device operating  
frequency, FCY, is given by Equation 8-1.  
EQUATION 8-1:  
DEVICE OPERATING  
FREQUENCY  
The clock signals generated by the FRC and primary  
oscillators can be optionally applied to an on-chip  
Phase-Locked Loop (PLL) to provide a wide range of  
FCY = FOSC/2  
TABLE 8-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator Mode Oscillator Source POSCMD<1:0> FNOSC<2:0>  
Note  
Fast RC Oscillator with Divide-by-N (FRCDIVN)  
Fast RC Oscillator with Divide-by-16 (FRCDIV16)  
Low-Power RC Oscillator (LPRC)  
Reserved  
Internal  
Internal  
Internal  
Reserved  
Primary  
Primary  
Primary  
Primary  
Primary  
Primary  
Internal  
Internal  
xx  
xx  
xx  
xx  
10  
01  
00  
10  
01  
00  
xx  
xx  
111  
110  
101  
100  
011  
011  
011  
010  
010  
010  
001  
000  
1, 2  
1
1
1
Primary Oscillator (HS) with PLL (HSPLL)  
Primary Oscillator (XT) with PLL (XTPLL)  
Primary Oscillator (EC) with PLL (ECPLL)  
Primary Oscillator (HS)  
1
Primary Oscillator (XT)  
Primary Oscillator (EC)  
Fast RC Oscillator with PLL (FRCPLL)  
Fast RC Oscillator (FRC)  
1
1
Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.  
2: This is the default oscillator mode for an unprogrammed (erased) device.  
DS70318D-page 136  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
For a primary oscillator or FRC oscillator, output ‘FIN’,  
the PLL output ‘FOSC’ is given by Equation 8-2.  
8.1.3  
PLL CONFIGURATION  
The primary oscillator and internal FRC oscillator can  
optionally use an on-chip PLL to obtain higher speeds  
of operation. The PLL provides significant flexibility in  
selecting the device operating speed. A block diagram  
of the PLL is shown in Figure 8-2.  
EQUATION 8-2:  
FOSC CALCULATION  
M
N1*N2  
FOSC = FIN *  
(
)
The output of the primary oscillator or FRC, denoted as  
‘FIN’, is divided down by a prescale factor (N1) of 2, 3,  
... or 33 before being provided to the PLL’s Voltage  
Controlled Oscillator (VCO). The input to the VCO must  
be selected in the range of 0.8 MHz to 8 MHz. The  
prescale factor ‘N1’ is selected using the  
PLLPRE<4:0> bits (CLKDIV<4:0>).  
For example, suppose a 10 MHz crystal is being used  
with the selected oscillator mode of XT with PLL (see  
Equation 8-3).  
• If PLLPRE<4:0> = 0, then N1 = 2. This yields a  
VCO input of 10/2 = 5 MHz, which is within the  
acceptable range of 0.8-8 MHz.  
• If PLLDIV<8:0> = 0x1E, then M = 32. This yields a  
VCO output of 5 x 32 = 160 MHz, which is within  
the 100-200 MHz ranged needed.  
The PLL Feedback Divisor, selected using the  
PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor, ‘M’,  
by which the input to the VCO is multiplied. This factor  
must be selected such that the resulting VCO output  
frequency is in the range of 100 MHz to 200 MHz.  
• If PLLPOST<1:0> = 0, then N2 = 2. This provides  
a Fosc of 160/2 = 80 MHz. The resultant device  
operating speed is 80/2 = 40 MIPS.  
The VCO output is further divided by a postscale factor,  
‘N2’. This factor is selected using the PLLPOST<1:0>  
bits (CLKDIV<7:6>). ‘N2’ can be either 2, 4, or 8, and  
must be selected such that the PLL output frequency  
(FOSC) is in the range of 12.5 MHz to 80 MHz, which  
generates device operating speeds of 6.25-40 MIPS.  
EQUATION 8-3:  
XT WITH PLL MODE  
EXAMPLE  
FOSC  
1
2
10000000 * 32  
FCY =  
=
= 40 MIPS  
(
)
2
2 * 2  
FIGURE 8-2:  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 PLL BLOCK DIAGRAM  
FVCO  
100-200 MHz  
Here(1)  
0.8-8.0 MHz  
Here(1)  
12.5-80 MHz  
Here(1)  
Source (Crystal, External  
Clock or Internal RC)  
FOSC  
PLLPRE  
VCO  
PLLPOST  
X
PLLDIV  
N2  
N1  
Divide by  
2-33  
Divide by  
2, 4, 8  
M
Divide by  
2-513  
Note 1: This frequency range must be satisfied at all times.  
8.2  
Auxiliary Clock Generation  
Note:  
If the primary PLL is used as a source for  
the auxiliary clock, then the primary PLL  
should be configured up to a maximum  
operation of 30 MIPS or less.  
The auxiliary clock generation is used for a peripherals  
that need to operate at a frequency unrelated to the  
system clock such as a PWM or ADC.  
Note:  
To achieve 1.04 ns PWM resolution, the  
auxiliary clock must be set up for 120 MHz.  
8.3  
Reference Clock Generation  
The reference clock output logic provides the user with  
the ability to output a clock signal based on the system  
clock or the crystal oscillator on a device pin. The user  
application can specify a wide range of clock scaling  
prior to outputting the reference clock.  
The primary oscillator and internal FRC oscillator  
sources can be used with an auxiliary PLL to obtain the  
auxiliary clock. The auxiliary PLL has a fixed 16x  
multiplication factor.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 137  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER(1)  
U-0  
R-0  
R-0  
R-0  
U-0  
R/W-y  
R/W-y  
NOSC<2:0>(2)  
R/W-y  
COSC<2:0>  
bit 15  
bit 8  
R/W-0  
CLKLOCK  
bit 7  
R/W-0  
R-0  
U-0  
R/C-0  
CF  
U-0  
U-0  
R/W-0  
IOLOCK  
LOCK  
OSWEN  
bit 0  
Legend:  
y = Value set from Configuration bits on POR  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC<2:0>: Current Oscillator Selection bits (read-only)  
000= Fast RC oscillator (FRC)  
001= Fast RC oscillator (FRC) with PLL  
010= Primary oscillator (XT, HS, EC)  
011= Primary oscillator (XT, HS, EC) with PLL  
100= Reserved  
101= Low-Power RC oscillator (LPRC)  
110= Fast RC oscillator (FRC) with divide-by-16  
111= Fast RC oscillator (FRC) with divide-by-n  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
NOSC<2:0>: New Oscillator Selection bits(2)  
000= Fast RC oscillator (FRC)  
001= Fast RC oscillator (FRC) with PLL  
010= Primary oscillator (XT, HS, EC)  
011= Primary oscillator (XT, HS, EC) with PLL  
100= Reserved  
101= Low-Power RC oscillator (LPRC)  
110= Fast RC oscillator (FRC) with divide-by-16  
111= Fast RC oscillator (FRC) with divide-by-n  
bit 7  
CLKLOCK: Clock Lock Enable bit  
If clock switching is enabled and FSCM is disabled, (FOSC<FCKSM> = 0b01):  
1= Clock switching is disabled, system clock source is locked  
0= Clock switching is enabled, system clock source can be modified by clock switching  
bit 6  
bit 5  
IOLOCK: Peripheral Pin Select Lock bit  
1= Peripherial pin select is locked, write to Peripheral Pin Select registers not allowed  
0= Peripherial pin select is not locked, write to Peripheral Pin Select registers allowed  
LOCK: PLL Lock Status bit (read-only)  
1= Indicates that PLL is in lock, or PLL start-up timer is satisfied  
0= Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled  
bit 4  
Unimplemented: Read as ‘0’  
Note 1: Writes to this register require an unlock sequence. Refer to Section 42. “Oscillator (Part IV)” (DS70307)  
in the “dsPIC33F Family Reference Manual” (available from the Microchip website) for details.  
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.  
This applies to clock switches in either direction. In these instances, the application must switch to FRC mode  
as a transition clock source between the two PLL modes.  
DS70318D-page 138  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER(1) (CONTINUED)  
bit 3  
CF: Clock Fail Detect bit (read/clear by application)  
1= FSCM has detected clock failure  
0= FSCM has not detected clock failure  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
OSWEN: Oscillator Switch Enable bit  
1= Request oscillator switch to selection specified by NOSC<2:0> bits  
0= Oscillator switch is complete  
Note 1: Writes to this register require an unlock sequence. Refer to Section 42. “Oscillator (Part IV)” (DS70307)  
in the “dsPIC33F Family Reference Manual” (available from the Microchip website) for details.  
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.  
This applies to clock switches in either direction. In these instances, the application must switch to FRC mode  
as a transition clock source between the two PLL modes.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 139  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 8-2:  
CLKDIV: CLOCK DIVISOR REGISTER  
R/W-0  
ROI  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
DOZEN(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
DOZE<2:0>  
FRCDIV<2:0>  
bit 15  
R/W-0  
R/W-1  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
PLLPOST<1:0>  
PLLPRE<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12  
DOZE<2:0>: Processor Clock Reduction Select bits  
000= FCY/1  
001= FCY/2  
010= FCY/4  
011= FCY/8 (default)  
100= FCY/16  
101= FCY/32  
110= FCY/64  
111= FCY/128  
bit 11  
DOZEN: Doze Mode Enable bit(1)  
1= DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks  
0= Processor clock/peripheral clock ratio forced to 1:1  
bit 10-8  
FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits  
000= FRC divide by 1 (default)  
001= FRC divide by 2  
010= FRC divide by 4  
011= FRC divide by 8  
100= FRC divide by 16  
101= FRC divide by 32  
110= FRC divide by 64  
111= FRC divide by 256  
bit 7-6  
PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as ‘N2’, PLL postscaler)  
00= Output/2  
01= Output/4 (default)  
10= Reserved  
11= Output/8  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as ‘N1’, PLL prescaler)  
00000= Input/2 (default)  
00001= Input/3  
11111= Input/33  
Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.  
DS70318D-page 140  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 8-3:  
PLLFBD: PLL FEEDBACK DIVISOR REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PLLDIV<8>  
bit 8  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
PLLDIV<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8-0  
Unimplemented: Read as ‘0’  
PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as ‘M’, PLL multiplier)  
000000000= 2  
000000001= 3  
000000010= 4  
000110000= 50 (default)  
111111111= 513  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 141  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 8-4:  
OSCTUN: FRC OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
TUN<5:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: FRC Oscillator Tuning bits(1)  
011111= Center frequency + 11.625% (8.23 MHz)  
011110= Center frequency + 11.25% (8.20 MHz)  
000001= Center frequency + 0.375% (7.40 MHz)  
000000= Center frequency (7.37 MHz nominal)  
111111= Center frequency -0.375% (7.345 MHz)  
100001= Center frequency -11.625% (6.52 MHz)  
100000= Center frequency -12% (6.49 MHz)  
Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the  
FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither  
characterized nor tested  
DS70318D-page 142  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 8-5:  
ACLKCON: AUXILIARY CLOCK DIVISOR CONTROL REGISTER  
R/W-0  
R-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
ENAPLL  
APLLCK  
SELACLK  
APSTSCLR<2:0>  
bit 15  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ASRCSEL  
FRCSEL  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
ENAPLL: Auxiliary PLL Enable bit  
1= APLL is enabled  
0= APLL is disabled  
APLLCK: APLL Locked Status bit (read-only)  
1= Indicates that auxiliary PLL is in lock  
0= Indicates that auxiliary PLL is not in lock  
SELACLK: Select Auxiliary Clock Source for Auxiliary Clock Divider bit  
1= Auxiliary Oscillators provides the source clock for auxiliary clock divider  
0= Primary PLL (FVCO) provides the source clock for auxiliary clock divider  
bit 12-11  
bit 10-8  
Unimplemented: Read as ‘0’  
APSTSCLR<2:0>: Auxiliary Clock Output Divider bits  
111= Divided by 1  
110= Divided by 2  
101= Divided by 4  
100= Divided by 8  
011= Divided by 16  
010= Divided by 32  
001= Divided by 64  
000= Divided by 256  
bit 7  
ASRCSEL: Select Reference Clock Source for Auxiliary Clock bit  
1= Primary oscillator is the clock source  
0= No clock input is selected  
bit 6  
FRCSEL: Select Reference Clock Source for Auxiliary PLL bit  
1= Select FRC clock for auxiliary PLL  
0= Input clock source is determined by ASRCSEL bit setting  
bit 5-0  
Unimplemented: Read as ‘0’  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 143  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 8-6:  
R/W-0  
REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
ROON  
ROSIDL  
ROSEL  
RODIV<3:0>(1)  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROON: Reference Oscillator Output Enable bit  
1= Reference oscillator output enabled on REFCLK0(2) pin  
0= Reference oscillator output disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ROSIDL: Reference Oscillator Run in Sleep bit  
1= Reference oscillator output continues to run in Sleep  
0= Reference oscillator output is disabled in Sleep  
bit 12  
ROSEL: Reference Oscillator Source Select bit  
1= Oscillator crystal used as the reference clock  
0= System clock used as the reference clock  
bit 11-8  
RODIV<3:0>: Reference Oscillator Divider bits(1)  
1111= Reference clock divided by 32,768  
1110= Reference clock divided by 16,384  
1101= Reference clock divided by 8,192  
1100= Reference clock divided by 4,096  
1011= Reference clock divided by 2,048  
1010= Reference clock divided by 1,024  
1001= Reference clock divided by 512  
1000= Reference clock divided by 256  
0111= Reference clock divided by 128  
0110= Reference clock divided by 64  
0101= Reference clock divided by 32  
0100= Reference clock divided by 16  
0011= Reference clock divided by 8  
0010= Reference clock divided by 4  
0001= Reference clock divided by 2  
0000= Reference clock  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: The reference oscillator output must be disabled (ROON = 0) before writing to these bits.  
2: This pin is remappable. Refer to Section 10.4 “Peripheral Pin Select” for more information.  
DS70318D-page 144  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
2. If a valid clock switch has been initiated, the  
8.4  
Clock Switching Operation  
LOCK  
(OSCCON<5>)  
and  
the  
CF  
Applications are free to switch among any of the four  
clock sources (primary, LP, FRC and LPRC) under  
software control at any time. To limit the possible side  
effects of this flexibility, dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 devices have a safeguard  
lock built into the switch process.  
(OSCCON<3>) status bits are cleared.  
3. The new oscillator is turned on by the hardware  
if it is not currently running. If a crystal oscillator  
must be turned on, the hardware waits until the  
Oscillator Start-up Timer (OST) expires. If the  
new source is using the PLL, the hardware waits  
until a PLL lock is detected (LOCK = 1).  
Note:  
Primary oscillator mode has three different  
submodes (XT, HS and EC), which are  
determined by the POSCMD<1:0>  
Configuration bits. While an application  
can switch to and from primary oscillator  
mode in software, it cannot switch among  
the different primary submodes without  
reprogramming the device.  
4. The hardware waits for 10 clock cycles from the  
new clock source and then performs the clock  
switch.  
5. The hardware clears the OSWEN bit to indicate a  
successful clock transition. In addition, the NOSC  
bit values are transferred to the COSC status bits.  
6. The old clock source is turned off at this time,  
with the exception of LPRC (if WDT or FSCM  
are enabled).  
8.4.1  
ENABLING CLOCK SWITCHING  
To enable clock switching, the FCKSM1 Configuration  
bit in the Configuration register must be programmed to  
0’. (Refer to Section 21.1 “Configuration Bits” for  
further details.) If the FCKSM1 Configuration bit is  
unprogrammed (‘1’), the clock switching function and  
Fail-Safe Clock Monitor function are disabled. This is  
the default setting.  
Note 1: The processor continues to execute code  
throughout the clock switching sequence.  
Timing-sensitive code should not be  
executed during this time.  
2: Direct clock switches between any primary  
oscillator mode with PLL and FRCPLL  
mode are not permitted. This applies to  
clock switches in either direction. In these  
instances, the application must switch to  
FRC mode as a transition clock source  
between the two PLL modes.  
3: Refer to Section 42. “Oscillator (Part  
IV)” (DS70307) in the “dsPIC33F Family  
Reference Manual” for details.  
The NOSC control bits (OSCCON<10:8>) do not  
control the clock selection when clock switching is  
disabled. However, the COSC bits (OSCCON<14:12>)  
reflect the clock source selected by the FNOSC  
Configuration bits.  
The OSWEN control bit (OSCCON<0>) has no effect  
when clock switching is disabled. It is held at ‘0’ at all  
times.  
8.5  
Fail-Safe Clock Monitor (FSCM)  
8.4.2  
OSCILLATOR SWITCHING SEQUENCE  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue to operate even in the event of an oscillator  
failure. The FSCM function is enabled by programming.  
If the FSCM function is enabled, the LPRC internal  
oscillator runs at all times (except during Sleep mode)  
and is not subject to control by the Watchdog Timer.  
To perform a clock switch, the following basic sequence  
is required:  
1. If  
desired,  
read  
the  
COSC  
bits  
(OSCCON<14:12>) to determine the current  
oscillator source.  
2. Perform the unlock sequence to allow a write to  
the OSCCON register high byte.  
In the event of an oscillator failure, the FSCM  
generates a clock failure trap event and switches the  
system clock over to the FRC oscillator. Then, the  
application program can either attempt to restart the  
oscillator or execute a controlled shutdown. The trap  
can be treated as a warm Reset by simply loading the  
Reset address into the oscillator fail trap vector.  
3. Write the appropriate value to the NOSC control  
bits (OSCCON<10:8>) for the new oscillator  
source.  
4. Perform the unlock sequence to allow a write to  
the OSCCON register low byte.  
5. Set the OSWEN bit (OSCCON<0>) to initiate the  
oscillator switch.  
If the PLL multiplier is used to scale the system clock,  
the internal FRC is also multiplied by the same factor  
on clock failure. Essentially, the device switches to  
FRC with PLL on a clock failure.  
Once the basic sequence is completed, the system  
clock hardware responds automatically as follows:  
1. The clock switching hardware compares the  
COSC status bits with the new value of the  
NOSC control bits. If they are the same, the  
clock switch is a redundant operation. In this  
case, the OSWEN bit is cleared automatically  
and the clock switch is aborted.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 145  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
NOTES:  
DS70318D-page 146  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
9.2  
Instruction-Based Power-Saving  
Modes  
9.0  
POWER-SAVING FEATURES  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 families of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 devices have two special power-saving modes that  
are entered through the execution of a special PWRSAV  
instruction. Sleep mode stops clock operation and halts all  
code execution. Idle mode halts the CPU and code  
execution, but allows peripheral modules to continue  
operation. The assembler syntax of the PWRSAV  
instruction is shown in Example 9-1.  
Reference  
Manual”,  
Section  
9.  
“Watchdog Timer and Power-Saving  
Modes” (DS70196), which is available  
from the Microchip web site (www.micro-  
chip.com).  
Note: SLEEP_MODE and IDLE_MODE are  
constants defined in the assembler  
include file for the selected device.  
The dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 devices provide the ability to manage power  
consumption by selectively managing clocking to the  
CPU and the peripherals. In general, a lower clock  
frequency and a reduction in the number of circuits being  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset. When  
the device exits these modes, it is said to wake-up.  
9.2.1  
SLEEP MODE  
clocked  
constitutes  
lower  
consumed  
power.  
The following occur in Sleep mode:  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
devices can manage power consumption in four different  
ways:  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
• The device current consumption is reduced to a  
minimum, provided that no I/O pin is sourcing  
current.  
• Clock Frequency  
• Instruction-Based Sleep and Idle modes  
• Software-Controlled Doze mode  
• Selective Peripheral Control in Software  
• The Fail-Safe Clock Monitor does not operate,  
since the system clock source is disabled.  
Combinations of these methods can be used to  
selectively tailor an application’s power consumption  
while still maintaining critical application features, such  
as timing-sensitive communications.  
• The LPRC clock continues to run in Sleep mode if  
the WDT is enabled.  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode.  
• Some device features or peripherals may continue  
to operate. This includes the items such as the  
input change notification on the I/O ports or  
peripherals that use an external clock input.  
9.1  
Clock Frequency and Clock  
Switching  
The  
dsPIC33FJ06GS101/X02  
and  
dsPIC33FJ16GSX02/X04 devices allow a wide range  
of clock frequencies to be selected under application  
control. If the system clock configuration is not locked,  
users can choose low-power or high-precision  
oscillators by simply changing the NOSC bits  
(OSCCON<10:8>). The process of changing a system  
clock during operation, as well as limitations to the  
process, are discussed in more detail in Section 8.0  
“Oscillator Configuration”.  
• Any peripheral that requires the system clock  
source for its operation is disabled.  
The device will wake-up from Sleep mode on any of  
these events:  
• Any interrupt source that is individually enabled  
• Any form of device Reset  
• A WDT time-out  
On wake-up from Sleep mode, the processor restarts  
with the same clock source that was active when Sleep  
mode was entered.  
EXAMPLE 9-1:  
PWRSAVINSTRUCTION SYNTAX  
PWRSAV #SLEEP_MODE  
PWRSAV #IDLE_MODE  
; Put the device into SLEEP mode  
; Put the device into IDLE mode  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 147  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Doze mode is enabled by setting the DOZEN bit  
(CLKDIV<11>). The ratio between peripheral and core  
clock speed is determined by the DOZE<2:0> bits  
(CLKDIV<14:12>). There are eight possible  
configurations, from 1:1 to 1:128, with 1:1 being the  
default setting.  
9.2.2  
IDLE MODE  
The following occur in Idle mode:  
• The CPU stops executing instructions.  
• The WDT is automatically cleared.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 9.4  
“Peripheral Module Disable”).  
Programs can use Doze mode to selectively reduce  
power consumption in event-driven applications. This  
allows clock-sensitive functions, such as synchronous  
communications, to continue without interruption while  
the CPU idles, waiting for something to invoke an  
interrupt routine. An automatic return to full-speed CPU  
operation on interrupts can be enabled by setting the  
ROI bit (CLKDIV<15>). By default, interrupt events  
have no effect on Doze mode operation.  
• If the WDT or FSCM is enabled, the LPRC also  
remains active.  
The device will wake-up from Idle mode on any of these  
events:  
• Any interrupt that is individually enabled  
• Any device Reset  
• A WDT time-out  
For example, suppose the device is operating at  
20 MIPS and the CAN module has been configured for  
500 kbps based on this device operating speed. If the  
device is placed in Doze mode with a clock frequency  
ratio of 1:4, the CAN module continues to communicate  
at the required bit rate of 500 kbps, but the CPU now  
starts executing instructions at a frequency of 5 MIPS.  
On wake-up from Idle mode, the clock is reapplied to  
the CPU and instruction execution begins immediately,  
starting with the instruction following the PWRSAV  
instruction, or the first instruction in the ISR.  
9.2.3  
INTERRUPTS COINCIDENT WITH  
POWER SAVE INSTRUCTIONS  
9.4  
Peripheral Module Disable  
The Peripheral Module Disable (PMD) registers  
provide a method to disable a peripheral module by  
stopping all clock sources supplied to that module.  
When a peripheral is disabled using the appropriate  
PMD control bit, the peripheral is in a minimum power  
consumption state. The control and status registers  
associated with the peripheral are also disabled, so  
writes to those registers will have no effect and read  
values will be invalid.  
Any interrupt that coincides with the execution of a  
PWRSAVinstruction is held off until entry into Sleep or  
Idle mode has completed. The device then wakes up  
from Sleep or Idle mode.  
9.3  
Doze Mode  
The preferred strategies for reducing power  
consumption are changing clock speed and invoking  
one of the power-saving modes. In some  
circumstances, this may not be practical. For example,  
it may be necessary for an application to maintain  
uninterrupted synchronous communication, even while  
it is doing nothing else. Reducing system clock speed  
can introduce communication errors, while using a  
power-saving mode can stop communications  
completely.  
A peripheral module is enabled only if both the  
associated bit in the PMD register is cleared and the  
peripheral is supported by the specific dsPIC® DSC  
variant. If the peripheral is present in the device, it is  
enabled in the PMD register by default.  
Note:  
If a PMD bit is set, the corresponding  
module is disabled after a delay of one  
instruction cycle. Similarly, if a PMD bit is  
cleared, the corresponding module is  
enabled after a delay of one instruction  
cycle (assuming the module control regis-  
ters are already configured to enable  
module operation).  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock  
continues to operate from the same source and at the  
same speed. Peripheral modules continue to be  
clocked at the same speed, while the CPU clock speed  
is reduced. Synchronization between the two clock  
domains is maintained, allowing the peripherals to  
access the SFRs while the CPU executes code at a  
slower rate.  
DS70318D-page 148  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 9-1:  
PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
T3MD  
R/W-0  
T2MD  
R/W-0  
T1MD  
U-0  
R/W-0  
U-0  
PWMMD  
bit 15  
bit 8  
R/W-0  
U-0  
R/W-0  
U1MD  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
I2C1MD  
SPI1MD  
ADCMD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
T3MD: Timer3 Module Disable bit  
1= Timer3 module is disabled  
0= Timer3 module is enabled  
bit 12  
bit 11  
T2MD: Timer2 Module Disable bit  
1= Timer2 module is disabled  
0= Timer2 module is enabled  
T1MD: Timer1 Module Disable bit  
1= Timer1 module is disabled  
0= Timer1 module is enabled  
bit 10  
bit 9  
Unimplemented: Read as ‘0’  
PWMMD: PWM Module Disable bit  
1= PWM module is disabled  
0= PWM module is enabled  
bit 8  
bit 7  
Unimplemented: Read as ‘0’  
I2C1MD: I2C1 Module Disable bit  
1= I2C1 module is disabled  
0= I2C1 module is enabled  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
U1MD: UART1 Module Disable bit  
1= UART1 module is disabled  
0= UART1 module is enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
SPI1MD: SPI1 Module Disable bit  
1= SPI1 module is disabled  
0= SPI1 module is enabled  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
ADCMD: ADC Module Disable bit  
1= ADC module is disabled  
0= ADC module is enabled  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 149  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 9-2:  
PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
IC2MD  
IC1MD  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
OC2MD  
OC1MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9  
Unimplemented: Read as ‘0’  
IC2MD: Input Capture 2 Module Disable bit  
1= Input Capture 2 module is disabled  
0= Input Capture 2 module is enabled  
bit 8  
IC1MD: Input Capture 1 Module Disable bit  
1= Input Capture 1 module is disabled  
0= Input Capture 1 module is enabled  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
OC2MD: Output Compare 2 Module Disable bit  
1= Output Compare 2 module is disabled  
0= Output Compare 2 module is enabled  
bit 0  
OC1MD: Output Compare 1 Module Disable bit  
1= Output Compare 1 module is disabled  
0= Output Compare 1 module is enabled  
DS70318D-page 150  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 9-3:  
PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
CMPMD  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10  
Unimplemented: Read as ‘0’  
CMPMD: Analog Comparator Module Disable bit  
1= Analog comparator module is disabled  
0= Analog comparator module is enabled  
bit 9-0  
Unimplemented: Read as ‘0’  
REGISTER 9-4:  
PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
REFOMD  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
REFOMD: Reference Clock Generator Module Disable bit  
1= Reference clock generator module is disabled  
0= Reference clock generator module is enabled  
bit 2-0  
Unimplemented: Read as ‘0’  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 151  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 9-5:  
PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PWM4MD  
PWM3MD  
PWM2MD  
PWM1MD  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11  
Unimplemented: Read as ‘0’  
PWM4MD: PWM Generator 4 Module Disable bit  
1= PWM Generator 4 module is disabled  
0= PWM Generator 4 module is enabled  
bit 10  
bit 9  
bit 8  
PWM3MD: PWM Generator 3 Module Disable bit  
1= PWM Generator 3 module is disabled  
0= PWM Generator 3 module is enabled  
PWM2MD: PWM Generator 2 Module Disable bit  
1= PWM Generator 2 module is disabled  
0= PWM Generator 2 module is enabled  
PWM1MD: PWM Generator 1 Module Disable bit  
1= PWM Generator 1 module is disabled  
0= PWM Generator 1 module is enabled  
bit 7-0  
Unimplemented: Read as ‘0’  
DS70318D-page 152  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 9-6:  
PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CMP4MD  
CMP3MD  
CMP2MD  
CMP1MD  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11  
Unimplemented: Read as ‘0’  
CMP4MD: Analog Comparator 4 Module Disable bit  
1= Analog Comparator 4 module is disabled  
0= Analog Comparator 4 module is enabled  
bit 10  
bit 9  
bit 8  
CMP3MD: Analog Comparator 3 Module Disable bit  
1= Analog Comparator 3 module is disabled  
0= Analog Comparator 3 module is enabled  
CMP2MD: Analog Comparator 2 Module Disable bit  
1= Analog Comparator 2 module is disabled  
0= Analog Comparator 2 module is enabled  
CMP1MD: Analog Comparator 1 Module Disable bit  
1= Analog Comparator 1 module is disabled  
0= Analog Comparator 1 module is enabled  
bit 7-0  
Unimplemented: Read as ‘0’  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 153  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
NOTES:  
DS70318D-page 154  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
peripheral that shares the same pin. Figure 10-1 shows  
how ports are shared with other peripherals and the  
10.0 I/O PORTS  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 families of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”, Section 10. “I/O  
Ports” (DS70193), which is available on  
Microchip web site (www.microchip.com).  
associated I/O pin to which they are connected.  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as  
a general purpose output pin is disabled. The I/O pin  
can be read, but the output driver for the parallel port bit  
is disabled. If a peripheral is enabled, but the peripheral  
is not actively driving a pin, that pin can be driven by a  
port.  
All port pins have three registers directly associated  
with their operation as digital I/O. The data direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is ‘1’, then the pin  
is an input. All port pins are defined as inputs after a  
Reset. Reads from the latch (LATx) read the latch.  
Writes to the latch write the latch. Reads from the port  
(PORTx) read the port pins, while writes to the port pins  
write the latch.  
All of the device pins (except VDD, VSS, MCLR and  
OSC1/CLKI) are shared among the peripherals and the  
parallel I/O ports. All I/O input ports feature Schmitt  
Trigger inputs for improved noise immunity.  
10.1 Parallel I/O (PIO) Ports  
Generally a parallel I/O port that shares a pin with a  
peripheral is subservient to the peripheral. The  
peripheral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pin. The logic also prevents “loop through”, in  
which a port’s digital output can drive the input of a  
Any bit and its associated data and control registers  
that are not valid for a particular device will be  
disabled. That means the corresponding LATx and  
TRISx registers and the port pin will read as zeros.  
When a pin is shared with another peripheral or  
function that is defined as an input only, it is  
nevertheless regarded as a dedicated port because  
there is no other competing source of outputs.  
FIGURE 10-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Peripheral Module  
Output Multiplexers  
Peripheral Input Data  
Peripheral Module Enable  
I/O  
Peripheral Output Enable  
Peripheral Output Data  
1
0
Output Enable  
Output Data  
1
0
PIO Module  
Read TRIS  
Data Bus  
WR TRIS  
D
Q
I/O Pin  
CK  
TRIS Latch  
D
Q
WR LAT +  
WR PORT  
CK  
Data Latch  
Read LAT  
Input Data  
Read PORT  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 155  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
10.1.1  
OPEN-DRAIN CONFIGURATION  
10.2.1  
I/O PORT WRITE/READ TIMING  
In addition to the PORT, LAT and TRIS registers for  
data control, some digital-only port pins can also be  
individually configured for either digital or open-drain  
output. This is controlled by the Open-Drain Control  
register, ODCx, associated with each port. Setting any  
of the bits configures the corresponding pin to act as an  
open-drain output.  
Oneinstructioncycleisrequiredbetweenaportdirection  
change or port write operation and a read operation of  
the same port. Typically, this instruction would be a NOP.  
An example is shown in Example 10-1.  
10.3 Input Change Notification  
The input change notification function of the I/O  
ports allows the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 devices to generate interrupt  
The open-drain feature allows the generation of  
outputs higher than VDD (for example, 5V) on any  
desired digital only pins by using external pull-up  
resistors. The maximum open-drain voltage allowed is  
the same as the maximum VIH specification.  
requests to the processor in response to  
a
Change-Of-State (COS) on selected input pins. This  
feature can detect input Change-Of-States even in  
Sleep mode, when the clocks are disabled. Depending  
on the device pin count, up to 30 external signals (CNx  
pin) can be selected (enabled) for generating an  
interrupt request on a Change-Of-State.  
Refer to “Pin Diagrams” for the available pins and  
their functionality.  
10.2 Configuring Analog Port Pins  
Four control registers are associated with the CN  
module. The CNEN1 and CNEN2 registers contain the  
interrupt enable control bits for each of the CN input  
pins. Setting any of these bits enables a CN interrupt  
for the corresponding pins.  
The ADPCFG and TRIS registers control the operation  
of the Analog-to-Digital (A/D) port pins. The port pins  
that are to function as analog inputs must have their  
corresponding TRIS bit set (input). If the TRIS bit is  
cleared (output), the digital output level (VOH or VOL)  
will be converted.  
Each CN pin also has a weak pull-up connected to it.  
The pull-ups act as a current source connected to the  
pin, and eliminate the need for external resistors when  
the push button or keypad devices are connected. The  
pull-ups are enabled separately using the CNPU1 and  
CNPU2 registers, which contain the control bits for  
each of the CN pins. Setting any of the control bits  
enables the weak pull-ups for the corresponding pins.  
The ADPCFG register has a default value of 0x0000;  
therefore, all pins that share ANx functions are analog  
(not digital) by default.  
When the PORT register is read, all pins configured as  
analog input channels will read as cleared (a low level).  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin defined as a  
digital input (including the ANx pins) can cause the  
input buffer to consume current that exceeds the  
device specifications.  
Note:  
Pull-ups on change notification pins  
should always be disabled when the port  
pin is configured as a digital output.  
EQUATION 10-1: PORT WRITE/READ EXAMPLE  
MOV  
MOV  
NOP  
0xFF00, W0  
W0, TRISBB  
; Configure PORTB<15:8> as inputs  
; and PORTB<7:0> as outputs  
; Delay 1 cycle  
BTSS PORTB, #13  
; Next Instruction  
DS70318D-page 156  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
10.4.2.1  
Input Mapping  
10.4 Peripheral Pin Select  
The inputs of the peripheral pin select options are  
mapped on the basis of the peripheral. A control  
register associated with a peripheral dictates the pin it  
will be mapped to. The RPINRx registers are used to  
configure peripheral input mapping (see Register 10-1  
through Register 10-14). Each register contains sets of  
6-bit fields, with each set associated with one of the  
Peripheral pin select configuration enables peripheral  
set selection and placement on a wide range of I/O  
pins. By increasing the pinout options available on a  
particular device, programmers can better tailor the  
microcontroller to their entire application, rather than  
trimming the application to fit the device.  
The peripheral pin select configuration feature operates  
over a fixed subset of digital I/O pins. Programmers can  
independently map the input and/or output of most  
digital peripherals to any one of these I/O pins.  
Peripheral pin select is performed in software, and gen-  
erally does not require the device to be reprogrammed.  
Hardware safeguards are included that prevent acciden-  
tal or spurious changes to the peripheral mapping, once  
it has been established.  
remappable peripherals. Programming  
a
given  
peripheral’s bit field with an appropriate 6-bit value  
maps the RPn pin with that value to that peripheral. For  
any given device, the valid range of values for any bit  
field corresponds to the maximum number of peripheral  
pin selections supported by the device.  
Figure 10-2 Illustrates remappable pin selection for  
U1RX input.  
Note:  
For input mapping only, the Peripheral Pin  
Select (PPS) functionality does not have  
priority over the TRISx settings. Therefore,  
when configuring the RPx pin for input, the  
corresponding bit in the TRISx register  
must also be configured for input (i.e., set  
to ‘1’).  
10.4.1  
AVAILABLE PINS  
The peripheral pin select feature is used with a range  
of up to 30 pins. The number of available pins depends  
on the particular device and its pin count. Pins that  
support the peripheral pin select feature include the  
designation “RPn” in their full pin designation, where  
“RP” designates a remappable peripheral and “n” is the  
remappable pin number.  
FIGURE 10-2:  
REMAPPABLE MUX  
INPUT FOR U1RX  
10.4.2  
CONTROLLING PERIPHERAL PIN  
SELECT  
U1RXR<5:0>  
Peripheral pin select features are controlled through  
two sets of Special Function Registers: one to map  
peripheral inputs and one to map outputs. Because  
they are separately controlled, a particular peripheral’s  
input and output (if the peripheral has both) can be  
placed on any selectable function pin without  
constraint.  
0
RP0  
RP1  
RP2  
1
U1RX Input  
to Peripheral  
2
The association of a peripheral to a peripheral select-  
able pin is handled in two different ways, depending on  
whether an input or output is being mapped.  
33  
RP33  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 157  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)  
Configuration  
Input Name  
Function Name  
Register  
Bits  
External Interrupt 1  
External Interrupt 2  
Timer1 External Clock  
Timer2 External Clock  
Timer3 External Clock  
Input Capture 1  
INT1  
INT2  
RPINR0  
RPINR1  
INT1R<5:0>  
INT2R<5:0>  
T1CKR<5:0>  
T2CKR<5:0>  
T3CKR<5:0>  
IC1R<5:0>  
T1CK  
T2CK  
T3CK  
IC1  
RPINR2  
RPINR3  
RPINR3  
RPINR7  
Input Capture 2  
IC2  
RPINR7  
IC2R<5:0>  
Output Compare Fault A  
OCFA  
U1RX  
U1CTS  
SDI1  
RPINR11  
RPINR18  
RPINR18  
RPINR20  
RPINR20  
RPINR21  
RPINR29  
RPINR30  
RPINR30  
RPINR31  
RPINR31  
RPINR32  
RPINR32  
RPINR33  
RPINR33  
RPINR34  
OCFAR<5:0>  
U1RXR<5:0>  
U1CTSR<5:0>  
SDI1R<5:0>  
SCK1R<5:0>  
SS1R<5:0>  
UART1 Receive  
UART1 Clear To Send  
SPI Data Input 1  
SPI Clock Input 1  
SCK1  
SS1  
SPI Slave Select Input 1  
PWM Fault Input PWM1  
FLT1  
FLT2  
FLT3  
FLT4  
FLT5  
FLT6  
FLT7  
FLT8  
SYNCI1  
SYNCI2  
FLT1R<5:0>  
FLT2R<5:0>  
FLT3R<5:0>  
FLT4R<5:0>  
FLT5R<5:0>  
FLT6R<5:0>  
FLT7R<5:0>  
FLT8R<5:0>  
SYNCI1R<5:0>  
SYNCI2R<5:0>  
PWM Fault Input PWM2  
PWM Fault Input PWM3  
PWM Fault Input PWM4  
PWM Fault Input PWM5  
PWM Fault Input PWM6  
PWM Fault Input PWM7  
PWM Fault Input PWM8  
External Synchronization signal to PWM Master Time Base  
External Synchronization signal to PWM Master Time Base  
DS70318D-page 158  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
10.4.2.2  
Output Mapping  
FIGURE 10-3:  
MULTIPLEXING OF  
REMAPPABLE OUTPUT  
FOR RPn  
In contrast to inputs, the outputs of the peripheral pin  
select options are mapped on the basis of the pin. In  
this case, a control register associated with a particular  
pin dictates the peripheral output to be mapped. The  
RPORx registers are used to control output mapping.  
Like the RPINRx registers, each register contains sets  
of 6-bit fields, with each set associated with one RPn  
pin (see Register 10-15 through Register 10-31). The  
value of the bit field corresponds to one of the  
peripherals, and that peripheral’s output is mapped to  
the pin (see Table 10-2 and Figure 10-3).  
RPORn<5:0>  
Default  
U1TX Output Enable  
0
3
4
U1RTS Output Enable  
Output Enable  
The list of peripherals for output mapping also includes  
a null value of ‘00000’ because of the mapping  
technique. This permits any given pin to remain  
unconnected from the output of any of the pin  
selectable peripherals.  
