DSPIC33FJ32GP202TI/SP [MICROCHIP]

High-Performance, 16-bit Digital Signal Controllers; 高性能16位数字信号控制器
DSPIC33FJ32GP202TI/SP
型号: DSPIC33FJ32GP202TI/SP
厂家: MICROCHIP    MICROCHIP
描述:

High-Performance, 16-bit Digital Signal Controllers
高性能16位数字信号控制器

控制器
文件: 总403页 (文件大小:2499K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and  
dsPIC33FJ128GPX02/X04  
Data Sheet  
High-Performance,  
16-bit Digital Signal Controllers  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
32  
PICtail, PIC logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS70292D-page 2  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, AND  
dsPIC33FJ128GPX02/X04  
High-Performance, 16-Bit Digital Signal Controllers  
Operating Range:  
Timers/Capture/Compare/PWM:  
• Up to 40 MIPS operation (at 3.0-3.6V):  
- Industrial temperature range (-40°C to +85°C)  
- Extended temperature range (-40°C to +125°C)  
• Up to 20 MIPS operation (at 3.0-3.6V):  
- High temperature range (-40°C to +140°C)  
• Timer/Counters, up to five 16-bit timers:  
- Can pair up to make two 32-bit timers  
- One timer runs as a Real-Time Clock with an  
external 32.768 kHz oscillator  
- Programmable prescaler  
• Input Capture (up to four channels):  
- Capture on up, down or both edges  
- 16-bit capture input functions  
High-Performance DSC CPU:  
• Modified Harvard architecture  
• C compiler optimized instruction set  
• 16-bit wide data path  
- 4-deep FIFO on each capture  
• Output Compare (up to four channels):  
- Single or Dual 16-bit Compare mode  
- 16-bit Glitchless PWM mode  
• 24-bit wide instructions  
• Linear program memory addressing up to 4M  
instruction words  
• Hardware Real-Time Clock/Calendar (RTCC):  
- Provides clock, calendar and alarm functions  
• Linear data memory addressing up to 64 Kbytes  
• 83 base instructions: mostly 1 word/1 cycle  
Interrupt Controller:  
• Two 40-bit accumulators with rounding and  
saturation options  
• 5-cycle latency  
• Flexible and powerful addressing modes:  
- Indirect  
• Up to 49 available interrupt sources  
• Up to three external interrupts  
• Seven programmable priority levels  
• Five processor exceptions  
- Modulo  
- Bit-Reversed  
• Software stack  
• 16 x 16 fractional/integer multiply operations  
• 32/16 and 16/16 divide operations  
• Single-cycle multiply and accumulate:  
- Accumulator write back for DSP operations  
- Dual data fetch  
Digital I/O:  
• Peripheral pin Select functionality  
• Up to 35 programmable digital I/O pins  
• Wake-up/Interrupt-on-Change for up to 31 pins  
• Output pins can drive from 3.0V to 3.6V  
• Up to 5V output with open drain configuration  
• All digital input pins are 5V tolerant  
• 4 mA sink on all I/O pins  
• Up to ±16-bit shifts for up to 40-bit data  
Direct Memory Access (DMA):  
• 8-channel hardware DMA  
• Up to 2 Kbytes dual ported DMA buffer area (DMA  
RAM) to store data transferred via DMA:  
On-Chip Flash and SRAM:  
• Flash program memory (up to 128 Kbytes)  
• Data SRAM (up to 16 Kbytes)  
-
Allows data transfer between RAM and a  
peripheral while CPU is executing code (no  
cycle stealing)  
• Boot, Secure and General Security for program  
Flash  
• Most peripherals support DMA  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 3  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
System Management:  
Communication Modules:  
• Flexible clock options:  
• 4-wire SPI (up to two modules):  
- External, crystal, resonator, internal RC  
- Fully integrated Phase-Locked Loop (PLL)  
- Extremely low jitter PLL  
- Framing supports I/O interface to simple  
codecs  
- Supports 8-bit and 16-bit data  
- Supports all serial clock formats and  
sampling modes  
• Power-up Timer  
• Oscillator Start-up Timer/Stabilizer  
• Watchdog Timer with its own RC oscillator  
• Fail-Safe Clock Monitor  
• I2C™:  
- Full Multi-Master Slave mode support  
- 7-bit and 10-bit addressing  
• Reset by multiple sources  
- Bus collision detection and arbitration  
- Integrated signal conditioning  
- Slave address masking  
Power Management:  
• On-chip 2.5V voltage regulator  
• UART (up to two modules):  
• Switch between clock sources in real time  
• Idle, Sleep, and Doze modes with fast wake-up  
- Interrupt on address bit detect  
- Interrupt on UART error  
- Wake-up on Start bit from Sleep mode  
- 4-character TX and RX FIFO buffers  
- LIN bus support  
Analog-to-Digital Converters (ADCs):  
• 10-bit, 1.1 Msps or 12-bit, 500 ksps conversion:  
- Two and four simultaneous samples (10-bit ADC)  
- Up to 13 input channels with auto-scanning  
- IrDA® encoding and decoding in hardware  
- High-Speed Baud mode  
- Conversion start can be manual or  
synchronized with one of four trigger sources  
- Hardware Flow Control with CTS and RTS  
• Enhanced CAN (ECAN™ module) 2.0B active:  
- Up to eight transmit and up to 32 receive buffers  
- 16 receive filters and three masks  
- Loopback, Listen Only and Listen All  
- Conversion possible in Sleep mode  
- ±2 LSb max integral nonlinearity  
- ±1 LSb max differential nonlinearity  
- Messages modes for diagnostics and bus  
monitoring  
Audio Digital-to-Analog Converter (DAC):  
• 16-bit Dual Channel DAC module  
- Wake-up on CAN message  
• 100 ksps maximum sampling rate  
- Automatic processing of Remote  
Transmission Requests  
• Second-Order Digital Delta-Sigma Modulator  
- FIFO mode using DMA  
- DeviceNet™ addressing support  
• Parallel Master Slave Port (PMP/EPSP):  
- Supports 8-bit or 16-bit data  
Data Converter Interface (DCI) module:  
• Codec interface  
• Supports I2S and AC’97 protocols  
• Up to 16-bit data words, up to 16 words per frame  
• 4-word deep TX and RX buffers  
- Supports 16 address lines  
• Programmable Cyclic Redundancy Check (CRC):  
- Programmable bit length for the CRC  
generator polynomial (up to 16-bit length)  
Comparator Module:  
- 8-deep, 16-bit or 16-deep, 8-bit FIFO for data  
input  
• Two analog comparators with programmable  
input/output configuration  
Packaging:  
CMOS Flash Technology:  
• 28-pin SDIP/SOIC/QFN-S  
• 44-pin TQFP/QFN  
• Low-power, high-speed Flash technology  
• Fully static design  
Note:  
See the device variant tables for exact  
peripheral features per device.  
• 3.3V (±10%) operating voltage  
• Industrial and Extended temperature  
• Low power consumption  
DS70292D-page 4  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, AND  
dsPIC33FJ128GPX02/X04 PRODUCT  
FAMILIES  
The device names, pin counts, memory sizes, and  
peripheral availability of each device are listed below.  
The following pages show their pinout diagrams.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04  
Controller Families  
Remappable Peripheral  
Device  
dsPIC33FJ128GP804  
dsPIC33FJ128GP802  
44  
28  
128  
128  
16 26  
16 16  
5
5
4
4
4
4
1
1
2
2
2
2
1
1
1
1
1
1
1
1
13  
10  
6
4
1/1  
1/0  
11  
2
35  
21  
QFN  
TQFP  
3
3
SDIP  
SOIC  
QFN-S  
dsPIC33FJ128GP204  
dsPIC33FJ128GP202  
44  
28  
128  
128  
8
8
26  
16  
5
5
4
4
4
4
1
1
2
2
2
2
0
0
3
3
1
1
1
1
1
1
13  
10  
0
0
1/1  
1/0  
11  
2
35  
21  
QFN  
TQFP  
SDIP  
SOIC  
QFN-S  
dsPIC33FJ64GP804  
dsPIC33FJ64GP802  
44  
28  
64  
64  
16 26  
16 16  
5
5
4
4
4
4
1
1
2
2
2
2
1
1
3
3
1
1
1
1
1
1
13  
10  
6
4
1/1  
1/0  
11  
2
35  
21  
QFN  
TQFP  
SDIP  
SOIC  
QFN-S  
dsPIC33FJ64GP204  
dsPIC33FJ64GP202  
44  
28  
64  
64  
8
8
26  
16  
5
5
4
4
4
4
1
1
2
2
2
2
0
0
3
3
1
1
1
1
1
1
13  
10  
0
0
1/1  
1/0  
11  
2
35  
21  
QFN  
TQFP  
SDIP  
SOIC  
QFN-S  
dsPIC33FJ32GP304  
dsPIC33FJ32GP302  
44  
28  
32  
32  
4
4
26  
16  
5
5
4
4
4
4
1
1
2
2
2
2
0
0
3
3
1
1
1
1
1
1
13  
10  
0
0
1/1  
1/0  
11  
2
35  
21  
QFN  
TQFP  
SDIP  
SOIC  
QFN-S  
Note 1:  
RAM size is inclusive of 2 Kbytes of DMA RAM for all devices except dsPIC33FJ32GP302/304, which include 1 Kbyte of DMA RAM.  
Only four out of five timers are remappable.  
Only two out of three interrupts are remappable.  
2:  
3:  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 5  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
Pin Diagrams  
= Pins are up to 5V tolerant  
28-Pin SDIP, SOIC  
MCLR  
AN0/VREF+/CN2/RA0  
AN1/VREF-/CN3/RA1  
AVDD  
AVSS  
1
2
3
4
5
28  
27  
26  
25  
24  
AN9/DAC1LN/RP15(1)/CN11/PMCS1/RB15  
AN10/DAC1LP/RTCC/RP14(1)/CN12/PMWR/RB14  
AN11/DAC1RN/RP13(1)/CN13/PMRD/RB13  
AN12/DAC1RP/RP12(1)/CN14/PMD0/RB12  
PGEC2/TMS/RP11(1)/CN15/PMD1/RB11  
PGED2/TDI/RP10(1)/CN16/PMD2/RB10  
VCAP/VDDCORE  
PGED1/AN2/C2IN-/RP0(1)/CN4/RB0  
PGEC1/ AN3/C2IN+/RP1(1)/CN5/RB1  
AN4/C1IN-/RP2(1)/CN6/RB2  
AN5/C1IN+/RP3(1)/CN7/RB3  
VSS  
6
7
8
23  
22  
21  
OSC1/CLKI/CN30/RA2  
9
20  
19  
18  
17  
16  
15  
OSC2/CLKO/CN29/PMA0/RA3  
SOSCI/RP4(1)/CN1/PMBE/RB4  
SOSCO/T1CK/CN0/PMA1/RA4  
VDD  
VSS  
10  
11  
12  
13  
14  
TDO/SDA1/RP9(1)/CN21/PMD3/RB9  
TCK/SCL1/RP8(1)/CN22/PMD4/RB8  
INT0/RP7(1)/CN23/PMD5/RB7  
PGED3/ASDA1/RP5(1)/CN27/PMD7/RB5  
PGEC3/ASCL1/RP6(1)/CN24/PMD6/RB6  
= Pins are up to 5V tolerant  
28-Pin SDIP, SOIC  
MCLR  
AN0/VREF+/CN2/RA0  
AVDD  
1
2
3
4
5
28  
27  
26  
25  
24  
AVSS  
AN1/VREF-/CN3/RA1  
AN9/RP15(1)/CN11/PMCS1/RB15  
AN10/RTCC/RP14(1)/CN12/PMWR/RB14  
AN11/RP13(1)/CN13/PMRD/RB13  
AN12/RP12(1)/CN14/PMD0/RB12  
PGEC2/TMS/RP11(1)/CN15/PMD1/RB11  
PGED2/TDI/RP10(1)/CN16/PMD2/RB10  
VCAP/VDDCORE  
PGED1/AN2/C2IN-/RP0(1)/CN4/RB0  
PGEC1/ AN3/C2IN+/RP1(1)/CN5/RB1  
AN4/C1IN-/RP2(1)/CN6/RB2  
AN5/C1IN+/RP3(1)/CN7/RB3  
VSS  
6
7
8
23  
22  
21  
OSC1/CLKI/CN30/RA2  
9
20  
19  
18  
17  
16  
15  
OSC2/CLKO/CN29/PMA0/RA3  
SOSCI/RP4(1)/CN1/PMBE/RB4  
SOSCO/T1CK/CN0/PMA1/RA4  
VDD  
VSS  
10  
11  
12  
13  
14  
TDO/SDA1/RP9(1)/CN21/PMD3/RB9  
TCK/SCL1/RP8(1)/CN22/PMD4/RB8  
INT0/RP7(1)/CN23/PMD5/RB7  
PGEC3/ASCL1/RP6(1)/CN24/PMD6/RB6  
PGED3/ASDA1/RP5(1)/CN27/PMD7/RB5  
Note 1: The RPx pins can be used by any remappable peripheral. See the table “dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 Controller Families” in this section for the list of available peripherals.  
DS70292D-page 6  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
Pin Diagrams (Continued)  
28-Pin QFN-S(2)  
= Pins are up to 5V tolerant  
PGED1/AN2/C2IN-/RP0(1)/CN4/RB0  
PGEC1/AN3/C2IN+/RP1(1)/CN5/RB1  
AN11/DAC1RN/RP13(1)/CN13/PMRD/RB13  
AN12/DAC1RP/RP12(1)/CN14/PMD0/RB12  
PGEC2/TMS/RP11(1)/CN15/PMD1/RB11  
PGED2/TDI/RP10(1)/CN16/PMD2/RB10  
VCAP/VDDCORE  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
AN4/C1IN-/RP2(1)/CN6/RB2  
dsPIC33FJ64GP802  
dsPIC33FJ128GP802  
AN5/C1IN+/RP3(1)/CN7/RB3  
VSS  
OSC1/CLKI/CN30/RA2  
VSS  
TDO/SDA1/RP9(1)/CN21/PMD3/RB9  
OSC2/CLKO/CN29/PMA0/RA3  
Note 1: The RPx pins can be used by any remappable peripheral. See the table “dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 Controller Families” in this section for the list of available peripherals.  
2: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 7  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
Pin Diagrams (Continued)  
28-Pin QFN-S(2)  
=
Pins are up to 5V tolerant  
(1)  
(1)  
PGED1/AN2/C2IN-/RP0 /CN4/RB0  
AN11/RP13 /CN13/PMRD/RB13  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
(1)  
(1)  
PGEC1/AN3/C2IN+/RP1 /CN5/RB1  
AN12/RP12 /CN14/PMD0/RB12  
(1)  
(1)  
AN4/C1IN-/RP2 /CN6/RB2  
dsPIC33FJ32GP302  
dsPIC33FJ64GP202  
dsPIC33FJ128GP202  
PGEC2/TMS/RP11 /CN15/PMD1/RB11  
(1)  
(1)  
AN5/C1IN+/RP3 /CN7/RB3  
PGED2/TDI/RP10 /CN16/PMD2/RB10  
VSS  
VCAP/VDDCORE  
VSS  
OSC1/CLKI/CN30/RA2  
(1)  
OSC2/CLKO/CN29/PMA0/RA3  
TDO/SDA1/RP9 /CN21/PMD3/RB9  
Note 1: The RPx pins can be used by any remappable peripheral. See the table “dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 Controller Families” in this section for the list of available peripherals.  
2: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  
DS70292D-page 8  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
Pin Diagrams (Continued)  
44-Pin QFN(2)  
= Pins are up to 5V tolerant  
AN4/C1IN-/RP2(1)/CN6/RB2  
AN5/C1IN+/RP3(1)/CN7/RB3  
AN6/DAC1RM/RP16(1)/CN8/RC0  
AN7/DAC1LM/RP17(1)/CN9/RC1  
AN8/CVREF/RP18(1)/PMA2/CN10/RC2  
VDD  
AN11/DAC1RN/RP13(1)/CN13/PMRD/RB13  
AN12/DAC1RP/RP12(1)/CN14/PMD0/RB12  
PGEC2/RP11(1)/CN15/PMD1/RB11  
PGED2/RP10(1)/CN16/PMD2/RB10  
VCAP/VDDCORE  
11  
10  
9
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
8
7
dsPIC33FJ64GP804  
dsPIC33FJ128GP804  
VSS  
6
VSS  
RP25(1)/CN19/PMA6/RC9  
RP24(1)/CN20/PMA5/RC8  
RP23(1)/CN17/PMA0/RC7  
RP22(1)/CN18/PMA1/RC6  
SDA1/RP9(1)/CN21/PMD3/RB9  
5
OSC1/CLKI/CN30/RA2  
OSC2/CLKO/CN29/RA3  
TDO/PMA8/RA8  
4
3
2
SOSCI/RP4(1)/CN1/RB4  
1
Note 1: The RPx pins can be used by any remappable peripheral. See the table “dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and  
dsPIC33FJ128GPX02/X04 Controller Families” in this section for the list of available peripherals.  
2: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 9  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
Pin Diagrams (Continued)  
44-Pin QFN(2)  
= Pins are up to 5V tolerant  
AN4/C1IN-/RP2(1)/CN6/RB2  
AN5/C1IN+/RP3(1)/CN7/RB3  
AN6/RP16(1)/CN8/RC0  
AN7/RP17(1)/CN9/RC1  
AN8/CVREF/RP18(1)/PMA2/CN10/RC2  
VDD  
11 AN11/RP13(1)/CN13/PMRD/RB13  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
AN12/RP12(1)/CN14/PMD0/RB12  
10  
PGEC2/RP11(1)/CN15/PMD1/RB11  
9
PGED2/RP10(1)/CN16/PMD2/RB10  
8
dsPIC33FJ32GP304  
dsPIC33FJ64GP204  
dsPIC33FJ128GP204  
VCAP/VDDCORE  
7
VSS  
6
5
4
3
VSS  
RP25(1)/CN19/PMA6/RC9  
RP24(1)/CN20/PMA5/RC8  
RP23(1)/CN17/PMA0/RC7  
RP22(1)/CN18/PMA1/RC6  
SDA1/RP9(1)/CN21/PMD3/RB9  
OSC1/CLKI/CN30/RA2  
OSC2/CLKO/CN29/RA3  
TDO/PMA8/RA8  
2
SOSCI/RP4(1)/CN1/RB4  
1
Note 1: The RPx pins can be used by any remappable peripheral. See the table “dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and  
dsPIC33FJ128GPX02/X04 Controller Families” in this section for the list of available peripherals.  
2: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  
DS70292D-page 10  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
Pin Diagram  
44-Pin TQFP  
= Pins are up to 5V tolerant  
AN4/C1IN-/RP2(1)/CN6/RB2  
AN11/DAC1RN/RP13(1)/CN13/PMRD/RB13  
11  
10  
9
8
7
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
AN12/DAC1RP/RP12(1)/CN14/PMD0/RB12  
PGEC2/RP11(1)/CN15/PMD1/RB11  
PGED2/EMCD2/RP10(1)/CN16/PMD2/RB10  
VCAP/VDDCORE  
AN5/C1IN+/RP3(1)/CN7/RB3  
AN6/DAC1RM/RP16(1)/CN8/RC0  
AN7/DAC1LM/RP17/(1)/CN9/RC1  
AN8/CVREF/RP18(1)/PMA2/CN10/RC2  
VDD  
dsPIC33FJ64GP804  
dsPIC33FJ128GP804 65  
VSS  
RP25(1)/CN19/PMA6/RC9  
RP24(1)/CN20/PMA5/RC8  
RP23(1)/CN17/PMA0/RC7  
RP22(1)/CN18/PMA1/RC6  
SDA1/RP9(1)/CN21/PMD3/RB9  
VSS  
4
3
2
1
OSC1/CLKI/CN30/RA2  
OSC2/CLKO/CN29/RA3  
TDO/PMA8/RA8  
SOSCI/RP4(1)/CN1/RB4  
Note 1: The RPx pins can be used by any remappable peripheral. See the table “dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 Controller Families” in this section for the list of available peripherals.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 11  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
Pin Diagram  
44-Pin TQFP  
= Pins are up to 5V tolerant  
AN4/C1IN-/RP2(1)/CN6/RB2  
AN11/RP13(1)/CN13/PMRD/RB13  
11  
10  
9
8
7
23  
24  
25  
26  
27  
28  
AN12/RP12(1)/CN14/PMD0/RB12  
PGEC2/RP11(1)/CN15/PMD1/RB11  
PGED2/EMCD2/RP10(1)/CN16/PMD2/RB10  
VCAP/VDDCORE  
AN5/C1IN+/RP3(1)/CN7/RB3  
AN6/RP16(1)/CN8/RC0  
AN7/RP17(1)/CN9/RC1  
AN8/CVREF/RP18(1)/PMA2/CN10/RC2  
VDD  
dsPIC33FJ32GP304  
dsPIC33FJ64GP204  
6
VSS  
RP25(1)/CN19/PMA6/RC9  
RP24(1)/CN20/PMA5/RC8  
RP23(1)/CN17/PMA0/RC7  
RP22(1)/CN18/PMA1/RC6  
SDA1/RP9(1)/CN21/PMD3/RB9  
5
3209 dsPIC33FJ128GP204  
VSS  
4
3
2
1
OSC1/CLKI/CN30/RA2  
OSC2/CLKO/CN29/RA3  
TDO/PMA8/RA8  
31  
32  
33  
SOSCI/RP4(1)/CN1/RB4  
Note 1: The RPx pins can be used by any remappable peripheral. See the table “dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 Controller Families” in this section for the list of available peripherals.  
DS70292D-page 12  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
Table of Contents  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04 Product Families............................................. 5  
1.0 Device Overview ........................................................................................................................................................................ 15  
2.0 Guidelines for Getting Started with 16-Bit Digital Signal Controllers.......................................................................................... 21  
3.0 CPU............................................................................................................................................................................................ 25  
4.0 Memory Organization................................................................................................................................................................. 37  
5.0 Flash Program Memory.............................................................................................................................................................. 73  
6.0 Resets ....................................................................................................................................................................................... 79  
7.0 Interrupt Controller ..................................................................................................................................................................... 87  
8.0 Direct Memory Access (DMA).................................................................................................................................................. 129  
9.0 Oscillator Configuration............................................................................................................................................................ 141  
10.0 Power-Saving Features............................................................................................................................................................ 153  
11.0 I/O Ports ................................................................................................................................................................................... 159  
12.0 Timer1 ...................................................................................................................................................................................... 187  
13.0 Timer2/3 and Timer4/5 feature ................................................................................................................................................ 189  
14.0 Input Capture............................................................................................................................................................................ 195  
15.0 Output Compare....................................................................................................................................................................... 197  
16.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 201  
2
17.0 Inter-Integrated Circuit™ (I C™).............................................................................................................................................. 207  
18.0 Universal Asynchronous Receiver Transmitter (UART)........................................................................................................... 215  
19.0 Enhanced CAN (ECAN™) Module........................................................................................................................................... 221  
20.0 Data Converter Interface (DCI) Module.................................................................................................................................... 247  
21.0 10-Bit/12-Bit Analog-to-Digital Converter (ADC) ...................................................................................................................... 253  
22.0 Audio Digital-to-Analog Converter (DAC)................................................................................................................................. 265  
23.0 Comparator Module.................................................................................................................................................................. 271  
24.0 Real-Time Clock and Calendar (RTCC) .................................................................................................................................. 277  
25.0 Programmable Cyclic Redundancy Check (CRC) Generator .................................................................................................. 287  
26.0 Parallel Master Port (PMP)....................................................................................................................................................... 291  
27.0 Special Features ...................................................................................................................................................................... 299  
28.0 Instruction Set Summary.......................................................................................................................................................... 309  
29.0 Development Support............................................................................................................................................................... 317  
30.0 Electrical Characteristics.......................................................................................................................................................... 321  
31.0 High Temperature Electrical Characteristics............................................................................................................................ 367  
32.0 Packaging Information.............................................................................................................................................................. 377  
Appendix A: Revision History............................................................................................................................................................. 387  
Index .................................................................................................................................................................................................. 393  
The Microchip Web Site..................................................................................................................................................................... 399  
Customer Change Notification Service .............................................................................................................................................. 399  
Customer Support.............................................................................................................................................................................. 399  
Reader Response.............................................................................................................................................................................. 400  
Product Identification System ............................................................................................................................................................ 401  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 13  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our website at www.microchip.com to receive the most current information on all of our products.  
DS70292D-page 14  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
This document contains device specific information for  
1.0  
DEVICE OVERVIEW  
the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 Digital Signal  
Controller (DSC) Devices. The dsPIC33F devices  
contain extensive Digital Signal Processor (DSP)  
Note 1: This data sheet summarizes the features  
of  
the  
dsPIC33FJ32GP302/304,  
and  
dsPIC33FJ64GPX02/X04,  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to the “dsPIC33F/PIC24H Family  
Reference Manual”. Please see the  
Microchip web site (www.microchip.com)  
for the latest dsPIC33F/PIC24H Family  
Reference Manual sections.  
functionality with  
microcontroller (MCU) architecture.  
a
high performance 16-bit  
Figure 1-1 shows a general block diagram of the  
core  
and  
peripheral  
modules  
in  
the  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 families of devices.  
Table 1-1 lists the functions of the various pins  
shown in the pinout diagrams.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 15  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 1-1:  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/  
X04 BLOCK DIAGRAM  
PSV and Table  
Data Access  
Control Block  
Y Data Bus  
X Data Bus  
Interrupt  
Controller  
PORTA  
PORTB  
16  
16  
16  
8
16  
DMA  
RAM  
Data Latch  
Data Latch  
X RAM  
23  
PCH PCL  
Program Counter  
Y RAM  
PCU  
23  
Address  
Latch  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
16  
DMA  
Controller  
23  
16  
16  
PORTC  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
Remappable  
Pins  
EA MUX  
ROM Latch  
24  
16  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
16  
Control Signals  
to Various Blocks  
DSP Engine  
16 x 16  
W Register Array  
Power-up  
Timer  
Timing  
Generation  
OSC2/CLKO  
OSC1/CLKI  
Divide Support  
16  
Oscillator  
Start-up Timer  
FRC/LPRC  
Oscillators  
Power-on  
Reset  
16-bit ALU  
Precision  
Band Gap  
Reference  
Watchdog  
Timer  
16  
Brown-out  
Reset  
Voltage  
Regulator  
VCAP/VDDCORE  
VDD, VSS  
MCLR  
OC/  
PWM1-4  
Comparator  
ECAN1  
Timers  
PMP/  
EPSP  
UART1, 2  
ADC1  
2 Ch.  
1-5  
DAC1  
SPI1, 2  
RTCC  
IC1, 2, 7, 8  
DCI  
CNx  
I2C1  
Note:  
Not all pins or features are implemented on all device pinout configurations. See pinout diagrams for the specific pins and features pres-  
ent on each device.  
DS70292D-page 16  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS  
Pin  
Buffer  
Type  
PPS  
Description  
Type  
AN0-AN12  
CLKI  
I
I
Analog  
Analog input channels.  
ST/CMOS No External clock source input. Always associated with OSC1 pin  
function.  
CLKO  
O
No Oscillator crystal output. Connects to crystal or resonator in Crystal  
Oscillator mode. Optionally functions as CLKO in RC and EC modes.  
Always associated with OSC2 pin function.  
OSC1  
OSC2  
I
ST/CMOS No Oscillator crystal input. ST buffer when configured in RC mode;  
CMOS otherwise.  
I/O  
No Oscillator crystal output. Connects to crystal or resonator in Crystal  
Oscillator mode. Optionally functions as CLKO in RC and EC modes.  
SOSCI  
I
ST/CMOS No 32.768 kHz low-power oscillator crystal input; CMOS otherwise.  
SOSCO  
O
No 32.768 kHz low-power oscillator crystal output.  
CN0-CN30  
I
ST  
No Change notification inputs.  
No Can be software programmed for internal weak pull-ups on all inputs.  
IC1-IC2  
IC7-IC8  
I
I
ST  
ST  
Yes Capture inputs 1/2.  
Yes Capture inputs 7/8.  
OCFA  
OC1-OC4  
I
O
ST  
Yes Compare Fault A input (for Compare Channels 1, 2, 3 and 4).  
Yes Compare outputs 1 through 4.  
INT0  
INT1  
INT2  
I
I
I
ST  
ST  
ST  
No External interrupt 0.  
Yes External interrupt 1.  
Yes External interrupt 2.  
I/O  
I/O  
ST  
ST  
No PORTA is a bidirectional I/O port.  
No PORTA is a bidirectional I/O port.  
RA0-RA4  
RA7-RA10  
RB0-RB15  
RC0-RC9  
I/O  
I/O  
ST  
ST  
No PORTB is a bidirectional I/O port.  
No PORTC is a bidirectional I/O port.  
T1CK  
T2CK  
T3CK  
T4CK  
T5CK  
I
I
I
I
I
ST  
ST  
ST  
ST  
ST  
No Timer1 external clock input.  
Yes Timer2 external clock input.  
Yes Timer3 external clock input.  
Yes Timer4 external clock input.  
Yes Timer5 external clock input.  
I
O
I
ST  
ST  
Yes UART1 clear to send.  
Yes UART1 ready to send.  
Yes UART1 receive.  
U1CTS  
U1RTS  
U1RX  
U1TX  
O
Yes UART1 transmit.  
I
O
I
ST  
ST  
Yes UART2 clear to send.  
Yes UART2 ready to send.  
Yes UART2 receive.  
U2CTS  
U2RTS  
U2RX  
U2TX  
O
Yes UART2 transmit.  
SCK1  
SDI1  
SDO1  
I/O  
I
O
ST  
ST  
Yes Synchronous serial clock input/output for SPI1.  
Yes SPI1 data in.  
Yes SPI1 data out.  
SS1  
I/O  
ST  
Yes SPI1 slave synchronization or frame pulse I/O.  
SCK2  
SDI2  
SDO2  
I/O  
I
O
ST  
ST  
Yes Synchronous serial clock input/output for SPI2.  
Yes SPI2 data in.  
Yes SPI2 data out.  
SS2  
I/O  
ST  
Yes SPI2 slave synchronization or frame pulse I/O.  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
PPS = Peripheral Pin Select  
P = Power  
I = Input  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 17  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin  
Buffer  
Type  
PPS  
Description  
Type  
SCL1  
SDA1  
ASCL1  
ASDA1  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
No Synchronous serial clock input/output for I2C1.  
No Synchronous serial data input/output for I2C1.  
No Alternate synchronous serial clock input/output for I2C1.  
No Alternate synchronous serial data input/output for I2C1.  
TMS  
TCK  
TDI  
I
I
I
ST  
ST  
ST  
No JTAG Test mode select pin.  
No JTAG test clock input pin.  
No JTAG test data input pin.  
No JTAG test data output pin.  
TDO  
O
C1RX  
C1TX  
I
O
ST  
Yes ECAN1 bus receive pin.  
Yes ECAN1 bus transmit pin.  
RTCC  
CVREF  
O
O
No Real-Time Clock Alarm Output.  
ANA  
No Comparator Voltage Reference Output.  
C1IN-  
C1IN+  
C1OUT  
I
I
O
ANA  
ANA  
No Comparator 1 Negative Input.  
No Comparator 1 Positive Input.  
Yes Comparator 1 Output.  
C2IN-  
C2IN+  
C2OUT  
I
I
O
ANA  
ANA  
No Comparator 2 Negative Input.  
No Comparator 2 Positive Input.  
Yes Comparator 2 Output.  
PMA0  
I/O  
TTL/ST  
No Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and  
Output (Master modes).  
PMA1  
I/O  
TTL/ST  
No Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and  
Output (Master modes).  
PMA2 -PMPA10  
PMBE  
PMCS1  
O
O
O
No Parallel Master Port Address (Demultiplexed Master Modes).  
No Parallel Master Port Byte Enable Strobe.  
No Parallel Master Port Chip Select 1 Strobe.  
No Parallel Master Port Data (Demultiplexed Master mode) or Address/  
Data (Multiplexed Master modes).  
PMD0-PMPD7  
I/O  
TTL/ST  
PMRD  
PMWR  
O
O
No Parallel Master Port Read Strobe.  
No Parallel Master Port Write Strobe.  
O
O
O
No DAC1 Right Channel Negative Output.  
No DAC1 Right Channel Positive Output.  
No DAC1 Right Channel Middle Point Value (typically 1.65V).  
DAC1RN  
DAC1RP  
DAC1RM  
O
O
O
No DAC1 Left Channel Negative Output.  
No DAC1 Left Channel Positive Output.  
No DAC1 Left Channel Middle Point Value (typically 1.65V).  
DAC1LN  
DAC1LP  
DAC1LM  
I/O  
I/O  
I
ST  
ST  
ST  
Yes Data Converter Interface frame synchronization pin.  
Yes Data Converter Interface serial clock input/output pin.  
Yes Data Converter Interface serial data input pin  
Yes Data Converter Interface serial data output pin.  
COFS  
CSCK  
CSDI  
O
CSDO  
PGWD1  
PGEC1  
PGWD2  
PGEC2  
PGWD3  
PGEC3  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
No Data I/O pin for programming/debugging communication channel 1.  
No Clock input pin for programming/debugging communication channel 1.  
No Data I/O pin for programming/debugging communication channel 2.  
No Clock input pin for programming/debugging communication channel 2.  
No Data I/O pin for programming/debugging communication channel 3.  
No Clock input pin for programming/debugging communication channel 3.  
I
I/O  
I
I/O  
I
I/P  
ST  
No Master Clear (Reset) input. This pin is an active-low Reset to the  
device.  
MCLR  
AVDD  
P
P
No Positive supply for analog modules. This pin must be connected at all  
times.  
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
PPS = Peripheral Pin Select  
P = Power  
I = Input  
DS70292D-page 18  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin  
Buffer  
Type  
PPS  
Description  
Type  
AVSS  
P
P
P
P
I
P
No Ground reference for analog modules.  
No Positive supply for peripheral logic and I/O pins.  
No CPU logic filter capacitor connection.  
No Ground reference for logic and I/O pins.  
No Analog voltage reference (high) input.  
No Analog voltage reference (low) input.  
VDD  
VCAP/VDDCORE  
Vss  
VREF+  
VREF-  
Analog  
Analog  
I
Legend: CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels  
TTL = TTL input buffer  
Analog = Analog input  
O = Output  
PPS = Peripheral Pin Select  
P = Power  
I = Input  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 19  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 20  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
2.2  
Decoupling Capacitors  
2.0  
GUIDELINES FOR GETTING  
STARTED WITH 16-BIT  
DIGITAL SIGNAL  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD and  
AVSS is required.  
CONTROLLERS  
Consider the following criteria when using decoupling  
capacitors:  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and  
Value and type of capacitor: Recommendation  
of 0.1 µF (100 nF), 10-20V. This capacitor should  
be a low-ESR and have resonance frequency in  
the range of 20 MHz and higher. It is  
dsPIC33FJ128GPX02/X04 family of  
devices. It is not intended to be a  
comprehensive reference source. To  
complement the information in this data  
sheet, refer to the “dsPIC33F/PIC24H  
Family Reference Manual”, which is  
available from the Microchip website  
(www.microchip.com).  
recommended that ceramic capacitors be used.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is within  
one-quarter inch (6 mm) in length.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
Handling high frequency noise: If the board is  
experiencing high frequency noise, upward of  
tens of MHz, add a second ceramic-type capacitor  
in parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 µF to 0.001 µF. Place this  
second capacitor next to the primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible.  
For example, 0.1 µF in parallel with 0.001 µF.  
2.1  
Basic Connection Requirements  
Getting started with the dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/  
X04 family of 16-bit Digital Signal Controllers (DSCs)  
requires attention to a minimal set of device pin  
connections before proceeding with development. The  
following is a list of pin names, which must always be  
connected:  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum thereby reducing PCB track inductance.  
• All VDD and VSS pins  
(see Section 2.2 “Decoupling Capacitors”)  
• All AVDD and AVSS pins (regardless if ADC module  
is not used)  
(see Section 2.2 “Decoupling Capacitors”)  
• VCAP/VDDCORE  
(see Section 2.3 “Capacitor on Internal Voltage  
Regulator (VCAP/VDDCORE)”)  
• MCLR pin  
(see Section 2.4 “Master Clear (MCLR) Pin”)  
• PGECx/PGEDx pins used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes  
(see Section 2.5 “ICSP Pins”)  
• OSC1 and OSC2 pins when external oscillator  
source is used  
(see Section 2.6 “External Oscillator Pins”)  
Additionally, the following pins may be required:  
• VREF+/VREF- pins used when external voltage  
reference for ADC module is implemented  
Note:  
The AVDD and AVSS pins must be  
connected independent of the ADC  
voltage reference source.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 21  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTION  
2.4  
Master Clear (MCLR) Pin  
The MCLR pin provides for two specific device  
functions:  
0.1 µF  
Ceramic  
• Device Reset  
VDD  
• Device programming and debugging  
During device programming and debugging, the  
resistance and capacitance that can be added to the  
pin must be considered. Device programmers and  
debuggers drive the MCLR pin. Consequently,  
specific voltage levels (VIH and VIL) and fast signal  
transitions must not be adversely affected. Therefore,  
specific values of R and C will need to be adjusted  
based on the application and PCB requirements.  
R
R1  
MCLR  
C
dsPIC33F  
VDD  
VSS  
VDD  
For example, as shown in Figure 2-2, it is  
recommended that the capacitor C, be isolated from  
the MCLR pin during programming and debugging  
operations.  
VSS  
0.1 µF  
Ceramic  
0.1 µF  
Ceramic  
0.1 µF  
0.1 µF  
Ceramic  
Ceramic  
Place the components shown in Figure 2-2 within  
one-quarter inch (6 mm) from the MCLR pin.  
10   
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
2.2.1  
TANK CAPACITORS  
On boards with power traces running longer than six  
inches in length, it is suggested to use a tank capacitor  
for integrated circuits including DSCs to supply a local  
power source. The value of the tank capacitor should  
be determined based on the trace resistance that con-  
nects the power supply source to the device, and the  
maximum current drawn by the device in the applica-  
tion. In other words, select the tank capacitor so that it  
meets the acceptable voltage sag at the device. Typical  
values range from 4.7 µF to 47 µF.  
VDD  
R
R1  
MCLR  
dsPIC33F  
JP  
C
2.3  
Capacitor on Internal Voltage  
Regulator (VCAP/VDDCORE)  
Note 1: R 10 kis recommended. A suggested  
starting value is 10 k. Ensure that the  
MCLR pin VIH and VIL specifications are met.  
A low-ESR (< 5 Ohms) capacitor is required on the  
VCAP/VDDCORE pin, which is used to stabilize the  
voltage regulator output voltage. The VCAP/VDDCORE  
pin must not be connected to VDD, and must have a  
capacitor between 4.7 µF and 10 µF, 16V connected to  
ground. The type can be ceramic or tantalum. Refer to  
Section 30.0 “Electrical Characteristics” for  
additional information.  
2: R1 470will limit any current flowing into  
MCLR from the external capacitor C, in the  
event of MCLR pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
The placement of this capacitor should be close to the  
VCAP/VDDCORE. It is recommended that the trace  
length not exceed one-quarter inch (6 mm). Refer to  
Section 27.2 “On-Chip Voltage Regulator” for  
details.  
DS70292D-page 22  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
2.5  
ICSP Pins  
2.6  
External Oscillator Pins  
The PGECx and PGEDx pins are used for In-Circuit  
Serial Programming™ (ICSP™) and debugging pur-  
poses. It is recommended to keep the trace length  
between the ICSP connector and the ICSP pins on the  
device as short as possible. If the ICSP connector is  
expected to experience an ESD event, a series resistor  
is recommended, with the value in the range of a few  
tens of Ohms, not to exceed 100 Ohms.  
Many DSCs have options for at least two oscillators: a  
high-frequency primary oscillator and a low-frequency  
secondary oscillator (refer to Section 9.0 “Oscillator  
Configuration” for details).  
The oscillator circuit should be placed on the same  
side of the board as the device. Also, place the  
oscillator circuit close to the respective oscillator pins,  
not exceeding one-half inch (12 mm) distance  
between them. The load capacitors should be placed  
next to the oscillator itself, on the same side of the  
board. Use a grounded copper pour around the  
oscillator circuit to isolate them from surrounding  
circuits. The grounded copper pour should be routed  
directly to the MCU ground. Do not run any signal  
traces or power traces inside the ground pour. Also, if  
using a two-sided board, avoid any traces on the  
other side of the board where the crystal is placed. A  
suggested layout is shown in Figure 2-3.  
Pull-up resistors, series diodes, and capacitors on the  
PGECx and PGEDx pins are not recommended as they  
will interfere with the programmer/debugger communi-  
cations to the device. If such discrete components are  
an application requirement, they should be removed  
from the circuit during programming and debugging.  
Alternatively, refer to the AC/DC characteristics and  
timing requirements information in the respective  
device Flash programming specification for information  
on capacitive loading limits and pin input voltage high  
(VIH) and input low (VIL) requirements.  
FIGURE 2-3:  
SUGGESTED PLACEMENT  
OF THE OSCILLATOR  
CIRCUIT  
Ensure that the “Communication Channel Select” (i.e.,  
PGECx/PGEDx pins) programmed into the device  
matches the physical connections for the ICSP to  
MPLAB® ICD 2, MPLAB ICD 3 or MPLAB REAL ICE™.  
For more information on ICD 2, ICD 3 and REAL ICE  
connection requirements, refer to the following  
documents that are available on the Microchip website.  
“MPLAB® ICD 2 In-Circuit Debugger User’s  
Guide” DS51331  
“Using MPLAB® ICD 2” (poster) DS51265  
“MPLAB® ICD 2 Design Advisory” DS51566  
“Using MPLAB® ICD 3 In-Circuit Debugger”  
Main Oscillator  
Guard Ring  
13  
14  
15  
16  
17  
18  
19  
20  
Guard Trace  
Secondary  
Oscillator  
(poster) DS51765  
“MPLAB® ICD 3 Design Advisory” DS51764  
“MPLAB® REAL ICE™ In-Circuit Emulator User’s  
Guide” DS51616  
“Using MPLAB® REAL ICE™” (poster) DS51749  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 23  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
2.7  
Oscillator Value Conditions on  
Device Start-up  
If the PLL of the target device is enabled and  
configured for the device start-up oscillator, the  
maximum oscillator source frequency must be limited  
to 4 MHz < FIN < 8 MHz to comply with device PLL  
start-up conditions. This means that if the external  
oscillator frequency is outside this range, the  
application must start-up in the FRC mode first. The  
default PLL settings after a POR with an oscillator  
frequency outside this range will violate the device  
operating speed.  
Once the device powers up, the application firmware  
can initialize the PLL SFRs, CLKDIV and PLLDBF to a  
suitable value, and then perform a clock switch to the  
Oscillator + PLL clock source. Note that clock switching  
must be enabled in the device Configuration word.  
2.8  
Configuration of Analog and  
Digital Pins During ICSP  
Operations  
If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a  
debugger, it automatically initializes all of the A/D input  
pins (ANx) as “digital” pins, by setting all bits in the  
AD1PCFGL register.  
The bits in this register that correspond to the A/D pins  
that are initialized by MPLAB ICD 2, ICD 3 or REAL  
ICE, must not be cleared by the user application  
firmware; otherwise, communication errors will result  
between the debugger and the device.  
If your application needs to use certain A/D pins as  
analog input pins during the debug session, the user  
application must clear the corresponding bits in the  
AD1PCFGL register during initialization of the ADC  
module.  
When MPLAB ICD 2, ICD 3 or REAL ICE is used as a  
programmer, the user application firmware must  
correctly configure the AD1PCFGL register. Automatic  
initialization of this register is only done during  
debugger operation. Failure to correctly configure the  
register(s) will result in all A/D pins being recognized as  
analog input pins, resulting in the port value being read  
as a logic ‘0’, which may affect user application  
functionality.  
2.9  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic-low state.  
Alternatively, connect a 1k to 10k resistor to VSS on  
unused pins and drive the output to logic low.  
DS70292D-page 24  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
cycle. As a result, three parameter instructions can be  
supported, allowing A + B = C operations to be  
executed in a single cycle.  
3.0  
CPU  
Note 1: This data sheet summarizes the features  
of  
the  
dsPIC33FJ32GP302/304,  
and  
A block diagram of the CPU is shown in Figure 3-1, and  
the programmer’s model for the dsPIC33FJ32GP302/  
dsPIC33FJ64GPX02/X04,  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 2. CPU” (DS70204) of  
the “dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
304,  
dsPIC33FJ64GPX02/X04,  
and  
dsPIC33FJ128GPX02/X04 is shown in Figure 3-2.  
3.2  
Data Addressing Overview  
The data space can be addressed as 32K words or  
64 Kbytes and is split into two blocks, referred to as X  
and Y data memory. Each memory block has its own  
independent Address Generation Unit (AGU). The  
MCU class of instructions operates solely through the  
X memory AGU, which accesses the entire memory  
map as one linear data space. Certain DSP instructions  
operate through the X and Y AGUs to support dual  
operand reads, which splits the data address space  
into two parts. The X and Y data space boundary is  
device-specific.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
3.1  
Overview  
Overhead-free circular buffers (Modulo Addressing  
mode) are supported in both X and Y address spaces.  
The Modulo Addressing removes the software  
boundary checking overhead for DSP algorithms.  
Furthermore, the X AGU circular addressing can be  
used with any of the MCU class of instructions. The X  
AGU also supports Bit-Reversed Addressing to greatly  
simplify input or output data reordering for radix-2 FFT  
algorithms.  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 CPU module has  
a 16-bit (data) modified Harvard architecture with an  
enhanced instruction set, including significant support  
for DSP. The CPU has a 24-bit instruction word with a  
variable length opcode field. The Program Counter  
(PC) is 23 bits wide and addresses up to 4M x 24 bits  
of user program memory space. The actual amount of  
program memory implemented varies by device. A  
single-cycle instruction prefetch mechanism is used to  
help maintain throughput and provides predictable  
execution. All instructions execute in a single cycle,  
with the exception of instructions that change the  
program flow, the double-word move (MOV.D)  
instruction and the table instructions. Overhead-free  
program loop constructs are supported using the DO  
and REPEAT instructions, both of which are  
interruptible at any time.  
The upper 32 Kbytes of the data space memory map  
can optionally be mapped into program space at any  
16K program word boundary defined by the 8-bit  
Program Space Visibility Page (PSVPAG) register. The  
program-to-data-space mapping feature lets any  
instruction access program space as if it were data  
space.  
3.3  
DSP Engine Overview  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 devices have six-  
teen, 16-bit working registers in the programmer’s  
model. Each of the working registers can serve as a  
data, address or address offset register. The 16th work-  
ing register (W15) operates as a software Stack Pointer  
(SP) for interrupts and calls.  
The DSP engine features a high-speed 17-bit by 17-bit  
multiplier, 40-bit ALU, two 40-bit saturating  
a
accumulators and a 40-bit bidirectional barrel shifter.  
The barrel shifter is capable of shifting a 40-bit value up  
to 16 bits right or left, in a single cycle. The DSP  
instructions operate seamlessly with all other  
instructions and have been designed for optimal real-  
time performance. The MAC instruction and other  
associated instructions can concurrently fetch two data  
operands from memory while multiplying two W  
registers and accumulating and optionally saturating  
the result in the same cycle. This instruction  
functionality requires that the RAM data space be split  
for these instructions and linear for all others. Data  
space partitioning is achieved in a transparent and  
flexible manner through dedicating certain working  
registers to each address space.  
There are two classes of instruction in the  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 devices: MCU and  
DSP. These two instruction classes are seamlessly  
integrated into a single CPU. The instruction set  
includes many addressing modes and is designed for  
optimum C compiler efficiency. For most instructions,  
the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 is capable of exe-  
cuting a data (or program data) memory read, a work-  
ing register (data) read, a data memory write and a  
program (instruction) memory read per instruction  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 25  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
3.4  
Special MCU Features  
X04, and dsPIC33FJ128GPX02/X04 supports 16/16  
and 32/16 divide operations, both fractional and inte-  
ger. All divide instructions are iterative operations. They  
must be executed within a REPEATloop, resulting in a  
total execution time of 19 instruction cycles. The divide  
operation can be interrupted during any of those  
19 cycles without loss of data.  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 features a 17-bit  
by 17-bit single-cycle multiplier that is shared by both  
the MCU ALU and DSP engine. The multiplier can per-  
form signed, unsigned and mixed-sign multiplication.  
Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit  
multiplication not only allows you to perform mixed-sign  
multiplication, it also achieves accurate results for  
special operations, such as (-1.0) x (-1.0).  
A 40-bit barrel shifter is used to perform up to a 16-bit  
left or right shift in a single cycle. The barrel shifter can  
be used by both MCU and DSP instructions.  
FIGURE 3-1:  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/  
X04 CPU CORE BLOCK DIAGRAM  
PSV and Table  
Data Access  
Control Block  
Y Data Bus  
X Data Bus  
Interrupt  
Controller  
16  
16  
16  
8
16  
Data Latch  
Data Latch  
X RAM  
DMA  
RAM  
23  
16  
PCH PCL  
Program Counter  
PCU  
Y RAM  
23  
Address  
Latch  
Address  
Latch  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
23  
16  
16  
DMA  
Controller  
Address Generator Units  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
ROM Latch  
24  
16  
16  
Instruction  
Decode and  
Control  
Instruction Reg  
Control Signals  
to Various Blocks  
16  
DSP Engine  
16 x 16  
W Register Array  
Divide Support  
16  
16-bit ALU  
16  
To Peripheral Modules  
DS70292D-page 26  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 3-2:  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/  
X04 PROGRAMMER’S MODEL  
D15  
D0  
W0/WREG  
W1  
PUSH.SShadow  
DOShadow  
W2  
W3  
Legend  
W4  
DSP Operand  
Registers  
W5  
W6  
W7  
Working Registers  
W8  
W9  
DSP Address  
Registers  
W10  
W11  
W12/DSP Offset  
W13/DSP Write Back  
W14/Frame Pointer  
W15/Stack Pointer  
SPLIM  
Stack Pointer Limit Register  
AD15  
AD39  
ACCA  
AD31  
AD0  
DSP  
Accumulators  
ACCB  
PC22  
PC0  
0
Program Counter  
0
7
TBLPAG  
Data Table Page Address  
7
0
PSVPAG  
Program Space Visibility Page Address  
15  
0
0
RCOUNT  
REPEATLoop Counter  
DOLoop Counter  
15  
DCOUNT  
22  
0
DOSTART  
DOEND  
DOLoop Start Address  
DOLoop End Address  
22  
15  
0
Core Configuration Register  
CORCON  
OA OB SA SB OAB SAB DA DC  
SRH  
IPL0 RA  
N
OV  
Z
C
IPL2 IPL1  
STATUS Register  
SRL  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 27  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
3.5  
CPU Control Registers  
REGISTER 3-1:  
SR: CPU STATUS REGISTER  
R-0  
OA  
R-0  
OB  
R/C-0  
SA(1)  
R/C-0  
SB(1)  
R-0  
R/C-0  
SAB(4)  
R -0  
DA  
R/W-0  
DC  
OAB  
bit 15  
bit 8  
R/W-0(3)  
R/W-0(3)  
IPL<2:0>(2)  
R/W-0(3)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 7  
bit 0  
Legend:  
C = Clear only bit  
S = Set only bit  
‘1’ = Bit is set  
R = Readable bit  
W = Writable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
OA: Accumulator A Overflow Status bit  
1= Accumulator A overflowed  
0= Accumulator A has not overflowed  
OB: Accumulator B Overflow Status bit  
1= Accumulator B overflowed  
0= Accumulator B has not overflowed  
SA: Accumulator A Saturation ‘Sticky’ Status bit(1)  
1= Accumulator A is saturated or has been saturated at some time  
0= Accumulator A is not saturated  
SB: Accumulator B Saturation ‘Sticky’ Status bit(1)  
1= Accumulator B is saturated or has been saturated at some time  
0= Accumulator B is not saturated  
OAB: OA || OB Combined Accumulator Overflow Status bit  
1= Accumulators A or B have overflowed  
0= Neither Accumulators A or B have overflowed  
SAB: SA || SB Combined Accumulator (Sticky) Status bit(4)  
1= Accumulators A or B are saturated or have been saturated at some time in the past  
0= Neither Accumulator A or B are saturated  
DA: DOLoop Active bit  
1= DOloop in progress  
0= DOloop not in progress  
bit 8  
DC: MCU ALU Half Carry/Borrow bit  
1= A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)  
of the result occurred  
0= No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized  
data) of the result occurred  
Note 1: This bit can be read or cleared (not set).  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read only when NSTDIS = 1(INTCON1<15>).  
4: This bit can be read or cleared (not set). Clearing this bit clears SA and SB.  
DS70292D-page 28  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 3-1:  
SR: CPU STATUS REGISTER (CONTINUED)  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
bit 4  
bit 3  
bit 2  
RA: REPEATLoop Active bit  
1= REPEATloop in progress  
0= REPEATloop not in progress  
N: MCU ALU Negative bit  
1= Result was negative  
0= Result was non-negative (zero or positive)  
OV: MCU ALU Overflow bit  
This bit is used for signed arithmetic (two’s complement). It indicates an overflow of a magnitude that  
causes the sign bit to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 1  
bit 0  
Z: MCU ALU Zero bit  
1= An operation that affects the Z bit has set it at some time in the past  
0= The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)  
C: MCU ALU Carry/Borrow bit  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: This bit can be read or cleared (not set).  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read only when NSTDIS = 1(INTCON1<15>).  
4: This bit can be read or cleared (not set). Clearing this bit clears SA and SB.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 29  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 3-2:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
R/W-0  
US  
R/W-0  
EDT(1)  
R-0  
R-0  
R-0  
DL<2:0>  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
bit 7  
bit 0  
Legend:  
C = Clear only bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
US: DSP Multiply Unsigned/Signed Control bit  
1= DSP engine multiplies are unsigned  
0= DSP engine multiplies are signed  
bit 11  
EDT: Early DOLoop Termination Control bit(1)  
1= Terminate executing DOloop at end of current loop iteration  
0= No effect  
bit 10-8  
DL<2:0>: DOLoop Nesting Level Status bits  
111= 7 DOloops active  
001= 1 DOloop active  
000= 0 DOloops active  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
SATA: ACCA Saturation Enable bit  
1= Accumulator A saturation enabled  
0= Accumulator A saturation disabled  
SATB: ACCB Saturation Enable bit  
1= Accumulator B saturation enabled  
0= Accumulator B saturation disabled  
SATDW: Data Space Write from DSP Engine Saturation Enable bit  
1= Data space write saturation enabled  
0= Data space write saturation disabled  
ACCSAT: Accumulator Saturation Mode Select bit  
1= 9.31 saturation (super saturation)  
0= 1.31 saturation (normal saturation)  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
PSV: Program Space Visibility in Data Space Enable bit  
1= Program space visible in data space  
0= Program space not visible in data space  
Note 1: This bit is always read as ‘0’.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.  
DS70292D-page 30  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 3-2:  
CORCON: CORE CONTROL REGISTER (CONTINUED)  
bit 1  
RND: Rounding Mode Select bit  
1= Biased (conventional) rounding enabled  
0= Unbiased (convergent) rounding enabled  
bit 0  
IF: Integer or Fractional Multiplier Mode Select bit  
1= Integer mode enabled for DSP multiply ops  
0= Fractional mode enabled for DSP multiply ops  
Note 1: This bit is always read as ‘0’.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 31  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
3.6.2  
DIVIDER  
3.6  
Arithmetic Logic Unit (ALU)  
The divide block supports 32-bit/16-bit and 16-bit/16-bit  
signed and unsigned integer divide operations with the  
following data sizes:  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 ALU is 16 bits  
wide and is capable of addition, subtraction, bit shifts  
and logic operations. Unless otherwise mentioned,  
arithmetic operations are two’s complement in nature.  
Depending on the operation, the ALU can affect the  
values of the Carry (C), Zero (Z), Negative (N),  
Overflow (OV) and Digit Carry (DC) Status bits in the  
SR register. The C and DC Status bits operate as  
Borrow and Digit Borrow bits, respectively, for  
subtraction operations.  
1. 32-bit signed/16-bit signed divide  
2. 32-bit unsigned/16-bit unsigned divide  
3. 16-bit signed/16-bit signed divide  
4. 16-bit unsigned/16-bit unsigned divide  
The quotient for all divide instructions ends up in W0  
and the remainder in W1. 16-bit signed and unsigned  
DIV instructions can specify any W register for both  
the 16-bit divisor (Wn) and any W register (aligned)  
pair (W(m + 1):Wm) for the 32-bit dividend. The divide  
algorithm takes one cycle per bit of divisor, so both  
32-bit/16-bit and 16-bit/16-bit instructions take the  
same number of cycles to execute.  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W  
register array or data memory, depending on the  
addressing mode of the instruction. Likewise, output  
data from the ALU can be written to the W register array  
or a data memory location.  
3.7  
DSP Engine  
The DSP engine consists of a high-speed 17-bit x  
17-bit multiplier, a barrel shifter and a 40-bit adder/  
subtracter (with two target accumulators, round and  
saturation logic).  
Refer to the “16-bit MCU and DSC Programmer’s Ref-  
erence Manual” (DS70157) for information on the SR  
bits affected by each instruction.  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 CPU incorpo-  
rates hardware support for both multiplication and divi-  
sion. This includes a dedicated hardware multiplier and  
support hardware for 16-bit-divisor division.  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 is a single-cycle  
instruction flow architecture; therefore, concurrent  
operation of the DSP engine with MCU instruction flow  
is not possible. However, some MCU ALU and DSP  
engine resources can be used concurrently by the  
same instruction (e.g., ED, EDAC).  
3.6.1  
MULTIPLIER  
Using the high-speed 17-bit x 17-bit multiplier of the  
DSP engine, the ALU supports unsigned, signed or  
mixed-sign operation in several MCU multiplication  
modes:  
The DSP engine can also perform inherent accumula-  
tor-to-accumulator operations that require no additional  
data. These instructions are ADD,SUBand NEG.  
The DSP engine has options selected through bits in  
the CPU Core Control register (CORCON), as listed  
below:  
• 16-bit x 16-bit signed  
• 16-bit x 16-bit unsigned  
• 16-bit signed x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit unsigned  
• 16-bit unsigned x 5-bit (literal) unsigned  
• 16-bit unsigned x 16-bit signed  
• 8-bit unsigned x 8-bit unsigned  
• Fractional or integer DSP multiply (IF)  
• Signed or unsigned DSP multiply (US)  
• Conventional or convergent rounding (RND)  
• Automatic saturation on/off for ACCA (SATA)  
• Automatic saturation on/off for ACCB (SATB)  
• Automatic saturation on/off for writes to data  
memory (SATDW)  
• Accumulator Saturation mode selection  
(ACCSAT)  
A block diagram of the DSP engine is shown in  
Figure 3-3.  
DS70292D-page 32  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 3-1:  
DSP INSTRUCTIONS SUMMARY  
Instruction Algebraic Operation  
ACC Write Back  
CLR  
A = 0  
Yes  
No  
ED  
A = (x – y)2  
A = A + (x – y)2  
A = A + (x • y)  
A = A + x2  
No change in A  
A = x • y  
EDAC  
MAC  
No  
Yes  
No  
MAC  
MOVSAC  
MPY  
Yes  
No  
MPY  
A = x 2  
No  
MPY.N  
MSC  
A = – x • y  
A = A – x • y  
No  
Yes  
FIGURE 3-3:  
DSP ENGINE BLOCK DIAGRAM  
S
a
40  
40-bit Accumulator A  
40-bit Accumulator B  
t
16  
40  
Round  
Logic  
u
r
a
t
Carry/Borrow Out  
Carry/Borrow In  
Saturate  
Adder  
e
Negate  
40  
40  
40  
Barrel  
Shifter  
16  
40  
Sign-Extend  
32  
16  
Zero Backfill  
32  
33  
17-bit  
Multiplier/Scaler  
16  
16  
To/From W Array  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 33  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
The adder/subtracter generates Overflow Status bits,  
SA/SB and OA/OB, which are latched and reflected in  
the STATUS register:  
3.7.1  
MULTIPLIER  
The 17-bit x 17-bit multiplier is capable of signed or  
unsigned operation and can multiplex its output using a  
scaler to support either 1.31 fractional (Q31) or 32-bit  
integer results. Unsigned operands are zero-extended  
into the 17th bit of the multiplier input value. Signed  
operands are sign-extended into the 17th bit of the  
multiplier input value. The output of the 17-bit x 17-bit  
multiplier/scaler is a 33-bit value that is sign-extended  
to 40 bits. Integer data is inherently represented as a  
signed two’s complement value, where the Most  
Significant bit (MSb) is defined as a sign bit. The range  
of an N-bit two’s complement integer is -2N-1 to 2N-1 – 1.  
• Overflow from bit 39: this is a catastrophic  
overflow in which the sign of the accumulator is  
destroyed.  
• Overflow into guard bits 32 through 39: this is a  
recoverable overflow. This bit is set whenever all  
the guard bits are not identical to each other.  
The adder has an additional saturation block that  
controls accumulator data saturation, if selected. It  
uses the result of the adder, the Overflow Status bits  
described  
previously  
and  
the  
SAT<A:B>  
• For a 16-bit integer, the data range is -32768  
(0x8000) to 32767 (0x7FFF) including 0.  
(CORCON<7:6>) and ACCSAT (CORCON<4>) mode  
control bits to determine when and to what value to  
saturate.  
• For a 32-bit integer, the data range is -  
2,147,483,648 (0x8000 0000) to 2,147,483,647  
(0x7FFF FFFF).  
Six STATUS register bits support saturation and  
overflow:  
When the multiplier is configured for fractional  
multiplication, the data is represented as a two’s  
complement fraction, where the MSb is defined as a  
sign bit and the radix point is implied to lie just after the  
sign bit (QX format). The range of an N-bit two’s  
complement fraction with this implied radix point is -1.0  
to (1 – 21-N). For a 16-bit fraction, the Q15 data range  
is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0  
and has a precision of 3.01518x10-5. In Fractional  
mode, the 16 x 16 multiply operation generates a 1.31  
• OA: ACCA overflowed into guard bits  
• OB: ACCB overflowed into guard bits  
• SA: ACCA saturated (bit 31 overflow and  
saturation)  
or  
ACCA overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
• SB: ACCB saturated (bit 31 overflow and  
saturation)  
or  
ACCB overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
product that has a precision of 4.65661 x 10-10  
.
The same multiplier is used to support the MCU  
multiply instructions, which include integer 16-bit  
signed, unsigned and mixed sign multiply operations.  
• OAB: Logical OR of OA and OB  
• SAB: Logical OR of SA and SB  
The MUL instruction can be directed to use byte or  
word-sized operands. Byte operands direct a 16-bit  
result, and word operands direct a 32-bit result to the  
specified registers in the W array.  
The OA and OB bits are modified each time data  
passes through the adder/subtracter. When set, they  
indicate that the most recent operation has overflowed  
into the accumulator guard bits (bits 32 through 39).  
The OA and OB bits can also optionally generate an  
arithmetic warning trap when set and the  
corresponding Overflow Trap Flag Enable bits (OVATE,  
OVBTE) in the INTCON1 register are set (refer to  
Section 7.0 “Interrupt Controller”). This allows the  
user application to take immediate action, for example,  
to correct system gain.  
3.7.2  
DATA ACCUMULATORS AND  
ADDER/SUBTRACTER  
The data accumulator consists of a 40-bit adder/  
subtracter with automatic sign extension logic. It can  
select one of two accumulators (A or B) as its pre-  
accumulation  
source  
and  
post-accumulation  
destination. For the ADDand LACinstructions, the data  
to be accumulated or loaded can be optionally scaled  
using the barrel shifter prior to accumulation.  
The SA and SB bits are modified each time data  
passes through the adder/subtracter, but can only be  
cleared by the user application. When set, they indicate  
that the accumulator has overflowed its maximum  
range (bit 31 for 32-bit saturation or bit 39 for 40-bit sat-  
uration) and is saturated (if saturation is enabled).  
When saturation is not enabled, SA and SB default to  
bit 39 overflow and thus indicate that a catastrophic  
overflow has occurred. If the COVTE bit in the  
INTCON1 register is set, the SA and SB bits generate  
an arithmetic warning trap when saturation is disabled.  
3.7.2.1  
Adder/Subtracter, Overflow and  
Saturation  
The adder/subtracter is a 40-bit adder with an optional  
zero input into one side, and either true or complement  
data into the other input.  
• In the case of addition, the Carry/Borrow input is  
active-high and the other input is true data (not  
complemented).  
• In the case of subtraction, the Carry/Borrow input  
is active-low and the other input is complemented.  
DS70292D-page 34  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
The Overflow and Saturation Status bits can  
optionally be viewed in the STATUS Register (SR) as  
the logical OR of OA and OB (in bit OAB) and the  
logical OR of SA and SB (in bit SAB). Programmers  
can check one bit in the STATUS register to  
determine if either accumulator has overflowed, or  
one bit to determine if either accumulator has  
saturated. This is useful for complex number  
arithmetic, which typically uses both accumulators.  
3.7.3.1  
Round Logic  
The round logic is a combinational block that performs  
a conventional (biased) or convergent (unbiased)  
round function during an accumulator write (store). The  
Round mode is determined by the state of the RND bit  
in the CORCON register. It generates a 16-bit, 1.15  
data value that is passed to the data space write  
saturation logic. If rounding is not indicated by the  
instruction, a truncated 1.15 data value is stored and  
the least significant word is simply discarded.  
The device supports three Saturation and Overflow  
modes:  
Conventional rounding zero-extends bit 15 of the accu-  
mulator and adds it to the ACCxH word (bits 16 through  
31 of the accumulator).  
• Bit 39 Overflow and Saturation:  
When bit 39 overflow and saturation occurs, the  
saturation logic loads the maximally positive 9.31  
(0x7FFFFFFFFF) or maximally negative 9.31 value  
(0x8000000000) into the target accumulator. The  
SA or SB bit is set and remains set until cleared by  
the user application. This condition is referred to as  
‘super saturation’ and provides protection against  
erroneous data or unexpected algorithm problems  
(such as gain calculations).  
• If the ACCxL word (bits 0 through 15 of the accu-  
mulator) is between 0x8000 and 0xFFFF (0x8000  
included), ACCxH is incremented.  
• If ACCxL is between 0x0000 and 0x7FFF, ACCxH  
is left unchanged.  
A consequence of this algorithm is that over a succes-  
sion of random rounding operations, the value tends to  
be biased slightly positive.  
• Bit 31 Overflow and Saturation:  
When bit 31 overflow and saturation occurs, the  
saturation logic then loads the maximally positive  
1.31 value (0x007FFFFFFF) or maximally nega-  
tive 1.31 value (0x0080000000) into the target  
accumulator. The SA or SB bit is set and remains  
set until cleared by the user application. When  
this Saturation mode is in effect, the guard bits are  
not used, so the OA, OB or OAB bits are never  
set.  
Convergent (or unbiased) rounding operates in the  
same manner as conventional rounding, except when  
ACCxL equals 0x8000. In this case, the Least  
Significant bit (bit 16 of the accumulator) of ACCxH is  
examined:  
• If it is ‘1’, ACCxH is incremented.  
• If it is ‘0’, ACCxH is not modified.  
Assuming that bit 16 is effectively random in nature,  
this scheme removes any rounding bias that may  
accumulate.  
• Bit 39 Catastrophic Overflow:  
The bit 39 Overflow Status bit from the adder is  
used to set the SA or SB bit, which remains set  
until cleared by the user application. No saturation  
operation is performed, and the accumulator is  
allowed to overflow, destroying its sign. If the  
COVTE bit in the INTCON1 register is set, a  
catastrophic overflow can initiate a trap exception.  
The SAC and SAC.R instructions store either a  
truncated (SAC), or rounded (SAC.R) version of the  
contents of the target accumulator to data memory via  
the  
X
bus, subject to data saturation (see  
Section 3.7.3.2 “Data Space Write Saturation”). For  
the MAC class of instructions, the accumulator write-  
back operation functions in the same manner,  
addressing combined MCU (X and Y) data space  
though the X bus. For this class of instructions, the data  
is always subject to rounding.  
3.7.3  
ACCUMULATOR ‘WRITE BACK’  
The MAC class of instructions (with the exception of  
MPY, MPY.N, ED and EDAC) can optionally write a  
rounded version of the high word (bits 31 through 16)  
of the accumulator that is not targeted by the instruction  
into data space memory. The write is performed across  
the X bus into combined X and Y address space. The  
following addressing modes are supported:  
• W13, Register Direct:  
The rounded contents of the non-target  
accumulator are written into W13 as a  
1.15 fraction.  
• [W13] + = 2, Register Indirect with Post-Increment:  
The rounded contents of the non-target accumu-  
lator are written into the address pointed to by  
W13 as a 1.15 fraction. W13 is then incremented  
by 2 (for a word write).  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 35  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
3.7.3.2  
Data Space Write Saturation  
3.7.4  
BARREL SHIFTER  
In addition to adder/subtracter saturation, writes to data  
space can also be saturated, but without affecting the  
contents of the source accumulator. The data space  
write saturation logic block accepts a 16-bit, 1.15  
fractional value from the round logic block as its input,  
together with overflow status from the original source  
(accumulator) and the 16-bit round adder. These inputs  
are combined and used to select the appropriate 1.15  
fractional value as output to write to data space  
memory.  
The barrel shifter can perform up to 16-bit arithmetic or  
logic right shifts, or up to 16-bit left shifts in a single  
cycle. The source can be either of the two DSP  
accumulators or the X bus (to support multi-bit shifts of  
register or memory data).  
The shifter requires a signed binary value to determine  
both the magnitude (number of bits) and direction of the  
shift operation. A positive value shifts the operand right.  
A negative value shifts the operand left. A value of ‘0’  
does not modify the operand.  
If the SATDW bit in the CORCON register is set, data  
(after rounding or truncation) is tested for overflow and  
adjusted accordingly:  
The barrel shifter is 40 bits wide, thereby obtaining a  
40-bit result for DSP shift operations and a 16-bit result  
for MCU shift operations. Data from the X bus is  
presented to the barrel shifter between bit positions 16  
and 31 for right shifts, and between bit positions 0 and  
16 for left shifts.  
• For input data greater than 0x007FFF, data  
written to memory is forced to the maximum  
positive 1.15 value, 0x7FFF.  
• For input data less than 0xFF8000, data written to  
memory is forced to the maximum negative 1.15  
value, 0x8000.  
The Most Significant bit of the source (bit 39) is used to  
determine the sign of the operand being tested.  
If the SATDW bit in the CORCON register is not set, the  
input data is always passed through unmodified under  
all conditions.  
DS70292D-page 36  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
4.1  
Program Address Space  
4.0  
MEMORY ORGANIZATION  
The program address memory space of the  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 devices is 4M  
instructions. The space is addressable by a 24-bit  
value derived either from the 23-bit Program Counter  
(PC) during program execution, or from table operation  
or data space remapping as described in Section 4.6  
“Interfacing Program and Data Memory Spaces”.  
Note:  
This data sheet summarizes the features  
of  
the  
dsPIC33FJ32GP302/304,  
and  
dsPIC33FJ64GPX02/X04,  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To complement  
the information in this data sheet, refer to  
“Section 3. Data Memory” (DS70202) of  
the “dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
User application access to the program memory space  
is restricted to the lower half of the address range  
(0x000000 to 0x7FFFFF). The exception is the use of  
TBLRD/TBLWT operations, which use TBLPAG<7> to  
permit access to the Configuration bits and Device ID  
sections of the configuration memory space.  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 architecture  
features separate program and data memory spaces  
and buses. This architecture also allows the direct  
access of program memory from the data space during  
code execution.  
The memory map for the dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/  
X04 devices is shown in Figure 4-1.  
FIGURE 4-1:  
PROGRAM MEMORY MAP FOR dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, AND dsPIC33FJ128GPX02/X04 DEVICES  
dsPIC33FJ32GP302/304  
dsPIC33FJ64GPX02/X04  
dsPIC33FJ128GPX02/X04  
0x000000  
0x000002  
0x000004  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
0x0000FE  
0x000100  
0x000104  
0x0001FE  
0x000200  
Alternate Vector Table  
Alternate Vector Table  
Alternate Vector Table  
User Program  
Flash Memory  
(11264 instructions)  
User Program  
Flash Memory  
(22016 instructions)  
0x0057FE  
0x005800  
User Program  
Flash Memory  
(44032 instructions)  
0x00ABFE  
0x00AC00  
Unimplemented  
Unimplemented  
(Read ‘0’s)  
0x0157FE  
0x015800  
(Read ‘0’s)  
Unimplemented  
(Read ‘0’s)  
0x7FFFFE  
0x800000  
Reserved  
Reserved  
Reserved  
0xF7FFFE  
0xF80000  
0xF80017  
0xF80018  
Device Configuration  
Registers  
Device Configuration  
Registers  
Device Configuration  
Registers  
Reserved  
Reserved  
Reserved  
0xFEFFFE  
0xFF0000  
0xFF0002  
DEVID (2)  
Reserved  
DEVID (2)  
Reserved  
DEVID (2)  
Reserved  
0xFFFFFE  
Note:  
Memory areas are not shown to scale.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 37  
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
4.1.1  
PROGRAM MEMORY  
ORGANIZATION  
4.1.2  
INTERRUPT AND TRAP VECTORS  
All dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 devices reserve  
the addresses between 0x00000 and 0x000200 for  
hard-coded program execution vectors. A hardware  
Reset vector is provided to redirect code execution  
from the default value of the PC on device Reset to the  
actual start of code. A GOTOinstruction is programmed  
by the user application at 0x000000, with the actual  
address for the start of code at 0x000002.  
The program memory space is organized in word-  
addressable blocks. Although it is treated as 24 bits  
wide, it is more appropriate to think of each address of  
the program memory as a lower and upper word, with  
the upper byte of the upper word being unimplemented.  
The lower word always has an even address, while the  
upper word has an odd address (Figure 4-2).  
Program memory addresses are always word-aligned  
on the lower word, and addresses are incremented or  
decremented by two during code execution. This  
arrangement provides compatibility with data memory  
space addressing and makes data in the program  
memory space accessible.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 devices also have two  
interrupt vector tables, located from 0x000004 to  
0x0000FF and 0x000100 to 0x0001FF. These vector  
tables allow each of the device interrupt sources to be  
handled by separate Interrupt Service Routines (ISRs).  
A more detailed discussion of the interrupt vector  
tables is provided in Section 7.1 “Interrupt Vector  
Table”.  
FIGURE 4-2:  
PROGRAM MEMORY ORGANIZATION  
least significant word  
PC Address  
most significant word  
23  
msw  
Address  
(lsw Address)  
16  
8
0
0x000001  
0x000003  
0x000005  
0x000007  
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
Instruction Width  
DS70292D-page 38  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
All word accesses must be aligned to an even address.  
4.2  
Data Address Space  
Misaligned word data fetches are not supported, so  
care must be taken when mixing byte and word  
operations, or translating from 8-bit MCU code. If a  
misaligned read or write is attempted, an address error  
trap is generated. If the error occurred on a read, the  
instruction underway is completed. If the error occurred  
on a write, the instruction is executed but the write does  
not occur. In either case, a trap is then executed,  
allowing the system and/or user application to examine  
the machine state prior to execution of the address  
Fault.  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 CPU has a  
separate 16-bit-wide data memory space. The data  
space is accessed using separate Address Generation  
Units (AGUs) for read and write operations. The data  
memory maps is shown in Figure 4-4.  
All Effective Addresses (EAs) in the data memory space  
are 16 bits wide and point to bytes within the data space.  
This arrangement gives a data space address range of  
64 Kbytes or 32K words. The lower half of the data  
memory space (that is, when EA<15> = 0) is used for  
implemented memory addresses, while the upper half  
(EA<15> = 1) is reserved for the Program Space  
Visibility area (see Section 4.6.3 “Reading Data from  
Program Memory Using Program Space Visibility”).  
All byte loads into any W register are loaded into the  
Least Significant Byte. The Most Significant Byte is not  
modified.  
A sign-extend instruction (SE) is provided to allow user  
applications to translate 8-bit signed data to 16-bit  
signed values. Alternatively, for 16-bit unsigned data,  
user applications can clear the MSB of any W register  
by executing a zero-extend (ZE) instruction on the  
appropriate address.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 devices implement up  
to 16 Kbytes of data memory. Should an EA point to a  
location outside of this area, an all-zero word or byte is  
returned.  
4.2.3  
SFR SPACE  
4.2.1  
DATA SPACE WIDTH  
The first 2 Kbytes of the Near Data Space, from 0x0000  
to 0x07FF, is primarily occupied by Special Function  
Registers (SFRs). These are used by the  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 core and peripheral  
modules for controlling the operation of the device.  
The data memory space is organized in byte  
addressable, 16-bit wide blocks. Data is aligned in data  
memory and registers as 16-bit words, but all data  
space EAs resolve to bytes. The Least Significant  
Bytes (LSBs) of each word have even addresses, while  
the Most Significant Bytes (MSBs) have odd  
addresses.  
SFRs are distributed among the modules that they  
control, and are generally grouped together by module.  
Much of the SFR space contains unused addresses;  
these are read as ‘0’.  
4.2.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
To maintain backward compatibility with PIC® MCU  
devices and improve data space memory usage  
Note:  
The actual set of peripheral features and  
interrupts varies by the device. Refer to  
the corresponding device tables and pin-  
out diagrams for device-specific  
information.  
efficiency,  
the  
dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/  
X04 instruction set supports both word and byte  
operations. As a consequence of byte accessibility, all  
effective address calculations are internally scaled to  
step through word-aligned memory. For example, the  
core recognizes that Post-Modified Register Indirect  
Addressing mode [Ws++] results in a value of Ws + 1  
for byte operations and Ws + 2 for word operations.  
4.2.4  
NEAR DATA SPACE  
The 8 Kbyte area between 0x0000 and 0x1FFF is  
referred to as the near data space. Locations in this  
space are directly addressable via a 13-bit absolute  
address field within all memory direct instructions.  
Additionally, the whole data space is addressable using  
MOV instructions, which support Memory Direct  
Addressing mode with a 16-bit address field, or by  
using Indirect Addressing mode using a working  
register as an address pointer.  
A data byte read, reads the complete word that  
contains the byte, using the LSB of any EA to  
determine which byte to select. The selected byte is  
placed onto the LSB of the data path. That is, data  
memory and registers are organized as two parallel  
byte-wide entities with shared (word) address decode  
but separate write lines. Data byte writes only write to  
the corresponding side of the array or register that  
matches the byte address.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 39  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 4-3:  
DATA MEMORY MAP FOR dsPIC33FJ32GP302/304 DEVICES WITH 4 KB RAM  
MSB  
LSB  
Address  
Address  
16 bits  
MSB  
LSB  
0x0000  
0x0000  
2 Kbyte  
SFR Space  
SFR Space  
0x07FF  
0x0801  
0x07FE  
0x0800  
X Data RAM (X)  
6 Kbyte  
Near  
Data  
0x0FFE  
0x1000  
0x0FFF  
0x1001  
Space  
4 Kbyte  
SRAM Space  
Y Data RAM (Y)  
DMA RAM  
0x13FE  
0x1400  
0x13FF  
0x1401  
0x17FE  
0x1800  
0x17FF  
0x1801  
0x8001  
0x8000  
Optionally  
Mapped  
into Program  
Memory  
X Data  
Unimplemented (X)  
0xFFFF  
0xFFFE  
DS70292D-page 40  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 4-4:  
DATA MEMORY MAP FOR dsPIC33FJ128GP202/204 AND dsPIC33FJ64GP202/  
204 DEVICES WITH 8 KB RAM  
MSB  
Address  
LSB  
Address  
16 bits  
MSB  
LSB  
0x0000  
0x0001  
2 Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
8 Kbyte  
Near  
Data  
X Data RAM (X)  
Space  
8 Kbyte  
0x17FF  
0x1801  
0x17FE  
0x1800  
SRAM Space  
Y Data RAM (Y)  
DMA RAM  
0x1FFF  
0x2001  
0x1FFE  
0x2000  
0x27FF  
0x2801  
0x27FE  
0x2800  
0x8001  
0x8000  
X Data  
Optionally  
Mapped  
Unimplemented (X)  
into Program  
Memory  
0xFFFF  
0xFFFE  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 41  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 4-5:  
DATA MEMORY MAP FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/  
804 DEVICES WITH 16 KB RAM  
LSB  
Address  
MSB  
Address  
16 bits  
MSB  
LSB  
0x0000  
0x0001  
2 Kbyte  
SFR Space  
SFR Space  
8 Kbyte  
Near  
0x07FE  
0x0800  
0x07FF  
0x0801  
Data  
Space  
X Data RAM (X)  
0x1FFF  
0x1FFE  
0x27FF  
0x2801  
16 Kbyte  
SRAM Space  
0x27FE  
0x2800  
Y Data RAM (Y)  
DMA RAM  
0x3FFF  
0x4001  
0x3FFE  
0x4000  
0x47FF  
0x4801  
0x47FE  
0x4800  
0x8001  
0x8000  
X Data  
Unimplemented (X)  
Optionally  
Mapped  
into Program  
Memory  
0xFFFF  
0xFFFE  
DS70292D-page 42  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
4.2.5  
X AND Y DATA SPACES  
4.2.6  
DMA RAM  
The core has two data spaces, X and Y. These data  
spaces can be considered either separate (for some  
DSP instructions), or as one unified linear address  
range (for MCU instructions). The data spaces are  
accessed using two Address Generation Units (AGUs)  
and separate data paths. This feature allows certain  
instructions to concurrently fetch two words from RAM,  
thereby enabling efficient execution of DSP algorithms  
such as Finite Impulse Response (FIR) filtering and  
Fast Fourier Transform (FFT).  
Every dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 device contains  
up to 2 Kbytes of dual ported DMA RAM located at  
the end of Y data space, and is part of Y data space.  
Memory locations in the DMA RAM space are  
accessible simultaneously by the CPU and the DMA  
controller module. DMA RAM is utilized by the DMA  
controller to store data to be transferred to various  
peripherals using DMA, as well as data transferred  
from various peripherals using DMA. The DMA RAM  
can be accessed by the DMA controller without  
having to steal cycles from the CPU.  
The X data space is used by all instructions and  
supports all addressing modes. X data space has  
separate read and write data buses. The X read data  
bus is the read data path for all instructions that view  
data space as combined X and Y address space. It is  
also the X data prefetch path for the dual operand DSP  
instructions (MACclass).  
When the CPU and the DMA controller attempt to  
concurrently write to the same DMA RAM location, the  
hardware ensures that the CPU is given precedence in  
accessing the DMA RAM location. Therefore, the DMA  
RAM provides a reliable means of transferring DMA  
data without ever having to stall the CPU.  
The Y data space is used in concert with the X data  
space by the MAC class of instructions (CLR, ED,  
EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to  
provide two concurrent data read paths.  
Note:  
DMA RAM can be used for general  
purpose data storage if the DMA function  
is not required in an application.  
Both the X and Y data spaces support Modulo  
Addressing mode for all instructions, subject to  
addressing mode restrictions. Bit-Reversed Addressing  
mode is only supported for writes to X data space.  
All data memory writes, including in DSP instructions,  
view data space as combined X and Y address space.  
The boundary between the X and Y data spaces is  
device-dependent and is not user-programmable.  
All effective addresses are 16 bits wide and point to  
bytes within the data space. Therefore, the data space  
address range is 64 Kbytes, or 32K words, though the  
implemented memory locations vary by device.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 43  
TABLE 4-1:  
CPU CORE REGISTERS MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WREG0  
WREG1  
WREG2  
WREG3  
WREG4  
WREG5  
WREG6  
WREG7  
WREG8  
WREG9  
WREG10  
WREG11  
WREG12  
WREG13  
WREG14  
WREG15  
SPLIM  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
0022  
0024  
0026  
0028  
002A  
002C  
002E  
0030  
0032  
0034  
0036  
0038  
003A  
003C  
003E  
0040  
0042  
0044  
0046  
Working Register 0  
Working Register 1  
Working Register 2  
Working Register 3  
Working Register 4  
Working Register 5  
Working Register 6  
Working Register 7  
Working Register 8  
Working Register 9  
Working Register 10  
Working Register 11  
Working Register 12  
Working Register 13  
Working Register 14  
Working Register 15  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0800  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
00xx  
xxxx  
00xx  
0000  
0020  
0000  
Stack Pointer Limit Register  
ACCAL  
ACCAL  
ACCAH  
ACCAU  
ACCBL  
ACCAH  
ACCA<39>  
ACCB<39>  
ACCAU  
ACCBL  
ACCBH  
ACCBH  
ACCBU  
PCL  
ACCBU  
Program Counter Low Word Register  
PCH  
Program Counter High Byte Register  
Table Page Address Pointer Register  
TBLPAG  
PSVPAG  
RCOUNT  
DCOUNT  
DOSTARTL  
DOSTARTH  
DOENDL  
DOENDH  
SR  
Program Memory Visibility Page Address Pointer Register  
Repeat Loop Counter Register  
DCOUNT<15:0>  
DOSTARTL<15:1>  
0
0
DOENDL<15:1>  
DOSTARTH<5:0>  
DOENDH  
OA  
OB  
SA  
SB  
US  
OAB  
EDT  
SAB  
DA  
DC  
IPL<2:0>  
SATB  
RA  
N
OV  
Z
C
CORCON  
MODCON  
Legend:  
DL<2:0>  
SATA  
SATDW ACCSAT  
IPL3  
PSV  
RND  
IF  
XMODEN YMODEN  
BWM<3:0>  
YWM<3:0>  
XWM<3:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
TABLE 4-1:  
CPU CORE REGISTERS MAP (CONTINUED)  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
XMODSRT  
XMODEND  
YMODSRT  
YMODEND  
XBREV  
0048  
004A  
004C  
004E  
0050  
0052  
XS<15:1>  
XE<15:1>  
YS<15:1>  
YE<15:1>  
0
1
0
1
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
BREN  
XB<14:0>  
DISICNT  
Disable Interrupts Counter Register  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-2:  
CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND dsPIC33FJ32GP302  
SFR  
Name  
Addr  
SFR  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0060  
0062  
CN15IE  
CN14IE  
CN30IE  
CN13IE  
CN29IE  
CN12IE  
CN11IE  
CN27IE  
CN24IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
CNEN1  
CNEN2  
CNPU1  
0000  
0000  
0000  
0000  
CN23IE  
CN22IE  
CN21IE  
CN16IE  
0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE  
006A CN30PUE CN29PUE CN27PUE  
CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE  
CN16PUE  
CN24PUE CN23PUE CN22PUE CN21PUE  
CNPU2  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-3:  
CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0060  
0062  
CN15IE  
CN14IE  
CN30IE  
CN13IE  
CN29IE  
CN12IE  
CN28IE  
CN11IE  
CN27IE  
CN10IE  
CN26IE  
CN9IE  
CN8IE  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
CNEN1  
CNEN2  
CNPU1  
0000  
0000  
0000  
0000  
CN25IE  
CN24IE  
CN23IE  
CN22IE  
CN21IE  
CN20IE  
CN19IE  
CN18IE  
CN17IE  
CN16IE  
0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE CN0PUE  
006A CN30PUE CN29PUE CN28PUE CN27PUE CN26PUE CN25PUE CN24PUE CN23PUE CN22PUE CN21PUE CN20PUE CN19PUE CN18PUE CN17PUE CN16PUE  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
CNPU2  
Legend:  
TABLE 4-4:  
INTERRUPT CONTROLLER REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080  
INTCON2 0082  
NSTDIS  
ALTIVT  
OVAERR OVBERR COVAERR COVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR DMACERR MATHERR ADDRERR STKERR OSCFAIL  
0000  
DISI  
AD1IF  
U1TXIF  
T5IF  
U1RXIF  
T4IF  
T2IF  
IC8IF  
OC2IF  
IC7IF  
IC2IF  
T1IF  
INT2EP  
OC1IF  
CMIF  
INT1EP INT0EP 0000  
IC1IF INT0IF 0000  
MI2C1IF SI2C1IF 0000  
IFS0  
0084  
0086  
0088  
008A  
DMA1IF  
U2RXIF  
DMA4IF  
RTCIF  
SPI1IF SPI1EIF  
T3IF  
DMA0IF  
INT1IF  
DMA3IF  
IFS1  
U2TXIF  
INT2IF  
OC4IF  
OC3IF DMA2IF  
CNIF  
C1IF(1)  
IFS2  
PMPIF  
C1RXIF(1) SPI2IF SPI2EIF 0000  
IFS3  
DMA5IF  
DCIIF  
DCIEIF  
0000  
0000  
IFS4  
008C DAC1LIF(2) DAC1RIF(2)  
C1TXIF(1) DMA7IF  
DMA6IF  
DMA0IE  
INT1IE  
DMA3IE  
CRCIF  
T1IE  
CNIE  
U2EIF  
OC1IE  
CMIE  
U1EIF  
IC1IE  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC11  
IPC14  
IPC15  
IPC16  
IPC17  
IPC19  
0094  
0096  
0098  
009A  
U2TXIE  
DMA1IE  
U2RXIE  
DMA4IE  
RTCIE  
AD1IE  
U1TXIE  
T5IE  
U1RXIE  
T4IE  
SPI1IE SPI1EIE  
T3IE  
T2IE  
IC8IE  
OC2IE  
IC7IE  
IC2IE  
INT0IE 0000  
INT2IE  
OC4IE  
OC3IE DMA2IE  
MI2C1IE SI2C1IE 0000  
PMPIE  
C1IE(1) C1RXIE(1) SPI2IE SPI2EIE 0000  
DMA5IE  
DCIIE  
DCIEIE  
CRCIE  
U1EIE  
0000  
0000  
4444  
4444  
4444  
0444  
4444  
4404  
4444  
4444  
4444  
0004  
0440  
4000  
0444  
4440  
0444  
4400  
4444  
009C DAC1LIE(2) DAC1RIE(2)  
C1TXIE(1) DMA7IE  
DMA6IE  
U2EIE  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B4  
00B6  
00BA  
00C0  
00C2  
00C4  
00C6  
00CA  
T1IP<2:0>  
T2IP<2:0>  
U1RXIP<2:0>  
OC1IP<2:0>  
OC2IP<2:0>  
SPI1IP<2:0>  
DMA1IP<2:0>  
CMIP<2:0>  
IC7IP<2:0>  
OC4IP<2:0>  
U2RXIP<2:0>  
IC1IP<2:0>  
INT0IP<2:0>  
DMA0IP<2:0>  
T3IP<2:0>  
U1TXIP<2:0>  
SI2C1IP<2:0>  
INT1IP<2:0>  
DMA2IP<2:0>  
T5IP<2:0>  
SPI2EIP<2:0>  
DMA3IP<2:0>  
IC2IP<2:0>  
SPI1EIP<2:0>  
AD1IP<2:0>  
CNIP<2:0>  
IC8IP<2:0>  
T4IP<2:0>  
U2TXIP<2:0>  
C1IP<2:0>(1)  
MI2C1IP<2:0>  
OC3IP<2:0>  
INT2IP<2:0>  
SPI2IP<2:0>  
C1RXIP<2:0>(1)  
DMA4IP<2:0>  
PMPIP<2:0>  
DCIEIP<2:0>  
RTCIP<2:0>  
U2EIP<2:0>  
C1TXIP<2:0>(1)  
DAC1RIP<2:0>(2)  
DMA5IP<2:0>  
U1EIP<2:0>  
DMA7IP<2:0>  
DCIIP<2:0>  
CRCIP<2:0>  
DAC1LIP<2:0>(2)  
DMA6IP<2:0>  
INTTREG 00E0  
ILR<3:0>>  
VECNUM<6:0>  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
2:  
Interrupts disabled on devices without ECAN™ modules.  
Interrupts disabled on devices without Audio DAC modules.  
 
TABLE 4-5:  
TIMER REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1  
0100  
0102  
0104  
0106  
Timer1 Register  
Period Register 1  
xxxx  
FFFF  
0000  
xxxx  
xxxx  
xxxx  
FFFF  
FFFF  
0000  
0000  
xxxx  
xxxx  
xxxx  
FFFF  
FFFF  
0000  
0000  
PR1  
T1CON  
TMR2  
TON  
TSIDL  
TGATE  
TCKPS<1:0>  
TSYNC  
TCS  
Timer2 Register  
TMR3HLD 0108  
Timer3 Holding Register (for 32-bit timer operations only)  
Timer3 Register  
TMR3  
PR2  
010A  
010C  
010E  
0110  
0112  
0114  
Period Register 2  
PR3  
Period Register 3  
T2CON  
T3CON  
TMR4  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
Timer4 Register  
TMR5HLD 0116  
Timer5 Holding Register (for 32-bit timer operations only)  
Timer5 Register  
TMR5  
PR4  
0118  
011A  
011C  
011E  
0120  
Period Register 4  
PR5  
Period Register 5  
T4CON  
T5CON  
Legend:  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS<1:0>  
TCKPS<1:0>  
T32  
TCS  
TCS  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-6:  
INPUT CAPTURE REGISTER MAP  
SFR  
Name  
SFR  
Addr  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IC1BUF  
IC1CON  
IC2BUF  
IC2CON  
IC7BUF  
IC7CON  
IC8BUF  
IC8CON  
Legend:  
0140  
0142  
0144  
0146  
0158  
015A  
015C  
015E  
Input 1 Capture Register  
ICTMR  
Input 2 Capture Register  
ICTMR  
Input 7 Capture Register  
ICTMR  
Input 8Capture Register  
ICTMR  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICI<1:0>  
ICOV  
ICOV  
ICOV  
ICOV  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICM<2:0>  
ICI<1:0>  
ICI<1:0>  
ICI<1:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-7:  
OUTPUT COMPARE REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC1RS  
OC1R  
0180  
0182  
0184  
0186  
0188  
018A  
018C  
018E  
0190  
0192  
0194  
0196  
Output Compare 1 Secondary Register  
Output Compare 1 Register  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
OC1CON  
OC2RS  
OC2R  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
OCM<2:0>  
Output Compare 2 Secondary Register  
Output Compare 2 Register  
OC2CON  
OC3RS  
OC3R  
Output Compare 3 Secondary Register  
Output Compare 3 Register  
OC3CON  
OC4RS  
OC4R  
Output Compare 4 Secondary Register  
Output Compare 4 Register  
OC4CON  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-8:  
I2C1 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C1RCV  
I2C1TRN  
I2C1BRG  
I2C1CON  
I2C1STAT  
I2C1ADD  
I2C1MSK  
Legend:  
0200  
0202  
0204  
0206  
Receive Register  
Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator Register  
I2CEN  
I2CSIDL SCLREL  
IPMIEN  
A10M  
BCL  
DISSLW  
GCSTAT  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D_A  
ACKEN  
P
RCEN  
S
PEN  
R_W  
RSEN  
RBF  
SEN  
TBF  
0208 ACKSTAT TRSTAT  
ADD10  
IWCOL  
020A  
020C  
Address Register  
Address Mask Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-9:  
UART1 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1MODE  
U1STA  
0220  
0222  
0224  
0226  
0228  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UEN0  
TRMT  
UTX8  
URX8  
WAKE  
LPBACK  
ABAUD URXINV  
ADDEN RIDLE  
BRGH  
PERR  
PDSEL<1:0>  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN UTXBF  
URXISEL<1:0>  
FERR  
OERR  
URXDA  
U1TXREG  
U1RXREG  
U1BRG  
UART Transmit Register  
UART Received Register  
Baud Rate Generator Prescaler  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
TABLE 4-10: UART2 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U2MODE  
U2STA  
0230  
0232  
0234  
0236  
0238  
UARTEN  
USIDL  
IREN  
RTSMD  
UEN1  
UEN0  
TRMT  
UTX8  
URX8  
WAKE  
LPBACK  
ABAUD URXINV  
BRGH  
PERR  
PDSEL<1:0>  
STSEL  
0000  
0110  
xxxx  
0000  
0000  
UTXISEL1 UTXINV UTXISEL0  
UTXBRK UTXEN UTXBF  
URXISEL<1:0>  
ADDEN  
RIDLE  
FERR  
OERR  
URXDA  
U2TXREG  
U2RXREG  
U2BRG  
UART Transmit Register  
UART Receive Register  
Baud Rate Generator Prescaler  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-11: SPI1 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI1STAT  
SPI1CON1  
SPI1CON2  
SPI1BUF  
Legend:  
0240  
0242  
0244  
0248  
SPIEN  
SPISIDL  
SMP  
CKE  
SSEN  
SPIROV  
CKP  
MSTEN  
SPRE<2:0>  
SPITBF  
SPIRBF  
0000  
0000  
0000  
0000  
DISSCK DISSDO MODE16  
PPRE<1:0>  
FRMEN  
SPIFSD  
FRMPOL  
FRMDLY  
SPI1 Transmit and Receive Buffer Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-12: SPI2 REGISTER MAP  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI2STAT  
SPI2CON1  
SPI2CON2  
SPI2BUF  
Legend:  
0260  
0262  
0264  
0268  
SPIEN  
SPISIDL  
SMP  
CKE  
SSEN  
SPIROV  
CKP  
MSTEN  
SPRE<2:0>  
SPITBF  
SPIRBF  
0000  
0000  
0000  
0000  
DISSCK DISSDO MODE16  
PPRE<1:0>  
FRMEN  
SPIFSD  
FRMPOL  
FRMDLY  
SPI2 Transmit and Receive Buffer Register  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
TABLE 4-13: ADC1 REGISTER MAP FOR dsPIC33FJ64GP202/802, dsPIC33FJ128GP202/802 AND dsPIC33FJ32GP302  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC1BUF0  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS123  
AD1CHS0  
AD1PCFGL  
AD1CSSL  
AD1CON4  
Legend:  
0300  
0320  
0322  
0324  
0326  
ADC Data Buffer 0  
FORM<1:0>  
CHPS<1:0>  
xxxx  
0000  
0000  
0000  
ADON  
ADSIDL ADDMABM  
AD12B  
CSCNA  
SSRC<2:0>  
SIMSAM  
ASAM  
SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
BUFS  
SMPI<3:0>  
ADCS<7:0>  
ADRC  
SAMC<4:0>  
CH123NB<1:0>  
CH0SB<4:0>  
PCFG11 PCFG10 PCFG9  
CH123SB  
CH0NA  
CH123NA<1:0>  
CH0SA<4:0>  
PCFG2 PCFG1  
CH123SA 0000  
0328 CH0NB  
0000  
032C  
0330  
0332  
PCFG12  
CSS12  
PCFG5  
CSS5  
PCFG4  
CSS4  
PCFG3  
CSS3  
PCFG0  
CSS0  
0000  
0000  
0000  
CSS11  
CSS10  
CSS9  
CSS2  
CSS1  
DMABL<2:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-14: ADC1 REGISTER MAP FOR dsPIC33FJ64GP204/804, dsPIC33FJ128GP204/804 AND dsPIC33FJ32GP304  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC1BUF0  
AD1CON1  
AD1CON2  
AD1CON3  
0300  
0320  
0322  
0324  
ADC Data Buffer 0  
FORM<1:0>  
CHPS<1:0>  
xxxx  
0000  
0000  
0000  
ADON  
ADSIDL ADDMABM  
AD12B  
CSCNA  
SSRC<2:0>  
SIMSAM  
ASAM  
SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
BUFS  
SMPI<3:0>  
ADCS<7:0>  
ADRC  
SAMC<4:0>  
AD1CHS123 0326  
CH123NB<1:0>  
CH0SB<4:0>  
PCFG11 PCFG10 PCFG9  
CH123SB  
CH123NA<1:0>  
CH123SA 0000  
AD1CHS0  
AD1PCFGL  
AD1CSSL  
AD1CON4  
Legend:  
0328 CH0NB  
CH0NA  
PCFG7  
CSS7  
CH0SA<4:0>  
PCFG2 PCFG1  
0000  
032C  
0330  
0332  
PCFG12  
CSS12  
PCFG8  
CSS8  
PCFG6  
CSS6  
PCFG5  
CSS5  
PCFG4  
CSS4  
PCFG3  
CSS3  
PCFG0  
CSS0  
0000  
0000  
0000  
CSS11  
CSS10  
CSS9  
CSS2  
CSS1  
DMABL<2:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-15: DAC1 REGISTER MAP FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804  
SFR  
Addr  
All  
Resets  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DAC1CON  
DAC1STAT  
DAC1DFLT  
DAC1RDAT  
DAC1LDAT  
Legend:  
03F0 DACEN  
DACSIDL AMPON  
LMVOEN  
FORM  
DACFDIV<6:0>  
0000  
0000  
0000  
0000  
0000  
03F2  
03F4  
03F6  
03F8  
LOEN  
LITYPE  
LFULL  
LEMPTY  
ROEN  
RMVOEN  
RITYPE  
RFULL REMPTY  
DAC1DFLT<15:0>  
DAC1RDAT<15:0>  
DAC1LDAT<15:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
TABLE 4-16: DMA REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DMA0CON 0380  
CHEN  
SIZE  
DIR  
HALF  
NULLW  
AMODE<1:0>  
MODE<1:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
DMA0REQ 0382 FORCE  
IRQSEL<6:0>  
DMA0STA  
DMA0STB  
0384  
0386  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA0PAD 0388  
DMA0CNT 038A  
DMA1CON 038C  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
CHEN  
AMODE<1:0>  
MODE<1:0>  
MODE<1:0>  
MODE<1:0>  
MODE<1:0>  
MODE<1:0>  
DMA1REQ 038E FORCE  
IRQSEL<6:0>  
DMA1STA  
DMA1STB  
0390  
0392  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA1PAD 0394  
DMA1CNT 0396  
DMA2CON 0398  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
CHEN  
AMODE<1:0>  
DMA2REQ 039A FORCE  
DMA2STA 039C  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA2STB 039E  
DMA2PAD 03A0  
DMA2CNT 03A2  
DMA3CON 03A4  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
CHEN  
AMODE<1:0>  
DMA3REQ 03A6 FORCE  
DMA3STA 03A8  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA3STB 03AA  
DMA3PAD 03AC  
DMA3CNT 03AE  
DMA4CON 03B0  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
CHEN  
AMODE<1:0>  
DMA4REQ 03B2 FORCE  
DMA4STA 03B4  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA4STB 03B6  
DMA4PAD 03B8  
DMA4CNT 03BA  
DMA5CON 03BC  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
CHEN  
AMODE<1:0>  
DMA5REQ 03BE FORCE  
DMA5STA 03C0  
DMA5STB 03C2  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
 
TABLE 4-16: DMA REGISTER MAP (CONTINUED)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DMA5PAD 03C4  
DMA5CNT 03C6  
DMA6CON 03C8  
PAD<15:0>  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
CHEN  
AMODE<1:0>  
MODE<1:0>  
DMA6REQ 03CA FORCE  
DMA6STA 03CC  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA6STB 03CE  
DMA6PAD 03D0  
DMA6CNT 03D2  
DMA7CON 03D4  
SIZE  
DIR  
HALF  
NULLW  
CNT<9:0>  
CHEN  
AMODE<1:0>  
MODE<1:0>  
DMA7REQ 03D6 FORCE  
DMA7STA 03D8  
IRQSEL<6:0>  
STA<15:0>  
STB<15:0>  
PAD<15:0>  
DMA7STB 03DA  
DMA7PAD 03DC  
DMA7CNT 03DE  
CNT<9:0>  
DMACS0  
DMACS1  
DSADR  
03E0 PWCOL7 PWCOL6 PWCOL5 PWCOL4 PWCOL3 PWCOL2 PWCOL1 PWCOL0 XWCOL7 XWCOL6 XWCOL5 XWCOL4 XWCOL3 XWCOL2 XWCOL1 XWCOL0 0000  
03E2  
03E4  
LSTCH<3:0>  
PPST7  
PPST6  
PPST5  
PPST4  
PPST3  
PPST2  
PPST1  
PPST0  
0000  
0000  
DSADR<15:0>  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-17: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0OR 1 (FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804)  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C1CTRL1  
C1CTRL2  
C1VEC  
0400  
0402  
0404  
0406  
0408  
040A  
040C  
040E  
0410  
0412  
CSIDL  
ABAT  
REQOP<2:0>  
OPMODE<2:0>  
CANCAP  
WIN  
0480  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
FFFF  
0000  
0000  
DNCNT<4:0>  
ICODE<6:0>  
FSA<4:0>  
FNRB<5:0>  
FIFOIF RBOVIF  
FIFOIE RBOVIE  
FILHIT<4:0>  
C1FCTRL  
C1FIFO  
C1INTF  
C1INTE  
C1EC  
DMABS<2:0>  
FBP<5:0>  
TXBO  
TXBP  
RXBP  
TXWAR RXWAR EWARN  
IVRIF  
IVRIE  
WAKIF  
WAKIE  
ERRIF  
ERRIE  
RBIF  
RBIE  
TBIF  
TBIE  
TERRCNT<7:0>  
RERRCNT<7:0>  
BRP<5:0>  
C1CFG1  
C1CFG2  
C1FEN1  
SJW<1:0>  
WAKFIL  
SEG2PH<2:0>  
SEG2PHTS  
FLTEN7  
SAM  
FLTEN6 FLTEN5 FLTEN4  
SEG1PH<2:0>  
FLTEN3  
F1MSK<1:0>  
F9MSK<1:0>  
PRSEG<2:0>  
0414 FLTEN15 FLTEN14 FLTEN13 FLTEN12 FLTEN11 FLTEN10 FLTEN9 FLTEN8  
FLTEN2 FLTEN1 FLTEN0  
C1FMSKSEL1 0418  
C1FMSKSEL2 041A  
F7MSK<1:0>  
F15MSK<1:0>  
F6MSK<1:0>  
F14MSK<1:0>  
F5MSK<1:0>  
F13MSK<1:0>  
F4MSK<1:0>  
F12MSK<1:0>  
F3MSK<1:0>  
F11MSK<1:0>  
F2MSK<1:0>  
F10MSK<1:0>  
F0MSK<1:0>  
F8MSK<1:0>  
Legend:  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-18: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 (FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0400-  
041E  
See definition when WIN = x  
C1RXFUL1  
C1RXFUL2  
0420 RXFUL15 RXFUL14 RXFUL13 RXFUL12 RXFUL11 RXFUL10 RXFUL9 RXFUL8 RXFUL7 RXFUL6 RXFUL5 RXFUL4 RXFUL3 RXFUL2 RXFUL1 RXFUL0  
0000  
0422 RXFUL31 RXFUL30 RXFUL29 RXFUL28 RXFUL27 RXFUL26 RXFUL25 RXFUL24 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16 0000  
C1RXOVF1 0428 RXOVF15 RXOVF14 RXOVF13 RXOVF12 RXOVF11 RXOVF10 RXOVF9 RXOVF8 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF0 0000  
C1RXOVF2 042A RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25 RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000  
C1TR01CON 0430  
C1TR23CON 0432  
C1TR45CON 0434  
C1TR67CON 0436  
TXEN1  
TXEN3  
TXEN5  
TXEN7  
TXABT1 TXLARB1 TXERR1 TXREQ1 RTREN1  
TXABT3 TXLARB3 TXERR3 TXREQ3 RTREN3  
TXABT5 TXLARB5 TXERR5 TXREQ5 RTREN5  
TXABT7 TXLARB7 TXERR7 TXREQ7 RTREN7  
TX1PRI<1:0>  
TX3PRI<1:0>  
TX5PRI<1:0>  
TX7PRI<1:0>  
TXEN0  
TXEN2  
TXEN4  
TXEN6  
TXABT0 TXLARB0 TXERR0 TXREQ0 RTREN0  
TXABT2 TXLARB2 TXERR2 TXREQ2 RTREN2  
TXABT4 TXLARB4 TXERR4 TXREQ4 RTREN4  
TXABT6 TXLARB6 TXERR6 TXREQ6 RTREN6  
TX0PRI<1:0>  
TX2PRI<1:0>  
TX4PRI<1:0>  
TX6PRI<1:0>  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
C1RXD  
C1TXD  
Legend:  
0440  
0442  
Received Data Word  
Transmit Data Word  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
TABLE 4-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1(FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804)  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
See definition when WIN = x  
F1BP<3:0>  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0400-  
041E  
C1BUFPNT1  
C1BUFPNT2  
C1BUFPNT3  
C1BUFPNT4  
C1RXM0SID  
C1RXM0EID  
C1RXM1SID  
C1RXM1EID  
C1RXM2SID  
C1RXM2EID  
C1RXF0SID  
C1RXF0EID  
C1RXF1SID  
C1RXF1EID  
C1RXF2SID  
C1RXF2EID  
C1RXF3SID  
C1RXF3EID  
C1RXF4SID  
C1RXF4EID  
C1RXF5SID  
C1RXF5EID  
C1RXF6SID  
C1RXF6EID  
C1RXF7SID  
C1RXF7EID  
C1RXF8SID  
C1RXF8EID  
C1RXF9SID  
C1RXF9EID  
C1RXF10SID  
C1RXF10EID  
C1RXF11SID  
Legend:  
0420  
0422  
0424  
0426  
0430  
0432  
0434  
0436  
0438  
043A  
0440  
0442  
0444  
0446  
0448  
044A  
044C  
044E  
0450  
0452  
0454  
0456  
0458  
045A  
045C  
045E  
0460  
0462  
0464  
0466  
0468  
046A  
046C  
F3BP<3:0>  
F2BP<3:0>  
F0BP<3:0>  
0000  
0000  
0000  
0000  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
F7BP<3:0>  
F11BP<3:0>  
F15BP<3:0>  
F6BP<3:0>  
F10BP<3:0>  
F14BP<3:0>  
F5BP<3:0>  
F9BP<3:0>  
F13BP<3:0>  
F4BP<3:0>  
F8BP<3:0>  
F12BP<3:0>  
SID<10:3>  
SID<2:0>  
MIDE  
MIDE  
EID<17:16>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<7:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
EID<17:16>  
EID<7:0>  
MIDE  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
TABLE 4-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1(FOR dsPIC33FJ128GP802/804 AND dsPIC33FJ64GP802/804) (CONTINUED)  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
C1RXF11EID  
C1RXF12SID  
C1RXF12EID  
C1RXF13SID  
C1RXF13EID  
C1RXF14SID  
C1RXF14EID  
C1RXF15SID  
C1RXF15EID  
Legend:  
046E  
0470  
0472  
0474  
0476  
0478  
047A  
047C  
047E  
EID<15:8>  
EID<7:0>  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<10:3>  
EID<15:8>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
SID<2:0>  
EXIDE  
EID<17:16>  
EID<7:0>  
EXIDE  
EID<17:16>  
EID<17:16>  
EID<17:16>  
EID<7:0>  
EXIDE  
EID<7:0>  
EXIDE  
EID<7:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-20: DCI REGISTER MAP  
SFR Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5 Bit 4 Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
DCICON1  
DCICON2  
DCICON3  
DCISTAT  
TSCON  
0280  
0282  
0284  
0286  
0288  
028C  
0290  
0292  
0294  
0296  
0298  
029A  
029C  
029E  
DCIEN  
DCISIDL  
DLOOP CSCKD CSCKE COFSD UNFM CSDOM DJST  
COFSM1 COFSM0 0000 0000 0000 0000  
BLEN1  
BLEN0  
COFSG<3:0>  
BCG<11:0>  
WS<3:0>  
0000 0000 0000 0000  
0000 0000 0000 0000  
SLOT3  
TSE11  
SLOT2  
TSE10  
RSE10  
SLOT1  
TSE9  
SLOT0  
TSE8  
ROV RFUL  
TUNF  
TSE1  
RSE1  
TMPTY 0000 0000 0000 0000  
TSE15 TSE14  
RSE15 RSE14  
TSE13  
RSE13  
TSE12  
TSE7  
RSE7  
TSE6  
RSE6  
TSE5 TSE4 TSE3 TSE2  
RSE5 RSE4 RSE3 RSE2  
TSE0  
RSE0  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
RSCON  
RSE12 RSE11  
RSE9  
RSE8  
RXBUF0  
RXBUF1  
RXBUF2  
RXBUF3  
TXBUF0  
TXBUF1  
TXBUF2  
TXBUF3  
Legend:  
Receive Buffer 0 Data Register  
Receive Buffer 1 Data Register  
Receive Buffer 2 Data Register  
Receive Buffer 3 Data Register  
Transmit Buffer 0 Data Register  
Transmit Buffer 1 Data Register  
Transmit Buffer 2 Data Register  
Transmit Buffer 3 Data Register  
— = unimplemented, read as ‘0’.  