OC2 Output Enable  
19  
45  
PWM4L Output Enable  
Default  
0
3
4
U1TX Output  
U1RTS Output  
RPn  
Output Data  
OC2 Output  
19  
45  
PWM4L Output  
TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)  
Function  
NULL  
RPORn<5:0>  
Output Name  
000000  
000011  
000100  
000111  
001000  
001001  
010010  
010011  
100101  
100110  
100111  
101000  
101001  
101010  
101100  
101101  
RPn tied to default port pin  
RPn tied to UART1 transmit  
RPn tied to UART1 ready to send  
RPn tied to SPI1 data output  
RPn tied to SPI1 clock output  
U1TX  
U1RTS  
SDO1  
SCK1  
SS1  
RPn tied to SPI1 slave select output  
RPn tied to Output Compare 1  
RPn tied to Output Compare 2  
OC1  
OC2  
SYNCO1  
REFCLKO  
ACMP1  
ACMP2  
ACMP3  
ACMP4  
PWM4H  
PWM4L  
RPn tied to external device synchronization signal via PWM master time base  
REFCLK output signal  
RPn tied to Analog Comparator Output 1  
RPn tied to Analog Comparator Output 2  
RPn tied to Analog Comparator Output 3  
RPn tied to Analog Comparator Output 4  
RPn tied to PWM output pins associated with PWM Generator 4  
RPn tied to PWM output pins associated with PWM Generator 4  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 159  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Unlike the similar sequence with the oscillator’s LOCK  
bit, IOLOCK remains in one state until changed. This  
allows all of the peripheral pin selects to be configured  
with a single unlock sequence followed by an update to  
all control registers, then locked with a second lock  
sequence.  
10.4.2.3  
Virtual Pins  
dsPIC33FJ06GS101/X02  
and  
dsPIC33FJ16GSX02/X04 devices support four virtual  
RPn pins (RP32, RP33, RP34 and RP35), which are  
identical in functionality to all other RPn pins, with the  
exception of pinouts. These four pins are internal to the  
devices and are not connected to a physical device pin.  
10.4.3.2  
Continuous State Monitoring  
These pins provide a simple way for inter-peripheral  
connection without utilizing a physical pin. For example,  
the output of the analog comparator can be connected to  
RP32 and the PWM Fault input can be configured for  
RP32 as well. This configuration allows the analog  
comparator to trigger PWM Faults without the use of an  
actual physical pin on the device.  
In addition to being protected from direct writes, the  
contents of the RPINRx and RPORx registers are  
constantly monitored in hardware by shadow registers.  
If an unexpected change in any of the registers occurs  
(such as cell disturbances caused by ESD or other  
external events), a Configuration Mismatch Reset will  
be triggered.  
10.4.3  
CONTROLLING CONFIGURATION  
CHANGES  
10.4.3.3  
Configuration Bit Pin Select Lock  
As an additional level of safety, the device can be  
configured to prevent more than one write session to  
the RPINRx and RPORx registers. The IOL1WAY  
(FOSC<5>) Configuration bit blocks the IOLOCK bit  
from being cleared after it has been set once. If  
IOLOCK remains set, the register unlock procedure will  
not execute and the Peripheral Pin Select Control  
registers cannot be written to. The only way to clear the  
bit and re-enable peripheral remapping is to perform a  
device Reset.  
Because peripheral remapping can be changed during  
run time, some restrictions on peripheral remapping  
are needed to prevent accidental configuration  
changes. dsPIC33F devices include three features to  
prevent alterations to the peripheral map:  
• Control register lock sequence  
• Continuous state monitoring  
• Configuration bit pin select lock  
10.4.3.1  
Control Register Lock  
In the default (unprogrammed) state, IOL1WAY is set,  
restricting users to one write session. Programming  
IOL1WAY allows user applications unlimited access  
(with the proper use of the unlock sequence) to the  
Peripheral Pin Select registers.  
Under normal operation, writes to the RPINRx and  
RPORx registers are not allowed. Attempted writes  
appear to execute normally, but the contents of the  
registers remain unchanged. To change these  
registers, they must be unlocked in hardware. The  
register lock is controlled by the IOLOCK bit  
(OSCCON<6>). Setting IOLOCK prevents writes to the  
control registers; clearing IOLOCK allows writes.  
To set or clear IOLOCK, a specific command sequence  
must be executed:  
1. Write 0x46 to OSCCON<7:0>.  
2. Write 0x57 to OSCCON<7:0>.  
3. Clear (or set) IOLOCK as a single operation.  
Note:  
MPLAB® C30 provides built-in C language  
functions for unlocking the OSCCON  
register:  
__builtin_write_OSCCONL(value)  
__builtin_write_OSCCONH(value)  
See MPLAB C30 Help files for more  
information.  
DS70318D-page 160  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Not all output remappable peripheral registers are  
implemented on all devices. See the register  
description of the specific register for further details.  
10.5 Peripheral Pin Select Registers  
The  
dsPIC33FJ06GS101/X02  
and  
dsPIC33FJ16GSX02/X04 families of devices implement  
34 registers for remappable peripheral configuration:  
• 15 Input Remappable Peripheral Registers  
• 19 Output Remappable Peripheral Registers  
Note:  
Input and output register values can only  
be changed if OSCCON<IOLOCK> = 0.  
See Section 10.4.3.1 “Control Register  
Lock” for a specific command sequence.  
REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT1R<5:0>  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
INT1R<5:0>: Assign External Interrupt 1 (INTR1) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-0  
Unimplemented: Read as ‘0’  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 161  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT2R<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
INT2R<5:0>: Assign External Interrupt 2 (INTR2) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
DS70318D-page 162  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
T3CKR<5:0>  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
T2CKR<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
T3CKR<5:0>: Assign Timer3 External Clock (T3CK) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
T2CKR<5:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 163  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
IC2R<5:0>  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
IC1R<5:0>  
R/W-1  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
IC2R<5:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
IC1R<5:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
DS70318D-page 164  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-5: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
OCFAR<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
OCFAR<5:0>: Assign Output Capture A (OCFA) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 165  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-6: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
U1CTSR<5:0>  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
U1RXR<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
U1CTSR<5:0>: Assign UART1 Clear to Send (U1CTS) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
U1RXR<5:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
DS70318D-page 166  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-7: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
SCK1R<5:0>  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SDI1R<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
SCK1R<5:0>: Assign SPI1 Clock Input (SCK1IN) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
SDI1R<5:0>: Assign SPI1 Data Input (SDI1) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 167  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-8: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
SS1R<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
SS1R<5:0>: Assign SPI1 Slave Select Input (SS1IN) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
DS70318D-page 168  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-9: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
FLT1R<5:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FLT1R<5:0>: Assign PWM Fault Input 1 (FLT1) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-0  
Unimplemented: Read as ‘0’  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 169  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-10: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
FLT3R<5:0>  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 0  
FLT2R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FLT3R<5:0>: Assign PWM Fault Input 3 (FLT3) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
FLT2R<5:0>: Assign PWM Fault Input 2 (FLT2) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
DS70318D-page 170  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-11: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
FLT5R<5:0>  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 0  
FLT4R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FLT5R<5:0>: Assign PWM Fault Input 5 (FLT5) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
FLT4R<5:0>: Assign PWM Fault Input 4 (FLT4) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 171  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-12: RPINR32: PERIPHERAL PIN SELECT INPUT REGISTER 32  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
FLT7R<5:0>  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 0  
FLT6R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FLT7R<5:0>: Assign PWM Fault Input 7 (FLT7) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
FLT6R<5:0>: Assign PWM Fault Input 6 (FLT6) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
DS70318D-page 172  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-13: RPINR33: PERIPHERAL PIN SELECT INPUT REGISTER 33  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
SYNCI1R<5:0>  
bit 15  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 0  
FLT8R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
SYNCI1R<5:0>: Assign PWM Master Time Base External Synchronization Signal to the  
Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
FLT8R<5:0>: Assign PWM Fault Input 8 (FLT8) to the Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 173  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-14: RPINR34: PERIPHERAL PIN SELECT INPUT REGISTER 34  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 0  
SYNCI2R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
SYNCI2R<5:0>: Assign PWM Master Time Base External Synchronization Signal to the  
Corresponding RPn Pin bits  
111111= Input tied to VSS  
100011= Input tied to RP35  
100010= Input tied to RP34  
100001= Input tied to RP33  
100000= Input tied to RP32  
00000= Input tied to RP0  
REGISTER 10-15: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP1R<5:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP0R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP1R<5:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP0R<5:0>: Peripheral Output Function is Assigned to RP0 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
DS70318D-page 174  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-16: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
RP3R<5:0>  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP2R<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP3R<5:0>: Peripheral Output Function is Assigned to RP3 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP2R<5:0>: Peripheral Output Function is Assigned to RP2 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
REGISTER 10-17: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP5R<5:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP4R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP5R<5:0>: Peripheral Output Function is Assigned to RP5 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP4R<5:0>: Peripheral Output Function is Assigned to RP4 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 175  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-18: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
RP7R<5:0>  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP6R<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP7R<5:0>: Peripheral Output Function is Assigned to RP7 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP6R<5:0>: Peripheral Output Function is Assigned to RP6 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
REGISTER 10-19: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP9R<5:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP8R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP9R<5:0>: Peripheral Output Function is Assigned to RP9 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP8R<5:0>: Peripheral Output Function is Assigned to RP8 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
Note 1: This register is not implemented in the dsPIC33FJ06GS101 device.  
DS70318D-page 176  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-20: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
RP11R<5:0>  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP10R<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP11R<5:0>: Peripheral Output Function is Assigned to RP11 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP10R<5:0>: Peripheral Output Function is Assigned to RP10 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
Note 1: This register is not implemented in the dsPIC33FJ06GS101 device.  
REGISTER 10-21: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP13R<5:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP12R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP13R<5:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP12R<5:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
Note 1: This register is not implemented in the dsPIC33FJ06GS101 device.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 177  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-22: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
RP15R<5:0>  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP14R<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP15R<5:0>: Peripheral Output Function is Assigned to RP15 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP14R<5:0>: Peripheral Output Function is Assigned to RP14 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
Note 1: This register is not implemented in the dsPIC33FJ06GS101 device.  
REGISTER 10-23: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP17R<5:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP16R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP17R<5:0>: Peripheral Output Function is Assigned to RP17 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP16R<5:0>: Peripheral Output Function is Assigned to RP16 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
Note 1: This register is implemented in dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.  
DS70318D-page 178  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-24: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
RP19R<5:0>  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP18R<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP19R<5:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP18R<5:0>: Peripheral Output Function is Assigned to RP18 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
Note 1: This register is implemented in dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.  
REGISTER 10-25: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP21R<5:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP20R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP21R<5:0>: Peripheral Output Function is Assigned to RP21 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP20R<5:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
Note 1: This register is implemented in dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 179  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-26: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
RP23R<5:0>  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP22R<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP23R<5:0>: Peripheral Output Function is Assigned to RP23 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP22R<5:0>: Peripheral Output Function is Assigned to RP22 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
Note 1: This register is implemented in dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.  
REGISTER 10-27: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP25R<5:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP24R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP25R<5:0>: Peripheral Output Function is Assigned to RP25 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP24R<5:0>: Peripheral Output Function is Assigned to RP24 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
Note 1: This register is implemented in dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.  
DS70318D-page 180  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-28: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
RP27R<5:0>  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
RP26R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP27R<5:0>: Peripheral Output Function is Assigned to RP27 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP26R<5:0>: Peripheral Output Function is Assigned to RP26 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
Note 1: This register is implemented in dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.  
REGISTER 10-29: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP29R<5:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
R/W-0  
R/W-0  
RP28R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP29R<5:0>: Peripheral Output Function is Assigned to RP29 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP28R<5:0>: Peripheral Output Function is Assigned to RP28 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
Note 1: This register is implemented in dsPIC33FJ16GS404 and dsPIC33FJ16GS504 devices only.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 181  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 10-30: RPOR16: PERIPHERAL PIN SELECT OUTPUT REGISTER 16  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
RP33R<5:0>  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
RP32R<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP33R<5:0>: Peripheral Output Function is Assigned to RP33 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP32R<5:0>: Peripheral Output Function is Assigned to RP32 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
REGISTER 10-31: RPOR17: PERIPHERAL PIN SELECT OUTPUT REGISTER 17  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
RP35R<5:0>  
bit 15  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP34R<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
RP35R<5:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RP34R<5:0>: Peripheral Output Function is Assigned to RP34 Output Pin bits  
(see Table 10-2 for peripheral function numbers)  
DS70318D-page 182  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
The Timer1 module can operate in one of the following  
modes:  
11.0 TIMER1  
Note:  
This data sheet summarizes the features of  
• Timer mode  
• Gated Timer mode  
• Synchronous Counter mode  
• Asynchronous Counter mode  
the  
dsPIC33FJ06GS101/X02  
families  
and  
of  
dsPIC33FJ16GSX02/X04  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”, Section 11. “Timers”  
(DS70205), which is available from the  
Microchip web site (www.microchip.com).  
In Timer and Gated Timer modes, the input clock is  
derived from the internal instruction cycle clock (FCY).  
In Synchronous and Asynchronous Counter modes,  
the input clock is derived from the external clock input  
at the T1CK pin.  
The Timer modes are determined by the following bits:  
• Timer Clock Source Control bit (TCS): T1CON<1>  
The Timer1 module is a 16-bit timer, which can serve  
as a time counter for the Real-Time Clock (RTC), or  
operate as a free-running interval timer/counter.  
• Timer Synchronization Control bit (TSYNC):  
T1CON<2>  
The Timer1 module has the following unique features  
over other timers:  
• Timer Gate Control bit (TGATE): T1CON<6>  
The timer control bit settings for different operating  
modes are given in the Table 11-1.  
• Can be operated from the low-power 32 kHz  
crystal oscillator available on the device  
• Can be operated in Asynchronous Counter mode  
from an external clock source.  
TABLE 11-1: TIMER MODE SETTINGS  
• The external clock input (T1CK) can optionally be  
synchronized to the internal device clock and the  
clock synchronization is performed after the  
prescaler.  
Mode  
Timer  
TCS  
TGATE  
TSYNC  
0
0
1
0
1
x
x
x
1
Gated Timer  
Synchronous  
Counter  
The unique features of Timer1 allow it to be used for  
Real-Time Clock (RTC) applications. A block diagram  
of Timer1 is shown in Figure 11-1.  
Asynchronous  
Counter  
1
x
0
FIGURE 11-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
Falling Edge  
Gate  
Sync  
1
0
Detect  
Set T1IF Flag  
FCY  
10  
Prescaler  
(/n)  
TGATE  
Reset  
Equal  
TMR1  
00  
x1  
TCKPS<1:0>  
1
0
T1CK  
Prescaler  
(/n)  
Comparator  
PR1  
Sync  
TGATE  
TCS  
TSYNC  
TCKPS<1:0>  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 183  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
TSYNC  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer1 On bit  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When T1CS = 1:  
This bit is ignored.  
When T1CS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS<1:0> Timer1 Input Clock Prescale Select bits  
11 = 1:256  
10 = 1:64  
01 = 1:8  
00 = 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit  
When TCS = 1:  
1= Synchronize external clock input  
0= Do not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit  
1= External clock from T1CK pin (on the rising edge)  
0= Internal clock (FCY)  
Unimplemented: Read as ‘0’  
DS70318D-page 184  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
• Externalclockinput(TxCK)isalwayssynchronized  
to the internal device clock and the clock  
12.0 TIMER2/3 FEATURES  
synchronization is performed after the prescaler.  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
Figure 12-1 shows a block diagram of the Type B timer.  
dsPIC33FJ16GSX02/X04  
families  
of  
Timer3 is a Type C timer that offers the following major  
features:  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”, Section 11. “Timers”  
(DS70205), which is available on the Micro-  
chip web site (www.microchip.com).  
• A Type C timer can be concatenated with a  
Type B timer to form a 32-bit timer  
• The external clock input (TxCK) is always  
synchronized to the internal device clock and the  
clock synchronization is performed before the  
prescaler  
Timer2 is a Type B timer that offers the following major  
features:  
A block diagram of the Type C timer is shown in  
Figure 12-2.  
• A Type B timer can be concatenated with a  
Type C timer to form a 32-bit timer  
Note:  
Timer3 is not available on all devices.  
FIGURE 12-1:  
TYPE B TIMER BLOCK DIAGRAM (x = 2)  
Falling Edge  
Detect  
Gate  
Sync  
1
Set TxIF Flag  
0
FCY  
10  
00  
Prescaler  
(/n)  
Reset TGATE  
TMRx  
TCKPS<1:0>  
Sync  
Prescaler  
(/n)  
x1  
Equal  
Comparator  
TxCK  
TCKPS<1:0>  
TGATE  
TCS  
PRx  
FIGURE 12-2:  
TYPE C TIMER BLOCK DIAGRAM (x = 3)  
Falling Edge  
Detect  
Gate  
Sync  
1
Set TxIF Flag  
0
Prescaler  
(/n)  
10  
00  
x1  
FCY  
TGATE  
Reset  
Equal  
TMRx  
TCKPS<1:0>  
Prescaler  
(/n)  
Sync  
Comparator  
TxCK  
TCKPS<1:0>  
TGATE  
TCS  
PRx  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 185  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
The Timer2/3 module can operate in one of the  
following modes:  
When configured for 32-bit operation, only the Type B  
Timer Control (TxCON) register bits are required for  
setup and control while the Type C Timer Control  
register bits are ignored (except the TSIDL bit).  
• Timer mode  
• Gated Timer mode  
• Synchronous Counter mode  
For interrupt control, the combined 32-bit timer uses  
the interrupt enable, interrupt flag and interrupt priority  
control bits of the Type C timer. The interrupt control  
and status bits for the Type B timer are ignored  
during 32-bit timer operation.  
In Timer and Gated Timer modes, the input clock is  
derived from the internal instruction cycle clock (FCY).  
In Synchronous Counter mode, the input clock is  
derived from the external clock input at the TxCK pin.  
The Timer2 and Timer 3 that can be combined to form a  
32-bit timer are listed in Table 12-2.  
The timer modes are determined by the following bits:  
• TCS (TxCON<1>): Timer Clock Source Control bit  
• TGATE (TxCON<6>): Timer Gate Control bit  
TABLE 12-2: 32-BIT TIMER  
Timer control bit settings for different operating modes  
are given in the Table 12-1.  
Type B Timer (lsw)  
Type C Timer (msw)  
Timer2  
Timer3  
TABLE 12-1: TIMER MODE SETTINGS  
A block diagram representation of the 32-bit timer  
module is shown in Figure 12-3. The 32-timer module  
can operate in one of the following modes:  
Mode  
TCS  
TGATE  
Timer  
0
0
1
0
1
x
• Timer mode  
• Gated Timer mode  
• Synchronous Counter mode  
Gated Timer  
Synchronous Counter  
To configure the features of Timer2/3 for 32-bit  
operation:  
12.1 16-Bit Operation  
1. Set the T32 control bit.  
To configure any of the timers for individual 16-bit  
operation:  
2. Select the prescaler ratio for Timer2 using the  
TCKPS<1:0> bits.  
1. Clear the T32 bit corresponding to that timer.  
3. Set the Clock and Gating modes using the  
corresponding TCS and TGATE bits.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
4. Load the timer period value. PR3 contains the  
most significant word of the value, while PR2  
contains the least significant word.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
4. Load the timer period value into the PRx  
register.  
5. If interrupts are required, set the interrupt enable  
bit, T3IE. Use the priority bits, T3IP<2:0>, to set  
the interrupt priority. While Timer2 controls the  
timer, the interrupt appears as a Timer3  
interrupt.  
5. If interrupts are required, set the interrupt enable  
bit, TxIE. Use the priority bits, TxIP<2:0>, to set  
the interrupt priority.  
6. Set the TON bit.  
6. Set the corresponding TON bit.  
The timer value at any point is stored in the register  
pair, TMR3:TMR2, which always contains the most  
significant word of the count, while TMR2 contains the  
least significant word.  
12.2 32-Bit Operation  
A 32-bit timer module can be formed by combining a  
Type B and a Type C 16-bit timer module. For 32-bit  
timer operation, the T32 control bit in the Type B Timer  
Control (TxCON<3>) register must be set. The Type C  
timer holds the most significant word (msw) and the  
Type B timer holds the least significant word (lsw)  
for 32-bit operation.  
DS70318D-page 186  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 12-3:  
32-BIT TIMER BLOCK DIAGRAM  
Falling Edge  
Detect  
Gate  
Sync  
1
0
Set TyIF  
Flag  
PRy  
PRx  
Equal  
Reset  
Comparator  
TGATE  
Prescaler  
(/n)  
10  
00  
x1  
FCY  
lsw  
msw  
TMRx(1)  
TMRy(2)  
TCKPS<1:0>  
Sync  
Prescaler  
(/n)  
TxCK  
TMRyHLD  
TCKPS<1:0>  
TGATE  
TCS  
Data Bus <15:0>  
Note 1: Timerx is a Type B Timer (x = 2).  
2: Timery is a Type C Timer (y = 3).  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 187  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 12-1: TxCON: TIMER CONTROL REGISTER (x = 2)  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32(1)  
U-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timerx On bit  
When T32 = 1(in 32-Bit Timer mode):  
1= Starts 32-bit TMRx:TMRy timer pair  
0= Stops 32-bit TMRx:TMRy timer pair  
When T32 = 0(in 16-Bit Timer mode):  
1= Starts 16-bit timer  
0= Stops 16-bit timer  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue timer operation when device enters Idle mode  
0= Continue timer operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timerx Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
bit 3  
TCKPS<1:0>: Timerx Input Clock Prescale Select bits  
11= 1:256 prescale value  
10= 1:64 prescale value  
01= 1:8 prescale value  
00= 1:1 prescale value  
T32: 32-Bit Timerx Mode Select bit  
1= TMRx and TMRy form a 32-bit timer  
0= TMRx and TMRy form separate 16-bit timer  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timerx Clock Source Select bit  
1= External clock from TxCK pin  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
DS70318D-page 188  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 12-2: TyCON: TIMER CONTROL REGISTER (y = 3)  
R/W-0  
TON(2)  
U-0  
R/W-0  
TSIDL(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
TGATE(2)  
R/W-0  
TCKPS<1:0>(2)  
R/W-0  
U-0  
U-0  
R/W-0  
TCS(2)  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timery On bit(2)  
1= Starts 16-bit Timery  
0= Stops 16-bit Timery  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit(1)  
1= Discontinue timer operation when device enters Idle mode  
0= Continue timer operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timery Gated Time Accumulation Enable bit(2)  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS<1:0>: Timery Input Clock Prescale Select bits(2)  
11= 1:256 prescale value  
10= 1:64 prescale value  
01= 1:8 prescale value  
00= 1:1 prescale value  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timery Clock Source Select bit(2)  
1= External clock from TxCK pin  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit  
must be cleared to operate the 32-bit timer in Idle mode.  
2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control (TxCON<3>) register, these bits  
have no effect.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 189  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
NOTES:  
DS70318D-page 190  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
• Simple Capture Event modes:  
13.0 INPUT CAPTURE  
- Capture timer value on every falling edge of  
input at ICx pin  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 families of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”, Section 12. “Input  
Capture” (DS70198), which is available  
- Capture timer value on every rising edge of  
input at ICx pin  
• Capture timer value on every edge (rising and  
falling)  
• Prescaler Capture Event modes:  
- Capture timer value on every 4th rising edge  
of input at ICx pin  
on  
the  
Microchip  
web  
site  
- Capture timer value on every 16th rising  
edge of input at ICx pin  
(www.microchip.com).  
Each input capture channel can select one of the  
two 16-bit timers (Timer2 or Timer3) for the time  
base. The selected timer can use either an internal  
or external clock.  
The input capture module is useful in applications  
requiring frequency (period) and pulse measurement.  
The  
dsPIC33FJ06GS101/X02  
and  
dsPIC33FJ16GSX02/X04 devices support up to two  
input capture channels.  
Other operational features include:  
The input capture module captures the 16-bit value of  
the selected Time Base register when an event occurs  
at the ICx pin. The events that cause a capture event  
are listed below in three categories:  
• Device wake-up from capture pin during CPU  
Sleep and Idle modes  
• Interrupt on input capture event  
• 4-word FIFO buffer for capture values  
- Interrupt optionally generated after 1, 2, 3 or  
4 buffer locations are filled  
• Use of input capture to provide additional sources  
of external interrupts  
FIGURE 13-1:  
INPUT CAPTURE BLOCK DIAGRAM  
From 16-Bit Timers  
TMR2 TMR3  
16  
16  
ICTMR  
(ICxCON<7>)  
1
0
Edge Detection Logic  
and  
Clock Synchronizer  
FIFO  
R/W  
Logic  
Prescaler  
Counter  
(1, 4, 16)  
ICx Pin  
ICM<2:0> (ICxCON<2:0>)  
3
Mode Select  
ICOV, ICBNE (ICxCON<4:3>)  
ICxBUF  
ICxI<1:0>  
Interrupt  
Logic  
ICxCON  
System Bus  
Set Flag ICxIF  
(in IFSx Register)  
Note 1: An ‘x’ in a signal, register or bit name denotes the number of the capture channel.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 191  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
13.1 Input Capture Registers  
REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1, 2)  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ICSIDL  
bit 15  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R-0, HC  
ICOV  
R-0, HC  
ICBNE  
R/W-0  
R/W-0  
ICTMR  
ICI<1:0>  
ICM<2:0>  
bit 7  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ICSIDL: Input Capture Module Stop in Idle Control bit  
1= Input capture module halts in CPU Idle mode  
0= Input capture module continues to operate in CPU Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
ICTMR: Input Capture Timer Select bits  
1= TMR2 contents are captured on capture event  
0= TMR3 contents are captured on capture event  
bit 6-5  
ICI<1:0>: Select Number of Captures per Interrupt bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture Overflow Status Flag bit (read-only)  
1= Input capture overflow occurred  
0= No input capture overflow occurred  
bit 3  
ICBNE: Input Capture Buffer Empty Status bit (read-only)  
1= Input capture buffer is not empty, at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM<2:0>: Input Capture Mode Select bits  
111= Input capture functions as interrupt pin only when device is in Sleep or Idle mode. Rising edge  
detect-only, all other control bits are not applicable.  
110= Unused (module disabled)  
101= Capture mode, every 16th rising edge  
100= Capture mode, every 4th rising edge  
011= Capture mode, every rising edge  
010= Capture mode, every falling edge  
001= Capture mode, every edge (rising and falling). ICI<1:0> bits do not control interrupt generation  
for this mode.  
000= Input capture module turned off  
DS70318D-page 192  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
The state of the output pin changes when the timer  
14.0 OUTPUT COMPARE  
value matches the Compare register value. The output  
compare module generates either a single output  
pulse, or a sequence of output pulses, by changing the  
state of the output pin on the compare match events.  
The output compare module can also generate  
interrupts on compare match events.  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 families of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”, Section 13. “Output  
Compare” (DS70209), which is available  
The output compare module has multiple operating  
modes:  
• Active-Low One-Shot mode  
• Active-High One-Shot mode  
Toggle mode  
on  
the  
Microchip  
web  
site  
(www.microchip.com).  
• Delayed One-Shot mode  
• Continuous Pulse mode  
• PWM mode without Fault Protection  
• PWM mode with Fault Protection  
The output compare module can select either Timer2 or  
Timer3 for its time base. The module compares the  
value of the timer with the value of one or two Compare  
registers depending on the operating mode selected.  
FIGURE 14-1:  
OUTPUT COMPARE MODULE BLOCK DIAGRAM  
Set Flag bit  
OCxIF  
OCxRS  
OCxR  
Output  
Logic  
S
R
Q
OCx  
Output Enable  
3
OCM<2:0>  
Mode Select  
OCFA  
Comparator  
0
1
0
OCTSEL  
1
16  
16  
TMR2  
Rollover  
TMR3  
Rollover  
TMR3  
TMR2  
Note: An ‘x’ in a signal, register or bit name denotes the number of the output compare channels.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 193  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
application must disable the associated timer when  
writing to the Output Compare Control registers to  
avoid malfunctions.  
14.1 Output Compare Modes  
Configure the Output Compare modes by setting the  
appropriate Output Compare Mode (OCM<2:0>) bits in  
the Output Compare Control (OCxCON<2:0>) register.  
Table 14-1 lists the different bit settings for the Output  
Compare modes. Figure 14-2 illustrates the output  
compare operation for various modes. The user  
Note:  
Refer to Section 13. “Output Compare”  
in the “dsPIC33F Family Reference Man-  
ual” (DS7029) for OCxR and OCxRS reg-  
ister restrictions.  
TABLE 14-1: OUTPUT COMPARE MODES  
OCM<2:0>  
Mode  
Module Disabled  
OCx Pin Initial State  
OCx Interrupt Generation  
000  
001  
010  
011  
100  
101  
110  
Controlled by GPIO register  
Active-Low One-Shot  
Active-High One-Shot  
Toggle  
0
1
OCx rising edge  
OCx falling edge  
Current output is maintained OCx rising and falling edge  
Delayed One-Shot  
Continuous Pulse  
PWM without Fault Protection  
0
0
OCx falling edge  
OCx falling edge  
No interrupt  
0’, if OCxR is zero  
1’, if OCxR is non-zero  
111  
PWM with Fault Protection  
0’, if OCxR is zero  
OCFA falling edge for OC1 to OC4  
1’, if OCxR is non-zero  
FIGURE 14-2:  
OUTPUT COMPARE OPERATION  
Output Compare  
Mode Enabled  
Timer is Reset on  
Period Match  
OCxRS  
OCxR  
TMRy  
Active-Low One-Shot  
(OCM = 001)  
Active-High One-Shot  
(OCM = 010)  
Toggle  
(OCM = 011)  
Delayed One-Shot  
(OCM = 100)  
Continuous Pulse  
(OCM = 101)  
PWM  
(OCM = 110or 111)  
DS70318D-page 194  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
OCSIDL  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
R-0, HC  
OCFLT  
R/W-0  
R/W-0  
R/W-0  
OCTSEL  
OCM<2:0>  
bit 7  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
OCSIDL: Stop Output Compare in Idle Mode Control bit  
1= Output Compare x halts in CPU Idle mode  
0= Output Compare x continues to operate in CPU Idle mode  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
OCFLT: PWM Fault Condition Status bit  
1= PWM Fault condition has occurred (cleared in hardware only)  
0= No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)  
bit 3  
OCTSEL: Output Compare Timer Select bit  
1= Timer3 is the clock source for Compare x  
0= Timer2 is the clock source for Compare x  
bit 2-0  
OCM<2:0>: Output Compare Mode Select bits  
111= PWM mode on OCx, Fault pin enabled  
110= PWM mode on OCx, Fault pin disabled  
101= Initialize OCx pin low, generate continuous output pulses on OCx pin  
100= Initialize OCx pin low, generate single output pulse on OCx pin  
011= Compare event toggles OCx pin  
010= Initialize OCx pin high, compare event forces OCx pin low  
001= Initialize OCx pin low, compare event forces OCx pin high  
000= Output compare channel is disabled  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 195  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
NOTES:  
DS70318D-page 196  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
• Dual trigger from PWM to ADC  
15.0 HIGH-SPEED PWM  
• PWMxH, PWMxL output pin swapping  
• PWM4H, PWM4L pins remappable  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 families of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
• On-the-fly PWM frequency, duty cycle and phase  
shift changes  
• Disabling of Individual PWM generators to reduce  
power consumption  
• Leading-Edge Blanking (LEB) functionality  
Reference  
Manual”,  
Section  
43.  
Note:  
Duty cycle, dead-time, phase shift and  
frequency resolution is 8.32 ns in  
Center-Aligned PWM mode.  
“High- Speed PWM” (DS70323), which is  
available on the Microchip web site  
(www.microchip.com).  
Figure 15-1 conceptualizes the PWM module in a  
simplified block diagram. Figure 15-2 illustrates how  
the module hardware is partitioned for each PWM  
output pair for the Complementary PWM mode. Each  
functional unit of the PWM module is discussed in  
subsequent sections.  
The  
high-speed  
PWM  
module  
on  
the  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/  
X04 devices supports a wide variety of PWM modes  
and output formats. This PWM module is ideal for  
power conversion applications, such as:  
The PWM module contains four PWM generators. The  
module has up to eight PWM output pins: PWM1H,  
PWM1L, PWM2H, PWM2L, PWM3H, PWM3L,  
PWM4H and PWM4L. For complementary outputs,  
these eight I/O pins are grouped into H/L pairs.  
• AC/DC Converters  
• DC/DC Converters  
• Power Factor Correction(PFC)  
• Uninterruptible Power Supply (UPS)  
• Inverters  
• Battery Chargers  
• Digital Lighting  
15.2 Feature Description  
The PWM module is designed for applications that  
require:  
15.1 Features Overview  
The high-speed PWM module incorporates the  
following features:  
• High-resolution at high PWM frequencies  
• The ability to drive Standard, Edge-Aligned,  
Center-Aligned Complementary mode, and  
Push-Pull mode outputs  
• 2-4 PWM generators with 4-8 outputs  
• Individual time base and duty cycle for each of the  
eight PWM outputs  
• The ability to create multiphase PWM outputs  
• Dead time for rising and falling edges:  
• Duty cycle resolution of 1.04 ns at 40 MIPS  
• Dead-time resolution of 1.04 ns at 40 MIPS  
• Phase shift resolution of 1.04 ns at 40 MIPS  
• Frequency resolution of 1.04 ns at 40 MIPS  
• PWM modes supported:  
- Standard Edge-Aligned  
- True Independent Output  
- Complementary  
For Center-Aligned mode, the duty cycle, period phase  
and dead-time resolutions will be 8 ns.  
Two common, medium power converter topologies are  
push-pull and half-bridge. These designs require the  
PWM output signal to be switched between alternate  
pins, as provided by the Push-Pull PWM mode.  
Phase-shifted PWM describes the situation where  
each PWM generator provides outputs, but the phase  
relationship between the generator outputs is  
specifiable and changeable.  
- Center-Aligned  
Multiphase PWM is often used to improve DC/DC  
converter load transient response, and reduce the size  
of output filter capacitors and inductors. Multiple DC/DC  
converters are often operated in parallel, but  
phase-shifted in time. A single PWM output operating at  
250 kHz has a period of 4 μs, but an array of four PWM  
channels, staggered by 1 μs each, yields an effective  
switching frequency of 1 MHz. Multiphase PWM  
applications typically use a fixed-phase relationship.  
- Push-Pull  
- Multiphase  
- Variable Phase  
- Fixed Off-Time  
- Current Reset  
- Current-Limit  
• Independent Fault/Current-Limit inputs for each of  
the eight PWM outputs  
Variable phase PWM is useful in Zero Voltage  
Transition (ZVT) power converters. Here, the PWM  
duty cycle is always 50%, and the power flow is  
controlled by varying the relative phase shift between  
the two PWM generators.  
• Output override control  
• Special Event Trigger  
• PWM capture feature  
• Prescaler for input clock  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 197  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 15-1:  
SIMPLIFIED CONCEPTUAL BLOCK DIAGRAM OF HIGH-SPEED PWM  
Pin and Mode Control  
PWMCONx  
LEBCONx  
Control for Blanking External Input Signals  
ADC Trigger Control  
Dead-Time Control  
TRGCONx  
ALTDTRx, DTRx  
PWM Enable and Mode Control  
PTCON  
MDC  
Master Duty Cycle Register  
PDC1  
MUX  
Latch  
PWM GEN 1  
PWM1H  
PWM1L  
Channel 1  
Dead-Time Generator  
Comparator  
Timer  
Phase  
PDC2  
MUX  
Latch  
PWM GEN 2  
PWM2H  
PWM2L  
Channel 2  
Dead-Time Generator  
Comparator  
Timer  
Phase  
PDC3  
MUX  
Latch  
PWM GEN 3  
PWM3H  
PWM3L  
Channel 3  
Dead-Time Generator  
Comparator  
Timer  
Phase  
PDC4  
PWM GEN 4  
MUX  
Latch  
PWM4H(1)  
PWM4L(1)  
Channel 4  
Dead-Time Generator  
Comparator  
Timer  
Timer Period  
Phase  
Fault Control  
Logic  
(1)  
FLTX  
Master Time Base  
PTPER  
SYNCO(1)  
External Time Base  
Synchronization  
PTMR  
(1)  
SYNCIX  
Special Event  
Postscaler  
Special Event  
Trigger  
Comparator  
Special Event  
Comparison Value  
Pin Override Control  
SEVTCMP  
IOCONx  
Fault Mode and Pin Control  
FCLCONx  
Note 1: These pins are remappable.  
DS70318D-page 198  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 15-2:  
PARTITIONED OUTPUT PAIR, COMPLEMENTARY PWM MODE  
Phase Offset  
Timer/Counter  
TMR < PDC  
PWM  
M
U
X
Dead-Time  
Logic  
PWMXH  
PWMXL  
Override  
Logic  
Duty Cycle Comparator  
PWM Duty Cycle Register  
M
U
X
Channel Override Values  
Fault Override Values  
Fault Active  
Fault Pin Assignment Logic  
Fault Pin  
• SDCx: PWMx Secondary Duty Cycle Register  
15.3 Control Registers  
• SPHASEx: PWMx Secondary Phase Shift  
Register (Provides the local time base for  
PWMxL)  
The following registers control the operation of the  
high-speed PWM module.  
• PTCON: PWM Time Base Control Register  
• PTCON2: PWM Clock Divider Select Register  
• PTPER: PWM Master Time Base Register(1)  
• TRGCONx: PWMx Trigger Control Register  
• IOCONx: PWMx I/O Control Register  
• FCLCONx: PWMx Fault Current-Limit Control  
Register  
• SEVTCMP: PWM Special Event Compare  
Register  
• TRIGx: PWMx Primary Trigger Compare Value  
Register  
• MDC: PWM Master Duty Cycle Register  
• PWMCONx: PWMx Control Register  
• STRIGx: PWMx Secondary Trigger Compare  
Value Register  
• PDCx: PWMx Generator Duty Cycle Register  
• LEBCONx: Leading-Edge Blanking Control  
Register  
• PHASEx: PWMx Primary Phase Shift Register  
(PHASEx Register provides the local time base  
period for PWMxH)  
• PWMCAPx: Primary PWMx Time Base Capture  
Register  
• DTRx: PWMx Dead-Time Register  
• ALTDTRx: PWMx Alternate Dead-Time Register  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 199  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 15-1: PTCON: PWM TIME BASE CONTROL REGISTER  
R/W-0  
PTEN  
U-0  
R/W-0  
HS/HC-0  
SESTAT  
R/W-0  
SEIEN  
R/W-0  
R/W-0  
R/W-0  
PTSIDL  
EIPU(1) SYNCPOL(1) SYNCOEN(1)  
bit 15  
bit 8  
R/W-0  
SYNCEN(1)  
U-0  
R/W-0  
SYNCSRC<1:0>(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
SEVTPS<3:0>(1)  
bit 7  
Legend:  
HC = Hardware Clearable bit HS = Hardware Settable bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PTEN: PWM Module Enable bit  
1= PWM module is enabled  
0= PWM module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
PTSIDL: PWM Time Base Stop in Idle Mode bit  
1= PWM time base halts in CPU Idle mode  
0= PWM time base runs in CPU Idle mode  
bit 12  
bit 11  
bit 10  
bit 9  
SESTAT: Special Event Interrupt Status bit  
1= Special event interrupt is pending  
0= Special event interrupt is not pending  
SEIEN: Special Event Interrupt Enable bit  
1= Special event interrupt is enabled  
0= Special event interrupt is disabled  
EIPU: Enable Immediate Period Updates bit(1)  
1= Active Period register is updated immediately  
0= Active Period register updates occur on PWM cycle boundaries  
SYNCPOL: Synchronization Input/Output Polarity bit(1)  
1= SYNCIx and SYNCO polarity is inverted (active-low)  
0= SYNCIx and SYNCO are active-high  
bit 8  
SYNCOEN: Primary Time Base Sync Enable bit(1)  
1= SYNCO output is enabled  
0= SYNCO output is disabled  
bit 7  
SYNCEN: External Time Base Synchronization Enable bit(1)  
1= External synchronization of primary time base is enabled  
0= External synchronization of primary time base is disabled  
bit 6  
Unimplemented: Read as ‘0’  
SYNCSRC<1:0>: Synchronous Source Selection bits(1)  
bit 5-4  
00= SYNCI1  
01= SYNCI2  
10= Reserved  
11= Reserved  
bit 3-0  
SEVTPS<3:0>: PWM Special Event Trigger Output Postscaler Select bits(1)  
0000= 1:1 Postscaler generates a Special Event Trigger on every compare match event  
0001= 1:2 Postscaler generates a Special Event Trigger on every second compare match event  
1111= 1:16 Postscaler generates a Special Event Trigger trigger on every sixteenth compare match event  
Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user  
application must program the period register with a value that is slightly larger than the expected period of  
the external synchronization input signal.  
DS70318D-page 200  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 15-2: PTCON2: PWM CLOCK DIVIDER SELECT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
PCLKDIV<2:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits(1)  
000= Divide by 1, maximum PWM timing resolution (power-on default)  
001= Divide by 2, maximum PWM timing resolution  
010= Divide by 4, maximum PWM timing resolution  
011= Divide by 8, maximum PWM timing resolution  
100= Divide by 16, maximum PWM timing resolution  
101= Divide by 32, maximum PWM timing resolution  
110= Divide by 64, maximum PWM timing resolution  
111= Reserved  
Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
REGISTER 15-3: PTPER: PWM MASTER TIME BASE REGISTER(1)  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
R/W-1  
PTPER <15:8>  
bit 15  
R/W-1  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-0  
PTPER <7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PTPER<15:0>: PWM Master Time Base (PMTMR) Period Value bits  
Note 1: The minimum value that can be loaded into the PTPER register is 0x0010 and the maximum value is  
0xFFF8.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 201  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 15-4: SEVTCMP: PWM SPECIAL EVENT COMPARE REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
SEVTCMP <15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
SEVTCMP <7:3>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
SEVTCMP<15:3>: Special Event Compare Count Value bits  
Unimplemented: Read as ‘0’  
REGISTER 15-5: MDC: PWM MASTER DUTY CYCLE REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
MDC<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
MDC<7:0>  
R/W-0  
R/W-0  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
MDC<15:0>: Master PWM Duty Cycle Value bits  
Note 1: The smallest pulse width that can be generated on the PWM output corresponds to a value of 0x0008,  
while the maximum pulse width generated corresponds to a value of Period – 0x0008.  
2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of  
operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSB.  
DS70318D-page 202  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 15-6: PWMCONx: PWMx CONTROL REGISTER  
HS/HC-0  
FLTSTAT(1)  
HS/HC-0  
CLSTAT(1)  
HS/HC-0  
R/W-0  
R/W-0  
CLIEN  
R/W-0  
R/W-0  
ITB(3)  
R/W-0  
MDCS(3)  
TRGSTAT  
FLTIEN  
TRGIEN  
bit 15  
bit 8  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
CAM(2,3)  
R/W-0  
XPRES(4)  
R/W-0  
IUE  
DTC<1:0>  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
HS = Hardware Settable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
FLTSTAT: Fault Interrupt Status bit(1)  
1= Fault interrupt is pending  
0= No Fault interrupt is pending. This bit is cleared by setting FLTIEN = 0.  
CLSTAT: Current-Limit Interrupt Status bit(1)  
1= Current-limit interrupt is pending  
0= No current-limit interrupt is pending. This bit is cleared by setting CLIEN = 0.  
TRGSTAT: Trigger Interrupt Status bit  
1= Trigger interrupt is pending  
0= No trigger interrupt is pending. This bit is cleared by setting TRGIEN = 0.  
FLTIEN: Fault Interrupt Enable bit  
1= Fault interrupt is enabled  
0= Fault interrupt is disabled and the FLTSTAT bit is cleared  
CLIEN: Current-Limit Interrupt Enable bit  
1= Current-limit interrupt enabled  
0= Current-limit interrupt disabled and the CLSTAT bit is cleared  
TRGIEN: Trigger Interrupt Enable bit  
1= A trigger event generates an interrupt request  
0= Trigger event interrupts are disabled and the TRGSTAT bit is cleared  
ITB: Independent Time Base Mode bit(3)  
1= PHASEx/SPHASEx register provides time base period for this PWM generator  
0= PTPER register provides timing for this PWM generator  
bit 8  
MDCS: Master Duty Cycle Register Select bit(3)  
1= MDC register provides duty cycle information for this PWM generator  
0= PDCx/SDCx register provides duty cycle information for this PWM generator  
bit 7-6  
DTC<1:0>: Dead-Time Control bits  
00= Positive dead time actively applied for all output modes  
01= Negative dead time actively applied for all output modes  
10= Dead-time function is disabled  
11= Reserved  
bit 5-3  
Unimplemented: Read as ‘0’  
Note 1: Software must clear the interrupt status here and the corresponding IFS bit in the interrupt controller.  
2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the  
CAM bit is ignored.  
3: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
4: To operate in External Period Reset mode, configure FCLCONx<CLMOD> = 0and PWMCONx<ITB> = 1.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 203  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 15-6: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)  
bit 2  
bit 1  
bit 0  
CAM: Center-Aligned Mode Enable bit(2,3)  
1= Center-Aligned mode is enabled  
0= Center-Aligned mode is disabled  
XPRES: External PWM Reset Control bit(4)  
1= Current-limit source resets time base for this PWM generator if it is in Independent Time Base mode  
0= External pins do not affect PWM time base  
IUE: Immediate Update Enable bit  
1= Updates to the active MDC/PDCx/SDCx registers are immediate  
0= Updates to the active MDC/PDCx/SDCx registers are synchronized to the PWM time base  
Note 1: Software must clear the interrupt status here and the corresponding IFS bit in the interrupt controller.  
2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the  
CAM bit is ignored.  
3: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
4: To operate in External Period Reset mode, configure FCLCONx<CLMOD> = 0and PWMCONx<ITB> = 1.  
DS70318D-page 204  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 15-7: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
PDCx<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
PDCx<7:0>  
R/W-0  
R/W-0  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PDCx<15:0>: PWM Generator # Duty Cycle Value bits  
Note 1: In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In Complementary,  
Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and  
PWMxL. The smallest pulse width that can be generated on the PWM output corresponds to a value of  
0x0008, while the maximum pulse width generated corresponds to a value of 0xFFEF.  
2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of  
operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSB.  
REGISTER 15-8: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER  
R/W-0  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
SDCx<15:8>  
R/W-0  
R/W-0  
R/W-0  
SDCx<7:0>  
R/W-0  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
SDCx<15:0>: Secondary Duty Cycle for PWMxL Output Pin bits  
Note 1: The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the  
SDCx register controls the PWMxL duty cycle. The smallest pulse width that can be generated on the  
PWM output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to  
a value of 0xFFEF.  
2: As the duty cycle gets closer to 0% or 100% of the PWM period (0 ns-40 ns, depending on the mode of  
operation), the PWM duty cycle resolution will degrade from 1 LSB to 3 LSB.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 205  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 15-9: PHASEx: PWMx PRIMARY PHASE SHIFT REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
PHASEx<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
PHASEx<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PHASEx<15:0>: PWM Phase Shift Value or Independent Time Base Period for this PWM Generator bits  
Note 1: If PWMCONx<ITB> = 0, the following applies based on the mode of operation:  
• Complementary, Redundant and Push-Pull Output mode (IOCONx<PMOD> = 00, 01, or 10)  
PHASEx<15:0> = Phase shift value for PWMxH and PWMxL outputs  
• True Independent Output mode (IOCONx<PMOD> = 11) PHASEx<15:0> = Phase shift value for  
PWMxL only  
2: If PWMCONx<ITB> = 1, the following applies based on the mode of operation:  
• Complementary, Redundant, and Push-Pull Output mode (IOCONx<PMOD> = 00, 01, or 10)  
PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL  
• True Independent Output mode (IOCONx<PMOD> = 11) PHASEx<15:0> = Independent time base  
period value for PWMxL only  
The smallest pulse width that can be generated on the PWM output corresponds to a value of  
0x0008, while the maximum pulse width generated corresponds to a value of Period - 0x0008.  
DS70318D-page 206  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 15-10: SPHASEx: PWMx SECONDARY PHASE SHIFT REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
SPHASEx<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
SPHASEx<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
SPHASEx<15:0>: Secondary Phase Offset for PWMxL Output Pin bits  
(used in Independent PWM mode only)  
Note 1: If PWMCONx<ITB> = 0, the following applies based on the mode of operation:  
• Complementary, Redundant and Push-Pull Output mode (IOCONx<PMOD> = 00, 01, or 10)  
SPHASEx<15:0> = Not used  
• True Independent Output mode (IOCONx<PMOD> = 11) PHASEx<15:0> = Phase shift value for  
PWMxL only  
2: If PWMCONx<ITB> = 1, the following applies based on the mode of operation:  
• Complementary, Redundant and Push-Pull Output mode (IOCONx<PMOD> = 00, 01, or 10)  
SPHASEx<15:0> = Not used  
True Independent Output mode (IOCONx<PMOD> = 11) PHASEx<15:0> = Independent time base  
period value for PWMxL only  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 207  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
.
REGISTER 15-11: DTRx: PWMx DEAD-TIME REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
DTRx<13:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
DTRx<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-0  
Unimplemented: Read as ‘0’  
DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits  
REGISTER 15-12: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
ALTDTRx<13:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
ALTDTR <7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-0  
Unimplemented: Read as ‘0’  
ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits  
DS70318D-page 208  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 15-13: TRGCONx: PWMx TRIGGER CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
TRGDIV<3:0>  
bit 15  
bit 8  
R/W-0  
DTM(1)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TRGSTRT<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
TRGDIV<3:0>: Trigger # Output Divider bits  
0000= Trigger output for every trigger event  
0001= Trigger output for every 2nd trigger event  
0010= Trigger output for every 3rd trigger event  
0011= Trigger output for every 4th trigger event  
0100= Trigger output for every 5th trigger event  
0101= Trigger output for every 6th trigger event  
0110= Trigger output for every 7th trigger event  
0111= Trigger output for every 8th trigger event  
1000= Trigger output for every 9th trigger event  
1001= Trigger output for every 10th trigger event  
1010= Trigger output for every 11th trigger event  
1011= Trigger output for every 12th trigger event  
1100= Trigger output for every 13th trigger event  
1101= Trigger output for every 14th trigger event  
1110= Trigger output for every 15th trigger event  
1111= Trigger output for every 16th trigger event  
bit 11-8  
bit 7  
Unimplemented: Read as ‘0’  
DTM: Dual Trigger Mode bit(1)  
1= Secondary trigger event is combined with the primary trigger event to create the PWM trigger.  
0= Secondary trigger event is not combined with the primary trigger event to create the PWM trigger.  
Two separate PWM triggers are generated.  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-0  
TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits  
000000= Wait 0 PWM cycles before generating the first trigger event after the module is enabled  
000001= Wait 1 PWM cycles before generating the first trigger event after the module is enabled  
000010= Wait 1 PWM cycles before generating the first trigger event after the module is enabled  
111111= Wait 63 PWM cycles before generating the first trigger event after the module is enabled  
Note 1: The secondary generator cannot generate PWM trigger interrupts.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 209  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 15-14: IOCONx: PWMx I/O CONTROL REGISTER  
R/W-0  
PENH  
R/W-0  
PENL  
R/W-0  
POLH  
R/W-0  
POLL  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PMOD<1:0>(1)  
OVRENH  
OVRENL  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SWAP  
R/W-0  
OVRDAT<1:0>  
FLTDAT<1:0>  
CLDAT<1:0>  
OSYNC  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PENH: PWMH Output Pin Ownership bit  
1= PWM module controls PWMxH pin  
0= GPIO module controls PWMxH pin  
bit 14  
PENL: PWML Output Pin Ownership bit  
1= PWM module controls PWMxL pin  
0= GPIO module controls PWMxL pin  
bit 13  
POLH: PWMH Output Pin Polarity bit  
1= PWMxH pin is active-low  
0= PWMxH pin is active-high  
bit 12  
POLL: PWML Output Pin Polarity bit  
1= PWMxL pin is active-low  
0= PWMxL pin is active-high  
bit 11-10  
PMOD<1:0>: PWM # I/O Pin Mode bits(1)  
00= PWM I/O pin pair is in the Complementary Output mode  
01= PWM I/O pin pair is in the Redundant Output mode  
10= PWM I/O pin pair is in the Push-Pull Output mode  
11= PWM I/O pin pair is in the True Independent Output mode  
bit 9  
OVRENH: Override Enable for PWMxH Pin bit  
1= OVRDAT<1> provides data for output on PWMxH pin  
0 = PWM generator provides data for PWMxH pin  
bit 8  
OVRENL: Override Enable for PWMxL Pin bit  
1= OVRDAT<0> provides data for output on PWMxL pin  
0= PWM generator provides data for PWMxL pin  
bit 7-6  
bit 5-4  
OVRDAT<1:0>: Data for PWMxH and PWMxL Pins if Override is Enabled bits  
If OVERENH = 1then OVRDAT<1> provides data for PWMxH.  
If OVERENL = 1then OVRDAT<0> provides data for PWMxL.  
FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits  
FCLCONx<IFLTMOD> = 0: Normal Fault mode:  
If Fault active, then FLTDAT<1> provides data for PWMxH.  
If Fault active, then FLTDAT<0> provides data for PWMxL.  
FCLCONx<IFLTMOD> = 1: Independent Fault mode:  
If current-limit active, then FLTDAT<1> provides data for PWMxH.  
If Fault active, then FLTDAT<0> provides data for PWMxL.  
Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
DS70318D-page 210  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 15-14: IOCONx: PWMx I/O CONTROL REGISTER (CONTINUED)  
bit 3-2  
CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMODE is Enabled bits  
FCLCONx<IFLTMOD> = 0: Normal Fault mode:  
If current-limit active, then CLDAT<1> provides data for PWMxH.  
If current-limit active, then CLDAT<0> provides data for PWMxL.  
FCLCONx<IFLTMOD> = 1: Independent Fault mode:  
CLDAT<1:0> is ignored.  
bit 1  
bit 0  
SWAP<1:0>: SWAP PWMxH and PWMxL pins  
1= PWMxH output signal is connected to PWMxL pin and PWMxL signal is connected to PWMxH pins  
0= PWMxH and PWMxL pins are mapped to their respective pins  
OSYNC: Output Override Synchronization bit  
1= Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base  
0= Output overrides via the OVDDAT<1:0> bits occur on next CPU clock boundary  
Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 211  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 15-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IFLTMOD  
CLSRC<4:0>(2,3)  
CLPOL(1)  
CLMOD  
bit 15  
bit 8  
R/W-0  
bit 7  
R/W-0  
R/W-0  
FLTSRC<4:0>(2,3)  
R/W-0  
R/W-0  
R/W-0  
FLTPOL(1)  
R/W-0  
R/W-0  
FLTMOD<1:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
IFLTMOD: Independent Fault Mode Enable bit  
1= Independent Fault mode: Current-limit input maps FLTDAT<1> to PWMxH output and Fault input  
maps FLTDAT<0> to PWMxL output. The CLDAT<1:0> bits are not used for override functions.  
0= Normal Fault mode: Current-limit feature maps CLDAT<1:0> bits to the PWMxH and PWMxL  
outputs. The PWM Fault feature maps FLTDAT<1:0> to the PWMxH and PWMxL outputs.  
bit 14-10  
CLSRC<4:0>: Current-Limit Control Signal Source Select for PWM # Generator bits(2,3)  
00000= Fault 1  
00001= Fault 2  
00010= Fault 3  
00011= Fault 4  
00100= Fault 5  
00101= Fault 6  
00110= Fault 7  
00111= Fault 8  
01000= Reserved  
11111= Reserved  
bit 9  
bit 8  
CLPOL: Current-Limit Polarity for PWM Generator # bit(1)  
1= The selected current-limit source is active-low  
0= The selected current-limit source is active-high  
CLMOD: Current-Limit Mode Enable bit for PWM Generator # bit  
1= Current-limit function is enabled  
0= Current-limit function is disabled  
Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode  
(CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused  
Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.  
3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode  
(FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an  
unused current-limit source to prevent the current-limit source from disabling both the PWMxH and  
PWMxL outputs.  
DS70318D-page 212  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 15-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)  
bit 7-3  
FLTSRC<4:0>: Fault Control Signal Source Select for PWM Generator # bits(2,3)  
00000= Fault 1  
00001= Fault 2  
00010= Fault 3  
00011= Fault 4  
00100= Fault 5  
00101= Fault 6  
00110= Fault 7  
00111= Fault 8  
01000= Reserved  
11111= Reserved  
bit 2  
FLTPOL: Fault Polarity for PWM Generator # bit(1)  
1= The selected Fault source is active-low  
0= The selected Fault source is active-high  
bit 1-0  
FLTMOD<1:0>: Fault Mode for PWM Generator # bits  
00= The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)  
01= The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)  
10= Reserved  
11= Fault input is disabled  
Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will  
yield unpredictable results.  
2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode  
(CLSRC<4:0> = b0000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused  
Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.  
3: When Independent Fault mode is enabled (IFLTMOD = 1) and Fault 1 is used for Fault mode  
(FLTSRC<4:0> = b0000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an  
unused current-limit source to prevent the current-limit source from disabling both the PWMxH and  
PWMxL outputs.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 213  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 15-16: TRIGx: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
TRGCMP<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
TRGCMP<7:3>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
TRGCMP<15:3>: Trigger Control Value bits  
When primary PWM functions in local time base, this register contains the compare values that can  
trigger the ADC module.  
Unimplemented: Read as ‘0’  
REGISTER 15-17: STRIGx: PWMx SECONDARY TRIGGER COMPARE VALUE REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
STRGCMP<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
STRGCMP<7:3>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
STRGCMP<15:3>: Secondary Trigger Control Value bits  
When secondary PWM functions in local time base, this register contains the compare values that can  
trigger the ADC module.  
Unimplemented: Read as ‘0’  
DS70318D-page 214  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 15-18: LEBCONx: LEADING-EDGE BLANKING CONTROL REGISTER  
R/W-0  
PHR  
R/W-0  
PHF  
R/W-0  
PLR  
R/W-0  
PLF  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FLTLEBEN  
CLLEBEN  
LEB<9:8>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
LEB<7:3>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
PHR: PWMxH Rising Edge Trigger Enable bit  
1= Rising edge of PWMxH will trigger LEB counter  
0= LEB ignores rising edge of PWMxH  
PHF: PWMH Falling Edge Trigger Enable bit  
1= Falling edge of PWMxH will trigger LEB counter  
0= LEB ignores falling edge of PWMxH  
PLR: PWML Rising Edge Trigger Enable bit  
1= Rising edge of PWMxL will trigger LEB counter  
0= LEB ignores rising edge of PWMxL  
PLF: PWML Falling Edge Trigger Enable bit  
1= Falling edge of PWMxL will trigger LEB counter  
0= LEB ignores falling edge of PWMxL  
FLTLEBEN: Fault Input LEB Enable bit  
1= Leading-edge blanking is applied to selected Fault input  
0= Leading-edge blanking is not applied to selected Fault input  
CLLEBEN: Current-Limit LEB Enable bit  
1= Leading-edge blanking is applied to selected current-limit input  
0= Leading-edge blanking is not applied to selected current-limit input  
bit 9-3  
bit 2-0  
LEB: Leading-Edge Blanking for Current-Limit and Fault Inputs bits  
Value is 8 nsec increments.  
Unimplemented: Read as ‘0’  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 215  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 15-19: PWMCAPx: PRIMARY PWMx TIME BASE CAPTURE REGISTER  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
PWMCAP<15:8>(1,2)  
bit 15  
bit 8  
bit 0  
R-0  
R-0  
R-0  
R-0  
R-0  
U-0  
U-0  
U-0  
PWMCAP<7:3>(1,2)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
PWMCAP<15:3>: Captured PWM Time Base Value bits(1,2)  
The value in this register represents the captured PWM time base value when a leading edge is  
detected on the current-limit input.  
Unimplemented: Read as ‘0’  
Note 1: The capture feature is only available on primary output (PWMxH).  
2: This feature is active only after LEB processing on the current-limit input signal is complete.  
DS70318D-page 216  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
The SPI module consists of a 16-bit shift register,  
16.0 SERIAL PERIPHERAL  
SPIxSR (where x = 1), used for shifting data in and out,  
and a buffer register, SPIxBUF. A control register,  
SPIxCON, configures the module. Additionally, a status  
register, SPIxSTAT, indicates status conditions.  
INTERFACE (SPI)  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 families of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”, Section 18. “Serial  
Peripheral Interface (SPI)” (DS70206),  
which is available on the Microchip  
web site (www.microchip.com).  
The serial interface consists of the following four pins:  
• SDIx (Serial Data Input)  
• SDOx (Serial Data Output)  
• SCKx (Shift Clock Input Or Output)  
• SSx (Active-Low Slave Select).  
In Master mode operation, SCK is a clock output; in  
Slave mode, it is a clock input.  
The Serial Peripheral Interface (SPI) module is a  
synchronous serial interface useful for communicating  
with other peripheral or microcontroller devices. These  
peripheral devices can be serial EEPROMs, shift  
registers, display drivers, analog-to-digital converters  
and so on. The SPI module is compatible with SPI and  
SIOP from Motorola®.  
FIGURE 16-1:  
SPI MODULE BLOCK DIAGRAM  
SCKx  
1:1 to 1:8  
Secondary  
Prescaler  
1:1/4/16/64  
Primary  
Prescaler  
FCY  
SSx  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Shift Control  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
SPIxRXB SPIxTXB  
SPIxBUF  
Write SPIxBUF  
Read SPIxBUF  
16  
Internal Data Bus  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 217  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 16-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER  
R/W-0  
SPIEN  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
SPISIDL  
bit 15  
bit 8  
U-0  
R/C-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
SPIROV  
SPITBF  
SPIRBF  
bit 0  
bit 7  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SPIEN: SPIx Enable bit  
1= Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
SPIROV: Receive Overflow Flag bit  
1= A new byte/word is completely received and discarded. The user software has not read the  
previous data in the SPIxBUF register.  
0= No overflow has occurred  
bit 5-2  
bit 1  
Unimplemented: Read as ‘0’  
SPITBF: SPIx Transmit Buffer Full Status bit  
1= Transmit not yet started, SPIxTXB is full  
0= Transmit started, SPIxTXB is empty. Automatically set in hardware when CPU writes SPIxBUF  
location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data  
from SPIxTXB to SPIxSR.  
bit 0  
SPIRBF: SPIx Receive Buffer Full Status bit  
1= Receive complete, SPIxRXB is full  
0= Receive is not complete, SPIxRXB is empty. Automatically set in hardware when SPIx transfers  
data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads SPIxBUF  
location, reading SPIxRXB.  
DS70318D-page 218  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 16-2: SPIXCON1: SPIx CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE(1)  
DISSCK  
DISSDO  
MODE16  
bit 15  
bit 8  
R/W-0  
SSEN(3)  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
SPRE<2:0>(2)  
R/W-0  
R/W-0  
R/W-0  
MSTEN  
PPRE<1:0>(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
DISSCK: Disable SCKx pin bit (SPI Master modes only)  
1= Internal SPI clock is disabled; pin functions as I/O  
0= Internal SPI clock is enabled  
bit 11  
bit 10  
bit 9  
DISSDO: Disable SDOx pin bit  
1= SDOx pin is not used by module; pin functions as I/O  
0= SDOx pin is controlled by the module  
MODE16: Word/Byte Communication Select bit  
1= Communication is word-wide (16 bits)  
0= Communication is byte-wide (8 bits)  
SMP: SPIx Data Input Sample Phase bit  
Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
Slave mode:  
SMP must be cleared when SPIx is used in Slave mode.  
bit 8  
bit 7  
bit 6  
bit 5  
CKE: SPIx Clock Edge Select bit(1)  
1= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)  
0= Serial output data changes on transition from Idle clock state to active clock state (see bit 6)  
SSEN: Slave Select Enable bit (Slave mode)(3)  
1= SSx pin used for Slave mode  
0= SSx pin not used by module; pin controlled by port function  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level; active state is a low level  
0= Idle state for clock is a low level; active state is a high level  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ‘0’ for the Framed SPI modes  
(FRMEN = 1).  
2: Do not set both primary and secondary prescalers to a value of 1:1.  
3: This bit must be cleared when FRMEN = 1.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 219  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 16-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED)  
bit 4-2  
SPRE<2:0>: Secondary Prescale bits (Master mode)(2)  
111= Secondary prescale 1:1  
110= Secondary prescale 2:1  
.
.
.
000= Secondary prescale 8:1  
bit 1-0  
PPRE<1:0>: Primary Prescale bits (Master mode)(2)  
11= Primary prescale 1:1  
10= Primary prescale 4:1  
01= Primary prescale 16:1  
00= Primary prescale 64:1  
Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ‘0’ for the Framed SPI modes  
(FRMEN = 1).  
2: Do not set both primary and secondary prescalers to a value of 1:1.  
3: This bit must be cleared when FRMEN = 1.  
DS70318D-page 220  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRMEN  
SPIFSD  
FRMPOL  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
FRMDLY  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
FRMEN: Framed SPIx Support bit  
1= Framed SPIx support enabled (SSx pin used as frame sync pulse input/output)  
0= Framed SPIx support disabled  
SPIFSD: Frame Sync Pulse Direction Control bit  
1= Frame sync pulse input (slave)  
0= Frame sync pulse output (master)  
FRMPOL: Frame Sync Pulse Polarity bit  
1= Frame sync pulse is active-high  
0= Frame sync pulse is active-low  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
FRMDLY: Frame Sync Pulse Edge Select bit  
1= Frame sync pulse coincides with first bit clock  
0= Frame sync pulse precedes first bit clock  
bit 0  
Unimplemented: This bit must not be set to ‘1’ by the user application  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 221  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
NOTES:  
DS70318D-page 222  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
2
17.2 I C Registers  
17.0 INTER-INTEGRATED CIRCUIT  
2
(I C™)  
I2CxCON and I2CxSTAT are control and status  
registers, respectively. The I2CxCON register is  
readable and writable. The lower six bits of I2CxSTAT  
are read-only. The remaining bits of the I2CSTAT are  
read/write:  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 families of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
• I2CxRSR is the shift register used for shifting data  
internal to the module and the user application  
has no access to it.  
Reference  
“Inter-Integrated  
(DS70195), which is available on the  
Microchip web site (www.microchip.com).  
Manual”,  
Section  
19.  
• I2CxRCV is the receive buffer and the register to  
which data bytes are written, or from which data  
bytes are read.  
Circuit  
(I2C™)”  
• I2CxTRN is the transmit register to which bytes  
are written during a transmit operation.  
The Inter-Integrated Circuit (I2C) module provides  
complete hardware support for both Slave and  
Multi-Master modes of the I2C serial communication  
standard with a 16-bit interface.  
• The I2CxADD register holds the slave address.  
• A status bit, ADD10, indicates 10-Bit Address  
mode.  
The I2C module has a 2-pin interface:  
• The I2CxBRG acts as the Baud Rate Generator  
(BRG) reload value.  
• The SCLx pin is clock.  
• The SDAx pin is data.  
The I2C module offers the following key features:  
• I2C interface supporting both Master and Slave  
modes of operation.  
In receive operations, I2CxRSR and I2CxRCV together  
form a double-buffered receiver. When I2CxRSR  
receives a complete byte, it is transferred to I2CxRCV,  
and an interrupt pulse is generated.  
• I2C Slave mode supports 7-bit and  
10-bit addressing.  
• I2C Master mode supports 7-bit and  
10-bit addressing.  
• I2C port allows bidirectional transfers between  
master and slaves.  
• Serial clock synchronization for I2C port can be  
used as a handshake mechanism to suspend and  
resume serial transfer (SCLREL control).  
• I2C supports multi-master operation, detects bus  
collision and arbitrates accordingly.  
17.1 Operating Modes  
The hardware fully implements all the master and slave  
functions of the I2C Standard and Fast mode  
specifications, as well as 7-bit and 10-bit addressing.  
The I2C module can operate either as a slave or a  
master on an I2C bus.  
The following types of I2C operation are supported:  
• I2C slave operation with 7-bit addressing  
• I2C slave operation with 10-bit addressing  
• I2C master operation with 7-bit or 10-bit addressing  
For details about the communication sequence in each  
of these modes, refer to the “dsPIC33F Family  
Reference Manual”. Please see the Microchip web site  
(www.microchip.com) for the latest “dsPIC33F Family  
Reference Manual” chapters.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 223  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 17-1:  
I2C™ BLOCK DIAGRAM (X = 1)  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx  
SDAx  
I2CxRSR  
LSb  
Address Match  
Write  
Read  
Match Detect  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
I2CxCON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2CxTRN  
LSb  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
TCY/2  
I2CxBRG  
DS70318D-page 224  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER  
R/W-0  
I2CEN  
U-0  
R/W-0  
R/W-1, HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0, HC R/W-0, HC  
ACKEN RCEN  
R/W-0, HC  
PEN  
R/W-0, HC  
RSEN  
R/W-0, HC  
SEN  
STREN  
ACKDT  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
‘0’ = Bit is cleared  
HC = Hardware Clearable bit  
x = Bit is unknown  
-n = Value at POR  
bit 15  
I2CEN: I2Cx Enable bit  
1= Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins  
0= Disables the I2Cx module. All I2C pins are controlled by port functions.  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters an Idle mode  
0= Continue module operation in Idle mode  
bit 12  
SCLREL: SCLx Release Control bit (when operating as I2C slave)  
1= Release SCLx clock  
0= Hold SCLx clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software can write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware clear  
at beginning of slave transmission. Hardware clear at end of slave reception.  
If STREN = 0:  
Bit is R/S (i.e., software can only write ‘1’ to release clock). Hardware clear at beginning of slave  
transmission.  
bit 11  
bit 10  
bit 9  
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit  
1= IPMI mode is enabled; all addresses acknowledged  
0= IPMI mode disabled  
A10M: 10-Bit Slave Address bit  
1= I2CxADD is a 10-bit slave address  
0= I2CxADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control disabled  
0= Slew rate control enabled  
bit 8  
SMEN: SMbus Input Levels bit  
1= Enable I/O pin thresholds compliant with SMbus specification  
0= Disable SMbus input thresholds  
bit 7  
GCEN: General Call Enable bit (when operating as I2C slave)  
1= Enable interrupt when a general call address is received in the I2CxRSR  
(module is enabled for reception)  
0= General call address disabled  
bit 6  
STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with SCLREL bit.  
1= Enable software or receive clock stretching  
0= Disable software or receive clock stretching  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 225  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive)  
Value that is transmitted when the software initiates an Acknowledge sequence.  
1= Send NACK during Acknowledge  
0= Send ACK during Acknowledge  
ACKEN: Acknowledge Sequence Enable bit  
(when operating as I2C master, applicable during master receive)  
1= Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware  
clear at end of master Acknowledge sequence.  
0= Acknowledge sequence not in progress  
bit 3  
bit 2  
bit 1  
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C. Hardware clear at end of eighth bit of master receive data byte.  
0= Receive sequence not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.  
0= Stop condition not in progress  
RSEN: Repeated Start Condition Enable bit (when operating as I2C master)  
1= Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master  
Repeated Start sequence.  
0= Repeated Start condition not in progress  
bit 0  
SEN: Start Condition Enable bit (when operating as I2C master)  
1= Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence.  
0= Start condition not in progress  
DS70318D-page 226  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER  
R-0, HSC  
ACKSTAT  
bit 15  
R-0, HSC  
TRSTAT  
U-0  
U-0  
U-0  
R/C-0, HSC  
BCL  
R-0, HSC  
GCSTAT  
R-0, HSC  
ADD10  
bit 8  
R/C-0, HS R/C-0, HS R-0, HSC R/C-0, HSC R/C-0, HSC  
IWCOL I2COV D_A  
bit 7  
R-0, HSC  
R_W  
R-0, HSC  
RBF  
R-0, HSC  
TBF  
P
S
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Settable bit HSC = Hardware Settable/Clearable  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ACKSTAT: Acknowledge Status bit  
(when operating as I2C master, applicable to master transmit operation)  
1= NACK received from slave  
0= ACK received from slave  
Hardware set or clear at end of slave Acknowledge.  
TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.  
bit 13-11  
bit 10  
Unimplemented: Read as ‘0’  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No collision  
Hardware set at detection of bus collision.  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware set when address matches general call address. Hardware clear at Stop detection.  
ADD10: 10-Bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.  
IWCOL: Write Collision Detect bit  
1= An attempt to write the I2CxTRN register failed because the I2C module is busy  
0= No collision  
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2CxRCV register is still holding the previous byte  
0= No overflow  
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).  
D_A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was device address  
Hardware clear at device address match. Hardware set by reception of slave byte.  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 227  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)  
bit 3  
bit 2  
bit 1  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
R_W: Read/Write Information bit (when operating as I2C slave)  
1= Read – indicates data transfer is output from slave  
0= Write – indicates data transfer is input to slave  
Hardware set or clear after reception of I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive complete, I2CxRCV is full  
0= Receive not complete, I2CxRCV is empty  
Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads  
I2CxRCV.  
bit 0  
TBF: Transmit Buffer Full Status bit  
1= Transmit in progress, I2CxTRN is full  
0= Transmit complete, I2CxTRN is empty  
Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.  
DS70318D-page 228  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK<9:8>  
bit 15  
bit 8  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
AMSK<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
AMSK<9:0>: Mask for Address bit x Select bits  
1= Enable masking for bit x of incoming message address; bit match not required in this position  
0= Disable masking for bit x; bit match required in this position  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 229  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
NOTES:  
DS70318D-page 230  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
• Hardware Flow Control Option with UxCTS and  
UxRTS Pins  
18.0 UNIVERSAL ASYNCHRONOUS  
RECEIVER TRANSMITTER  
(UART)  
• Fully Integrated Baud Rate Generator with 16-Bit  
Prescaler  
• Baud Rates Ranging from 1 Mbps to 15 bps at  
16x mode at 40 MIPS  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04  
family  
of  
• Baud Rates Ranging from 4 Mbps to 61 bps at  
4x mode at 40 MIPS  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
Reference Manual”, Section 17. “UART”  
(DS70188), which is available on the  
Microchip web site (www.microchip.com).  
• 4-Deep First-In First-Out (FIFO) Transmit Data  
Buffer  
• 4-Deep FIFO Receive Data Buffer  
• Parity, Framing and Buffer Overrun Error Detection  
• Support for 9-bit mode with Address Detect  
(9th bit = 1)  
The Universal Asynchronous Receiver Transmitter  
(UART) module is one of the serial I/O modules  
available in the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 device families. The UART  
is a full-duplex, asynchronous system that can  
communicate with peripheral devices, such as  
personal computers, LIN, RS-232 and RS-485  
interfaces. The module also supports a hardware flow  
control option with the UxCTS and UxRTS pins and  
also includes an IrDA® encoder and decoder.  
• Transmit and Receive Interrupts  
• A Separate Interrupt for all UART Error Conditions  
• Loopback mode for Diagnostic Support  
• Support for Sync and Break Characters  
• Support for Automatic Baud Rate Detection  
• IrDA Encoder and Decoder Logic  
• 16x Baud Clock Output for IrDA® Support  
A simplified block diagram of the UART module is  
shown in Figure 18-1. The UART module consists of  
these key hardware elements:  
The primary features of the UART module are:  
• Full-Duplex, 8-Bit or 9-Bit Data Transmission  
through the UxTX and UxRX pins  
• Baud Rate Generator  
• Asynchronous Transmitter  
• Asynchronous Receiver  
• Even, Odd or No Parity Options (for 8-bit data)  
• One or Two Stop bits  
FIGURE 18-1:  
UART SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
IrDA®  
Hardware Flow Control  
UART Receiver  
UxRTS  
UxCTS  
UxRX  
UxTX  
UART Transmitter  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 231  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 18-1: UxMODE: UARTx MODE REGISTER  
R/W-0  
UARTEN(1)  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN(2)  
R/W-0  
U-0  
R/W-0  
R/W-0  
RTSMD  
UEN<1:0>  
bit 15  
bit 8  
R/W-0 HC  
WAKE  
R/W-0  
R/W-0, HC  
ABAUD  
R/W-0  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
LPBACK  
URXINV  
PDSEL<1:0>  
STSEL  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
UARTEN: UARTx Enable bit(1)  
1= UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>  
0= UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA® Encoder and Decoder Enable bit(2)  
1= IrDA® encoder and decoder enabled  
0= IrDA® encoder and decoder disabled  
RTSMD: Mode Selection for UxRTS Pin bit  
1= UxRTS pin in Simplex mode  
0= UxRTS pin in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
UEN<1:0>: UARTx Enable bits  
bit 9-8  
11= UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches  
10= UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01= UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches  
00= UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by  
port latches  
bit 7  
WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit  
1= UARTx will continue to sample the UxRX pin; interrupt generated on falling edge; bit cleared  
in hardware on following rising edge  
0= No wake-up enabled  
bit 6  
bit 5  
LPBACK: UARTx Loopback Mode Select bit  
1= Enable Loopback mode  
0= Loopback mode is disabled  
ABAUD: Auto-Baud Enable bit  
1= Enable baud rate measurement on the next character – requires reception of a Sync field (55h)  
before other data; cleared in hardware upon completion  
0= Baud rate measurement disabled or completed  
bit 4  
URXINV: Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F Family Reference Manual” for information on  
enabling the UART module for receive or transmit operation.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
DS70318D-page 232  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 18-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
bit 3  
BRGH: High Baud Rate Enable bit  
1= BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)  
0= BRG generates 16 clocks per bit period (16x baud clock, Standard mode)  
bit 2-1  
PDSEL<1:0>: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit  
1= Two Stop bits  
0= One Stop bit  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F Family Reference Manual” for information on  
enabling the UART module for receive or transmit operation.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 233  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0, HC  
UTXBRK  
R/W-0  
UTXEN(1)  
R-0  
R-1  
UTXISEL1  
UTXINV  
UTXISEL0  
UTXBF  
TRMT  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R-1  
R-0  
R-0  
R/C-0  
R-0  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15,13  
UTXISEL<1:0>: Transmission Interrupt Mode Selection bits  
11= Reserved; do not use  
10= Interrupt when a character is transferred to the Transmit Shift register, and as a result, the  
transmit buffer becomes empty  
01= Interrupt when the last character is shifted out of the Transmit Shift register; all transmit  
operations are completed  
00= Interrupt when a character is transferred to the Transmit Shift register (this implies there is at  
least one character open in the transmit buffer)  
bit 14  
UTXINV: Transmit Polarity Inversion bit  
If IREN = 0:  
1= UxTX Idle state is ‘0’  
0= UxTX Idle state is ‘1’  
If IREN = 1:  
1= IrDA® encoded UxTX Idle state is ‘1’  
0= IrDA® encoded UxTX Idle state is ‘0’  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: Transmit Break bit  
1= Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;  
cleared by hardware upon completion  
0= Sync Break transmission disabled or completed  
bit 10  
UTXEN: Transmit Enable bit(1)  
1= Transmit enabled, UxTX pin controlled by UARTx  
0= Transmit disabled, any pending transmission is aborted and buffer is reset; UxTX pin controlled  
by port  
bit 9  
UTXBF: Transmit Buffer Full Status bit (read-only)  
1= Transmit buffer is full  
0= Transmit buffer is not full; at least one more character can be written  
bit 8  
TRMT: Transmit Shift Register Empty bit (read-only)  
1= Transmit Shift register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift register is not empty, a transmission is in progress or queued  
bit 7-6  
URXISEL<1:0>: Receive Interrupt Mode Selection bits  
11= Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)  
10= Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)  
0x= Interrupt is set when any character is received and transferred from the UxRSR to the receive  
buffer; receive buffer has one or more characters  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F Family Reference Manual” for information on  
enabling the UART module for transmit operation.  
DS70318D-page 234  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
bit 3  
bit 2  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)  
1= Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect.  
0= Address Detect mode disabled  
RIDLE: Receiver Idle bit (read-only)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (read-only)  
1= Parity error has been detected for the current character (character at the top of the receive FIFO)  
0= Parity error has not been detected  
FERR: Framing Error Status bit (read-only)  
1= Framing error has been detected for the current character (character at the top of the receive  
FIFO)  
0= Framing error has not been detected  
bit 1  
bit 0  
OERR: Receive Buffer Overrun Error Status bit (clear/read-only)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed. Clearing a previously set OERR bit (10transition) will reset  
the receiver buffer and the UxRSR to the empty state.  