 
TABLE 4-21: PERIPHERAL PIN SELECT INPUT REGISTER MAP  
All  
Resets  
File Name Addr Bit 15 Bit 14 Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RPINR0  
1F00  
001F  
1F1F  
1F1F  
1F1F  
1F1F  
001F  
1F1F  
1F1F  
1F1F  
001F  
1F1F  
001F  
1F1F  
001F  
001F  
0680  
0682  
0686  
0688  
068E  
0694  
0696  
06A4  
06A6  
06A8  
06AA  
06AC  
06AE  
06B0  
06B2  
06B4  
INT1R<4:0>  
RPINR1  
INT2R<4:0>  
T2CKR<4:0>  
T4CKR<4:0>  
IC1R<4:0>  
RPINR3  
T3CKR<4:0>  
T5CKR<4:0>  
IC2R<4:0>  
IC8R<4:0>  
RPINR4  
RPINR7  
RPINR10  
RPINR11  
RPINR18  
RPINR19  
RPINR20  
RPINR21  
RPINR22  
RPINR23  
RPINR24  
RPINR25  
RPINR26(1)  
IC7R<4:0>  
OCFAR<4:0>  
U1RXR<4:0>  
U2RXR<4:0>  
SDI1R<4:0>  
SS1R<4:0>  
SDI2R<4:0>  
SS2R<4:0>  
CSDIR<4:0>  
COFSR<4:0>  
C1RXR<4:0>  
U1CTSR<4:0>  
U2CTSR<4:0>  
SCK1R<4:0>  
SCK2R<4:0>  
CSCKR<4:0>  
Legend:  
Note 1:  
x = unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
This register is present only for dsPIC33FJ128GP802/804 and dsPIC33FJ64GP802/804  
 
TABLE 4-22: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND  
dsPIC33FJ32GP302  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
RPOR0  
RPOR1  
RPOR2  
RPOR3  
RPOR4  
RPOR5  
RPOR6  
06C0  
06C2  
06C4  
06C6  
06C8  
06CA  
06CC  
06CE  
RP1R<4:0>  
RP3R<4:0>  
RP5R<4:0>  
RP7R<4:0>  
RP9R<4:0>  
RP11R<4:0>  
RP13R<4:0>  
RP15R<4:0>  
RP0R<4:0>  
RP2R<4:0>  
RP4R<4:0>  
RP6R<4:0>  
RP8R<4:0>  
RP10R<4:0>  
RP12R<4:0>  
RP14R<4:0>  
RPOR7  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-23: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND  
dsPIC33FJ32GP304  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
RPOR0  
RPOR1  
RPOR2  
RPOR3  
RPOR4  
RPOR5  
RPOR6  
06C0  
06C2  
06C4  
06C6  
06C8  
06CA  
06CC  
06CE  
RP1R<4:0>  
RP3R<4:0>  
RP5R<4:0>  
RP7R<4:0>  
RP9R<4:0>  
RP11R<4:0>  
RP13R<4:0>  
RP15R<4:0>  
RP0R<4:0>  
RP2R<4:0>  
RP4R<4:0>  
RP6R<4:0>  
RP8R<4:0>  
RP10R<4:0>  
RP12R<4:0>  
RP14R<4:0>  
RPOR7  
RPOR8  
0000  
0000  
06D0  
06D2  
RP17R<4:0>  
RP19R<4:0>  
RP16R<4:0>  
RP18R<4:0>  
RPOR9  
RPOR10  
RPOR11  
0000  
0000  
0000  
06D4  
06D6  
06D8  
RP21R<4:0>  
RP23R<4:0>  
RP25R<4:0>  
RP20R<4:0>  
RP22R<4:0>  
RP24R<4:0>  
RPOR12  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-24: PARALLEL MASTER/SLAVE PORT REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND  
dsPIC33FJ32GP302  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMCON  
0600  
0602  
PMPEN  
BUSY  
PSIDL  
ADRMUX<1:0>  
INCM<1:0>  
PTBEEN PTWREN PTRDEN  
CSF1  
CSF0  
ALP  
CS1P  
BEP  
WRSP  
RDSP  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
PMMODE  
PMADDR  
PMDOUT1  
PMDOUT2  
PMDIN1  
IRQM<1:0>  
MODE16  
MODE<1:0>  
WAITB<1:0>  
ADDR<13:0>  
WAITM<3:0>  
WAITE<1:0>  
ADDR15  
CS1  
0604  
Parallel Port Data Out Register 1 (Buffers 0 and 1)  
Parallel Port Data Out Register 2 (Buffers 2 and 3)  
Parallel Port Data In Register 1 (Buffers 0 and 1)  
Parallel Port Data In Register 2 (Buffers 2 and 3)  
0606  
0608  
060A  
060C  
060E  
PMPDIN2  
PMAEN  
PTEN14  
IBOV  
PTEN<1:0>  
PMSTAT  
Legend:  
IBF  
IB3F  
IB2F  
IB1F  
IB0F  
OBE  
OBUF  
OB3E  
OB2E  
OB1E  
OB0E  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-25: PARALLEL MASTER/SLAVE PORT REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND  
dsPIC33FJ32GP304  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMCON  
0600  
0602  
PMPEN  
BUSY  
PSIDL  
ADRMUX<1:0>  
INCM<1:0>  
PTBEEN PTWREN PTRDEN  
MODE16 MODE<1:0>  
CSF1  
CSF0  
ALP  
CS1P  
BEP  
WRSP  
RDSP  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
PMMODE  
PMADDR  
PMDOUT1  
PMDOUT2  
PMDIN1  
IRQM<1:0>  
WAITB<1:0>  
ADDR<13:0>  
WAITM<3:0>  
WAITE<1:0>  
ADDR15  
CS1  
0604  
Parallel Port Data Out Register 1 (Buffers 0 and 1)  
Parallel Port Data Out Register 2 (Buffers 2 and 3)  
Parallel Port Data In Register 1 (Buffers 0 and 1)  
Parallel Port Data In Register 2 (Buffers 2 and 3)  
0606  
0608  
060A  
060C  
060E  
PMPDIN2  
PMAEN  
PTEN14  
IBOV  
PTEN<10:0>  
PMSTAT  
Legend:  
IBF  
IB3F  
IB2F  
IB1F  
IB0F  
OBE  
OBUF  
OB3E  
OB2E  
OB1E  
OB0E  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
TABLE 4-26: REAL-TIME CLOCK AND CALENDAR REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ALRMVAL  
ALCFGRPT  
RTCVAL  
0620  
Alarm Value Register Window based on APTR<1:0>  
ALRMPTR<1:0>  
xxxx  
0000  
xxxx  
0000  
0622 ALRMEN CHIME  
0624  
AMASK<3:0>  
ARPT<7:-0>  
RTCC Value Register Window based on RTCPTR<1:0>  
RCFGCAL  
Legend:  
0626  
RTCEN  
RTCWREN RTCSYNC HALFSEC RTCOE  
RTCPTR<1:0>  
CAL<7:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-27: CRC REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CRCCON  
CRCXOR  
CRCDAT  
CRCWDAT  
Legend:  
0640  
0642  
0644  
0646  
CSIDL  
VWORD<4:0>  
CRCFUL CRCMPT  
X<15:0>  
CRCGO  
PLEN<3:0>  
0000  
0000  
0000  
0000  
CRC Data Input Register  
CRC Result Register  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-28: DUAL COMPARATOR REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
C2POS  
Bit 1  
Bit 0  
CMCON  
CVRCON  
Legend:  
0630  
0632  
CMIDL  
C2EVT  
C1EVT  
C2EN  
C1EN  
C2OUTEN C1OUTEN C2OUT  
CVREN  
C1OUT  
CVROE  
C2INV  
CVRR  
C1INV  
C2NEG  
C1NEG  
C1POS  
0000  
0000  
CVRSS  
CVR<3:0>  
— = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-29: PORTA REGISTER MAP FOR dsPIC33FJ128GP202/802, dsPIC33FJ64GP202/802 AND dsPIC33FJ32GP302  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA  
PORTA  
LATA  
02C0  
02C2  
02C4  
02C6  
TRISA4  
RA4  
TRISA3  
RA3  
TRISA2  
RA2  
TRISA1  
RA1  
TRISA0  
RA0  
079F  
xxxx  
xxxx  
0000  
LATA4  
LATA3  
LATA2  
LATA1  
LATA0  
ODCA  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
 
 
TABLE 4-30: PORTA REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA  
PORTA  
LATA  
02C0  
02C2  
02C4  
02C6  
TRISA10  
RA10  
TRISA9  
RA9  
TRISA8  
RA8  
TRISA7  
RA7  
TRISA4  
RA4  
TRISA3  
RA3  
TRISA2  
RA2  
TRISA1  
RA1  
TRISA0  
RA0  
079F  
xxxx  
xxxx  
0000  
LATA10  
ODCA10  
LATA9  
ODCA9  
LATA8  
ODCA8  
LATA7  
ODCA7  
LATA4  
LATA3  
LATA2  
LATA1  
LATA0  
ODCA  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-31: PORTB REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
PORTB  
LATB  
02C8  
02CA  
02CC  
02CE  
TRISB15 TRISB14 TRISB13 TRISB12 TRISB11 TRISB10 TRISB9  
TRISB8  
RB8  
TRISB7  
RB7  
TRISB6  
RB6  
TRISB5  
RB5  
TRISB4  
RB4  
TRISB3  
RB3  
TRISB2  
RB2  
TRISB1 TRISB0  
FFFF  
xxxx  
xxxx  
0000  
RB15  
LATB15  
RB14  
LATB14  
RB13  
LATB13  
RB12  
LATB12  
RB11  
RB10  
RB9  
RB1  
LATB1  
RB0  
LATB0  
LATB11  
ODCB11  
LATB10  
ODCB10  
LATB9  
ODCB9  
LATB8  
ODCB8  
LATB7  
ODCB7  
LATB6  
ODCB6  
LATB5  
ODCB5  
LATB4  
LATB3  
LATB2  
ODCB  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-32: PORTC REGISTER MAP FOR dsPIC33FJ128GP204/804, dsPIC33FJ64GP204/804 AND dsPIC33FJ32GP304  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISC  
PORTC  
LATC  
02D0  
02D2  
02D4  
02D6  
TRISC9  
RC9  
TRISC8 TRISC7 TRISC6  
TRISC5  
RC5  
TRISC4  
RC4  
TRISC3  
RC3  
TRISC2  
RC2  
TRISC1  
RC1  
TRISC0  
RC0  
03FF  
xxxx  
xxxx  
0000  
RC8  
RC7  
RC6  
LATC9  
ODCC9  
LATC8  
ODCC8  
LATC7  
ODCC7  
LATC6  
ODCC6  
LATC5  
ODCC5  
LATC4  
ODCC4  
LATC3  
ODCC3  
LATC2  
LATC1  
LATC0  
ODCC  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
TABLE 4-33: SYSTEM CONTROL REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCON  
0740 TRAPR IOPUWR  
CM  
NOSC<2:0>  
FRCDIV<2:0>  
VREGS  
EXTR  
SWR  
SWDTEN WDTO  
SLEEP  
CF  
IDLE  
BOR  
POR  
xxxx(1)  
0300(2)  
3040  
0742  
0744  
0746  
0748  
ROI  
COSC<2:0>  
DOZE<2:0>  
CLKLOCK IOLOCK  
PLLPOST<1:0>  
LOCK  
PLLDIV<8:0>  
LPOSCEN OSWEN  
OSCCON  
CLKDIV  
DOZEN  
PLLPRE<4:0>  
0030  
PLLFBD  
OSCTUN  
ACLKCON  
TUN<5:0>  
0000  
0000  
SELACLK  
AOSCMD<1:0>  
APSTSCLR<2:0>  
ASRCSEL  
074A  
Legend:  
Note 1:  
2:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
RCON register Reset values dependent on type of Reset.  
OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.  
TABLE 4-34: SECURITY REGISTER MAP(1)  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BSRAM  
SSRAM  
0750  
0752  
IW_BSR  
IR_BSR  
IR_SSR  
RL_BSR  
RL_SSR  
0000  
0000  
IW_ SSR  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1:  
This register is not present in devices with 4K RAM and 32K Flash memory.  
TABLE 4-35: NVM REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
NVMCON  
NVMKEY  
Legend:  
0760  
0766  
WR  
WREN  
WRERR  
ERASE  
NVMOP<3:0>  
0000  
0000  
NVMKEY<7:0>  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-36: PMD REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DCIMD  
IC1MD  
PMD1  
PMD2  
0770  
0772  
0774  
T5MD  
IC8MD  
T4MD  
IC7MD  
T3MD  
T2MD  
T1MD  
I2C1MD  
U2MD  
U1MD  
SPI2MD SPI1MD  
C1MD  
OC2MD  
AD1MD  
OC1MD  
0000  
0000  
0000  
IC2MD  
OC4MD OC3MD  
PMD3  
CMPMD RTCCMD PMPMD CRCMD DAC1MD  
Legend:  
x= unknown value on Reset, — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
4.2.7  
SOFTWARE STACK  
4.2.8  
DATA RAM PROTECTION FEATURE  
The dsPIC33F product family supports Data RAM  
protection features that enable segments of RAM to be  
protected when used in conjunction with Boot and  
Secure Code Segment Security. BSRAM (Secure RAM  
segment for BS) is accessible only from the Boot  
Segment Flash code when enabled. SSRAM (Secure  
RAM segment for RAM) is accessible only from the  
Secure Segment Flash code when enabled. See  
Table 4-1 for an overview of the BSRAM and SSRAM  
SFRs.  
In addition to its use as a working register, the W15  
register in the dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/  
X04 devices is also used as a software Stack Pointer.  
The Stack Pointer always points to the first available  
free word and grows from lower to higher addresses. It  
pre-decrements for stack pops and post-increments for  
stack pushes, as shown in Figure 4-6. For a PC push  
during any CALLinstruction, the MSb of the PC is zero-  
extended before the push, ensuring that the MSb is  
always clear.  
4.3  
Instruction Addressing Modes  
Note:  
A PC push during exception processing  
concatenates the SRL register to the MSb  
of the PC prior to the push.  
The addressing modes shown in Table 4-37 form the  
basis of the addressing modes optimized to support the  
specific features of individual instructions. The  
addressing modes provided in the MAC class of  
instructions differ from those in the other instruction  
types.  
The Stack Pointer Limit register (SPLIM) associated  
with the Stack Pointer sets an upper address boundary  
for the stack. SPLIM is uninitialized at Reset. As is the  
case for the Stack Pointer, SPLIM<0> is forced to ‘0’  
because all stack operations must be word aligned.  
4.3.1  
FILE REGISTER INSTRUCTIONS  
Whenever an EA is generated using W15 as a source  
or destination pointer, the resulting address is  
compared with the value in SPLIM. If the contents of  
the Stack Pointer (W15) and the SPLIM register are  
equal and a push operation is performed, a stack error  
trap does not occur. The stack error trap occurs on a  
subsequent push operation. For example, to cause a  
stack error trap when the stack grows beyond address  
0x2000 in RAM, initialize the SPLIM with the value  
0x1FFE.  
Most file register instructions use a 13-bit address field  
(f) to directly address data present in the first 8192  
bytes of data memory (near data space). Most file  
register instructions employ a working register, W0,  
which is denoted as WREG in these instructions. The  
destination is typically either the same file register or  
WREG (with the exception of the MUL instruction),  
which writes the result to a register or register pair. The  
MOV instruction allows additional flexibility and can  
access the entire data space.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0x0800. This prevents the stack from  
interfering with the Special Function Register (SFR)  
space.  
4.3.2  
MCU INSTRUCTIONS  
The three-operand MCU instructions are of the form:  
Operand 3 = Operand 1 <function> Operand 2  
where Operand 1 is always a working register (that is,  
the addressing mode can only be register direct), which  
is referred to as Wb. Operand 2 can be a W register,  
fetched from data memory, or a 5-bit literal. The result  
location can be either a W register or a data memory  
location. The following addressing modes are  
supported by MCU instructions:  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
FIGURE 4-6:  
CALLSTACK FRAME  
0x0000  
15  
0
• Register Direct  
• Register Indirect  
• Register Indirect Post-Modified  
• Register Indirect Pre-Modified  
• 5-bit or 10-bit Literal  
PC<15:0>  
000000000  
W15 (before CALL)  
PC<22:16>  
<Free Word>  
W15 (after CALL)  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions can support different subsets  
of these addressing modes.  
POP : [--W15]  
PUSH: [W15++]  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 63  
 
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 4-37: FUNDAMENTAL ADDRESSING MODES SUPPORTED  
Addressing Mode  
File Register Direct  
Description  
The address of the file register is specified explicitly.  
The contents of a register are accessed directly.  
The contents of Wn forms the Effective Address (EA).  
Register Direct  
Register Indirect  
Register Indirect Post-Modified  
The contents of Wn forms the EA. Wn is post-modified (incremented  
or decremented) by a constant value.  
Register Indirect Pre-Modified  
Wn is pre-modified (incremented or decremented) by a signed constant value  
to form the EA.  
Register Indirect with Register Offset The sum of Wn and Wb forms the EA.  
(Register Indexed)  
Register Indirect with Literal Offset  
The sum of Wn and a literal forms the EA.  
4.3.3  
MOVE AND ACCUMULATOR  
INSTRUCTIONS  
4.3.4  
MACINSTRUCTIONS  
The dual source operand DSP instructions (CLR, ED,  
EDAC, MAC, MPY, MPY.N, MOVSACand MSC), also referred  
to as MACinstructions, use a simplified set of addressing  
modes to allow the user application to effectively  
manipulate the data pointers through register indirect  
tables.  
Move instructions and the DSP accumulator class of  
instructions provide a greater degree of addressing  
flexibility than other instructions. In addition to the  
addressing modes supported by most MCU  
instructions, move and accumulator instructions also  
support Register Indirect with Register Offset  
Addressing mode, also referred to as Register Indexed  
mode.  
The two-source operand prefetch registers must be  
members of the set {W8, W9, W10, W11}. For data  
reads, W8 and W9 are always directed to the X RAGU,  
and W10 and W11 are always directed to the Y AGU.  
The effective addresses generated (before and after  
modification) must, therefore, be valid addresses within  
X data space for W8 and W9 and Y data space for W10  
and W11.  
Note:  
For the MOV instructions, the addressing  
mode specified in the instruction can differ  
for the source and destination EA.  
However, the 4-bit Wb (Register Offset)  
field is shared by both source and  
destination (but typically only used by  
one).  
Note:  
Register Indirect with Register Offset  
Addressing mode is available only for W9  
(in X space) and W11 (in Y space).  
In summary, the following addressing modes are  
supported by move and accumulator instructions:  
In summary, the following addressing modes are  
• Register Direct  
supported by the MACclass of instructions:  
• Register Indirect  
• Register Indirect  
• Register Indirect Post-modified  
• Register Indirect Pre-modified  
• Register Indirect with Register Offset (Indexed)  
• Register Indirect with Literal Offset  
• 8-bit Literal  
• Register Indirect Post-Modified by 2  
• Register Indirect Post-Modified by 4  
• Register Indirect Post-Modified by 6  
• Register Indirect with Register Offset (Indexed)  
4.3.5  
OTHER INSTRUCTIONS  
• 16-bit Literal  
Besides the addressing modes outlined previously, some  
instructions use literal constants of various sizes. For  
example, BRA(branch) instructions use 16-bit signed lit-  
erals to specify the branch destination directly, whereas  
the DISIinstruction uses a 14-bit unsigned literal field. In  
some instructions, such as ADD Acc, the source of an  
operand or result is implied by the opcode itself. Certain  
operations, such as NOP, do not have any operands.  
Note:  
Not all instructions support all the address-  
ing modes given above. Individual instruc-  
tions may support different subsets of  
these addressing modes.  
DS70292D-page 64  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
The length of a circular buffer is not directly specified. It  
4.4  
Modulo Addressing  
is determined by the difference between the  
corresponding start and end addresses. The maximum  
possible length of the circular buffer is 32K words  
(64 Kbytes).  
Modulo Addressing mode is a method of providing an  
automated means to support circular data buffers using  
hardware. The objective is to remove the need for  
software to perform data address boundary checks  
when executing tightly looped code, as is typical in  
many DSP algorithms.  
4.4.2  
W ADDRESS REGISTER  
SELECTION  
Modulo Addressing can operate in either data or program  
space (since the data pointer mechanism is essentially  
the same for both). One circular buffer can be supported  
in each of the X (which also provides the pointers into  
program space) and Y data spaces. Modulo Addressing  
can operate on any W register pointer. However, it is not  
advisable to use W14 or W15 for Modulo Addressing  
since these two registers are used as the Stack Frame  
Pointer and Stack Pointer, respectively.  
The Modulo and Bit-Reversed Addressing Control  
register, MODCON<15:0>, contains enable flags as well  
as a W register field to specify the W Address registers.  
The XWM and YWM fields select the registers that  
operate with Modulo Addressing:  
• If XWM = 15, X RAGU and X WAGU Modulo  
Addressing is disabled.  
• If YWM = 15, Y AGU Modulo Addressing is  
disabled.  
In general, any particular circular buffer can be config-  
ured to operate in only one direction as there are  
certain restrictions on the buffer start address (for incre-  
menting buffers), or end address (for decrementing  
buffers), based upon the direction of the buffer.  
The X Address Space Pointer W register (XWM), to  
which Modulo Addressing is to be applied, is stored in  
MODCON<3:0> (see Table 4-1). Modulo Addressing is  
enabled for X data space when XWM is set to any value  
other than ‘15’ and the XMODEN bit is set at  
MODCON<15>.  
The only exception to the usage restrictions is for  
buffers that have a power-of-two length. As these  
buffers satisfy the start and end address criteria, they  
can operate in a bidirectional mode (that is, address  
boundary checks are performed on both the lower and  
upper address boundaries).  
The Y Address Space Pointer W register (YWM) to  
which Modulo Addressing is to be applied is stored in  
MODCON<7:4>. Modulo Addressing is enabled for Y  
data space when YWM is set to any value other than  
15’ and the YMODEN bit is set at MODCON<14>.  
4.4.1  
START AND END ADDRESS  
The Modulo Addressing scheme requires that a  
starting and ending address be specified and loaded  
into the 16-bit Modulo Buffer Address registers:  
XMODSRT, XMODEND, YMODSRT and YMODEND  
(see Table 4-1).  
Note:  
Y space Modulo Addressing EA calcula-  
tions assume word-sized data (LSb of  
every EA is always clear).  
FIGURE 4-7:  
MODULO ADDRESSING OPERATION EXAMPLE  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
#0x1100, W0  
Byte  
Address  
W0, XMODSRT  
#0x1163, W0  
W0, MODEND  
#0x8001, W0  
W0, MODCON  
;set modulo start address  
;set modulo end address  
;enable W1, X AGU for modulo  
;W0 holds buffer fill value  
;point W1 to buffer  
0x1100  
MOV  
MOV  
#0x0000, W0  
#0x1110, W1  
DO  
MOV  
AGAIN, #0x31  
W0, [W1++]  
;fill the 50 buffer locations  
;fill the next location  
0x1163  
AGAIN: INC W0, W0  
;increment the fill value  
Start Addr = 0x1100  
End Addr = 0x1163  
Length = 0x0032 words  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 65  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
XB<14:0> is the Bit-Reversed Address modifier, or  
‘pivot point,’ which is typically a constant. In the case of  
an FFT computation, its value is equal to half of the FFT  
data buffer size.  
4.4.3  
MODULO ADDRESSING  
APPLICABILITY  
Modulo Addressing can be applied to the Effective  
Address (EA) calculation associated with any W  
register. Address boundaries check for addresses  
equal to:  
Note:  
All bit-reversed EA calculations assume  
word-sized data (LSb of every EA is  
always clear). The XB value is scaled  
accordingly to generate compatible (byte)  
addresses.  
• The upper boundary addresses for incrementing  
buffers  
• The lower boundary addresses for decrementing  
buffers  
When enabled, Bit-Reversed Addressing is executed  
only for Register Indirect with Pre-Increment or Post-  
Increment Addressing and word-sized data writes. It  
does not function for any other addressing mode or for  
byte-sized data, and normal addresses are generated  
instead. When Bit-Reversed Addressing is active, the  
W Address Pointer is always added to the address  
modifier (XB), and the offset associated with the  
Register Indirect Addressing mode is ignored. In  
addition, as word-sized data is a requirement, the LSb  
of the EA is ignored (and always clear).  
It is important to realize that the address boundaries  
check for addresses less than or greater than the upper  
(for incrementing buffers) and lower (for decrementing  
buffers) boundary addresses (not just equal to).  
Address changes can, therefore, jump beyond  
boundaries and still be adjusted correctly.  
Note:  
The modulo corrected effective address is  
written back to the register only when Pre-  
Modify or Post-Modify Addressing mode is  
used to compute the effective address.  
When an address offset (such as [W7 +  
W2]) is used, Modulo Address correction  
is performed but the contents of the regis-  
ter remain unchanged.  
Note:  
Modulo Addressing and Bit-Reversed  
Addressing should not be enabled  
together. If an application attempts to do so,  
Bit-Reversed Addressing assumes priority  
when active for the X WAGU and X WAGU,  
Modulo Addressing is disabled. However,  
Modulo Addressing continues to function in  
the X RAGU.  
4.5  
Bit-Reversed Addressing  
Bit-Reversed Addressing mode is intended to simplify  
data reordering for radix-2 FFT algorithms. It is  
supported by the X AGU for data writes only.  
If Bit-Reversed Addressing has already been enabled  
by setting the BREN (XBREV<15>) bit, a write to the  
XBREV register should not be immediately followed by  
an indirect read operation using the W register that has  
been designated as the bit-reversed pointer.  
The modifier, which can be a constant value or register  
contents, is regarded as having its bit order reversed.  
The address source and destination are kept in normal  
order. Thus, the only operand requiring reversal is the  
modifier.  
4.5.1  
BIT-REVERSED ADDRESSING  
IMPLEMENTATION  
Bit-Reversed Addressing mode is enabled in any of  
these situations:  
• BWM bits (W register selection) in the MODCON  
register are any value other than ‘15’ (the stack  
cannot be accessed using Bit-Reversed  
Addressing)  
• The BREN bit is set in the XBREV register  
• The addressing mode used is Register Indirect  
with Pre-Increment or Post-Increment  
If the length of a bit-reversed buffer is M = 2N bytes,  
the last ‘N’ bits of the data buffer start address must  
be zeros.  
DS70292D-page 66  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 4-8:  
BIT-REVERSED ADDRESS EXAMPLE  
Sequential Address  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1  
0
Bit Locations Swapped Left-to-Right  
Around Center of Binary Value  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1 b2 b3 b4  
0
Bit-Reversed Address  
Pivot Point  
XB = 0x0008 for a 16-Word Bit-Reversed Buffer  
TABLE 4-38: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)  
Normal Address Bit-Reversed Address  
A3  
A2  
A1  
A0  
Decimal  
A3  
A2  
A1  
A0  
Decimal  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
8
2
4
3
12  
2
4
5
10  
6
6
7
14  
1
8
9
9
10  
11  
12  
13  
14  
15  
5
13  
3
11  
7
15  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 67  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
4.6.1  
ADDRESSING PROGRAM SPACE  
4.6  
Interfacing Program and Data  
Memory Spaces  
Since the address ranges for the data and program  
spaces are 16 and 24 bits, respectively, a method is  
needed to create a 23-bit or 24-bit program address  
from 16-bit data registers. The solution depends on the  
interface method to be used.  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 architecture uses  
a 24-bit-wide program space and a 16-bit-wide data  
space. The architecture is also a modified Harvard  
scheme, meaning that data can also be present in the  
program space. To use this data successfully, it must  
be accessed in a way that preserves the alignment of  
information in both spaces.  
For table operations, the 8-bit Table Page register  
(TBLPAG) is used to define a 32K word region within  
the program space. This is concatenated with a 16-bit  
EA to arrive at a full 24-bit program space address. In  
this format, the Most Significant bit of TBLPAG is used  
to determine if the operation occurs in the user memory  
(TBLPAG<7> = 0) or the configuration memory  
(TBLPAG<7> = 1).  
Aside  
from  
normal  
execution,  
the  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 architecture provides  
two methods by which program space can be  
accessed during operation:  
For remapping operations, the 8-bit Program Space  
Visibility register (PSVPAG) is used to define a  
16K word page in the program space. When the Most  
Significant bit of the EA is ‘1’, PSVPAG is concatenated  
with the lower 15 bits of the EA to form a 23-bit program  
space address. Unlike table operations, this limits  
remapping operations strictly to the user memory area.  
• Using table instructions to access individual bytes  
or words anywhere in the program space  
• Remapping a portion of the program space into  
the data space (Program Space Visibility)  
Table instructions allow an application to read or write  
to small areas of the program memory. This capability  
makes the method ideal for accessing data tables that  
need to be updated periodically. It also allows access  
to all bytes of the program word. The remapping  
method allows an application to access a large block of  
data on a read-only basis, which is ideal for look-ups  
from a large table of static data. The application can  
only access the least significant word of the program  
word.  
Table 4-39 and Figure 4-9 show how the program EA is  
created for table operations and remapping accesses  
from the data EA. Here, P<23:0> refers to a program  
space word, and D<15:0> refers to a data space word.  
TABLE 4-39: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
PC<22:1>  
0
0xx xxxx xxxx xxxx xxxx xxx0  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
TBLPAG<7:0>  
0xxx xxxx  
Data EA<15:0>  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
Program Space Visibility User  
(Block Remap/Read)  
0
0
PSVPAG<7:0>  
xxxx xxxx  
Data EA<14:0>(1)  
xxx xxxx xxxx xxxx  
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of  
the address is PSVPAG<0>.  
DS70292D-page 68  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 4-9:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter(1)  
Program Counter  
23 bits  
0
0
1/0  
EA  
Table Operations(2)  
1/0  
TBLPAG  
8 bits  
16 bits  
24 bits  
Select  
1
0
EA  
Program Space Visibility(1)  
(Remapping)  
0
PSVPAG  
8 bits  
15 bits  
23 bits  
Byte Select  
User/Configuration  
Space Select  
Note 1: The Least Significant bit (LSb) of program space addresses is always fixed as ‘0’ to maintain  
word alignment of data in the program and data spaces.  
2: Table operations are not required to be word aligned. Table read operations are permitted  
in the configuration memory space.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 69  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
- In Byte mode, either the upper or lower byte  
of the lower program word is mapped to the  
lower byte of a data address. The upper byte  
is selected when Byte Select is ‘1’; the lower  
byte is selected when it is ‘0’.  
4.6.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the program space without going  
through data space. The TBLRDH and TBLWTH  
instructions are the only method to read or write the  
upper 8 bits of a program space word as data.  
TBLRDH (Table Read High):  
- In Word mode, this instruction maps the entire  
upper word of a program address (P<23:16>)  
to a data address. The ‘phantom’ byte  
(D<15:8>), is always ‘0’.  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two 16-bit-  
wide word address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space that contains the least significant  
data word. TBLRDHand TBLWTHaccess the space that  
contains the upper data byte.  
- In Byte mode, this instruction maps the upper  
or lower byte of the program word to D<7:0>  
of the data address, in the TBLRDL instruc-  
tion. The data is always ‘0’ when the upper  
‘phantom’ byte is selected (Byte Select = 1).  
In a similar fashion, two table instructions, TBLWTH  
and TBLWTL, are used to write individual bytes or  
words to a program space address. The details of  
their operation are explained in Section 5.0 “Flash  
Program Memory”.  
Two table instructions are provided to move byte or  
word-sized (16-bit) data to and from program space.  
Both function as either byte or word operations.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table Page  
register (TBLPAG). TBLPAG covers the entire program  
memory space of the device, including user application  
and configuration spaces. When TBLPAG<7> = 0, the  
table page is located in the user memory space. When  
TBLPAG<7> = 1, the page is located in configuration  
space.  
TBLRDL(Table Read Low):  
- In Word mode, this instruction maps the  
lower word of the program space  
location (P<15:0>) to a data address  
(D<15:0>).  
FIGURE 4-10:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
TBLPAG  
02  
23  
15  
0
0x000000  
23  
16  
8
0
00000000  
00000000  
00000000  
0x020000  
0x030000  
00000000  
‘Phantom’ Byte  
TBLRDH.B (Wn<0> = 0)  
TBLRDL.B (Wn<0> = 1)  
TBLRDL.B (Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register.  
Only read operations are shown; write operations are also valid in  
the user memory area.  
0x800000  
DS70292D-page 70  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
24-bit program word are used to contain the data. The  
upper 8 bits of any program space location used as  
data should be programmed with ‘1111 1111’ or  
0000 0000’ to force a NOP. This prevents possible  
issues should the area of code ever be accidentally  
executed.  
4.6.3  
READING DATA FROM PROGRAM  
MEMORY USING PROGRAM SPACE  
VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word page of the program space.  
This option provides transparent access to stored  
constant data from the data space without the need to  
use special instructions (such as TBLRDL/H).  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
Program space access through the data space occurs  
if the Most Significant bit of the data space EA is ‘1’ and  
program space visibility is enabled by setting the PSV  
bit in the Core Control register (CORCON<2>). The  
location of the program memory space to be mapped  
into the data space is determined by the Program  
Space Visibility Page register (PSVPAG). This 8-bit  
register defines any one of 256 possible pages of  
16K words in program space. In effect, PSVPAG  
functions as the upper 8 bits of the program memory  
address, with the 15 bits of the EA functioning as the  
lower bits. By incrementing the PC by 2 for each  
program memory word, the lower 15 bits of data space  
addresses directly map to the lower 15 bits in the  
corresponding program space addresses.  
For operations that use PSV and are executed outside  
a REPEAT loop, the MOV and MOV.D instructions  
require one instruction cycle in addition to the specified  
execution time. All other instructions require two  
instruction cycles in addition to the specified execution  
time.  
For operations that use PSV, and are executed inside  
a REPEATloop, these instances require two instruction  
cycles in addition to the specified execution time of the  
instruction:  
• Execution in the first iteration  
• Execution in the last iteration  
• Execution prior to exiting the loop due to an  
interrupt  
• Execution upon re-entering the loop after an  
interrupt is serviced  
Data reads to this area add a cycle to the instruction  
being executed, since two program memory fetches  
are required.  
Any other iteration of the REPEAT loop allows the  
instruction using PSV to access data, to execute in a  
single cycle.  
Although each data space address 8000h and higher  
maps directly into a corresponding program memory  
address (see Figure 4-11), only the lower 16 bits of the  
FIGURE 4-11:  
PROGRAM SPACE VISIBILITY OPERATION  
When CORCON<2> = 1and EA<15> = 1:  
Program Space  
Data Space  
PSVPAG  
02  
23  
15  
0
0x000000  
0x0000  
Data EA<14:0>  
0x010000  
0x018000  
The data in the page  
designated by PSV-  
PAG is mapped into  
the upper half of the  
data memory  
0x8000  
space...  
PSV Area  
...while the lower 15 bits  
of the EA specify an  
exact address within  
the PSV area. This  
corresponds exactly to  
the same lower 15 bits  
of the actual program  
space address.  
0xFFFF  
0x800000  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 71  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 72  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
programming data (one of the alternate programming  
5.0  
FLASH PROGRAM MEMORY  
pin pairs: PGECx/PGEDx), and three other lines for  
power (VDD), ground (VSS) and Master Clear (MCLR).  
This allows customers to manufacture boards with  
unprogrammed devices and then program the digital  
signal controller just before shipping the product. This  
also allows the most recent firmware or a custom firm-  
ware to be programmed.  
Note 1: This data sheet summarizes the features  
of  
the  
dsPIC33FJ32GP302/304,  
and  
dsPIC33FJ64GPX02/X04,  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 5. Flash Program-  
ming” (DS70191) of the “dsPIC33F/  
PIC24H Family Reference Manual”,  
which is available from the Microchip  
website (www.microchip.com).  
RTSP is accomplished using TBLRD (table read) and  
TBLWT (table write) instructions. With RTSP, the user  
application can write program memory data either in  
blocks or ‘rows’ of 64 instructions (192 bytes) at a time  
or a single program memory word, and erase program  
memory in blocks or ‘pages’ of 512 instructions (1536  
bytes) at a time.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
5.1  
Table Instructions and Flash  
Programming  
Regardless of the method used, all programming of  
Flash memory is done with the table read and table  
write instructions. These allow direct read and write  
access to the program memory space from the data  
memory while the device is in normal operating mode.  
The 24-bit target address in the program memory is  
formed using bits <7:0> of the TBLPAG register and the  
Effective Address (EA) from a W register specified in  
the table instruction, as shown in Figure 5-1.  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 devices contain  
internal Flash program memory for storing and  
executing application code. The memory is readable,  
writable and erasable during normal operation over the  
entire VDD range.  
Flash memory can be programmed in two ways:  
• In-Circuit Serial Programming™ (ICSP™)  
programming capability  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits <15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
both Word and Byte modes.  
• Run-Time Self-Programming (RTSP)  
ICSP allows any of the following devices,  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04, to be serially pro-  
grammed while in the end application circuit. This is  
done with two lines for programming clock and  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits <23:16> of program memory. TBLRDH  
and TBLWTHcan also access program memory in Word  
or Byte mode.  
FIGURE 5-1:  
ADDRESSING FOR TABLE REGISTERS  
24 bits  
Program Counter  
Using  
Program Counter  
0
0
Working Reg EA  
Using  
Table Instruction  
1/0  
TBLPAG Reg  
8 bits  
16 bits  
User/Configuration  
Space Select  
Byte  
Select  
24-bit EA  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 73  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
5.2  
RTSP Operation  
5.3  
Programming Operations  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 Flash program  
memory array is organized into rows of 64 instructions  
or 192 bytes. RTSP allows the user application to erase  
a page of memory, which consists of eight rows (512  
instructions) at a time, and to program one row or one  
word at a time. Table 30-12 shows typical erase and  
programming times. The 8-row erase pages and single  
row write rows are edge-aligned from the beginning of  
program memory, on boundaries of 1536 bytes and  
192 bytes, respectively.  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. The processor stalls (waits) until the  
programming operation is finished.  
The programming time depends on the FRC accuracy  
(see Table 30-19) and the value of the FRC Oscillator  
Tuning register (see Register 9-4). Use the following  
formula to calculate the minimum and maximum values  
for the Row Write Time, Page Erase Time and Word  
Write Cycle Time parameters (see Table 30-12).  
The program memory implements holding buffers that  
can contain 64 instructions of programming data. Prior  
to the actual programming operation, the write data  
must be loaded into the buffers sequentially. The  
instruction words loaded must always be from a group  
of 64 boundary.  
EQUATION 5-1:  
PROGRAMMING TIME  
T
-------------------------------------------------------------------------------------------------------------------------  
7.37 MHz  FRC Accuracy%  FRC Tuning%  
For example, if the device is operating at +125°C,  
the FRC accuracy will be ±5%. If the TUN<5:0> bits  
(see Register 9-4) are set to ‘b111111, the  
Minimum Row Write Time is:  
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the buffers. Programming is performed by  
setting the control bits in the NVMCON register. A total  
of 64 TBLWTL and TBLWTH instructions are required  
to load the instructions.  
11064 Cycles  
TRW = ---------------------------------------------------------------------------------------------- = 1 . 4 3 5 ms  
7.37 MHz  1 + 0.05  1 – 0.00375  
and, the Maximum Row Write Time is:  
All of the table write operations are single-word writes  
(two instruction cycles) because only the buffers are  
11064 Cycles  
TRW = --------------------------------------------------------------------------------------------- = 1.586ms  
7.37 MHz  1 – 0.05  1 – 0.00375  
written.  
A
programming cycle is required for  
programming each row.  
Setting the WR bit (NVMCON<15>) starts the opera-  
tion, and the WR bit is automatically cleared when the  
operation is finished.  
5.4  
Control Registers  
Two SFRs are used to read and write the program  
Flash memory: NVMCON and NVMKEY.  
The NVMCON register (Register 5-1) controls which  
blocks are to be erased, which memory type is to be  
programmed and the start of the programming cycle.  
NVMKEY (Register 5-2) is a write-only register that is  
used for write protection. To start a programming or  
erase sequence, the user application must consecu-  
tively write 0x55 and 0xAA to the NVMKEY register.  
Refer to Section 5.3 “Programming Operations” for  
further details.  
DS70292D-page 74  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 5-1:  
NVMCON: FLASH MEMORY CONTROL REGISTER  
R/SO-0(1)  
WR  
R/W-0(1)  
WREN  
R/W-0(1)  
WRERR  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-0(1)  
ERASE  
U-0  
U-0  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
R/W-0(1)  
NVMOP<3:0>(2)  
bit 7  
bit 0  
Legend:  
SO = Settable only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
WR: Write Control bit  
1= Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is  
cleared by hardware once operation is complete  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit  
1= Enable Flash program/erase operations  
0= Inhibit Flash program/erase operations  
WRERR: Write Sequence Error Flag bit  
1= An improper program or erase sequence attempt or termination has occurred (bit is set  
automatically on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
ERASE: Erase/Program Enable bit  
1= Perform the erase operation specified by NVMOP<3:0> on the next WR command  
0= Perform the program operation specified by NVMOP<3:0> on the next WR command  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
NVMOP<3:0>: NVM Operation Select bits(2)  
If ERASE = 1:  
1111= Memory bulk erase operation  
1110= Reserved  
1101= Erase General Segment  
1100= Erase Secure Segment  
1011= Reserved  
0011= No operation  
0010= Memory page erase operation  
0001= No operation  
0000= Erase a single Configuration register byte  
If ERASE = 0:  
1111= No operation  
1110= Reserved  
1101= No operation  
1100= No operation  
1011= Reserved  
0011= Memory word program operation  
0010= No operation  
0001= Memory row program operation  
0000= Program a single Configuration register byte  
Note 1: These bits can only be reset on POR.  
2: All other combinations of NVMOP<3:0> are unimplemented.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 75  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 5-2:  
NVMKEY: NONVOLATILE MEMORY KEY REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
W-0  
bit 7  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
W-0  
NVMKEY<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Unimplemented: Read as ‘0’  
NVMKEY<7:0>: Key Register (write-only) bits  
DS70292D-page 76  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
4. Write the first 64 instructions from data RAM into  
the program memory buffers (see Example 5-2).  
5.4.1  
PROGRAMMING ALGORITHM FOR  
FLASH PROGRAM MEMORY  
5. Write the program block to Flash memory:  
Programmers can program one row of program Flash  
memory at a time. To do this, it is necessary to erase  
the 8-row erase page that contains the desired row.  
The general process is:  
a) Set the NVMOP bits to ‘0001’ to configure  
for row programming. Clear the ERASE bit  
and set the WREN bit.  
b) Write 0x55 to NVMKEY.  
c) Write 0xAA to NVMKEY.  
1. Read eight rows of program memory  
(512 instructions) and store in data RAM.  
d) Set the WR bit. The programming cycle  
begins and the CPU stalls for the duration of  
the write cycle. When the write to Flash mem-  
ory is done, the WR bit is cleared  
automatically.  
2. Update the program data in RAM with the  
desired new data.  
3. Erase the block (see Example 5-1):  
a) Set the NVMOP bits (NVMCON<3:0>) to  
0010’ to configure for block erase. Set the  
ERASE (NVMCON<6>) and WREN  
(NVMCON<14>) bits.  
6. Repeat steps 4 and 5, using the next available  
64 instructions from the block in data RAM by  
incrementing the value in TBLPAG, until all  
512 instructions are written back to Flash memory.  
b) Write the starting address of the page to be  
erased into the TBLPAG and W registers.  
For protection against accidental operations, the write  
initiate sequence for NVMKEY must be used to allow  
any erase or program operation to proceed. After the  
programming command has been executed, the user  
application must wait for the programming time until  
programming is complete. The two instructions  
following the start of the programming sequence  
should be NOPs, as shown in Example 5-3.  
c) Write 0x55 to NVMKEY.  
d) Write 0xAA to NVMKEY.  
e) Set the WR bit (NVMCON<15>). The erase  
cycle begins and the CPU stalls for the dura-  
tion of the erase cycle. When the erase is  
done, the WR bit is cleared automatically.  
EXAMPLE 5-1:  
ERASING A PROGRAM MEMORY PAGE  
; Set up NVMCON for block erase operation  
MOV  
MOV  
#0x4042, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
; Initialize PM Page Boundary SFR  
; Initialize in-page EA[15:0] pointer  
; Set base address of erase block  
; Block all interrupts with priority <7  
; for next 5 instructions  
TBLWTL W0, [W0]  
DISI  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 77  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
EXAMPLE 5-2:  
LOADING THE WRITE BUFFERS  
; Set up NVMCON for row programming operations  
MOV  
MOV  
#0x4001, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000, W0  
W0, TBLPAG  
#0x6000, W0  
;
; Initialize PM Page Boundary SFR  
; An example program memory address  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
#LOW_WORD_0, W2  
#HIGH_BYTE_0, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 1st_program_word  
MOV  
MOV  
#LOW_WORD_1, W2  
#HIGH_BYTE_1, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
;
2nd_program_word  
MOV  
MOV  
#LOW_WORD_2, W2  
#HIGH_BYTE_2, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 63rd_program_word  
MOV  
MOV  
#LOW_WORD_31, W2  
#HIGH_BYTE_31, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
EXAMPLE 5-3:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the  
; erase command is asserted  
DS70292D-page 78  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
• IOPUWR: Illegal Condition Device Reset  
6.0  
RESETS  
- Illegal Opcode Reset  
- Uninitialized W Register Reset  
- Security Reset  
Note 1: This data sheet summarizes the features  
of  
the  
dsPIC33FJ32GP302/304,  
and  
dsPIC33FJ64GPX02/X04,  
A simplified block diagram of the Reset module is  
shown in Figure 6-1.  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 8. Reset” (DS70192) of  
the “dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
Any active source of reset will make the SYSRST sig-  
nal active. On system Reset, some of the registers  
associated with the CPU and peripherals are forced to  
a known Reset state and some are unaffected.  
Note:  
Refer to the specific peripheral section or  
Section 3.0 “CPU” of this manual for  
register Reset states.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
All types of device Reset sets a corresponding status  
bit in the RCON register to indicate the type of Reset  
(see Register 6-1).  
A POR clears all the bits, except for the POR bit  
(RCON<0>), that are set. The user application can set  
or clear any bit at any time during code execution. The  
RCON bits only serve as status bits. Setting a particular  
Reset status bit in software does not cause a device  
Reset to occur.  
The Reset module combines all reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
• POR: Power-on Reset  
• BOR: Brown-out Reset  
The RCON register also has other bits associated with  
the Watchdog Timer and device power-saving states.  
The function of these bits is discussed in other sections  
of this manual.  
• MCLR: Master Clear Pin Reset  
• SWR: RESETInstruction  
• WDTO: Watchdog Timer Reset  
• CM: Configuration Mismatch Reset  
• TRAPR: Trap Conflict Reset  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset is meaningful.  
FIGURE 6-1:  
RESET SYSTEM BLOCK DIAGRAM  
RESETInstruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
BOR  
Internal  
Regulator  
SYSRST  
VDD  
POR  
VDD Rise  
Detect  
Trap Conflict  
Illegal Opcode  
Uninitialized W Register  
Configuration Mismatch  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 79  
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER(1)  
R/W-0  
TRAPR  
bit 15  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CM  
R/W-0  
IOPUWR  
VREGS  
bit 8  
R/W-0  
EXTR  
R/W-0  
SWR  
R/W-0  
SWDTEN(2)  
R/W-0  
WDTO  
R/W-0  
R/W-0  
IDLE  
R/W-1  
BOR  
R/W-1  
POR  
SLEEP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit  
1= An illegal opcode detection, an illegal address mode or uninitialized W register used as an  
Address Pointer caused a Reset  
0= An illegal opcode or uninitialized W Reset has not occurred  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
CM: Configuration Mismatch Flag bit  
1 = A configuration mismatch Reset has occurred.  
0 = A configuration mismatch Reset has NOT occurred  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
VREGS: Voltage Regulator Standby During Sleep bit  
1= Voltage regulator is active during Sleep  
0= Voltage regulator goes into Standby mode during Sleep  
EXTR: External Reset (MCLR) Pin bit  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
SWR: Software Reset (Instruction) Flag bit  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
SWDTEN: Software Enable/Disable of WDT bit(2)  
1= WDT is enabled  
0= WDT is disabled  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
SLEEP: Wake-up from Sleep Flag bit  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
IDLE: Wake-up from Idle Flag bit  
1= Device was in Idle mode  
0= Device was not in Idle mode  
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
DS70292D-page 80  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER(1) (CONTINUED)  
bit 1  
BOR: Brown-out Reset Flag bit  
1= A Brown-out Reset has occurred  
0= A Brown-out Reset has not occurred  
bit 0  
POR: Power-on Reset Flag bit  
1= A Power-on Reset has occurred  
0= A Power-on Reset has not occurred  
Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 81  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
2. BOR Reset: The on-chip voltage regulator has  
6.1  
System Reset  
a BOR circuit that keeps the device in Reset  
until VDD crosses the VBOR threshold and the  
delay TBOR has elapsed. The delay TBOR  
ensures that the voltage regulator output  
becomes stable.  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 family of devices  
have two types of Reset:  
• Cold Reset  
• Warm Reset  
3. PWRT Timer: The programmable power-up  
timer continues to hold the processor in Reset  
for a specific period of time (TPWRT) after a  
BOR. The delay TPWRT ensures that the system  
power supplies have stabilized at the appropri-  
ate level for full-speed operation. After the delay  
TPWRT has elapsed, the SYSRST becomes  
inactive, which in turn enables the selected  
oscillator to start generating clock cycles.  
A cold Reset is the result of a Power-on Reset (POR)  
or a Brown-out Reset (BOR). On a cold Reset, the  
FNOSC configuration bits in the FOSC device  
configuration register selects the device clock source.  
A warm Reset is the result of all other reset sources,  
including the RESET instruction. On warm Reset, the  
device will continue to operate from the current clock  
source as indicated by the Current Oscillator Selection  
(COSC<2:0>) bits in the Oscillator Control  
(OSCCON<14:12>) register.  
4. Oscillator Delay: The total delay for the clock to  
be ready for various clock source selections is  
given in Table 6-1. Refer to Section 9.0  
The device is kept in a Reset state until the system  
power supplies have stabilized at appropriate levels  
and the oscillator clock is ready. The sequence in  
which this occurs is detailed below and is shown in  
Figure 6-2.  
“Oscillator  
information.  
Configuration”  
for  
more  
5. When the oscillator clock is ready, the processor  
begins execution from location 0x000000. The  
user application programs a GOTOinstruction at  
the reset address, which redirects program  
execution to the appropriate start-up routine.  
1. POR Reset: A POR circuit holds the device in  
Reset when the power supply is turned on. The  
POR circuit is active until VDD crosses the VPOR  
threshold and the delay TPOR has elapsed.  
6. The Fail-safe clock monitor (FSCM), if enabled,  
begins to monitor the system clock when the  
system clock is ready and the delay TFSCM  
elapsed.  
TABLE 6-1:  
OSCILLATOR DELAY  
Oscillator  
Oscillator Startup  
Timer  
Oscillator Mode  
PLL Lock Time  
Total Delay  
Startup Delay  
FRC, FRCDIV16,  
FRCDIVN  
TOSCD  
TOSCD  
FRCPLL  
XT  
TOSCD  
TOSCD  
TOSCD  
TOST  
TOST  
TLOCK  
TOSCD + TLOCK  
TOSCD + TOST  
TOSCD + TOST  
HS  
EC  
XTPLL  
HSPLL  
ECPLL  
SOSC  
LPRC  
TOSCD  
TOSCD  
TOST  
TOST  
TLOCK  
TLOCK  
TLOCK  
TOSCD + TOST + TLOCK  
TOSCD + TOST + TLOCK  
TLOCK  
TOSCD  
TOSCD  
TOST  
TOSCD + TOST  
TOSCD  
Note 1: TOSCD = Oscillator Start-up Delay (1.1 s max for FRC, 70 s max for LPRC). Crystal Oscillator start-up  
times vary with crystal characteristics, load capacitance, etc.  
2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 s for a  
10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.  
3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.  
DS70292D-page 82  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 6-2:  
SYSTEM RESET TIMING  
VBOR  
Vbor  
VPOR  
VDD  
TPOR  
1
POR Reset  
BOR Reset  
SYSRST  
TBOR  
2
3
TPWRT  
4
Oscillator Clock  
TLOCK  
TOSCD  
TOST  
6
TFSCM  
FSCM  
5
Reset  
Device Status  
Run  
Time  
Note 1: POR Reset: A POR circuit holds the device in Reset when the power supply is turned on. The POR circuit is  
active until VDD crosses the VPOR threshold and the delay TPOR has elapsed.  
2: BOR Reset: The on-chip voltage regulator has a BOR circuit that keeps the device in Reset until VDD crosses  
the VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output  
becomes stable.  
3: PWRT Timer: The programmable power-up timer continues to hold the processor in Reset for a specific  
period of time (TPWRT) after a BOR. The delay TPWRT ensures that the system power supplies have stabilized  
at the appropriate level for full-speed operation. After the delay TPWRT has elapsed, the SYSRST becomes  
inactive, which in turn enables the selected oscillator to start generating clock cycles.  
4: Oscillator Delay: The total delay for the clock to be ready for various clock source selections are given in  
Table 6-1. Refer to Section 9.0 “Oscillator Configuration” for more information.  
5: When the oscillator clock is ready, the processor begins execution from location 0x000000. The user  
application programs a GOTO instruction at the reset address, which redirects program execution to the  
appropriate start-up routine.  
6: The Fail-safe clock monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is  
ready and the delay TFSCM elapsed.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 83  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 6-2:  
OSCILLATOR DELAY  
Symbol  
Parameter  
POR threshold  
Value  
VPOR  
TPOR  
VBOR  
TBOR  
TPWRT  
TFSCM  
1.8V nominal  
POR extension time  
30 s maximum  
2.5V nominal  
BOR threshold  
BOR extension time  
100 s maximum  
Programmable power-up time delay  
Fail-Safe Clock Monitor Delay  
0-128 ms nominal  
900 s maximum  
6.2.1  
Brown-out Reset (BOR) and  
Power-up timer (PWRT)  
Note: When the device exits the Reset condi-  
tion (begins normal operation), the  
device operating parameters (voltage,  
frequency, temperature, etc.) must be  
within their operating ranges, otherwise  
the device may not function correctly.  
The user application must ensure that  
the delay between the time power is  
first applied, and the time SYSRST  
becomes inactive, is long enough to get  
The on-chip regulator has a Brown-out Reset (BOR)  
circuit that resets the device when the VDD is too low  
(VDD < VBOR) for proper device operation. The BOR cir-  
cuit keeps the device in Reset until VDD crosses VBOR  
threshold and the delay TBOR has elapsed. The delay  
TBOR ensures the voltage regulator output becomes  
stable.  
The BOR status (BOR) bit in the Reset Control  
(RCON<1>) register is set to indicate the Brown-out  
Reset.  
all  
operating  
parameters  
within  
specification.  
The device will not run at full speed after a BOR as the  
VDD should rise to acceptable levels for full-speed  
operation. The PWRT provides power-up time delay  
(TPWRT) to ensure that the system power supplies have  
stabilized at the appropriate levels for full-speed  
operation before the SYSRST is released.  
6.2  
Power-on Reset (POR)  
A Power-on Reset (POR) circuit ensures the device is  
reset from power-on. The POR circuit is active until  
VDD crosses the VPOR threshold and the delay TPOR  
has elapsed. The delay TPOR ensures the internal  
device bias circuits become stable.  
The power-up timer delay (TPWRT) is programmed by  
The device supply voltage characteristics must meet  
the specified starting voltage and rise rate  
requirements to generate the POR. Refer to  
Section 30.0 “Electrical Characteristics” for details.  
the  
Power-on  
Reset  
Timer  
Value  
Select  
(FPWRT<2:0>) bits in the POR Configuration  
(FPOR<2:0>) register, which provides eight settings  
(from 0 ms to 128 ms). Refer to Section 27.0 “Special  
Features” for further details.  
The POR status (POR) bit in the Reset Control  
(RCON<0>) register is set to indicate the Power-on  
Reset.  
Figure 6-3 shows the typical brown-out scenarios. The  
reset delay (TBOR + TPWRT) is initiated each time VDD  
rises above the VBOR trip point  
DS70292D-page 84  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 6-3:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
VDD dips before PWRTexpires  
VDD  
VBOR  
TBOR + TPWRT  
SYSRST  
The Software Reset (Instruction) Flag (SWR) bit in the  
Reset Control (RCON<6>) register is set to indicate  
the software Reset.  
6.3  
External Reset (EXTR)  
The external Reset is generated by driving the MCLR  
pin low. The MCLR pin is a Schmitt trigger input with an  
additional glitch filter. Reset pulses that are longer than  
the minimum pulse-width will generate a Reset. Refer  
to Section 30.0 “Electrical Characteristics” for  
minimum pulse-width specifications. The External  
Reset (MCLR) Pin (EXTR) bit in the Reset Control  
(RCON) register is set to indicate the MCLR Reset.  
6.5  
Watchdog Time-out Reset (WDTO)  
Whenever a Watchdog time-out occurs, the device will  
asynchronously assert SYSRST. The clock source will  
remain unchanged. A WDT time-out during Sleep or  
Idle mode will wake-up the processor, but will not reset  
the processor.  
6.3.0.1  
EXTERNAL SUPERVISORY CIRCUIT  
The Watchdog Timer Time-out Flag (WDTO) bit in the  
Reset Control (RCON<4>) register is set to indicate  
the Watchdog Reset. Refer to Section 27.4  
“Watchdog Timer (WDT)” for more information on  
Watchdog Reset.  
Many systems have external supervisory circuits that  
generate reset signals to Reset multiple devices in the  
system. This external Reset signal can be directly con-  
nected to the MCLR pin to Reset the device when the  
rest of system is Reset.  
6.6  
Trap Conflict Reset  
6.3.0.2  
INTERNAL SUPERVISORY CIRCUIT  
If a lower-priority hard trap occurs while a higher-prior-  
ity trap is being processed, a hard trap conflict Reset  
occurs. The hard traps include exceptions of priority  
level 13 through level 15, inclusive. The address error  
(level 13) and oscillator error (level 14) traps fall into  
this category.  
When using the internal power supervisory circuit to  
Reset the device, the external reset pin (MCLR) should  
be tied directly or resistively to VDD. In this case, the  
MCLR pin will not be used to generate a Reset. The  
external reset pin (MCLR) does not have an internal  
pull-up and must not be left unconnected.  
The Trap Reset Flag (TRAPR) bit in the Reset Control  
(RCON<15>) register is set to indicate the Trap Conflict  
Reset. Refer to Section 7.0 “Interrupt Controller” for  
more information on trap conflict Resets.  
6.4  
Software RESETInstruction (SWR)  
Whenever the RESET instruction is executed, the  
device will assert SYSRST, placing the device in a spe-  
cial Reset state. This Reset state will not re-initialize the  
clock. The clock source in effect prior to the RESET  
instruction will remain. SYSRST is released at the next  
instruction cycle, and the reset vector fetch will com-  
mence.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 85  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
each program memory section to store the data values.  
The upper 8 bits should be programmed with 3Fh,  
which is an illegal opcode value.  
6.7  
Configuration Mismatch Reset  
To maintain the integrity of the peripheral pin select  
control registers, they are constantly monitored with  
shadow registers in hardware. If an unexpected  
change in any of the registers occur (such as cell dis-  
turbances caused by ESD or other external events), a  
configuration mismatch Reset occurs.  
6.8.0.2  
UNINITIALIZED W REGISTER  
RESET  
Any attempts to use the uninitialized W register as an  
address pointer will Reset the device. The W register  
array (with the exception of W15) is cleared during all  
resets and is considered uninitialized until written to.  
The Configuration Mismatch Flag (CM) bit in the Reset  
Control (RCON<9>) register is set to indicate the  
configuration mismatch Reset. Refer to Section 11.0  
“I/O Ports” for more information on the configuration  
mismatch Reset.  
6.8.0.3  
SECURITY RESET  
If a Program Flow Change (PFC) or Vector Flow  
Change (VFC) targets a restricted location in a  
protected segment (Boot and Secure Segment), that  
operation will cause a security Reset.  
Note:  
The configuration mismatch feature and  
associated reset flag is not available on all  
devices.  
The PFC occurs when the Program Counter is  
reloaded as a result of a Call, Jump, Computed Jump,  
Return, Return from Subroutine, or other form of  
branch instruction.  
6.8  
Illegal Condition Device Reset  
An illegal condition device Reset occurs due to the  
following sources:  
The VFC occurs when the Program Counter is  
reloaded with an Interrupt or Trap vector.  
• Illegal Opcode Reset  
• Uninitialized W Register Reset  
• Security Reset  
Refer to Section 27.8 “Code Protection and  
CodeGuard™ Security” for more information on  
Security Reset.  
The Illegal Opcode or Uninitialized W Access Reset  
Flag (IOPUWR) bit in the Reset Control (RCON<14>)  
register is set to indicate the illegal condition device  
Reset.  
6.9  
Using the RCON Status Bits  
The user application can read the Reset Control  
(RCON) register after any device Reset to determine  
the cause of the reset.  
6.8.0.1  
ILLEGAL OPCODE RESET  
A device Reset is generated if the device attempts to  
execute an illegal opcode value that is fetched from  
program memory.  
Note: The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset will be meaningful.  
The illegal opcode Reset function can prevent the  
device from executing program memory sections that  
are used to store constant data. To take advantage of  
the illegal opcode Reset, use only the lower 16 bits of  
Table 6-3 provides a summary of the reset flag bit  
operation.  
TABLE 6-3:  
RESET FLAG BIT OPERATION  
Flag Bit  
Set by:  
Cleared by:  
TRAPR (RCON<15>)  
IOPWR (RCON<14>)  
Trap conflict event  
POR,BOR  
POR,BOR  
Illegal opcode or uninitialized  
W register access or Security Reset  
CM (RCON<9>)  
Configuration Mismatch  
MCLR Reset  
POR,BOR  
POR  
EXTR (RCON<7>)  
SWR (RCON<6>)  
WDTO (RCON<4>)  
RESETinstruction  
WDT time-out  
POR,BOR  
PWRSAVinstruction,  
CLRWDTinstruction, POR,BOR  
SLEEP (RCON<3>)  
IDLE (RCON<2>)  
BOR (RCON<1>)  
POR (RCON<0>)  
PWRSAV #SLEEPinstruction  
PWRSAV #IDLEinstruction  
POR, BOR  
POR,BOR  
POR,BOR  
POR  
Note: All Reset flag bits can be set or cleared by user software.  
DS70292D-page 86  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
7.0  
INTERRUPT CONTROLLER  
and dsPIC33FJ128GPX02/X04 devices implement up  
to 53 unique interrupts and five nonmaskable traps.  
These are summarized in Table 7-1.  
Note 1: This data sheet summarizes the features  
of  
the  
dsPIC33FJ32GP302/304,  
and  
dsPIC33FJ64GPX02/X04,  
7.1.1  
ALTERNATE INTERRUPT VECTOR  
TABLE  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 32. Interrupts (Part  
III)” (DS70214) of the “dsPIC33F/PIC24H  
Family Reference Manual”, which is avail-  
able from the Microchip website  
(www.microchip.com).  
The Alternate Interrupt Vector Table (AIVT) is located  
after the IVT, as shown in Figure 7-1. Access to the  
AIVT is provided by the ALTIVT control bit  
(INTCON2<15>). If the ALTIVT bit is set, all interrupt  
and exception processes use the alternate vectors  
instead of the default vectors. The alternate vectors are  
organized in the same manner as the default vectors.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
The AIVT supports debugging by providing a means to  
switch between an application and  
a
support  
environment without requiring the interrupt vectors to  
be reprogrammed. This feature also enables switching  
between applications for evaluation of different  
software algorithms at run time. If the AIVT is not  
needed, the AIVT should be programmed with the  
same addresses used in the IVT.  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04,  
and  
dsPIC33FJ128GPX02/X04  
interrupt  
controller reduces the numerous peripheral interrupt  
request signals to a single interrupt request signal to  
the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 CPU.  
7.2  
Reset Sequence  
A device Reset is not a true exception because the  
interrupt controller is not involved in the Reset process.  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 device clears its  
registers in response to a Reset, which forces the PC  
to zero. The digital signal controller then begins  
program execution at location 0x000000. A GOTO  
instruction at the Reset address can redirect program  
execution to the appropriate start-up routine.  
The interrupt controller has the following features:  
• Up to eight processor exceptions and software  
traps  
• Eight user-selectable priority levels  
• Interrupt Vector Table (IVT) with up to 118 vectors  
• A unique vector for each interrupt or exception  
source  
Note: Any unimplemented or unused vector  
locations in the IVT and AIVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
• Fixed priority within a specified user priority level  
• Alternate Interrupt Vector Table (AIVT) for debug  
support  
• Fixed interrupt entry and return latencies  
7.1  
Interrupt Vector Table  
The Interrupt Vector Table (IVT), shown in Figure 7-1,  
resides in program memory, starting at location  
000004h. The IVT contains 126 vectors consisting of  
eight nonmaskable trap vectors plus up to 118 sources  
of interrupt. In general, each interrupt source has its  
own vector. Each interrupt vector contains a 24-bit-  
wide address. The value programmed into each  
interrupt vector location is the starting address of the  
associated Interrupt Service Routine (ISR).  
Interrupt vectors are prioritized in terms of their natural  
priority. This priority is linked to their position in the  
vector table. Lower addresses generally have a higher  
natural priority. For example, the interrupt associated  
with vector 0 takes priority over interrupts at any other  
vector address.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 87  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 7-1:  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/  
X04 INTERRUPT VECTOR TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
0x000000  
0x000002  
0x000004  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
DMA Error Trap Vector  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000014  
~
~
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00007C  
0x00007E  
0x000080  
(1)  
Interrupt Vector Table (IVT)  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Reserved  
0x0000FC  
0x0000FE  
0x000100  
0x000102  
Reserved  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
DMA Error Trap Vector  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
~
0x000114  
~
~
(1)  
Alternate Interrupt Vector Table (AIVT)  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
~
0x00017C  
0x00017E  
0x000180  
~
~
Interrupt Vector 116  
Interrupt Vector 117  
Start of Code  
0x0001FE  
0x000200  
Note 1: See Table 7-1 for the list of implemented interrupt vectors.  
DS70292D-page 88  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 7-1:  
INTERRUPT VECTORS  
Vector  
Number  
IVT Address  
AIVT Address  
Interrupt Source  
0
0x000004  
0x000006  
0x000008  
0x00000A  
0x00000C  
0x00000E  
0x000010  
0x000012  
0x000014  
0x000016  
0x000018  
0x00001A  
0x00001C  
0x00001E  
0x000020  
0x000022  
0x000024  
0x000026  
0x000028  
0x00002A  
0x00002C  
0x00002E  
0x000030  
0x000032  
0x000034  
0x000036  
0x000038  
0x00003A  
0x00003C  
0x00003E  
0x000040  
0x000042  
0x000044  
0x000046  
0x000048  
0x00004A  
0x00004C  
0x00004E  
0x000050  
0x000052  
0x000054  
0x000056  
0x000058  
0x00005A  
0x00005C  
0x00005E  
0x000060  
0x000104  
0x000106  
0x000108  
0x00010A  
0x00010C  
0x00010E  
0x000110  
0x000112  
0x000114  
0x000116  
0x000118  
0x00011A  
0x00011C  
0x00011E  
0x000120  
0x000122  
0x000124  
0x000126  
0x000128  
0x00012A  
0x00012C  
0x00012E  
0x000130  
0x000132  
0x000134  
0x000136  
0x000138  
0x00013A  
0x00013C  
0x00013E  
0x000140  
0x000142  
0x000144  
0x000146  
0x000148  
0x00014A  
0x00014C  
0x00014E  
0x000150  
0x000152  
0x000154  
0x000156  
0x000158  
0x00015A  
0x00015C  
0x00015E  
0x000160  
Reserved  
1
Oscillator Failure  
Address Error  
Stack Error  
Math Error  
DMA Error  
Reserved  
2
3
4
5
6
7
Reserved  
8
INT0 – External Interrupt 0  
IC1 – Input Compare 1  
OC1 – Output Compare 1  
T1 – Timer1  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
DMA0 – DMA Channel 0  
IC2 – Input Capture 2  
OC2 – Output Compare 2  
T2 – Timer2  
T3 – Timer3  
SPI1E – SPI1 Error  
SPI1 – SPI1 Transfer Done  
U1RX – UART1 Receiver  
U1TX – UART1 Transmitter  
ADC1 – ADC 1  
DMA1 – DMA Channel 1  
Reserved  
SI2C1 – I2C1 Slave Events  
MI2C1 – I2C1 Master Events  
CM – Comparator Interrupt  
CN – Change Notification Interrupt  
INT1 – External Interrupt 1  
Reserved  
IC7 – Input Capture 7  
IC8 – Input Capture 8  
DMA2 – DMA Channel 2  
OC3 – Output Compare 3  
OC4 – Output Compare 4  
T4 – Timer4  
T5 – Timer5  
INT2 – External Interrupt 2  
U2RX – UART2 Receiver  
U2TX – UART2 Transmitter  
SPI2E – SPI2 Error  
SPI2 – SPI2 Transfer Done  
C1RX – ECAN1 RX Data Ready  
C1 – ECAN1 Event  
DMA3 – DMA Channel 3  
Reserved  
Reserved  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 89  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 7-1:  
INTERRUPT VECTORS (CONTINUED)  
Vector  
Number  
IVT Address  
AIVT Address  
Interrupt Source  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88-126  
0x000062  
0x000064  
0x000066  
0x000068  
0x00006A  
0x00006C  
0x00006E  
0x000070  
0x000072  
0x000074  
0x000076  
0x000078  
0x00007A  
0x00007C  
0x00007E  
0x000080  
0x000082  
0x000084  
0x000086  
0x000088  
0x00008A  
0x00008C  
0x00008E  
0x000090  
0x000092  
0x000094  
0x000096  
0x000098  
0x00009A  
0x00009C  
0x00009E  
0x0000A0  
0x0000A2  
0x0000A4  
0x0000A6  
0x0000A8  
0x0000AA  
0x0000AC  
0x0000AE  
0x0000B0  
0x0000B2  
0x000162  
0x000164  
0x000166  
0x000168  
0x00016A  
0x00016C  
0x00016E  
0x000170  
0x000172  
0x000174  
0x000176  
0x000178  
0x00017A  
0x00017C  
0x00017E  
0x000180  
0x000182  
0x000184  
0x000186  
0x000188  
0x00018A  
0x00018C  
0x00018E  
0x000190  
0x000192  
0x000194  
0x000196  
0x000198  
0x00019A  
0x00019C  
0x00019E  
0x0001A0  
0x0001A2  
0x0001A4  
0x0001A6  
0x0001A8  
0x0001AA  
0x0001AC  
0x0001AE  
0x0001B0  
0x0001B2  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PMP – Parallel Master Port  
DMA – DMA Channel 4  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
DCIE – DCI Error  
DCI – DCI Transfer Done  
DMA5 – DMA Channel 5  
RTCC – Real Time Clock  
Reserved  
Reserved  
U1E – UART1 Error  
U2E – UART2 Error  
CRC – CRC Generator Interrupt  
DMA6 – DMA Channel 6  
DMA7 – DMA Channel 7  
C1TX – ECAN1 TX Data Request  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
DAC1R – DAC1 Right Data Request  
DAC1L – DAC1 Left Data Request  
0x0000B4-0x0000FE 0x0001B4-0x0001FE Reserved  
DS70292D-page 90  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
7.3.4  
IPCX  
7.3  
Interrupt Control and Status  
Registers  
The IPC registers are used to set the interrupt priority  
level for each source of interrupt. Each user interrupt  
source can be assigned to one of eight priority levels.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 devices implement a  
total of 30 registers for the interrupt controller:  
7.3.5  
INTTREG  
• INTCON1  
• INTCON2  
• IFSx  
The INTTREG register contains the associated  
interrupt vector number and the new CPU interrupt  
priority level, which are latched into vector number  
(VECNUM<6:0>) and Interrupt level (ILR<3:0>) bit  
fields in the INTTREG register. The new interrupt  
priority level is the priority of the pending interrupt.  
• IECx  
• IPCx  
• INTTREG  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the same sequence that they are  
listed in Table 7-1. For example, the INT0 (External  
Interrupt 0) is shown as having vector number 8 and a  
natural order priority of 0. Thus, the INT0IF bit is found  
in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP  
bits in the first position of IPC0 (IPC0<2:0>).  
7.3.1  
INTCON1 AND INTCON2  
Global interrupt control functions are controlled from  
INTCON1 and INTCON2. INTCON1 contains the  
Interrupt Nesting Disable (NSTDIS) bit as well as the  
control and status flags for the processor trap sources.  
The INTCON2 register controls the external interrupt  
request signal behavior and the use of the Alternate  
Interrupt Vector Table.  
7.3.6  
STATUS/CONTROL REGISTERS  
Although they are not specifically part of the interrupt  
control hardware, two of the CPU Control registers  
contain bits that control interrupt functionality.  
7.3.2  
IFSX  
The IFS registers maintain all of the interrupt request  
flags. Each source of interrupt has a status bit, which is  
set by the respective peripherals or external signal and  
is cleared via software.  
• The CPU STATUS register, SR, contains the  
IPL<2:0> bits (SR<7:5>). These bits indicate the  
current CPU interrupt priority level. The user  
software can change the current CPU priority  
level by writing to the IPL bits.  
7.3.3  
IECX  
• The CORCON register contains the IPL3 bit  
which, together with IPL<2:0>, also indicates the  
current CPU priority level. IPL3 is a read-only bit  
so that trap events cannot be masked by the user  
software.  
The IEC registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
All Interrupt registers are described in Register 7-1  
through Register 7-31 in the following pages.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 91  
 
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-1:  
SR: CPU STATUS REGISTER(1)  
R-0  
OA  
R-0  
OB  
R/C-0  
SA  
R/C-0  
SB  
R-0  
R/C-0  
SAB  
R -0  
DA  
R/W-0  
DC  
OAB  
bit 15  
bit 8  
R/W-0  
R/W-0  
IPL<2:0>(2,3)  
R/W-0  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 7  
bit 0  
Legend:  
C = Clear only bit  
S = Set only bit  
‘1’ = Bit is set  
R = Readable bit  
W = Writable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
x = Bit is unknown  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2)  
111= CPU Interrupt Priority Level is 7 (15), user interrupts disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
Note 1: For complete register details, see Register 3-1: “SR: CPU Status Register”.  
2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority  
Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when  
IPL<3> = 1.  
3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
DS70292D-page 92  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-2:  
CORCON: CORE CONTROL REGISTER(1)  
U-0  
U-0  
U-0  
R/W-0  
US  
R/W-0  
EDT  
R-0  
R-0  
R-0  
DL<2:0>  
bit 15  
bit 8  
R/W-0  
SATA  
R/W-0  
SATB  
R/W-1  
R/W-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV  
R/W-0  
RND  
R/W-0  
IF  
SATDW  
ACCSAT  
bit 7  
bit 0  
Legend:  
C = Clear only bit  
W = Writable bit  
‘x = Bit is unknown  
R = Readable bit  
0’ = Bit is cleared  
-n = Value at POR  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
bit 3  
IPL3: CPU Interrupt Priority Level Status bit 3(2)  
1= CPU interrupt priority level is greater than 7  
0= CPU interrupt priority level is 7 or less  
Note 1: For complete register details, see Register 3-2: “CORCON: Core Control Register”.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 93  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
NSTDIS  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OVAERR  
OVBERR  
COVAERR COVBERR  
OVATE  
OVBTE  
COVTE  
bit 8  
R/W-0  
SFTACERR  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
DIV0ERR  
DMACERR MATHERR ADDRERR  
STKERR  
OSCFAIL  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
OVAERR: Accumulator A Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator A  
0= Trap was not caused by overflow of Accumulator A  
OVBERR: Accumulator B Overflow Trap Flag bit  
1= Trap was caused by overflow of Accumulator B  
0= Trap was not caused by overflow of Accumulator B  
COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit  
1= Trap was caused by catastrophic overflow of Accumulator A  
0= Trap was not caused by catastrophic overflow of Accumulator A  
COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit  
1= Trap was caused by catastrophic overflow of Accumulator B  
0= Trap was not caused by catastrophic overflow of Accumulator B  
OVATE: Accumulator A Overflow Trap Enable bit  
1= Trap overflow of Accumulator A  
0= Trap disabled  
OVBTE: Accumulator B Overflow Trap Enable bit  
1= Trap overflow of Accumulator B  
0= Trap disabled  
bit 8  
COVTE: Catastrophic Overflow Trap Enable bit  
1= Trap on catastrophic overflow of Accumulator A or B enabled  
0= Trap disabled  
bit 7  
SFTACERR: Shift Accumulator Error Status bit  
1= Math error trap was caused by an invalid accumulator shift  
0= Math error trap was not caused by an invalid accumulator shift  
bit 6  
DIV0ERR: Arithmetic Error Status bit  
1= Math error trap was caused by a divide by zero  
0= Math error trap was not caused by a divide by zero  
bit 5  
bit 4  
DMACERR: DMA Controller Error Status bit  
1= DMA controller error trap has occurred  
0= DMA controller error trap has not occurred  
MATHERR: Arithmetic Error Status bit  
1= Math error trap has occurred  
0= Math error trap has not occurred  
DS70292D-page 94  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 95  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-4:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-0  
ALTIVT  
bit 15  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DISI  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
INT2EP  
INT1EP  
INT0EP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ALTIVT: Enable Alternate Interrupt Vector Table bit  
1= Use alternate vector table  
0= Use standard (default) vector table  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIinstruction is not active  
bit 13-3  
bit 2  
Unimplemented: Read as ‘0’  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 1  
bit 0  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
DS70292D-page 96  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0  
U-0  
R/W-0  
R/W-0  
AD1IF  
R/W-0  
R/W-0  
R/W-0  
SPI1IF  
R/W-0  
R/W-0  
T3IF  
DMA1IF  
U1TXIF  
U1RXIF  
SPI1EIF  
bit 15  
bit 8  
R/W-0  
T2IF  
R/W-0  
OC2IF  
R/W-0  
IC2IF  
R/W-0  
R/W-0  
T1IF  
R/W-0  
OC1IF  
R/W-0  
IC1IF  
R/W-0  
INT0IF  
DMA0IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
DMA1IF: DMA Channel 1 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
AD1IF: ADC1 Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1TXIF: UART1 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1RXIF: UART1 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1IF: SPI1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1EIF: SPI1 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
T3IF: Timer3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
T2IF: Timer2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
OC2IF: Output Compare Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
IC2IF: Input Capture Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
DMA0IF: DMA Channel 0 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
T1IF: Timer1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 97  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)  
bit 2  
bit 1  
bit 0  
OC1IF: Output Compare Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC1IF: Input Capture Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT0IF: External Interrupt 0 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70292D-page 98  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1  
R/W-0  
U2TXIF  
bit 15  
R/W-0  
R/W-0  
INT2IF  
R/W-0  
T5IF  
R/W-0  
T4IF  
R/W-0  
OC4IF  
R/W-0  
OC3IF  
R/W-0  
U2RXIF  
DMA2IF  
bit 8  
R/W-0  
IC8IF  
R/W-0  
IC7IF  
U-0  
R/W-0  
INT1IF  
R/W-0  
CNIF  
R/W-0  
CMIF  
R/W-0  
R/W-0  
MI2C1IF  
SI2C1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIF: UART2 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U2RXIF: UART2 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT2IF: External Interrupt 2 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T5IF: Timer5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T4IF: Timer4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC4IF: Output Compare Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC3IF: Output Compare Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
DMA2IF: DMA Channel 2 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
IC8IF: Input Capture Channel 8 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
IC7IF: Input Capture Channel 7 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IF: External Interrupt 1 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
CNIF: Input Change Notification Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 99  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)  
bit 2  
bit 1  
bit 0  
CMIF: Comparator Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
MI2C1IF: I2C1 Master Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS70292D-page 100  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-7:  
IFS2: INTERRUPT FLAG STATUS REGISTER 2  
U-0  
R/W-0  
R/W-0  
PMPIF  
U-0  
U-0  
U-0  
U-0  
U-0  
DMA4IF  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
C1IF(1)  
R/W-0  
C1RXIF(1)  
R/W-0  
SPI2IF  
R/W-0  
DMA3IF  
SPI2EIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
DMA4IF: DMA Channel 4 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13  
PMPIF: Parallel Master Port Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
DMA3IF: DMA Channel 3 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
C1IF: ECAN1 Event Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI2IF: SPI2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI2EIF: SPI2 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Note 1: Interrupts disabled on devices without ECAN™ modules.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 101  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-8:  
IFS3: INTERRUPT FLAG STATUS REGISTER 3  
U-0  
R/W-0  
RTCIF  
R/W-0  
R/W-0  
DCIIF  
R/W-0  
U-0  
U-0  
U-0  
DMA5IF  
DCIEIF  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
RTCIF: Real-Time Clock and Calendar Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13  
bit 12  
bit 11  
DMA5IF: DMA Channel 5 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DCIIF: DCI Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DCIEIF: DCI Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 10-0  
Unimplemented: Read as ‘0’  
DS70292D-page 102  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-9:  
IFS4: INTERRUPT FLAG STATUS REGISTER 4  
R/W-0  
DAC1LIF(2)  
R/W-0  
DAC1RIF(2)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
C1TXIF(1)  
R/W-0  
R/W-0  
R/W-0  
CRCIF  
R/W-0  
U2EIF  
R/W-0  
U1EIF  
U-0  
DMA7IF  
DMA6IF  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
DAC1LIF: DAC Left Channel Interrupt Flag Status bit(2)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DAC1RIF: DAC Right Channel Interrupt Flag Status bit(2)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13-7  
bit 6  
Unimplemented: Read as ‘0’  
C1TXIF: ECAN1 Transmit Data Request Interrupt Flag Status bit(1)  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DMA7IF: DMA Channel 7 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DMA6IF: DMA Channel 6 Data Transfer Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
CRCIF: CRC Generator Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U2EIF: UART2 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1EIF: UART1 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
Note 1: Interrupts disabled on devices without ECAN™ modules.  
2: Interrupts disabled on devices without Audio DAC modules.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 103  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0  
U-0  
R/W-0  
R/W-0  
AD1IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3IE  
DMA1IE  
U1TXIE  
U1RXIE  
SPI1IE  
SPI1EIE  
bit 15  
bit 8  
R/W-0  
T2IE  
R/W-0  
OC2IE  
R/W-0  
IC2IE  
R/W-0  
R/W-0  
T1IE  
R/W-0  
OC1IE  
R/W-0  
IC1IE  
R/W-0  
DMA0IE  
INT0IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
DMA1IE: DMA Channel 1 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
AD1IE: ADC1 Conversion Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U1TXIE: UART1 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U1RXIE: UART1 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI1IE: SPI1 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI1EIE: SPI1 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8  
T3IE: Timer3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 7  
T2IE: Timer2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
OC2IE: Output Compare Channel 2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 5  
IC2IE: Input Capture Channel 2 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 4  
DMA0IE: DMA Channel 0 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 3  
T1IE: Timer1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DS70292D-page 104  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)  
bit 2  
bit 1  
bit 0  
OC1IE: Output Compare Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
IC1IE: Input Capture Channel 1 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT0IE: External Interrupt 0 Flag Status bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 105  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T5IE  
R/W-0  
T4IE  
R/W-0  
OC4IE  
R/W-0  
OC3IE  
R/W-0  
U2TXIE  
U2RXIE  
INT2IE  
DMA2IE  
bit 15  
bit 8  
R/W-0  
IC8IE  
R/W-0  
IC7IE  
U-0  
R/W-0  
R/W-0  
CNIE  
R/W-0  
CMIE  
R/W-0  
R/W-0  
INT1IE  
MI2C1IE  
SI2C1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIE: UART2 Transmitter Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U2RXIE: UART2 Receiver Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
INT2IE: External Interrupt 2 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T5IE: Timer5 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
T4IE: Timer4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC4IE: Output Compare Channel 4 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
OC3IE: Output Compare Channel 3 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 8  
DMA2IE: DMA Channel 2 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 7  
IC8IE: Input Capture Channel 8 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 6  
IC7IE: Input Capture Channel 7 Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IE: External Interrupt 1 Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 3  
CNIE: Input Change Notification Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DS70292D-page 106  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)  
bit 2  
bit 1  
bit 0  
CMIE: Comparator Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
MI2C1IE: I2C1 Master Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SI2C1IE: I2C1 Slave Events Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 107  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DMA4IE  
PMPIE  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
C1IE(1)  
R/W-0  
C1RXIE(1)  
R/W-0  
R/W-0  
DMA3IE  
SPI2IE  
SPI2EIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
DMA4IE: DMA Channel 4 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 13  
PMPIE: Parallel Master Port Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
DMA3IE: DMA Channel 3 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request has enabled  
bit 3  
bit 2  
bit 1  
bit 0  
C1IE: ECAN1 Event Interrupt Enable bit(1)  
1= Interrupt request enabled  
0= Interrupt request not enabled  
C1RXIE: ECAN1 Receive Data Ready Interrupt Enable bit(1)  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI2IE: SPI2 Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
SPI2EIE: SPI2 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
Note 1: Interrupts disabled on devices without ECAN™ modules.  
DS70292D-page 108  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3  
U-0  
R/W-0  
RTCIE  
R/W-0  
R/W-0  
DCIIE  
R/W-0  
U-0  
U-0  
U-0  
DMA5IE  
DCIEIE  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
RTCIE: Real-Time Clock and Calendar Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 13  
bit 12  
bit 11  
DMA5IE: DMA Channel 5 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DCIIE: DCI Event Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DCIEIE: DCI Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 10-0  
Unimplemented: Read as ‘0’  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 109  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4  
R/W-0  
DAC1LIE(2)  
bit 15  
R/W-0  
DAC1RIE(2)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 8  
bit 0  
U-0  
R/W-0  
C1TXIE(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U2EIE  
R/W-0  
U1EIE  
U-0  
DMA7IE  
DMA6IE  
CRCIE  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
DAC1LIE: DAC Left Channel Interrupt Enable bit(2)  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DAC1RIE: DAC Right Channel Interrupt Enable bit(2)  
1= Interrupt request enabled  
0= Interrupt request not enabled  
bit 13-7  
bit 6  
Unimplemented: Read as ‘0’  
C1TXIE: ECAN1 Transmit Data Request Interrupt Enable bit(1)  
1= Interrupt request occurred  
0= Interrupt request not occurred  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
DMA7IE: DMA Channel 7 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
DMA6IE: DMA Channel 6 Data Transfer Complete Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
CRCIE: CRC Generator Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U2EIE: UART2 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
U1EIE: UART1 Error Interrupt Enable bit  
1= Interrupt request enabled  
0= Interrupt request not enabled  
Unimplemented: Read as ‘0’  
Note 1: Interrupts disabled on devices without ECAN™ modules.  
2: Interrupts disabled on devices without Audio DAC modules.  
DS70292D-page 110  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
T1IP<2:0>  
OC1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 0  
IC1IP<2:0>  
INT0IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T1IP<2:0>: Timer1 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT0IP<2:0>: External Interrupt 0 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 111  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
T2IP<2:0>  
OC2IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
IC2IP<2:0>  
DMA0IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T2IP<2:0>: Timer2 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA0IP<2:0>: DMA Channel 0 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70292D-page 112  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
U1RXIP<2:0>  
SPI1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 0  
SPI1EIP<2:0>  
T3IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
SPI1IP<2:0>: SPI1 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T3IP<2:0>: Timer3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 113  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
DMA1IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
AD1IP<2:0>  
U1TXIP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
DMA1IP<2:0>: DMA Channel 1 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70292D-page 114  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
CNIP<2:0>  
CMIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 0  
MI2C1IP<2:0>  
SI2C1IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CNIP<2:0>: Change Notification Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
CMIP<2:0>: Comparator Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 115  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
IC8IP<2:0>  
IC7IP<2:0>  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
INT1IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
IC8IP<2:0>: Input Capture Channel 8 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
INT1IP<2:0>: External Interrupt 1 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70292D-page 116  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
T4IP<2:0>  
OC4IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 0  
OC3IP<2:0>  
DMA2IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T4IP<2:0>: Timer4 Interrupt Priority bits  
bit 14-12  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA2IP<2:0>: DMA Channel 2 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 117  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
R/W-0  
U2TXIP<2:0>  
U2RXIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
INT2IP<2:0>  
T5IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U2TXIP<2:0>: UART2 Transmitter Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT2IP<2:0>: External Interrupt 2 Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T5IP<2:0>: Timer5 Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70292D-page 118  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8  
U-0  
R/W-1  
R/W-0  
C1IP<2:0>(1)  
R/W-0  
U-0  
R/W-1  
R/W-0  
C1RXIP<2:0>(1)  
R/W-0  
bit 8  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 0  
SPI2IP<2:0>  
SPI2EIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
C1IP<2:0>: ECAN1 Event Interrupt Priority bits(1)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits(1)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPI2IP<2:0>: SPI2 Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SPI2EIP<2:0>: SPI2 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
Note 1: Interrupts disabled on devices without ECAN™ modules.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 119  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
DMA3IP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
DMA3IP<2:0>: DMA Channel 3 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS70292D-page 120  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-25: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
DMA4IP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
PMPIP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
DMA4IP<2:0>: DMA Channel 4 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
PMPIP<2:0>: Parallel Master Port Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 121  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-26: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
DCIEIP<2:0>  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
DCIEIP<2:0>: DCI Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11-0  
Unimplemented: Read as ‘0’  
DS70292D-page 122  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-27: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
RTCIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 0  
DMA5IP<2:0>  
DCIIP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
RTCIP<2:0>: Real-Time Clock and Calendar Interrupt Flag Status bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
DCIIP<2:0>: DCI Event Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 123  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-28: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
CRCIP<2:0>  
U2EIP<2:0>  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U1EIP<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CRCIP<2:0>: CRC Generator Error Interrupt Flag Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U2EIP<2:0>: UART2 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
U1EIP<2:0>: UART1 Error Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS70292D-page 124  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-29: IPC17: INTERRUPT PRIORITY CONTROL REGISTER 17  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
C1TXIP<2:0>(1)  
R/W-0  
bit 8  
bit 15  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
bit 0  
DMA7IP<2:0>  
DMA6IP<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
C1TXIP<2:0>: ECAN1 Transmit Data Request Interrupt Priority bits(1)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
DMA7IP<2:0>: DMA Channel 7 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
DMA6IP<2:0>: DMA Channel 6 Data Transfer Complete Interrupt Priority bits  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
Note 1: Interrupts disabled on devices without ECAN™ modules.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 125  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-30: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19  
U-0  
R/W-1  
R/W-0  
DAC1LIP<2:0>(1)  
R/W-0  
U-0  
R/W-0  
R/W-0  
DAC1RIP<2:0>(1)  
R/W-0  
bit 8  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
DAC1LIP<2:0>: DAC Left Channel Interrupt Flag Status bit(1)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
DAC1RIP<2:0>: DAC Right Channel Interrupt Flag Status bit(1)  
111= Interrupt is priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: Interrupts disabled on devices without Audio DAC modules.  
DS70292D-page 126  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 7-31: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
ILR<3:0>  
bit 15  
bit 8  
bit 0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
VECNUM<6:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
ILR<3:0>: New CPU Interrupt Priority Level bits  
1111= CPU Interrupt Priority Level is 15  
0001= CPU Interrupt Priority Level is 1  
0000= CPU Interrupt Priority Level is 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
VECNUM<6:0>: Vector Number of Pending Interrupt bits  
0111111= Interrupt Vector pending is number 135  
0000001= Interrupt Vector pending is number 9  
0000000= Interrupt Vector pending is number 8  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 127  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
7.4.3  
TRAP SERVICE ROUTINE  
7.4  
Interrupt Setup Procedures  
A Trap Service Routine (TSR) is coded like an ISR,  
except that the appropriate trap status flag in the  
INTCON1 register must be cleared to avoid re-entry  
into the TSR.  
7.4.1  
INITIALIZATION  
To configure an interrupt source at initialization:  
1. Set the NSTDIS bit (INTCON1<15>) if nested  
interrupts are not desired.  
7.4.4  
INTERRUPT DISABLE  
2. Select the user-assigned priority level for the  
interrupt source by writing the control bits in the  
appropriate IPCx register. The priority level  
depends on the specific application and type of  
interrupt source. If multiple priority levels are not  
desired, the IPCx register control bits for all  
enabled interrupt sources can be programmed  
to the same non-zero value.  
All user interrupts can be disabled using this  
procedure:  
1. Push the current SR value onto the software  
stack using the PUSHinstruction.  
2. Force the CPU to priority level 7 by inclusive  
ORing the value OEh with SRL.  
To enable user interrupts, the POP instruction can be  
Note: At a device Reset, the IPCx registers are  
initialized such that all user interrupt  
sources are assigned to priority level 4.  
used to restore the previous SR value.  
Note:  
Only user interrupts with a priority level of  
7 or lower can be disabled. Trap sources  
(level 8-level 15) cannot be disabled.  
3. Clear the interrupt flag status bit associated with  
the peripheral in the associated IFSx register.  
The DISI instruction provides a convenient way to  
disable interrupts of priority levels 1-6 for a fixed period  
of time. Level 7 interrupt sources are not disabled by  
the DISI instruction.  
4. Enable the interrupt source by setting the inter-  
rupt enable control bit associated with the  
source in the appropriate IECx register.  
7.4.2  
INTERRUPT SERVICE ROUTINE  
The method used to declare an ISR and initialize the  
IVT with the correct vector address depends on the  
programming language (C or assembler) and the  
language development tool suite used to develop the  
application.  
In general, the user application must clear the interrupt  
flag in the appropriate IFSx register for the source of  
interrupt that the ISR handles. Otherwise, the program  
re-enters the ISR immediately after exiting the routine.  
If the ISR is coded in assembly language, it must be  
terminated using a RETFIE instruction to unstack the  
saved PC value, SRL value and old CPU priority level.  
DS70292D-page 128  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
Direct Memory Access (DMA) is a very efficient  
8.0  
DIRECT MEMORY ACCESS  
(DMA)  
mechanism of copying data between peripheral SFRs  
(e.g., UART Receive register, Input Capture 1 buffer),  
and buffers or variables stored in RAM, with minimal  
CPU intervention. The DMA controller can  
automatically copy entire blocks of data without  
requiring the user software to read or write the  
peripheral Special Function Registers (SFRs) every  
time a peripheral interrupt occurs. The DMA controller  
uses a dedicated bus for data transfers and therefore,  
does not steal cycles from the code execution flow of  
the CPU. To exploit the DMA capability, the  
corresponding user buffers or variables must be  
located in DMA RAM.  
Note 1: This data sheet summarizes the features  
of  
the  
dsPIC33FJ32GP302/304,  
and  
dsPIC33FJ64GPX02/X04,  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 38. Direct Memory  
Access (DMA) (Part III)” (DS70215) of  
the “dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 peripherals that  
can utilize DMA are listed in Table 8-1.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
TABLE 8-1:  
DMA CHANNEL TO PERIPHERAL ASSOCIATIONS  
DMAxPAD Register  
Values to Read from  
Peripheral  
DMAxPAD Register  
Values to Write to  
Peripheral  
DMAxREQ Register  
IRQSEL<6:0> Bits  
Peripheral to DMA Association  
INT0 – External Interrupt 0  
IC1 – Input Capture 1  
0000000  
0000001  
0000010  
0000010  
0000101  
0000110  
0000110  
0000111  
0001000  
0001010  
0001011  
0001100  
0001101  
0011110  
0011111  
0100001  
0100010  
0101101  
1000110  
0111100  
1001110  
1001111  
0x0140 (IC1BUF)  
OC1 – Output Compare 1 Data  
OC1 – Output Compare 1 Secondary Data  
IC2 – Input Capture 2  
0x0182 (OC1R)  
0x0180 (OC1RS)  
0x0144 (IC2BUF)  
OC2 – Output Compare 2 Data  
OC2 – Output Compare 2 Secondary Data  
TMR2 – Timer2  
0x0188 (OC2R)  
0x0186 (OC2RS)  
TMR3 – Timer3  
0x0248 (SPI1BUF)  
0x0226 (U1RXREG)  
SPI1 – Transfer Done  
0x0248 (SPI1BUF)  
UART1RX – UART1 Receiver  
UART1TX – UART1 Transmitter  
ADC1 – ADC1 convert done  
UART2RX – UART2 Receiver  
UART2TX – UART2 Transmitter  
SPI2 – Transfer Done  
0x0224 (U1TXREG)  
0x0300 (ADC1BUF0)  
0x0236 (U2RXREG)  
0x0234 (U2TXREG)  
0x0268 (SPI2BUF)  
0x0268 (SPI2BUF)  
0x0440 (C1RXD)  
0x0608 (PMDIN1)  
ECAN1 – RX Data Ready  
PMP – Master Data Transfer  
ECAN1 – TX Data Request  
DCI – Codec Transfer Done  
DAC1 – Right Data Output  
DAC2 – Left Data Output  
0x0608 (PMDIN1)  
0x0442 (C1TXD)  
0x0298 (TXBUF0)  
0x03F6 (DAC1RDAT)  
0x03F8 (DAC1LDAT)  
0x0290 (RXBUF0)  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 129  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
The DMA controller features eight identical data  
transfer channels.  
• Byte or word transfers  
• Fixed priority channel arbitration  
• Manual (software) or Automatic (peripheral DMA  
requests) transfer initiation  
Each channel has its own set of control and status  
registers. Each DMA channel can be configured to  
copy data either from buffers stored in dual port DMA  
RAM to peripheral SFRs, or from peripheral SFRs to  
buffers in DMA RAM.  
• One-Shot or Auto-Repeat block transfer modes  
• Ping-Pong mode (automatic switch between two  
DPSRAM start addresses after each block trans-  
fer complete)  
The DMA controller supports the following features:  
• Eight DMA channels  
• DMA request for each channel can be selected  
from any supported interrupt source  
• Register Indirect With Post-increment Addressing  
mode  
• Debug support features  
For each DMA channel, a DMA interrupt request is  
• Register Indirect Without Post-increment  
Addressing mode  
generated when  
a
block transfer is complete.  
Alternatively, an interrupt can be generated when half of  
the block has been filled.  
• Peripheral Indirect Addressing mode (peripheral  
generates destination address)  
• CPU interrupt after half or full block transfer  
complete  
FIGURE 8-1:  
TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS  
Peripheral Indirect Address  
DMA Controller  
DMA  
Ready  
Peripheral 3  
DMA  
Channels  
DMA RAM  
SRAM  
PORT 1 PORT 2  
CPU DMA  
SRAM X-Bus  
DMA DS Bus  
CPU Peripheral DS Bus  
CPU  
DMA  
CPU DMA  
Non-DMA  
Ready  
Peripheral  
DMA  
Ready  
Peripheral 2  
DMA  
Ready  
Peripheral 1  
CPU  
Note:  
CPU and DMA address buses are not shown for clarity.  
DS70292D-page 130  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
The DMAxCON, DMAxREQ, DMAxPAD and  
8.1  
DMAC Registers  
DMAxCNT are all conventional read/write registers.  
Reads of DMAxSTA or DMAxSTB reads the contents  
of the DMA RAM Address register. Writes to DMAx-  
STA or DMAxSTB write to the registers. This allows  
the user to determine the DMA buffer pointer value  
(address) at any time.  
Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7)  
contains the following registers:  
• A 16-bit DMA Channel Control register  
(DMAxCON)  
• A 16-bit DMA Channel IRQ Select register  
(DMAxREQ)  
The interrupt flags (DMAxIF) are located in an IFSx  
register in the interrupt controller. The corresponding  
interrupt enable control bits (DMAxIE) are located in  
an IECx register in the interrupt controller, and the cor-  
responding interrupt priority control bits (DMAxIP) are  
located in an IPCx register in the interrupt controller.  
• A 16-bit DMA RAM Primary Start Address register  
(DMAxSTA)  
• A 16-bit DMA RAM Secondary Start Address  
register (DMAxSTB)  
• A 16-bit DMA Peripheral Address register  
(DMAxPAD)  
• A 10-bit DMA Transfer Count register (DMAxCNT)  
An additional pair of status registers, DMACS0 and  
DMACS1, are common to all DMAC channels.  