URXDA: Receive Buffer Data Available bit (read-only)  
1= Receive buffer has data, at least one more character can be read  
0= Receive buffer is empty  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F Family Reference Manual” for information on  
enabling the UART module for transmit operation.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 235  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
NOTES:  
DS70318D-page 236  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
19.2 Module Description  
19.0 HIGH-SPEED 10-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
This ADC module is designed for applications that  
require low latency between the request for conversion  
and the resultant output data. Typical applications  
include:  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 families of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
• AC/DC power supplies  
• DC/DC converters  
• Power Factor Correction (PFC)  
This ADC works with the high-speed PWM module in  
power control applications that require high-frequency  
control loops. This module can sample and convert two  
analog inputs in a 0.5 microsecond when two SARs are  
used. This small conversion delay reduces the “phase  
lag” between measurement and control system  
response.  
Reference  
Manual”,  
Section  
44.  
“High-Speed 10-Bit Analog-to-Digital  
Converter (ADC)” (DS70321), which is  
available on the Microchip web site  
(www.microchip.com).  
Up to five inputs may be sampled at a time (four inputs  
from the dedicated sample and hold circuits and one  
from the shared sample and hold circuit). If multiple  
inputs request conversion, the ADC will convert them in  
a sequential manner, starting with the lowest order  
input.  
The  
dsPIC33FJ06GS101/X02  
and  
dsPIC33FJ16GSX02/X04 devices provide high-speed  
successive approximation analog to digital conversions to  
support applications such as AC/DC and DC/DC power  
converters.  
This ADC design provides each pair of analog inputs  
(AN1,AN0), (AN3,AN2),..., the ability to specify its own  
trigger source out of a maximum of sixteen different  
trigger sources. This capability allows this ADC to  
sample and convert analog inputs that are associated  
with PWM generators operating on independent time  
bases.  
19.1 Features Overview  
The ADC module comprises the following features:  
• 10-bit resolution  
• Unipolar inputs  
• Up to two Successive Approximation Registers  
(SARs)  
The user application typically requires synchronization  
between analog data sampling and PWM output to the  
application circuit. The very high-speed operation of  
this ADC module allows “data on demand”.  
• Up to 12 external input channels  
• Up to two internal analog inputs  
• Dedicated result register for each analog input  
• ±1 LSB accuracy at 3.3V  
In addition, several hardware features have been  
added to the peripheral interface to improve real-time  
performance in a typical DSP based application.  
• Single supply operation  
• 4 Msps conversion rate at 3.3V (devices with two  
SARs)  
• Result alignment options  
• Automated sampling  
• 2 Msps conversion rate at 3.3V (devices with one  
SAR)  
• External conversion start control  
• Low-power CMOS technology  
• Two internal inputs to monitor 1.2V internal  
reference and EXTREF input signal  
A block diagram of the ADC module is shown in  
Figure 19-6.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 237  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
The ADC module uses the following control and status  
registers:  
19.3 Module Functionality  
The high-speed 10-bit ADC module is designed to  
support power conversion applications when used with  
the High-Speed PWM module. The ADC may have one  
or two SAR modules, depending on the device variant.  
If two SARs are present on a device, two conversions  
can be processed at a time, yielding 4 Msps conversion  
rate. If only one SAR is present on a device, only one  
conversion can be processed at a time, yielding 2 Msps  
conversion rate. The high-speed 10-bit ADC produces  
two 10-bit conversion results in a 0.5 microsecond.  
• ADCON: A/D Control Register  
• ADSTAT: A/D Status Register  
• ADBASE: A/D Base Register(1,2)  
• ADPCFG: A/D Port Configuration Register  
• ADCPC0: A/D Convert Pair Control Register 0  
• ADCPC1: A/D Convert Pair Control Register 1  
• ADCPC2: A/D Convert Pair Control Register 2(1)  
• ADCPC3: A/D Convert Pair Control Register 3(1)  
The ADCON register controls the operation of the  
ADC module. The ADSTAT register displays the  
status of the conversion processes. The ADPCFG  
registers configure the port pins as analog inputs or  
as digital I/O. The ADCPCx registers control the  
triggering of the ADC conversions. See Register 19-1  
through Register 19-8 for detailed bit configurations.  
The ADC module supports up to 12 external analog  
inputs and two internal analog inputs. To monitor  
reference voltage, two internal inputs, AN12 and AN13,  
are connected to the EXTREF and internal band gap  
voltages (1.2V), respectively.  
The analog reference voltage is defined as the device  
supply voltage (AVDD/AVSS).  
Note:  
A unique feature of the ADC module is its  
ability to sample inputs in an  
asynchronous manner. Individual sample  
and hold circuits can be triggered  
independently of each other.  
DS70318D-page 238  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 19-1:  
ADC BLOCK DIAGRAM FOR dsPIC33FJ06GS101 DEVICES WITH ONE SAR  
Even Numbered Inputs with Dedicated  
Sample and Hold (S&H) Circuits  
AN0  
AN2  
Eight  
16-Bit  
Registers  
SAR  
Core  
AN1  
Shared Sample and Hold  
AN3  
AN6  
AN7  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 239  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 19-2:  
ADC BLOCK DIAGRAM FOR dsPIC33FJ06GS102 DEVICES WITH ONE SAR  
Even Numbered Inputs with Dedicated  
Sample and Hold (S&H) Circuits  
AN0  
AN2  
Eight  
16-Bit  
Registers  
SAR  
Core  
AN1  
Shared Sample and Hold  
AN3  
AN4  
AN5  
DS70318D-page 240  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 19-3:  
ADC BLOCK DIAGRAM FOR dsPIC33FJ06GS202 DEVICES WITH ONE SAR  
Even Numbered Inputs with Dedicated  
Sample and Hold (S&H) Circuits  
AN0  
AN2  
Eight  
16-Bit  
Registers  
SAR  
Core  
AN12(1)  
(EXTREF)  
AN1  
Shared Sample and Hold  
AN3  
AN4  
AN5  
AN13(2)  
(INTREF)  
Note 1: AN12 (EXTREF) is an internal analog input. To measure the voltage at AN12 (EXTREF), an analog comparator must be enabled  
and EXTREF must be selected as the comparator reference.  
2: AN13 (INTREF) is an internal analog input and is not available on a pin.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 241  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 19-4:  
ADC BLOCK DIAGRAM FOR dsPIC33FJ16GS402/404 DEVICES WITH ONE SAR  
Even Numbered Inputs with Dedicated  
Sample and Hold (S&H) Circuits  
AN0  
AN2  
AN4  
Ten  
16-Bit  
Registers  
SAR  
Core  
AN1  
AN3  
AN5  
AN6  
Shared Sample and Hold  
AN7  
DS70318D-page 242  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 19-5:  
ADC BLOCK DIAGRAM FOR dsPIC33FJ16GS502 DEVICES WITH TWO SARS  
Even Numbered Inputs with Dedicated  
Sample and Hold (S&H) Circuits  
AN0  
AN2  
Five  
16-Bit  
Registers  
SAR  
Core  
AN4  
AN6  
Even numbered inputs  
with shared S&H  
AN12(1)  
(EXTREF)  
AN1  
Odd Numbered Inputs  
with Shared S&H  
AN3  
AN5  
AN7  
Five  
16-Bit  
Registers  
SAR  
Core  
AN13(2)  
(INTREF)  
Note 1: AN12 (EXTREF) is an internal analog input. To measure the voltage at AN12 (EXTREF), an analog comparator must be enabled  
and EXTREF must be selected as the comparator reference.  
2: AN13 (INTREF) is an internal analog input and is not available on a pin.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 243  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 19-6:  
ADC BLOCK DIAGRAM FOR dsPIC33FJ16GS504 DEVICES WITH TWO SARS  
Even Numbered Inputs with Dedicated  
Sample and Hold (S&H) Circuits  
AN0  
AN2  
Seven  
16-Bit  
Registers  
SAR  
Core  
AN4  
AN6  
AN8  
Even Numbered Inputs  
with Shared S&H  
AN10  
AN12(1)  
(EXTREF)  
AN1  
Odd Numbered Inputs  
with Shared S&H  
Seven  
16-Bit  
Registers  
SAR  
Core  
AN3  
AN5  
AN7  
AN9  
AN11  
AN13(2)  
(INTREF)  
Note 1: AN12 (EXTREF) is an internal analog input. To measure the voltage at AN12 (EXTREF), an analog comparator must be enabled  
and EXTREF must be selected as the comparator reference.  
2: AN13 (INTREF) is an internal analog input and is not available on a pin.  
DS70318D-page 244  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 19-1: ADCON: A/D CONTROL REGISTER  
R/W-0  
ADON  
U-0  
R/W-0  
R/W-0  
SLOWCLK(1)  
U-0  
R/W-0  
U-0  
R/W-0  
FORM(1)  
ADSIDL  
GSWTRG  
bit 15  
bit 8  
R/W-1  
bit 0  
R/W-0  
EIE(1)  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-1  
ADCS<2:0>(1)  
ORDER(1) SEQSAMP(1) ASYNCSAMP(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ADON: A/D Operating Mode bit  
1= A/D converter module is operating  
0= A/D converter is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
SLOWCLK: Enable The Slow Clock Divider bit(1)  
1= ADC is clocked by the auxiliary PLL (ACLK)  
0= ADC is clock by the primary PLL (FVCO)  
bit 11  
bit 10  
Unimplemented: Read as ‘0’  
GSWTRG: Global Software Trigger bit  
When this bit is set by the user, it will trigger conversions if selected by the TRGSRC<4:0> bits in the  
ADCPCx registers. This bit must be cleared by the user prior to initiating another global trigger (i.e., this  
bit is not auto-clearing).  
bit 9  
bit 8  
Unimplemented: Read as ‘0’  
FORM: Data Output Format bit(1)  
1= Fractional (DOUT = dddd dddd dd00 0000)  
0= Integer (DOUT = 0000 00dd dddd dddd)  
bit 7  
bit 6  
bit 5  
EIE: Early Interrupt Enable bit(1)  
1= Interrupt is generated after first conversion is completed  
0= Interrupt is generated after second conversion is completed  
ORDER: Conversion Order bit(1)  
1= Odd numbered analog input is converted first, followed by conversion of even numbered input  
0= Even numbered analog input is converted first, followed by conversion of odd numbered input  
SEQSAMP: Sequential Sample Enable bit(1)  
1= Shared Sample and Hold (S&H) circuit is sampled at the start of the second conversion if  
ORDER = 0. If ORDER = 1, then the shared S&H is sampled at the start of the first conversion.  
0= Shared S&H is sampled at the same time the dedicated S&H is sampled if the shared S&H is not  
currently busy with an existing conversion process. If the shared S&H is busy at the time the  
dedicated S&H is sampled, then the shared S&H will sample at the start of the new conversion  
cycle.  
Note 1: This control bit can only be changed while ADC is disabled (ADON = 0), and only applies to single SAR  
devices.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 245  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 19-1: ADCON: A/D CONTROL REGISTER (CONTINUED)  
bit 4  
ASYNCSAMP: Asynchronous Dedicated S&H Sampling Enable bit(1)  
1= The dedicated S&H is constantly sampling and then terminates sampling as soon as the trigger  
pulse is detected.  
0= The dedicated S&H starts sampling when the trigger event is detected and completes the sampling  
process in two ADC clock cycles.  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
ADCS<2:0>: A/D Conversion Clock Divider Select bits(1)  
111= FADC/8  
110= FADC/7  
101= FADC/6  
100= FADC/5  
011= FADC/4 (default)  
010= FADC/3  
001= FADC/2  
000= FADC/1  
Note 1: This control bit can only be changed while ADC is disabled (ADON = 0), and only applies to single SAR  
devices.  
DS70318D-page 246  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 19-2: ADSTAT: A/D STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/C-0, HS  
P6RDY(1)  
R/C-0, HS  
P5RDY(2)  
R/C-0, HS  
P4RDY(2)  
R/C-0, HS  
P3RDY(3)  
R/C-0, HS  
P2RDY(4)  
R/C-0, HS  
P1RDY  
R/C-0, HS  
P0RDY  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Hardware Settable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
C = Clearable bit  
bit 15-7  
bit 6  
Unimplemented: Read as ‘0’  
P6RDY: Conversion Data for Pair 6 Ready bit(1)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P5RDY: Conversion Data for Pair 5 Ready bit(2)  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P4RDY: Conversion Data for Pair 4 Ready bit(2)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P3RDY: Conversion Data for Pair 3 Ready bit(3)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P2RDY: Conversion Data for Pair 2 Ready bit(4)  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P1RDY: Conversion Data for Pair 1 Ready bit  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
P0RDY: Conversion Data for Pair 0 Ready bit  
Bit is set when data is ready in buffer, cleared when a ‘0’ is written to this bit.  
Note 1: This bit is available in the dsPIC33FJ16GS502, dsPIC33FJ16GS504 and dsPIC33FJ06GS202 devices  
only.  
2: This bit is available in the dsPIC33FJ16GS504 devices only.  
3: This bit is available in the dsPIC33FJ16GS402/404, dsPIC33FJ16GS502, dsPIC33FJ16GS504 and  
dsPIC33FJ06GS101 devices only.  
4: This bit is available in the dsPIC33FJ16GS504 and dsPIC33FJ16GS502 devices only.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 247  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 19-3: ADBASE: A/D BASE REGISTER(1,2)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
ADBASE<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
ADBASE<7:1>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-1  
ADBASE<15:1>: This register contains the base address of the user’s ADC Interrupt Service Routine  
jump table. This register, when read, contains the sum of the ADBASE register contents and the  
encoded value of the PxRDY status bits.  
The encoder logic provides the bit number of the highest priority PxRDY bits where P0RDY is the  
highest priority, and P6RDY is the lowest priority.  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: The encoding results are shifted left two bits so bits 1-0 of the result are always zero.  
2: As an alternative to using the ADBASE Register, the ADCP0-6 ADC Pair Conversion Complete Interrupts  
can be used to invoke A to D conversion completion routines for individual ADC input pairs.  
REGISTER 19-4: ADPCFG: A/D PORT CONFIGURATION REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG11  
PCFG10  
PCFG9  
PCFG8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG7  
PCFG6  
PCFG5  
PCFG4  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-0  
Unimplemented: Read as ‘0’  
PCFG<11:0>: A/D Port Configuration Control bits(1,2,3,4)  
1= Port pin in Digital mode, port read input enabled, A/D input multiplexor connected to AVSS  
0= Port pin in Analog mode, port read input disabled, A/D samples pin voltage  
Note:  
Not all PCFGx bits are available on all devices. See Figure 19-1 through Figure 19-6 for the available  
analog pins (PCFGx = ANx, where x = 0-11).  
DS70318D-page 248  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 19-5: ADCPC0: A/D CONVERT PAIR CONTROL REGISTER 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN1  
PEND1  
SWTRG1  
TRGSRC1<4:0>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN0  
PEND0  
SWTRG0  
TRGSRC0<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
IRQEN1: Interrupt Request Enable 1 bit  
1= Enable IRQ generation when requested conversion of channels AN3 and AN2 is completed  
0= IRQ is not generated  
PEND1: Pending Conversion Status 1 bit  
1= Conversion of channels AN3 and AN2 is pending. Set when selected trigger is asserted  
0= Conversion is complete  
SWTRG1: Software Trigger 1 bit  
1= Start conversion of AN3 and AN2 (if selected in TRGSRC bits)(1)  
This bit is automatically cleared by hardware when the PEND1 bit is set.  
0= Conversion is not started  
bit 12-8  
TRGSRC1<4:0>: Trigger 1 Source Selection bits  
Selects trigger source for conversion of analog channels AN3 and AN2.  
00000= No conversion enabled  
00001= Individual software trigger selected  
00010= Global software trigger selected  
00011= PWM Special Event Trigger selected  
00100= PWM Generator 1 primary trigger selected  
00101= PWM Generator 2 primary trigger selected  
00110= PWM Generator 3 primary trigger selected  
00111= PWM Generator 4 primary trigger selected  
01000= Reserved  
01100= Timer1 period match  
01101= Reserved  
01110= PWM Generator 1 secondary trigger selected  
01111= PWM Generator 2 secondary trigger selected  
10000= PWM Generator 3 secondary trigger selected  
10001= PWM Generator 4 secondary trigger selected  
10010= Reserved  
10110= Reserved  
10111= PWM Generator 1 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11011= Reserved  
11111= Timer2 period match  
Note 1: If other conversions are in progress, then conversion will be performed when the conversion resources are  
available.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 249  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 19-5: ADCPC0: A/D CONVERT PAIR CONTROL REGISTER 0 (CONTINUED)  
bit 7  
bit 6  
bit 5  
IRQEN0: Interrupt Request Enable 0 bit  
1= Enable IRQ generation when requested conversion of channels AN1 and AN0 is completed  
0= IRQ is not generated  
PEND0: Pending Conversion Status 0 bit  
1= Conversion of channels AN1 and AN0 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG0: Software Trigger 0 bit  
1= Start conversion of AN1 and AN0 (if selected by TRGSRC bits)(1)  
This bit is automatically cleared by hardware when the PEND0 bit is set.  
0= Conversion is not started  
bit 4-0  
TRGSRC0<4:0>: Trigger 0 Source Selection bits  
Selects trigger source for conversion of analog channels AN1 and AN0.  
00000= No conversion enabled  
00001= Individual software trigger selected  
00010= Global software trigger selected  
00011= PWM Special Event Trigger selected  
00100= PWM Generator 1 primary trigger selected  
00101= PWM Generator 2 primary trigger selected  
00110= PWM Generator 3 primary trigger selected  
00111= PWM Generator 4 primary trigger selected  
01000= Reserved  
01100= Timer1 period match  
01101= Reserved  
01110= PWM Generator 1 secondary trigger selected  
01111= PWM Generator 2 secondary trigger selected  
10000= PWM Generator 3 secondary trigger selected  
10001= PWM Generator 4 secondary trigger selected  
10010= Reserved  
10110= Reserved  
10111= PWM Generator 1 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11011= Reserved  
11111= Timer2 period match  
Note 1: If other conversions are in progress, then conversion will be performed when the conversion resources are  
available.  
DS70318D-page 250  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 19-6: ADCPC1: A/D CONVERT PAIR CONTROL REGISTER 1  
R/W-0  
IRQEN3(1)  
R/W-0  
PEND3(1)  
R/W-0  
SWTRG3(1)  
R/W-0  
R/W-0  
R/W-0  
TRGSRC3<4:0>(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
bit 15  
R/W-0  
IRQEN2(2)  
R/W-0  
PEND2(2)  
R/W-0  
SWTRG2(2)  
R/W-0  
R/W-0  
R/W-0  
TRGSRC2<4:0>(2)  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
IRQEN3: Interrupt Request Enable 3 bit(1)  
1= Enable IRQ generation when requested conversion of channels AN7 and AN6 is completed  
0= IRQ is not generated  
PEND3: Pending Conversion Status 3 bit(1)  
1= Conversion of channels AN7 and AN6 is pending. Set when selected trigger is asserted  
0= Conversion is complete  
SWTRG3: Software Trigger 3 bit(1)  
1= Start conversion of AN7 and AN6 (if selected in TRGSRC bits)(3)  
This bit is automatically cleared by hardware when the PEND3 bit is set.  
0= Conversion is not started  
Note 1: These bits are available in the dsPIC33FJ16GS402/404, dsPIC33FJ16GS504, dsPIC33FJ16GS502 and  
dsPIC33FJ06GS101 devices only.  
2: These bits are available in the dsPIC33FJ16GS502, dsPIC33FJ16GS504, dsPIC33FJ06GS102,  
dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices only.  
3: If other conversions are in progress, then conversion will be performed when the conversion resources are  
available.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 251  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 19-6: ADCPC1: A/D CONVERT PAIR CONTROL REGISTER 1 (CONTINUED)  
bit 12-8  
TRGSRC3<4:0>: Trigger 3 Source Selection bits(1)  
Selects trigger source for conversion of analog channels AN7 and AN6.  
00000= No conversion enabled  
00001= Individual software trigger selected  
00010= Global software trigger selected  
00011= PWM Special Event Trigger selected  
00100= PWM Generator 1 primary trigger selected  
00101= PWM Generator 2 primary trigger selected  
00110= PWM Generator 3 primary trigger selected  
00111= PWM Generator 4 primary trigger selected  
01000= Reserved  
01100= Timer1 period match  
01101= Reserved  
01110= PWM Generator 1 secondary trigger selected  
01111= PWM Generator 2 secondary trigger selected  
10000= PWM Generator 3 secondary trigger selected  
10001= PWM Generator 4 secondary trigger selected  
10010= Reserved  
10110= Reserved  
10111= PWM Generator 1 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11011= Reserved  
11111= Timer2 period match  
bit 7  
bit 6  
bit 5  
IRQEN2: Interrupt Request Enable 2 bit(2)  
1= Enable IRQ generation when requested conversion of channels AN5 and AN4 is completed  
0= IRQ is not generated  
PEND2: Pending Conversion Status 2 bit(2)  
1= Conversion of channels AN5 and AN4 is pending; set when selected trigger is asserted.  
0= Conversion is complete  
SWTRG2: Software Trigger 2 bit(2)  
1= Start conversion of AN5 and AN4 (if selected by TRGSRC bits)(3)  
This bit is automatically cleared by hardware when the PEND2 bit is set.  
0= Conversion is not started  
Note 1: These bits are available in the dsPIC33FJ16GS402/404, dsPIC33FJ16GS504, dsPIC33FJ16GS502 and  
dsPIC33FJ06GS101 devices only.  
2: These bits are available in the dsPIC33FJ16GS502, dsPIC33FJ16GS504, dsPIC33FJ06GS102,  
dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices only.  
3: If other conversions are in progress, then conversion will be performed when the conversion resources are  
available.  
DS70318D-page 252  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 19-6: ADCPC1: A/D CONVERT PAIR CONTROL REGISTER 1 (CONTINUED)  
bit 4-0  
TRGSRC2<4:0>: Trigger 2 Source Selection bits  
Selects trigger source for conversion of analog channels AN5 and AN4.  
00000= No conversion enabled  
00001= Individual software trigger selected  
00010= Global software trigger selected  
00011= PWM Special Event Trigger selected  
00100= PWM Generator 1 primary trigger selected  
00101= PWM Generator 2 primary trigger selected  
00110= PWM Generator 3 primary trigger selected  
00111= PWM Generator 4 primary trigger selected  
01000= Reserved  
01100= Timer1 period match  
01101= Reserved  
01110= PWM Generator 1 secondary trigger selected  
01111= PWM Generator 2 secondary trigger selected  
10000= PWM Generator 3 secondary trigger selected  
10001= PWM Generator 4 secondary trigger selected  
10010= Reserved  
10110= Reserved  
10111= PWM Generator 1 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11011= Reserved  
11111= Timer2 period match  
Note 1: These bits are available in the dsPIC33FJ16GS402/404, dsPIC33FJ16GS504, dsPIC33FJ16GS502 and  
dsPIC33FJ06GS101 devices only.  
2: These bits are available in the dsPIC33FJ16GS502, dsPIC33FJ16GS504, dsPIC33FJ06GS102,  
dsPIC33FJ06GS202 and dsPIC33FJ16GS402/404 devices only.  
3: If other conversions are in progress, then conversion will be performed when the conversion resources are  
available.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 253  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 19-7: ADCPC2: A/D CONVERT PAIR CONTROL REGISTER 2(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
IRQEN5  
PEND5  
SWTRG5  
TRGSRC5<4:0>  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN4  
PEND4  
SWTRG4  
TRGSRC4<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
IRQEN5: Interrupt Request Enable 5 bit  
1= Enable IRQ generation when requested conversion of channels AN11 and AN10 is completed  
0= IRQ is not generated  
PEND5: Pending Conversion Status 5 bit  
1= Conversion of channels AN11 and AN10 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG5: Software Trigger 5 bit  
1= Start conversion of AN11 and AN10 (if selected in TRGSRC bits)(2)  
This bit is automatically cleared by hardware when the PEND5 bit is set.  
0= Conversion is not started  
Note 1: This register is only implemented on the dsPIC33FJ16GS504 devices.  
2: If other conversions are in progress, then conversion will be performed when the conversion resources are  
available.  
DS70318D-page 254  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 19-7: ADCPC2: A/D CONVERT PAIR CONTROL REGISTER 2(1) (CONTINUED)  
bit 12-8  
TRGSRC5<4:0>: Trigger 5 Source Selection bits  
Selects trigger source for conversion of analog channels AN11 and AN10.  
00000= No conversion enabled  
00001= Individual software trigger selected  
00010= Global software trigger selected  
00011= PWM Special Event Trigger selected  
00100= PWM Generator 1 primary trigger selected  
00101= PWM Generator 2 primary trigger selected  
00110= PWM Generator 3 primary trigger selected  
00111= PWM Generator 4 primary trigger selected  
01000= Reserved  
01100= Timer1 period match  
01101= Reserved  
01110= PWM Generator 1 secondary trigger selected  
01111= PWM Generator 2 secondary trigger selected  
10000= PWM Generator 3 secondary trigger selected  
10001= PWM Generator 4 secondary trigger selected  
10010= Reserved  
10110= Reserved  
10111= PWM Generator 1 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11011= Reserved  
11111= Timer2 period match  
bit 7  
IRQEN4: Interrupt Request Enable 4 bit  
1= Enable IRQ generation when requested conversion of channels AN9 and AN8 is completed  
0= IRQ is not generated  
bit 6  
bit 5  
PEND4: Pending Conversion Status 4 bit  
1= Conversion of channels AN9 and AN8 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG4: Software Trigger4 bit  
1= Start conversion of AN9 and AN8 (if selected by TRGSRC bits)(2)  
This bit is automatically cleared by hardware when the PEND4 bit is set.  
0= Conversion is not started  
Note 1: This register is only implemented on the dsPIC33FJ16GS504 devices.  
2: If other conversions are in progress, then conversion will be performed when the conversion resources are  
available.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 255  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 19-7: ADCPC2: A/D CONVERT PAIR CONTROL REGISTER 2(1) (CONTINUED)  
bit 4-0  
TRGSRC4<4:0>: Trigger 4 Source Selection bits  
Selects trigger source for conversion of analog channels AN9 and AN8.  
00000= No conversion enabled  
00001= Individual software trigger selected  
00010= Global software trigger selected  
00011= PWM Special Event Trigger selected  
00100= PWM Generator 1 primary trigger selected  
00101= PWM Generator 2 primary trigger selected  
00110= PWM Generator 3 primary trigger selected  
00111= PWM Generator 4 primary trigger selected  
01000= Reserved  
01100= Timer1 period match  
01101= Reserved  
01110= PWM Generator 1 secondary trigger selected  
01111= PWM Generator 2 secondary trigger selected  
10000= PWM Generator 3 secondary trigger selected  
10001= PWM Generator 4 secondary trigger selected  
10010= Reserved  
10110= Reserved  
10111= PWM Generator 1 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11011= Reserved  
11111= Timer2 period match  
Note 1: This register is only implemented on the dsPIC33FJ16GS504 devices.  
2: If other conversions are in progress, then conversion will be performed when the conversion resources are  
available.  
DS70318D-page 256  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 19-8: ADCPC3: A/D CONVERT PAIR CONTROL REGISTER 3(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQEN6  
PEND6  
SWTRG6  
TRGSRC6<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
IRQEN6: Interrupt Request Enable 6 bit  
1= Enable IRQ generation when requested conversion of channels AN13 and AN12 is completed  
0= IRQ is not generated  
bit 6  
bit 5  
PEND6: Pending Conversion Status 6 bit  
1= Conversion of channels AN13 and AN 12 is pending; set when selected trigger is asserted  
0= Conversion is complete  
SWTRG6: Software Trigger 6 bit  
1= Start conversion of AN13 (INTREF) and AN12 (EXTREF) (if selected by TRGSRC bits)(2)  
This bit is automatically cleared by hardware when the PEND6 bit is set.  
0= Conversion is not started  
Note 1: This register is only implemented on the dsPIC33FJ16GS502 and dsPIC33FJ16GS504 devices.  
2: If other conversions are in progress, conversion will be performed when the conversion resources are  
available.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 257  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 19-8: ADCPC3: A/D CONVERT PAIR CONTROL REGISTER 3(1) (CONTINUED)  
bit 4-0  
TRGSRC6<4:0>: Trigger 6 Source Selection bits  
Selects trigger source for conversion of analog channels AN13 and AN12.  
00000= No conversion enabled  
00001= Individual software trigger selected  
00010= Global software trigger selected  
00011= PWM Special Event Trigger selected  
00100= PWM Generator 1 primary trigger selected  
00101= PWM Generator 2 primary trigger selected  
00110= PWM Generator 3 primary trigger selected  
00111= PWM Generator 4 primary trigger selected  
01000= Reserved  
01100= Timer1 period match  
01101= Reserved  
01110= PWM Generator 1 secondary trigger selected  
01111= PWM Generator 2 secondary trigger selected  
10000= PWM Generator 3 secondary trigger selected  
10001= PWM Generator 4 secondary trigger selected  
10010= Reserved  
10110= Reserved  
10111= PWM Generator 1 current-limit ADC trigger  
11000= PWM Generator 2 current-limit ADC trigger  
11001= PWM Generator 3 current-limit ADC trigger  
11010= PWM Generator 4 current-limit ADC trigger  
11011= Reserved  
11111= Timer2 period match  
Note 1: This register is only implemented on the dsPIC33FJ16GS502 and dsPIC33FJ16GS504 devices.  
2: If other conversions are in progress, conversion will be performed when the conversion resources are  
available.  
DS70318D-page 258  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
• DAC has three ranges of operation:  
- AVDD/2  
20.0 HIGH-SPEED ANALOG  
COMPARATOR  
- Internal Reference 1.2V, 1%  
- External Reference < (AVDD – 1.6V)  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
• ADC sample and convert trigger capability  
• Disable capability reduces power consumption  
• Functional support for PWM module:  
- PWM duty cycle control  
dsPIC33FJ16GSX02/X04 families of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F Family  
- PWM period control  
Reference  
Manual”,  
Section  
45.  
- PWM Fault detect  
“High-Speed Analog Comparator”  
(DS70296), which is available on the  
Microchip web site (www.microchip.com).  
20.2 Module Description  
Figure 20-1 shows a functional block diagram of one  
analog comparator from the SMPS comparator  
module. The analog comparator provides high-speed  
operation with a typical delay of 20 ns. The comparator  
has a typical offset voltage of ±5 mV. The negative  
input of the comparator is always connected to the  
DAC circuit. The positive input of the comparator is  
connected to an analog multiplexer that selects the  
desired source pin.  
The dsPIC33F SMPS Comparator module monitors  
current and/or voltage transients that may be too fast  
for the CPU and ADC to capture.  
20.1 Features Overview  
The SMPS comparator module offers the following  
major features:  
• 16 selectable comparator inputs  
• Up to four analog comparators  
• 10-bit DAC for each analog comparator  
• Programmable output polarity  
The analog comparator input pins are typically shared  
with pins used by the Analog-to-Digital Converter  
(ADC) module. Both the comparator and the ADC can  
use the same pins at the same time. This capability  
enables a user to measure an input voltage with the  
ADC and detect voltage transients with the  
comparator.  
• Interrupt generation capability  
• DACOUT pin to provide DAC output  
FIGURE 20-1:  
COMPARATOR MODULE BLOCK DIAGRAM  
INSEL<1:0>  
(1)  
CMPxA  
(1)  
ACMPx (Trigger to PWM)  
(1)  
CMPxB  
M
U
X
Status  
(1)  
CMPxC  
0
1
(1)  
CMPx*  
CMPxD  
Pulse  
Glitch Filter  
Generator  
RANGE  
CMPPOL  
AVDD/2  
M
INTREF  
Interrupt Request  
DACOUT  
U
X
DAC  
10  
AVSS  
CMREF  
DACOE  
EXTREF  
Note 1: x = 1, 2, 3, and 4.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 259  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
20.3 Module Applications  
20.5 Interaction with I/O Buffers  
This module provides a means for the SMPS dsPIC  
DSC devices to monitor voltage and currents in a  
power conversion application. The ability to detect  
transient conditions and stimulate the dsPIC DSC  
processor and/or peripherals, without requiring the  
processor and ADC to constantly monitor voltages or  
currents, frees the dsPIC DSC to perform other tasks.  
If the comparator module is enabled and a pin has  
been selected as the source for the comparator, then  
the chosen I/O pad must disable the digital input buffer  
associated with the pad to prevent excessive currents  
in the digital buffer due to analog input voltages.  
20.6 Digital Logic  
The comparator module has a high-speed comparator  
and an associated 10-bit DAC that provides a  
programmable reference voltage to the inverting input  
of the comparator. The polarity of the comparator out-  
put is user-programmable. The output of the module  
can be used in the following modes:  
The CMPCONx register (see Register 20-1) provides  
the control logic that configures the comparator  
module. The digital logic provides a glitch filter for the  
comparator output to mask transient signals in less  
than two instruction cycles. In Sleep or Idle mode, the  
glitch filter is bypassed to enable an asynchronous  
path from the comparator to the interrupt controller.  
This asynchronous path can be used to wake-up the  
processor from Sleep or Idle mode.  
• Generate an Interrupt  
• Trigger an ADC Sample and Convert Process  
• Truncate the PWM Signal (current limit)  
• Truncate the PWM Period (current minimum)  
• Disable the PWM Outputs (Fault latch)  
The comparator can be disabled while in Idle mode if  
the CMPSIDL bit is set. If a device has multiple  
comparators, if any CMPSIDL bit is set, then the entire  
group of comparators will be disabled while in Idle  
mode. This behavior reduces complexity in the design  
of the clock control logic for this module.  
The output of the comparator module may be used in  
multiple modes at the same time, such as: (1)  
generate an interrupt, (2) have the ADC take a sample  
and convert it, and (3) truncate the PWM output in  
response to a voltage being detected beyond its  
expected value.  
The digital logic also provides a one TCY width pulse  
generator for triggering the ADC and generating  
interrupt requests.  
The comparator module can also be used to wake-up  
the system from Sleep or Idle mode when the analog  
input voltage exceeds the programmed threshold  
voltage.  
The CMPDACx (see Register 20-2) register provides  
the digital input value to the reference DAC.  
If the module is disabled, the DAC and comparator are  
disabled to reduce power consumption.  
20.4 DAC  
20.7 Comparator Input Range  
The range of the DAC is controlled via an analog  
multiplexer that selects either AVDD/2, internal 1.2V,  
1% reference, or an external reference source,  
EXTREF. The full range of the DAC (AVDD/2) will  
typically be used when the chosen input source pin is  
shared with the ADC. The reduced range option  
(INTREF) will likely be used when monitoring current  
levels using a current sense resistor. Usually, the  
measured voltages in such applications are small  
(<1.25V); therefore the option of using a reduced  
reference range for the comparator extends the  
available DAC resolution in these applications. The  
use of an external reference enables the user to  
The comparator has a limitation for the input Common  
Mode Range (CMR) of (AVDD – 1.5V), typical. This  
means that both inputs should not exceed this range.  
As long as one of the inputs is within the Common  
Mode Range, the comparator output will be correct.  
However, any input exceeding the CMR limitation will  
cause the comparator input to be saturated.  
If both inputs exceed the CMR, the comparator output  
will be indeterminate.  
20.8 DAC Output Range  
The DAC has a limitation for the maximum reference  
voltage input of (AVDD – 1.6) volts. An external  
reference voltage input should not exceed this value or  
the reference DAC output will become indeterminate.  
connect to  
application.  
a reference that better suits their  
DACOUT, shown in Figure 20-1, can only be  
associated with a single comparator at a given time.  
20.9 Comparator Registers  
Note:  
It should be ensured in software that  
multiple DACOE bits are not set. The  
output on the DACOUT pin will be indeter-  
minate if multiple comparators enable the  
DAC output.  
The comparator module is controlled by the following  
registers:  
• CMPCONx: Comparator Control Register  
• CMPDACx: Comparator DAC Control Register  
DS70318D-page 260  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 20-1: CMPCONx: COMPARATOR CONTROL REGISTER  
R/W-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CMPON  
CMPSIDL  
DACOE  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
INSEL<1:0>  
EXTREF  
CMPSTAT  
CMPPOL  
RANGE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CMPON: Comparator Operating Mode bit  
1= Comparator module is enabled  
0= Comparator module is disabled (reduces power consumption)  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
CMPSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode.  
0= Continue module operation in Idle mode  
If a device has multiple comparators, any CMPSIDL bit set to ‘1’ disables ALL comparators while in  
Idle mode.  
bit 12-9  
bit 8  
Reserved: Read as ‘0’  
DACOE: DAC Output Enable  
1= DAC analog voltage is output to DACOUT pin(1)  
0= DAC analog voltage is not connected to DACOUT pin  
bit 7-6  
bit 5  
INSEL<1:0>: Input Source Select for Comparator bits  
00= Select CMPxA input pin  
01= Select CMPxB input pin  
10= Select CMPxC input pin  
11= Select CMPxD input pin  
EXTREF: Enable External Reference bit  
1= External source provides reference to DAC (maximum DAC voltage determined by external  
voltage source)  
0= Internal reference sources provide reference to DAC (maximum DAC voltage determined by  
RANGE bit setting)  
bit 4  
bit 3  
bit 2  
bit 1  
Reserved: Read as ‘0’  
CMPSTAT: Current State of Comparator Output Including CMPPOL Selection bit  
Reserved: Read as ‘0’  
CMPPOL: Comparator Output Polarity Control bit  
1= Output is inverted  
0= Output is non-inverted  
bit 0  
RANGE: Selects DAC Output Voltage Range bit  
1= High Range: Max DAC Value = AVDD/2, 1.65V at 3.3V AVDD  
0= Low Range: Max DAC Value = INTREF, 1.2V, ±1%  
Note 1: DACOUT can be associated only with a single comparator at any given time. The software must ensure  
that multiple comparators do not enable the DAC output by setting their respective DACOE bit.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 261  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
REGISTER 20-2: CMPDACx: COMPARATOR DAC CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CMREF<9:8>  
bit 15  
bit 8  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
CMREF<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Reserved: Read as ‘0’  
CMREF<9:0>: Comparator Reference Voltage Select bits  
1111111111= (CMREF * INTREF/1024) or (CMREF * (AVDD/2)/1024) volts depending on RANGE  
bit or (CMREF * EXTREF/1024) if EXTREF is set  
0000000000= 0.0 volts  
DS70318D-page 262  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
21.1 Configuration Bits  
21.0 SPECIAL FEATURES  
The Configuration bits can be programmed (read  
as ‘0’), or left unprogrammed (read as ‘1’), to select  
various device configurations. These bits are mapped  
starting at program memory location 0xF80000.  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 devices. It is  
not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F Family Reference Manual”.  
Please see the Microchip web site  
(www.microchip.com) for the latest  
“dsPIC33F Family Reference Manual”  
sections.  
The individual Configuration bit descriptions for the  
FBS, FGS, FOSCSEL, FOSC, FWDT, FPOR and FICD  
Configuration registers are shown in Table 21-2.  
Note that address, 0xF80000, is beyond the user pro-  
gram memory space. It belongs to the configuration  
memory space (0x800000-0xFFFFFF), which can only  
be accessed using table reads and table writes.  
The  
dsPIC33FJ06GS101/X02  
and  
The upper byte of all device Configuration registers  
should always be ‘1111 1111’. This makes them  
appear to be NOPinstructions in the remote event that  
their locations are ever executed by accident. Since  
Configuration bits are not implemented in the  
corresponding locations, writing ‘1’s to these locations  
has no effect on device operation.  
dsPIC33FJ16GSX02/X04 devices include several  
features intended to maximize application flexibility and  
reliability, and minimize cost through elimination of  
external components. These are:  
• Flexible Configuration  
• Watchdog Timer (WDT)  
To prevent inadvertent configuration changes during  
code execution, all programmable Configuration bits  
are write-once. After a bit is initially programmed during  
a power cycle, it cannot be written to again. Changing  
a device configuration requires that power to the device  
be cycled.  