DMACS0 contains the DMA RAM and SFR write colli-  
sion flags, XWCOLx and PWCOLx, respectively.  
DMACS1 indicates DMA channel and Ping-Pong mode  
status.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 131  
 
 
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 8-1:  
DMAxCON: DMA CHANNEL x CONTROL REGISTER  
R/W-0  
CHEN  
R/W-0  
SIZE  
R/W-0  
DIR  
R/W-0  
HALF  
R/W-0  
U-0  
U-0  
U-0  
NULLW  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMODE<1:0>  
MODE<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
CHEN: Channel Enable bit  
1= Channel enabled  
0= Channel disabled  
SIZE: Data Transfer Size bit  
1= Byte  
0= Word  
DIR: Transfer Direction bit (source/destination bus select)  
1= Read from DMA RAM address, write to peripheral address  
0= Read from peripheral address, write to DMA RAM address  
HALF: Early Block Transfer Complete Interrupt Select bit  
1= Initiate block transfer complete interrupt when half of the data has been moved  
0= Initiate block transfer complete interrupt when all of the data has been moved  
NULLW: Null Data Peripheral Write Mode Select bit  
1= Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear)  
0= Normal operation  
bit 10-6  
bit 5-4  
Unimplemented: Read as ‘0’  
AMODE<1:0>: DMA Channel Operating Mode Select bits  
11= Reserved (acts as Peripheral Indirect Addressing mode)  
10= Peripheral Indirect Addressing mode  
01= Register Indirect without Post-Increment mode  
00= Register Indirect with Post-Increment mode  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
MODE<1:0>: DMA Channel Operating Mode Select bits  
11= One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA RAM buffer)  
10= Continuous, Ping-Pong modes enabled  
01= One-Shot, Ping-Pong modes disabled  
00= Continuous, Ping-Pong modes disabled  
DS70292D-page 132  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 8-2:  
DMAxREQ: DMA CHANNEL x IRQ SELECT REGISTER  
R/W-0  
FORCE(1)  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
IRQSEL6<6:0>(2)  
R/W-0  
R/W-0  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
FORCE: Force DMA Transfer bit(1)  
1= Force a single DMA transfer (Manual mode)  
0= Automatic DMA transfer initiation by DMA request  
bit 14-7  
bit 6-0  
Unimplemented: Read as ‘0’  
IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits(2)  
0000000-1111111= DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ  
Note 1: The FORCE bit cannot be cleared by the user. The FORCE bit is cleared by hardware when the forced  
DMA transfer is complete.  
2: Refer to Table 7-1 for a complete listing of IRQ numbers for all interrupt sources.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 133  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 8-3:  
DMAxSTA: DMA CHANNEL x RAM START ADDRESS REGISTER A(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
STA<15:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
STA<7:0>  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
STA<15:0>: Primary DMA RAM Start Address bits (source or destination)  
Note 1: A read of this address register returns the current contents of the DMA RAM Address register, not the  
contents written to STA<15:0>. If the channel is enabled (i.e., active), writes to this register may result in  
unpredictable behavior of the DMA channel and should be avoided.  
REGISTER 8-4:  
DMAxSTB: DMA CHANNEL x RAM START ADDRESS REGISTER B(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
STB<15:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0 R/W-0  
STB<7:0>  
R/W-0  
R/W-0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
STB<15:0>: Secondary DMA RAM Start Address bits (source or destination)  
Note 1: A read of this address register returns the current contents of the DMA RAM Address register, not the con-  
tents written to STB<15:0>. If the channel is enabled (i.e., active), writes to this register may result in  
unpredictable behavior of the DMA channel and should be avoided.  
DS70292D-page 134  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 8-5:  
DMAxPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
PAD<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
PAD<7:0>  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PAD<15:0>: Peripheral Address Register bits  
Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the  
DMA channel and should be avoided.  
REGISTER 8-6:  
DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CNT<9:8>(2)  
bit 15  
bit 8  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
CNT<7:0>(2)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
CNT<9:0>: DMA Transfer Count Register bits(2)  
Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the  
DMA channel and should be avoided.  
2: Number of DMA transfers = CNT<9:0> + 1.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 135  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 8-7:  
DMACS0: DMA CONTROLLER STATUS REGISTER 0  
R/C-0  
PWCOL7  
bit 15  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
PWCOL6  
PWCOL5  
PWCOL4  
PWCOL3  
PWCOL2  
PWCOL1  
PWCOL0  
bit 8  
R/C-0  
XWCOL7  
bit 7  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
XWCOL6  
XWCOL5  
XWCOL4  
XWCOL3  
XWCOL2  
XWCOL1  
XWCOL0  
bit 0  
Legend:  
C = Clear only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
PWCOL7: Channel 7 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL6: Channel 6 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL5: Channel 5 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL4: Channel 4 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL3: Channel 3 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL2: Channel 2 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
PWCOL1: Channel 1 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 8  
PWCOL0: Channel 0 Peripheral Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 7  
XWCOL7: Channel 7 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 6  
XWCOL6: Channel 6 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 5  
XWCOL5: Channel 5 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
bit 4  
XWCOL4: Channel 4 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
DS70292D-page 136  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 8-7:  
DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)  
bit 3  
bit 2  
bit 1  
bit 0  
XWCOL3: Channel 3 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
XWCOL2: Channel 2 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
XWCOL1: Channel 1 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
XWCOL0: Channel 0 DMA RAM Write Collision Flag bit  
1= Write collision detected  
0= No write collision detected  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 137  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 8-8:  
DMACS1: DMA CONTROLLER STATUS REGISTER 1  
U-0  
U-0  
U-0  
U-0  
R-1  
R-1  
R-1  
R-1  
LSTCH<3:0>  
bit 15  
bit 8  
R-0  
PPST7  
bit 7  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
PPST6  
PPST5  
PPST4  
PPST3  
PPST2  
PPST1  
PPST0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
LSTCH<3:0>: Last DMA Channel Active bits  
1111= No DMA transfer has occurred since system Reset  
1110-1000= Reserved  
0111= Last data transfer was by DMA Channel 7  
0110= Last data transfer was by DMA Channel 6  
0101= Last data transfer was by DMA Channel 5  
0100= Last data transfer was by DMA Channel 4  
0011= Last data transfer was by DMA Channel 3  
0010= Last data transfer was by DMA Channel 2  
0001= Last data transfer was by DMA Channel 1  
0000= Last data transfer was by DMA Channel 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PPST7: Channel 7 Ping-Pong Mode Status Flag bit  
1= DMA7STB register selected  
0= DMA7STA register selected  
PPST6: Channel 6 Ping-Pong Mode Status Flag bit  
1= DMA6STB register selected  
0= DMA6STA register selected  
PPST5: Channel 5 Ping-Pong Mode Status Flag bit  
1= DMA5STB register selected  
0= DMA5STA register selected  
PPST4: Channel 4 Ping-Pong Mode Status Flag bit  
1= DMA4STB register selected  
0= DMA4STA register selected  
PPST3: Channel 3 Ping-Pong Mode Status Flag bit  
1= DMA3STB register selected  
0= DMA3STA register selected  
PPST2: Channel 2 Ping-Pong Mode Status Flag bit  
1= DMA2STB register selected  
0= DMA2STA register selected  
PPST1: Channel 1 Ping-Pong Mode Status Flag bit  
1= DMA1STB register selected  
0= DMA1STA register selected  
PPST0: Channel 0 Ping-Pong Mode Status Flag bit  
1= DMA0STB register selected  
0= DMA0STA register selected  
DS70292D-page 138  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 8-9:  
DSADR: MOST RECENT DMA RAM ADDRESS  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
DSADR<15:8>  
bit 15  
R-0  
bit 8  
bit 0  
R-0  
R-0  
R-0  
R-0  
DSADR<7:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 139  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 140  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
• External and internal oscillator options as clock  
sources  
9.0 OSCILLATOR CONFIGURATION  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and  
• An on-chip Phase-Locked Loop (PLL) to scale the  
internal operating frequency to the required sys-  
tem clock frequency  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 39. Oscillator (Part  
III)” (DS70216) of the “dsPIC33F/PIC24H  
Family Reference Manual”, which is avail-  
able from the Microchip website  
(www.microchip.com).  
• An internal FRC oscillator that can also be used  
with the PLL, thereby allowing full-speed  
operation without any external clock generation  
hardware  
• Clock switching between various clock sources  
• Programmable clock postscaler for system power  
savings  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and takes fail-safe measures  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
• A Clock Control register (OSCCON)  
• Non-volatile Configuration bits for main oscillator  
selection  
• An auxiliary crystal oscillator for Audio DAC  
A simplified diagram of the oscillator system is shown  
in Figure 9-1.  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 oscillator system  
provides:  
FIGURE 9-1:  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/  
X04 OSCILLATOR SYSTEM DIAGRAM  
Primary Oscillator  
OSC1  
DOZE<2:0>  
POSCCLK  
XT, HS, EC  
S2  
R(2)  
XTPLL, HSPLL,  
ECPLL, FRCPLL  
S3  
S1  
FCY  
S1/S3  
PLL  
(1)  
OSC2  
FVCO  
POSCMD<1:0>  
÷
2
FRC  
Oscillator  
FRCDIVN  
FRCDIV16  
S7  
S6  
FP  
FOSC  
FRCDIV<2:0>  
TUN<5:0>  
÷ 16  
FRC  
S0  
S5  
LPRC  
Oscillator  
LPRC  
Secondary Oscillator  
SOSC  
SOSCO  
SOSCI  
S4  
LPOSCEN  
Clock Switch  
Reset  
Clock Fail  
S7  
WDT, PWRT,  
NOSC<2:0> FNOSC<2:0>  
FSCM  
Timer1  
POSCCLK  
AOSCCLK  
(1)  
Auxiliary Oscillator  
FVCO  
ACLK  
DAC  
÷ N  
AOSCMD<1:0>  
APSTSCLR<2:0>  
SELACK  
ASRCSEL  
Note 1: See Figure 9-2 for PLL details.  
2: If the Oscillator is used with XT or HS modes, an extended parallel resistor with the value of 1 Mmust be connected.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 141  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
9.1.2  
SYSTEM CLOCK SELECTION  
9.1  
CPU Clocking System  
The oscillator source used at a device Power-on  
Reset event is selected using Configuration bit  
settings. The oscillator Configuration bit settings are  
located in the Configuration registers in the program  
memory. (Refer to Section 27.1 “Configuration  
Bits” for further details.) The Initial Oscillator  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 devices provide  
seven system clock options:  
• Fast RC (FRC) Oscillator  
• FRC Oscillator with Phase Locked Loop (PLL)  
• Primary (XT, HS or EC) Oscillator  
• Primary Oscillator with PLL  
Selection  
(FOSCSEL<2:0>), and the Primary Oscillator Mode  
Select Configuration bits, POSCMD<1:0>  
Configuration  
bits,  
FNOSC<2:0>  
• Secondary (LP) Oscillator  
(FOSC<1:0>), select the oscillator source that is used  
at a Power-on Reset. The FRC primary oscillator is  
the default (unprogrammed) selection.  
• Low-Power RC (LPRC) Oscillator  
• FRC Oscillator with postscaler  
The Configuration bits allow users to choose among 12  
different clock modes, shown in Table 9-1.  
9.1.1  
SYSTEM CLOCK SOURCES  
The Fast RC (FRC) internal oscillator runs at a nominal  
frequency of 7.37 MHz. User software can tune the  
FRC frequency. User software can optionally specify a  
factor (ranging from 1:2 to 1:256) by which the FRC  
clock frequency is divided. This factor is selected using  
the FRCDIV<2:0> (CLKDIV<10:8>) bits.  
The output of the oscillator (or the output of the PLL if  
a PLL mode has been selected) FOSC is divided by 2 to  
generate the device instruction clock (FCY) and  
peripheral clock time base (FP). FCY defines the  
operating speed of the device, and speeds up to 40  
MHz are supported by the dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/  
X04 architecture.  
The primary oscillator can use one of the following as  
its clock source:  
• Crystal (XT): Crystals and ceramic resonators in  
the range of 3 MHz to 10 MHz. The crystal is  
connected to the OSC1 and OSC2 pins.  
Instruction execution speed or device operating  
frequency, FCY, is given by:  
• High-Speed Crystal (HS): Crystals in the range of  
10 MHz to 40 MHz. The crystal is connected to  
the OSC1 and OSC2 pins.  
EQUATION 9-1:  
DEVICE OPERATING  
FREQUENCY  
FCY = FOSC/2  
• External Clock (EC): External clock signal is  
directly applied to the OSC1 pin.  
9.1.3  
AUXILIARY OSCILLATOR  
The secondary (LP) oscillator is designed for low power  
and uses a 32.768 kHz crystal or ceramic resonator.  
The LP oscillator uses the SOSCI and SOSCO pins.  
The Auxiliary Oscillator (AOSC) can be used for periph-  
erals that need to operate at a frequency unrelated to  
the system clock such as a Digital-to-Analog Converter  
(DAC).  
The Low-Power RC (LPRC) internal oscIllator runs at a  
nominal frequency of 32.768 kHz. It is also used as a  
reference clock by the Watchdog Timer (WDT) and  
Fail-Safe Clock Monitor (FSCM).  
The Auxiliary Oscillator can use one of the following as  
its clock source:  
The clock signals generated by the FRC and primary  
oscillators can be optionally applied to an on-chip PLL  
to provide a wide range of output frequencies for device  
operation. PLL configuration is described in  
Section 9.1.4 “PLL Configuration”.  
Crystal (XT): Crystal and ceramic resonators in the  
range of 3 MHz to 10 MHz. The crystal is connected to  
the SOCI and SOSCO pins.  
High-Speed Crystal (HS): Crystals in the range of 10 to  
40 MHz. The crystal is connected to the SOSCI and  
SOSCO pins.  
The FRC frequency depends on the FRC accuracy  
(see Table 30-19) and the value of the FRC Oscillator  
Tuning register (see Register 9-4).  
External Clock (EC): External clock signal up to  
64 MHz. The external clock signal is directly applied to  
SOSCI pin.  
DS70292D-page 142  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
For a primary oscillator or FRC oscillator, output ‘FIN’,  
the PLL output ‘FOSC’ is given by:  
9.1.4  
PLL CONFIGURATION  
The primary oscillator and internal FRC oscillator can  
optionally use an on-chip PLL to obtain higher speeds  
of operation. The PLL provides significant flexibility in  
selecting the device operating speed. A block diagram  
of the PLL is shown in Figure 9-2.  
EQUATION 9-2:  
FOSC CALCULATION  
M
N1 N2  
FOSC = FIN •  
(
)
The output of the primary oscillator or FRC, denoted as  
‘FIN’, is divided down by a prescale factor (N1) of 2, 3,  
... or 33 before being provided to the PLL’s Voltage  
Controlled Oscillator (VCO). The input to the VCO must  
be selected in the range of 0.8 MHz to 8 MHz. The  
prescale factor ‘N1’ is selected using the  
PLLPRE<4:0> bits (CLKDIV<4:0>).  
For example, suppose a 10 MHz crystal is being used  
with the selected oscillator mode of XT with PLL.  
• If PLLPRE<4:0> = 0, then N1 = 2. This yields a  
VCO input of 10/2 = 5 MHz, which is within the  
acceptable range of 0.8-8 MHz.  
• If PLLDIV<8:0> = 0x1E, then M = 32. This yields a  
VCO output of 5 x 32 = 160 MHz, which is within  
the 100-200 MHz ranged needed.  
The PLL Feedback Divisor, selected using the  
PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor ‘M,’  
by which the input to the VCO is multiplied. This factor  
must be selected such that the resulting VCO output  
frequency is in the range of 100 MHz to 200 MHz.  
• If PLLPOST<1:0> = 0, then N2 = 2. This provides  
a Fosc of 160/2 = 80 MHz. The resultant device  
operating speed is 80/2 = 40 MIPS.  
The VCO output is further divided by a postscale factor  
‘N2.’ This factor is selected using the PLLPOST<1:0>  
bits (CLKDIV<7:6>). ‘N2’ can be either 2, 4 or 8, and  
must be selected such that the PLL output frequency  
(FOSC) is in the range of 12.5 MHz to 80 MHz, which  
generates device operating speeds of 6.25-40 MIPS.  
EQUATION 9-3:  
XT WITH PLL MODE  
EXAMPLE  
FOSC  
1
2
10000000 32  
FCY =  
=
= 40 MIPS  
(
)
2
2 2  
FIGURE 9-2:  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/  
X04 PLL BLOCK DIAGRAM  
FVCO  
0.8-8.0 MHz  
Here(1)  
12.5-80 MHz  
Here(1)  
100-200 MHz  
Here(1)  
Source (Crystal, External Clock  
or Internal RC)  
FOSC  
PLLPRE  
X
VCO  
PLLPOST  
PLLDIV  
N1  
Divide by  
2-33  
N2  
Divide by  
2, 4, 8  
M
Divide by  
2-513  
Note 1: This frequency range must be satisfied at all times.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 143  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 9-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator Mode  
Oscillator Source  
POSCMD<1:0>  
FNOSC<2:0>  
Note  
1, 2  
Fast RC Oscillator with Divide-by-N  
(FRCDIVN)  
Internal  
xx  
111  
Internal  
xx  
110  
1
Fast RC Oscillator with Divide-by-16  
(FRCDIV16)  
Low-Power RC Oscillator (LPRC)  
Internal  
Secondary  
Primary  
xx  
xx  
10  
101  
100  
011  
1
1
Secondary (Timer1) Oscillator (SOSC)  
Primary Oscillator (HS) with PLL  
(HSPLL)  
Primary Oscillator (XT) with PLL  
(XTPLL)  
Primary  
Primary  
01  
00  
011  
011  
1
Primary Oscillator (EC) with PLL  
(ECPLL)  
Primary Oscillator (HS)  
Primary  
Primary  
Primary  
Internal  
Internal  
10  
01  
00  
xx  
xx  
010  
010  
010  
001  
000  
1
Primary Oscillator (XT)  
Primary Oscillator (EC)  
Fast RC Oscillator with PLL (FRCPLL)  
Fast RC Oscillator (FRC)  
1
1
Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.  
2: This is the default oscillator mode for an unprogrammed (erased) device.  
DS70292D-page 144  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 9-1:  
OSCCON: OSCILLATOR CONTROL REGISTER(1)  
U-0  
R-0  
R-0  
R-0  
U-0  
R/W-y  
R/W-y  
NOSC<2:0>(2)  
R/W-y  
bit 8  
COSC<2:0>  
bit 15  
R/W-0  
CLKLOCK  
bit 7  
R/W-0  
R-0  
U-0  
R/C-0  
CF  
U-0  
R/W-0  
R/W-0  
IOLOCK  
LOCK  
LPOSCEN  
OSWEN  
bit 0  
Legend:  
y = Value set from Configuration bits on POR  
C = Clear only bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC<2:0>: Current Oscillator Selection bits (read-only)  
000= Fast RC oscillator (FRC)  
001= Fast RC oscillator (FRC) with PLL  
010= Primary oscillator (XT, HS, EC)  
011= Primary oscillator (XT, HS, EC) with PLL  
100= Secondary oscillator (SOSC)  
101= Low-Power RC oscillator (LPRC)  
110= Fast RC oscillator (FRC) with Divide-by-16  
111= Fast RC oscillator (FRC) with Divide-by-n  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
NOSC<2:0>: New Oscillator Selection bits(2)  
000= Fast RC oscillator (FRC)  
001= Fast RC oscillator (FRC) with PLL  
010= Primary oscillator (XT, HS, EC)  
011= Primary oscillator (XT, HS, EC) with PLL  
100= Secondary oscillator (SOSC)  
101= Low-Power RC oscillator (LPRC)  
110= Fast RC oscillator (FRC) with Divide-by-16  
111= Fast RC oscillator (FRC) with Divide-by-n  
bit 7  
CLKLOCK: Clock Lock Enable bit  
If clock switching is enabled and FSCM is disabled, (FOSC<FCKSM> = 0b01)  
1= Clock switching is disabled, system clock source is locked  
0= Clock switching is enabled, system clock source can be modified by clock switching  
bit 6  
bit 5  
IOLOCK: Peripheral Pin Select Lock bit  
1= Peripherial pin select is locked, write to peripheral pin select registers not allowed  
0= Peripherial pin select is not locked, write to peripheral pin select registers allowed  
LOCK: PLL Lock Status bit (read-only)  
1= Indicates that PLL is in lock, or PLL start-up timer is satisfied  
0= Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CF: Clock Fail Detect bit (read/clear by application)  
1= FSCM has detected clock failure  
0= FSCM has not detected clock failure  
Note 1: Writes to this register require an unlock sequence. Refer to Section 39. “Oscillator (Part III)” (DS70216)  
in the “dsPIC33F/PIC24H Family Reference Manual” (available from the Microchip website) for details.  
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.  
This applies to clock switches in either direction. In these instances, the application must switch to FRC mode  
as a transition clock source between the two PLL modes.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 145  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 9-1:  
OSCCON: OSCILLATOR CONTROL REGISTER(1) (CONTINUED)  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
LPOSCEN: Secondary (LP) Oscillator Enable bit  
1= Enable secondary oscillator  
0= Disable secondary oscillator  
bit 0  
OSWEN: Oscillator Switch Enable bit  
1= Request oscillator switch to selection specified by NOSC<2:0> bits  
0= Oscillator switch is complete  
Note 1: Writes to this register require an unlock sequence. Refer to Section 39. “Oscillator (Part III)” (DS70216)  
in the “dsPIC33F/PIC24H Family Reference Manual” (available from the Microchip website) for details.  
2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted.  
This applies to clock switches in either direction. In these instances, the application must switch to FRC mode  
as a transition clock source between the two PLL modes.  
DS70292D-page 146  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 9-2:  
CLKDIV: CLOCK DIVISOR REGISTER  
R/W-0  
ROI  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
DOZEN(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
DOZE<2:0>  
FRCDIV<2:0>  
bit 15  
R/W-0  
R/W-1  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PLLPOST<1:0>  
PLLPRE<4:0>  
bit 7  
bit 0  
Legend:  
y = Value set from Configuration bits on POR  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts clears the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12  
DOZE<2:0>: Processor Clock Reduction Select bits  
000= FCY/1  
001= FCY/2  
010= FCY/4  
011= FCY/8 (default)  
100= FCY/16  
101= FCY/32  
110= FCY/64  
111= FCY/128  
bit 11  
DOZEN: DOZE Mode Enable bit(1)  
1= DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks  
0= Processor clock/peripheral clock ratio forced to 1:1  
bit 10-8  
FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits  
000= FRC divide by 1 (default)  
001= FRC divide by 2  
010= FRC divide by 4  
011= FRC divide by 8  
100= FRC divide by 16  
101= FRC divide by 32  
110= FRC divide by 64  
111= FRC divide by 256  
bit 7-6  
PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as ‘N2’, PLL postscaler)  
00= Output/2  
01= Output/4 (default)  
10= Reserved  
11= Output/8  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
PLLPRE<4:0>: PLL Phase Detector Input Divider bits (also denoted as ‘N1’, PLL prescaler)  
00000= Input/2 (default)  
00001= Input/3  
11111= Input/33  
Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 147  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 9-3:  
PLLFBD: PLL FEEDBACK DIVISOR REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
PLLDIV<8>  
bit 8  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
PLLDIV<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8-0  
Unimplemented: Read as ‘0’  
PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as ‘M’, PLL multiplier)  
000000000= 2  
000000001= 3  
000000010= 4  
000110000= 50 (default)  
111111111= 513  
DS70292D-page 148  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 9-4:  
OSCTUN: FRC OSCILLATOR TUNING REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
TUN<5:0>(1)  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: FRC Oscillator Tuning bits(1)  
011111= Center frequency +11.625% (8.23 MHz)  
011110= Center frequency +11.25% (8.20 MHz)  
000001= Center frequency +0.375% (7.40 MHz)  
000000= Center frequency (7.37 MHz nominal)  
111111= Center frequency -0.375% (7.345 MHz)  
100001= Center frequency -11.625% (6.52 MHz)  
100000= Center frequency -12% (6.49 MHz)  
Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the  
FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither  
characterized nor tested.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 149  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 9-5:  
ACLKCON: AUXILIARY CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
SELACLK  
AOSCMD<1:0>  
APSTSCLR<2:0>  
bit 15  
R/W-0  
ASRCSEL  
bit 7  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
SELACLK: Select Auxiliary Clock Source for Auxiliary Clock Divider  
1= Auxiliary Oscillators provides the source clock for Auxiliary Clock Divider  
0= PLL output (Fvco) provides the source clock for the Auxiliary Clock Divider  
bit 12-11  
bit 10-8  
AOSCMD<1:0>: Auxiliary Oscillator Mode  
11= EC External Clock Mode Select  
10= XT Oscillator Mode Select  
01= HS Oscillator Mode Select  
00= Auxiliary Oscillator Disabled  
APSTSCLR<2:0>: Auxiliary Clock Output Divider  
111= divided by 1  
110= divided by 2  
101= divided by 4  
100= divided by 8  
011= divided by 16  
010= divided by 32  
001= divided by 64  
000= divided by 256 (default)  
bit 7  
ASRCSEL: Select Reference Clock Source for Auxiliary Clock  
1= Primary Oscillator is the Clock Source  
0= Auxiliary Oscillator is the Clock Source  
bit 6-0  
Unimplemented: Read as ‘0’  
DS70292D-page 150  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
2. If a valid clock switch has been initiated, the  
9.2  
Clock Switching Operation  
LOCK  
(OSCCON<5>)  
and  
the  
CF  
Applications are free to switch among any of the four  
clock sources (Primary, LP, FRC and LPRC) under  
software control at any time. To limit the possible side  
effects of this flexibility, dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/  
X04 devices have a safeguard lock built into the switch  
process.  
(OSCCON<3>) status bits are cleared.  
3. The new oscillator is turned on by the hardware  
if it is not currently running. If a crystal oscillator  
must be turned on, the hardware waits until the  
Oscillator Start-up Timer (OST) expires. If the  
new source is using the PLL, the hardware waits  
until a PLL lock is detected (LOCK = 1).  
Note:  
Primary Oscillator mode has three different  
submodes (XT, HS and EC), which are  
determined by the POSCMD<1:0> Config-  
uration bits. While an application can  
switch to and from Primary Oscillator  
mode in software, it cannot switch among  
the different primary submodes without  
reprogramming the device.  
4. The hardware waits for 10 clock cycles from the  
new clock source and then performs the clock  
switch.  
5. The hardware clears the OSWEN bit to indicate a  
successful clock transition. In addition, the NOSC  
bit values are transferred to the COSC status bits.  
6. The old clock source is turned off at this time,  
with the exception of LPRC (if WDT or FSCM  
are enabled) or LP (if LPOSCEN remains set).  
9.2.1  
ENABLING CLOCK SWITCHING  
Note 1: The processor continues to execute code  
throughout the clock switching sequence.  
Timing-sensitive code should not be  
executed during this time.  
To enable clock switching, the FCKSM1 Configuration  
bit in the Configuration register must be programmed to  
0’. (Refer to Section 27.1 “Configuration Bits” for  
further details.) If the FCKSM1 Configuration bit is  
unprogrammed (‘1’), the clock switching function and  
Fail-Safe Clock Monitor function are disabled. This is  
the default setting.  
2: Direct clock switches between any primary  
oscillator mode with PLL and FRCPLL  
mode are not permitted. This applies to  
clock switches in either direction. In these  
instances, the application must switch to  
FRC mode as a transition clock source  
between the two PLL modes.  
3: Refer to Section 39. “Oscillator  
(Part III)” (DS70216) in the “dsPIC33F/  
PIC24H Family Reference Manual” for  
details.  
The NOSC control bits (OSCCON<10:8>) do not  
control the clock selection when clock switching is  
disabled. However, the COSC bits (OSCCON<14:12>)  
reflect the clock source selected by the FNOSC  
Configuration bits.  
The OSWEN control bit (OSCCON<0>) has no effect  
when clock switching is disabled. It is held at ‘0’ at all  
times.  
9.2.2  
OSCILLATOR SWITCHING SEQUENCE  
9.3  
Fail-Safe Clock Monitor (FSCM)  
Performing  
sequence:  
a
clock switch requires this basic  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue to operate even in the event of an oscillator  
failure. The FSCM function is enabled by programming.  
If the FSCM function is enabled, the LPRC internal  
oscillator runs at all times (except during Sleep mode)  
and is not subject to control by the Watchdog Timer.  
1. If  
desired, read the COSC bits  
(OSCCON<14:12>) to determine the current  
oscillator source.  
2. Perform the unlock sequence to allow a write to  
the OSCCON register high byte.  
In the event of an oscillator failure, the FSCM  
generates a clock failure trap event and switches the  
system clock over to the FRC oscillator. Then the  
application program can either attempt to restart the  
oscillator or execute a controlled shutdown. The trap  
can be treated as a warm Reset by simply loading the  
Reset address into the oscillator fail trap vector.  
3. Write the appropriate value to the NOSC control  
bits (OSCCON<10:8>) for the new oscillator  
source.  
4. Perform the unlock sequence to allow a write to  
the OSCCON register low byte.  
5. Set the OSWEN bit (OSCCON<0>) to initiate  
the oscillator switch.  
If the PLL multiplier is used to scale the system clock,  
the internal FRC is also multiplied by the same factor  
on clock failure. Essentially, the device switches to  
FRC with PLL on a clock failure.  
Once the basic sequence is completed, the system  
clock hardware responds automatically as follows:  
1. The clock switching hardware compares the  
COSC status bits with the new value of the  
NOSC control bits. If they are the same, the  
clock switch is a redundant operation. In this  
case, the OSWEN bit is cleared automatically  
and the clock switch is aborted.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 151  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 152  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
10.2 Instruction-Based Power-Saving  
Modes  
10.0 POWER-SAVING FEATURES  
Note 1: This data sheet summarizes the features  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 devices have two  
special power-saving modes that are entered through  
the execution of a special PWRSAV instruction. Sleep  
mode stops clock operation and halts all code  
execution. Idle mode halts the CPU and code  
execution, but allows peripheral modules to continue  
operation. The assembler syntax of the PWRSAV  
instruction is shown in Example 10-1.  
of  
the  
dsPIC33FJ32GP302/304,  
and  
dsPIC33FJ64GPX02/X04,  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 9. Watchdog Timer  
and Power-Saving Modes” (DS70196)  
of the “dsPIC33F/PIC24H Family Refer-  
ence Manual”, which is available from the  
Microchip website (www.microchip.com).  
Note: SLEEP_MODE and IDLE_MODE are  
constants defined in the assembler  
include file for the selected device.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset. When  
the device exits these modes, it is said to wake up.  
10.2.1  
SLEEP MODE  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 devices provide  
the ability to manage power consumption by selectively  
managing clocking to the CPU and the peripherals. In  
general, a lower clock frequency and a reduction in the  
number of circuits being clocked constitutes lower  
The following occur in Sleep mode:  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
• The device current consumption is reduced to a  
minimum, provided that no I/O pin is sourcing  
current.  
consumed  
power.  
dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/  
X04 devices can manage power consumption in four  
ways:  
• The Fail-Safe Clock Monitor does not operate,  
since the system clock source is disabled.  
• The LPRC clock continues to run in Sleep mode if  
the WDT is enabled.  
• Clock frequency  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode.  
• Instruction-based Sleep and Idle modes  
• Software-controlled Doze mode  
• Selective peripheral control in software  
• Some device features or peripherals can continue  
to operate. This includes items such as the input  
change notification on the I/O ports, or peripherals  
that use an external clock input.  
Combinations of these methods can be used to selec-  
tively tailor an application’s power consumption while  
still maintaining critical application features, such as  
timing-sensitive communications.  
• Any peripheral that requires the system clock  
source for its operation is disabled.  
The device wakes up from Sleep mode on any of these  
events:  
10.1 Clock Frequency and Clock  
Switching  
• Any interrupt source that is individually enabled  
• Any form of device Reset  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 devices allow a wide  
range of clock frequencies to be selected under  
application control. If the system clock configuration is  
not locked, users can choose low-power or high-  
precision oscillators by simply changing the NOSC bits  
(OSCCON<10:8>). The process of changing a system  
clock during operation, as well as limitations to the  
process, are discussed in more detail in Section 9.0  
“Oscillator Configuration”.  
• A WDT time-out  
On wake-up from Sleep mode, the processor restarts  
with the same clock source that was active when Sleep  
mode was entered.  
EXAMPLE 10-1:  
PWRSAVINSTRUCTION SYNTAX  
PWRSAV #SLEEP_MODE  
PWRSAV #IDLE_MODE  
; Put the device into SLEEP mode  
; Put the device into IDLE mode  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 153  
 
 
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
Doze mode is enabled by setting the DOZEN bit (CLK-  
DIV<11>). The ratio between peripheral and core clock  
speed is determined by the DOZE<2:0> bits (CLK-  
DIV<14:12>). There are eight possible configurations,  
from 1:1 to 1:128, with 1:1 being the default setting.  
10.2.2  
IDLE MODE  
The following occur in Idle mode:  
• The CPU stops executing instructions.  
• The WDT is automatically cleared.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 10.4  
“Peripheral Module Disable”).  
Programs can use Doze mode to selectively reduce  
power consumption in event-driven applications. This  
allows clock-sensitive functions, such as synchronous  
communications, to continue without interruption while  
the CPU idles, waiting for something to invoke an  
interrupt routine. An automatic return to full-speed CPU  
operation on interrupts can be enabled by setting the  
ROI bit (CLKDIV<15>). By default, interrupt events  
have no effect on Doze mode operation.  
• If the WDT or FSCM is enabled, the LPRC also  
remains active.  
The device wakes from Idle mode on any of these  
events:  
For example, suppose the device is operating at  
20 MIPS and the ECAN module has been configured  
for 500 kbps based on this device operating speed. If  
the device is placed in Doze mode with a clock  
frequency ratio of 1:4, the ECAN module continues to  
communicate at the required bit rate of 500 kbps, but  
the CPU now starts executing instructions at a  
frequency of 5 MIPS.  
• Any interrupt that is individually enabled  
• Any device Reset  
• A WDT time-out  
On wake-up from Idle mode, the clock is reapplied to  
the CPU and instruction execution will begin (2-4 clock  
cycles later), starting with the instruction following the  
PWRSAVinstruction, or the first instruction in the ISR.  
10.2.3  
INTERRUPTS COINCIDENT WITH  
POWER SAVE INSTRUCTIONS  
10.4 Peripheral Module Disable  
The Peripheral Module Disable (PMD) registers  
provide a method to disable a peripheral module by  
stopping all clock sources supplied to that module.  
When a peripheral is disabled using the appropriate  
PMD control bit, the peripheral is in a minimum power  
consumption state. The control and status registers  
associated with the peripheral are also disabled, so  
writes to those registers do not have effect and read  
values are invalid.  
Any interrupt that coincides with the execution of a  
PWRSAV instruction is held off until entry into Sleep or  
Idle mode has completed. The device then wakes up  
from Sleep or Idle mode.  
10.3 Doze Mode  
The preferred strategies for reducing power  
consumption are changing clock speed and invoking  
one of the power-saving modes. In some  
circumstances, this cannot be practical. For example, it  
may be necessary for an application to maintain  
uninterrupted synchronous communication, even while  
it is doing nothing else. Reducing system clock speed  
can introduce communication errors, while using a  
power-saving mode can stop communications  
completely.  
A peripheral module is enabled only if both the  
associated bit in the PMD register is cleared and the  
peripheral is supported by the specific dsPIC® DSC  
variant. If the peripheral is present in the device, it is  
enabled in the PMD register by default.  
Note:  
If a PMD bit is set, the corresponding mod-  
ule is disabled after a delay of one instruc-  
tion cycle. Similarly, if a PMD bit is cleared,  
the corresponding module is enabled after  
a delay of one instruction cycle (assuming  
the module control registers are already  
configured to enable module operation).  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock  
continues to operate from the same source and at the  
same speed. Peripheral modules continue to be  
clocked at the same speed, while the CPU clock speed  
is reduced. Synchronization between the two clock  
domains is maintained, allowing the peripherals to  
access the SFRs while the CPU executes code at a  
slower rate.  
DS70292D-page 154  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1  
R/W-0  
T5MD  
R/W-0  
T4MD  
R/W-0  
T3MD  
R/W-0  
T2MD  
R/W-0  
T1MD  
U-0  
U-0  
R/W-0  
DCIMD  
bit 15  
bit 8  
R/W-0  
R/W-0  
U2MD  
R/W-0  
U1MD  
R/W-0  
R/W-0  
U-0  
R/W-0  
C1MD  
R/W-0  
I2C1MD  
SPI2MD  
SPI1MD  
AD1MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
T5MD: Timer5 Module Disable bit  
1= Timer5 module is disabled  
0= Timer5 module is enabled  
T4MD: Timer4 Module Disable bit  
1= Timer4 module is disabled  
0= Timer4 module is enabled  
T3MD: Timer3 Module Disable bit  
1= Timer3 module is disabled  
0= Timer3 module is enabled  
T2MD: Timer2 Module Disable bit  
1= Timer2 module is disabled  
0= Timer2 module is enabled  
T1MD: Timer1 Module Disable bit  
1= Timer1 module is disabled  
0= Timer1 module is enabled  
bit 10-9  
bit 8  
Unimplemented: Read as ‘0’  
DCIMD: DCI Module Disable bit  
1= DCI module is disabled  
0= DCI module is enabled  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
I2C1MD: I2C1 Module Disable bit  
1= I2C1 module is disabled  
0= I2C1 module is enabled  
U2MD: UART2 Module Disable bit  
1= UART2 module is disabled  
0= UART2 module is enabled  
U1MD: UART1 Module Disable bit  
1= UART1 module is disabled  
0= UART1 module is enabled  
SPI2MD: SPI2 Module Disable bit  
1= SPI2 module is disabled  
0= SPI2 module is enabled  
SPI1MD: SPI1 Module Disable bit  
1= SPI1 module is disabled  
0= SPI1 module is enabled  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
C1MD: ECAN1 Module Disable bit  
1= ECAN1 module is disabled  
0= ECAN1 module is enabled  
bit 0  
AD1MD: ADC1 Module Disable bit  
1= ADC1 module is disabled  
0= ADC1 module is enabled  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 155  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
IC8MD  
IC7MD  
IC2MD  
IC1MD  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
OC4MD  
OC3MD  
OC2MD  
OC1MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
IC8MD: Input Capture 8 Module Disable bit  
1= Input Capture 8 module is disabled  
0= Input Capture 8 module is enabled  
IC7MD: Input Capture 2 Module Disable bit  
1= Input Capture 7 module is disabled  
0= Input Capture 7 module is enabled  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
IC2MD: Input Capture 2 Module Disable bit  
1= Input Capture 2 module is disabled  
0= Input Capture 2 module is enabled  
bit 8  
IC1MD: Input Capture 1 Module Disable bit  
1= Input Capture 1 module is disabled  
0= Input Capture 1 module is enabled  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
OC4MD: Output Compare 4 Module Disable bit  
1= Output Compare 4 module is disabled  
0= Output Compare 4 module is enabled  
bit 2  
bit 1  
bit 0  
OC3MD: Output Compare 3 Module Disable bit  
1= Output Compare 3 module is disabled  
0= Output Compare 3 module is enabled  
OC2MD: Output Compare 2 Module Disable bit  
1= Output Compare 2 module is disabled  
0= Output Compare 2 module is enabled  
OC1MD: Output Compare 1 Module Disable bit  
1= Output Compare 1 module is disabled  
0= Output Compare 1 module is enabled  
DS70292D-page 156  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CMPMD  
RTCCMD  
PMPMD  
bit 15  
bit 8  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
CRCMD  
DAC1MD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10  
Unimplemented: Read as ‘0’  
CMPMD: Comparator Module Disable bit  
1= Comparator module is disabled  
0= Comparator module is enabled  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5-0  
RTCCMD: RTCC Module Disable bit  
1= RTCC module is disabled  
0= RTCC module is enabled  
PMPMD: PMP Module Disable bit  
1= PMP module is disabled  
0= PMP module is enabled  
CRCMD: CRC Module Disable bit  
1= CRC module is disabled  
0= CRC module is enabled  
DAC1MD: DAC1 Module Disable bit  
1= DAC1 module is disabled  
0= DAC1 module is enabled  
Unimplemented: Read as ‘0’  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 157  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 158  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
has ownership of the output data and control signals of  
the I/O pin. The logic also prevents “loop through,” in  
11.0 I/O PORTS  
which a port’s digital output can drive the input of a  
peripheral that shares the same pin. Figure 11-1 shows  
how ports are shared with other peripherals and the  
associated I/O pin to which they are connected.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 10. I/O Ports”  
(DS70193) of the “dsPIC33F/PIC24H  
Family Reference Manual”, which is avail-  
able from the Microchip website  
(www.microchip.com).  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as  
a general purpose output pin is disabled. The I/O pin  
can be read, but the output driver for the parallel port bit  
is disabled. If a peripheral is enabled, but the peripheral  
is not actively driving a pin, that pin can be driven by a  
port.  
All port pins have three registers directly associated  
with their operation as digital I/O. The data direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is a ‘1’, then the pin  
is an input. All port pins are defined as inputs after a  
Reset. Reads from the latch (LATx) read the latch.  
Writes to the latch write the latch. Reads from the port  
(PORTx) read the port pins, while writes to the port pins  
write the latch.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
All of the device pins (except VDD, VSS, MCLR and  
OSC1/CLKI) are shared among the peripherals and the  
parallel I/O ports. All I/O input ports feature Schmitt  
Trigger inputs for improved noise immunity.  
Any bit and its associated data and control registers  
that are not valid for a particular device is disabled.  
This means the corresponding LATx and TRISx  
registers and the port pin are read as zeros.  
11.1 Parallel I/O (PIO) Ports  
When a pin is shared with another peripheral or  
function that is defined as an input only, it is  
nevertheless regarded as a dedicated port because  
there is no other competing source of outputs.  
Generally a parallel I/O port that shares a pin with a  
peripheral is subservient to the peripheral. The  
peripheral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
FIGURE 11-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Output Multiplexers  
Peripheral Module  
Peripheral Input Data  
Peripheral Module Enable  
I/O  
Peripheral Output Enable  
Peripheral Output Data  
1
0
Output Enable  
Output Data  
PIO Module  
1
0
Read TRIS  
Data Bus  
WR TRIS  
D
Q
I/O Pin  
CK  
TRIS Latch  
D
Q
WR LAT +  
WR Port  
CK  
Data Latch  
Read LAT  
Read Port  
Input Data  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 159  
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
11.2 Open-Drain Configuration  
11.4 I/O Port Write/Read Timing  
In addition to the PORT, LAT and TRIS registers for  
data control, some port pins can also be individually  
configured for either digital or open-drain output. This  
is controlled by the Open-Drain Control register,  
ODCx, associated with each port. Setting any of the  
bits configures the corresponding pin to act as an  
open-drain output.  
One instruction cycle is required between a port  
direction change or port write operation and a read  
operation of the same port. Typically this instruction  
would be an NOP, as shown in Example 11-1.  
11.5 Input Change Notification  
The input change notification function of the I/O ports  
The open-drain feature allows the generation of  
outputs higher than VDD (e.g., 5V) on any desired 5V  
tolerant pins by using external pull-up resistors. The  
maximum open-drain voltage allowed is the same as  
the maximum VIH specification.  
allows  
the  
dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/  
X04 devices to generate interrupt requests to the pro-  
cessor in response to a change-of-state on selected  
input pins. This feature can detect input change-of-  
states even in Sleep mode, when the clocks are dis-  
abled. Depending on the device pin count, up to 21  
external signals (CNx pin) can be selected (enabled)  
for generating an interrupt request on a change-of-  
state.  
Refer to “Pin Diagramsfor the available pins and  
their functionality.  
11.3 Configuring Analog Port Pins  
The AD1PCFGL and TRIS registers control the opera-  
tion of the analog-to-digital (A/D) port pins. The port  
pins that are to function as analog inputs must have  
their corresponding TRIS bit set (input). If the TRIS bit  
is cleared (output), the digital output level (VOH or VOL)  
is converted.  
Four control registers are associated with the CN mod-  
ule. The CNEN1 and CNEN2 registers contain the  
interrupt enable control bits for each of the CN input  
pins. Setting any of these bits enables a CN interrupt  
for the corresponding pins.  
Each CN pin also has a weak pull-up connected to it.  
The pull-ups act as a current source connected to the  
pin, and eliminate the need for external resistors when  
push-button or keypad devices are connected. The  
pull-ups are enabled separately using the CNPU1 and  
CNPU2 registers, which contain the control bits for  
each of the CN pins. Setting any of the control bits  
enables the weak pull-ups for the corresponding pins.  
The AD1PCFGL register has a default value of 0x0000;  
therefore, all pins that share ANx functions are analog  
(not digital) by default.  
When the PORT register is read, all pins configured as  
analog input channels are read as cleared (a low level).  
Pins configured as digital inputs do not convert an  
analog input. Analog levels on any pin defined as a  
digital input (including the ANx pins) can cause the  
input buffer to consume current that exceeds the  
device specifications.  
Note:  
Pull-ups on change notification pins  
should always be disabled when the port  
pin is configured as a digital output.  
EXAMPLE 11-1:  
PORT WRITE/READ EXAMPLE  
MOV  
MOV  
NOP  
0xFF00, W0  
W0, TRISBB  
; Configure PORTB<15:8> as inputs  
; and PORTB<7:0> as outputs  
; Delay 1 cycle  
btss PORTB, #13  
; Next Instruction  
DS70292D-page 160  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
11.6.2.1  
Input Mapping  
11.6 Peripheral Pin Select  
The inputs of the peripheral pin select options are  
mapped on the basis of the peripheral. A control  
register associated with a peripheral dictates the pin it  
is mapped to. The RPINRx registers are used to  
configure peripheral input mapping (see Register 11-1  
through Register 11-16). Each register contains sets of  
5-bit fields, with each set associated with one of the  
Peripheral pin select configuration enables peripheral  
set selection and placement on a wide range of I/O  
pins. By increasing the pinout options available on a  
particular device, programmers can better tailor the  
microcontroller to their entire application, rather than  
trimming the application to fit the device.  
The peripheral pin select configuration feature  
operates over a fixed subset of digital I/O pins.  
Programmers can independently map the input and/or  
output of most digital peripherals to any one of these  
I/O pins. Peripheral pin select is performed in  
software, and generally does not require the device to  
be reprogrammed. Hardware safeguards are included  
that prevent accidental or spurious changes to the  
peripheral mapping, once it has been established.  
remappable peripherals. Programming  
a
given  
peripheral’s bit field with an appropriate 5-bit value  
maps the RPn pin with that value to that peripheral.  
For any given device, the valid range of values for any  
bit field corresponds to the maximum number of  
peripheral pin selections supported by the device.  
Figure 11-2 illustrates remappable pin selection for  
U1RX input.  
Note:  
For input mapping only, the Peripheral Pin  
Select (PPS) functionality does not have  
priority over the TRISx settings. Therefore,  
when configuring the RPx pin for input, the  
corresponding bit in the TRISx register  
must also be configured for input (i.e., set  
to ‘1’).  
11.6.1  
AVAILABLE PINS  
The peripheral pin select feature is used with a range  
of up to 26 pins. The number of available pins depends  
on the particular device and its pin count. Pins that  
support the peripheral pin select feature include the  
designation “RPn” in their full pin designation, where  
“RP” designates a remappable peripheral and “n” is the  
remappable pin number.  
FIGURE 11-2:  
REMAPPABLE MUX  
INPUT FOR U1RX  
11.6.2  
CONTROLLING PERIPHERAL PIN  
SELECT  
U1RXR<4:0>  
Peripheral pin select features are controlled through  
two sets of special function registers: one to map  
peripheral inputs, and one to map outputs. Because  
they are separately controlled, a particular peripheral’s  
input and output (if the peripheral has both) can be  
placed on any selectable function pin without  
constraint.  
0
RP0  
RP1  
RP2  
1
U1RX input  
to peripheral  
2
The association of a peripheral to a peripheral select-  
able pin is handled in two different ways, depending on  
whether an input or output is being mapped.  
25  
RP 25  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 161  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)(1)  
Configuration  
Input Name  
Function Name  
Register  
Bits  
External Interrupt 1  
INT1  
INT2  
RPINR0  
RPINR1  
INT1R<4:0>  
INT2R<4:0>  
T2CKR<4:0>  
T3CKR<4:0>  
T4CKR<4:0>  
T5CKR<4:0>  
IC1R<4:0>  
External Interrupt 2  
Timer2 External Clock  
Timer3 External Clock  
Timer4 External Clock  
Timer5 External Clock  
Input Capture 1  
T2CK  
T3CK  
T4CK  
T5CK  
IC1  
RPINR3  
RPINR3  
RPINR4  
RPINR4  
RPINR7  
Input Capture 2  
IC2  
RPINR7  
IC2R<4:0>  
Input Capture 7  
IC7  
RPINR10  
RPINR10  
RPINR11  
RPINR18  
RPINR18  
RPINR19  
RPINR19  
RPINR20  
RPINR20  
RPINR21  
RPINR22  
RPINR22  
RPINR23  
RPINR24  
RPINR24  
RPINR25  
RPINR26  
IC7R<4:0>  
Input Capture 8  
IC8  
IC8R<4:0>  
Output Compare Fault A  
UART1 Receive  
OCFA  
U1RX  
U1CTS  
U2RX  
U2CTS  
SDI1  
SCK1  
SS1  
OCFAR<4:0>  
U1RXR<4:0>  
U1CTSR<4:0>  
U2RXR<4:0>  
U2CTSR<4:0>  
SDI1R<4:0>  
SCK1R<4:0>  
SS1R<4:0>  
SDI2R<4:0>  
SCK2R<4:0>  
SS2R<4:0>  
CSDIR<4:0>  
CSCKR<4:0>  
COFSR<4:0>  
CIRXR<4:0>  
UART1 Clear To Send  
UART2 Receive  
UART2 Clear To Send  
SPI1 Data Input  
SPI1 Clock Input  
SPI1 Slave Select Input  
SPI2 Data Input  
SDI2  
SCK2  
SS2  
SPI2 Clock Input  
SPI2 Slave Select Input  
DCI Serial Data Input  
DCI Serial Clock Input  
DCI Frame Sync Input  
ECAN1 Receive  
CSDI  
CSCK  
COFS  
CIRX  
Note 1: Unless otherwise noted, all inputs use Schmitt input buffers.  
DS70292D-page 162  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
11.6.2.2  
Output Mapping  
FIGURE 11-3:  
MULTIPLEXING OF  
REMAPPABLE OUTPUT  
FOR RPn  
In contrast to inputs, the outputs of the peripheral pin  
select options are mapped on the basis of the pin. In  
this case, a control register associated with a particular  
pin dictates the peripheral output to be mapped. The  
RPORx registers are used to control output mapping.  
Like the RPINRx registers, each register contains sets  
of 5-bit fields, with each set associated with one RPn  
pin (see Register 11-17 through Register 11-29). The  
value of the bit field corresponds to one of the  
peripherals, and that peripheral’s output is mapped to  
the pin (see Table 11-2 and Figure 11-3).  
RPnR<4:0>  
default  
0
3
4
U1TX Output enable  
U1RTS Output enable  
Output Enable  
The list of peripherals for output mapping also includes  
a null value of ‘00000’ because of the mapping  
technique. This permits any given pin to remain  
unconnected from the output of any of the pin  
selectable peripherals.  
OC4 Output  
21  
default  
0
3
4
U1TX Output  
U1RTS Output  
RPn  
Output Data  
OC4 Output  
21  
TABLE 11-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)  
Function  
RPnR<4:0>  
Output Name  
RPn tied to default port pin  
NULL  
C1OUT  
C2OUT  
U1TX  
U1RTS  
U2TX  
U2RTS  
SDO1  
SCK1  
SS1  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10010  
10011  
10100  
10101  
RPn tied to Comparator1 Output  
RPn tied to Comparator2 Output  
RPn tied to UART1 Transmit  
RPn tied to UART1 Ready To Send  
RPn tied to UART2 Transmit  
RPn tied to UART2 Ready To Send  
RPn tied to SPI1 Data Output  
RPn tied to SPI1 Clock Output  
RPn tied to SPI1 Slave Select Output  
RPn tied to SPI2 Data Output  
RPn tied to SPI2 Clock Output  
RPn tied to SPI2 Slave Select Output  
RPn tied to DCI Serial Data Output  
RPn tied to DCI Serial Clock Output  
RPn tied to DCI Frame Sync Output  
RPn tied to ECAN1 Transmit  
SDO2  
SCK2  
SS2  
CSDO  
CSCK  
COFS  
C1TX  
OC1  
RPn tied to Output Compare 1  
RPn tied to Output Compare 2  
RPn tied to Output Compare 3  
RPn tied to Output Compare 4  
OC2  
OC3  
OC4  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 163  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
11.6.3  
CONTROLLING CONFIGURATION  
CHANGES  
11.6.3.2  
Continuous State Monitoring  
In addition to being protected from direct writes, the  
contents of the RPINRx and RPORx registers are  
constantly monitored in hardware by shadow registers.  
If an unexpected change in any of the registers occurs  
(such as cell disturbances caused by ESD or other  
external events), a configuration mismatch Reset is  
triggered.  