• Code Protection and CodeGuard™ Security  
• JTAG Boundary Scan Interface  
• In-Circuit Serial Programming™ (ICSP™)  
• In-Circuit Emulation  
• Brown-out Reset (BOR)  
The device Configuration register map is shown in  
Table 21-1.  
TABLE 21-1: DEVICE CONFIGURATION REGISTER MAP  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0xF80000 FBS  
BSS<2:0>  
BWRP  
0xF80002 RESERVED  
0xF80004 FGS  
Reserved(1)  
GSS<1:0>  
FNOSC<2:0>  
GWRP  
0xF80006 FOSCSEL  
0xF80008 FOSC  
0xF8000A FWDT  
0xF8000C FPOR  
0xF8000E FICD  
0xF80010 FUID0  
0xF80012 FUID1  
IESO  
FCKSM<1:0>  
IOL1WAY  
OSCIOFNC POSCMD<1:0>  
WDTPOST<3:0>  
FWDTEN  
WINDIS  
WDTPRE  
FPWRT<2:0>  
Reserved(1)  
JTAGEN  
ICS<1:0>  
User Unit ID Byte 0  
User Unit ID Byte 1  
Note 1: When read, these bits will appear as ‘1’. When you write to these bits, set these bits to ‘1’.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 263  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION  
Bit Field  
Register  
Description  
BWRP  
FBS  
Boot Segment Program Flash Write Protection bit  
1= Boot segment can be written  
0= Boot segment is write-protected  
BSS<2:0>  
FBS  
Boot Segment Program Flash Code Protection Size bits  
X11= No boot program Flash segment  
Boot space is 256 instruction words (except interrupt vectors)  
110= Standard security; boot program Flash segment ends at  
0x0003FE  
010= High security; boot program Flash segment ends at 0x0003FE  
Boot space is 768 instruction words (except interrupt vectors)  
101= Standard security; boot program Flash segment ends at  
0x0007FE  
001= High security; boot program Flash segment ends at 0x0007FE  
Boot space is 1792 instruction words (except interrupt vectors)  
100= Standard security; boot program Flash segment ends at  
0x000FFE  
000= High security; boot program Flash segment ends at 0x000FFE  
GSS<1:0>  
FGS  
General Segment Code-Protect bits  
11= User program memory is not code-protected  
10= Standard security  
0x= High security  
GWRP  
IESO  
FGS  
General Segment Write-Protect bit  
1= User program memory is not write-protected  
0= User program memory is write-protected  
FOSCSEL  
Two-speed Oscillator Start-up Enable bit  
1= Start-up device with FRC, then automatically switch to the  
user-selected oscillator source when ready  
0= Start-up device with user-selected oscillator source  
FNOSC<2:0>  
FOSCSEL  
Initial Oscillator Source Selection bits  
111= Internal Fast RC (FRC) oscillator with postscaler  
110= Internal Fast RC (FRC) oscillator with divide-by-16  
101= LPRC oscillator  
100= Secondary (LP) oscillator  
011= Primary (XT, HS, EC) oscillator with PLL  
010= Primary (XT, HS, EC) oscillator  
001= Internal Fast RC (FRC) oscillator with PLL  
000= FRC oscillator  
FCKSM<1:0>  
FOSC  
Clock Switching Mode bits  
1x= Clock switching is disabled, Fail-Safe Clock Monitor is disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
IOL1WAY  
FOSC  
FOSC  
FOSC  
Peripheral Pin Select Configuration bit  
1= Allow only one reconfiguration  
0= Allow multiple reconfigurations  
OSCIOFNC  
POSCMD<1:0>  
OSC2 Pin Function bit (except in XT and HS modes)  
1= OSC2 is clock output  
0= OSC2 is general purpose digital I/O pin  
Primary Oscillator Mode Select bits  
11= Primary oscillator disabled  
10= HS Crystal Oscillator mode  
01= XT Crystal Oscillator mode  
00= EC (External Clock) mode  
DS70318D-page 264  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 21-2: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)  
Bit Field  
FWDTEN  
Register  
Description  
FWDT  
Watchdog Timer Enable bit  
1= Watchdog Timer always enabled (LPRC oscillator cannot be disabled;  
clearing the SWDTEN bit in the RCON register will have no effect)  
0= Watchdog Timer enabled/disabled by user software (LPRC can be  
disabled by clearing the SWDTEN bit in the RCON register)  
WINDIS  
FWDT  
FWDT  
FWDT  
Watchdog Timer Window Enable bit  
1= Watchdog Timer in Non-Window mode  
0= Watchdog Timer in Window mode  
WDTPRE  
Watchdog Timer Prescaler bit  
1= 1:128  
0= 1:32  
WDTPOST<3:0>  
Watchdog Timer Postscaler bits  
1111= 1:32,768  
1110= 1:16,384  
0001= 1:2  
0000= 1:1  
FPWRT<2:0>  
FPOR  
Power-on Reset Timer Value Select bits  
111= PWRT = 128 ms  
110= PWRT = 64 ms  
101= PWRT = 32 ms  
100= PWRT = 16 ms  
011= PWRT = 8 ms  
010= PWRT = 4 ms  
001= PWRT = 2 ms  
000= PWRT = Disabled  
JTAGEN  
ICS<1:0>  
FICD  
FICD  
JTAG Enable bit  
1= JTAG is enabled  
0= JTAG is disabled  
ICD Communication Channel Select Enable bits  
11= Communicate on PGEC1 and PGED1  
10= Communicate on PGEC2 and PGED2  
01= Communicate on PGEC3 and PGED3  
00= Reserved, do not use.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 265  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
21.2 On-Chip Voltage Regulator  
21.3 BOR: Brown-Out Reset  
The  
dsPIC33FJ06GS101/X02  
and  
The Brown-out Reset (BOR) module is based on an  
internal voltage reference circuit that monitors the  
regulated supply voltage VCAP/VDDCORE. The main  
purpose of the BOR module is to generate a device  
Reset when a brown-out condition occurs. Brown-out  
conditions are generally caused by glitches on the AC  
mains (for example, missing portions of the AC cycle  
waveform due to bad power transmission lines, or  
voltage sags due to excessive current draw when a  
large inductive load is turned on).  
dsPIC33FJ16GSX02/X04 devices power their core digital  
logic at a nominal 2.5V. This can create a conflict for  
designs that are required to operate at a higher typical  
voltage, such as 3.3V. To simplify system design, all  
devices  
in  
the  
dsPIC33FJ06GS101/X02  
and  
dsPIC33FJ16GSX02/X04 families incorporate an on-chip  
regulator that allows the device to run its core logic from  
VDD.  
The regulator provides power to the core from the other  
VDD pins. When the regulator is enabled, a low-ESR  
(less than 5 ohms) capacitor (such as tantalum or  
ceramic) must be connected to the VCAP/VDDCORE pin  
(Figure 21-1). This helps to maintain the stability of the  
regulator. The recommended value for the filter  
capacitor is provided in Table 24-13 located in  
Section 24.1 “DC Characteristics”.  
A BOR generates a Reset pulse, which resets the  
device. The BOR selects the clock source, based on  
the device Configuration bit values (FNOSC<2:0> and  
POSCMD<1:0>).  
If an oscillator mode is selected, the BOR activates the  
Oscillator Start-up Timer (OST). The system clock is  
held until OST expires. If the PLL is used, the clock is  
held until the LOCK bit (OSCCON<5>) is ‘1’.  
Note:  
It is important for the low-ESR capacitor to  
be placed as close as possible to the  
VCAP/VDDCORE pin.  
Concurrently, the PWRT time-out (TPWRT) is applied  
before the internal Reset is released. If TPWRT = 0and  
a crystal oscillator is being used, then a nominal delay  
of TFSCM = 100 is applied. The total delay in this case  
is TFSCM.  
On a POR, it takes approximately 20 μs for the on-chip  
voltage regulator to generate an output voltage. During  
this time, designated as TSTARTUP, code execution is  
disabled. TSTARTUP is applied every time the device  
resumes operation after any power-down.  
The BOR Status bit (RCON<1>) is set to indicate that a  
BOR has occurred. The BOR circuit continues to  
operate while in Sleep or Idle modes and resets the  
device should VDD fall below the BOR threshold  
voltage.  
FIGURE 21-1:  
CONNECTIONS FOR THE  
ON-CHIP VOLTAGE  
REGULATOR(1,2)  
3.3V  
dsPIC33F  
VDD  
VCAP/VDDCORE  
VSS  
CEFC  
Note 1: These are typical operating voltages. Refer to  
Table 24-13 located in Section 24.1 “DC  
Characteristics” for the full operating  
ranges of VDD and VCAP/VDDCORE.  
2: It is important for the low-ESR capacitor to  
be placed as close as possible to the  
VCAP/VDDCORE pin.  
DS70318D-page 266  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
21.4.2  
SLEEP AND IDLE MODES  
21.4 Watchdog Timer (WDT)  
If the WDT is enabled, it will continue to run during  
Sleep or Idle modes. When the WDT time-out occurs,  
the device will wake the device and code execution will  
continue from where the PWRSAV instruction was  
executed. The corresponding SLEEP or IDLE bits  
(RCON<3:2>) will need to be cleared in software after  
the device wakes up.  
For  
dsPIC33FJ06GS101/X02  
and  
dsPIC33FJ16GSX02/X04 devices, the WDT is driven by  
the LPRC oscillator. When the WDT is enabled, the clock  
source is also enabled.  
21.4.1  
PRESCALER/POSTSCALER  
The nominal WDT clock source from LPRC is 32 kHz.  
This feeds a prescaler than can be configured for either  
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.  
The prescaler is set by the WDTPRE Configuration bit.  
With a 32 kHz input, the prescaler yields a nominal  
WDT time-out period (TWDT) of 1 ms in 5-bit mode, or  
4 ms in 7-bit mode.  
21.4.3  
ENABLING WDT  
The WDT is enabled or disabled by the FWDTEN  
Configuration bit in the FWDT Configuration register.  
When the FWDTEN Configuration bit is set, the WDT is  
always enabled.  
The WDT can be optionally controlled in software when  
the FWDTEN Configuration bit has been programmed  
to ‘0’. The WDT is enabled in software by setting the  
SWDTEN control bit (RCON<5>). The SWDTEN  
control bit is cleared on any device Reset. The software  
WDT option allows the user application to enable the  
WDT for critical code segments and disable the WDT  
during non-critical segments for maximum power  
savings.  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the WDTPOST<3:0>  
Configuration bits (FWDT<3:0>) which allow the  
selection of 16 settings, from 1:1 to 1:32,768. Using the  
prescaler and postscaler, time-out periods ranging from  
1 ms to 131 seconds can be achieved.  
The WDT, prescaler and postscaler are reset:  
• On any device Reset  
Note:  
If the WINDIS bit (FWDT<6>) is cleared, the  
CLRWDTinstruction should be executed by  
the application software only during the last  
1/4 of the WDT period. This CLRWDT  
window can be determined by using a timer.  
If a CLRWDTinstruction is executed before  
this window, a WDT Reset occurs.  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSC bits) or by hardware  
(i.e., Fail-Safe Clock Monitor)  
• When a PWRSAVinstruction is executed  
(i.e., Sleep or Idle mode is entered)  
• When the device exits Sleep or Idle mode to  
resume normal operation  
The WDT flag bit, WDTO (RCON<4>), is not automatically  
cleared following a WDT time-out. To detect subsequent  
WDT events, the flag must be cleared in software.  
• By a CLRWDTinstruction during normal execution  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
FIGURE 21-2:  
WDT BLOCK DIAGRAM  
All Device Resets  
Transition to New Clock Source  
Exit Sleep or Idle Mode  
PWRSAVInstruction  
CLRWDTInstruction  
Watchdog Timer  
Sleep/Idle  
WDTPRE  
Prescaler  
WDTPOST<3:0>  
SWDTEN  
FWDTEN  
WDT  
Wake-up  
1
RS  
RS  
Postscaler  
WDT  
Reset  
(Divide by N1)  
(Divide by N2)  
LPRC Clock  
0
WDT Window Select  
WINDIS  
CLRWDTInstruction  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 267  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
21.5 JTAG Interface  
21.7 In-Circuit Debugger  
dsPIC33FJ06GS101/X02  
and  
When MPLAB® ICD 2 is selected as a debugger, the  
in-circuit debugging functionality is enabled. This  
function allows simple debugging functions when used  
with MPLAB IDE. Debugging functionality is controlled  
through the EMUCx (Emulation/Debug Clock) and  
EMUDx (Emulation/Debug Data) pin functions.  
dsPIC33FJ16GSX02/X04 devices implement a JTAG  
interface, which supports boundary scan device test-  
ing, as well as in-circuit programming. Detailed infor-  
mation on this interface will be provided in future  
revisions of the document.  
Any of the three pairs of debugging clock/data pins can  
be used:  
21.6  
In-Circuit Serial Programming  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
dsPIC33FJ06GS101/X02  
dsPIC33FJ16GSX02/X04  
and  
signal  
family  
digital  
controllers can be serially programmed while in the end  
application circuit. This is done with two lines for clock  
and data and three other lines for power, ground and  
the programming sequence. Serial programming  
allows customers to manufacture boards with  
unprogrammed devices and then program the digital  
signal controller just before shipping the product. Serial  
programming also allows the most recent firmware or a  
custom firmware to be programmed. Refer to the  
“dsPIC33F/PIC24H Flash Programming Specification”  
(DS70152) for details about In-Circuit Serial  
Programming (ICSP).  
To use the in-circuit debugger function of the device,  
the design must implement ICSP connections to  
MCLR, VDD, VSS, and the PGECx/PGEDx pin pair. In  
addition, when the feature is enabled, some of the  
resources are not available for general use. These  
resources include the first 80 bytes of data RAM and  
two I/O pins.  
Any of the three pairs of programming clock/data pins  
can be used:  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
DS70318D-page 268  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
The code protection features are controlled by the  
Configuration registers: FBS and FGS.  
21.8 Code Protection and  
CodeGuard™ Security  
Secure segment and RAM protection is not implemented  
The  
dsPIC33FJ06GS101/X02  
and  
in  
dsPIC33FJ06GS101/X02  
and  
dsPIC33FJ16GSX02/X04 devices offer the intermediate  
implementation of CodeGuard™ Security. CodeGuard  
Security enables multiple parties to securely share  
resources (memory, interrupts and peripherals) on a  
single chip. This feature helps protect individual  
Intellectual Property in collaborative system designs.  
dsPIC33FJ16GSX02/X04 devices.  
Note:  
Refer to CodeGuard Security Reference  
Manual (DS70180) for further information  
on usage, configuration and operation of  
CodeGuard Security.  
When coupled with software encryption libraries, Code-  
Guard™ Security can be used to securely update Flash  
even when multiple IPs reside on a single chip.  
TABLE 21-3: CODE FLASH SECURITY  
SEGMENT SIZES FOR  
6-Kbyte DEVICES  
TABLE 21-4: CODE FLASH SECURITY  
SEGMENT SIZES FOR  
16-Kbyte DEVICES  
Configuration Bits  
Configuration Bits  
000000h  
VS = 256 IW  
000000h  
VS = 256 IW  
0001FEh  
0001FEh  
000200h  
000200h  
0003FEh  
0003FEh  
BSS<2:0> = x11  
BSS<2:0> = x11  
000400h  
000400h  
0007FEh  
0007FEh  
000800h  
000FFEh  
001000h  
GS = 1792 IW  
000800h  
000FFEh  
001000h  
0K  
0K  
GS = 5376 IW  
002BFEh  
002BFEh  
000000h  
000000h  
VS = 256 IW  
BS = 256 IW  
VS = 256 IW  
BS = 256 IW  
0001FEh  
000200h  
0001FEh  
000200h  
0003FEh  
0003FEh  
BSS<2:0> = x10  
BSS<2:0> = x10  
000400h  
000400h  
0007FEh  
000800h  
000FFEh  
001000h  
0007FEh  
000800h  
000FFEh  
001000h  
GS = 1536 IW  
256  
256  
GS = 5120 IW  
002BFEh  
002BFEh  
000000h  
000000h  
VS = 256 IW  
BS = 768 IW  
GS = 1024 IW  
VS = 256 IW  
BS = 768 IW  
0001FEh  
000200h  
0001FEh  
000200h  
0003FEh  
0003FEh  
BSS<2:0> = x01  
BSS<2:0> = x01  
000400h  
000400h  
0007FEh  
000800h  
000FFEh  
001000h  
0007FEh  
000800h  
000FFEh  
001000h  
768  
768  
GS = 4608 IW  
002BFEh  
002BFEh  
000000h  
000000h  
VS = 256 IW  
BS = 1792 IW  
VS = 256 IW  
BS = 1792 IW  
0001FEh  
000200h  
0001FEh  
000200h  
0003FEh  
0003FEh  
BSS<2:0> = x00  
BSS<2:0> = x00  
000400h  
000400h  
0007FEh  
000800h  
000FFEh  
001000h  
0007FEh  
000800h  
000FFEh  
001000h  
1792  
1792  
GS = 3584 IW  
002BFEh  
002BFEh  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 269  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
NOTES:  
DS70318D-page 270  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Most bit-oriented instructions (including simple  
rotate/shift instructions) have two operands:  
22.0 INSTRUCTION SET SUMMARY  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 devices. It is  
not intended to be a comprehensive  
reference source. To complement the  
information in this data sheet, refer to the  
“dsPIC33F Family Reference Manual”.  
Please see the Microchip web site  
(www.microchip.com) for the latest  
“dsPIC33F Family Reference Manual”  
sections.  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register  
(specified by a literal value or indirectly by the  
contents of register ‘Wb’)  
The literal instructions that involve data movement can  
use some of the following operands:  
• A literal value to be loaded into a W register or file  
register (specified by ‘k’)  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
The dsPIC33F instruction set is identical to that of the  
dsPIC30F.  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
Most instructions are a single program memory word  
(24 bits). Only three instructions require two program  
memory locations.  
• The first source operand, which is a register ‘Wb’  
without any address modifier  
Each single-word instruction is a 24-bit word, divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction.  
• The second source operand, which is a literal  
value  
• The destination of the result (only if not the same  
as the first source operand), which is typically a  
register ‘Wd’ with or without an address modifier  
The instruction set is highly orthogonal and is grouped  
into five basic categories:  
The MACclass of DSP instructions can use some of the  
following operands:  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• The accumulator (A or B) to be used (required  
operand)  
• DSP operations  
• The W registers to be used as the two operands  
• The X and Y address space prefetch operations  
• The X and Y address space prefetch destinations  
• The accumulator write-back destination  
• Control operations  
Table 22-1 shows the general symbols used in  
describing the instructions.  
The dsPIC33F instruction set summary in Table 22-2  
lists all the instructions, along with the status flags  
affected by each instruction.  
The other DSP instructions do not involve any  
multiplication and can include:  
• The accumulator to be used (required)  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
• The source or destination operand (designated as  
Wso or Wdo, respectively) with or without an  
address modifier  
• The first source operand, which is typically a  
register ‘Wb’ without any address modifier  
• The amount of shift specified by a W register,  
‘Wn’, or a literal value  
• The second source operand, which is typically a  
register ‘Ws’ with or without an address modifier  
The control instructions can use some of the following  
operands:  
• The destination of the result, which is typically a  
register ‘Wd’ with or without an address modifier  
• A program memory address  
However, word or byte-oriented file register instructions  
have two operands:  
• The mode of the table read and table write  
instructions  
• The file register specified by the value, ‘f’  
• The destination, which could be either the file  
register, ‘f’, or the W0 register, which is denoted  
as ‘WREG’  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 271  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Most instructions are  
a
single word. Certain  
executed as a NOP. Notable exceptions are the BRA  
(unconditional/computed branch), indirect CALL/GOTO,  
all table reads and writes and RETURN/RETFIE  
instructions, which are single-word instructions but take  
two or three cycles. Certain instructions that involve  
skipping over the subsequent instruction require either  
two or three cycles if the skip is performed, depending  
on whether the instruction being skipped is a single-word  
or two-word instruction. Moreover, double-word moves  
require two cycles.  
double-word instructions are designed to provide all the  
required information in these 48 bits. In the second  
word, the 8 MSbs are ‘0’s. If this second word is  
executed as an instruction (by itself), it will execute as  
a NOP.  
The double-word instructions execute in two instruction  
cycles.  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true, or the  
program counter is changed as a result of the  
instruction. In these cases, the execution takes two  
instruction cycles with the additional instruction cycle(s)  
Note:  
For more details on the instruction set,  
refer to the “dsPIC30F/33F Programmer’s  
Reference Manual” (DS70157).  
TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
Register bit field  
<n:m>  
.b  
Byte mode selection  
.d  
Double-Word mode selection  
Shadow register select  
.S  
.w  
Word mode selection (default)  
One of two accumulators {A, B}  
Acc  
AWB  
bit4  
Accumulator Write-Back Destination Address register {W13, [W13]+ = 2}  
4-bit bit selection field (used in word-addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0x0000...0x1FFF}  
C, DC, N, OV, Z  
Expr  
f
lit1  
1-bit unsigned literal {0,1}  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
lit14  
lit16  
16-bit unsigned literal {0...65535}  
lit23  
23-bit unsigned literal {0...8388608}; LSb must be ‘0’  
Field does not require an entry, can be blank  
DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate  
Program Counter  
None  
OA, OB, SA, SB  
PC  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register ∈  
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Dividend, Divisor Working register pair (Direct Addressing)  
DS70318D-page 272  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)  
Field  
Description  
Wm*Wm  
Wm*Wn  
Multiplicand and Multiplier Working register pair for Square instructions ∈  
{W4 * W4,W5 * W5,W6 * W6,W7 * W7}  
Multiplicand and Multiplier Working register pair for DSP instructions ∈  
{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}  
Wn  
One of 16 Working registers {W0..W15}  
Wnd  
Wns  
WREG  
Ws  
One of 16 Destination Working registers {W0...W15}  
One of 16 Source Working registers {W0...W15}  
W0 (Working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Wso  
Source W register ∈  
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
Wx  
X Data Space Prefetch Address register for DSP instructions  
{[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2,  
[W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2,  
[W9 + W12], none}  
Wxd  
Wy  
X Data Space Prefetch Destination register for DSP instructions {W4...W7}  
Y Data Space Prefetch Address register for DSP instructions  
{[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2,  
[W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2,  
[W11 + W12], none}  
Wyd  
Y Data Space Prefetch Destination register for DSP instructions {W4...W7}  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 273  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 22-2: INSTRUCTION SET OVERVIEW  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
1
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
ASR  
ASR  
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
BTG  
BTG  
Acc  
Add Accumulators  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
f
f = f + WREG  
f,WREG  
WREG = f + WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
f
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
16-Bit Signed Add to Accumulator  
f = f + WREG + (C)  
1
2
3
4
ADDC  
1
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
Wd = Wb + lit5 + (C)  
1
AND  
f = f .AND. WREG  
1
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
1
N,Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N,Z  
Wd = Wb .AND. Ws  
1
N,Z  
Wd = Wb .AND. lit5  
1
N,Z  
ASR  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
1
Ws,Wd  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
1
N,Z  
5
6
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if Greater Than or Equal  
Branch if Unsigned Greater Than or Equal  
Branch if Greater Than  
Branch if Unsigned Greater Than  
Branch if Less Than or Equal  
Branch if Unsigned Less Than or Equal  
Branch if Less Than  
None  
None  
None  
None  
None  
None  
None  
Branch if Unsigned Less Than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OA,Expr  
OB,Expr  
OV,Expr  
SA,Expr  
SB,Expr  
Expr  
Branch if Not Carry  
None  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Accumulator A Overflow  
Branch if Accumulator B Overflow  
Branch if Overflow  
None  
None  
None  
Branch if Accumulator A Saturated  
Branch if Accumulator B Saturated  
Branch Unconditionally  
Branch if Zero  
None  
None  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
7
8
9
BSET  
BSW  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
Bit Toggle f  
1
None  
Ws,Wb  
1
None  
BTG  
f,#bit4  
Ws,#bit4  
1
None  
Bit Toggle Ws  
1
None  
DS70318D-page 274  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
10  
BTSC  
BTSS  
BTST  
BTSC  
BTSC  
BTSS  
BTSS  
f,#bit4  
Ws,#bit4  
f,#bit4  
Ws,#bit4  
Bit Test f, Skip if Clear  
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
Bit Test Ws, Skip if Clear  
Bit Test f, Skip if Set  
1
(2 or 3)  
11  
12  
1
(2 or 3)  
Bit Test Ws, Skip if Set  
1
(2 or 3)  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
Bit Test Ws to Z  
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call Subroutine  
C
Z
C
Ws,Wb  
Z
13  
BTSTS  
f,#bit4  
Z
C
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
Z
14  
15  
CALL  
CLR  
CALL  
CALL  
CLR  
lit23  
None  
Wn  
Call Indirect Subroutine  
f = 0x0000  
None  
f
None  
CLR  
WREG  
WREG = 0x0000  
Ws = 0x0000  
None  
CLR  
Ws  
None  
CLR  
Acc,Wx,Wxd,Wy,Wyd,AWB  
Clear Accumulator  
Clear Watchdog Timer  
f = f  
OA,OB,SA,SB  
WDTO,Sleep  
N,Z  
16  
17  
CLRWDT  
COM  
CLRWDT  
COM  
f
COM  
COM  
CP  
f,WREG  
Ws,Wd  
f
WREG = f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
Wd = Ws  
N,Z  
18  
CP  
Compare f with WREG  
Compare Wb with lit5  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
19  
20  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
21  
22  
23  
24  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Compare Wb with Wn, Skip if =  
Compare Wb with Wn, Skip if >  
Compare Wb with Wn, Skip if <  
Compare Wb with Wn, Skip if ≠  
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
25  
26  
DAW  
DEC  
DAW  
Wn  
Wn = Decimal Adjust Wn  
f = f – 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
DEC  
f
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f – 1  
DEC  
Wd = Ws – 1  
27  
28  
DEC2  
DISI  
DEC2  
DEC2  
DEC2  
DISI  
f = f – 2  
f,WREG  
Ws,Wd  
#lit14  
WREG = f – 2  
Wd = Ws – 2  
Disable Interrupts for k Instruction Cycles  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 275  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
29  
DIV  
DIV.S  
DIV.SD  
DIV.U  
DIV.UD  
DIVF  
DO  
Wm,Wn  
Signed 16/16-bit Integer Divide  
1
1
1
1
1
2
2
1
18  
18  
18  
18  
18  
2
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
None  
Wm,Wn  
Signed 32/16-bit Integer Divide  
Wm,Wn  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Signed 16/16-bit Fractional Divide  
Do code to PC + Expr, lit14 + 1 times  
Do code to PC + Expr, (Wn) + 1 times  
Euclidean Distance (no accumulate)  
Wm,Wn  
30  
31  
DIVF  
DO  
Wm,Wn  
#lit14,Expr  
Wn,Expr  
DO  
2
None  
32  
33  
ED  
ED  
Wm*Wm,Acc,Wx,Wy,Wxd  
1
OA,OB,OAB,  
SA,SB,SAB  
EDAC  
EDAC  
Wm*Wm,Acc,Wx,Wy,Wxd  
Euclidean Distance  
1
1
OA,OB,OAB,  
SA,SB,SAB  
34  
35  
36  
37  
38  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
GOTO  
INC  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
Ws,Wnd  
Expr  
Swap Wns with Wnd  
Find Bit Change from Left (MSb) Side  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
Go to Address  
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
None  
C
C
C
None  
Wn  
Go to Indirect  
None  
39  
40  
41  
INC  
f
f = f + 1  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
INC  
f,WREG  
Ws,Wd  
WREG = f + 1  
INC  
Wd = Ws + 1  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f = f + 2  
f,WREG  
Ws,Wd  
WREG = f + 2  
Wd = Ws + 2  
f
f = f .IOR. WREG  
IOR  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
WREG = f .IOR. WREG  
Wd = lit10 .IOR. Wd  
Wd = Wb .IOR. Ws  
Wd = Wb .IOR. lit5  
Load Accumulator  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
42  
LAC  
LAC  
OA,OB,OAB,  
SA,SB,SAB  
43  
44  
LNK  
LSR  
LNK  
LSR  
LSR  
LSR  
LSR  
LSR  
MAC  
#lit14  
Link Frame Pointer  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
None  
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f
f = Logical Right Shift f  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
N,Z  
45  
46  
MAC  
MOV  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply and Accumulate  
,
AWB  
OA,OB,OAB,  
SA,SB,SAB  
MAC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate  
1
1
OA,OB,OAB,  
SA,SB,SAB  
MOV  
f,Wn  
Move f to Wn  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
None  
N,Z  
MOV  
f
Move f to f  
MOV  
f,WREG  
Move f to WREG  
N,Z  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-Bit Literal to Wn  
Move 8-Bit Literal to Wn  
Move Wn to f  
None  
None  
None  
None  
N,Z  
MOV.b  
MOV  
MOV  
Wso,Wdo  
Move Ws to Wd  
MOV  
WREG,f  
Move WREG to f  
MOV.D  
MOV.D  
MOVSAC  
Wns,Wd  
Move Double from W(ns):W(ns + 1) to Wd  
Move Double from Ws to W(nd + 1):W(nd)  
Prefetch and Store Accumulator  
None  
None  
None  
Ws,Wnd  
47  
MOVSAC  
Acc,Wx,Wxd,Wy,Wyd,AWB  
DS70318D-page 276  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
48  
MPY  
MPY  
Multiply Wm by Wn to Accumulator  
Square Wm to Accumulator  
1
1
1
1
1
1
1
1
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MPY  
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd  
49  
50  
MPY.N  
MSC  
MPY.N  
-(Multiply Wm by Wn) to Accumulator  
None  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MSC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Multiply and Subtract from Accumulator  
OA,OB,OAB,  
SA,SB,SAB  
,
AWB  
51  
MUL  
MUL.SS  
MUL.SU  
MUL.US  
MUL.UU  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)  
{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)  
1
1
1
1
1
1
1
1
None  
None  
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(Ws)  
MUL.SU  
MUL.UU  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)  
1
1
1
1
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(lit5)  
MUL  
NEG  
f
W3:W2 = f * WREG  
Negate Accumulator  
1
1
1
1
None  
52  
NEG  
Acc  
OA,OB,OAB,  
SA,SB,SAB  
NEG  
f
f = f + 1  
1
1
C,DC,N,OV,Z  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
NEG  
Wd = Ws + 1  
53  
54  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
Pop from Top-of-Stack (TOS) to  
W(nd):W(nd + 1)  
None  
POP.S  
PUSH  
Pop Shadow Registers  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
All  
None  
None  
None  
None  
WDTO,Sleep  
None  
None  
None  
None  
None  
None  
None  
None  
C,N,Z  
C,N,Z  
C,N,Z  
N,Z  
55  
PUSH  
f
Push f to Top-of-Stack (TOS)  
Push Wso to Top-of-Stack (TOS)  
Push W(ns):W(ns + 1) to Top-of-Stack (TOS)  
Push Shadow Registers  
1
PUSH  
Wso  
Wns  
1
PUSH.D  
PUSH.S  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
2
1
56  
57  
PWRSAV  
RCALL  
#lit1  
Expr  
Wn  
Go into Sleep or Idle mode  
Relative Call  
1
2
Computed Call  
2
58  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software Device Reset  
1
1
59  
60  
61  
62  
63  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
Return from interrupt  
3 (2)  
#lit10,Wn  
Return with Literal in Wn  
3 (2)  
Return from Subroutine  
3 (2)  
1
f
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
RLC  
f,WREG  
Ws,Wd  
f
1
RLC  
1
64  
65  
RLNC  
RRC  
RLNC  
1
RLNC  
f,WREG  
Ws,Wd  
f
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
1
N,Z  
RLNC  
1
N,Z  
RRC  
1
C,N,Z  
C,N,Z  
C,N,Z  
RRC  
f,WREG  
Ws,Wd  
1
RRC  
1
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 277  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
66  
RRNC  
SAC  
RRNC  
RRNC  
RRNC  
SAC  
f
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Store Accumulator  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
N,Z  
f,WREG  
Ws,Wd  
N,Z  
67  
Acc,#Slit4,Wdo  
None  
None  
C,N,Z  
None  
None  
None  
SAC.R  
SE  
Acc,#Slit4,Wdo  
Store Rounded Accumulator  
Wnd = Sign-Extended Ws  
f = 0xFFFF  
68  
69  
SE  
Ws,Wnd  
f
SETM  
SETM  
SETM  
SETM  
SFTAC  
WREG  
Ws  
WREG = 0xFFFF  
Ws = 0xFFFF  
70  
71  
SFTAC  
SL  
Acc,Wn  
Arithmetic Shift Accumulator by (Wn)  
OA,OB,OAB,  
SA,SB,SAB  
SFTAC  
Acc,#Slit6  
Arithmetic Shift Accumulator by Slit6  
1
1
OA,OB,OAB,  
SA,SB,SAB  
SL  
SL  
SL  
SL  
SL  
SUB  
f
f = Left Shift f  
1
1
1
1
1
1
1
1
1
1
1
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
Ws,Wd  
WREG = Left Shift f  
Wd = Left Shift Ws  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
Acc  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
Subtract Accumulators  
N,Z  
72  
SUB  
OA,OB,OAB,  
SA,SB,SAB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUBB  
f
f = f – WREG  
1
1
1
1
1
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f – WREG  
Wn = Wn – lit10  
Wd = Wb – Ws  
Wd = Wb – lit5  
73  
SUBB  
f = f – WREG – (C)  
SUBB  
SUBB  
SUBB  
f,WREG  
WREG = f – WREG – (C)  
Wn = Wn – lit10 – (C)  
Wd = Wb – Ws – (C)  
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
#lit10,Wn  
Wb,Ws,Wd  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
SUBBR  
SUBBR  
Wb,#lit5,Wd  
f
Wd = Wb – lit5 – (C)  
f = WREG – f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
74  
75  
SUBR  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = WREG – f  
Wd = Ws – Wb  
Wd = lit5 – Wb  
SUBBR  
f = WREG – f – (C)  
WREG = WREG – f – (C)  
f,WREG  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
Wd = Ws – Wb – (C)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
None  
None  
None  
None  
None  
None  
N,Z  
Wd = lit5 – Wb – (C)  
76  
SWAP  
Wn = Nibble Swap Wn  
Wn = Byte Swap Wn  
Wn  
77  
78  
79  
80  
81  
82  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Read Prog<23:16> to Wd<7:0>  
Read Prog<15:0> to Wd  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
XOR  
f
XOR  
f,WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
N,Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N,Z  
XOR  
N,Z  
XOR  
Wd = Wb .XOR. lit5  
N,Z  
83  
ZE  
ZE  
Wnd = Zero-Extend Ws  
C,Z,N  
DS70318D-page 278  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
23.1 MPLAB Integrated Development  
Environment Software  
23.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers are supported with a full  
range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• A single graphical interface to all debugging tools  
- Simulator  
- MPLAB C18 and MPLAB C30 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- Programmer (sold separately)  
- Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debugger  
• High-level source code debugging  
• Visual device initializer for easy register  
initialization  
- MPLAB ICD 2  
• Mouse over variable inspection  
• Device Programmers  
• Drag and drop variables from source to watch  
windows  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
- PICkit™ 2 Development Programmer  
• Extensive on-line help  
• Integration of select third party tools, such as  
HI-TECH Software C Compilers and IAR  
C Compilers  
• Low-Cost Demonstration and Development  
Boards and Evaluation Kits  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
• One touch assemble (or compile) and download  
to PIC MCU emulator and simulator tools  
(automatically updates all project information)  
• Debug using:  
- Source files (assembly or C)  
- Mixed assembly and C  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 279  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
23.2 MPASM Assembler  
23.5 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPASM Assembler is a full-featured, universal  
macro assembler for all PIC MCUs.  
MPLAB ASM30 Assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 C Compiler uses the  
assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• User-defined macros to streamline  
assembly code  
• Rich directive set  
• Conditional assembly for multi-purpose  
source files  
• Flexible macro language  
• MPLAB IDE compatibility  
• Directives that allow complete control over the  
assembly process  
23.6 MPLAB SIM Software Simulator  
23.3 MPLAB C18 and MPLAB C30  
C Compilers  
The MPLAB SIM Software Simulator allows code  
development in  
a
PC-hosted environment by  
simulating the PIC MCUs and dsPIC® DSCs on an  
instruction level. On any given instruction, the data  
areas can be examined or modified and stimuli can be  
applied from a comprehensive stimulus controller.  
Registers can be logged to files for further run-time  
analysis. The trace buffer and logic analyzer display  
extend the power of the simulator to record and track  
program execution, actions on I/O, most peripherals  
and internal registers.  
The MPLAB C18 and MPLAB C30 Code Development  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC18 and PIC24 families of microcon-  
trollers and the dsPIC30 and dsPIC33 family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C18 and  
MPLAB C30 C Compilers, and the MPASM and  
MPLAB ASM30 Assemblers. The software simulator  
offers the flexibility to develop and debug code outside  
of the hardware laboratory environment, making it an  
excellent, economical software development tool.  
23.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of linking  
many smaller files  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
DS70318D-page 280  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
23.7 MPLAB ICE 2000  
High-Performance  
23.9 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash PIC  
MCUs and can be used to develop for these and other  
PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes  
the in-circuit debugging capability built into the Flash  
devices. This feature, along with Microchip’s In-Circuit  
Serial ProgrammingTM (ICSPTM) protocol, offers  
cost-effective, in-circuit Flash debugging from the  
graphical user interface of the MPLAB Integrated  
Development Environment. This enables a designer to  
develop and debug source code by setting breakpoints,  
single stepping and watching variables, and CPU  
status and peripheral registers. Running at full speed  
enables testing hardware and applications in real  
time. MPLAB ICD 2 also serves as a development  
programmer for selected PIC devices.  
In-Circuit Emulator  
The MPLAB ICE 2000 In-Circuit Emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PIC  
microcontrollers. Software control of the MPLAB ICE  
2000 In-Circuit Emulator is advanced by the MPLAB  
Integrated Development Environment, which allows  
editing, building, downloading and source debugging  
from a single environment.  
The MPLAB ICE 2000 is a full-featured emulator  
system with enhanced trace, trigger and data  
monitoring features. Interchangeable processor  
modules allow the system to be easily reconfigured for  
emulation of different processors. The architecture of  
the MPLAB ICE 2000 In-Circuit Emulator allows  
expansion to support new PIC microcontrollers.  
The MPLAB ICE 2000 In-Circuit Emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows® 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
23.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a  
modular, detachable socket assembly to support  
various package types. The ICSP™ cable assembly is  
included as a standard item. In Stand-Alone mode, the  
MPLAB PM3 Device Programmer can read, verify and  
program PIC devices without a PC connection. It can  
also set code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an SD/MMC card for  
file storage and secure data applications.  
23.8 MPLAB REAL ICE In-Circuit  
Emulator System  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The MPLAB REAL ICE probe is connected to the design  
engineer’s PC using a high-speed USB 2.0 interface and  
is connected to the target with either a connector  
compatible with the popular MPLAB ICD 2 system  
(RJ11) or with the new high-speed, noise tolerant,  
Low-Voltage Differential Signal (LVDS) interconnection  
(CAT5).  
MPLAB REAL ICE is field upgradeable through future  
firmware downloads in MPLAB IDE. In upcoming  
releases of MPLAB IDE, new devices will be supported,  
and new features will be added, such as software break-  
points and assembly code trace. MPLAB REAL ICE  
offers significant advantages over competitive emulators  
including low-cost, full-speed emulation, real-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 281  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
23.11 PICSTART Plus Development  
Programmer  
23.13 Demonstration, Development and  
Evaluation Boards  
The PICSTART Plus Development Programmer is an  
easy-to-use, low-cost, prototype programmer. It  
connects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus Development Programmer supports  
most PIC devices in DIP packages up to 40 pins.  