Because peripheral remapping can be changed during  
run time, some restrictions on peripheral remapping  
are needed to prevent accidental configuration  
changes. dsPIC33F devices include three features to  
prevent alterations to the peripheral map:  
• Control register lock sequence  
• Continuous state monitoring  
• Configuration bit pin select lock  
11.6.3.3  
Configuration Bit Pin Select Lock  
As an additional level of safety, the device can be  
configured to prevent more than one write session to  
the RPINRx and RPORx registers. The IOL1WAY  
(FOSC<IOL1WAY>) configuration bit blocks the  
IOLOCK bit from being cleared after it has been set  
once. If IOLOCK remains set, the register unlock  
procedure does not execute, and the peripheral pin  
select control registers cannot be written to. The only  
way to clear the bit and re-enable peripheral remapping  
is to perform a device Reset.  
11.6.3.1  
Control Register Lock  
Under normal operation, writes to the RPINRx and  
RPORx registers are not allowed. Attempted writes  
appear to execute normally, but the contents of the reg-  
isters remain unchanged. To change these registers,  
they must be unlocked in hardware. The register lock is  
controlled by the IOLOCK bit (OSCCON<6>). Setting  
IOLOCK prevents writes to the control registers;  
clearing IOLOCK allows writes.  
In the default (unprogrammed) state, IOL1WAY is set,  
restricting users to one write session. Programming  
IOL1WAY allows user applications unlimited access  
(with the proper use of the unlock sequence) to the  
peripheral pin select registers.  
To set or clear IOLOCK, a specific command sequence  
must be executed:  
1. Write 0x46 to OSCCON<7:0>.  
2. Write 0x57 to OSCCON<7:0>.  
3. Clear (or set) IOLOCK as a single operation.  
Note:  
MPLAB® C30 provides built-in C language  
functions for unlocking the OSCCON  
register:  
__builtin_write_OSCCONL(value)  
__builtin_write_OSCCONH(value)  
See MPLAB Help for more information.  
Unlike the similar sequence with the oscillator’s LOCK  
bit, IOLOCK remains in one state until changed. This  
allows all of the peripheral pin selects to be configured  
with a single unlock sequence followed by an update to  
all control registers, then locked with a second lock  
sequence.  
DS70292D-page 164  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
11.7 Peripheral Pin Select Registers  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 family of devices  
implement 33 registers for remappable peripheral  
configuration:  
• 16 Input Remappable Peripheral Registers:  
- RPINR0-RPINR1, RPINR3-RPINR4,  
RPINR7, RPINR10-RPINR11 and  
PRINR18-RPINR26  
• 13 Output Remappable Peripheral Registers:  
- RPOR0-RPOR12  
Note:  
Input and Output Register values can only  
be changed if the IOLOCK bit  
(OSCCON<6>) is set to ‘0’. See  
Section 11.6.3.1 “Control Register  
Lock” for a specific command sequence.  
REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT1R<4:0>  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-0  
Unimplemented: Read as ‘0’  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 165  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
INT2R<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
INT2R<4:0>: Assign External Interrupt 2 (INTR2) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70292D-page 166  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
T3CKR<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 0  
T2CKR<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
T3CKR<4:0>: Assign Timer3 External Clock (T3CK) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
T2CKR<4:0>: Assign Timer2 External Clock (T2CK) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 167  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-4: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
T5CKR<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
T4CKR<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
T5CKR<4:0>: Assign Timer5 External Clock (T5CK) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
T4CKR<4:0>: Assign Timer4 External Clock (T4CK) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70292D-page 168  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-5: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
IC2R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 0  
IC1R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
IC2R<4:0>: Assign Input Capture 2 (IC2) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
IC1R<4:0>: Assign Input Capture 1 (IC1) to the corresponding RPn pin  
11111= Input tied to VSS  
11001 = Input tied to RP25.  
00001= Input tied to RP1  
00000= Input tied to RP0  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 169  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-6: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
IC8R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
IC7R<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
IC8R<4:0>: Assign Input Capture 8 (IC8) to the corresponding pin RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
IC7R<4:0>: Assign Input Capture 7 (IC7) to the corresponding pin RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70292D-page 170  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-7: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 0  
OCFAR<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
OCFAR<4:0>: Assign Output Compare A (OCFA) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 171  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-8: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
U1CTSR<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
U1RXR<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
U1CTSR<4:0>: Assign UART1 Clear to Send (U1CTS) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
U1RXR<4:0>: Assign UART1 Receive (U1RX) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70292D-page 172  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-9: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
U2CTSR<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 0  
U2RXR<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
U2CTSR<4:0>: Assign UART2 Clear to Send (U2CTS) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
U2RXR<4:0>: Assign UART2 Receive (U2RX) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 173  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-10: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
SCK1R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
SDI1R<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
SCK1R<4:0>: Assign SPI1 Clock Input (SCK1) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
SDI1R<4:0>: Assign SPI1 Data Input (SDI1) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70292D-page 174  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-11: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 0  
SS1R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
SS1R<4:0>: Assign SPI1 Slave Select Input (SS1) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 175  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
SCK2R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
SDI2R<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
SCK2R<4:0>: Assign SPI2 Clock Input (SCK2) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
SDI2R<4:0>: Assign SPI2 Data Input (SDI2) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70292D-page 176  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 0  
SS2R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
SS2R<4:0>: Assign SPI2 Slave Select Input (SS2) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 177  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-14: RPINR24: PERIPHERAL PIN SELECT INPUT REGISTER 24  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 8  
R/W-1  
CSCKR<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
CSDIR<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
CSCKR<4:0>: Assign DCI Serial Clock Input (CSCK) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
bit 4-0  
CSDIR<4:0>: Assign DCI Serial Data Input (CSDI) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
DS70292D-page 178  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-15: RPINR25: PERIPHERAL PIN SELECT INPUT REGISTER 25  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
bit 0  
COFSR<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
COFSR<4:0>: Assign DCI Frame Sync Input (COFS) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
REGISTER 11-16: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-1  
bit 0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
C1RXR<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
C1RXR<4:0>: Assign ECAN1Receive (C1RX) to the corresponding RPn pin  
11111= Input tied to VSS  
11001= Input tied to RP25  
00001= Input tied to RP1  
00000= Input tied to RP0  
Note 1: This register is disabled on devices without ECAN™ module.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 179  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-17: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
RP1R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP0R<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP1R<4:0>: Peripheral Output Function is Assigned to RP1 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP0R<4:0>: Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
REGISTER 11-18: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP3R<4:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP2R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP3R<4:0>: Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP2R<4:0>: Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
DS70292D-page 180  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-19: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
RP5R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
RP4R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP5R<4:0>: Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP4R<4:0>: Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
REGISTER 11-20: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
RP7R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
RP6R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP7R<4:0>: Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP6R<4:0>: Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 181  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-21: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
RP9R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP8R<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP9R<4:0>: Peripheral Output Function is Assigned to RP9 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP8R<4:0>: Peripheral Output Function is Assigned to RP8 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
REGISTER 11-22: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP11R<4:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
RP10R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP11R<4:0>: Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP10R<4:0>: Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
DS70292D-page 182  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-23: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
RP13R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
RP12R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP13R<4:0>: Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP12R<4:0>: Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
REGISTER 11-24: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
RP15R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
RP14R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP15R<4:0>: Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP14R<4:0>: Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 183  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-25: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8(1)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
RP17R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP16R<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP17R<4:0>: Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP16R<4:0>: Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
Note 1: This register is implemented in 44-pin devices only.  
REGISTER 11-26: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9(1)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP19R<4:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP18R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP19R<4:0>: Peripheral Output Function is Assigned to RP19 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP18R<4:0>: Peripheral Output Function is Assigned to RP18 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
Note 1: This register is implemented in 44-pin devices only.  
DS70292D-page 184  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-27: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10(1)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
RP21R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
RP20R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP21R<4:0>: Peripheral Output Function is Assigned to RP21 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP20R<4:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
Note 1: This register is implemented in 44-pin devices only.  
REGISTER 11-28: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11(1)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
RP23R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
RP22R<4:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP23R<4:0>: Peripheral Output Function is Assigned to RP23 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP22R<4:0>: Peripheral Output Function is Assigned to RP22 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
Note 1: This register is implemented in 44-pin devices only.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 185  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 11-29: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12(1)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
RP25R<4:0>  
bit 15  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RP24R<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
RP25R<4:0>: Peripheral Output Function is Assigned to RP25 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
RP24R<4:0>: Peripheral Output Function is Assigned to RP24 Output Pin bits (see Table 11-2 for  
peripheral function numbers)  
Note 1: This register is implemented in 44-pin devices only.  
DS70292D-page 186  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
The unique features of Timer1 allow it to be used for  
Real-Time Clock (RTC) applications. A block diagram  
12.0 TIMER1  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and  
of Timer1 is shown in Figure 12-1.  
The Timer1 module can operate in one of the following  
modes:  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 11. Timers” (DS70205)  
of the “dsPIC33F/PIC24H Family Refer-  
ence Manual”, which is available from the  
Microchip website (www.microchip.com).  
• Timer mode  
• Gated Timer mode  
• Synchronous Counter mode  
• Asynchronous Counter mode  
In Timer and Gated Timer modes, the input clock is  
derived from the internal instruction cycle clock (FCY).  
In Synchronous and Asynchronous Counter modes,  
the input clock is derived from the external clock input  
at the T1CK pin.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
The Timer modes are determined by the following bits:  
• Timer Clock Source Control bit (TCS): T1CON<1>  
• Timer Synchronization Control bit (TSYNC):  
T1CON<2>  
The Timer1 module is a 16-bit timer, which can serve  
as the time counter for the real-time clock, or operate  
as a free-running interval timer/counter.  
• Timer Gate Control bit (TGATE): T1CON<6>  
Timer control bit setting for different operating modes  
are given in the Table 12-1.  
The Timer1 module has the following unique features  
over other timers:  
TABLE 12-1: TIMER MODE SETTINGS  
• Can be operated from the low power 32 kHz  
crystal oscillator available on the device  
Mode  
Timer  
TCS  
TGATE  
TSYNC  
• Can be operated in Asynchronous Counter mode  
from an external clock source.  
0
0
1
0
1
x
x
x
1
Gated timer  
• The external clock input (T1CK) can optionally be  
synchronized to the internal device clock and the  
clock synchronization is performed after the  
prescaler.  
Synchronous  
counter  
Asynchronous  
counter  
1
x
0
FIGURE 12-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
Falling Edge  
Gate  
Sync  
1
0
Detect  
Set T1IF flag  
FCY  
10  
Prescaler  
(/n)  
TGATE  
Reset  
Equal  
TMR1  
00  
x1  
TCKPS<1:0>  
1
0
SOSCO/  
T1CK  
Prescaler  
(/n)  
Comparator  
PR1  
Sync  
TGATE  
TCS  
TSYNC  
TCKPS<1:0>  
SOSCI  
LPOSCEN(1)  
Note 1: Refer to Section 9.0 “Oscillator Configuration” for information on enabling the secondary oscillator.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 187  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
TSYNC  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer1 On bit  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When T1CS = 1:  
This bit is ignored.  
When T1CS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11 = 1:256  
10 = 1:64  
01 = 1:8  
00 = 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit  
When TCS = 1:  
1= Synchronize external clock input  
0= Do not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit  
1= External clock from pin T1CK (on the rising edge)  
0= Internal clock (FCY)  
Unimplemented: Read as ‘0’  
DS70292D-page 188  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
• A Type B timer can be concatenated with a Type  
C timer to form a 32-bit timer  
13.0 TIMER2/3 AND TIMER4/5  
FEATURE  
• The external clock input (TxCK) is always  
synchronized to the internal device clock and the  
clock synchronization is performed after the  
prescaler.  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 11. Timers” (DS70205)  
of the “dsPIC33F/PIC24H Family Refer-  
ence Manual”, which is available from the  
Microchip website (www.microchip.com).  
A block diagram of the Type B timer is shown in  
Figure 13-1.  
Timer3 and Timer5 are Type C timers with the following  
specific features:  
• A Type C timer can be concatenated with a Type  
B timer to form a 32-bit timer  
• At least one Type C timer has the ability to trigger  
an A/D conversion.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
• The external clock input (TxCK) is always syn-  
chronized to the internal device clock and the  
clock synchronization is performed before the  
prescaler  
A block diagram of the Type C timer is shown in  
Figure 13-2.  
Timer2 and Timer4 are Type B timers with the following  
specific features:  
FIGURE 13-1:  
TYPE B TIMER BLOCK DIAGRAM (x = 2 or 4)  
Falling Edge  
Detect  
Gate  
Sync  
1
Set TxIF flag  
0
FCY  
10  
Prescaler  
(/n)  
Reset  
00  
x1  
TMRx  
Comparator  
PRx  
TGATE  
TCKPS<1:0>  
Sync  
Prescaler  
(/n)  
Equal  
TxCK  
TCKPS<1:0>  
TGATE  
TCS  
FIGURE 13-2:  
TYPE C TIMER BLOCK DIAGRAM (x = 3 or 5)  
Falling Edge  
Detect  
Gate  
Sync  
1
Set TxIF flag  
0
Prescaler  
(/n)  
10  
00  
x1  
FCY  
Reset  
Equal  
TMRx  
TGATE  
TCKPS<1:0>  
Prescaler  
(/n)  
Sync  
ADC SOC Trigger  
Comparator  
TxCK  
TCKPS<1:0>  
TGATE  
TCS  
PRx  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 189  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
The Timer2/3 and Timer4/5 modules can operate in  
one of the following modes:  
For interrupt control, the combined 32-bit timer uses  
the interrupt enable, interrupt flag and interrupt priority  
control bits of the Type C timer. The interrupt control  
and status bits for the Type B timer are ignored during  
32-bit timer operation.  
• Timer mode  
• Gated Timer mode  
• Synchronous Counter mode  
The Type B and Type C timers that can be combined to  
form a 32-bit timer are listed in Table 13-2.  
In Timer and Gated Timer modes, the input clock is  
derived from the internal instruction cycle clock (FCY).  
In Synchronous Counter mode, the input clock is  
derived from the external clock input at TxCK pin.  
TABLE 13-2: 32-BIT TIMER  
TYPE B Timer (lsw)  
TYPE C Timer (msw)  
The timer modes are determined by the following bits:  
Timer2  
Timer4  
Timer3  
Timer5  
• TCS (TxCON<1>): Timer Clock Source Control bit  
• TGATE (TxCON<6>): Timer Gate Control bit  
Timer control bit settings for different operating modes  
are given in the Table 13-1.  
A block diagram representation of the 32-bit timer mod-  
ule is shown in Figure 13-3. The 32-bit timer module  
can operate in one of the following modes:  
TABLE 13-1: TIMER MODE SETTINGS  
• Timer mode  
• Gated Timer mode  
• Synchronous Counter mode  
Mode  
TCS  
TGATE  
Timer  
0
0
1
0
1
x
To configure the features of Timer2/3 or Timer4/5 for  
32-bit operation:  
Gated timer  
Synchronous coun-  
ter  
1. Set the T32 control bit.  
2. Select the prescaler ratio for Timer2 or Timer4  
using the TCKPS<1:0> bits.  
13.1 16-Bit Operation  
3. Set the Clock and Gating modes using the  
corresponding TCS and TGATE bits.  
To configure any of the timers for individual 16-bit  
operation:  
4. Load the timer period value. PR3 or PR5 con-  
tains the most significant word of the value,  
while PR2 or PR4 contains the least significant  
word.  
1. Clear the T32 bit corresponding to that timer.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
5. If interrupts are required, set the interrupt enable  
bits, T3IE or T5IE. Use the priority bits,  
T3IP<2:0> or T5IP<2:0> to set the interrupt pri-  
ority. While Timer2 or Timer4 controls the timer,  
the interrupt appears as a Timer3 or Timer5  
interrupt.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
4. Load the timer period value into the PRx  
register.  
5. If interrupts are required, set the interrupt enable  
bit, TxIE. Use the priority bits, TxIP<2:0>, to set  
the interrupt priority.  
6. Set the corresponding TON bit.  
The timer value at any point is stored in the register  
pair, TMR3:TMR2 or TMR5:TMR4, which always  
contains the most significant word of the count, while  
TMR2 or TMR4 contains the least significant word.  
6. Set the TON bit.  
Note:  
Only Timer2 and Timer3 can trigger a  
DMA data transfer.  
13.2 32-Bit Operation  
A 32-bit timer module can be formed by combining a  
Type B and a Type C 16-bit timer module. For 32-bit  
timer operation, the T32 control bit in the Type B Timer  
Control (TxCON<3>) register must be set. The Type C  
timer holds the most significant word (msw) and the  
Type B timer holds the least significant word (lsw) for  
32-bit operation.  
When configured for 32-bit operation, only the Type B  
Timer Control (TxCON) register bits are required for  
setup and control. Type C timer control register bits are  
ignored (except TSIDL bit).  
DS70292D-page 190  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 13-3:  
32-BIT TIMER BLOCK DIAGRAM  
Falling Edge  
Detect  
Gate  
Sync  
1
0
Set TyIF  
Flag  
PRy  
PRx  
Equal  
Reset  
Comparator  
TGATE  
Prescaler  
(/n)  
10  
00  
x1  
FCY  
lsw  
TMRx  
msw  
ADC SOC trigger  
TMRy  
TCKPS<1:0>  
Sync  
Prescaler  
(/n)  
TxCK  
TMRyHLD  
TGATE  
TCS  
TCKPS<1:0>  
Data Bus <15:0>  
Note 1: ADC trigger is available only on TMR3:TMR2 and TMR5:TMR2 32-bit timers  
2: Timer x is a Type B Timer (x = 2 and 4)  
3: Timer y is a Type C Timer (y = 3 and 5)  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 191  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 13-1: TxCON: TIMER CONTROL REGISTER (x = 2 or 4, y = 3 or 5)  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32  
U-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS<1:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timerx On bit  
When T32 = 1 (in 32-bit Timer mode):  
1= Starts 32-bit TMRx:TMRy timer pair  
0= Stops 32-bit TMRx:TMRy timer pair  
When T32 = 0 (in 16-bit Timer mode):  
1= Starts 16-bit timer  
0= Stops 16-bit timer  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinue timer operation when device enters Idle mode  
0= Continue timer operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timerx Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
bit 3  
TCKPS<1:0>: Timerx Input Clock Prescale Select bits  
11= 1:256 prescale value  
10= 1:64 prescale value  
01= 1:8 prescale value  
00= 1:1 prescale value  
T32: 32-bit Timerx Mode Select bit  
1= TMRx and TMRy form a 32-bit timer  
0= TMRx and TMRy form separate 16-bit timer  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timerx Clock Source Select bit  
1= External clock from TxCK pin  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
DS70292D-page 192  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 13-2: TxCON: TIMER CONTROL REGISTER (x = 3 OR 5)  
R/W-0  
TON(2)  
U-0  
R/W-0  
TSIDL(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
TGATE(2)  
R/W-0  
TCKPS<1:0>(2)  
R/W-0  
U-0  
U-0  
R/W-0  
TCS(2)  
U-0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timery On bit(2)  
1= Starts 16-bit Timerx  
0= Stops 16-bit Timerx  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit(1)  
1= Discontinue timer operation when device enters Idle mode  
0= Continue timer operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timerx Gated Time Accumulation Enable bit(2)  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation enabled  
0= Gated time accumulation disabled  
bit 5-4  
TCKPS<1:0>: Timerx Input Clock Prescale Select bits(2)  
11= 1:256 prescale value  
10= 1:64 prescale value  
01= 1:8 prescale value  
00= 1:1 prescale value  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timerx Clock Source Select bit(2)  
1= External clock from TxCK pin  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control (TxCON<3>) register, the TSIDL bit  
must be cleared to operate the 32-bit timer in Idle mode.  
2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control (TxCON<3>) register, these bits  
have no effect.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 193  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 194  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
- Capture timer value on every falling edge of  
input at ICx pin  
14.0 INPUT CAPTURE  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and  
- Capture timer value on every rising edge of  
input at ICx pin  
2. Capture timer value on every edge (rising and  
falling)  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 12. Input Capture”  
(DS70198) of the “dsPIC33F/PIC24H  
Family Reference Manual”, which is avail-  
able from the Microchip website  
(www.microchip.com).  
3. Prescaler Capture Event modes:  
- Capture timer value on every 4th rising edge  
of input at ICx pin  
- Capture timer value on every 16th rising  
edge of input at ICx pin  
Each input capture channel can select one of two 16-  
bit timers (Timer2 or Timer3) for the time base. The  
selected timer can use either an internal or external  
clock.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
Other operational features include:  
• Device wake-up from capture pin during CPU  
Sleep and Idle modes  
• Interrupt on input capture event  
The input capture module is useful in applications  
requiring frequency (period) and pulse measurement.  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 devices support  
up to four input capture channels.  
• 4-word FIFO buffer for capture values  
- Interrupt optionally generated after 1, 2, 3 or  
4 buffer locations are filled  
• Use of input capture to provide additional sources  
of external interrupts  
The input capture module captures the 16-bit value of  
the selected Time Base register when an event occurs  
at the ICx pin. The events that cause a capture event  
are listed below in three categories:  
Note:  
Only IC1 and IC2 can trigger a DMA data  
transfer. If DMA data transfers are  
required, the FIFO buffer size must be set  
to ‘1’ (ICI<1:0> = 00)  
1. Simple Capture Event modes:  
FIGURE 14-1:  
INPUT CAPTURE BLOCK DIAGRAM  
ICM<2:0>  
Prescaler Mode  
(16th Rising Edge)  
101  
TMR2 TMR3  
Prescaler Mode  
(4th Rising Edge)  
100  
ICTMR  
Rising Edge Mode  
Falling Edge Mode  
To CPU  
ICx pin  
011  
010  
CaptureEvent  
FIFO CONTROL  
ICxBUF  
FIFO  
Edge Detection  
Mode  
ICI<1:0>  
/N  
ICM<2:0>  
001  
Set Flag ICxIF  
(In IFSx Register)  
Sleep/Idle  
Wake-up Mode  
001  
111  
Note: An ‘x’ in a signal, register or bit name denotes the number of the capture channel.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 195  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
14.1 Input Capture Registers  
REGISTER 14-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER (x = 1, 2, 7 OR 8)  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ICSIDL  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R-0, HC  
ICOV  
R-0, HC  
ICBNE  
R/W-0  
R/W-0  
R/W-0  
bit 0  
ICTMR  
ICI<1:0>  
ICM<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ICSIDL: Input Capture Module Stop in Idle Control bit  
1= Input capture module halts in CPU Idle mode  
0= Input capture module continues to operate in CPU Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
ICTMR: Input Capture Timer Select bits  
1= TMR2 contents are captured on capture event  
0= TMR3 contents are captured on capture event  
bit 6-5  
ICI<1:0>: Select Number of Captures per Interrupt bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture Overflow Status Flag bit (read-only)  
1= Input capture overflow occurred  
0= No input capture overflow occurred  
bit 3  
ICBNE: Input Capture Buffer Empty Status bit (read-only)  
1= Input capture buffer is not empty, at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM<2:0>: Input Capture Mode Select bits  
111= Input capture functions as interrupt pin only when device is in Sleep or Idle mode  
(Rising edge detect only, all other control bits are not applicable.)  
110= Unused (module disabled)  
101= Capture mode, every 16th rising edge  
100= Capture mode, every 4th rising edge  
011= Capture mode, every rising edge  
010= Capture mode, every falling edge  
001= Capture mode, every edge (rising and falling)  
(ICI<1:0> bits do not control interrupt generation for this mode.)  
000= Input capture module turned off  
DS70292D-page 196  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
The Output Compare module can select either Timer2  
or Timer3 for its time base. The module compares the  
15.0 OUTPUT COMPARE  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and  
value of the timer with the value of one or two compare  
registers depending on the operating mode selected.  
The state of the output pin changes when the timer  
value matches the compare register value. The Output  
Compare module generates either a single output  
pulse or a sequence of output pulses, by changing the  
state of the output pin on the compare match events.  
The Output Compare module can also generate inter-  
rupts on compare match events.  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 13. Output Compare”  
(DS70209) of the “dsPIC33F/PIC24H  
Family Reference Manual”, which is avail-  
able from the Microchip website  
(www.microchip.com).  
The Output Compare module has multiple operating  
modes:  
• Active-Low One-Shot mode  
• Active-High One-Shot mode  
Toggle mode  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
• Delayed One-Shot mode  
• Continuous Pulse mode  
• PWM mode without fault protection  
• PWM mode with fault protection  
FIGURE 15-1:  
OUTPUT COMPARE MODULE BLOCK DIAGRAM  
Set Flag bit  
OCxIF  
OCxRS  
OCxR  
Output  
Logic  
S
R
Q
OCx  
Output Enable  
3
OCM<2:0>  
Mode Select  
OCFA  
Comparator  
0
1
0
OCTSEL  
1
16  
16  
TMR2  
Rollover  
TMR3  
Rollover  
TMR3  
TMR2  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 197  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
15.1 Output Compare Modes  
Note 1: Only OC1 and OC2 can trigger a DMA  
data transfer.  
Configure the Output Compare modes by setting the  
appropriate Output Compare Mode (OCM<2:0>) bits in  
the Output Compare Control (OCxCON<2:0>) register.  
Table 15-1 lists the different bit settings for the Output  
Compare modes. Figure 15-2 illustrates the output  
compare operation for various modes. The user appli-  
cation must disable the associated timer when writing  
to the output compare control registers to avoid mal-  
functions.  
2: See Section 13. “Output Compare” in  
the “dsPIC33F/PIC24H Family Reference  
Manual” (DS70209) for OCxR and  
OCxRS register restrictions.  
TABLE 15-1: OUTPUT COMPARE MODES  
OCM<2:0>  
Mode  
Module Disabled  
OCx Pin Initial State  
OCx Interrupt Generation  
000  
001  
010  
011  
100  
101  
110  
Controlled by GPIO register  
Active-Low One-Shot  
Active-High One-Shot  
Toggle Mode  
0
1
OCx Rising edge  
OCx Falling edge  
Current output is maintained OCx Rising and Falling edge  
Delayed One-Shot  
Continuous Pulse mode  
0
0
OCx Falling edge  
OCx Falling edge  
No interrupt  
PWM mode without fault  
protection  
0, if OCxR is zero  
1, if OCxR is non-zero  
111  
PWM mode with fault protection 0, if OCxR is zero  
1, if OCxR is non-zero  
OCFA Falling edge for OC1 to OC4  
FIGURE 15-2:  
OUTPUT COMPARE OPERATION  
Output Compare  
Mode enabled  
Timer is reset on  
period match  
OCxRS  
OCxR  
TMRy  
Active-Low One-Shot  
(OCM = 001)  
Active-High One-Shot  
(OCM = 010)  
Toggle Mode  
(OCM = 011)  
Delayed One-Shot  
(OCM = 100)  
Continuous Pulse Mode  
(OCM = 101)  
PWM Mode  
(OCM = 110or 111)  
DS70292D-page 198  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2, 3 OR 4)  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
OCSIDL  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R-0 HC  
OCFLT  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
OCTSEL  
OCM<2:0>  
bit 7  
Legend:  
HC = Cleared in Hardware  
W = Writable bit  
HS = Set in Hardware  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
OCSIDL: Stop Output Compare in Idle Mode Control bit  
1= Output Compare x halts in CPU Idle mode  
0= Output Compare x continues to operate in CPU Idle mode  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
OCFLT: PWM Fault Condition Status bit  
1= PWM Fault condition has occurred (cleared in hardware only)  
0= No PWM Fault condition has occurred  
(This bit is only used when OCM<2:0> = 111.)  
bit 3  
OCTSEL: Output Compare Timer Select bit  
1= Timer3 is the clock source for Compare x  
0= Timer2 is the clock source for Compare x  
bit 2-0  
OCM<2:0>: Output Compare Mode Select bits  
111= PWM mode on OCx, Fault pin enabled  
110= PWM mode on OCx, Fault pin disabled  
101= Initialize OCx pin low, generate continuous output pulses on OCx pin  
100= Initialize OCx pin low, generate single output pulse on OCx pin  
011= Compare event toggles OCx pin  
010= Initialize OCx pin high, compare event forces OCx pin low  
001= Initialize OCx pin low, compare event forces OCx pin high  
000= Output compare channel is disabled  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 199  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 200  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
The Serial Peripheral Interface (SPI) module is a syn-  
16.0 SERIAL PERIPHERAL  
chronous serial interface useful for communicating with  
INTERFACE (SPI)  
other peripheral or microcontroller devices. These  
peripheral devices can be serial EEPROMs, shift regis-  
ters, display drivers, analog-to-digital converters, etc.  
Note 1: This data sheet summarizes the features  
of  
the  
dsPIC33FJ32GP302/304,  
and  
The SPI module is compatible with SPI and SIOP from  
dsPIC33FJ64GPX02/X04,  
Motorola®.  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 18. Serial Peripheral  
Interface (SPI)” (DS70206) of the  
dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
Each SPI module consists of a 16-bit shift register,  
SPIxSR (where x = 1 or 2), used for shifting data in and  
out, and a buffer register, SPIxBUF. A control register,  
SPIxCON, configures the module. Additionally, a status  
register, SPIxSTAT, indicates status conditions.  
The serial interface consists of 4 pins:  
• SDIx (serial data input)  
• SDOx (serial data output)  
• SCKx (shift clock input or output)  
• SSx (active-low slave select).  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
In Master mode operation, SCK is a clock output. In  
Slave mode, it is a clock input.  
FIGURE 16-1:  
SPI MODULE BLOCK DIAGRAM  
SCKx  
SSx  
1:1 to 1:8  
Secondary  
Prescaler  
1:1/4/16/64  
Primary  
Prescaler  
FCY  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Shift Control  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
SPIxRXB SPIxTXB  
SPIxBUF  
Write SPIxBUF  
Read SPIxBUF  
16  
Internal Data Bus  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 201  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 16-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER  
R/W-0  
SPIEN  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
SPISIDL  
bit 15  
bit 8  
U-0  
R/C-0  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
SPIROV  
SPITBF  
SPIRBF  
bit 0  
bit 7  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SPIEN: SPIx Enable bit  
1= Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
SPIROV: Receive Overflow Flag bit  
1= A new byte/word is completely received and discarded. The user software has not read the  
previous data in the SPIxBUF register  
0= No overflow has occurred  
bit 5-2  
bit 1  
Unimplemented: Read as ‘0’  
SPITBF: SPIx Transmit Buffer Full Status bit  
1= Transmit not yet started, SPIxTXB is full  
0= Transmit started, SPIxTXB is empty  
Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB.  
Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.  
bit 0  
SPIRBF: SPIx Receive Buffer Full Status bit  
1= Receive complete, SPIxRXB is full  
0= Receive is not complete, SPIxRXB is empty  
Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB.  
Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB.  
DS70292D-page 202  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 16-2: SPIXCON1: SPIx CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE(1)  
DISSCK  
DISSDO  
MODE16  
bit 15  
bit 8  
R/W-0  
SSEN(3)  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
SPRE<2:0>(2)  
R/W-0  
R/W-0  
R/W-0  
MSTEN  
PPRE<1:0>(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
DISSCK: Disable SCKx pin bit (SPI Master modes only)  
1= Internal SPI clock is disabled, pin functions as I/O  
0= Internal SPI clock is enabled  
bit 11  
bit 10  
bit 9  
DISSDO: Disable SDOx pin bit  
1= SDOx pin is not used by module; pin functions as I/O  
0= SDOx pin is controlled by the module  
MODE16: Word/Byte Communication Select bit  
1= Communication is word-wide (16 bits)  
0= Communication is byte-wide (8 bits)  
SMP: SPIx Data Input Sample Phase bit  
Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
Slave mode:  
SMP must be cleared when SPIx is used in Slave mode.  
bit 8  
bit 7  
bit 6  
bit 5  
CKE: SPIx Clock Edge Select bit(1)  
1= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)  
0= Serial output data changes on transition from Idle clock state to active clock state (see bit 6)  
SSEN: Slave Select Enable bit (Slave mode)(3)  
1= SSx pin used for Slave mode  
0= SSx pin not used by module. Pin controlled by port function  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level; active state is a low level  
0= Idle state for clock is a low level; active state is a high level  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ‘0’ for the Framed SPI modes  
(FRMEN = 1).  
2: Do not set both Primary and Secondary prescalers to the value of 1:1.  
3: This bit must be cleared when FRMEN = 1.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 203  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 16-2: SPIXCON1: SPIx CONTROL REGISTER 1 (CONTINUED)  
bit 4-2  
SPRE<2:0>: Secondary Prescale bits (Master mode)(2)  
111= Secondary prescale 1:1  
110= Secondary prescale 2:1  
000= Secondary prescale 8:1  
bit 1-0  
PPRE<1:0>: Primary Prescale bits (Master mode)(2)  
11= Primary prescale 1:1  
10= Primary prescale 4:1  
01= Primary prescale 16:1  
00= Primary prescale 64:1  
Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to ‘0’ for the Framed SPI modes  
(FRMEN = 1).  
2: Do not set both Primary and Secondary prescalers to the value of 1:1.  
3: This bit must be cleared when FRMEN = 1.  
DS70292D-page 204  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRMEN  
SPIFSD  
FRMPOL  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
U-0  
FRMDLY  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
FRMEN: Framed SPIx Support bit  
1= Framed SPIx support enabled (SSx pin used as frame sync pulse input/output)  
0= Framed SPIx support disabled  
SPIFSD: Frame Sync Pulse Direction Control bit  
1= Frame sync pulse input (slave)  
0= Frame sync pulse output (master)  
FRMPOL: Frame Sync Pulse Polarity bit  
1= Frame sync pulse is active-high  
0= Frame sync pulse is active-low  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
FRMDLY: Frame Sync Pulse Edge Select bit  
1= Frame sync pulse coincides with first bit clock  
0= Frame sync pulse precedes first bit clock  
bit 0  
Unimplemented: Read as ‘0’  
This bit must not be set to ‘1’ by the user application.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 205  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 206  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
17.1 Operating Modes  
17.0 INTER-INTEGRATED  
2
CIRCUIT™ (I C™)  
The hardware fully implements all the master and slave  
functions of the I2C Standard and Fast mode  
specifications, as well as 7 and 10-bit addressing.  
The I2C module can operate either as a slave or a  
master on an I2C bus.  
Note 1: This data sheet summarizes the features  
of  
the  
dsPIC33FJ32GP302/304,  
and  
dsPIC33FJ64GPX02/X04,  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 19. Inter-Integrated  
Circuit™ (I2C™)” (DS70195) of the  
dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
The following types of I2C operation are supported:  
• I2C slave operation with 7-bit address  
• I2C slave operation with 10-bit address  
• I2C master operation with 7- or 10-bit address  
For details about the communication sequence in each  
of these modes, refer to the “dsPIC33F/PIC24H Family  
Reference Manual”. Please see the Microchip website  
(www.microchip.com) for the latest dsPIC33F Family  
Reference Manual chapters.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
2
17.2 I C Registers  
I2CxCON and I2CxSTAT are control and status  
registers, respectively. The I2CxCON register is  
readable and writable. The lower six bits of I2CxSTAT  
are read-only. The remaining bits of the I2CSTAT are  
read/write:  
The Inter-Integrated Circuit (I2C) module provides  
complete hardware support for both Slave and Multi-  
Master modes of the I2C serial communication  
standard, with a 16-bit interface.  
• I2CxRSR is the shift register used for shifting data  
internal to the module and the user application  
has no access to it.  
The I2C module has a 2-pin interface:  
• The SCLx pin is clock.  
• The SDAx pin is data.  
The I2C module offers the following key features:  
• I2C interface supporting both Master and Slave  
modes of operation.  
• I2C Slave mode supports 7 and 10-bit address.  
• I2C Master mode supports 7 and 10-bit address.  
• I2C Port allows bidirectional transfers between  
master and slaves.  
• Serial clock synchronization for I2C port can be  
used as a handshake mechanism to suspend and  
resume serial transfer (SCLREL control).  
• I2C supports multi-master operation, detects bus  
collision and arbitrates accordingly.  
• I2CxRCV is the receive buffer and the register to  
which data bytes are written, or from which data  
bytes are read.  
• I2CxTRN is the transmit register to which bytes  
are written during a transmit operation.  
• The I2CxADD register holds the slave address.  
• A status bit, ADD10, indicates 10-bit Address  
mode.  
• The I2CxBRG acts as the Baud Rate Generator  
(BRG) reload value.  
In receive operations, I2CxRSR and I2CxRCV together  
form a double-buffered receiver. When I2CxRSR  
receives a complete byte, it is transferred to I2CxRCV,  
and an interrupt pulse is generated.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 207  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 17-1:  
I2C™ BLOCK DIAGRAM (X = 1)  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx  
SDAx  
I2CxRSR  
LSb  
Address Match  
Write  
Read  
Match Detect  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
I2CxCON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2CxTRN  
LSb  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
TCY/2  
I2CxBRG  
DS70292D-page 208  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER  
R/W-0  
I2CEN  
U-0  
R/W-0  
R/W-1 HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0 HC  
ACKEN  
R/W-0 HC  
RCEN  
R/W-0 HC  
PEN  
R/W-0 HC  
RSEN  
R/W-0 HC  
SEN  
STREN  
ACKDT  
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in hardware  
‘0’ = Bit is cleared  
HC = Cleared in hardware  
x = Bit is unknown  
bit 15  
I2CEN: I2Cx Enable bit  
1= Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins  
0= Disables the I2Cx module. All I2C™ pins are controlled by port functions  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters an Idle mode  
0= Continue module operation in Idle mode  
bit 12  
SCLREL: SCLx Release Control bit (when operating as I2C slave)  
1= Release SCLx clock  
0= Hold SCLx clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software can write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware clear  
at beginning of slave transmission. Hardware clear at end of slave reception.  
If STREN = 0:  
Bit is R/S (i.e., software can only write ‘1’ to release clock). Hardware clear at beginning of slave  
transmission.  
bit 11  
bit 10  
bit 9  
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit  
1= IPMI mode is enabled; all addresses Acknowledged  
0= IPMI mode disabled  
A10M: 10-bit Slave Address bit  
1= I2CxADD is a 10-bit slave address  
0= I2CxADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control disabled  
0= Slew rate control enabled  
bit 8  
SMEN: SMbus Input Levels bit  
1= Enable I/O pin thresholds compliant with SMbus specification  
0= Disable SMbus input thresholds  
bit 7  
GCEN: General Call Enable bit (when operating as I2C slave)  
1= Enable interrupt when a general call address is received in the I2CxRSR  
(module is enabled for reception)  
0= General call address disabled  
bit 6  
STREN: SCLx Clock Stretch Enable bit (when operating as I2C slave)  
Used in conjunction with SCLREL bit.  
1= Enable software or receive clock stretching  
0= Disable software or receive clock stretching  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 209  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
ACKDT: Acknowledge Data bit (when operating as I2C master, applicable during master receive)  
Value that is transmitted when the software initiates an Acknowledge sequence.  
1= Send NACK during Acknowledge  
0= Send ACK during Acknowledge  
ACKEN: Acknowledge Sequence Enable bit  
(when operating as I2C master, applicable during master receive)  
1= Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit.  
Hardware clear at end of master Acknowledge sequence  
0= Acknowledge sequence not in progress  
bit 3  
bit 2  
bit 1  
RCEN: Receive Enable bit (when operating as I2C master)  
1= Enables Receive mode for I2C. Hardware clear at end of eighth bit of master receive data byte  
0= Receive sequence not in progress  
PEN: Stop Condition Enable bit (when operating as I2C master)  
1= Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence  
0= Stop condition not in progress  
RSEN: Repeated Start Condition Enable bit (when operating as I2C master)  
1= Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of  
master Repeated Start sequence  
0= Repeated Start condition not in progress  
bit 0  
SEN: Start Condition Enable bit (when operating as I2C master)  
1= Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence  
0= Start condition not in progress  
DS70292D-page 210  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER  
R-0 HSC  
R-0 HSC  
TRSTAT  
U-0  
U-0  
U-0  
R/C-0 HS  
BCL  
R-0 HSC  
GCSTAT  
R-0 HSC  
ADD10  
ACKSTAT  
bit 15  
bit 8  
R/C-0 HS  
IWCOL  
R/C-0 HS  
I2COV  
R-0 HSC  
D_A  
R/C-0 HSC R/C-0 HSC  
R-0 HSC  
R_W  
R-0 HSC  
RBF  
R-0 HSC  
TBF  
P
S
bit 7  
bit 0  
Legend:  
U = Unimplemented bit, read as ‘0’  
C = Clear only bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
HS = Set in hardware  
‘0’ = Bit is cleared  
HSC = Hardware set/cleared  
x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
ACKSTAT: Acknowledge Status bit  
(when operating as I2C™ master, applicable to master transmit operation)  
1= NACK received from slave  
0= ACK received from slave  
Hardware set or clear at end of slave Acknowledge.  
TRSTAT: Transmit Status bit (when operating as I2C master, applicable to master transmit operation)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.  
bit 13-11  
bit 10  
Unimplemented: Read as ‘0’  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during a master operation  
0= No collision  
Hardware set at detection of bus collision.  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware set when address matches general call address. Hardware clear at Stop detection.  
ADD10: 10-Bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.  
IWCOL: Write Collision Detect bit  
1= An attempt to write the I2CxTRN register failed because the I2C module is busy  
0= No collision  
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2CxRCV register is still holding the previous byte  
0= No overflow  
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).  
D_A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was device address  
Hardware clear at device address match. Hardware set by reception of slave byte.  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 211  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)  
bit 3  
bit 2  
bit 1  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware set or clear when Start, Repeated Start or Stop detected.  
R_W: Read/Write Information bit (when operating as I2C slave)  
1= Read – indicates data transfer is output from slave  
0= Write – indicates data transfer is input to slave  
Hardware set or clear after reception of I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive complete, I2CxRCV is full  
0= Receive not complete, I2CxRCV is empty  
Hardware set when I2CxRCV is written with received byte. Hardware clear when software  
reads I2CxRCV.  
bit 0  
TBF: Transmit Buffer Full Status bit  
1= Transmit in progress, I2CxTRN is full  
0= Transmit complete, I2CxTRN is empty  
Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.  
DS70292D-page 212  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK9  
AMSK8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AMSK7  
AMSK6  
AMSK5  
AMSK4  
AMSK3  
AMSK2  
AMSK1  
AMSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
AMSKx: Mask for Address Bit x Select bit  
1= Enable masking for bit x of incoming message address; bit match not required in this position  
0= Disable masking for bit x; bit match required in this position  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 213  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 214  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
The primary features of the UART module are:  
18.0 UNIVERSAL ASYNCHRONOUS  
• Full-Duplex, 8- or 9-bit Data Transmission through  
the UxTX and UxRX pins  
RECEIVER TRANSMITTER  
(UART)  
• Even, Odd or No Parity Options (for 8-bit data)  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and  
• One or two stop bits  
• Hardware flow control option with UxCTS and  
UxRTS pins  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 17. UART” (DS70188)  
of the “dsPIC33F/PIC24H Family Refer-  
ence Manual”, which is available from the  
Microchip website (www.microchip.com).  
• Fully integrated Baud Rate Generator with 16-bit  
prescaler  
• Baud rates ranging from 10 Mbps to 38 bps at 40  
MIPS  
• 4-deep First-In First-Out (FIFO) Transmit Data  
buffer  
• 4-deep FIFO Receive Data buffer  
• Parity, framing and buffer overrun error detection  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
• Support for 9-bit mode with Address Detect  
(9th bit = 1)  
• Transmit and Receive interrupts  
• A separate interrupt for all UART error conditions  
• Loopback mode for diagnostic support  
• Support for sync and break characters  
• Support for automatic baud rate detection  
• IrDA® encoder and decoder logic  
The Universal Asynchronous Receiver Transmitter  
(UART) module is one of the serial I/O modules  
available  
dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/  
X04 device family. The UART is full-duplex  
in  
the  
dsPIC33FJ32GP302/304,  
• 16x baud clock output for IrDA® support  
a
asynchronous system that can communicate with  
peripheral devices, such as personal computers, LIN,  
RS-232 and RS-485 interfaces. The module also  
supports a hardware flow control option with the  
UxCTS and UxRTS pins and also includes an IrDA®  
encoder and decoder.  
A simplified block diagram of the UART module is  
shown in Figure 18-1. The UART module consists of  
these key hardware elements:  
• Baud Rate Generator  
• Asynchronous Transmitter  
• Asynchronous Receiver  
FIGURE 18-1:  
UART SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
IrDA®  
BCLK  
Hardware Flow Control  
UART Receiver  
UxRTS  
UxCTS  
UxRX  
UxTX  
UART Transmitter  
Note 1: Both UART1 and UART2 can trigger a DMA data transfer.  
2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word  
(i.e., UTXISEL<1:0> = 00and URXISEL<1:0> = 00).  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 215  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 18-1: UxMODE: UARTx MODE REGISTER  
R/W-0  
UARTEN(1)  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN(2)  
R/W-0  
U-0  
R/W-0  
R/W-0  
RTSMD  
UEN<1:0>  
bit 15  
bit 8  
R/W-0 HC  
WAKE  
R/W-0  
R/W-0 HC  
ABAUD  
R/W-0  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
LPBACK  
URXINV  
PDSEL<1:0>  
STSEL  
bit 7  
bit 0  
Legend:  
HC = Hardware cleared  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
UARTEN: UARTx Enable bit(1)  
1= UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>  
0= UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption  
minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA® Encoder and Decoder Enable bit(2)  
1= IrDA® encoder and decoder enabled  
0= IrDA® encoder and decoder disabled  
RTSMD: Mode Selection for UxRTS Pin bit  
1= UxRTS pin in Simplex mode  
0= UxRTS pin in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
UEN<1:0>: UARTx Enable bits  
bit 9-8  
11= UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches  
10= UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01= UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches  
00= UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by  
port latches  
bit 7  
WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit  
1= UARTx continues to sample the UxRX pin; interrupt generated on falling edge; bit cleared  
in hardware on following rising edge  
0= No wake-up enabled  
bit 6  
bit 5  
LPBACK: UARTx Loopback Mode Select bit  
1= Enable Loopback mode  
0= Loopback mode is disabled  
ABAUD: Auto-Baud Enable bit  
1= Enable baud rate measurement on the next character – requires reception of a Sync field (55h)  
before other data; cleared in hardware upon completion  
0= Baud rate measurement disabled or completed  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for infor-  
mation on enabling the UART module for receive or transmit operation.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
DS70292D-page 216  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 18-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
bit 4  
URXINV: Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
bit 3  
BRGH: High Baud Rate Enable bit  
1= BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)  
0= BRG generates 16 clocks per bit period (16x baud clock, Standard mode)  
bit 2-1  
PDSEL<1:0>: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit  
1= Two Stop bits  
0= One Stop bit  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for infor-  
mation on enabling the UART module for receive or transmit operation.  
2: This feature is only available for the 16x BRG mode (BRGH = 0).  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 217  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0 HC  
UTXBRK  
R/W-0  
UTXEN(1)  
R-0  
R-1  
UTXISEL1  
UTXINV  
UTXISEL0  
UTXBF  
TRMT  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R-1  
R-0  
R-0  
R/C-0  
R-0  
URXISEL<1:0>  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA  
bit 7  
bit 0  
Legend:  
HC = Hardware cleared  
W = Writable bit  
C = Clear only bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15,13  
UTXISEL<1:0>: Transmission Interrupt Mode Selection bits  
11= Reserved; do not use  
10= Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the  
transmit buffer becomes empty  
01= Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit  
operations are completed  
00= Interrupt when a character is transferred to the Transmit Shift Register (this implies there is  
at least one character open in the transmit buffer)  
bit 14  
UTXINV: Transmit Polarity Inversion bit  
If IREN = 0:  
1= UxTX Idle state is ‘0’  
0= UxTX Idle state is ‘1’  
If IREN = 1:  
1= IrDA® encoded UxTX Idle state is ‘1’  
0= IrDA® encoded UxTX Idle state is ‘0’  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: Transmit Break bit  
1= Send Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;  
cleared by hardware upon completion  
0= Sync Break transmission disabled or completed  
bit 10  
UTXEN: Transmit Enable bit(1)  
1= Transmit enabled, UxTX pin controlled by UARTx  
0= Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled  
by port  
bit 9  
UTXBF: Transmit Buffer Full Status bit (read-only)  
1= Transmit buffer is full  
0= Transmit buffer is not full, at least one more character can be written  
bit 8  
TRMT: Transmit Shift Register Empty bit (read-only)  
1= Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift Register is not empty, a transmission is in progress or queued  
bit 7-6  
URXISEL<1:0>: Receive Interrupt Mode Selection bits  
11= Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters)  
10= Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters)  
0x= Interrupt is set when any character is received and transferred from the UxRSR to the receive  
buffer. Receive buffer has one or more characters.  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for infor-  
mation on enabling the UART module for transmit operation.  
DS70292D-page 218  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
bit 3  
bit 2  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)  
1= Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect  
0= Address Detect mode disabled  
RIDLE: Receiver Idle bit (read-only)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (read-only)  
1= Parity error has been detected for the current character (character at the top of the receive FIFO)  
0= Parity error has not been detected  
FERR: Framing Error Status bit (read-only)  
1= Framing error has been detected for the current character (character at the top of the receive  
FIFO)  
0= Framing error has not been detected  
bit 1  
bit 0  
OERR: Receive Buffer Overrun Error Status bit (read/clear only)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed. Clearing a previously set OERR bit (10transition) resets  
the receiver buffer and the UxRSR to the empty state.  
URXDA: Receive Buffer Data Available bit (read-only)  
1= Receive buffer has data, at least one more character can be read  
0= Receive buffer is empty  
Note 1: Refer to Section 17. “UART” (DS70188) in the “dsPIC33F/PIC24H Family Reference Manual” for infor-  
mation on enabling the UART module for transmit operation.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 219  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 220  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
• Programmable Loopback mode supports self-test  
operation  
19.0 ENHANCED CAN (ECAN™)  
MODULE  
• Signaling via interrupt capabilities for all CAN  
receiver and transmitter error states  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and  
• Programmable clock source  
• Programmable link to input capture module (IC2  
for CAN1) for time-stamping and network  
synchronization  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 21. Enhanced Control-  
ler Area Network (ECAN™)” (DS70185)  
of the “dsPIC33F/PIC24H Family Refer-  
ence Manual”, which is available from the  
Microchip website (www.microchip.com).  
• Low-power Sleep and Idle mode  
The CAN bus module consists of a protocol engine and  
message buffering/control. The CAN protocol engine  
handles all functions for receiving and transmitting  
messages on the CAN bus. Messages are transmitted  
by first loading the appropriate data registers. Status  
and errors can be checked by reading the appropriate  
registers. Any message detected on the CAN bus is  
checked for errors and then matched against filters to  
see if it should be received and stored in one of the  
receive registers.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
19.2 Frame Types  
The ECAN module transmits various types of frames  
which include data messages, or remote transmission  
requests initiated by the user, as other frames that are  
automatically generated for control purposes. The  
following frame types are supported:  
19.1 Overview  
The Enhanced Controller Area Network (ECAN™)  
module is a serial interface, useful for communicating  
with other CAN modules or microcontroller devices.  
This interface/protocol was designed to allow commu-  
• Standard Data Frame:  
nications  
within  
noisy  
environments.  
The  
A standard data frame is generated by a node when  
the node wishes to transmit data. It includes an 11-  
bit Standard Identifier (SID), but not an  
18-bit Extended Identifier (EID).  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 devices contain up to  
two ECAN modules.  
The ECAN module is a communication controller imple-  
menting the CAN 2.0 A/B protocol, as defined in the  
BOSCH CAN specification. The module supports  
CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B  
Active versions of the protocol. The module implementa-  
tion is a full CAN system. The CAN specification is not  
covered within this data sheet. The reader can refer to  
the BOSCH CAN specification for further details.  
• Extended Data Frame:  
An extended data frame is similar to a standard data  
frame, but includes an extended identifier as well.  
• Remote Frame:  
It is possible for a destination node to request the  
data from the source. For this purpose, the  
destination node sends a remote frame with an iden-  
tifier that matches the identifier of the required data  
frame. The appropriate data source node sends a  
data frame as a response to this remote request.  
The module features are as follows:  
• Implementation of the CAN protocol, CAN 1.2,  
CAN 2.0A and CAN 2.0B  
• Error Frame:  
• Standard and extended data frames  
• 0-8 bytes data length  
An error frame is generated by any node that detects  
a bus error. An error frame consists of two fields: an  
error flag field and an error delimiter field.  
• Programmable bit rate up to 1 Mbit/sec  
• Automatic response to remote transmission  
requests  
• Overload Frame:  
An overload frame can be generated by a node as  
a result of two conditions. First, the node detects  
a dominant bit during interframe space which is an  
illegal condition. Second, due to internal condi-  
tions, the node is not yet able to start reception of  
the next message. A node can generate a maxi-  
mum of 2 sequential overload frames to delay the  
start of the next message.  
• Up to eight transmit buffers with application speci-  
fied prioritization and abort capability (each buffer  
can contain up to 8 bytes of data)  
• Up to 32 receive buffers (each buffer can contain  
up to 8 bytes of data)  
• Up to 16 full (standard/extended identifier)  
acceptance filters  
• Three full acceptance filter masks  
• DeviceNet™ addressing support  
• Interframe Space:  
Interframe space separates a proceeding frame (of  
whatever type) from a following data or remote  
frame.  