Larger pin count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus Development Programmer is CE  
compliant.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully  
functional systems. Most boards include prototyping  
areas for adding custom circuitry and provide application  
firmware and source code for examination and modifica-  
tion.  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
23.12 PICkit 2 Development Programmer  
The PICkit™ 2 Development Programmer is a low-cost  
programmer and selected Flash device debugger with  
an easy-to-use interface for programming many of  
Microchip’s baseline, mid-range and PIC18F families of  
Flash memory microcontrollers. The PICkit 2 Starter Kit  
includes a prototyping development board, twelve  
sequential lessons, software and HI-TECH’s PICC™  
Lite C compiler, and is designed to help get up to speed  
quickly using PIC® microcontrollers. The kit provides  
everything needed to program, evaluate and develop  
applications using Microchip’s powerful, mid-range  
Flash memory family of microcontrollers.  
In addition to the PICDEM™ and dsPICDEM™  
demonstration/development board series of circuits,  
Microchip has a line of evaluation kits and demonstra-  
®
tion software for analog filter design, KEELOQ security  
ICs, CAN, IrDA®, PowerSmart battery management,  
SEEVAL® evaluation system, Sigma-Delta ADC, flow  
rate sensing, plus many more.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS70318D-page 282  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
24.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 electrical characteristics.  
Additional information will be provided in future revisions of this document as it becomes available.  
Absolute maximum ratings for the dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 family are listed below.  
Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of  
the device at these or any other conditions above the parameters indicated in the operation listings of this specification  
is not implied.  
(1)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any combined analog and digital pin and MCLR, with respect to VSS ......................... -0.3V to (VDD + 0.3V)  
Voltage on any digital-only pin with respect to VSS .................................................................................. -0.3V to +5.6V  
Voltage on VCAP/VDDCORE with respect to VSS ...................................................................................... 2.25V to 2.75V  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin(2)...........................................................................................................................250 mA  
Maximum output current sunk by any I/O pin(3) ........................................................................................................4 mA  
Maximum output current sourced by any I/O pin(3)...................................................................................................4 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports(2)...............................................................................................................200 mA  
Maximum output current sunk by non-remappable PWM pins ...............................................................................16 mA  
Maximum output current sourced by non-remappable PWM pins ..........................................................................16 mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only, and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods may affect device reliability.  
2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).  
3: Exceptions are PWMxL, and PWMxH, which are able to sink/source 16 mA, and digital pins, which are able  
to sink/source 8 mA.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 283  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
24.1 DC Characteristics  
TABLE 24-1: OPERATING MIPS VS. VOLTAGE  
Max MIPS  
VDD Range  
(in Volts)  
Temp Range  
(in °C)  
Characteristic  
dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04  
3.0-3.6V  
3.0-3.6V  
-40°C to +85°C  
-40°C to +125°C  
40  
40  
TABLE 24-2: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Industrial Temperature Devices  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
Extended Temperature Devices  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+140  
+125  
°C  
°C  
Power Dissipation:  
Internal chip power dissipation:  
PINT = VDD x (IDD Σ IOH)  
I/O Pin Power Dissipation:  
PD  
PINT + PI/O  
W
W
I/O = Σ ({VDD VOH} x IOH) + Σ (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/θJA  
TABLE 24-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
Package Thermal Resistance, 44-Pin QFN  
Package Thermal Resistance, 44-Pin TFQP  
Package Thermal Resistance, 28-Pin SPDIP  
Package Thermal Resistance, 28-Pin SOIC  
Package Thermal Resistance, 28-Pin QFN-S  
Package Thermal Resistance, 18-Pin SOIC  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
28  
39  
42  
47  
34  
57  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
1
1
Note 1: Junction to ambient thermal resistance, Theta-JA (θJA) numbers are achieved by package simulations.  
DS70318D-page 284  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
Characteristic  
Min  
Typ(1)  
Max Units  
Conditions  
No.  
Operating Voltage  
Supply Voltage  
DC10  
DC12  
DC16  
VDD  
VDR  
3.0  
1.8  
3.6  
V
V
V
Industrial and extended  
RAM Data Retention Voltage(2)  
VDD Start Voltage(4)  
to Ensure Internal  
Power-on Reset Signal  
VDD Rise Rate(3)  
to Ensure Internal  
Power-on Reset Signal  
VPOR  
SVDD  
VCORE  
VSS  
DC17  
DC18  
0.03  
2.25  
V/ms 0-3.0V in 0.1s  
VDD Core  
2.75  
V
Voltage is dependent on  
Internal Regulator Voltage  
load, temperature and  
VDD  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: This is the limit to which VDD may be lowered without losing RAM data.  
3: These parameters are characterized but not tested in manufacturing.  
4: VDD voltage must remain at VSS for a minimum of 200 μs to ensure POR.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 285  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Operating Current (IDD)(2)  
DC20d  
DC20a  
DC20b  
DC20c  
DC21d  
DC21a  
DC21b  
DC21c  
DC22d  
DC22a  
DC22b  
DC22c  
DC23d  
DC23a  
DC23b  
DC23c  
DC24d  
DC24a  
DC24b  
DC24c  
DC25d  
DC25a  
DC25b  
DC25c  
DC26d  
DC26a  
DC26b  
DC26c  
DC27d  
DC27a  
DC27b  
DC27c  
DC28d  
DC28a  
DC28b  
DC28c  
55  
55  
70  
70  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
10 MIPS  
See Note 2  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
55  
70  
55  
70  
68  
85  
68  
85  
+25°C  
+85°C  
+125°C  
-40°C  
16 MIPS  
See Note 2 and Note 3  
68  
85  
68  
85  
78  
95  
78  
95  
+25°C  
+85°C  
+125°C  
-40°C  
20 MIPS  
See Note 2 and Note 3  
78  
95  
78  
95  
88  
110  
110  
110  
110  
120  
120  
120  
120  
160  
150  
150  
150  
140  
140  
140  
140  
140  
130  
130  
130  
130  
120  
120  
120  
88  
+25°C  
+85°C  
+125°C  
-40°C  
30 MIPS  
See Note 2 and Note 3  
88  
88  
98  
98  
+25°C  
+85°C  
+125°C  
-40°C  
40 MIPS  
See Note 2  
98  
98  
128  
125  
121  
119  
115  
112  
110  
108  
111  
108  
105  
103  
102  
100  
100  
100  
40 MIPS  
+25°C  
+85°C  
+125°C  
-40°C  
See Note 2, except PWM is  
operating at maximum speed  
(PTCON2 = 0x0000)  
40 MIPS  
+25°C  
+85°C  
+125°C  
-40°C  
See Note 2, except PWM is  
operating at 1/2 speed  
(PTCON2 = 0x0001)  
40 MIPS  
+25°C  
+85°C  
+125°C  
-40°C  
See Note 2, except PWM is  
operating at 1/4 speed  
(PTCON2 = 0x0002)  
40 MIPS  
+25°C  
+85°C  
+125°C  
See Note 2, except PWM is  
operating at 1/8 speed  
(PTCON2 = 0x0003)  
Note 1: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1  
driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VSS.  
MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are  
operational. No peripheral modules are operating (PMD bits are all set).  
3: These parameters are characterized but not tested in manufacturing.  
DS70318D-page 286  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Idle Current (IIDLE): Core Off Clock On Base Current(2)  
DC40d  
DC40a  
DC40b  
DC40c  
DC41d  
DC41a  
DC41b  
DC41c  
DC42d  
DC42a  
DC42b  
DC42c  
DC43d  
DC43a  
DC43b  
DC43c  
DC44d  
DC44a  
DC44b  
DC44c  
80  
80  
80  
80  
81  
81  
81  
81  
82  
82  
82  
82  
84  
84  
84  
84  
86  
86  
86  
86  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
105  
105  
105  
105  
105  
105  
105  
105  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
10 MIPS  
16 MIPS(3)  
20 MIPS(3)  
30 MIPS(3)  
40 MIPS  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
Note 1: Data in “Typical” column is at 3.3V, +25°C unless otherwise stated.  
2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral module  
Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to VSS.  
3: These parameters are characterized but not tested in manufacturing.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 287  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Power-Down Current (IPD)(2,4)  
DC60d  
DC60a  
DC60b  
DC60c  
DC61d  
DC61a  
DC61b  
DC61c  
304  
317  
321  
800  
40  
500  
500  
500  
950  
50  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
Base Power-Down Current  
40  
50  
+25°C  
+85°C  
+125°C  
(3)  
Watchdog Timer Current: ΔIWDT  
40  
50  
80  
90  
Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.  
2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and  
pulled to VSS. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.  
3: The Δ current is the additional current consumed when the WDT module is enabled. This current should  
be added to the base IPD current.  
4: These currents are measured on the device containing the most memory in this family.  
TABLE 24-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Doze  
Ratio  
Parameter No.  
Typical(1)  
Max  
Units  
Conditions  
DC73a  
DC73f  
DC73g  
DC70a  
DC70f  
DC70g  
DC71a  
DC71f  
DC71g  
DC72a  
DC72f  
DC72g  
86  
86  
86  
86  
86  
86  
86  
86  
86  
86  
86  
86  
105  
105  
105  
105  
105  
105  
105  
105  
105  
105  
105  
105  
1:2  
1:64  
1:128  
1:2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
3.3V  
40 MIPS  
40 MIPS  
40 MIPS  
40 MIPS  
1:64  
1:128  
1:2  
3.3V  
3.3V  
3.3V  
1:64  
1:128  
1:2  
1:64  
1:128  
Note 1: Data in the Typical column is at 3.3V, +25°C unless otherwise stated.  
DS70318D-page 288  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for  
Extended  
Param  
Symbol  
No.  
Characteristic  
Input Low Voltage  
Min  
Typ(1)  
Max  
Units  
Conditions  
VIL  
DI10  
DI15  
DI16  
DI18  
DI19  
I/O Pins  
MCLR  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.2 VDD  
V
V
V
V
V
I/O Pins with OSC1  
I/O Pins with SDAx, SCLx  
I/O Pins with SDAx, SCLx  
Input High Voltage  
SMbus disabled  
SMbus enabled  
VIH  
DI20  
DI21  
I/O Pins Not 5V Tolerant(4)  
0.7 VDD  
0.7 VDD  
VDD  
5.5  
V
V
I/O Pins 5V Tolerant(4)  
ICNPU  
IIL  
CNx Pull-up Current  
DI30  
DI50  
250  
μA VDD = 3.3V, VPIN = VSS  
Input Leakage Current(2,3,4)  
I/O Pins with:  
4 mA Source/Sink Capability  
±2  
±4  
±8  
μA  
μA  
μA  
VSS VPIN VDD,  
Pin at high-impedance  
VSS VPIN VDD,  
8 mA Source/Sink Capability  
16 mA Source/Sink Capability  
Pin at high-impedance  
VSS VPIN VDD,  
Pin at high-impedance  
DI55  
DI56  
MCLR  
OSC1  
±2  
±2  
μA  
μA  
VSS VPIN VDD  
VSS VPIN VDD,  
XT and HS modes  
ISINK  
Sink Current  
Pins:  
RA3, RA4, RB3, RB4, RB11-RB14  
16  
8
mA  
mA  
mA  
Pins:  
RC3-RC8, RC11-RC13  
Pins:  
4
RA0-RA2, RB0, RB1, RB5-RB10,  
RB15, RC1, RC2, RC9, RC10  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See “Pin Diagrams” for the list of 5V tolerant I/O pins.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 289  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
DO10 VOL  
Output Low Voltage  
I/O Ports:  
4 mA Source/Sink Capability  
0.4  
0.4  
0.4  
V
V
V
IOL = 4 mA, VDD = 3.3V  
IOL = 8 mA, VDD = 3.3V  
IOL = 16 mA, VDD = 3.3V  
8 mA Source/Sink Capability  
16 mA Source/Sink Capability  
DO16  
OSC2/CLKO  
0.4  
V
IOL = 2 mA, VDD = 3.3V  
DO20 VOH  
Output High Voltage  
I/O Ports:  
4 mA Source/Sink Capability  
8 mA Source/Sink Capability  
16 mA Source/Sink Capability  
2.40  
2.40  
2.40  
V
V
V
IOH = -4 mA, VDD = 3.3V  
IOH = -8 mA, VDD = 3.3V  
IOH = -16 mA, VDD = 3.3V  
DO26  
OSC2/CLKO  
2.41  
V
IOH = -1.3 mA, VDD = 3.3V  
ISOURCE Source Current  
Pins:  
RA3, RA4, RB3, RB4, RB11-RB14  
16  
8
mA  
mA  
mA  
Pins:  
RC3-RC8, RC11-RC13  
Pins:  
4
RA0-RA2, RB0, RB1, RB5-  
RB10, RB15, RC1, RC2, RC9,  
RC10  
TABLE 24-11: ELECTRICAL CHARACTERISTICS: BOR  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min(1) Typ  
Max  
Units  
Conditions  
BO10  
VBOR  
BOR Event on VDD Transition  
High-to-Low  
2.55  
2.79  
V
BOR Event is Tied to VDD Core  
Voltage Decrease  
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
DS70318D-page 290  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-12: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min Typ(1)  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
10,000  
VMIN  
E/W -40°C to +125°C  
VPR  
VDD for Read  
3.6  
V
VMIN = Minimum operating  
voltage  
D132B VPEW  
VDD for Self-Timed Write  
Characteristic Retention  
VMIN  
20  
10  
3.6  
V
VMIN = Minimum operating  
voltage  
D134  
D135  
TRETD  
IDDP  
Year Provided no other specifications  
are violated, -40°C to +125°C  
Supply Current during  
Programming  
mA  
D136a TRW  
D136b TRW  
D137a TPE  
D137b TPE  
D138a TWW  
D138b TWW  
Row Write Time  
1.32  
1.28  
20.1  
19.5  
42.3  
41.1  
1.74  
1.79  
26.5  
27.3  
55.9  
57.6  
ms TRW = 11064 FRC cycles,  
TA = +85°C, See Note 2  
Row Write Time  
ms TRW = 11064 FRC cycles,  
TA = +125°C, See Note 2  
Page Erase Time  
Page Erase Time  
Word Write Cycle Time  
Word Write Cycle Time  
ms TPE = 168517 FRC cycles,  
TA = +85°C, See Note 2  
ms TPE = 168517 FRC cycles,  
TA = +125°C, See Note 2  
μs TWW = 355 FRC cycles,  
TA = +85°C, See Note 2  
μs TWW = 355 FRC cycles,  
TA = +125°C, See Note 2  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111(for Min), TUN<5:0> = b'100000(for Max).  
This parameter depends on the FRC accuracy (see Table 24-20) and the value of the FRC Oscillator Tun-  
ing register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see  
Section 5.3 “Programming Operations”.  
TABLE 24-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Operating Conditions: -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
CEFC  
External Filter Capacitor  
Value  
4.7  
10  
μF  
Capacitor must be low  
series resistance  
(< 5 ohms)  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 291  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
24.2 AC Characteristics and Timing Parameters  
This section defines dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04 AC characteristics and timing parameters.  
TABLE 24-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Operating voltage VDD range as described in Section 24.0 “Electrical  
Characteristics”.  
FIGURE 24-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
VSS  
15 pF for OSC2 output  
TABLE 24-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
No.  
DO50 COSCO  
OSC2 Pin  
15  
pF In XT and HS modes when  
external clock is used to drive  
OSC1  
DO56 CIO  
DO58 CB  
All I/O Pins and OSC2  
SCLx, SDAx  
50  
pF EC mode  
pF In I2C™ mode  
400  
DS70318D-page 292  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 24-2:  
EXTERNAL CLOCK TIMING  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
OSC1  
CLKO  
OS20  
OS30 OS30  
OS25  
OS31 OS31  
OS41  
OS40  
TABLE 24-16: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symb  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10  
FIN  
External CLKI Frequency  
(External clocks allowed only  
in EC and ECPLL modes)  
DC  
40  
MHz EC  
Oscillator Crystal Frequency  
3.5  
10  
10  
40  
MHz XT  
MHz HS  
OS20  
OS25  
OS30  
TOSC  
TCY  
TOSC = 1/FOSC  
Instruction Cycle Time(2)  
12.5  
25  
DC  
DC  
ns  
ns  
TosL, External Clock in (OSC1)  
TosH High or Low Time  
0.375 x TOSC  
0.625 x TOSC  
ns  
EC  
EC  
OS31  
TosR, External Clock in (OSC1)  
TosF Rise or Fall Time  
20  
ns  
OS40  
OS41  
OS42  
TckR CLKO Rise Time(3)  
14  
5.2  
5.2  
16  
18  
ns  
ns  
TckF  
GM  
CLKO Fall Time(3)  
External Oscillator  
mA/V VDD = 3.3V  
TA = +25ºC  
Transconductance(4)  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at “min.”  
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the  
“max.” cycle time limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.  
4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 293  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise  
stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS50  
FPLLI  
PLL Voltage Controlled  
Oscillator (VCO) Input  
Frequency Range  
0.8  
8
MHz ECPLL, XTPLL modes  
OS51  
FSYS  
On-Chip VCO System  
Frequency  
100  
200  
MHz  
mS  
OS52  
OS53  
TLOCK  
DCLK  
PLL Start-up Time (Lock Time)  
CLKO Stability (Jitter)  
0.9  
-3  
1.5  
0.5  
3.1  
3
%
Measured over 100 ms  
period  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested in manufacturing.  
TABLE 24-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise  
stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
FHPOUT 0n-Chip 16x PLL CCO  
Frequency  
105  
120  
135  
MHz  
FHPIN  
On-Chip 16x PLL Phase  
Detector Input Frequency  
6.56  
7.5  
8.44  
10  
MHz  
TSU  
Frequency Generator Lock  
Time  
μs  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested in manufacturing.  
TABLE 24-19: AC CHARACTERISTICS: INTERNAL RC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Internal FRC Accuracy @ FRC Frequency = 7.37 MHz(1,2)  
F20  
FRC  
FRC  
±2  
±5  
%
%
-40°C TA +85°C  
-40°C TA +125°C  
VDD = 3.0-3.6V  
VDD = 3.0-3.6V  
Note 1: Frequency calibrated at +25°C and 3.3V. TUN bits can be used to compensate for temperature drift.  
2: FRC is set to initial frequency of 7.37 MHz (±2%) at +25°C.  
DS70318D-page 294  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-20: INTERNAL RC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ 32.768 kHz(1)  
F21  
LPRC  
LPRC  
-20  
-70  
±6  
+20  
+70  
%
%
-40°C TA +85°C  
VDD = 3.0-3.6V  
VDD = 3.0-3.6V  
-40°C TA +125°C  
Note 1: Change of LPRC frequency as VDD changes.  
FIGURE 24-3:  
I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-21: I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max Units  
Conditions  
Refer to Figure 24-1  
for test conditions  
DO31  
DO32  
TIOR  
Port Output Rise Time  
Port Output Fall Time  
10  
25  
25  
ns  
ns  
TIOF  
10  
Refer to Figure 24-1  
for test conditions  
DI35  
DI40  
TINP  
INTx Pin High or Low Time (output)  
CNx High or Low Time (input)  
20  
2
ns  
TRBP  
TCY  
Note 1: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 295  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 24-4:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING CHARACTERISTICS  
VDD  
SY12  
MCLR  
SY10  
Internal  
POR  
SY11  
PWRT  
Time-out  
SY30  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
SY20  
SY13  
SY13  
I/O Pins  
SY35  
FSCM  
Delay  
Note: Refer to Figure 24-1 for load conditions.  
DS70318D-page 296  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min Typ(2) Max Units  
Conditions  
SY10  
SY11  
TMCL  
MCLR Pulse Width (low)  
Power-up Timer Period  
2
μs  
-40°C to +85°C  
TPWRT  
2
4
ms  
-40°C to +85°C  
User programmable  
8
16  
32  
64  
128  
SY12  
SY13  
TPOR  
TIOZ  
Power-on Reset Delay  
3
10  
30  
μs  
μs  
-40°C to +85°C  
I/O High-Impedance from MCLR  
Low or Watchdog Timer Reset  
0.68  
0.72  
1.2  
SY20  
TWDT1  
Watchdog Timer Time-out Period  
ms  
See Section 21.4 “Watch-  
dog Timer (WDT)” and  
LPRC parameter F21  
(Table 24-20).  
SY30  
TOST  
Oscillator Start-up Time  
1024  
TOSC  
TOSC = OSC1 period  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 297  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 24-5:  
TIMER1, 2 AND 3 EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
Tx11  
Tx10  
Tx15  
Tx20  
OS60  
TMRx  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-23: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
TA10  
TA11  
TA15  
TTXH  
TTXL  
TTXP  
TxCK High Time  
TxCK Low Time  
Synchronous,  
no prescaler  
0.5 TCY + 20  
ns  
ns  
Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
Asynchronous  
10  
ns  
ns  
Synchronous,  
no prescaler  
0.5 TCY + 20  
Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
ns  
Asynchronous  
10  
ns  
ns  
TxCK Input Period Synchronous,  
no prescaler  
TCY + 40  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
N = prescale  
value  
(TCY + 40)/N  
(1, 8, 64, 256)  
Asynchronous  
20  
ns  
OS60  
TA20  
Ft1  
T1CK Oscillator Input Frequency  
Range (oscillator enabled by setting  
bit, TCS (T1CON<1>))  
DC  
50  
kHz  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
Note 1: Timer1 is a Type A.  
DS70318D-page 298  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-24: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TTXH  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
TB10  
TxCK High Time Synchronous, 0.5 TCY + 20  
no prescaler  
ns  
Must also meet  
parameter TB15  
Synchronous,  
with prescaler  
10  
ns  
ns  
ns  
ns  
TB11  
TB15  
TTXL  
TTXP  
TxCK Low Time  
Synchronous, 0.5 TCY + 20  
no prescaler  
Must also meet  
parameter TB15  
Synchronous,  
with prescaler  
10  
TxCK Input  
Period  
Synchronous,  
no prescaler  
TCY + 40  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
(TCY + 40)/N  
TB20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
TABLE 24-25: TIMER3 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
TC10  
TC11  
TC15  
TTXH  
TTXL  
TTXP  
TxCK High Time  
TxCK Low Time  
Synchronous  
Synchronous  
0.5 TCY + 20  
ns  
ns  
ns  
Must also meet  
parameter TC15  
0.5 TCY + 20  
TCY + 40  
Must also meet  
parameter TC15  
TxCK Input Period Synchronous,  
no prescaler  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
(TCY + 40)/N  
TC20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5  
TCY  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 299  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 24-6:  
INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS  
ICx  
IC10  
IC11  
IC15  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-26: INPUT CAPTURE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
IC10  
IC11  
IC15  
TccL  
TccH  
TccP  
ICx Input Low Time No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
ICx Input High Time No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ICx Input Period  
(TCY + 40)/N  
N = prescale  
value (1, 4, 16)  
Note 1: These parameters are characterized but not tested in manufacturing.  
FIGURE 24-7:  
OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS  
OCx  
(Output Compare  
or PWM Mode)  
OC10  
OC11  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
OC10 TccF  
OC11 TccR  
OCx Output Fall Time  
OCx Output Rise Time  
ns  
ns  
See parameter D032  
See parameter D031  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70318D-page 300  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 24-8:  
OCFA  
OC/PWM MODULE TIMING CHARACTERISTICS  
OC20  
OC15  
OCx  
TABLE 24-28: SIMPLE OC/PWM MODE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
OC15  
TFD  
Fault Input to PWM I/O  
Change  
50  
ns  
OC20  
TFLT  
Fault Input Pulse Width  
50  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 301  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 24-9:  
HIGH-SPEED PWM MODULE FAULT TIMING CHARACTERISTICS  
MP30  
FLTx  
MP20  
PWMx  
FIGURE 24-10:  
HIGH-SPEED PWM MODULE TIMING CHARACTERISTICS  
MP11 MP10  
PWMx  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-29: HIGH-SPEED PWM MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
MP10  
MP11  
TFPWM  
TRPWM  
TFD  
PWM Output Fall Time  
PWM Output Rise Time  
2.5  
2.5  
15  
ns  
ns  
ns  
See parameter D032  
See parameter D031  
Fault Input to PWM  
I/O Change  
MP20  
MP30  
TFH  
Minimum Pulse Width  
Tap Delay  
8
ns  
ns  
TPDLY  
ACLK  
1.04  
ACLK = 120 MHz  
PWM Input Clock  
120  
MHz  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70318D-page 302  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 24-11:  
SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP31  
SP21  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30  
MSb In  
SP40  
LSb In  
Bit 14 - - - -1  
SP41  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-30: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
See Note 3  
SP10  
SP11  
SP20  
TscL  
TscH  
TscF  
SCKx Output Low Time  
SCKx Output High Time  
SCKx Output Fall Time  
TCY/2  
TCY/2  
ns  
ns  
ns  
See Note 3  
See parameter D032  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP40  
SP41  
TscR  
TdoF  
TdoR  
SCKx Output Rise Time  
23  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter D031  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter D032  
and Note 4  
See parameter D031  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 303  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 24-12:  
SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS  
SP36  
SCKX  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKX  
(CKP = 1)  
SP35  
Bit 14 - - - - - -1  
LSb  
MSb  
SP40  
SDOX  
SP30,SP31  
Bit 14 - - - -1  
SDIX  
MSb In  
SP41  
Note: Refer to Figure 24-1 for load conditions.  
LSb In  
TABLE 24-31: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscL  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
See Note 3  
SP10  
SP11  
SP20  
SCKx Output Low Time  
SCKx Output High Time  
SCKx Output Fall Time  
TCY/2  
TCY/2  
ns  
ns  
ns  
TscH  
TscF  
See Note 3  
See parameter D032  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
TscR  
TdoF  
TdoR  
SCKx Output Rise Time  
30  
23  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter D031  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter D032  
and Note 4  
See parameter D031  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2sc,  
TdoV2scL First SCKx Edge  
SDOx Data Output Setup to  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
Input to SCKx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS70318D-page 304  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 24-13:  
SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS  
SSX  
SP52  
SP50  
SCKX  
(CKP =  
0
)
)
SP71  
SP70  
SP72  
SP73  
SP72  
SCKX  
(CKP =  
1
SP73  
LSb  
SP35  
MSb  
SDOX  
SDIX  
Bit 14 - - - - - -1  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 24-1 for load conditions.  
TABLE 24-32: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscL  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
SCKx Input Low Time  
SCKx Input High Time  
SCKx Input Fall Time  
SCKx Input Rise Time  
SDOx Data Output Fall Time  
30  
30  
10  
10  
25  
25  
ns  
ns  
ns  
ns  
ns  
TscH  
TscF  
TscR  
TdoF  
See Note 3  
See Note 3  
See parameter D032  
and Note 3  
SP31  
SP35  
SP40  
SP41  
SP50  
SP51  
SP52  
TdoR  
SDOx Data Output Rise Time  
30  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter D031  
and Note 3  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
20  
20  
TscH2diL, Hold Time of SDIx Data Input to  
TscL2diL  
SCKx Edge  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
120  
TssH2doZ SSx to SDOx Output  
10  
See Note 3  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY +40  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: Assumes 50 pF load on all SPIx pins.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 305  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 24-14:  
SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP71  
SP70  
SP72  
SP73  
SP73  
SCKx  
(CKP = 1)  
SP35  
SP72  
LSb  
SP52  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30,SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 24-1 for load conditions.  
DS70318D-page 306  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-33: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscL  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
SCKx Input Low Time  
SCKx Input High Time  
SCKx Input Fall Time  
SCKx Input Rise Time  
SDOx Data Output Fall Time  
30  
30  
10  
10  
25  
25  
ns  
ns  
ns  
ns  
ns  
TscH  
TscF  
TscR  
TdoF  
See Note 3  
See Note 3  
See parameter  
D032 and Note 3  
SP31  
SP35  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
TdoR  
SDOx Data Output Rise Time  
30  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter  
D031 and Note 3  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
20  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
TssL2scH, SSx to SCKx or SCKx ↑  
TssL2scL Input  
to SCKx Edge  
20  
120  
See Note 4  
TssH2doZ SSx to SDOX Output  
10  
1.5 TCY + 40  
High-Impedance  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, +25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 307  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 24-15:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCLx  
IM31  
IM34  
IM30  
IM33  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 24-1 for load conditions.  
FIGURE 24-16:  
I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCLx  
IM11  
IM26  
IM10  
IM33  
IM25  
SDAx  
In  
IM45  
IM40  
IM40  
SDAx  
Out  
Note: Refer to Figure 24-1 for load conditions.  
DS70318D-page 308  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-34: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min(1)  
Max  
Units  
Conditions  
IM10  
TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
pF  
1 MHz mode(2) TCY/2 (BRG + 1)  
IM11  
IM20  
IM21  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
IM40  
IM45  
IM50  
THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
300  
300  
100  
1000  
300  
300  
CB is specified to be  
from 10 pF to 400 pF  
Fall Time  
400 kHz mode  
20 + 0.1 CB  
1 MHz mode(2)  
SDAx and SCLx 100 kHz mode  
CB is specified to be  
from 10 pF to 400 pF  
Rise Time  
400 kHz mode  
20 + 0.1 CB  
1 MHz mode(2)  
250  
100  
40  
0
TSU:DAT Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
THD:DAT Data Input  
Hold Time  
0
0.9  
0.2  
TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
After this period the  
first clock pulse is  
generated  
Hold Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1)  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TAA:SCL Output Valid  
From Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
3500  
1000  
400  
TBF:SDA Bus Free Time 100 kHz mode  
400 kHz mode  
4.7  
1.3  
0.5  
Time the bus must be  
free before a new  
transmission can start  
1 MHz mode(2)  
CB  
Bus Capacitive Loading  
400  
Note 1: BRG is the value of the I2C™ Baud Rate Generator. Refer to Section 19. “Inter-Integrated Circuit  
(I2C™)” (DS70195) in the “dsPIC33F Family Reference Manual” available from the Microchip web site.  
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 309  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
FIGURE 24-17:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCLx  
IS34  
IS31  
IS30  
IS33  
SDAx  
Stop  
Condition  
Start  
Condition  
FIGURE 24-18:  
I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS21  
IS11  
IS10  
SCLx  
IS30  
IS26  
IS31  
IS33  
IS25  
SDAx  
In  
IS45  
IS40  
IS40  
SDAx  
Out  
DS70318D-page 310  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-35: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param. Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
IS10  
TLO:SCL Clock Low Time 100 kHz mode  
4.7  
μs  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1.3  
μs  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
4.0  
μs  
μs  
IS11  
THI:SCL Clock High Time 100 kHz mode  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1 MHz mode(1)  
0.6  
μs  
Device must operate at a  
minimum of 10 MHz  
0.5  
300  
300  
100  
1000  
300  
300  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
pF  
IS20  
IS21  
IS25  
IS26  
IS30  
IS31  
IS33  
IS34  
IS40  
IS45  
IS50  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 pF to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 pF to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
TSU:DAT Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
250  
100  
100  
0
THD:DAT Data Input  
Hold Time  
0
0.9  
0.3  
0
TSU:STA Start Condition  
Setup Time  
4.7  
0.6  
0.25  
4.0  
0.6  
0.25  
4.7  
0.6  
0.6  
4000  
600  
250  
0
Only relevant for Repeated  
Start condition  
THD:STA Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
THD:STO Stop Condition  
Hold Time  
TAA:SCL Output Valid  
From Clock  
3500  
1000  
350  
0
0
TBF:SDA Bus Free Time  
4.7  
1.3  
0.5  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus Capacitive Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 311  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
=
TABLE 24-36: 10-BIT HIGH-SPEED A/D MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V and 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Device Supply  
AD01  
AD02  
AVDD  
AVSS  
Module VDD Supply  
Module VSS Supply  
See the VDD specification  
(DC10) in Table 24-4  
AVSS is connected to VSS  
Analog Input  
VSS  
AD10  
AD11  
AD12  
AD13  
VINH-VINL Full-Scale Input Span  
VDD  
AVDD  
V
V
VIN  
IAD  
Absolute Input Voltage  
Operating Current  
Leakage Current  
AVSS  
8
mA  
±0.6  
μA VINL = AVSS = 0V,  
AVDD = 3.3V  
Source Impedance = 100Ω  
AD17  
RIN  
Recommended Impedance  
Of Analog Voltage Source  
100  
Ω
DC Accuracy  
10 data bits  
AD20 Nr  
Resolution  
bits  
AD21A INL  
AD22A DNL  
AD23A GERR  
AD24A EOFF  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
±0.5  
±0.5  
±0.75  
±2.0  
<±2  
<±1  
LSb See Note 2  
LSb See Note 2  
LSb See Note 2  
LSb See Note 2  
<±3.0  
<±5.0  
Offset Error  
Monotonicity(1)  
AD25  
Guaranteed  
Dynamic Performance  
AD30 THD  
Total Harmonic Distortion  
-73  
58  
dB  
dB  
AD31 SINAD  
Signal to Noise and  
Distortion  
AD32 SFDR  
Spurious Free Dynamic  
Range  
-73  
dB  
AD33  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
0.5  
MHz  
bits  
AD34 ENOB  
9.4  
Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing  
codes.  
2: This parameter is characterized under the following conditions: AVDD = 3.3V, 2.0 MSPS for dedicated S/H,  
1.5 MSPS for shared S/H. This parameter is not tested in manufacturing.  
DS70318D-page 312  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-37: 10-BIT HIGH-SPEED A/D MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ(1)  
Max.  
Units  
Conditions  
Clock Parameters  
AD50b TAD  
ADC Clock Period  
35.8  
ns  
Conversion Rate  
AD55b tCONV  
AD56b FCNV  
Conversion Time  
14 TAD  
Throughput Rate  
Devices with Single SAR  
Devices with Dual SARs  
2.0  
4.0  
Msps  
Msps  
Timing Parameters  
1.0  
AD63b tDPU  
Time to Stabilize Analog Stage  
from ADC Off to ADC On(1)  
10  
μs  
Note 1: These parameters are characterized but not tested in manufacturing.  
FIGURE 24-19:  
A/D CONVERSION TIMING PER INPUT  
Tconv  
Trigger Pulse  
TAD  
A/D Clock  
A/D Data  
9
8
2
1
0
Old Data  
New Data  
ADBUFxx  
CONV  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 313  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-38: COMPARATOR AC AND DC SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature: -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param.  
No.  
Symbol Characteristic  
Min Typ  
Max  
Units  
Comments  
VIOFF  
VICM  
Input Offset Voltage  
±5  
±15  
mV  
V
Input Common Mode  
Voltage Range(1)  
0
AVDD – 1.5  
VGAIN  
Open Loop Gain(1)  
90  
70  
db  
db  
CMRR  
Common Mode  
Rejection Ratio(1)  
TRESP  
Large Signal Response  
20  
30  
ns V+ input step of 100 mv while  
V- input held at AVDD/2. Delay  
measured from analog input pin to  
PWM output pin.  
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
TABLE 24-39: DAC DC SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature: -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param.  
No.  
Symbol Characteristic  
Min  
Typ  
Max  
Units  
Comments  
CVRSRC External Reference Voltage(1)  
0
AVDD – 1.6  
V
CVRES  
Resolution  
10  
Bits  
Transfer Function Accuracy  
Integral Nonlinearity Error  
Differential Nonlinearity Error  
Offset Error  
AVDD = 3.3V,  
LSB DACREF = (AVDD/2)V  
INL  
±1.0  
±0.8  
±2.0  
±2.0  
DNL  
EOFF  
EG  
LSB  
LSB  
LSB  
Gain Error  
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
TABLE 24-40: DAC AC SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature: -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param.  
No.  
Symbol Characteristic  
Settling Time(1)  
Min  
Typ  
Max Units  
Comments  
TSET  
650  
nsec Measured when range = 1  
(high range), and  
CMREF<9:0> transitions  
from 0x1FF to 0x300.  
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
DS70318D-page 314  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE 24-41: DAC OUTPUT BUFFER DC SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature: -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol Characteristic  
Min  
Typ  
Max  
Units  
Comments  
RLOAD  
Resistive Output Load  
Impedance  
3K  
Ω
CLOAD  
IOUT  
Output Load Capacitance  
20  
35  
pF  
Output Current Drive  
Strength  
200  
300  
400  
μA Sink and source  
VRANGE Full Output Drive Strength  
Voltage Range  
AVSS + 250  
mV  
AVDD – 900  
mV  
V
V
VLRANGE Output Drive Voltage  
Range at Reduced  
AVSS + 50 mV  
AVDD – 500  
mV  
Current Drive of 50 μA  
IDD  
Current Consumed when  
Module is Enabled,  
High-Power Mode  
1.3 x IOUT  
μA Module will always  
consume this current  
even if no load is  
connected to the  
output  
RIN  
Input Impedance  
109  
Ω
Ω
ROUTON Output Impedance when  
Module is Enabled  
10  
Closed loop output  
resistance  
ROUT-  
OFF  
Output Impedance when  
Module is Disabled  
107  
Ω
buf_enable= 0  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 315  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
NOTES:  
DS70318D-page 316  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
25.0 PACKAGING INFORMATION  
18-Lead SOIC (.300”)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
dsPIC33FJ06  
GS101-I/SO  
e
3
YYWWNNN  
0830235  
28-Lead SOIC  
Example  
dsPIC33FJ06GS  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
e
3
202-E/SO  
YYWWNNN  
0830235  
28-Lead SPDIP  
Example  
dsPIC33FJ06GS  
202-E/SP  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
e
3
YYWWNNN  
0830235  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next  
line, thus limiting the number of available characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 317  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
25.1 Package Marking Information (Continued)  
28-Lead QFN-S  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
33FJ06GS  
202EMM  
0830235  
e
3
44-Lead QFN  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
dsPIC33FJ16  
GS504-E/ML  
e
3
0830235  
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
dsPIC33FJ  
16GS504  
e
3
-E/PT  
0830235  
DS70318D-page 318  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
25.2 Package Details  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢉꢇꢐꢑꢋꢉꢌꢒꢄꢇꢓꢎꢐꢔꢇMꢇꢕꢌꢆꢄꢖꢇꢗꢘꢙꢚꢇꢏꢏꢇꢛꢜꢆ ꢇ!ꢎꢐ"#$  
%ꢜꢋꢄ& 3ꢊꢈꢄ'ꢌꢇꢄ(ꢊ"'ꢄꢋ#ꢈꢈꢇꢃ'ꢄꢓꢅꢋ4ꢅꢐꢇꢄ$ꢈꢅ+ꢂꢃꢐ")ꢄꢓꢆꢇꢅ"ꢇꢄ"ꢇꢇꢄ'ꢌꢇꢄꢔꢂꢋꢈꢊꢋꢌꢂꢓꢄ ꢅꢋ4ꢅꢐꢂꢃꢐꢄꢏꢓꢇꢋꢂ&ꢂꢋꢅ'ꢂꢊꢃꢄꢆꢊꢋꢅ'ꢇ$ꢄꢅ'ꢄ  
ꢌ''ꢓ255+++ꢁ(ꢂꢋꢈꢊꢋꢌꢂꢓꢁꢋꢊ(5ꢓꢅꢋ4ꢅꢐꢂꢃꢐ  
D
N
E
E1  
NOTE 1  
1
2
3
b
e
α
h
h
c
φ
A2  
A
β
A1  
L
L1  
6ꢃꢂ'"  
ꢔꢚ77ꢚꢔ.ꢘ.ꢙꢏ  
ꢒꢂ(ꢇꢃ"ꢂꢊꢃꢄ7ꢂ(ꢂ'"  
ꢔꢚ8  
89ꢔ  
ꢔꢗ:  
8#(*ꢇꢈꢄꢊ&ꢄ ꢂꢃ"  
 ꢂ'ꢋꢌ  
8
ꢀꢛ  
ꢀꢁꢍꢜꢄ1ꢏ-  
9!ꢇꢈꢅꢆꢆꢄ;ꢇꢂꢐꢌ'  
ꢔꢊꢆ$ꢇ$ꢄ ꢅꢋ4ꢅꢐꢇꢄꢘꢌꢂꢋ4ꢃꢇ""  
ꢏ'ꢅꢃ$ꢊ&&ꢄꢄꢎ  
M
ꢍꢁꢕ/  
ꢕꢁꢀꢕ  
M
M
M
ꢍꢁ=/  
M
ꢕꢁꢑꢕ  
ꢗꢍ  
ꢗꢀ  
.
9!ꢇꢈꢅꢆꢆꢄ>ꢂ$'ꢌ  
ꢀꢕꢁꢑꢕꢄ1ꢏ-  
ꢔꢊꢆ$ꢇ$ꢄ ꢅꢋ4ꢅꢐꢇꢄ>ꢂ$'ꢌ  
9!ꢇꢈꢅꢆꢆꢄ7ꢇꢃꢐ'ꢌ  
-ꢌꢅ(&ꢇꢈꢄ?ꢊꢓ'ꢂꢊꢃꢅꢆ@  
3ꢊꢊ'ꢄ7ꢇꢃꢐ'ꢌ  
.ꢀ  
ꢜꢁ/ꢕꢄ1ꢏ-  
ꢀꢀꢁ//ꢄ1ꢏ-  
ꢕꢁꢍ/  
ꢕꢁꢖꢕ  
M
M
ꢕꢁꢜ/  
ꢀꢁꢍꢜ  
7
3ꢊꢊ'ꢓꢈꢂꢃ'  
3ꢊꢊ'ꢄꢗꢃꢐꢆꢇ  
7ꢇꢅ$ꢄꢘꢌꢂꢋ4ꢃꢇ""  
7ꢇꢅ$ꢄ>ꢂ$'ꢌ  
ꢔꢊꢆ$ꢄꢒꢈꢅ&'ꢄꢗꢃꢐꢆꢇꢄ  
ꢔꢊꢆ$ꢄꢒꢈꢅ&'ꢄꢗꢃꢐꢆꢇꢄ1ꢊ''ꢊ(  
7ꢀ  
ꢀꢁꢖꢕꢄꢙ.3  
ꢕꢝ  
ꢕꢁꢍꢕ  
ꢕꢁꢑꢀ  
/ꢝ  
M
M
M
M
M
ꢛꢝ  
*
ꢕꢁꢑꢑ  
ꢕꢁ/ꢀ  
ꢀ/ꢝ  
/ꢝ  
ꢀ/ꢝ  
%ꢜꢋꢄꢊ&  
ꢀꢁ  ꢂꢃꢄꢀꢄ!ꢂ"#ꢅꢆꢄꢂꢃ$ꢇ%ꢄ&ꢇꢅ'#ꢈꢇꢄ(ꢅꢉꢄ!ꢅꢈꢉ)ꢄ*#'ꢄ(#"'ꢄ*ꢇꢄꢆꢊꢋꢅ'ꢇ$ꢄ+ꢂ'ꢌꢂꢃꢄ'ꢌꢇꢄꢌꢅ'ꢋꢌꢇ$ꢄꢅꢈꢇꢅꢁ  
ꢍꢁ ꢎꢄꢏꢂꢐꢃꢂ&ꢂꢋꢅꢃ'ꢄ-ꢌꢅꢈꢅꢋ'ꢇꢈꢂ"'ꢂꢋꢁ  
ꢑꢁ ꢒꢂ(ꢇꢃ"ꢂꢊꢃ"ꢄꢒꢄꢅꢃ$ꢄ.ꢀꢄ$ꢊꢄꢃꢊ'ꢄꢂꢃꢋꢆ#$ꢇꢄ(ꢊꢆ$ꢄ&ꢆꢅ"ꢌꢄꢊꢈꢄꢓꢈꢊ'ꢈ#"ꢂꢊꢃ"ꢁꢄꢔꢊꢆ$ꢄ&ꢆꢅ"ꢌꢄꢊꢈꢄꢓꢈꢊ'ꢈ#"ꢂꢊꢃ"ꢄ"ꢌꢅꢆꢆꢄꢃꢊ'ꢄꢇ%ꢋꢇꢇ$ꢄꢕꢁꢀ/ꢄ((ꢄꢓꢇꢈꢄ"ꢂ$ꢇꢁ  
ꢖꢁ ꢒꢂ(ꢇꢃ"ꢂꢊꢃꢂꢃꢐꢄꢅꢃ$ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢂꢃꢐꢄꢓꢇꢈꢄꢗꢏꢔ.ꢄ0ꢀꢖꢁ/ꢔꢁ  
1ꢏ-2 1ꢅ"ꢂꢋꢄꢒꢂ(ꢇꢃ"ꢂꢊꢃꢁꢄꢘꢌꢇꢊꢈꢇ'ꢂꢋꢅꢆꢆꢉꢄꢇ%ꢅꢋ'ꢄ!ꢅꢆ#ꢇꢄ"ꢌꢊ+ꢃꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ"ꢁ  
ꢙ.32 ꢙꢇ&ꢇꢈꢇꢃꢋꢇꢄꢒꢂ(ꢇꢃ"ꢂꢊꢃ)ꢄ#"#ꢅꢆꢆꢉꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ)ꢄ&ꢊꢈꢄꢂꢃ&ꢊꢈ(ꢅ'ꢂꢊꢃꢄꢓ#ꢈꢓꢊ"ꢇ"ꢄꢊꢃꢆꢉꢁ  
ꢔꢂꢋꢈꢊꢋꢌꢂꢓ ꢋꢌꢃꢊꢆꢊꢐꢉ ꢒꢈꢅ+ꢂꢃꢐ -ꢕꢖꢞꢕ/ꢀ1  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 319  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
'ꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢉꢇꢐꢑꢋꢉꢌꢒꢄꢇꢓꢎꢐꢔꢇMꢇꢕꢌꢆꢄꢖꢇꢗꢘꢙꢚꢇꢏꢏꢇꢛꢜꢆ ꢇ!ꢎꢐ"#$  
%ꢜꢋꢄ& 3ꢊꢈꢄ'ꢌꢇꢄ(ꢊ"'ꢄꢋ#ꢈꢈꢇꢃ'ꢄꢓꢅꢋ4ꢅꢐꢇꢄ$ꢈꢅ+ꢂꢃꢐ")ꢄꢓꢆꢇꢅ"ꢇꢄ"ꢇꢇꢄ'ꢌꢇꢄꢔꢂꢋꢈꢊꢋꢌꢂꢓꢄ ꢅꢋ4ꢅꢐꢂꢃꢐꢄꢏꢓꢇꢋꢂ&ꢂꢋꢅ'ꢂꢊꢃꢄꢆꢊꢋꢅ'ꢇ$ꢄꢅ'ꢄ  
ꢌ''ꢓ255+++ꢁ(ꢂꢋꢈꢊꢋꢌꢂꢓꢁꢋꢊ(5ꢓꢅꢋ4ꢅꢐꢂꢃꢐ  
D
N
E
E1  
NOTE 1  
1
2
3
e
b
h
α
h
c
φ
A2  
A
L
A1  
L1  
β
6ꢃꢂ'"  
ꢔꢚ77ꢚꢔ.ꢘ.ꢙꢏ  
ꢒꢂ(ꢇꢃ"ꢂꢊꢃꢄ7ꢂ(ꢂ'"  
ꢔꢚ8  
89ꢔ  
ꢔꢗ:  
8#(*ꢇꢈꢄꢊ&ꢄ ꢂꢃ"  
 ꢂ'ꢋꢌ  
8
ꢍꢛ  
ꢀꢁꢍꢜꢄ1ꢏ-  
9!ꢇꢈꢅꢆꢆꢄ;ꢇꢂꢐꢌ'  
ꢔꢊꢆ$ꢇ$ꢄ ꢅꢋ4ꢅꢐꢇꢄꢘꢌꢂꢋ4ꢃꢇ""  
ꢏ'ꢅꢃ$ꢊ&&ꢄꢄꢎ  
M
ꢍꢁꢕ/  
ꢕꢁꢀꢕ  
M
M
M
ꢍꢁ=/  
M
ꢕꢁꢑꢕ  
ꢗꢍ  
ꢗꢀ  
.
9!ꢇꢈꢅꢆꢆꢄ>ꢂ$'ꢌ  
ꢀꢕꢁꢑꢕꢄ1ꢏ-  
ꢔꢊꢆ$ꢇ$ꢄ ꢅꢋ4ꢅꢐꢇꢄ>ꢂ$'ꢌ  
9!ꢇꢈꢅꢆꢆꢄ7ꢇꢃꢐ'ꢌ  
-ꢌꢅ(&ꢇꢈꢄ?ꢊꢓ'ꢂꢊꢃꢅꢆ@  
3ꢊꢊ'ꢄ7ꢇꢃꢐ'ꢌ  
.ꢀ  
ꢜꢁ/ꢕꢄ1ꢏ-  
ꢀꢜꢁꢟꢕꢄ1ꢏ-  
ꢕꢁꢍ/  
ꢕꢁꢖꢕ  
M
M
ꢕꢁꢜ/  
ꢀꢁꢍꢜ  
7
3ꢊꢊ'ꢓꢈꢂꢃ'  
7ꢀ  
ꢀꢁꢖꢕꢄꢙ.3  
3ꢊꢊ'ꢄꢗꢃꢐꢆꢇꢄ  
7ꢇꢅ$ꢄꢘꢌꢂꢋ4ꢃꢇ""  
7ꢇꢅ$ꢄ>ꢂ$'ꢌ  
ꢔꢊꢆ$ꢄꢒꢈꢅ&'ꢄꢗꢃꢐꢆꢇꢄ  
ꢔꢊꢆ$ꢄꢒꢈꢅ&'ꢄꢗꢃꢐꢆꢇꢄ1ꢊ''ꢊ(  
ꢕꢝ  
ꢕꢁꢀꢛ  
ꢕꢁꢑꢀ  
/ꢝ  
M
M
M
M
M
ꢛꢝ  
*
ꢕꢁꢑꢑ  
ꢕꢁ/ꢀ  
ꢀ/ꢝ  
/ꢝ  
ꢀ/ꢝ  
%ꢜꢋꢄꢊ&  
ꢀꢁ  ꢂꢃꢄꢀꢄ!ꢂ"#ꢅꢆꢄꢂꢃ$ꢇ%ꢄ&ꢇꢅ'#ꢈꢇꢄ(ꢅꢉꢄ!ꢅꢈꢉ)ꢄ*#'ꢄ(#"'ꢄ*ꢇꢄꢆꢊꢋꢅ'ꢇ$ꢄ+ꢂ'ꢌꢂꢃꢄ'ꢌꢇꢄꢌꢅ'ꢋꢌꢇ$ꢄꢅꢈꢇꢅꢁ  
ꢍꢁ ꢎꢄꢏꢂꢐꢃꢂ&ꢂꢋꢅꢃ'ꢄ-ꢌꢅꢈꢅꢋ'ꢇꢈꢂ"'ꢂꢋꢁ  
ꢑꢁ ꢒꢂ(ꢇꢃ"ꢂꢊꢃ"ꢄꢒꢄꢅꢃ$ꢄ.ꢀꢄ$ꢊꢄꢃꢊ'ꢄꢂꢃꢋꢆ#$ꢇꢄ(ꢊꢆ$ꢄ&ꢆꢅ"ꢌꢄꢊꢈꢄꢓꢈꢊ'ꢈ#"ꢂꢊꢃ"ꢁꢄꢔꢊꢆ$ꢄ&ꢆꢅ"ꢌꢄꢊꢈꢄꢓꢈꢊ'ꢈ#"ꢂꢊꢃ"ꢄ"ꢌꢅꢆꢆꢄꢃꢊ'ꢄꢇ%ꢋꢇꢇ$ꢄꢕꢁꢀ/ꢄ((ꢄꢓꢇꢈꢄ"ꢂ$ꢇꢁ  
ꢖꢁ ꢒꢂ(ꢇꢃ"ꢂꢊꢃꢂꢃꢐꢄꢅꢃ$ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢂꢃꢐꢄꢓꢇꢈꢄꢗꢏꢔ.ꢄ0ꢀꢖꢁ/ꢔꢁ  
1ꢏ-2 1ꢅ"ꢂꢋꢄꢒꢂ(ꢇꢃ"ꢂꢊꢃꢁꢄꢘꢌꢇꢊꢈꢇ'ꢂꢋꢅꢆꢆꢉꢄꢇ%ꢅꢋ'ꢄ!ꢅꢆ#ꢇꢄ"ꢌꢊ+ꢃꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ"ꢁ  
ꢙ.32 ꢙꢇ&ꢇꢈꢇꢃꢋꢇꢄꢒꢂ(ꢇꢃ"ꢂꢊꢃ)ꢄ#"#ꢅꢆꢆꢉꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ)ꢄ&ꢊꢈꢄꢂꢃ&ꢊꢈ(ꢅ'ꢂꢊꢃꢄꢓ#ꢈꢓꢊ"ꢇ"ꢄꢊꢃꢆꢉꢁ  
ꢔꢂꢋꢈꢊꢋꢌꢂꢓ ꢋꢌꢃꢊꢆꢊꢐꢉ ꢒꢈꢅ+ꢂꢃꢐ -ꢕꢖꢞꢕ/ꢍ1  
DS70318D-page 320  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
'ꢁꢂꢃꢄꢅꢆꢇꢎ(ꢌꢒꢒ ꢇꢈꢉꢅꢊꢋꢌꢍꢇ)ꢑꢅꢉꢇ"ꢒꢂꢃꢌꢒꢄꢇꢓꢎꢈꢔꢇMꢇ*ꢚꢚꢇꢏꢌꢉꢇꢛꢜꢆ ꢇ!ꢎꢈ)"ꢈ$  
%ꢜꢋꢄ& 3ꢊꢈꢄ'ꢌꢇꢄ(ꢊ"'ꢄꢋ#ꢈꢈꢇꢃ'ꢄꢓꢅꢋ4ꢅꢐꢇꢄ$ꢈꢅ+ꢂꢃꢐ")ꢄꢓꢆꢇꢅ"ꢇꢄ"ꢇꢇꢄ'ꢌꢇꢄꢔꢂꢋꢈꢊꢋꢌꢂꢓꢄ ꢅꢋ4ꢅꢐꢂꢃꢐꢄꢏꢓꢇꢋꢂ&ꢂꢋꢅ'ꢂꢊꢃꢄꢆꢊꢋꢅ'ꢇ$ꢄꢅ'ꢄ  
ꢌ''ꢓ255+++ꢁ(ꢂꢋꢈꢊꢋꢌꢂꢓꢁꢋꢊ(5ꢓꢅꢋ4ꢅꢐꢂꢃꢐ  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
6ꢃꢂ'"  
ꢒꢂ(ꢇꢃ"ꢂꢊꢃꢄ7ꢂ(ꢂ'"  
ꢚ8-;.ꢏ  
89ꢔ  
ꢍꢛ  
ꢁꢀꢕꢕꢄ1ꢏ-  
M
ꢔꢚ8  
ꢔꢗ:  
8#(*ꢇꢈꢄꢊ&ꢄ ꢂꢃ"  
 ꢂ'ꢋꢌ  
8
ꢓꢄ'ꢊꢄꢏꢇꢅ'ꢂꢃꢐꢄ ꢆꢅꢃꢇ  
M
ꢁꢍꢕꢕ  
ꢁꢀ/ꢕ  
M
ꢔꢊꢆ$ꢇ$ꢄ ꢅꢋ4ꢅꢐꢇꢄꢘꢌꢂꢋ4ꢃꢇ""  
1ꢅ"ꢇꢄ'ꢊꢄꢏꢇꢅ'ꢂꢃꢐꢄ ꢆꢅꢃꢇ  
ꢏꢌꢊ#ꢆ$ꢇꢈꢄ'ꢊꢄꢏꢌꢊ#ꢆ$ꢇꢈꢄ>ꢂ$'ꢌ  
ꢔꢊꢆ$ꢇ$ꢄ ꢅꢋ4ꢅꢐꢇꢄ>ꢂ$'ꢌ  
9!ꢇꢈꢅꢆꢆꢄ7ꢇꢃꢐ'ꢌ  
ꢘꢂꢓꢄ'ꢊꢄꢏꢇꢅ'ꢂꢃꢐꢄ ꢆꢅꢃꢇ  
7ꢇꢅ$ꢄꢘꢌꢂꢋ4ꢃꢇ""  
6ꢓꢓꢇꢈꢄ7ꢇꢅ$ꢄ>ꢂ$'ꢌ  
ꢗꢍ  
ꢗꢀ  
.
.ꢀ  
7
*ꢀ  
*
ꢇ1  
ꢁꢀꢍꢕ  
ꢁꢕꢀ/  
ꢁꢍꢟꢕ  
ꢁꢍꢖꢕ  
ꢀꢁꢑꢖ/  
ꢁꢀꢀꢕ  
ꢁꢕꢕꢛ  
ꢁꢕꢖꢕ  
ꢁꢕꢀꢖ  
M
ꢁꢀꢑ/  
M
ꢁꢑꢀꢕ  
ꢁꢍꢛ/  
ꢀꢁꢑ=/  
ꢁꢀꢑꢕ  
ꢁꢕꢀꢕ  
ꢁꢕ/ꢕ  
ꢁꢕꢀꢛ  
M
ꢁꢑꢑ/  
ꢁꢍꢟ/  
ꢀꢁꢖꢕꢕ  
ꢁꢀ/ꢕ  
ꢁꢕꢀ/  
ꢁꢕꢜꢕ  
ꢁꢕꢍꢍ  
ꢁꢖꢑꢕ  
7ꢊ+ꢇꢈꢄ7ꢇꢅ$ꢄ>ꢂ$'ꢌ  
9!ꢇꢈꢅꢆꢆꢄꢙꢊ+ꢄꢏꢓꢅꢋꢂꢃꢐꢄꢄꢎ  
%ꢜꢋꢄꢊ&  
ꢀꢁ  ꢂꢃꢄꢀꢄ!ꢂ"#ꢅꢆꢄꢂꢃ$ꢇ%ꢄ&ꢇꢅ'#ꢈꢇꢄ(ꢅꢉꢄ!ꢅꢈꢉ)ꢄ*#'ꢄ(#"'ꢄ*ꢇꢄꢆꢊꢋꢅ'ꢇ$ꢄ+ꢂ'ꢌꢂꢃꢄ'ꢌꢇꢄꢌꢅ'ꢋꢌꢇ$ꢄꢅꢈꢇꢅꢁ  
ꢍꢁ ꢎꢄꢏꢂꢐꢃꢂ&ꢂꢋꢅꢃ'ꢄ-ꢌꢅꢈꢅꢋ'ꢇꢈꢂ"'ꢂꢋꢁ  
ꢑꢁ ꢒꢂ(ꢇꢃ"ꢂꢊꢃ"ꢄꢒꢄꢅꢃ$ꢄ.ꢀꢄ$ꢊꢄꢃꢊ'ꢄꢂꢃꢋꢆ#$ꢇꢄ(ꢊꢆ$ꢄ&ꢆꢅ"ꢌꢄꢊꢈꢄꢓꢈꢊ'ꢈ#"ꢂꢊꢃ"ꢁꢄꢔꢊꢆ$ꢄ&ꢆꢅ"ꢌꢄꢊꢈꢄꢓꢈꢊ'ꢈ#"ꢂꢊꢃ"ꢄ"ꢌꢅꢆꢆꢄꢃꢊ'ꢄꢇ%ꢋꢇꢇ$ꢄꢁꢕꢀꢕBꢄꢓꢇꢈꢄ"ꢂ$ꢇꢁ  
ꢖꢁ ꢒꢂ(ꢇꢃ"ꢂꢊꢃꢂꢃꢐꢄꢅꢃ$ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢂꢃꢐꢄꢓꢇꢈꢄꢗꢏꢔ.ꢄ0ꢀꢖꢁ/ꢔꢁ  
1ꢏ-2 1ꢅ"ꢂꢋꢄꢒꢂ(ꢇꢃ"ꢂꢊꢃꢁꢄꢘꢌꢇꢊꢈꢇ'ꢂꢋꢅꢆꢆꢉꢄꢇ%ꢅꢋ'ꢄ!ꢅꢆ#ꢇꢄ"ꢌꢊ+ꢃꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ"ꢁ  
ꢔꢂꢋꢈꢊꢋꢌꢂꢓ ꢋꢌꢃꢊꢆꢊꢐꢉ ꢒꢈꢅ+ꢂꢃꢐ -ꢕꢖꢞꢕꢜꢕ1  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 321  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
'ꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ+ꢑꢅꢆꢇ,ꢉꢅꢋꢖꢇ%ꢜꢇꢃꢄꢅꢆꢇꢈꢅꢍ(ꢅ-ꢄꢇꢓ..ꢔꢇMꢇ/0/0ꢚꢘ1ꢇꢏꢏꢇꢛꢜꢆ ꢇ!+,%ꢂꢎ$  
2ꢌꢋ3ꢇꢚꢘ4ꢚꢇꢏꢏꢇ#ꢜꢒꢋꢅꢍꢋꢇꢃꢄꢒ-ꢋ3  
%ꢜꢋꢄ& 3ꢊꢈꢄ'ꢌꢇꢄ(ꢊ"'ꢄꢋ#ꢈꢈꢇꢃ'ꢄꢓꢅꢋ4ꢅꢐꢇꢄ$ꢈꢅ+ꢂꢃꢐ")ꢄꢓꢆꢇꢅ"ꢇꢄ"ꢇꢇꢄ'ꢌꢇꢄꢔꢂꢋꢈꢊꢋꢌꢂꢓꢄ ꢅꢋ4ꢅꢐꢂꢃꢐꢄꢏꢓꢇꢋꢂ&ꢂꢋꢅ'ꢂꢊꢃꢄꢆꢊꢋꢅ'ꢇ$ꢄꢅ'ꢄ  
ꢌ''ꢓ255+++ꢁ(ꢂꢋꢈꢊꢋꢌꢂꢓꢁꢋꢊ(5ꢓꢅꢋ4ꢅꢐꢂꢃꢐ  
D2  
D
EXPOSED  
PAD  
e
E2  
E
b
2
1
2
1
K
N
N
L
NOTE 1  
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
6ꢃꢂ'"  
ꢒꢂ(ꢇꢃ"ꢂꢊꢃꢄ7ꢂ(ꢂ'"  
ꢔꢚ77ꢚꢔ.ꢘ.ꢙꢏ  
89ꢔ  
ꢔꢚ8  
ꢔꢗ:  
8#(*ꢇꢈꢄꢊ&ꢄ ꢂꢃ"  
 ꢂ'ꢋꢌ  
9!ꢇꢈꢅꢆꢆꢄ;ꢇꢂꢐꢌ'  
ꢏ'ꢅꢃ$ꢊ&&ꢄ  
-ꢊꢃ'ꢅꢋ'ꢄꢘꢌꢂꢋ4ꢃꢇ""  
9!ꢇꢈꢅꢆꢆꢄ>ꢂ$'ꢌ  
.%ꢓꢊ"ꢇ$ꢄ ꢅ$ꢄ>ꢂ$'ꢌ  
9!ꢇꢈꢅꢆꢆꢄ7ꢇꢃꢐ'ꢌ  
.%ꢓꢊ"ꢇ$ꢄ ꢅ$ꢄ7ꢇꢃꢐ'ꢌ  
-ꢊꢃ'ꢅꢋ'ꢄ>ꢂ$'ꢌ  
-ꢊꢃ'ꢅꢋ'ꢄ7ꢇꢃꢐ'ꢌ  
-ꢊꢃ'ꢅꢋ'ꢞ'ꢊꢞ.%ꢓꢊ"ꢇ$ꢄ ꢅ$  
8
ꢗꢀ  
ꢗꢑ  
.
.ꢍ  
ꢍꢛ  
ꢕꢁ=/ꢄ1ꢏ-  
ꢕꢁꢟꢕ  
ꢕꢁꢛꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕ/  
ꢕꢁꢕꢍ  
ꢕꢁꢍꢕꢄꢙ.3  
=ꢁꢕꢕꢄ1ꢏ-  
ꢑꢁꢜꢕ  
=ꢁꢕꢕꢄ1ꢏ-  
ꢑꢁꢜꢕ  
ꢕꢁꢑꢛ  
ꢕꢁꢖꢕ  
M
ꢑꢁ=/  
ꢖꢁꢜꢕ  
ꢒꢍ  
*
7
ꢑꢁ=/  
ꢕꢁꢍꢑ  
ꢕꢁꢑꢕ  
ꢕꢁꢍꢕ  
ꢖꢁꢜꢕ  
ꢕꢁꢖꢑ  
ꢕꢁ/ꢕ  
M
C
%ꢜꢋꢄꢊ&  
ꢀꢁ  ꢂꢃꢄꢀꢄ!ꢂ"#ꢅꢆꢄꢂꢃ$ꢇ%ꢄ&ꢇꢅ'#ꢈꢇꢄ(ꢅꢉꢄ!ꢅꢈꢉ)ꢄ*#'ꢄ(#"'ꢄ*ꢇꢄꢆꢊꢋꢅ'ꢇ$ꢄ+ꢂ'ꢌꢂꢃꢄ'ꢌꢇꢄꢌꢅ'ꢋꢌꢇ$ꢄꢅꢈꢇꢅꢁ  
ꢍꢁ  ꢅꢋ4ꢅꢐꢇꢄꢂ"ꢄ"ꢅ+ꢄ"ꢂꢃꢐ#ꢆꢅ'ꢇ$ꢁ  
ꢑꢁ ꢒꢂ(ꢇꢃ"ꢂꢊꢃꢂꢃꢐꢄꢅꢃ$ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢂꢃꢐꢄꢓꢇꢈꢄꢗꢏꢔ.ꢄ0ꢀꢖꢁ/ꢔꢁ  
1ꢏ-2 1ꢅ"ꢂꢋꢄꢒꢂ(ꢇꢃ"ꢂꢊꢃꢁꢄꢘꢌꢇꢊꢈꢇ'ꢂꢋꢅꢆꢆꢉꢄꢇ%ꢅꢋ'ꢄ!ꢅꢆ#ꢇꢄ"ꢌꢊ+ꢃꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ"ꢁ  
ꢙ.32 ꢙꢇ&ꢇꢈꢇꢃꢋꢇꢄꢒꢂ(ꢇꢃ"ꢂꢊꢃ)ꢄ#"#ꢅꢆꢆꢉꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ)ꢄ&ꢊꢈꢄꢂꢃ&ꢊꢈ(ꢅ'ꢂꢊꢃꢄꢓ#ꢈꢓꢊ"ꢇ"ꢄꢊꢃꢆꢉꢁ  
ꢔꢂꢋꢈꢊꢋꢌꢂꢓ ꢋꢌꢃꢊꢆꢊꢐꢉ ꢒꢈꢅ+ꢂꢃꢐ -ꢕꢖꢞꢀꢍꢖ1  
DS70318D-page 322  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
'ꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ+ꢑꢅꢆꢇ,ꢉꢅꢋꢖꢇ%ꢜꢇꢃꢄꢅꢆꢇꢈꢅꢍ(ꢅ-ꢄꢇꢓ..ꢔꢇMꢇ/0/0ꢚꢘ1ꢇꢏꢏꢇꢛꢜꢆ ꢇ!+,%ꢂꢎ$  
2ꢌꢋ3ꢇꢚꢘ4ꢚꢇꢏꢏꢇ#ꢜꢒꢋꢅꢍꢋꢇꢃꢄꢒ-ꢋ3  
%ꢜꢋꢄ& 3ꢊꢈꢄ'ꢌꢇꢄ(ꢊ"'ꢄꢋ#ꢈꢈꢇꢃ'ꢄꢓꢅꢋ4ꢅꢐꢇꢄ$ꢈꢅ+ꢂꢃꢐ")ꢄꢓꢆꢇꢅ"ꢇꢄ"ꢇꢇꢄ'ꢌꢇꢄꢔꢂꢋꢈꢊꢋꢌꢂꢓꢄ ꢅꢋ4ꢅꢐꢂꢃꢐꢄꢏꢓꢇꢋꢂ&ꢂꢋꢅ'ꢂꢊꢃꢄꢆꢊꢋꢅ'ꢇ$ꢄꢅ'ꢄ  
ꢌ''ꢓ255+++ꢁ(ꢂꢋꢈꢊꢋꢌꢂꢓꢁꢋꢊ(5ꢓꢅꢋ4ꢅꢐꢂꢃꢐ  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 323  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
44ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ+ꢑꢅꢆꢇ,ꢉꢅꢋꢖꢇ%ꢜꢇꢃꢄꢅꢆꢇꢈꢅꢍ(ꢅ-ꢄꢇꢓ.ꢃꢔꢇMꢇꢁ0ꢁꢇꢏꢏꢇꢛꢜꢆ ꢇ!+,%$  
%ꢜꢋꢄ& 3ꢊꢈꢄ'ꢌꢇꢄ(ꢊ"'ꢄꢋ#ꢈꢈꢇꢃ'ꢄꢓꢅꢋ4ꢅꢐꢇꢄ$ꢈꢅ+ꢂꢃꢐ")ꢄꢓꢆꢇꢅ"ꢇꢄ"ꢇꢇꢄ'ꢌꢇꢄꢔꢂꢋꢈꢊꢋꢌꢂꢓꢄ ꢅꢋ4ꢅꢐꢂꢃꢐꢄꢏꢓꢇꢋꢂ&ꢂꢋꢅ'ꢂꢊꢃꢄꢆꢊꢋꢅ'ꢇ$ꢄꢅ'ꢄ  
ꢌ''ꢓ255+++ꢁ(ꢂꢋꢈꢊꢋꢌꢂꢓꢁꢋꢊ(5ꢓꢅꢋ4ꢅꢐꢂꢃꢐ  
D2  
D
EXPOSED  
PAD  
e
b
K
E
E2  
2
1
2
1
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
6ꢃꢂ'"  
ꢔꢚ77ꢚꢔ.ꢘ.ꢙꢏ  
ꢒꢂ(ꢇꢃ"ꢂꢊꢃꢄ7ꢂ(ꢂ'"  
ꢔꢚ8  
89ꢔ  
ꢖꢖ  
ꢕꢁ=/ꢄ1ꢏ-  
ꢕꢁꢟꢕ  
ꢔꢗ:  
8#(*ꢇꢈꢄꢊ&ꢄ ꢂꢃ"  
 ꢂ'ꢋꢌ  
9!ꢇꢈꢅꢆꢆꢄ;ꢇꢂꢐꢌ'  
ꢏ'ꢅꢃ$ꢊ&&ꢄ  
-ꢊꢃ'ꢅꢋ'ꢄꢘꢌꢂꢋ4ꢃꢇ""  
9!ꢇꢈꢅꢆꢆꢄ>ꢂ$'ꢌ  
8
ꢗꢀ  
ꢗꢑ  
.
.ꢍ  
ꢕꢁꢛꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕ/  
ꢕꢁꢕꢍ  
ꢕꢁꢍꢕꢄꢙ.3  
ꢛꢁꢕꢕꢄ1ꢏ-  
=ꢁꢖ/  
ꢛꢁꢕꢕꢄ1ꢏ-  
=ꢁꢖ/  
ꢕꢁꢑꢕ  
ꢕꢁꢖꢕ  
M
.%ꢓꢊ"ꢇ$ꢄ ꢅ$ꢄ>ꢂ$'ꢌ  
9!ꢇꢈꢅꢆꢆꢄ7ꢇꢃꢐ'ꢌ  
.%ꢓꢊ"ꢇ$ꢄ ꢅ$ꢄ7ꢇꢃꢐ'ꢌ  
-ꢊꢃ'ꢅꢋ'ꢄ>ꢂ$'ꢌ  
-ꢊꢃ'ꢅꢋ'ꢄ7ꢇꢃꢐ'ꢌ  
-ꢊꢃ'ꢅꢋ'ꢞ'ꢊꢞ.%ꢓꢊ"ꢇ$ꢄ ꢅ$  
=ꢁꢑꢕ  
=ꢁꢛꢕ  
ꢒꢍ  
*
7
=ꢁꢑꢕ  
ꢕꢁꢍ/  
ꢕꢁꢑꢕ  
ꢕꢁꢍꢕ  
=ꢁꢛꢕ  
ꢕꢁꢑꢛ  
ꢕꢁ/ꢕ  
M
C
%ꢜꢋꢄꢊ&  
ꢀꢁ  ꢂꢃꢄꢀꢄ!ꢂ"#ꢅꢆꢄꢂꢃ$ꢇ%ꢄ&ꢇꢅ'#ꢈꢇꢄ(ꢅꢉꢄ!ꢅꢈꢉ)ꢄ*#'ꢄ(#"'ꢄ*ꢇꢄꢆꢊꢋꢅ'ꢇ$ꢄ+ꢂ'ꢌꢂꢃꢄ'ꢌꢇꢄꢌꢅ'ꢋꢌꢇ$ꢄꢅꢈꢇꢅꢁ  
ꢍꢁ  ꢅꢋ4ꢅꢐꢇꢄꢂ"ꢄ"ꢅ+ꢄ"ꢂꢃꢐ#ꢆꢅ'ꢇ$ꢁ  
ꢑꢁ ꢒꢂ(ꢇꢃ"ꢂꢊꢃꢂꢃꢐꢄꢅꢃ$ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢂꢃꢐꢄꢓꢇꢈꢄꢗꢏꢔ.ꢄ0ꢀꢖꢁ/ꢔꢁ  
1ꢏ-2 1ꢅ"ꢂꢋꢄꢒꢂ(ꢇꢃ"ꢂꢊꢃꢁꢄꢘꢌꢇꢊꢈꢇ'ꢂꢋꢅꢆꢆꢉꢄꢇ%ꢅꢋ'ꢄ!ꢅꢆ#ꢇꢄ"ꢌꢊ+ꢃꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ"ꢁ  
ꢙ.32 ꢙꢇ&ꢇꢈꢇꢃꢋꢇꢄꢒꢂ(ꢇꢃ"ꢂꢊꢃ)ꢄ#"#ꢅꢆꢆꢉꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ)ꢄ&ꢊꢈꢄꢂꢃ&ꢊꢈ(ꢅ'ꢂꢊꢃꢄꢓ#ꢈꢓꢊ"ꢇ"ꢄꢊꢃꢆꢉꢁ  
ꢔꢂꢋꢈꢊꢋꢌꢂꢓ ꢋꢌꢃꢊꢆꢊꢐꢉ ꢒꢈꢅ+ꢂꢃꢐ -ꢕꢖꢞꢀꢕꢑ1  
DS70318D-page 324  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
44ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ+ꢑꢅꢆꢇ,ꢉꢅꢋꢖꢇ%ꢜꢇꢃꢄꢅꢆꢇꢈꢅꢍ(ꢅ-ꢄꢇꢓ.ꢃꢔꢇMꢇꢁ0ꢁꢇꢏꢏꢇꢛꢜꢆ ꢇ!+,%$  
%ꢜꢋꢄ& 3ꢊꢈꢄ'ꢌꢇꢄ(ꢊ"'ꢄꢋ#ꢈꢈꢇꢃ'ꢄꢓꢅꢋ4ꢅꢐꢇꢄ$ꢈꢅ+ꢂꢃꢐ")ꢄꢓꢆꢇꢅ"ꢇꢄ"ꢇꢇꢄ'ꢌꢇꢄꢔꢂꢋꢈꢊꢋꢌꢂꢓꢄ ꢅꢋ4ꢅꢐꢂꢃꢐꢄꢏꢓꢇꢋꢂ&ꢂꢋꢅ'ꢂꢊꢃꢄꢆꢊꢋꢅ'ꢇ$ꢄꢅ'ꢄ  
ꢌ''ꢓ255+++ꢁ(ꢂꢋꢈꢊꢋꢌꢂꢓꢁꢋꢊ(5ꢓꢅꢋ4ꢅꢐꢂꢃꢐ  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 325  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
44ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ53ꢌꢒꢇ+ꢑꢅꢆꢇ,ꢉꢅꢋ6ꢅꢍ(ꢇꢓꢈ5ꢔꢇMꢇꢀꢚ0ꢀꢚ0ꢀꢇꢏꢏꢇꢛꢜꢆ ꢖꢇ'ꢘꢚꢚꢇꢏꢏꢇ!5+,ꢈ$  
%ꢜꢋꢄ& 3ꢊꢈꢄ'ꢌꢇꢄ(ꢊ"'ꢄꢋ#ꢈꢈꢇꢃ'ꢄꢓꢅꢋ4ꢅꢐꢇꢄ$ꢈꢅ+ꢂꢃꢐ")ꢄꢓꢆꢇꢅ"ꢇꢄ"ꢇꢇꢄ'ꢌꢇꢄꢔꢂꢋꢈꢊꢋꢌꢂꢓꢄ ꢅꢋ4ꢅꢐꢂꢃꢐꢄꢏꢓꢇꢋꢂ&ꢂꢋꢅ'ꢂꢊꢃꢄꢆꢊꢋꢅ'ꢇ$ꢄꢅ'ꢄ  
ꢌ''ꢓ255+++ꢁ(ꢂꢋꢈꢊꢋꢌꢂꢓꢁꢋꢊ(5ꢓꢅꢋ4ꢅꢐꢂꢃꢐ  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
β
A1  
L
L1  
6ꢃꢂ'"  
ꢔꢚ77ꢚꢔ.ꢘ.ꢙꢏ  
ꢒꢂ(ꢇꢃ"ꢂꢊꢃꢄ7ꢂ(ꢂ'"  
ꢔꢚ8  
89ꢔ  
ꢖꢖ  
ꢕꢁꢛꢕꢄ1ꢏ-  
M
ꢀꢁꢕꢕ  
M
ꢔꢗ:  
8#(*ꢇꢈꢄꢊ&ꢄ7ꢇꢅ$"  
7ꢇꢅ$ꢄ ꢂ'ꢋꢌ  
9!ꢇꢈꢅꢆꢆꢄ;ꢇꢂꢐꢌ'  
ꢔꢊꢆ$ꢇ$ꢄ ꢅꢋ4ꢅꢐꢇꢄꢘꢌꢂꢋ4ꢃꢇ""  
ꢏ'ꢅꢃ$ꢊ&&ꢄꢄ  
3ꢊꢊ'ꢄ7ꢇꢃꢐ'ꢌ  
8
ꢗꢍ  
ꢗꢀ  
7
M
ꢀꢁꢍꢕ  
ꢀꢁꢕ/  
ꢕꢁꢀ/  
ꢕꢁꢜ/  
ꢕꢁꢟ/  
ꢕꢁꢕ/  
ꢕꢁꢖ/  
ꢕꢁ=ꢕ  
3ꢊꢊ'ꢓꢈꢂꢃ'  
3ꢊꢊ'ꢄꢗꢃꢐꢆꢇ  
7ꢀ  
ꢀꢁꢕꢕꢄꢙ.3  
ꢑꢁ/ꢝ  
ꢕꢝ  
ꢜꢝ  
9!ꢇꢈꢅꢆꢆꢄ>ꢂ$'ꢌ  
9!ꢇꢈꢅꢆꢆꢄ7ꢇꢃꢐ'ꢌ  
.