• Programmable wake-up functionality with  
integrated low-pass filter  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 221  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 19-1:  
ECAN™ MODULE BLOCK DIAGRAM  
RxF15 Filter  
RxF14 Filter  
RxF13 Filter  
RxF12 Filter  
RxF11 Filter  
RxF10 Filter  
RxF9 Filter  
RxF8 Filter  
RxF7 Filter  
RxF6 Filter  
RxF5 Filter  
RxF4 Filter  
RxF3 Filter  
RxF2 Filter  
RxF1 Filter  
RxF0 Filter  
DMA Controller  
TRB7 Tx/Rx Buffer Control Register  
TRB6 Tx/Rx Buffer Control Register  
TRB5 Tx/Rx Buffer Control Register  
TRB4 Tx/Rx Buffer Control Register  
TRB3 Tx/Rx Buffer Control Register  
TRB2 Tx/Rx Buffer Control Register  
TRB1 Tx/Rx Buffer Control Register  
TRB0 Tx/Rx Buffer Control Register  
RxM2 Mask  
RxM1 Mask  
RxM0 Mask  
Transmit Byte  
Sequencer  
Message Assembly  
Buffer  
Control  
Configuration  
Logic  
CPU  
Bus  
CAN Protocol  
Engine  
Interrupts  
C1Tx  
C1Rx  
DS70292D-page 222  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
The module can be programmed to apply a low-pass  
19.3 Modes of Operation  
filter function to the CiRX input line while the module or  
The ECAN module can operate in one of several  
the CPU is in Sleep mode. The WAKFIL bit  
operation modes selected by the user. These modes  
(CiCFG2<14>) enables or disables the filter.  
include:  
Note:  
Typically, if the ECAN module is allowed to  
transmit in a particular mode of operation  
and a transmission is requested immedi-  
ately after the ECAN module has been  
placed in that mode of operation, the mod-  
ule waits for 11 consecutive recessive bits  
on the bus before starting transmission. If  
the user switches to Disable mode within  
this 11-bit period, then this transmission is  
aborted and the corresponding TXABT bit  
is set and TXREQ bit is cleared.  
• Initialization mode  
• Disable mode  
• Normal Operation mode  
• Listen Only mode  
• Listen All Messages mode  
• Loopback mode  
Modes are requested by setting the REQOP<2:0> bits  
(CiCTRL1<10:8>). Entry into a mode is Acknowledged  
by  
monitoring  
the  
OPMODE<2:0>  
bits  
(CiCTRL1<7:5>). The module does not change the  
mode and the OPMODE bits until a change in mode is  
acceptable, generally during bus Idle time, which is  
defined as at least 11 consecutive recessive bits.  
19.3.3  
NORMAL OPERATION MODE  
Normal Operation mode is selected when  
REQOP<2:0> = 000. In this mode, the module is  
activated and the I/O pins assumes the CAN bus  
functions. The module transmits and receive CAN bus  
messages via the CiTX and CiRX pins.  
19.3.1  
INITIALIZATION MODE  
In the Initialization mode, the module does not transmit  
or receive. The error counters are cleared and the inter-  
rupt flags remain unchanged. The user application has  
access to Configuration registers that are access  
restricted in other modes. The module protects the user  
from accidentally violating the CAN protocol through  
programming errors. All registers which control the  
configuration of the module can not be modified while  
the module is on-line. The ECAN module is not allowed  
to enter the Configuration mode while a transmission is  
taking place. The Configuration mode serves as a lock  
to protect the following registers:  
19.3.4  
LISTEN ONLY MODE  
If the Listen Only mode is activated, the module on the  
CAN bus is passive. The transmitter buffers revert to  
the port I/O function. The receive pins remain inputs.  
For the receiver, no error flags or Acknowledge signals  
are sent. The error counters are deactivated in this  
state. The Listen Only mode can be used for detecting  
the baud rate on the CAN bus. To use this, it is neces-  
sary that there are at least two further nodes that  
communicate with each other.  
• All Module Control registers  
• Baud Rate and Interrupt Configuration registers  
• Bus Timing registers  
• Identifier Acceptance Filter registers  
• Identifier Acceptance Mask registers  
19.3.5  
LISTEN ALL MESSAGES MODE  
The module can be set to ignore all errors and receive  
any message. The Listen All Messages mode is acti-  
vated by setting REQOP<2:0> = ‘111’. In this mode,  
the data which is in the message assembly buffer, until  
the time an error occurred, is copied in the receive buf-  
fer and can be read via the CPU interface.  
19.3.2  
DISABLE MODE  
In Disable mode, the module does not transmit or  
receive. The module has the ability to set the WAKIF bit  
due to bus activity, however, any pending interrupts  
remains and the error counters retains their value.  
19.3.6  
LOOPBACK MODE  
If the Loopback mode is activated, the module con-  
nects the internal transmit signal to the internal receive  
signal at the module boundary. The transmit and  
receive pins revert to their port I/O function.  
If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the  
module enters the Module Disable mode. If the module is  
active, the module waits for 11 recessive bits on the CAN  
bus, detect that condition as an Idle bus, then accept the  
module disable command. When the OPMODE<2:0>  
bits (CiCTRL1<7:5>) = 001, that indicates whether the  
module successfully went into Module Disable mode.  
The I/O pins reverts to normal I/O function when the  
module is in the Module Disable mode.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 223  
 
 
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-1: CiCTRL1: ECAN™ CONTROL REGISTER 1  
U-0  
U-0  
R/W-0  
CSIDL  
R/W-0  
ABAT  
r-0  
R/W-1  
R/W-0  
R/W-0  
bit 8  
REQOP<2:0>  
bit 15  
R-1  
R-0  
R-0  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
WIN  
OPMODE<2:0>  
CANCAP  
bit 7  
Legend:  
bit 0  
r = Bit is reserved  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
ABAT: Abort All Pending Transmissions bit  
1= Signal all transmit buffers to abort transmission.  
0= Module will clear this bit when all transmissions are aborted  
bit 11  
Reserved: Do not use  
bit 10-8  
REQOP<2:0>: Request Operation Mode bits  
000= Set Normal Operation mode  
001= Set Disable mode  
010= Set Loopback mode  
011= Set Listen Only Mode  
100= Set Configuration mode  
101= Reserved  
110= Reserved  
111= Set Listen All Messages mode  
bit 7-5  
OPMODE<2:0>: Operation Mode bits  
000= Module is in Normal Operation mode  
001= Module is in Disable mode  
010= Module is in Loopback mode  
011= Module is in Listen Only mode  
100= Module is in Configuration mode  
101= Reserved  
110= Reserved  
111= Module is in Listen All Messages mode  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CANCAP: CAN Message Receive Timer Capture Event Enable bit  
1= Enable input capture based on CAN message receive  
0= Disable CAN capture  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
WIN: SFR Map Window Select bit  
1= Use filter window  
0= Use buffer window  
DS70292D-page 224  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-2: CiCTRL2: ECAN™ CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
DNCNT<4:0>  
bit 7  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
bit 4-0  
Unimplemented: Read as ‘0’  
DNCNT<4:0>: DeviceNet™ Filter Bit Number bits  
10010-11111= Invalid selection  
10001= Compare up to data byte 3, bit 6 with EID<17>  
00001= Compare up to data byte 1, bit 7 with EID<0>  
00000= Do not compare data bytes  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 225  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-3: CiVEC: ECAN™ INTERRUPT CODE REGISTER  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
FILHIT<4:0>  
bit 15  
bit 8  
bit 0  
U-0  
R-1  
R-0  
R-0  
R-0  
R-0  
ICODE<6:0>  
bit 7  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
FILHIT<4:0>: Filter Hit Number bits  
10000-11111= Reserved  
01111= Filter 15  
00001= Filter 1  
00000= Filter 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
ICODE<6:0>: Interrupt Flag Code bits  
1000101-1111111= Reserved  
1000100= FIFO almost full interrupt  
1000011= Receiver overflow interrupt  
1000010= Wake-up interrupt  
1000001= Error interrupt  
1000000= No interrupt  
0010000-0111111= Reserved  
0001111= RB15 buffer Interrupt  
0001001= RB9 buffer interrupt  
0001000= RB8 buffer interrupt  
0000111= TRB7 buffer interrupt  
0000110= TRB6 buffer interrupt  
0000101= TRB5 buffer interrupt  
0000100= TRB4 buffer interrupt  
0000011= TRB3 buffer interrupt  
0000010= TRB2 buffer interrupt  
0000001= TRB1 buffer interrupt  
0000000= TRB0 Buffer interrupt  
DS70292D-page 226  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-4: CiFCTRL: ECAN™ FIFO CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DMABS<2:0>  
bit 15  
bit 8  
R/W-0  
bit 0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FSA<4:0>  
bit 7  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
DMABS<2:0>: DMA Buffer Size bits  
111= Reserved  
110= 32 buffers in DMA RAM  
101= 24 buffers in DMA RAM  
100= 16 buffers in DMA RAM  
011= 12 buffers in DMA RAM  
010= 8 buffers in DMA RAM  
001= 6 buffers in DMA RAM  
000= 4 buffers in DMA RAM  
bit 12-5  
bit 4-0  
Unimplemented: Read as ‘0’  
FSA<4:0>: FIFO Area Starts with Buffer bits  
11111= Read buffer RB31  
11110= Read buffer RB30  
00001= Tx/Rx buffer TRB1  
00000= Tx/Rx buffer TRB0  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 227  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-5: CiFIFO: ECAN™ FIFO STATUS REGISTER  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
FBP<5:0>  
R-0  
R-0  
R-0  
R-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
FNRB<5:0>  
bit 7  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-8  
Unimplemented: Read as ‘0’  
FBP<5:0>: FIFO Buffer Pointer bits  
011111= RB31 buffer  
011110= RB30 buffer  
000001= TRB1 buffer  
000000= TRB0 buffer  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
FNRB<5:0>: FIFO Next Read Buffer Pointer bits  
011111= RB31 buffer  
011110= RB30 buffer  
000001= TRB1 buffer  
000000= TRB0 buffer  
DS70292D-page 228  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-6: CiINTF: ECAN™ INTERRUPT FLAG REGISTER  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
TXBO  
TXBP  
RXBP  
TXWAR  
RXWAR  
EWARN  
bit 15  
bit 8  
R/C-0  
IVRIF  
R/C-0  
R/C-0  
U-0  
R/C-0  
R/C-0  
R/C-0  
RBIF  
R/C-0  
TBIF  
WAKIF  
ERRIF  
FIFOIF  
RBOVIF  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
TXBO: Transmitter in Error State Bus Off bit  
1= Transmitter is in Bus Off state  
0 = Transmitter is not in Bus Off state  
bit 12  
bit 11  
bit 10  
bit 9  
TXBP: Transmitter in Error State Bus Passive bit  
1= Transmitter is in Bus Passive state  
0= Transmitter is not in Bus Passive state  
RXBP: Receiver in Error State Bus Passive bit  
1= Receiver is in Bus Passive state  
0= Receiver is not in Bus Passive state  
TXWAR: Transmitter in Error State Warning bit  
1= Transmitter is in Error Warning state  
0= Transmitter is not in Error Warning state  
RXWAR: Receiver in Error State Warning bit  
1= Receiver is in Error Warning state  
0= Receiver is not in Error Warning state  
bit 8  
EWARN: Transmitter or Receiver in Error State Warning bit  
1= Transmitter or Receiver is in Error State Warning state  
0= Transmitter or Receiver is not in Error State Warning state  
bit 7  
IVRIF: Invalid Message Received Interrupt Flag bit  
1= Interrupt Request has occurred  
0= Interrupt Request has not occurred  
bit 6  
WAKIF: Bus Wake-up Activity Interrupt Flag bit  
1= Interrupt Request has occurred  
0= Interrupt Request has not occurred  
bit 5  
ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register)  
1= Interrupt Request has occurred  
0= Interrupt Request has not occurred  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
FIFOIF: FIFO Almost Full Interrupt Flag bit  
1= Interrupt Request has occurred  
0= Interrupt Request has not occurred  
bit 2  
bit 1  
bit 0  
RBOVIF: RX Buffer Overflow Interrupt Flag bit  
1= Interrupt Request has occurred  
0= Interrupt Request has not occurred  
RBIF: RX Buffer Interrupt Flag bit  
1= Interrupt Request has occurred  
0= Interrupt Request has not occurred  
TBIF: TX Buffer Interrupt Flag bit  
1= Interrupt Request has occurred  
0= Interrupt Request has not occurred  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 229  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-7: CiINTE: ECAN™ INTERRUPT ENABLE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
IVRIE  
R/W-0  
R/W-0  
ERRIE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
TBIE  
WAKIE  
FIFOIE  
RBOVIE  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
IVRIE: Invalid Message Received Interrupt Enable bit  
1= Interrupt Request Enabled  
0= Interrupt Request not enabled  
bit 6  
bit 5  
WAKIE: Bus Wake-up Activity Interrupt Flag bit  
1= Interrupt Request Enabled  
0= Interrupt Request not enabled  
ERRIE: Error Interrupt Enable bit  
1= Interrupt Request Enabled  
0= Interrupt Request not enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
FIFOIE: FIFO Almost Full Interrupt Enable bit  
1= Interrupt Request Enabled  
0= Interrupt Request not enabled  
bit 2  
bit 1  
bit 0  
RBOVIE: RX Buffer Overflow Interrupt Enable bit  
1= Interrupt Request Enabled  
0= Interrupt Request not enabled  
RBIE: RX Buffer Interrupt Enable bit  
1= Interrupt Request Enabled  
0= Interrupt Request not enabled  
TBIE: TX Buffer Interrupt Enable bit  
1= Interrupt Request Enabled  
0= Interrupt Request not enabled  
DS70292D-page 230  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-8: CiEC: ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER  
R-0  
bit 15  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
TERRCNT<7:0>  
bit 8  
bit 0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
RERRCNT<7:0>  
bit 7  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
TERRCNT<7:0>: Transmit Error Count bits  
RERRCNT<7:0>: Receive Error Count bits  
REGISTER 19-9: CiCFG1: ECAN™ BAUD RATE CONFIGURATION REGISTER 1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
SJW<1:0>  
BRP<5:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-6  
Unimplemented: Read as ‘0’  
SJW<1:0>: Synchronization Jump Width bits  
11= Length is 4 x TQ  
10= Length is 3 x TQ  
01= Length is 2 x TQ  
00= Length is 1 x TQ  
bit 5-0  
BRP<5:0>: Baud Rate Prescaler bits  
11 1111= TQ = 2 x 64 x 1/FCAN  
00 0010= TQ = 2 x 3 x 1/FCAN  
00 0001= TQ = 2 x 2 x 1/FCAN  
00 0000= TQ = 2 x 1 x 1/FCAN  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 231  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-10: CiCFG2: ECAN™ BAUD RATE CONFIGURATION REGISTER 2  
U-0  
R/W-x  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
bit 8  
R/W-x  
bit 0  
WAKFIL  
SEG2PH<2:0>  
bit 15  
R/W-x  
R/W-x  
SAM  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SEG2PHTS  
SEG1PH<2:0>  
PRSEG<2:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
WAKFIL: Select CAN bus Line Filter for Wake-up bit  
1= Use CAN bus line filter for wake-up  
0= CAN bus line filter is not used for wake-up  
bit 13-11  
bit 10-8  
Unimplemented: Read as ‘0’  
SEG2PH<2:0>: Phase Segment 2 bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
bit 7  
SEG2PHTS: Phase Segment 2 Time Select bit  
1= Freely programmable  
0= Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater  
bit 6  
SAM: Sample of the CAN bus Line bit  
1= Bus line is sampled three times at the sample point  
0= Bus line is sampled once at the sample point  
bit 5-3  
SEG1PH<2:0>: Phase Segment 1 bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
bit 2-0  
PRSEG<2:0>: Propagation Time Segment bits  
111= Length is 8 x TQ  
000= Length is 1 x TQ  
DS70292D-page 232  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-11: CiFEN1: ECAN™ ACCEPTANCE FILTER ENABLE REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FLTEN15  
FLTEN14  
FLTEN13  
FLTEN12  
FLTEN11  
FLTEN10  
FLTEN9  
FLTEN8  
bit 15  
bit 8  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
FLTEN7  
FLTEN6  
FLTEN5  
FLTEN4  
FLTEN3  
FLTEN2  
FLTEN1  
FLTEN0  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
FLTENn: Enable Filter n to Accept Messages bits  
1= Enable Filter n  
0= Disable Filter n  
REGISTER 19-12: CiBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
F3BP<3:0>  
F2BP<3:0>  
R/W-0  
F1BP<3:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F0BP<3:0>  
R/W-0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
F3BP<3:0>: RX Buffer mask for Filter 3  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
bit 11-8  
bit 7-4  
bit 3-0  
F2BP<3:0>: RX Buffer mask for Filter 2 (same values as bit 15-12)  
F1BP<3:0>: RX Buffer mask for Filter 1 (same values as bit 15-12)  
F0BP<3:0>: RX Buffer mask for Filter 0 (same values as bit 15-12)  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 233  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-13: CiBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
F7BP<3:0>  
F6BP<3:0>  
R/W-0  
F5BP<3:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F4BP<3:0>  
R/W-0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
F7BP<3:0>: RX Buffer mask for Filter 7  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
bit 11-8  
bit 7-4  
bit 3-0  
F6BP<3:0>: RX Buffer mask for Filter 6 (same values as bit 15-12)  
F5BP<3:0>: RX Buffer mask for Filter 5 (same values as bit 15-12)  
F4BP<3:0>: RX Buffer mask for Filter 4 (same values as bit 15-12)  
REGISTER 19-14: CiBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
F11BP<3:0>  
F10BP<3:0>  
R/W-0  
F9BP<3:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F8BP<3:0>  
R/W-0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
F11BP<3:0>: RX Buffer mask for Filter 11  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
bit 11-8  
bit 7-4  
bit 3-0  
F10BP<3:0>: RX Buffer mask for Filter 10 (same values as bit 15-12)  
F9BP<3:0>: RX Buffer mask for Filter 9 (same values as bit 15-12)  
F8BP<3:0>: RX Buffer mask for Filter 8 (same values as bit 15-12)  
DS70292D-page 234  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-15: CiBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER  
R/W-0  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
bit 0  
F15BP<3:0>  
F14BP<3:0>  
R/W-0  
F13BP<3:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F12BP<3:0>  
R/W-0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
F15BP<3:0>: RX Buffer mask for Filter 15  
1111= Filter hits received in RX FIFO buffer  
1110= Filter hits received in RX Buffer 14  
0001= Filter hits received in RX Buffer 1  
0000= Filter hits received in RX Buffer 0  
bit 11-8  
bit 7-4  
bit 3-0  
F14BP<3:0>: RX Buffer mask for Filter 14 (same values as bit 15-12)  
F13BP<3:0>: RX Buffer mask for Filter 13 (same values as bit 15-12)  
F12BP<3:0>: RX Buffer mask for Filter 12 (same values as bit 15-12)  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 235  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-16: CiRXFnSID: ECAN™ ACCEPTANCE FILTER STANDARD IDENTIFIER REGISTER  
n (n = 0-15)  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 15  
bit 8  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
U-0  
R/W-x  
EXIDE  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
SID<10:0>: Standard Identifier bits  
1= Message address bit SIDx must be ‘1’ to match filter  
0= Message address bit SIDx must be ‘0’ to match filter  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
EXIDE: Extended Identifier Enable bit  
If MIDE = 1then:  
1= Match only messages with extended identifier addresses  
0= Match only messages with standard identifier addresses  
If MIDE = 0then:  
Ignore EXIDE bit.  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID<17:16>: Extended Identifier bits  
1= Message address bit EIDx must be ‘1’ to match filter  
0= Message address bit EIDx must be ‘0’ to match filter  
DS70292D-page 236  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-17: CiRXFnEID: ECAN™ ACCEPTANCE FILTER EXTENDED IDENTIFIER REGISTER  
n (n = 0-15)  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 15  
bit 8  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
EID<15:0>: Extended Identifier bits  
1= Message address bit EIDx must be ‘1’ to match filter  
0= Message address bit EIDx must be ‘0’ to match filter  
REGISTER 19-18: CiFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F7MSK<1:0>  
F6MSK<1:0>  
F5MSK<1:0>  
F4MSK<1:0>  
bit 15  
bit 8  
R/W-0 R/W-0  
F3MSK<1:0>  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F2MSK<1:0>  
F1MSK<1:0>  
F0MSK<1:0>  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
F7MSK<1:0>: Mask Source for Filter 7 bit  
11= No mask  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
bit 13-12  
bit 11-10  
bit 9-8  
F6MSK<1:0>: Mask Source for Filter 6 bit (same values as bit 15-14)  
F5MSK<1:0>: Mask Source for Filter 5 bit (same values as bit 15-14)  
F4MSK<1:0>: Mask Source for Filter 4 bit (same values as bit 15-14)  
F3MSK<1:0>: Mask Source for Filter 3 bit (same values as bit 15-14)  
F2MSK<1:0>: Mask Source for Filter 2 bit (same values as bit 15-14)  
F1MSK<1:0>: Mask Source for Filter 1 bit (same values as bit 15-14)  
F0MSK<1:0>: Mask Source for Filter 0 bit (same values as bit 15-14)  
bit 7-6  
bit 5-4  
bit 3-2  
bit 1-0  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 237  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F15MSK<1:0>  
F14MSK<1:0>  
F13MSK<1:0>  
F12MSK<1:0>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F11MSK<1:0>  
F10MSK<1:0>  
F9MSK<1:0>  
F8MSK<1:0>  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
F15MSK<1:0>: Mask Source for Filter 15 bit  
11= No mask  
10= Acceptance Mask 2 registers contain mask  
01= Acceptance Mask 1 registers contain mask  
00= Acceptance Mask 0 registers contain mask  
bit 13-12  
bit 11-10  
bit 9-8  
F14MSK<1:0>: Mask Source for Filter 14 bit (same values as bit 15-14)  
F13MSK<1:0>: Mask Source for Filter 13 bit (same values as bit 15-14)  
F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bit 15-14)  
F11MSK<1:0>: Mask Source for Filter 11 bit (same values as bit 15-14)  
F10MSK<1:0>: Mask Source for Filter 10 bit (same values as bit 15-14)  
F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bit 15-14)  
F8MSK<1:0>: Mask Source for Filter 8 bit (same values as bit 15-14)  
bit 7-6  
bit 5-4  
bit 3-2  
bit 1-0  
DS70292D-page 238  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-20: CiRXMnSID: ECAN™ ACCEPTANCE FILTER MASK STANDARD IDENTIFIER  
REGISTER n (n = 0-2)  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 15  
bit 8  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
U-0  
R/W-x  
MIDE  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-5  
SID<10:0>: Standard Identifier bits  
1= Include bit SIDx in filter comparison  
0= Bit SIDx is don’t care in filter comparison  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
MIDE: Identifier Receive Mode bit  
1= Match only message types (standard or extended address) that correspond to EXIDE bit in filter  
0= Match either standard or extended address message if filters match  
(i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID))  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID<17:16>: Extended Identifier bits  
1= Include bit EIDx in filter comparison  
0= Bit EIDx is don’t care in filter comparison  
REGISTER 19-21: CiRXMnEID: ECAN™ ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER  
REGISTER n (n = 0-2)  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 15  
bit 8  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
EID<15:0>: Extended Identifier bits  
1= Include bit EIDx in filter comparison  
0= Bit EIDx is don’t care in filter comparison  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 239  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-22: CiRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL15  
RXFUL14  
RXFUL13  
RXFUL12  
RXFUL11  
RXFUL10  
RXFUL9  
RXFUL8  
bit 15  
bit 8  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL7  
RXFUL6  
RXFUL5  
RXFUL4  
RXFUL3  
RXFUL2  
RXFUL1  
RXFUL0  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXFUL<15:0>: Receive Buffer n Full bits  
1= Buffer is full (set by module)  
0= Buffer is empty  
REGISTER 19-23: CiRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL24  
bit 8  
RXFUL31  
RXFUL30  
RXFUL29  
RXFUL28  
RXFUL27  
RXFUL26  
RXFUL25  
bit 15  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXFUL23  
RXFUL22  
RXFUL21  
RXFUL20  
RXFUL19  
RXFUL18  
RXFUL17  
RXFUL16  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXFUL<31:16>: Receive Buffer n Full bits  
1= Buffer is full (set by module)  
0= Buffer is empty  
DS70292D-page 240  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-24: CiRXOVF1: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 1  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF15  
RXOVF14  
RXOVF13  
RXOVF12  
RXOVF11  
RXOVF10  
RXOVF9  
RXOVF8  
bit 15  
bit 8  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF7  
RXOVF6  
RXOVF5  
RXOVF4  
RXOVF3  
RXOVF2  
RXOVF1  
RXOVF0  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXOVF<15:0>: Receive Buffer n Overflow bits  
1= Module attempted to write to a full buffer (set by module)  
0= No overflow condition  
REGISTER 19-25: CiRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF24  
bit 8  
RXOVF31  
RXOVF30  
RXOVF29  
RXOVF28  
RXOVF27  
RXOVF26  
RXOVF25  
bit 15  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
R/C-0  
RXOVF23  
RXOVF22  
RXOVF21  
RXOVF20  
RXOVF19  
RXOVF18  
RXOVF17  
RXOVF16  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-0  
RXOVF<31:16>: Receive Buffer n Overflow bits  
1= Module attempted to write to a full buffer (set by module)  
0= No overflow condition  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 241  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 19-26: CiTRmnCON: ECAN™ Tx/Rx BUFFER m CONTROL REGISTER  
(m = 0,2,4,6; n = 1,3,5,7)  
R/W-0  
R-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TXENn  
TXABTn  
TXLARBn  
TXERRn  
TXREQn  
RTRENn  
TXnPRI<1:0>  
bit 15  
bit 8  
R/W-0  
R-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TXENm  
TXABTm(1) TXLARBm(1) TXERRm(1) TXREQm  
RTRENm  
TXmPRI<1:0>  
bit 7  
bit 0  
Legend:  
C = Writable bit, but only ‘0’ can be written to clear the bit  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
See Definition for Bits 7-0, Controls Buffer n  
TXENm: TX/RX Buffer Selection bit  
1= Buffer TRBn is a transmit buffer  
0= Buffer TRBn is a receive buffer  
bit 6  
bit 5  
bit 4  
bit 3  
TXABTm: Message Aborted bit(1)  
1= Message was aborted  
0= Message completed transmission successfully  
TXLARBm: Message Lost Arbitration bit(1)  
1= Message lost arbitration while being sent  
0= Message did not lose arbitration while being sent  
TXERRm: Error Detected During Transmission bit(1)  
1= A bus error occurred while the message was being sent  
0= A bus error did not occur while the message was being sent  
TXREQm: Message Send Request bit  
1= Requests that a message be sent. The bit automatically clears when the message is successfully  
sent  
0= Clearing the bit to ‘0’ while set requests a message abort  
bit 2  
RTRENm: Auto-Remote Transmit Enable bit  
1= When a remote transmit is received, TXREQ will be set  
0= When a remote transmit is received, TXREQ will be unaffected  
bit 1-0  
TXmPRI<1:0>: Message Transmission Priority bits  
11= Highest message priority  
10= High intermediate message priority  
01= Low intermediate message priority  
00= Lowest message priority  
Note 1: This bit is cleared when TXREQ is set.  
Note:  
The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.  
DS70292D-page 242  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
19.4 ECAN Message Buffers  
ECAN Message Buffers are part of DMA RAM Memory.  
They are not ECAN special function registers. The user  
application must directly write into the DMA RAM area  
that is configured for ECAN Message Buffers. The  
location and size of the buffer area is defined by the  
user application.  
BUFFER 19-1:  
ECAN™ MESSAGE BUFFER WORD 0  
U-0  
U-0  
U-0  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
bit 15  
bit 8  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
R/W-x  
SRR  
R/W-x  
IDE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
SID<10:0>: Standard Identifier bits  
SRR: Substitute Remote Request bit  
1= Message will request remote transmission  
0= Normal message  
bit 0  
IDE: Extended Identifier bit  
1= Message will transmit extended identifier  
0= Message will transmit standard identifier  
BUFFER 19-2:  
ECAN™ MESSAGE BUFFER WORD 1  
U-0  
U-0  
U-0  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
R/W-x  
EID15  
R/W-x  
EID14  
bit 15  
bit 8  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
R/W-x  
EID7  
R/W-x  
EID6  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-0  
Unimplemented: Read as ‘0’  
EID<17:6>: Extended Identifier bits  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 243  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
(
BUFFER 19-3:  
ECAN™ MESSAGE BUFFER WORD 2  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
R/W-x  
RTR  
R/W-x  
RB1  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-x  
RB0  
R/W-x  
DLC3  
R/W-x  
DLC2  
R/W-x  
DLC1  
R/W-x  
DLC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9  
EID<5:0>: Extended Identifier bits  
RTR: Remote Transmission Request bit  
1= Message will request remote transmission  
0= Normal message  
bit 8  
RB1: Reserved Bit 1  
User must set this bit to ‘0’ per CAN protocol.  
Unimplemented: Read as ‘0’  
RB0: Reserved Bit 0  
bit 7-5  
bit 4  
User must set this bit to ‘0’ per CAN protocol.  
DLC<3:0>: Data Length Code bits  
bit 3-0  
BUFFER 19-4:  
ECAN  
R/W-x  
MESSAGE BUFFER WORD 3  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
R/W-x  
bit 0  
Byte 1  
bit 15  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
Byte 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Byte 1<15:8>: ECAN™ Message Byte 0  
Byte 0<7:0>: ECAN Message Byte 1  
DS70292D-page 244  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
BUFFER 19-5:  
ECAN  
R/W-x  
MESSAGE BUFFER WORD 4  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
R/W-x  
bit 0  
Byte 3  
bit 15  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
Byte 2  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Byte 3<15:8>: ECAN™ Message Byte 3  
Byte 2<7:0>: ECAN Message Byte 2  
BUFFER 19-6:  
ECAN  
R/W-x  
MESSAGE BUFFER WORD 5  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
R/W-x  
bit 0  
Byte 5  
bit 15  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
Byte 4  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Byte 5<15:8>: ECAN™ Message Byte 5  
Byte 4<7:0>: ECAN Message Byte 4  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 245  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
BUFFER 19-7:  
ECAN  
R/W-x  
MESSAGE BUFFER WORD 6  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
R/W-x  
bit 0  
Byte 7  
bit 15  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
Byte 6  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-0  
Byte 7<15:8>: ECAN™ Message Byte 7  
Byte 6<7:0>: ECAN Message Byte 6  
BUFFER 19-8:  
ECAN™ MESSAGE BUFFER WORD 7  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
FILHIT<4:0>(1)  
R/W-x  
R/W-x  
bit 8  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-8  
Unimplemented: Read as ‘0’  
FILHIT<4:0>: Filter Hit Code bits(1)  
Encodes number of filter that resulted in writing this buffer.  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: Only written by module for receive buffers, unused for transmit buffers.  
DS70292D-page 246  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
20.1 Module Introduction  
20.0 DATA CONVERTER  
INTERFACE (DCI) MODULE  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 Data Converter  
Interface (DCI) module allows simple interfacing of  
devices, such as audio coder/decoders (Codecs), ADC  
and D/A converters. The following interfaces are sup-  
ported:  
Note 1: This data sheet summarizes the features  
of  
the  
dsPIC33FJ32GP302/304,  
and  
dsPIC33FJ64GPX02/X04,  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 20. Data Converter  
Interface (DCI)” (DS70288) of the  
dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
• Framed Synchronous Serial Transfer (Single or  
Multi-Channel)  
• Inter-IC Sound (I2S) Interface  
• AC-Link Compliant mode  
• The DCI module provides the following general  
features:  
• Programmable word size up to 16 bits  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
• Supports up to 16 time slots, for a maximum  
frame size of 256 bits  
• Data buffering for up to 4 samples without CPU  
overhead  
FIGURE 20-1:  
DCI MODULE BLOCK DIAGRAM  
BCG Control bits  
SCKD  
FSD  
Sample Rate  
FOSC/4  
CSCK  
COFS  
Generator  
Word Size Selection bits  
Frame Length Selection bits  
DCI Mode Selection bits  
Frame  
Synchronization  
Generator  
Receive Buffer  
Registers w/Shadow  
DCI Buffer  
Control Unit  
15  
0
Transmit Buffer  
Registers w/Shadow  
DCI Shift Register  
CSDI  
CSDO  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 247  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 20-1: DCICON1: DCI CONTROL REGISTER 1  
R/W-0  
U-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DCIEN  
DCISIDL  
DLOOP  
CSCKD  
CSCKE  
COFSD  
bit 15  
bit 8  
R/W-0  
UNFM  
R/W-0  
R/W-0  
DJST  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CSDOM  
COFSM<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
DCIEN: DCI Module Enable bit  
1= Module is enabled  
0= Module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
DCISIDL: DCI Stop in Idle Control bit  
1= Module will halt in CPU Idle mode  
0= Module will continue to operate in CPU Idle mode  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
DLOOP: Digital Loopback Mode Control bit  
1= Digital Loopback mode is enabled. CSDI and CSDO pins internally connected.  
0= Digital Loopback mode is disabled  
bit 10  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
CSCKD: Sample Clock Direction Control bit  
1= CSCK pin is an input when DCI module is enabled  
0= CSCK pin is an output when DCI module is enabled  
CSCKE: Sample Clock Edge Control bit  
1= Data changes on serial clock falling edge, sampled on serial clock rising edge  
0= Data changes on serial clock rising edge, sampled on serial clock falling edge  
COFSD: Frame Synchronization Direction Control bit  
1= COFS pin is an input when DCI module is enabled  
0= COFS pin is an output when DCI module is enabled  
UNFM: Underflow Mode bit  
1= Transmit last value written to the transmit registers on a transmit underflow  
0= Transmit ‘0’s on a transmit underflow  
CSDOM: Serial Data Output Mode bit  
1= CSDO pin will be tri-stated during disabled transmit time slots  
0= CSDO pin drives ‘0’s during disabled transmit time slots  
DJST: DCI Data Justification Control bit  
1= Data transmission/reception is begun during the same serial clock cycle as the frame  
synchronization pulse  
0= Data transmission/reception is begun one serial clock cycle after frame synchronization pulse  
bit 4-2  
bit 1-0  
Unimplemented: Read as ‘0’  
COFSM<1:0>: Frame Sync Mode bits  
11= 20-bit AC-Link mode  
10= 16-bit AC-Link mode  
01= I2S Frame Sync mode  
00= Multi-Channel Frame Sync mode  
DS70292D-page 248  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 20-2: DCICON2: DCI CONTROL REGISTER 2  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
BLEN<1:0>  
COFSG3  
bit 15  
bit 8  
R/W-0  
bit 7  
Legend:  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
COFSG<2:0>  
WS<3:0>  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-10  
Unimplemented: Read as ‘0’  
BLEN<1:0>: Buffer Length Control bits  
11= Four data words will be buffered between interrupts  
10= Three data words will be buffered between interrupts  
01= Two data words will be buffered between interrupts  
00= One data word will be buffered between interrupts  
bit 9  
Unimplemented: Read as ‘0’  
bit 8-5  
COFSG<3:0>: Frame Sync Generator Control bits  
1111= Data frame has 16 words  
0010= Data frame has 3 words  
0001= Data frame has 2 words  
0000= Data frame has 1 word  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-0  
WS<3:0>: DCI Data Word Size bits  
1111= Data word size is 16 bits  
0100= Data word size is 5 bits  
0011= Data word size is 4 bits  
0010= Invalid Selection. Do not use. Unexpected results may occur.  
0001= Invalid Selection. Do not use. Unexpected results may occur.  
0000= Invalid Selection. Do not use. Unexpected results may occur.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 249  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 20-3: DCICON3: DCI CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
BCG<11:8>  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BCG<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-0  
Unimplemented: Read as ‘0’  
BCG<11:0>: DCI Bit Clock Generator Control bits  
DS70292D-page 250  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 20-4: DCISTAT: DCI STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
SLOT<3:0>  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
ROV  
RFUL  
TUNF  
TMPTY  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-8  
Unimplemented: Read as ‘0’  
SLOT<3:0>: DCI Slot Status bits  
1111= Slot 15 is currently active  
0010= Slot 2 is currently active  
0001= Slot 1 is currently active  
0000= Slot 0 is currently active  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
ROV: Receive Overflow Status bit  
1= A receive overflow has occurred for at least one receive register  
0= A receive overflow has not occurred  
bit 2  
bit 1  
bit 0  
RFUL: Receive Buffer Full Status bit  
1= New data is available in the receive registers  
0= The receive registers have old data  
TUNF: Transmit Buffer Underflow Status bit  
1= A transmit underflow has occurred for at least one transmit register  
0= A transmit underflow has not occurred  
TMPTY: Transmit Buffer Empty Status bit  
1= The transmit registers are empty  
0= The transmit registers are not empty  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 251  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 20-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RSE11  
R/W-0  
R/W-0  
RSE9  
R/W-0  
RSE8  
RSE15  
RSE14  
RSE13  
RSE12  
RSE10  
bit 15  
bit 8  
R/W-0  
RSE7  
R/W-0  
RSE6  
R/W-0  
RSE5  
R/W-0  
RSE4  
R/W-0  
RSE3  
R/W-0  
RSE2  
R/W-0  
RSE1  
R/W-0  
RSE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
RSE<15:0>: Receive Slot Enable bits  
1= CSDI data is received during the individual time slot n  
0= CSDI data is ignored during the individual time slot n  
REGISTER 20-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER  
R/W-0  
TSE15  
R/W-0  
TSE14  
R/W-0  
TSE13  
R/W-0  
TSE12  
R/W-0  
TSE11  
R/W-0  
TSE10  
R/W-0  
TSE9  
R/W-0  
TSE8  
bit 15  
bit 8  
R/W-0  
TSE7  
R/W-0  
TSE6  
R/W-0  
TSE5  
R/W-0  
TSE4  
R/W-0  
TSE3  
R/W-0  
TSE2  
R/W-0  
TSE1  
R/W-0  
TSE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
TSE<15:0>: Transmit Slot Enable Control bits  
1= Transmit buffer contents are sent during the individual time slot n  
0= CSDO pin is tri-stated or driven to logic ‘0’, during the individual time slot, depending on the state  
of the CSDOM bit  
DS70292D-page 252  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
Depending on the particular device pinout, the ADC  
21.0 10-BIT/12-BIT ANALOG-TO-  
can have up to 13 analog input pins, designated AN0  
DIGITAL CONVERTER (ADC)  
through AN12. In addition, there are two analog input  
pins for external voltage reference connections. These  
voltage reference inputs can be shared with other ana-  
log input pins. The actual number of analog input pins  
and external voltage reference input configuration  
depends on the specific device.  
Note 1: This data sheet summarizes the features  
of  
the  
dsPIC33FJ32GP302/304,  
and  
dsPIC33FJ64GPX02/X04,  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 16. Analog-to-Digital  
Converter (ADC)” (DS70183) of the  
dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
Block diagrams of the ADC module are shown in  
Figure 21-1 and Figure 21-2.  
21.2 ADC Initialization  
The following configuration steps should be performed.  
1. Configure the ADC module:  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
a) Select port pins as analog inputs  
(AD1PCFGH<15:0> or AD1PCFGL<15:0>)  
b) Select voltage reference source to match  
expected range on analog inputs  
(AD1CON2<15:13>)  
c) Select the analog conversion clock to  
match desired data rate with processor  
clock (AD1CON3<7:0>)  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 devices have up  
to 13 ADC input channels.  
d) Determine how many S/H channels are  
used  
(AD1CON2<9:8>  
and  
The AD12B bit (AD1CON1<10>) allows each of the  
ADC modules to be configured by the user as either a  
10-bit, 4-sample/hold ADC (default configuration) or a  
12-bit, 1-sample/hold ADC.  
AD1PCFGH<15:0> or AD1PCFGL<15:0>)  
e) Select the appropriate sample/conversion  
sequence  
(AD1CON1<7:5>  
and  
AD1CON3<12:8>)  
Note:  
The ADC module needs to be disabled  
before modifying the AD12B bit.  
f) Select how conversion results are  
presented in the buffer (AD1CON1<9:8>)  
g) Turn on ADC module (AD1CON1<15>)  
2. Configure ADC interrupt (if required):  
a) Clear the AD1IF bit  
21.1 Key Features  
The 10-bit ADC configuration has the following key  
features:  
b) Select ADC interrupt priority  
• Successive Approximation (SAR) conversion  
• Conversion speeds of up to 1.1 Msps  
• Up to 13 analog input pins  
21.3 ADC and DMA  
If more than one conversion result needs to be buffered  
before triggering an interrupt, DMA data transfers can  
be used. ADC1 can trigger a DMA data transfer. If  
ADC1 is selected as the DMA IRQ source, a DMA  
transfer occurs when the AD1IF bit gets set as a result  
of an ADC1 sample conversion sequence.  
• External voltage reference input pins  
• Simultaneous sampling of up to four analog input  
pins  
• Automatic Channel Scan mode  
• Selectable conversion trigger source  
• Selectable Buffer Fill modes  
The SMPI<3:0> bits (AD1CON2<5:2>) are used to  
select how often the DMA RAM buffer pointer is  
incremented.  
• Four result alignment options (signed/unsigned,  
fractional/integer)  
• Operation during CPU Sleep and Idle modes  
The ADDMABM bit (AD1CON1<12>) determines how  
the conversion results are filled in the DMA RAM buffer  
area being used for ADC. If this bit is set, DMA buffers  
are written in the order of conversion. The module  
provides an address to the DMA channel that is the  
same as the address used for the non-DMA stand-  
alone buffer. If the ADDMABM bit is cleared, then DMA  
buffers are written in Scatter/Gather mode. The module  
provides a scatter/gather address to the DMA channel,  
based on the index of the analog input and the size of  
the DMA buffer.  
The 12-bit ADC configuration supports all the above  
features, except:  
• In the 12-bit configuration, conversion speeds of  
up to 500 ksps are supported  
• There is only one sample/hold amplifier in the  
12-bit configuration, so simultaneous sampling of  
multiple channels is not supported.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 253  
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 21-1:  
ADC1 MODULE BLOCK DIAGRAM FOR dsPIC33FJ32GP304,  
dsPIC33FJ64GP204/804 AND dsPIC33FJ128GP204/804 DEVICES  
AN0  
AN12  
S/H0  
CHANNEL  
SCAN  
+
CH0SB<4:0>  
-
CH0SA<4:0>  
CH0  
CSCNA  
AN1  
VREFL  
CH0NB  
CH0NA  
AN0  
AN3  
AVDD VREFL-(1)  
VREFL+(1)  
AVSS  
S/H1  
+
-
CH123SA  
CH123SB  
CH1(2)  
AN6  
VCFG<2:0>  
AN9  
VREFL  
VREFH  
VREFL  
CH123NB  
CH123NA  
ADC1BUF0  
SAR ADC  
AN1  
AN4  
S/H2  
+
-
CH123SA  
CH123SB  
CH2(2)  
AN7  
AN10  
VREFL  
CH123NA  
CH123NB  
AN2  
AN5  
S/H3  
+
-
CH123SA CH123SB  
AN8  
CH3(2)  
AN11  
VREFL  
CH123NA CH123NB  
Alternate  
Input Selection  
Note 1: VREF+, VREF- inputs can be multiplexed with other analog inputs.  
2: Channels 1, 2 and 3 are not applicable for the 12-bit mode of operation.  
DS70292D-page 254  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 21-2:  
ADC1 MODULE BLOCK DIAGRAM FOR dsPIC33FJ32GP302,  
dsPIC33FJ64GP202/802 AND dsPIC33FJ128GP202/802 DEVICES  
AN0  
AN12  
S/H0  
CHANNEL  
SCAN  
+
CH0SB<4:0>  
-
CH0SA<4:0>  
CH0  
CSCNA  
AN1  
VREFL  
CH0NB  
CH0NA  
AN0  
AN3  
AVDD VREFL-(1)  
VREFL+(1)  
AVSS  
S/H1  
+
-
CH123SA CH123SB  
CH1(2)  
AN9  
VCFG<2:0>  
VREFL  
VREFH  
VREFL  
CH123NB  
CH123NA  
ADC1BUF0  
SAR ADC  
AN1  
AN4  
S/H2  
+
-
CH123SA CH123SB  
CH2(2)  
AN10  
VREFL  
CH123NA  
CH123NB  
AN2  
AN5  
S/H3  
+
-
CH123SA CH123SB  
CH3(2)  
AN11  
VREFL  
CH123NA  
CH123NB  
Alternate  
Input Selection  
Note 1: VREF+, VREF- inputs can be multiplexed with other analog inputs.  
2: Channels 1, 2 and 3 are not applicable for the 12-bit mode of operation.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 255  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 21-3:  
ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM  
AD1CON3<15>  
ADC Internal  
RC Clock  
(2)  
0
TAD  
AD1CON3<5:0>  
6
1
ADC Conversion  
Clock Multiplier  
TCY  
(1)  
TOSC  
X2  
1, 2, 3, 4, 5,..., 64  
Note 1: Refer to Figure 8-2 for the derivation of Fosc when the PLL is enabled. If the PLL is not used, Fosc  
is equal to the clock source frequency. Tosc = 1/Fosc.  
2: See the ADC electrical characteristics for the exact RC clock value.  
DS70292D-page 256  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 21-1: AD1CON1: ADC1 CONTROL REGISTER 1  
R/W-0  
ADON  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
ADSIDL  
ADDMABM  
AD12B  
FORM<1:0>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
ASAM  
R/W-0  
HC,HS  
R/C-0  
HC, HS  
SSRC<2:0>  
SIMSAM  
SAMP  
DONE  
bit 7  
Legend:  
bit 0  
HC = Cleared by hardware  
W = Writable bit  
HS = Set by hardware  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
C = Clear only bit  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15  
ADON: ADC Operating Mode bit  
1= ADC module is operating  
0= ADC is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
ADDMABM: DMA Buffer Build Mode bit  
1= DMA buffers are written in the order of conversion. The module provides an address to the DMA  
channel that is the same as the address used for the non-DMA stand-alone buffer  
0= DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address  
to the DMA channel, based on the index of the analog input and the size of the DMA buffer  
bit 11  
bit 10  
Unimplemented: Read as ‘0’  
AD12B: 10-Bit or 12-Bit Operation Mode bit  
1= 12-bit, 1-channel ADC operation  
0= 10-bit, 4-channel ADC operation  
bit 9-8  
FORM<1:0>: Data Output Format bits  
For 10-bit operation:  
11= Signed fractional (DOUT = sddd dddd dd00 0000, where s=.NOT.d<9>)  
10= Fractional (DOUT = dddd dddd dd00 0000)  
01= Signed integer (DOUT = ssss sssd dddd dddd, where s= .NOT.d<9>)  
00= Integer (DOUT = 0000 00dd dddd dddd)  
For 12-bit operation:  
11= Signed fractional (DOUT = sddd dddd dddd 0000, where s= .NOT.d<11>)  
10= Fractional (DOUT = dddd dddd dddd 0000)  
01= Signed Integer (DOUT = ssss sddd dddd dddd, where s= .NOT.d<11>)  
00= Integer (DOUT = 0000 dddd dddd dddd)  
bit 7-5  
SSRC<2:0>: Sample Clock Source Select bits  
111= Internal counter ends sampling and starts conversion (auto-convert)  
110= Reserved  
101= Reserved  
100= GP timer (Timer5 for ADC1) compare ends sampling and starts conversion  
011= Reserved  
010= GP timer (Timer3 for ADC1) compare ends sampling and starts conversion  
001= Active transition on INT0 pin ends sampling and starts conversion  
000= Clearing sample bit ends sampling and starts conversion  
bit 4  
Unimplemented: Read as ‘0’  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 257  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 21-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)  
bit 3  
SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01or 1x)  
When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as ‘0’  
1= Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or  
Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01)  
0= Samples multiple channels individually in sequence  
bit 2  
bit 1  
ASAM: ADC Sample Auto-Start bit  
1= Sampling begins immediately after last conversion. SAMP bit is auto-set  
0= Sampling begins when SAMP bit is set  
SAMP: ADC Sample Enable bit  
1= ADC sample/hold amplifiers are sampling  
0= ADC sample/hold amplifiers are holding  
If ASAM = 0, software can write ‘1’ to begin sampling. Automatically set by hardware if ASAM = 1.  
If SSRC = 000, software can write ‘0’ to end sampling and start conversion. If SSRC 000,  
automatically cleared by hardware to end sampling and start conversion.  
bit 0  
DONE: ADC Conversion Status bit  
1= ADC conversion cycle is completed.  
0= ADC conversion not started or in progress  
Automatically set by hardware when ADC conversion is complete. Software can write ‘0’ to clear  
DONE status (software not allowed to write ‘1’). Clearing this bit does NOT affect any operation in  
progress. Automatically cleared by hardware at start of a new conversion.  
DS70292D-page 258  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 21-2: AD1CON2: ADC1 CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
VCFG<2:0>  
CSCNA  
CHPS<1:0>  
bit 15  
bit 8  
R-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BUFM  
R/W-0  
ALTS  
BUFS  
SMPI<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
VCFG<2:0>: Converter Voltage Reference Configuration bits  
ADREF+  
ADREF-  
000  
AVDD  
AVSS  
AVSS  
001 External VREF+  
010  
011 External VREF+  
1xx  
AVDD  
External VREF-  
External VREF-  
Avss  
AVDD  
bit 12-11  
bit 10  
Unimplemented: Read as ‘0’  
CSCNA: Scan Input Selections for CH0+ during Sample A bit  
1= Scan inputs  
0= Do not scan inputs  
bit 9-8  
bit 7  
CHPS<1:0>: Selects Channels Utilized bits  
When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as ‘0’  
1x= Converts CH0, CH1, CH2 and CH3  
01= Converts CH0 and CH1  
00= Converts CH0  
BUFS: Buffer Fill Status bit (only valid when BUFM = 1)  
1= ADC is currently filling buffer 0x8-0xF, user should access data in 0x0-0x7  
0= ADC is currently filling buffer 0x0-0x7, user should access data in 0x8-0xF  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-2  
SMPI<3:0>: Selects Increment Rate for DMA Addresses bits or number of sample/conversion  
operations per interrupt  
1111= Increments the DMA address or generates interrupt after completion of every 16th sample/  
conversion operation  
1110= Increments the DMA address or generates interrupt after completion of every 15th sample/  
conversion operation  
0001= Increments the DMA address after completion of every 2nd sample/conversion operation  
0000= Increments the DMA address after completion of every sample/conversion operation  
bit 1  
bit 0  
BUFM: Buffer Fill Mode Select bit  
1= Starts buffer filling at address 0x0 on first interrupt and 0x8 on next interrupt  
0= Always starts filling buffer at address 0x0  
ALTS: Alternate Input Sample Mode Select bit  
1= Uses channel input selects for Sample A on first sample and Sample B on next sample  
0= Always uses channel input selects for Sample A  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 259  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 21-3: AD1CON3: ADC1 CONTROL REGISTER 3  
R/W-0  
ADRC  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
SAMC<4:0>(1)  
R/W-0  
R/W-0  
R/W-0  
bit 8  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
ADCS<7:0>(2)  
R/W-0  
R/W-0  
R/W-0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ADRC: ADC Conversion Clock Source bit  
1= ADC internal RC clock  
0= Clock derived from system clock  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
SAMC<4:0>: Auto Sample Time bits(1)  
11111= 31 TAD  
00001= 1 TAD  
00000= 0 TAD  
bit 7-0  
ADCS<7:0>: ADC Conversion Clock Select bits(2)  
11111111= Reserved  
01000000= Reserved  
00111111= TCY ·(ADCS<7:0> + 1) = 64 ·TCY = TAD  
00000010= TCY ·(ADCS<7:0> + 1) = 3 ·TCY = TAD  
00000001= TCY ·(ADCS<7:0> + 1) = 2 ·TCY = TAD  
00000000= TCY ·(ADCS<7:0> + 1) = 1 ·TCY = TAD  
Note 1: This bit only used if AD1CON1<7:5> (SSRC<2:0>) = 111.  
2: This bit is not used if AD1CON3<15> (ADRC) = 1.  
DS70292D-page 260  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 21-4: AD1CON4: ADC1 CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
DMABL<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits  
111= Allocates 128 words of buffer to each analog input  
110= Allocates 64 words of buffer to each analog input  
101= Allocates 32 words of buffer to each analog input  
100= Allocates 16 words of buffer to each analog input  
011= Allocates 8 words of buffer to each analog input  
010= Allocates 4 words of buffer to each analog input  
001= Allocates 2 words of buffer to each analog input  
000= Allocates 1 word of buffer to each analog input  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 261  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 21-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH123NB<1:0>  
CH123SB  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH123NA<1:0>  
CH123SA  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-9  
Unimplemented: Read as ‘0’  
CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits  
When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as ‘0’  
11= CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11  
10= CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8(1)  
0x= CH1, CH2, CH3 negative input is VREF-  
bit 8  
CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit  
When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as ‘0’  
1= CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5  
0= CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2  
bit 7-3  
bit 2-1  
Unimplemented: Read as ‘0’  
CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits  
When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as ‘0’  
11= CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11  
10= CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8(1)  
0x= CH1, CH2, CH3 negative input is VREF-  
bit 0  
CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit  
When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as ‘0’  
1= CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5  
0= CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2  
Note 1: This bit setting is Reserved in dsPIC33FJ128GPX02, dsPIC33FJ64GPX02 and dsPIC33FJGPX02 (28-  
pin) devices.  
DS70292D-page 262  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 21-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
R/W-0  
CH0NB  
CH0SB<4:0>  
bit 15  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
CH0NA  
CH0SA<4:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CH0NB: Channel 0 Negative Input Select for Sample B bit  
Same definition as bit 7.  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits  
01100= Channel 0 positive input is AN12  
01011= Channel 0 positive input is AN11  
01000= Channel 0 positive input is AN8(1)  
00111= Channel 0 positive input is AN7(1)  
00110= Channel 0 positive input is AN6(1)  
00010= Channel 0 positive input is AN2  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
bit 7  
CH0NA: Channel 0 Negative Input Select for Sample A bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VREF-  
bit 6-5  
bit 4-0  
Unimplemented: Read as ‘0’  
CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits  
01100= Channel 0 positive input is AN12  
01011= Channel 0 positive input is AN11  
01000= Channel 0 positive input is AN8(1)  
00111= Channel 0 positive input is AN7(1)  
00110= Channel 0 positive input is AN6(1)  
00010= Channel 0 positive input is AN2  
00001= Channel 0 positive input is AN1  
00000= Channel 0 positive input is AN0  
Note 1: These bit settings (AN6, AN7 and AN8) are reserved on dsPIC33FJ128GPX02, dsPIC33FJ64GPX02 and  
dsPIC33FJ32GPX02 (28-pin) devices.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 263  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 21-7: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW(1,2)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CSS11  
R/W-0  
R/W-0  
CSS9  
R/W-0  
CSS8  
CSS12  
CSS10  
bit 15  
bit 8  
R/W-0  
CSS7  
R/W-0  
CSS6  
R/W-0  
CSS5  
R/W-0  
CSS4  
R/W-0  
CSS3  
R/W-0  
CSS2  
R/W-0  
CSS1  
R/W-0  
CSS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-12  
bit 11-0  
Unimplemented: Read as ‘0’  
CSS<11:0>: ADC Input Scan Selection bits  
1= Select ANx for input scan  
0= Skip ANx for input scan  
Note 1: On devices without 13 analog inputs, all AD1CSSL bits can be selected by the user application. However,  
inputs selected for scan without a corresponding input on device converts VREFL.  
2: CSSx = ANx, where x = 0 through 12.  
REGISTER 21-8: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW(1,2,3)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG12  
PCFG11  
PCFG10  
PCFG9  
PCFG8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG7  
PCFG6  
PCFG5  
PCFG4  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12-0  
Unimplemented: Read as ‘0’  
PCFG<12:0>: ADC Port Configuration Control bits  
1= Port pin in Digital mode, port read input enabled, ADC input multiplexor connected to AVSS  
0= Port pin in Analog mode, port read input disabled, ADC samples pin voltage  
Note 1: On devices without 13 analog inputs, all PCFG bits are R/W by user software. However, the PCFG bits are  
ignored on ports without a corresponding input on device.  
2: PCFGx = ANx, where x = 0 through 12.  
3: PCFGx bits have no effect if ADC module is disabled by setting ADxMD bit in the PMDx Register. In this  
case all port pins multiplexed with ANx will be in Digital mode.  
DS70292D-page 264  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
the DAC output controls an important processor or  
22.0 AUDIO DIGITAL-TO-ANALOG  
machinery. The DACDFLT register should be initialized  
CONVERTER (DAC)  
with a “safe” output value. Often the safe output value  
is either the midpoint value (0x8000) or a zero value  
(0x0000).  
Note 1: This data sheet summarizes the features  
of  
the  
dsPIC33FJ32GP302/304,  
and  
dsPIC33FJ64GPX02/X04,  
The digital interpolator up-samples the input signals,  
where the over-sampling ratio is 256x which creates  
data points between the user supplied data points.  
The interpolator also includes processing by digital  
filters to provide “noise shaping” to move the  
converter noise above 20 kHz (upper limit of the pass  
band). The output of the interpolator drives the Sigma-  
Delta modulator. The serial data bit stream from the  
Sigma-Delta modulator is processed by the  
reconstruction filter. The differential outputs of the  
reconstruction filter are amplified by Op Amps to  
provide the required peak-to-peak voltage swing.  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 33. Audio Digital-to-  
Analog Converter (DAC)”, (DS70211) of  
the “dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
Note:  
The DAC module is designed specifically  
for audio applications and is not  
recommended  
applications.  
for  
control  
type  
The Audio Digital-to-Analog Converter (DAC) module  
is a 16-bit Delta-Sigma signal converter designed for  
audio applications. It has two output channels, left and  
right to support stereo applications. Each DAC output  
channel provides three voltage outputs, positive DAC  
output, negative DAC output, and the midpoint voltage  
22.3 DAC Output Format  
The DAC output data stream can be in a two’s comple-  
ment signed number format or as an unsigned number  
format.  
output  
dsPIC33FJ128GP804  
dsPIC33FJ64GP802  
devices provide positive DAC output and negative DAC  
output voltages.  
for  
the  
dsPIC33FJ64GP804  
devices.  
and  
The  
The Audio DAC module features the ability to accept  
the 16-bit input data in a two’s complement signed  
number format or as an unsigned number format.  
The data formatting is controlled by the Data Format  
Control (FORM<8>) bit in the DAC1CON register.  
The supported formats are:  
and  
dsPIC33FJ128GP802  
22.1 Key Features  
1= Signed (two’s complement)  
0= Unsigned  
• 16-bit resolution (14-bit accuracy)  
• Second-Order Digital Delta-Sigma Modulator  
• 256 X Over-Sampling Ratio  
If the FORM bit is configured for “Unsigned data” then  
the user input data yields the following behavior:  
• 0xFFFF = most positive output voltage  
• 0x8000 = mid point output voltage  
• 0x7FFF = a value just below the midpoint  
• 0x0000 = minimum output voltage  
• 128-Tap FIR Current-Steering Analog Recon-  
struction Filter  
• 100 ksps Maximum Sampling Rate  
• User controllable Sample Clock  
• Input Frequency 45 kHz max  
• Differential Analog Outputs  
• Signal-To-Noise: 90 dB  
If the FORM bit is configured for “signed data” then the  
user input data yields the following behavior:  
• 0x7FFF = most positive output voltage  
• 0x0000 = mid point output voltage  
• 0xFFFF = value just below the midpoint  
• 0x8000 = minimum output voltage  
• 4-deep input Buffer  
• 16-bit Processor I/O, and DMA interfaces  
22.2 DAC Module Operation  
The Audio DAC provides an analog output proportional  
to the digital input value. The maximum 100,000 sam-  
ples per second (100 ksps) update rate provides good  
quality audio reproduction.  
The functional block diagram of the Audio DAC module  
is shown in Figure 22-1. The Audio DAC module pro-  
vides a 4-deep data input FIFO buffer for each output  
channel. If the DMA module and/or the processor can-  
not provide output data in a timely manner, and the  
FIFO becomes empty, the DAC accepts data from the  
DAC Default Data register (DACDFLT). This safety fea-  
ture is useful for industrial control applications where  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 265  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
The divisor ratio is programmed by clock divider bits  
22.4 DAC Clock  
(DACFDIV<6:0>) in the DAC Control register  
The DAC clock signal clocks the internal logic of the  
(DAC1CON). The resulting DAC clock must not exceed  
Audio DAC module. The data sample rate of the Audio  
25.6 MHz. If lower sample rates are to be used, then  
DAC is an integer division of the rate of the DAC clock.  
the DAC filter clock frequency may be reduced to  
The DAC clock is generated via a clock divider circuit  
reduce power consumption. The DAC clock frequency  
that accepts an auxiliary clock from the auxiliary  
is 256 times the sampling frequency.  
oscillator.  
FIGURE 22-1:  
BLOCK DIAGRAM OF AUDIO DIGITAL-TO-ANALOG (DAC) CONVERTER  
Right Channel  
DAC1RM  
DAC1RDAT  
DAC1RP  
DAC1RN  
Amp  
D/A  
Note 1  
ACLK  
DACDFLT  
CONTROL  
CLK DIV  
DACFDIV<6:0>  
DAC1LM  
DAC1LP  
DAC1LN  
Amp  
D/A  
DAC1LDAT  
Note 1  
Left Channel  
Note 1: If DAC1RDAT and DAC1LDAT are empty, data will be taken from the DACDFLT register.  
FIGURE 22-2:  
AUDIO DAC OUTPUT FOR RAMP INPUT (UNSIGNED)  
0xFFFF  
DAC input  
Count (DAC1RDAT)  
0x0000  
VDACH  
VDACM  
Positive DAC  
Output (DAC1RP)  
VDACL  
VDACH  
VDACM  
Negative DAC  
Output (DAC1RN)  
VDACL  
Note: VOD+ = VDACH – VDACL, VOD- = VDACL – VDACH; refer to Audio DAC Module Specifications, Table 30-42, for typical values.  
DS70292D-page 266  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 22-1: DAC1CON: DAC CONTROL REGISTER  
R/W-0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
FORM  
DACEN  
DACSIDL  
AMPON  
bit 15  
bit 8  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-1  
bit 0  
DACFDIV<6:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
DACEN: DAC1 Enable bit  
1= Enables module  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
DACSIDL: Stop in Ideal Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12  
AMPON: Enable Analog Output Amplifier in Sleep Mode/Stop-in Idle Mode  
1= Analog Output Amplifier is enabled during Sleep Mode/Stop-in Idle mode  
0= Analog Output Amplifier is disabled during Sleep Mode/Stop-in Idle mode  
bit 11-9  
bit 8  
Unimplemented: Read as ‘0’  
FORM: Data Format Select bit  
1= Signed integer  
0 = Unsigned integer  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
DACFDIV<6:0>: DAC Clock Divider  
1111111= Divide input clock by 128  
0000101= Divide input clock by 6 (default)  
0000010= Divide input clock by 3  
0000001= Divide input clock by 2  
0000000= Divide input clock by 1 (no divide)  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 267  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 22-2: DAC1STAT: DAC STATUS REGISTER  
R/W-0  
LOEN  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
R-0  
R-0  
LMVOEN  
LITYPE  
LFULL  
LEMPTY  
bit 15  
bit 8  
R/W-0  
ROEN  
U-0  
R/W-0  
U-0  
U-0  
R/W-0  
R-0  
R-0  
RMVOEN  
RITYPE  
RFULL  
REMPTY  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
LOEN: Left Channel DAC output enable  
1= Positive and negative DAC outputs are enabled.  
0= DAC outputs are disabled.  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
LMVOEN: Left Channel Midpoint DAC output voltage enable  
1= Midpoint DAC output is enabled.  
0= Midpoint output is disabled.  
bit 12-11  
bit 10  
Unimplemented: Read as ‘0’  
LITYPE: Left Channel Type of Interrupt  
1= Interrupt if FIFO is EMPTY.  
0= Interrupt if FIFO is NOT FULL.  
bit 9  
bit 8  
bit 7  
LFULL: Status, Left Channel Data input FIFO is FULL  
1= FIFO is Full.  
0= FIFO is not full.  
LEMPTY: Status, Left Channel Data input FIFO is EMPTY  
1= FIFO is Empty.  
0= FIFO is not Empty.  
ROEN: Right Channel DAC output enable  
1= Positive and negative DAC outputs are enabled.  
0= DAC outputs are disabled.  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
RMVOEN: Right Channel Midpoint DAC output voltage enable  
1= Midpoint DAC output is enabled.  
0= Midpoint output is disabled.  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
RITYPE: Right Channel Type of Interrupt  
1= Interrupt if FIFO is EMPTY.  
0= Interrupt if FIFO is NOT FULL.  
bit 1  
bit 0  
RFULL: Status, Right Channel Data input FIFO is FULL  
1= FIFO is Full.  
0= FIFO is not full.  
REMPTY: Status, Right Channel Data input FIFO is EMPTY  
1= FIFO is Empty.  
0= FIFO is not Empty.  
DS70292D-page 268  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 22-3: DAC1DFLT: DAC DEFAULT DATA REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
DACDFLT<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
DACDFLT<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
DACDFLT<15:0>: DAC Default Value  
REGISTER 22-4: DAC1LDAT: DAC LEFT DATA REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DACLDAT<15:8>  
bit 15  
R/W-0  
bit 7  
bit 8  
R/W-0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DACLDAT<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
DACLDAT<15:0>: Left Channel Data Port  
REGISTER 22-5: DAC1RDAT: DAC RIGHT DATA REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
DACRDAT<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
DACRDAT<7:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
DACRDAT<15:0>: Right Channel Data Port  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 269  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 270  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
The Comparator module provides a set of dual input  
comparators. The inputs to the comparator can be con-  
23.0 COMPARATOR MODULE  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and  
figured to use any one of the four pin inputs (C1IN+,  
C1IN-, C2IN+ and C2IN-) as well as the Comparator  
Voltage Reference Input (CVREF).  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 34. Comparator”  
(DS70212) of the “dsPIC33F/PIC24H  
Family Reference Manual”, which is avail-  
able from the Microchip website  
(www.microchip.com).  
Note:  
This peripheral contains output func-  
tions that may need to be configured by  
the peripheral pin select feature. For  
more information, see Section 11.6  
“Peripheral Pin Select”.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
FIGURE 23-1:  
COMPARATOR I/O OPERATING MODES  
C1NEG  
C1EN  
CMCON<6>  
C1OUT(1)  
C1INV  
C1IN+  
C1IN-  
VIN-  
C1POS  
C1  
C1IN+  
CVREF  
VIN+  
C1OUTEN  
C2NEG  
C2POS  
CMCON<7>  
C2OUT(1)  
C2EN  
C2  
C2INV  
C2IN+  
C2IN-  
VIN-  
VIN+  
C2IN+  
CVREF  
C2OUTEN  
Note 1: This peripheral’s outputs must be assigned to an available RPn pin before use. Refer to  
Section 11.6 “Peripheral Pin Select” for more information.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 271  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 23-1: CMCON: COMPARATOR CONTROL REGISTER  
R/W-0  
CMIDL  
U-0  
R/W-0  
R/W-0  
R/W-0  
C2EN  
R/W-0  
C1EN  
R/W-0  
R/W-0  
C2EVT  
C1EVT  
C2OUTEN(1) C1OUTEN(2)  
bit 15  
bit 8  
R-0  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
C2OUT  
C1OUT  
C2NEG  
C2POS  
C1NEG  
C1POS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CMIDL: Stop in Idle Mode  
1= When device enters Idle mode, module does not generate interrupts. Module is still enabled.  
0= Continue normal module operation in Idle mode  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
C2EVT: Comparator 2 Event  
1= Comparator output changed states  
0= Comparator output did not change states  
bit 12  
bit 11  
bit 10  
bit 9  
C1EVT: Comparator 1 Event  
1= Comparator output changed states  
0= Comparator output did not change states  
C2EN: Comparator 2 Enable  
1= Comparator is enabled  
0= Comparator is disabled  
C1EN: Comparator 1 Enable  
1= Comparator is enabled  
0= Comparator is disabled  
C2OUTEN: Comparator 2 Output Enable(1)  
1= Comparator output is driven on the output pad  
0= Comparator output is not driven on the output pad  
bit 8  
C1OUTEN: Comparator 1 Output Enable(2)  
1= Comparator output is driven on the output pad  
0= Comparator output is not driven on the output pad  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
0= C2 VIN+ > C2 VIN-  
1= C2 VIN+ < C2 VIN-  
Note 1: If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See  
Section 11.6 “Peripheral Pin Select” for more information.  
2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See  
Section 11.6 “Peripheral Pin Select” for more information.  
DS70292D-page 272  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 23-1: CMCON: COMPARATOR CONTROL REGISTER (CONTINUED)  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
0= C1 VIN+ > C1 VIN-  
1= C1 VIN+ < C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 output inverted  
0= C1 output not inverted  
C2NEG: Comparator 2 Negative Input Configure bit  
1= Input is connected to VIN+  
0= Input is connected to VIN-  
See Figure 23-1 for the comparator modes.  
bit 2  
bit 1  
bit 0  
C2POS: Comparator 2 Positive Input Configure bit  
1= Input is connected to VIN+  
0= Input is connected to CVREF  
See Figure 23-1 for the comparator modes.  
C1NEG: Comparator 1 Negative Input Configure bit  
1= Input is connected to VIN+  
0= Input is connected to VIN-  
See Figure 23-1 for the comparator modes.  
C1POS: Comparator 1 Positive Input Configure bit  
1= Input is connected to VIN+  
0= Input is connected to CVREF  
See Figure 23-1 for the comparator modes.  
Note 1: If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See  
Section 11.6 “Peripheral Pin Select” for more information.  
2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See  
Section 11.6 “Peripheral Pin Select” for more information.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 273  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
The comparator reference supply voltage can come  
from either VDD and VSS, or the external VREF+ and  
23.1 Comparator Voltage Reference  
VREF-. The voltage source is selected by the CVRSS  
bit (CVRCON<4>).  
23.1.1  
CONFIGURING THE COMPARATOR  
VOLTAGE REFERENCE  
The settling time of the comparator voltage reference  
must be considered when changing the CVREF  
output.  
The voltage reference module is controlled through the  
CVRCON register (Register 23-2). The comparator  
voltage reference provides two ranges of output  
voltage, each with 16 distinct levels. The range to be  
used is selected by the CVRR bit (CVRCON<5>). The  
primary difference between the ranges is the size of the  
steps selected by the CVREF Selection bits  
(CVR3:CVR0), with one range offering finer resolution.  
FIGURE 23-2:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
CVRSS = 1  
CVRSS = 0  
CVRSRC  
8R  
VREF+  
AVDD  
CVRCON<3:0>  
R
CVREFIN  
CVREN  
R
R
R
16 Steps  
CVREF  
R
R
R
CVRCON<CVROE>  
CVRR  
VREF-  
8R  
CVRSS = 1  
CVRSS = 0  
AVSS  
DS70292D-page 274  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 23-2: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
CVRR  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
CVREN  
CVROE  
CVRSS  
CVR<3:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
bit 6  
CVROE: Comparator VREF Output Enable bit  
1= CVREF voltage level is output on CVREF pin  
0= CVREF voltage level is disconnected from CVREF pin  
bit 5  
CVRR: Comparator VREF Range Selection bit  
1= CVRSRC range should be 0 to 0.625 CVRSRC with CVRSRC/24 step size  
0= CVRSRC range should be 0.25 to 0.719 CVRSRC with CVRSRC/32 step size  
bit 4  
CVRSS: Comparator VREF Source Selection bit  
1= Comparator reference source CVRSRC = VREF+ – VREF-  
0= Comparator reference source CVRSRC = AVDD – AVSS  
bit 3-0  
CVR<3:0>: Comparator VREF Value Selection 0 CVR<3:0> 15 bits  
When CVRR = 1:  
CVREF = (CVR<3:0>/ 24) (CVRSRC)  
When CVRR = 0:  
CVREF = 1/4 (CVRSRC) + (CVR<3:0>/32) (CVRSRC)  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 275  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 276  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
• Time: hours, minutes, and seconds  
24.0 REAL-TIME CLOCK AND  
• 24-hour format (military time)  
CALENDAR (RTCC)  
• Calendar: weekday, date, month and year  
Note 1: This data sheet summarizes the features  
• Alarm configurable  
of  
the  
dsPIC33FJ32GP302/304,  
and  
dsPIC33FJ64GPX02/X04,  
Year range: 2000 to 2099  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 37. Real-Time Clock  
and Calendar (RTCC)” of the  
dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
• Leap year correction  
• BCD format for compact firmware  
• Optimized for low-power operation  
• User calibration with auto-adjust  
• Calibration range: ±2.64 seconds error per month  
• Requirements: External 32.768 kHz clock crystal  
• Alarm pulse or seconds clock output on RTCC pin  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
The RTCC module is intended for applications where  
accurate time must be maintained for extended periods  
of time with minimum to no intervention from the CPU.  
The RTCC module is optimized for low-power usage to  
provide extended battery lifetime while keeping track of  
time.  
This chapter discusses the Real-Time Clock and  
The RTCC module is a 100-year clock and calendar  
with automatic leap year detection. The range of the  
clock is from 00:00:00 (midnight) on January 1, 2000 to  
23:59:59 on December 31, 2099.  
Calendar  
(RTCC)  
module,  
available  
on  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 devices, and its  
operation. The following are some of the key  
features of this module:  
The hours are available in 24-hour (military time)  
format. The clock provides a granularity of one second  
with half-second visibility to the user.  
FIGURE 24-1:  
RTCC BLOCK DIAGRAM  
CPU Clock Domain  
RTCC Clock Domain  
32.768 kHz Input  
from SOSC Oscillator  
RCFGCAL  
RTCC Prescalers  
0.5s  
ALCFGRPT  
RTCVAL  
RTCC Timer  
Alarm  
Event  
Comparator  
Compare Registers  
with Masks  
ALRMVAL  
Repeat Counter  
RTCC Interrupt  
RTCC Interrupt Logic  
Alarm Pulse  
RTCC Pin  
RTCOE  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 277  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
By writing the ALRMVALH byte, the Alarm Pointer  
value, ALRMPTR<1:0> bits, decrement by one until  
they reach ‘00’. Once they reach ‘00’, the ALRMMIN  
and ALRMSEC value will be accessible through  
24.1 RTCC Module Registers  
The RTCC module registers are organized into three  
categories:  
ALRMVALH and ALRMVALL until the pointer value is  
manually changed.  
• RTCC Control Registers  
• RTCC Value Registers  
• Alarm Value Registers  
TABLE 24-2: ALRMVAL REGISTER  
MAPPING  
24.1.1  
REGISTER MAPPING  
To limit the register interface, the RTCC Timer and  
Alarm Time registers are accessed through corre-  
sponding register pointers. The RTCC Value register  
window (RTCVALH and RTCVALL) uses the RTCPTR  
bits (RCFGCAL<9:8>) to select the desired timer  
register pair (see Table 24-1).  
Alarm Value Register Window  
ALRMPTR  
<1:0>  
ALRMVAL<15:8> ALRMVAL<7:0>  
00  
01  
10  
11  
ALRMMIN  
ALRMWD  
ALRMMNTH  
ALRMSEC  
ALRMHR  
ALRMDAY  
By writing the RTCVALH byte, the RTCC Pointer value,  
RTCPTR<1:0> bits, decrement by one until they reach  
00’. Once they reach ‘00’, the MINUTES and  
SECONDS value will be accessible through RTCVALH  
and RTCVALL until the pointer value is manually  
changed.  
Considering that the 16-bit core does not distinguish  
between 8-bit and 16-bit read operations, the user must  
be aware that when reading either the ALRMVALH or  
ALRMVALL bytes will decrement the ALRMPTR<1:0>  
value. The same applies to the RTCVALH or RTCVALL  
bytes with the RTCPTR<1:0> being decremented.  
TABLE 24-1: RTCVAL REGISTER MAPPING  
RTCC Value Register Window  
RTCPTR  
Note:  
This only applies to read operations and  
not write operations.  
<1:0>  
RTCVAL<15:8> RTCVAL<7:0>  
24.1.2  
WRITE LOCK  
00  
01  
10  
11  
MINUTES  
WEEKDAY  
MONTH  
SECONDS  
HOURS  
DAY  
In order to perform a write to any of the RTCC Timer  
registers, the RTCWREN bit (RCFGCAL<13>) must be  
set (refer to Example 24-1).  
YEAR  
Note:  
To avoid accidental writes to the timer, it is  
recommended that the RTCWREN bit  
(RCFGCAL<13>) is kept clear at any  
other time. For the RTCWREN bit to be  
set, there is only 1 instruction cycle time  
window allowed between the 55h/AA  
sequence and the setting of RTCWREN;  
therefore, it is recommended that code  
follow the procedure in Example 24-1.  
The Alarm Value register window (ALRMVALH and  
ALRMVALL) uses the ALRMPTR bits  
(ALCFGRPT<9:8>) to select the desired Alarm register  
pair (see Table 24-2).  
EXAMPLE 24-1:  
SETTING THE RTCWREN BIT  
MOV  
MOV  
MOV  
MOV  
MOV  
BSET  
#NVMKEY, W1  
;move the address of NVMKEY into W1  
#0x55, W2  
#0xAA, W3  
W2, [W1]  
W3, [W1]  
RCFGCAL, #13  
;start 55/AA sequence  
;set the RTCWREN bit  
DS70292D-page 278  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 24-1:  
RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER(1)  
R/W-0  
RTCEN(2)  
bit 15  
U-0  
R/W-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
RTCWREN RTCSYNC HALFSEC(3)  
RTCOE  
RTCPTR<1:0>  
bit 8  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CAL<7:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
RTCEN: RTCC Enable bit(2)  
1= RTCC module is enabled  
0= RTCC module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
RTCWREN: RTCC Value Registers Write Enable bit  
1= RTCVALH and RTCVALL registers can be written to by the user  
0= RTCVALH and RTCVALL registers are locked out from being written to by the user  
bit 12  
RTCSYNC: RTCC Value Registers Read Synchronization bit  
1= RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple  
resulting in an invalid data read. If the register is read twice and results in the same data, the data  
can be assumed to be valid.  
0= RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover ripple  
bit 11  
bit 10  
bit 9-8  
HALFSEC: Half-Second Status bit(3)  
1= Second half period of a second  
0= First half period of a second  
RTCOE: RTCC Output Enable bit  
1= RTCC output enabled  
0= RTCC output disabled  
RTCPTR<1:0>: RTCC Value Register Window Pointer bits  
Points to the corresponding RTCC Value registers when reading RTCVALH and RTCVALL registers;  
the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches ‘00’.  
RTCVAL<15:8>:  
00= MINUTES  
01= WEEKDAY  
10= MONTH  
11= Reserved  
RTCVAL<7:0>:  
00= SECONDS  
01= HOURS  
10= DAY  
11= YEAR  
Note 1: The RCFGCAL register is only affected by a POR.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
3: This bit is read-only. It is cleared to ‘0’ on a write to the lower half of the MINSEC register.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 279  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 24-1:  
RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER(1) (CONTINUED)  
bit 7-0  
CAL<7:0>: RTC Drift Calibration bits  
01111111= Maximum positive adjustment; adds 508 RTC clock pulses every one minute  
00000001= Minimum positive adjustment; adds 4 RTC clock pulses every one minute  
00000000= No adjustment  
11111111= Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute  
10000000= Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute  
Note 1: The RCFGCAL register is only affected by a POR.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
3: This bit is read-only. It is cleared to ‘0’ on a write to the lower half of the MINSEC register.  
DS70292D-page 280  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 24-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
RTSECSEL(1)  
R/W-0  
PMPTTL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-2  
bit 1  
Unimplemented: Read as ‘0’  
RTSECSEL: RTCC Seconds Clock Output Select bit(1)  
1= RTCC seconds clock is selected for the RTCC pin  
0= RTCC alarm pulse is selected for the RTCC pin  
bit 0  
PMPTTL: PMP Module TTL Input Buffer Select bit  
1= PMP module uses TTL input buffers  
0= PMP module uses Schmitt Trigger input buffers  
Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 281  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 24-3: ALCFGRPT: ALARM CONFIGURATION REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ALRMEN  
CHIME  
AMASK<3:0>  
ALRMPTR<1:0>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0 R/W-0  
ARPT<7:0>  
R/W-0  
R/W-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ALRMEN: Alarm Enable bit  
1= Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 00h and  
CHIME = 0)  
0= Alarm is disabled  
bit 14  
CHIME: Chime Enable bit  
1= Chime is enabled; ARPT<7:0> bits are allowed to roll over from 00h to FFh  
0= Chime is disabled; ARPT<7:0> bits stop once they reach 00h  
bit 13-10  
AMASK<3:0>: Alarm Mask Configuration bits  
0000= Every half second  
0001= Every second  
0010= Every 10 seconds  
0011= Every minute  
0100= Every 10 minutes  
0101= Every hour  
0110= Once a day  
0111= Once a week  
1000= Once a month  
1001= Once a year (except when configured for February 29th, once every 4 years)  
101x= Reserved – do not use  
11xx= Reserved – do not use  
bit 9-8  
ALRMPTR<1:0>: Alarm Value Register Window Pointer bits  
Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL registers;  
the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches ‘00’.  
ALRMVAL<15:8>:  
00= ALRMMIN  
01= ALRMWD  
10= ALRMMNTH  
11= Unimplemented  
ALRMVAL<7:0>:  
00= ALRMSEC  
01= ALRMHR  
10= ALRMDAY  
11= Unimplemented  
bit 7-0  
ARPT<7:0>: Alarm Repeat Counter Value bits  
11111111= Alarm will repeat 255 more times  
00000000= Alarm will not repeat  
The counter decrements on any alarm event. The counter is prevented from rolling over from 00h to  
FFh unless CHIME = 1.  
DS70292D-page 282  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 24-4: RTCVAL (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-x  
bit 7  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 0  
YRTEN<3:0>  
YRONE<3:0>  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
YRTEN<3:0>: Binary Coded Decimal Value of Year’s Tens Digit; contains a value from 0 to 9  
YRONE<3:0>: Binary Coded Decimal Value of Year’s Ones Digit; contains a value from 0 to 9  
Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.  
REGISTER 24-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER(1)  
U-0  
U-0  
U-0  
R-x  
R-x  
R-x  
R-x  
R-x  
MTHTEN0  
MTHONE<3:0>  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYTEN<1:0>  
DAYONE<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit; contains a value of 0 or 1  
bit 11-8  
bit 7-6  
bit 5-4  
bit 3-0  
MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit; contains a value from 0 to 9  
Unimplemented: Read as ‘0’  
DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit; contains a value from 0 to 3  
DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit; contains a value from 0 to 9  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 283  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 24-6: RTCVAL (WHEN RTCPTR<1:0> = 01): WKDYHR: WEEKDAY AND HOURS VALUE  
REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
bit 8  
WDAY<2:0>  
bit 15  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 0  
HRTEN<1:0>  
HRONE<3:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
bit 7-6  
Unimplemented: Read as ‘0’  
WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6  
Unimplemented: Read as ‘0’  
bit 5-4  
HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit; contains a value from 0 to 2  
HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit; contains a value from 0 to 9  
bit 3-0  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 24-7: RTCVAL (WHEN RTCPTR<1:0> = 00): MINUTES AND SECONDS VALUE  
REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
MINTEN<2:0>  
MINONE<3:0>  
bit 15  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 0  
SECTEN<2:0>  
SECONE<3:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit; contains a value from 0 to 5  
bit 14-12  
bit 11-8  
bit 7  
MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit; contains a value from 0 to 9  
Unimplemented: Read as ‘0’  
bit 6-4  
bit 3-0  
SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit; contains a value from 0 to 5  
SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit; contains a value from 0 to 9  
DS70292D-page 284  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 24-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE  
REGISTER(1)  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MTHTEN0  
MTHONE<3:0>  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYTEN<1:0>  
DAYONE<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit; contains a value of 0 or 1  
bit 11-8  
bit 7-6  
bit 5-4  
bit 3-0  
MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit; contains a value from 0 to 9  
Unimplemented: Read as ‘0’  
DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit; contains a value from 0 to 3  
DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit; contains a value from 0 to 9  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 24-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS  
VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WDAY2  
WDAY1  
WDAY0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
HRTEN<1:0>  
HRONE<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
bit 7-6  
Unimplemented: Read as ‘0’  
WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6  
Unimplemented: Read as ‘0’  
bit 5-4  
HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit; contains a value from 0 to 2  
HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit; contains a value from 0 to 9  
bit 3-0  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 285  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 24-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS  
VALUE REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 8  
MINTEN<2:0>  
MINONE<3:0>  
bit 15  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 0  
SECTEN<2:0>  
SECONE<3:0>  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit; contains a value from 0 to 5  
bit 14-12  
bit 11-8  
bit 7  
MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit; contains a value from 0 to 9  
Unimplemented: Read as ‘0’  
bit 6-4  
bit 3-0  
SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit; contains a value from 0 to 5  
SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit; contains a value from 0 to 9  
DS70292D-page 286  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
25.1 Overview  
25.0 PROGRAMMABLE CYCLIC  
REDUNDANCY CHECK (CRC)  
GENERATOR  
The module implements a software configurable CRC  
generator. The terms of the polynomial and its length  
can be programmed using the CRCXOR (X<15:1>) bits  
and the CRCCON (PLEN<3:0>) bits, respectively.  
Note 1: This data sheet summarizes the features  
of  
the  
dsPIC33FJ32GP302/304,  
and  
dsPIC33FJ64GPX02/X04,  
EQUATION 25-1: CRC EQUATION  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 36. Programmable  
Cyclic Redundancy Check (CRC)”  
(DS70298) of the “dsPIC33F/PIC24H  
Family Reference Manual”, which is avail-  
able from the Microchip website  
(www.microchip.com).  
16  
12  
5
x
+ x + x + 1  
To program this polynomial into the CRC generator,  
the CRC register bits should be set as shown in  
Table 25-1.  
TABLE 25-1: EXAMPLE CRC SETUP  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
Bit Name  
Bit Value  
PLEN<3:0>  
X<15:1>  
1111  
000100000010000  
For the value of X<15:1>, the 12th bit and the 5th bit are  
set to ‘1’, as required by the CRC equation. The 0th bit  
required by the CRC equation is always XORed. For a  
16-bit polynomial, the 16th bit is also always assumed  
to be XORed; therefore, the X<15:1> bits do not have  
the 0th bit or the 16th bit.  
The programmable CRC generator offers the following  
features:  
• User-programmable polynomial CRC equation  
• Interrupt output  
The topology of a standard CRC generator is shown in  
Figure 25-2.  
• Data FIFO  
FIGURE 25-1:  
CRC SHIFTER DETAILS  
PLEN<3:0>  
0
1
2
15  
CRC Shift Register  
Hold  
Hold  
X2  
Hold  
Hold  
X1  
X3  
X15  
0
0
0
0
XOR  
OUT  
OUT  
OUT  
OUT  
IN  
BIT 0  
IN  
BIT 1  
IN  
BIT 2  
IN  
BIT 15  
DOUT  
1
1
1
1
p_clk  
p_clk  
p_clk  
p_clk  
CRC Read Bus  
CRC Write Bus  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 287  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 25-2:  
CRC GENERATOR RECONFIGURED FOR x16 + x12 + x5 + 1  
XOR  
D
Q
D
Q
D
Q
D
Q
D
Q
SDOx  
BIT 0  
BIT 4  
BIT 5  
BIT 12  
BIT 15  
p_clk  
p_clk  
p_clk  
p_clk  
p_clk  
CRC Read Bus  
CRC Write Bus  
To empty words already written into a FIFO, the  
CRCGO bit must be set to ‘1’ and the CRC shifter  
allowed to run until the CRCMPT bit is set.  
25.2 User Interface  
25.2.1  
DATA INTERFACE  
Also, to get the correct CRC reading, it will be  
necessary to wait for the CRCMPT bit to go high before  
reading the CRCWDAT register.  
To start serial shifting, a ‘1’ must be written to the  
CRCGO bit.  
The module incorporates a FIFO that is 8 deep when  
PLEN (PLEN<3:0>) > 7, and 16 deep, otherwise. The  
data for which the CRC is to be calculated must first be  
written into the FIFO. The smallest data element that  
can be written into the FIFO is one byte. For example,  
if PLEN = 5, then the size of the data is PLEN + 1 = 6.  
The data must be written as follows:  
If a word is written when the CRCFUL bit is set, the  
VWORD Pointer will roll over to 0. The hardware will  
then behave as if the FIFO is empty. However, the con-  
dition to generate an interrupt will not be met; therefore,  
no interrupt will be generated (See Section 25.2.2  
“Interrupt Operation”).  
At least one instruction cycle must pass after a write to  
CRCWDAT before a read of the VWORD bits is done.  
data[5:0] = crc_input[5:0]  
data[7:6] = ‘bxx  
Once data is written into the CRCWDAT MSb (as  
defined by PLEN), the value of VWORD  
(VWORD<4:0>) increments by one. The serial shifter  
starts shifting data into the CRC engine when  
CRCGO = 1 and VWORD > 0. When the MSb is  
shifted out, VWORD decrements by one. The serial  
shifter continues shifting until the VWORD reaches 0.  
Therefore, for a given value of PLEN, it will take  
(PLEN + 1) * VWORD number of clock cycles to  
complete the CRC calculations.  
25.2.2  
INTERRUPT OPERATION  
When the VWORD4:VWORD0 bits make a transition  
from a value of ‘1’ to ‘0’, an interrupt will be generated.  
25.3 Operation in Power Save Modes  
25.3.1  
SLEEP MODE  
If Sleep mode is entered while the module is operating,  
the module will be suspended in its current state until  
clock execution resumes.  
When VWORD reaches 8 (or 16), the CRCFUL bit will  
be set. When VWORD reaches 0, the CRCMPT bit will  
be set.  
25.3.2  
IDLE MODE  
To continually feed data into the CRC engine, the rec-  
ommended mode of operation is to initially “prime” the  
FIFO with a sufficient number of words so no interrupt  
is generated before the next word can be written. Once  
that is done, start the CRC by setting the CRCGO bit to  
1’. From that point onward, the VWORD bits should be  
polled. If they read less than 8 or 16, another word can  
be written into the FIFO.  
To continue full module operation in Idle mode, the  
CSIDL bit must be cleared prior to entry into the mode.  
If CSIDL = 1, the module will behave the same way as  
it does in Sleep mode; pending interrupt events will be  
passed on, even though the module clocks are not  
available.  
DS70292D-page 288  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
25.4 Registers  
The CRC module provides the following registers:  
• CRC Control Register  
• CRC XOR Polynomial Register  
REGISTER 25-1: CRCCON: CRC CONTROL REGISTER  
U-0  
U-0  
R/W-0  
CSIDL  
R-0  
R-0  
R-0  
R-0  
R-0  
VWORD<4:0>  
bit 15  
bit 8  
R-0  
R-1  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CRCFUL  
CRCMPT  
CRCGO  
PLEN<3:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CSIDL: CRC Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-8  
bit 7  
VWORD<4:0>: Pointer Value bits  
Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<3:0> is  
greater than 7, or 16 when PLEN<3:0> is less than or equal to 7.  
CRCFUL: FIFO Full bit  
1= FIFO is full  
0= FIFO is not full  
bit 6  
CRCMPT: FIFO Empty bit  
1= FIFO is empty  
0= FIFO is not empty  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
CRCGO: Start CRC bit  
1= Start CRC serial shifter  
0= Turn off CRC serial shifter after FIFO is empty  
bit 3-0  
PLEN<3:0>: Polynomial Length bits  
Denotes the length of the polynomial to be generated minus 1.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 289  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 25-2: CRCXOR: CRC XOR POLYNOMIAL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 8  
X<15:8>  
bit 15  
R/W-0  
bit 7  
R/W-0  
U-0  
X<7:1>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-1  
bit 0  
X<15:1>: XOR of Polynomial Term Xn Enable bits  
Unimplemented: Read as ‘0’  
DS70292D-page 290  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
devices and microcontrollers. Because the interface  
to parallel peripherals varies significantly, the PMP is  
highly configurable.  
26.0 PARALLEL MASTER PORT  
(PMP)  
Note 1: This data sheet summarizes the features  
of the dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and  
Key features of the PMP module include:  
• Fully multiplexed address/data mode  
• Demultiplexed or partially multiplexed address/  
data mode  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to “Section 35. Parallel Master  
Port (PMP)” (DS70299) of the  
dsPIC33F/PIC24H Family Reference  
Manual”, which is available from the  
Microchip website (www.microchip.com).  
- up to 11 address lines with single chip select  
- up to 12 address lines without chip select  
• One Chip Select Line  
• Programmable Strobe Options  
- Individual Read and Write Strobes or;  
- Read/Write Strobe with Enable Strobe  
• Address Auto-Increment/Auto-Decrement  
• Programmable Address/Data Multiplexing  
• Programmable Polarity on Control Signals  
• Legacy Parallel Slave Port Support  
• Enhanced Parallel Slave Support  
- Address Support  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
The Parallel Master Port (PMP) module is a parallel  
8-bit I/O module, specifically designed to communi-  
cate with a wide variety of parallel devices, such as  
communication peripherals, LCDs, external memory  
- 4-Byte Deep Auto-Incrementing Buffer  
• Programmable Wait States  
• Selectable Input Voltage Levels  
FIGURE 26-1:  
PMP MODULE OVERVIEW  
Address Bus  
Data Bus  
PMA<0>  
PMALL  
Control Lines  
dsPIC33F  
Parallel Master Port  
PMA<1>  
PMALH  
Up to 11-Bit Address  
EEPROM  
PMA<10:2>(1)  
PMA<14>  
PMCS1  
PMBE  
PMRD  
PMRD/PMWR  
PMWR  
PMENB  
FIFO  
Buffer  
Microcontroller  
LCD  
PMD<7:0>  
PMA<7:0>  
PMA<10:8>  
8-Bit Data  
Note 1: 28-pin devices do not have PMA<10:2>.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 291  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 26-1: PMCON: PARALLEL PORT CONTROL REGISTER  
R/W-0  
U-0  
R/W-0  
PSIDL  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PMPEN  
ADRMUX1 ADRMUX0  
PTBEEN  
PTWREN  
PTRDEN  
bit 15  
bit 8  
R/W-0  
CSF1  
R/W-0  
CSF0  
R/W-0(1)  
ALP  
U-0  
R/W-0(1)  
CS1P  
R/W-0  
BEP  
R/W-0  
WRSP  
R/W-0  
RDSP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PMPEN: Parallel Master Port Enable bit  
1= PMP enabled  
0= PMP disabled, no off-chip access performed  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
PSIDL: Stop in Idle Mode bit  
1= Discontinue module operation when device enters Idle mode  
0= Continue module operation in Idle mode  
bit 12-11  
ADRMUX1:ADRMUX0: Address/Data Multiplexing Selection bits(1)  
11= Reserved  
10= All 16 bits of address are multiplexed on PMD<7:0> pins  
01= Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 3 bits are multiplexed on  
PMA<10:8>  
00= Address and data appear on separate pins  
bit 10  
bit 9  
PTBEEN: Byte Enable Port Enable bit (16-bit Master mode)  
1= PMBE port enabled  
0= PMBE port disabled  
PTWREN: Write Enable Strobe Port Enable bit  
1= PMWR/PMENB port enabled  
0= PMWR/PMENB port disabled  
bit 8  
PTRDEN: Read/Write Strobe Port Enable bit  
1= PMRD/PMWR port enabled  
0= PMRD/PMWR port disabled  
bit 7-6  
CSF1:CSF0: Chip Select Function bits  
11= Reserved  
10= PMCS1 functions as chip select  
0x= PMCS1 functions as address bit 14  
bit 5  
ALP: Address Latch Polarity bit(1)  
1= Active-high (PMALL and PMALH)  
0= Active-low (PMALL and PMALH)  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CS1P: Chip Select 1 Polarity bit(1)  
1= Active-high (PMCS1/PMCS1)  
0= Active-low (PMCS1/PMCS1)  
bit 2  
BEP: Byte Enable Polarity bit  
1= Byte enable active-high (PMBE)  
0= Byte enable active-low (PMBE)  
Note 1: These bits have no effect when their corresponding pins are used as address lines.  
DS70292D-page 292  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 26-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)  
bit 1  
WRSP: Write Strobe Polarity bit  
For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):  
1= Write strobe active-high (PMWR)  
0= Write strobe active-low (PMWR)  
For Master mode 1 (PMMODE<9:8> = 11):  
1= Enable strobe active-high (PMENB)  
0= Enable strobe active-low (PMENB)  
bit 0  
RDSP: Read Strobe Polarity bit  
For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):  
1= Read strobe active-high (PMRD)  
0= Read strobe active-low (PMRD)  
For Master mode 1 (PMMODE<9:8> = 11):  
1= Read/write strobe active-high (PMRD/PMWR)  
0= Read/write strobe active-low (PMRD/PMWR)  
Note 1: These bits have no effect when their corresponding pins are used as address lines.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 293  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 26-2: PMMODE: PARALLEL PORT MODE REGISTER  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BUSY  
IRQM<1:0>  
INCM<1:0>  
MODE16  
MODE<1:0>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAITB<1:0>(1)  
WAITM<3:0>  
WAITE<1:0>(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
BUSY: Busy bit (Master mode only)  
1= Port is busy (not useful when the processor stall is active)  
0= Port is not busy  
bit 14-13  
IRQM<1:0>: Interrupt Request Mode bits  
11= Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode)  
or on a read or write operation when PMA<1:0> = 11(Addressable PSP mode only)  
10= No interrupt generated, processor stall activated  
01= Interrupt generated at the end of the read/write cycle  
00= No interrupt generated  
bit 12-11  
INCM<1:0>: Increment Mode bits  
11= PSP read and write buffers auto-increment (Legacy PSP mode only)  
10= Decrement ADDR<10:0> by 1 every read/write cycle  
01= Increment ADDR<10:0> by 1 every read/write cycle  
00= No increment or decrement of address  
bit 10  
MODE16: 8-Bit/16-Bit Mode bit  
1= 16-bit mode: data register is 16 bits, a read or write to the data register invokes two 8-bit transfers  
0= 8-bit mode: data register is 8 bits, a read or write to the data register invokes one 8-bit transfer  
bit 9-8  
MODE<1:0>: Parallel Port Mode Select bits  
11= Master mode 1 (PMCS1, PMRD/PMWR, PMENB, PMBE, PMA<x:0> and PMD<7:0>)  
10= Master mode 2 (PMCS1, PMRD, PMWR, PMBE, PMA<x:0> and PMD<7:0>)  
01= Enhanced PSP, control signals (PMRD, PMWR, PMCS1, PMD<7:0> and PMA<1:0>)  
00= Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS1 and PMD<7:0>)  
bit 7-6  
bit 5-2  
WAITB<1:0>: Data Setup to Read/Write Wait State Configuration bits(1)  
11= Data wait of 4 TCY; multiplexed address phase of 4 TCY  
10= Data wait of 3 TCY; multiplexed address phase of 3 TCY  
01= Data wait of 2 TCY; multiplexed address phase of 2 TCY  
00= Data wait of 1 TCY; multiplexed address phase of 1 TCY  
WAITM<3:0>: Read to Byte Enable Strobe Wait State Configuration bits  
1111= Wait of additional 15 TCY  
0001= Wait of additional 1 TCY  
0000= No additional wait cycles (operation forced into one TCY)  
WAITE<1:0>: Data Hold After Strobe Wait State Configuration bits(1)  
bit 1-0  
11= Wait of 4 TCY  
10= Wait of 3 TCY  
01= Wait of 2 TCY  
00= Wait of 1 TCY  
Note 1: WAITB and WAITE bits are ignored whenever WAITM3:WAITM0 = 0000.  
DS70292D-page 294  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 26-3: PMADDR: PARALLEL PORT ADDRESS REGISTER  
R/W-0  
R/W-0  
CS1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADDR15  
ADDR<13:8>  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADDR<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ADDR15: Parallel Port Destination Address bits  
CS1: Chip Select 1 bit  
1= Chip select 1 is active  
0= Chip select 1 is inactive  
bit 13-0  
ADDR13:ADDR0: Parallel Port Destination Address bits  
REGISTER 26-4: PMAEN: PARALLEL PORT ENABLE REGISTER  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
PTEN<10:8>(1)  
R/W-0  
bit 8  
PTEN14  
bit 15  
R/W-0  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTEN<7:2>(1)  
PTEN<1:0>  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
PTEN14: PMCS1 Strobe Enable bit  
1= PMA14 functions as either PMA<14> bit or PMCS1  
0= PMA14 pin functions as port I/O  
bit 13-11  
bit 10-2  
Unimplemented: Read as ‘0’  
PTEN<10:2>: PMP Address Port Enable bits(1)  
1= PMA<10:2> function as PMP address lines  
0= PMA<10:2> function as port I/O  
bit 1-0  
PTEN<1:0>: PMALH/PMALL Strobe Enable bits  
1= PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL  
0= PMA1 and PMA0 pads functions as port I/O  
Note 1: Devices with 28 pins do not have PMA<10:2>.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 295  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 26-5: PMSTAT: PARALLEL PORT STATUS REGISTER  
R-0  
IBF  
R/W-0, HS  
IBOV  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
IB3F  
IB2F  
IB1F  
IB0F  
bit 15  
bit 8  
R-1  
R/W-0, HS  
OBUF  
U-0  
U-0  
R-1  
R-1  
R-1  
R-1  
OBE  
OB3E  
OB2E  
OB1E  
OB0E  
bit 0  
bit 7  
Legend:  
HS = Hardware Set bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
IBF: Input Buffer Full Status bit  
1= All writable input buffer registers are full  
0= Some or all of the writable input buffer registers are empty  
IBOV: Input Buffer Overflow Status bit  
1= A write attempt to a full input byte register occurred (must be cleared in software)  
0= No overflow occurred  
bit 13-12  
bit 11-8  
Unimplemented: Read as ‘0’  
IB3F:IB0F: Input Buffer x Status Full bits  
1= Input buffer contains data that has not been read (reading buffer will clear this bit)  
0= Input buffer does not contain any unread data  
bit 7  
bit 6  
OBE: Output Buffer Empty Status bit  
1= All readable output buffer registers are empty  
0= Some or all of the readable output buffer registers are full  
OBUF: Output Buffer Underflow Status bits  
1= A read occurred from an empty output byte register (must be cleared in software)  
0= No underflow occurred  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
OB3E:OB0E: Output Buffer x Status Empty bit  
1= Output buffer is empty (writing data to the buffer will clear this bit)  
0= Output buffer contains data that has not been transmitted  
DS70292D-page 296  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
REGISTER 26-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
RTSECSEL(1)  
R/W-0  
PMPTTL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-2  
bit 1  
Unimplemented: Read as ‘0’  
RTSECSEL: RTCC Seconds Clock Output Select bit(1)  
1= RTCC seconds clock is selected for the RTCC pin  
0= RTCC alarm pulse is selected for the RTCC pin  
bit 0  
PMPTTL: PMP Module TTL Input Buffer Select bit  
1= PMP module uses TTL input buffers  
0= PMP module uses Schmitt Trigger input buffers  
Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 297  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 298  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
27.1 Configuration Bits  
27.0 SPECIAL FEATURES  
The Configuration bits can be programmed (read as  
0’), or left unprogrammed (read as ‘1’), to select vari-  
ous device configurations. These bits are mapped  
starting at program memory location 0xF80000.  
Note 1: This data sheet summarizes the features  
of  
the  
dsPIC33FJ32GP302/304,  
and  
dsPIC33FJ64GPX02/X04,  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To comple-  
ment the information in this data sheet,  
refer to the “dsPIC33F/PIC24H Family  
Reference Manual”. Please see the  
Microchip web site (www.microchip.com)  
for the latest dsPIC33F/PIC24H Family  
Reference Manual sections.  
The individual Configuration bit descriptions for the  
Configuration registers are shown in Table 27-2.  
Note that address 0xF80000 is beyond the user program  
memory space. It belongs to the configuration memory  
space (0x800000-0xFFFFFF), which can only be  
accessed using table reads and table writes.  
To prevent inadvertent configuration changes during  
code execution, all programmable Configuration bits  
are write-once. After a bit is initially programmed during  
a power cycle, it cannot be written to again. Changing  
a device configuration requires that power to the device  
be cycled.  
2: Some registers and associated bits  
described in this section may not be avail-  
able on all devices. Refer to Section 4.0  
“Memory Organization” in this data  
sheet for device-specific register and bit  
information.  
The Device Configuration register map is shown in  
Table 27-1.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 devices include  
several features intended to maximize application  
flexibility and reliability, and minimize cost through  
elimination of external components. These are:  
• Flexible configuration  
• Watchdog Timer (WDT)  
• Code Protection and CodeGuard™ Security  
• JTAG Boundary Scan Interface  
• In-Circuit Serial Programming™ (ICSP™)  
• In-Circuit emulation  
TABLE 27-1: DEVICE CONFIGURATION REGISTER MAP  
Address  
Name  
Bit 7  
RBS<1:0>  
RSS<1:0>  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0xF80000 FBS  
0xF80002 FSS(1)  
BSS<2:0>  
SSS<2:0>  
BWRP  
SWRP  
GWRP  
0xF80004 FGS  
GSS<1:0>  
FNOSC<2:0>  
0xF80006 FOSCSEL  
0xF80008 FOSC  
0xF8000A FWDT  
0xF8000C FPOR  
0xF8000E FICD  
0xF80010 FUID0  
0xF80012 FUID1  
0xF80014 FUID2  
0xF80016 FUID3  
IESO  
FCKSM<1:0>  
FWDTEN WINDIS  
Reserved(2)  
IOL1WAY  
OSCIOFNC POSCMD<1:0>  
WDTPOST<3:0>  
WDTPRE  
ALTI2C  
FPWRT<2:0>  
Reserved(3)  
JTAGEN  
ICS<1:0>  
User Unit ID Byte 0  
User Unit ID Byte 1  
User Unit ID Byte 2  
User Unit ID Byte 3  
Legend: — = unimplemented bit, read as ‘0’.  
Note 1: This Configuration register is not available and reads as 0xFF on dsPIC33FJ32GP302/304 devices.  
2: These bits are reserved and always read as ‘1’.  
3: These bits are reserved for use by development tools and must be programmed as ‘1’.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 299  