.ꢀ  
ꢒꢀ  
ꢀꢍꢁꢕꢕꢄ1ꢏ-  
ꢀꢍꢁꢕꢕꢄ1ꢏ-  
ꢀꢕꢁꢕꢕꢄ1ꢏ-  
ꢀꢕꢁꢕꢕꢄ1ꢏ-  
M
ꢔꢊꢆ$ꢇ$ꢄ ꢅꢋ4ꢅꢐꢇꢄ>ꢂ$'ꢌ  
ꢔꢊꢆ$ꢇ$ꢄ ꢅꢋ4ꢅꢐꢇꢄ7ꢇꢃꢐ'ꢌ  
7ꢇꢅ$ꢄꢘꢌꢂꢋ4ꢃꢇ""  
7ꢇꢅ$ꢄ>ꢂ$'ꢌ  
ꢔꢊꢆ$ꢄꢒꢈꢅ&'ꢄꢗꢃꢐꢆꢇꢄ  
ꢔꢊꢆ$ꢄꢒꢈꢅ&'ꢄꢗꢃꢐꢆꢇꢄ1ꢊ''ꢊ(  
ꢕꢁꢕꢟ  
ꢕꢁꢑꢕ  
ꢀꢀꢝ  
ꢕꢁꢍꢕ  
ꢕꢁꢖ/  
ꢀꢑꢝ  
*
ꢕꢁꢑꢜ  
ꢀꢍꢝ  
ꢀꢍꢝ  
ꢀꢀꢝ  
ꢀꢑꢝ  
%ꢜꢋꢄꢊ&  
ꢀꢁ  ꢂꢃꢄꢀꢄ!ꢂ"#ꢅꢆꢄꢂꢃ$ꢇ%ꢄ&ꢇꢅ'#ꢈꢇꢄ(ꢅꢉꢄ!ꢅꢈꢉ)ꢄ*#'ꢄ(#"'ꢄ*ꢇꢄꢆꢊꢋꢅ'ꢇ$ꢄ+ꢂ'ꢌꢂꢃꢄ'ꢌꢇꢄꢌꢅ'ꢋꢌꢇ$ꢄꢅꢈꢇꢅꢁ  
ꢍꢁ -ꢌꢅ(&ꢇꢈ"ꢄꢅ'ꢄꢋꢊꢈꢃꢇꢈ"ꢄꢅꢈꢇꢄꢊꢓ'ꢂꢊꢃꢅꢆDꢄ"ꢂEꢇꢄ(ꢅꢉꢄ!ꢅꢈꢉꢁ  
ꢑꢁ ꢒꢂ(ꢇꢃ"ꢂꢊꢃ"ꢄꢒꢀꢄꢅꢃ$ꢄ.ꢀꢄ$ꢊꢄꢃꢊ'ꢄꢂꢃꢋꢆ#$ꢇꢄ(ꢊꢆ$ꢄ&ꢆꢅ"ꢌꢄꢊꢈꢄꢓꢈꢊ'ꢈ#"ꢂꢊꢃ"ꢁꢄꢔꢊꢆ$ꢄ&ꢆꢅ"ꢌꢄꢊꢈꢄꢓꢈꢊ'ꢈ#"ꢂꢊꢃ"ꢄ"ꢌꢅꢆꢆꢄꢃꢊ'ꢄꢇ%ꢋꢇꢇ$ꢄꢕꢁꢍ/ꢄ((ꢄꢓꢇꢈꢄ"ꢂ$ꢇꢁ  
ꢖꢁ ꢒꢂ(ꢇꢃ"ꢂꢊꢃꢂꢃꢐꢄꢅꢃ$ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢂꢃꢐꢄꢓꢇꢈꢄꢗꢏꢔ.ꢄ0ꢀꢖꢁ/ꢔꢁ  
1ꢏ-2 1ꢅ"ꢂꢋꢄꢒꢂ(ꢇꢃ"ꢂꢊꢃꢁꢄꢘꢌꢇꢊꢈꢇ'ꢂꢋꢅꢆꢆꢉꢄꢇ%ꢅꢋ'ꢄ!ꢅꢆ#ꢇꢄ"ꢌꢊ+ꢃꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ"ꢁ  
ꢙ.32 ꢙꢇ&ꢇꢈꢇꢃꢋꢇꢄꢒꢂ(ꢇꢃ"ꢂꢊꢃ)ꢄ#"#ꢅꢆꢆꢉꢄ+ꢂ'ꢌꢊ#'ꢄ'ꢊꢆꢇꢈꢅꢃꢋꢇ)ꢄ&ꢊꢈꢄꢂꢃ&ꢊꢈ(ꢅ'ꢂꢊꢃꢄꢓ#ꢈꢓꢊ"ꢇ"ꢄꢊꢃꢆꢉꢁ  
ꢔꢂꢋꢈꢊꢋꢌꢂꢓ ꢋꢌꢃꢊꢆꢊꢐꢉ ꢒꢈꢅ+ꢂꢃꢐ -ꢕꢖꢞꢕꢜ=1  
DS70318D-page 326  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
44ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ53ꢌꢒꢇ+ꢑꢅꢆꢇ,ꢉꢅꢋ6ꢅꢍ(ꢇꢓꢈ5ꢔꢇMꢇꢀꢚ0ꢀꢚ0ꢀꢇꢏꢏꢇꢛꢜꢆ ꢖꢇ'ꢘꢚꢚꢇꢏꢏꢇ!5+,ꢈ$  
%ꢜꢋꢄ& 3ꢊꢈꢄ'ꢌꢇꢄ(ꢊ"'ꢄꢋ#ꢈꢈꢇꢃ'ꢄꢓꢅꢋ4ꢅꢐꢇꢄ$ꢈꢅ+ꢂꢃꢐ")ꢄꢓꢆꢇꢅ"ꢇꢄ"ꢇꢇꢄ'ꢌꢇꢄꢔꢂꢋꢈꢊꢋꢌꢂꢓꢄ ꢅꢋ4ꢅꢐꢂꢃꢐꢄꢏꢓꢇꢋꢂ&ꢂꢋꢅ'ꢂꢊꢃꢄꢆꢊꢋꢅ'ꢇ$ꢄꢅ'ꢄ  
ꢌ''ꢓ255+++ꢁ(ꢂꢋꢈꢊꢋꢌꢂꢓꢁꢋꢊ(5ꢓꢅꢋ4ꢅꢐꢂꢃꢐ  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 327  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
NOTES:  
DS70318D-page 328  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Revision B (June 2008)  
APPENDIX A: REVISION HISTORY  
This revision includes minor typographical and  
formatting changes throughout the data sheet text. In  
addition, redundant information was removed that is  
now available in the respective chapters of the  
dsPIC33F Family Reference Manual, which can be  
Revision A (January 2008)  
This is the initial revision of this document.  
obtained  
from  
the  
Microchip  
website  
(www.microchip.com).  
The major changes are referenced by their respective  
section in the following table.  
TABLE A-1:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“High-Performance, 16-Bit Digital  
Signal Controllers”  
Moved location of Note 1 (RP# pin) references (see “Pin Diagrams”).  
Section 3.0 “Memory Organization” Updated CPU Core Register map SFR reset value for CORCON (see  
Table 3-1).  
Removed Interrupt Controller Register Map SFR IPC29 and updated reset  
values for IPC0, IPC1, IPC14, IPC16, IPC23, IPC24, IPC27, and IPC28 (see  
Table 3-5).  
Removed Interrupt Controller Register Map SFR IPC24 and IPC29 and  
updated reset values for IPC0, IPC1, IPC2, IPC14, IPC16, IPC23, IPC27,  
and IPC28 (see Table 3-6).  
Removed Interrupt Controller Register Map SFR IPC24 and updated reset  
values for IPC1, IPC2, IPC4, IPC14, IPC16, IPC23, IPC24, IPC27, and  
IPC28 (see Table 3-7).  
Updated Interrupt Controller Register Map SFR reset values for IPC1,  
IPC14, IPC16, IPC23, IPC24, IPC27, and IPC28 (see Table 3-8).  
Updated Interrupt Controller Register Map SFR reset values for IPC1,  
IPC14, IPC16, IPC23, IPC24, IPC25, IPC26, IPC27, IPC28, and IPC29 (see  
Table 3-9).  
Updated Interrupt Controller Register Map SFR reset values for IPC1, IPC4,  
IPC14, IPC16, IPC23, IPC24, IPC25, IPC26, IPC27, IPC28, and IPC29 (see  
Table 3-10).  
Added SFR definitions for RPOR16 and RPOR17 (see Table 3-34,  
Table 3-35, and Table 3-36).  
Updated bit definitions for PORTA, PORTB, and PORTC SFRs (ODCA,  
ODCB, and ODCC) (see Table 3-37, Table 3-38, Table 3-39, and  
Table 3-40).  
Updated bit definitions and reset value for System Control Register map  
SFR CLKDIV (see Table 3-41).  
Added device-specific information to title of PMD Register Map (see  
Table 3-47).  
Added device-specific PMD Register Maps (see Table 3-46, Table 3-45, and  
Table 3-43).  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 329  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE A-1:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 7.0 “Oscillator  
Configuration”  
Removed the first sentence of the third clock source item (External Clock) in  
Section 7.1.1 “System Clock sources”  
Updated the default bit values for DOZE and FRCDIV in the Clock Divisor  
Register (see Register 7-2).  
Section 8.0 “Power-Saving  
Features”  
Added the following six registers:  
“PMD1: Peripheral Module Disable Control Register 1”  
“PMD2: Peripheral Module Disable Control Register 2”  
“PMD3: Peripheral Module Disable Control Register 3”  
“PMD4: Peripheral Module Disable Control Register 4”  
“PMD6: Peripheral Module Disable Control Register 6”  
“PMD7: Peripheral Module Disable Control Register 7”  
Section 9.0 “I/O Ports”  
Added paragraph and Table 9-1 to Section 9.1.1 “Open-Drain  
Configuration”, which provides details on I/O pins and their functionality.  
Removed 9.1.2 “5V Tolerance”.  
Updated MUX range and removed virtual pin details in Figure 9-2.  
Updated PWM Input Name descriptions in Table 9-1.  
Added Section 9.4.2.3 “Virtual Pins”.  
Updated bit values in all Peripheral Pin Select Input Registers (see  
Register 9-1 through Register 9-14).  
Updated bit name information for Peripheral Pin Select Output Registers  
RPOR16 and RPOR17 (see Register 9-30 and Register 9-31).  
Added the following two registers:  
“RPOR16: Peripheral Pin Select Output Register 16”  
“RPOR17: Peripheral Pin Select Output Register 17”  
Removed the following sections:  
• 9.4.2 “Available Peripherals”  
• 9.4.3.2 “Virtual Input Pins”  
• 9.4.3.4 “Peripheral Mapping”  
• 9.4.5 “Considerations for Peripheral Pin Selection” (and all subsections)  
Added Note 1 (remappable pin reference) to Figure 14-1.  
Section 14.0 “High-Speed PWM”  
Added Note 2 (Duty Cycle resolution) to PWM Master Duty Cycle Register  
(Register 14-5), PWM Generator Duty Cycle Register (Register 14-7), and  
PWM Secondary Duty Cycle Register (Register 14-8).  
Added Note 2 and Note 3 and updated bit information for CLSRC and  
FLTSRC in the PWM Fault Current-Limit Control Register (Register 14-15).  
Section 15.0 “Serial Peripheral  
Interface (SPI)”  
Removed the following sections, which are now available in the related  
section of the dsPIC33F Family Reference Manual:  
• 15.1 “Interrupts”  
• 15.2 “Receive Operations”  
• 15.3 “Transmit Operations”  
• 15.4 “SPI Setup” (retained Figure 15-1: SPI Module Block Diagram)  
DS70318D-page 330  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE A-1:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 16.0 “Inter-Integrated  
Circuit (I2C™)”  
Removed the following sections, which are now available in the related  
section of the dsPIC33F Family Reference Manual:  
• 16.3 “I2C Interrupts”  
• 16.4 “Baud Rate Generator” (retained Figure 16-1: I2C Block Diagram)  
• 16.5 “I2C Module Addresses  
• 16.6 “Slave Address Masking”  
• 16.7 “IPMI Support”  
• 16.8 “General Call Address Support”  
• 16.9 “Automatic Clock Stretch”  
• 16.10 “Software Controlled Clock Stretching (STREN = 1)”  
• 16.11 “Slope Control”  
• 16.12 “Clock Arbitration”  
• 16.13 “Multi-Master Communication, Bus Collision, and Bus Arbitration  
Section 17.0 “Universal  
Removed the following sections, which are now available in the related  
Asynchronous Receiver Transmitter section of the dsPIC33F Family Reference Manual:  
(UART)”  
• 17.1 “UART Baud Rate Generator”  
• 17.2 “Transmitting in 8-bit Data Mode  
• 17.3 “Transmitting in 9-bit Data Mode  
• 17.4 “Break and Sync Transmit Sequence”  
• 17.5 “Receiving in 8-bit or 9-bit Data Mode”  
• 17.6 “Flow Control Using UxCTS and UxRTS Pins”  
• 17.7 “Infrared Support”  
Removed IrDA references and Note 1, and updated the bit and bit value  
descriptions for UTXINV (UxSTA<14>) in the UARTx Status and Control  
Register (see Register 17-2).  
Section 18.0 “High-Speed 10-bit  
Updated bit value information for A/D Control Register (see Register 18-1).  
Analog-to-Digital Converter (ADC)”  
Updated TRGSRC6 bit value for Timer1 period match in the A/D Convert  
Pair Control Register 3 (see Register 18-8).  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 331  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE A-1:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 23.0 “Electrical  
Characteristics”  
Updated Typ values for Thermal Packaging Characteristics (Table 23-3).  
Removed Typ value for DC Temperature and Voltage Specifications  
parameter DC12 (Table 23-4).  
Updated all Typ values and conditions for DC Characteristics: Operating  
Current (IDD), updated last sentence in Note 2 (Table 23-5).  
Updated all Typ values for DC Characteristics: Idle Current (IIDLE) (see  
Table 23-6).  
Updated all Typ values for DC Characteristics: Power Down Current (IPD)  
(see Table 23-7).  
Updated all Typ values for DC Characteristics: Doze Current (IDOZE) (see  
Table 23-8).  
Added Note 4 (reference to new table containing digital-only and analog pin  
information, as well as Current Sink/Source capabilities) in the I/O Pin Input  
Specifications (Table 23-9).  
Updated Max value for BOR electrical characteristics parameter BO10 (see  
Table 23-11).  
Swapped Min and Typ values for Program Memory parameters D136 and  
D137 (Table 23-12).  
Updated Typ values for Internal RC Accuracy parameter F20 and added  
Extended temperature range to table heading (see Table 23-19).  
Removed all values for Reset, Watchdog Timer, Oscillator Start-up Timer,  
and Power-up Timer parameter SY20 and updated conditions, which now  
refers to Section 20.4 “Watchdog Timer (WDT)” and LPRC parameter  
F21 (see Table 23-22).  
Added specifications to High-Speed PWM Module Timing Requirements for  
Tap Delay (Table 23-29).  
Updated Min and Max values for 10-bit High-Speed A/D Module parameters  
AD01 and AD11 (see Table 23-36).  
Updated Max value and unit of measure for DAC AC Specification (see  
Table 23-40).  
DS70318D-page 332  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Revision C and D (March 2009)  
This revision includes minor typographical and  
formatting changes throughout the data sheet text.  
Global changes include:  
• Changed all instances of OSCI to OSC1 and  
OSCO to OSC2  
• Changed all instances of PGCx/EMUCx and  
PGDx/EMUDx (where x = 1, 2, or 3) to PGECx  
and PGEDx  
• Changed all instances of VDDCORE and VDDCORE/  
VCAP to VCAP/VDDCORE  
Other major changes are referenced by their respective  
section in the following table.  
TABLE A-2:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“High-Performance, 16-Bit Digital  
Signal Controllers”  
Added “Application Examples” to list of features  
Updated all pin diagrams to denote the pin voltage tolerance (see “Pin  
Diagrams”).  
Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which  
references pin connections to VSS.  
Section 1.0 “Device Overview”  
Added ACMP1-ACMP4 pin names and Peripheral Pin Select capability  
column to Pinout I/O Descriptions (see Table 1-1).  
Section 2.0 “Guidelines for Getting Added new section to the data sheet that provides guidelines on getting  
Started with 16-bit Digital Signal  
Controllers”  
started with 16-bit Digital Signal Controllers.  
Section 3.0 “CPU”  
Updated CPU Core Block Diagram with a connection from the DSP Engine  
to the Y Data Bus (see Figure 3-1).  
Vertically extended the X and Y Data Bus lines in the DSP Engine Block  
Diagram (see Figure 3-3).  
Section 4.0 “Memory Organization” Updated Reset value for ADCON in Table 4-25.  
Removed reference to dsPIC33FJ06GS102 devices in the PMD Register  
Map and updated bit definitions for PMD1 and PMD6, and removed PMD7  
(see Table 4-43).  
Added a new PMD Register Map, which references dsPIC33FJ06GS102  
devices (see Table 4-44).  
Updated RAM stack address and SPLIM values in the third paragraph of  
Section 4.2.6 “Software Stack”  
Removed Section 4.2.7 “Data Ram Protection Feature”.  
Section 5.0 “Flash Program  
Memory”  
Updated Section 5.3 “Programming Operations” with programming time  
formula.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 333  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE A-2:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 8.0 “Oscillator  
Configuration”  
Added Note 2 to the Oscillator System Diagram (see Figure 8-1).  
Added a paragraph regarding FRC accuracy at the end of Section 8.1.1  
“System Clock Sources”.  
Added Note 1 and Note 2 to the OSCON register (see Register ).  
Added Note 1 to the OSCTUN register (see Register 8-4).  
Added Note 3 to Section 8.4.2 “Oscillator Switching Sequence”.  
Section 10.0 “I/O Ports”  
Removed Table 9-1 and added reference to pin diagrams for I/O pin  
availability and functionality.  
Added paragraph on ADPCFG register default values to Section 10.2  
“Configuring Analog Port Pins”.  
Added Note box regarding PPS functionality with input mapping to  
Section 10.4.2.1 “Input Mapping”.  
Section 15.0 “High-Speed PWM”  
Updated Note 2 in the PTCON register (see Register 15-1).  
Added Note 4 to the PWMCONx register (see Register 15-6).  
Updated Notes for the PHASEx and SPHASEx registers (see Register 15-9  
and Register 15-10, respectively).  
Section 16.0 “Serial Peripheral  
Interface (SPI)”  
Added Note 2 and Note 3 to the SPIxCON1 register (see Register 16-2).  
Section 18.0 “Universal  
Asynchronous Receiver Transmitter  
(UART)”  
Updated the Notes in the UxMode register (see Register 18-1).  
Updated the UTXINV bit settings in the UxSTA register and added Note 1  
(see Register 18-2).  
Section 19.0 “High-Speed 10-bit  
Updated the SLOWCLK and ADCS<2:0> bit settings and updated Note 1in  
Analog-to-Digital Converter (ADC)” the ADCON register (see Register 19-1).  
Removed all notes in the ADPCFG register and replaced them with a single  
note (see Register 19-4).  
Updated the SWTRGx bit settings in the ADCPCx registers (see  
Register 19-5, Register 19-6, Register 19-7, and Register 19-8).  
DS70318D-page 334  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
TABLE A-2:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 24.0 “Electrical  
Characteristics”  
Updated Typical values for Thermal Packaging Characteristics (see  
Table 24-3).  
Updated Min and Max values for parameter DC12 (RAM Data Retention  
Voltage) and added Note 4 (see Table 24-4).  
Updated Characteristics for I/O Pin Input Specifications (see Table 24-9).  
Added ISOURCE to I/O Pin Output Specifications (see Table 24-10).  
Updated Program Memory values for parameters 136, 137, and 138  
(renamed to 136a, 137a, and 138a), added parameters 136b, 137b, and  
138b, and added Note 2 (see Table 24-12).  
Added parameter OS42 (GM) to the External Clock Timing Requirements  
(see Table 24-16).  
Updated Conditions for symbol TPDLY (Tap Delay) and added symbol ACLK  
(PWM Input Clock) to the High-Speed PWM Module Timing Requirements  
(see Table 24-29).  
Updated parameters AD01 and AD02 in the 10-bit High-Speed A/D Module  
Specifications (see Table 24-36).  
Updated parameters AD50b, AD55b, and AD56b, and removed parameters  
AD57b and AD60b from the 10-bit High-Speed A/D Module Timing  
Requirements (see Table 24-37).  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 335  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
NOTES:  
DS70318D-page 336  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
INDEX  
CPU  
Numerics  
Control Registers........................................................ 24  
10-bit High Speed Analog-to-Digital Converter. See A/D  
CPU Clocking System ...................................................... 128  
PLL Configuration..................................................... 129  
Selection................................................................... 128  
Sources .................................................................... 128  
Customer Change Notification Service............................. 331  
Customer Notification Service .......................................... 331  
Customer Support............................................................. 331  
A
A/D.................................................................................... 229  
AC Characteristics ............................................................ 284  
Internal RC Accuracy................................................ 286  
Load Conditions........................................................ 284  
Alternate Vector Table (AIVT)............................................. 87  
Arithmetic Logic Unit (ALU)................................................. 27  
Assembler  
D
DAC .................................................................................. 252  
Output Range ........................................................... 252  
Data Accumulators and Adder/Subtracter .......................... 29  
Data Space Write Saturation...................................... 31  
Overflow and Saturation............................................. 29  
Round Logic ............................................................... 30  
Write Back .................................................................. 30  
Data Address Space........................................................... 35  
Alignment.................................................................... 35  
Memory Map for dsPIC33FJ06GS101/102 Devices  
MPASM Assembler................................................... 272  
B
Barrel Shifter ....................................................................... 31  
Bit-Reversed Addressing .................................................... 66  
Example...................................................................... 67  
Implementation ........................................................... 66  
Sequence Table (16-Entry)......................................... 67  
Block Diagrams  
16-Bit Timer1 Module................................................ 175  
Comparator............................................................... 251  
Connections for On-Chip Voltage Regulator............. 258  
DSP Engine ................................................................ 28  
dsPIC33FJ06GS101/X02 and  
with 256 Bytes of RAM ....................................... 36  
Memory Map for dsPIC33FJ06GS202 Device  
with 1-Kbyte RAM............................................... 37  
Memory Map for dsPIC33FJ16GS402/404/502/504  
Devices with 2-Kbyte RAM................................. 38  
Near Data Space........................................................ 35  
Software Stack ........................................................... 63  
Width .......................................................................... 35  
DC Characteristics............................................................ 276  
Doze Current (IDOZE)................................................ 280  
I/O Pin Input Specifications ...................................... 281  
I/O Pin Output Specifications.................................... 282  
Idle Current (IIDLE).................................................... 279  
Operating Current (IDD) ............................................ 278  
Power-Down Current (IPD)........................................ 280  
Program Memory...................................................... 283  
Temperature and Voltage Specifications.................. 277  
Development Support....................................................... 271  
Doze Mode ....................................................................... 138  
DSP Engine ........................................................................ 27  
Multiplier ..................................................................... 29  
dsPIC33FJ16GSX02/X04 CPU Core.................. 22  
dsPIC33FJ06GS101/X02 and  
dsPIC33FJ16GSX02/X04 ................................... 14  
I C............................................................................. 216  
2
Input Capture ............................................................ 183  
Oscillator System...................................................... 127  
Output Compare ....................................................... 185  
PLL............................................................................ 129  
Reset System.............................................................. 79  
Shared Port Structure ............................................... 145  
Simplified Conceptual High-Speed PWM ................. 190  
SPI ............................................................................ 209  
Timer2/3 (32-Bit)....................................................... 179  
Type B Timer ............................................................ 177  
Type C Timer ............................................................ 177  
UART ........................................................................ 223  
Watchdog Timer (WDT)............................................ 259  
Brown-out Reset (BOR).................................................... 255  
E
EBCONx (Leading-Edge Blanking Control)...................... 207  
Electrical Characteristics .................................................. 275  
AC Characteristics and Timing Parameters ............. 284  
BOR.......................................................................... 282  
Equations  
Device Operating Frequency.................................... 128  
FOSC Calculation ...................................................... 129  
XT with PLL Mode Example ..................................... 129  
Errata.................................................................................. 12  
C
C Compilers  
MPLAB C18 .............................................................. 272  
MPLAB C30 .............................................................. 272  
Clock Switching................................................................. 136  
Enabling.................................................................... 136  
Sequence.................................................................. 136  
Code Examples  
Erasing a Program Memory Page............................... 77  
Initiating a Programming Sequence............................ 78  
Loading Write Buffers ................................................. 78  
Port Write/Read ........................................................ 147  
PWRSAV Instruction Syntax..................................... 137  
Code Protection ........................................................ 255, 261  
CodeGuard Security ......................................................... 255  
Configuration Bits.............................................................. 255  
Configuration Register Map .............................................. 255  
Configuring Analog Port Pins............................................ 147  
F
Fail-Safe Clock Monitor (FSCM)....................................... 136  
Flash Program Memory...................................................... 73  
Control Registers........................................................ 74  
Operations.................................................................. 74  
Programming Algorithm.............................................. 77  
RTSP Operation ......................................................... 74  
Table Instructions ....................................................... 73  
Flexible Configuration....................................................... 255  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 337  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
MPLAB Integrated Development Environment Software.. 271  
H
MPLAB PM3 Device Programmer .................................... 273  
MPLAB REAL ICE In-Circuit Emulator System ................ 273  
MPLINK Object Linker/MPLIB Object Librarian................ 272  
High-Speed Analog Comparator.......................................251  
High-Speed PWM .............................................................189  
I
O
I/O Ports............................................................................145  
Parallel I/O (PIO).......................................................145  
Write/Read Timing ....................................................147  
Open-Drain Configuration................................................. 146  
Oscillator Configuration .................................................... 127  
Output Compare ............................................................... 185  
2
I C  
Operating Modes ......................................................215  
Registers...................................................................215  
In-Circuit Debugger...........................................................260  
In-Circuit Emulation...........................................................255  
In-Circuit Serial Programming (ICSP) ....................... 255, 260  
Input Capture ....................................................................183  
Registers...................................................................184  
Input Change Notification..................................................147  
Instruction Addressing Modes.............................................63  
File Register Instructions ............................................63  
Fundamental Modes Supported..................................64  
MAC Instructions.........................................................64  
MCU Instructions ........................................................63  
Move and Accumulator Instructions............................64  
Other Instructions........................................................64  
Instruction Set  
Overview ...................................................................266  
Summary...................................................................263  
Instruction-Based Power-Saving Modes...........................137  
Idle ............................................................................138  
Sleep.........................................................................137  
Interfacing Program and Data Memory Spaces..................68  
Internal RC Oscillator  
P
Packaging......................................................................... 309  
Details....................................................................... 311  
Marking..................................................................... 309  
Peripheral Module Disable (PMD) .................................... 138  
PICSTART Plus Development Programmer..................... 274  
Pinout I/O Descriptions (table)............................................ 15  
Power-on Reset (POR)....................................................... 84  
Power-Saving Features .................................................... 137  
Clock Frequency and Switching ............................... 137  
Program Address Space..................................................... 33  
Construction ............................................................... 68  
Data Access from Program Memory Using  
Program Space Visibility..................................... 71  
Data Access from Program Memory Using  
Table Instructions ............................................... 70  
Data Access from, Address Generation ..................... 69  
Memory Maps............................................................. 33  
Table Read Instructions  
TBLRDH ............................................................. 70  
TBLRDL.............................................................. 70  
Visibility Operation...................................................... 71  
Program Memory  
Use with WDT...........................................................259  
Internet Address................................................................331  
Interrupt Control and Status Registers................................91  
IECx ............................................................................91  
IFSx.............................................................................91  
INTCON1 ....................................................................91  
INTCON2 ....................................................................91  
INTTREG ....................................................................91  
IPCx ............................................................................91  
Interrupt Setup Procedures...............................................125  
Initialization ...............................................................125  
Interrupt Disable........................................................125  
Interrupt Service Routine ..........................................125  
Trap Service Routine ................................................125  
Interrupt Vector Table (IVT) ................................................87  
Interrupts Coincident with Power Save Instructions..........138  
Interrupt Vector........................................................... 34  
Organization ............................................................... 34  
Reset Vector............................................................... 34  
R
Reader Response............................................................. 332  
Registers  
.................................................................................. 207  
A/D Control Register (ADCON) ................................ 237  
A/D Convert Pair Control Register 0 (ADCPC0)....... 241  
A/D Convert Pair Control Register 1 (ADCPC1)....... 243  
A/D Convert Pair Control Register 2 (ADCPC2)....... 246  
A/D Convert Pair Control Register 3 (ADCPC3)....... 249  
A/D Port Configuration Register (ADPCFG)............. 240  
A/D Status Register (ADSTAT)................................. 239  
ACLKCON (Auxiliary Clock Divisor Control)............. 134  
ALTDTRx (PWM Alternate Dead-Time).................... 200  
CLKDIV (Clock Divisor) ............................................ 131  
CMPCPNx (Comparator Control) ............................. 253  
CMPDACx (Comparator DAC Control)..................... 254  
CORCON (Core Control)...................................... 26, 92  
DTRx (PWMx Dead-Time)........................................ 200  
FCLCONx (PWMx Fault Current-Limit Control)........ 204  
I2CxCON (I2Cx Control)........................................... 217  
I2CxMSK (I2Cx Slave Mode Address Mask)............ 221  
I2CxSTAT (I2Cx Status) ........................................... 219  
ICxCON (Input Capture x Control)............................ 184  
IEC0 (Interrupt Enable Control 0) ............................. 103  
IEC1 (Interrupt Enable Control 1) ............................. 105  
IEC3 (Interrupt Enable Control 3) ............................. 106  
IEC4 (Interrupt Enable Control 4) ............................. 106  
IEC5 (Interrupt Enable Control 5) ............................. 107  
IFS0 (Interrupt Flag Status 0)..................................... 96  
J
JTAG Boundary Scan Interface ........................................255  
JTAG Interface..................................................................260  
M
Memory Organization..........................................................33  
Microchip Internet Web Site..............................................331  
Modulo Addressing .............................................................65  
Applicability.................................................................66  
Operation Example .....................................................65  
Start and End Address................................................65  
W Address Register Selection ....................................65  
MPLAB ASM30 Assembler, Linker, Librarian ...................272  
MPLAB ICD 2 In-Circuit Debugger....................................273  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator ....................................................273  
DS70318D-page 338  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
IFS1 (Interrupt Flag Status 1) ..................................... 98  
IFS3 (Interrupt Flag Status 3) ..................................... 99  
IFS4 (Interrupt Flag Status 4) ..................................... 99  
IFS5 (Interrupt Flag Status 5) ................................... 100  
IFS6 (Interrupt Flag Status 6) ........................... 101, 108  
IFS7 (Interrupt Flag Status 7) ........................... 102, 109  
INTCON1 (Interrupt Control 1).................................... 93  
INTTREG Interrupt Control and Status..................... 124  
IOCONx (PWMx I/O Control).................................... 202  
IPC0 (Interrupt Priority Control 0) ............................. 110  
IPC1 (Interrupt Priority Control 1) ............................. 111  
IPC14 (Interrupt Priority Control 14) ......................... 116  
IPC16 (Interrupt Priority Control 16) ......................... 116  
IPC2 (Interrupt Priority Control 2) ............................. 112  
IPC23 (Interrupt Priority Control 23) ......................... 117  
IPC24 (Interrupt Priority Control 24) ......................... 118  
IPC25 (Interrupt Priority Control 25) ......................... 119  
IPC26 (Interrupt Priority Control 26) ......................... 120  
IPC27 (Interrupt Priority Control 27) ......................... 121  
IPC28 (Interrupt Priority Control 28) ......................... 122  
IPC29 (Interrupt Priority Control 29) ......................... 123  
IPC3 (Interrupt Priority Control 3) ............................. 113  
IPC4 (Interrupt Priority Control 4) ............................. 114  
IPC5 (Interrupt Priority Control 5) ............................. 115  
IPC7 (Interrupt Priority Control 7) ............................. 115  
MDC (PWM Master Duty Cycle) ............................... 194  
NVMCON (Flash Memory Control) ............................. 75  
NVMKEY (Nonvolatile Memory Key) .......................... 76  
OCxCON (Output Compare x Control) ..................... 187  
OSCCON (Oscillator Control) ................................... 130  
OSCTUN (Oscillator Tuning) .................................... 133  
PLLFBD (PLL Feedback Divisor).............................. 132  
PMD1 (Peripheral Module Disable Control 1)........... 139  
PMD2 (Peripheral Module Disable Control 2)........... 140  
PMD3 (Peripheral Module Disable Control 3)........... 141  
PMD4 (Peripheral Module Disable Control 4)........... 141  
PMD6 (Peripheral Module Disable Control 6)........... 142  
PMD7 (Peripheral Module Disable Control 7)........... 143  
PTCON (PWM Time Base Control) .......................... 192  
PWMCAPx (Primary PWMx Time Base Capture)..... 208  
PWMCONx (PWMx Control)..................................... 195  
RCON (Reset Control)................................................ 80  
REFOCON (Reference Oscillator Control) ............... 135  
RPINR0 (Peripheral Pin Select Input 0).................... 152  
RPINR1 (Peripheral Pin Select Input 1).................... 153  
RPINR11 (Peripheral Pin Select Input 11)................ 156  
RPINR18 (Peripheral Pin Select Input 18)................ 157  
RPINR20 (Peripheral Pin Select Input 20)................ 158  
RPINR21 (Peripheral Pin Select Input 21)................ 159  
RPINR29 (Peripheral Pin Select Input 29)................ 160  
RPINR3 (Peripheral Pin Select Input 3).................... 154  
RPINR30 (Peripheral Pin Select Input 30)................ 161  
RPINR31 (Peripheral Pin Select Input 31)................ 162  
RPINR32 (Peripheral Pin Select Input 32)................ 163  
RPINR33 (Peripheral Pin Select Input 33)................ 164  
RPINR34 (Peripheral Pin Select Input 34)................ 165  
RPINR7 (Peripheral Pin Select Input 7).................... 155  
RPOR0 (Peripheral Pin Select Output 0).................. 165  
RPOR1 (Peripheral Pin Select Output 1).................. 166  
RPOR10 (Peripheral Pin Select Output 10).............. 170  
RPOR11 (Peripheral Pin Select Output 11).............. 171  
RPOR12 (Peripheral Pin Select Output 12).............. 171  
RPOR13 (Peripheral Pin Select Output 13).............. 172  
RPOR14 (Peripheral Pin Select Output 14).............. 172  
RPOR16 (Peripheral Pin Select Output 16).............. 173  
RPOR17 (Peripheral Pin Select Output 17).............. 173  
RPOR2 (Peripheral Pin Select Output 2) ................. 166  
RPOR3 (Peripheral Pin Select Output 3) ................. 167  
RPOR4 (Peripheral Pin Select Output 4) ................. 167  
RPOR5 (Peripheral Pin Select Output 5) ................. 168  
RPOR6 (Peripheral Pin Select Output 6) ................. 168  
RPOR7 (Peripheral Pin Select Output 7) ................. 169  
RPOR8 (Peripheral Pin Select Output 8) ................. 169  
RPOR9 (Peripheral Pin Select Output 9) ................. 170  
SEVTCMP (PWM Special Event Compare) ............. 194  
SPIxCON1 (SPIx Control 1) ..................................... 211  
SPIxCON2 (SPIx Control 2) ..................................... 213  
SPIxSTAT (SPIx Status and Control)....................... 210  
SR (CPU STATUS) .................................................... 92  
SR (CPU Status) ........................................................ 24  
STRIGx (PWMx Secondary Trigger  
Compare Value) ............................................... 206  
T1CON (Timer1 Control) .......................................... 176  
TRGCONx (PWMx Trigger Control) ......................... 201  
TRIGx (PWMx Primary Trigger Compare Value) ..... 206  
TxCON (Timer Control, x = 2)................................... 180  
TyCON (Timer Control, y = 3)................................... 181  
UxMODE (UARTx Mode) ......................................... 224  
UxSTA (UARTx Status and Control) ........................ 226  
Reset  
Configuration Mismatch.............................................. 86  
Illegal Opcode....................................................... 79, 86  
Trap Conflict ............................................................... 85  
Uninitialized W Register ....................................... 79, 86  
Reset Sequence ................................................................. 87  
Resets ................................................................................ 79  
Revision History................................................................ 321  
S
Serial Peripheral Interface (SPI)....................................... 209  
Software RESET Instruction (SWR) ................................... 85  
Software Simulator (MPLAB SIM) .................................... 272  
Software Stack Pointer, Frame Pointer  
CALL Stack Frame ..................................................... 63  
Special Features of the CPU ............................................ 255  
Symbols Used in Opcode Descriptions ............................ 264  
T
Temperature and Voltage Specifications  
AC............................................................................. 284  
Timer1 .............................................................................. 175  
Timer2/3 ........................................................................... 177  
Timing Diagrams  
A/D Conversion per Input ......................................... 305  
Brown-out Situations .................................................. 85  
External Clock .......................................................... 285  
High-Speed PWM..................................................... 294  
High-Speed PWM Fault............................................ 294  
I/O............................................................................. 287  
I2Cx Bus Data (Master Mode).................................. 300  
I2Cx Bus Data (Slave Mode).................................... 302  
I2Cx Bus Start/Stop Bits (Master Mode)................... 300  
I2Cx Bus Start/Stop Bits (Slave Mode)..................... 302  
Input Capture (CAPx) ............................................... 292  
OC/PWM .................................................................. 293  
Output Compare (OCx) ............................................ 292  
Reset, Watchdog Timer, Oscillator Start-up Timer  
and Power-up Timer......................................... 288  
SPIx Master Mode (CKE = 0) ................................... 295  
SPIx Master Mode (CKE = 1) ................................... 296  
SPIx Slave Mode (CKE = 0)..................................... 297  
SPIx Slave Mode (CKE = 1)..................................... 298  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 339  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Timer1, 2, 3 External Clock.......................................290  
Timing Requirements  
External Clock...........................................................285  
I/O .............................................................................287  
Input Capture ............................................................292  
Timing Specifications  
SPIx Slave Mode (CKE = 1) Requirements.............. 299  
Timer1 External Clock Requirements....................... 290  
Timer2 External Clock Requirements....................... 291  
Timer3 External Clock Requirements....................... 291  
U
Universal Asynchronous Receiver Transmitter (UART) ... 223  
Using the RCON Status Bits............................................... 86  
10-Bit A/D Conversion Requirements.......................305  
High-Speed PWM Requirements..............................294  
I2Cx Bus Data Requirements (Master Mode)...........301  
I2Cx Bus Data Requirements (Slave Mode).............303  
Output Compare Requirements................................292  
PLL Clock..................................................................286  
Reset, Watchdog Timer, Oscillator Start-up Timer,  
Power-up Timer and Brown-out Reset  
Requirements....................................................289  
Simple OC/PWM Mode Requirements .....................293  
SPIx Master Mode (CKE = 0) Requirements ............295  
SPIx Master Mode (CKE = 1) Requirements ............296  
SPIx Slave Mode (CKE = 0) Requirements ..............297  
V
Voltage Regulator (On-Chip) ............................................ 258  
W
Watchdog Time-out Reset (WDTO).................................... 85  
Watchdog Timer (WDT)............................................ 255, 259  
Programming Considerations ................................... 259  
WWW Address ................................................................. 331  
WWW, On-Line Support ..................................................... 12  
DS70318D-page 340  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software.  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing.  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives.  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 341  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager  
at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Literature Number: DS70318D  
Application (optional):  
Would you like a reply?  
Y
N
Device: dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS70318D-page 342  
Preliminary  
© 2009 Microchip Technology Inc.  
dsPIC33FJ06GS101/X02 and dsPIC33FJ16GSX02/X04  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
dsPIC 33 FJ 06 GS1 02 T E / SP - XXX  
a) dsPIC33FJ06GS102-E/SP:  
SMPS dsPIC33, 6-Kbyte program  
memory, 28-pin, Extended  
temp.,SPDIP package.  
Microchip Trademark  
Architecture  
Flash Memory Family  
Program Memory Size (KB)  
Product Group  
Pin Count  
Tape and Reel Flag (if applicable)  
Temperature Range  
Package  
Pattern  
Architecture:  
33  
=
=
16-bit Digital Signal Controller  
Flash program memory, 3.3V  
Flash Memory Family: FJ  
Product Group:  
GS1  
=
=
=
=
Switch Mode Power Supply (SMPS) family  
Switch Mode Power Supply (SMPS) family  
Switch Mode Power Supply (SMPS) family  
Switch Mode Power Supply (SMPS) family  
GS2  
GS4  
GS5  
Pin Count:  
01  
02  
04  
=
=
=
18-pin  
28-pin  
44-pin  
Temperature Range:  
Package:  
I
=
=
-40°C to+85°C (Industrial)  
-40°C to+125°C (Extended)  
E
SO  
SP  
ML  
MM  
PT  
=
=
=
=
=
Plastic Small Outline - Wide - 7.50 mm body (SOIC)  
Skinny Plastic Dual In-Line - 300 mil body (SPDIP)  
Plastic Quad Flat, No Lead Package - 8x8 mm body (QFN)  
Plastic Quad Flat, No Lead Package - 6x6x0.9 mm body (QFN-S)  
Plastic Thin Quad Flatpack - 10x10x1 mm body (TQFP)  
© 2009 Microchip Technology Inc.  
Preliminary  
DS70318D-page 343  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
02/04/09  
DS70318D-page 344  
Preliminary  
© 2009 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY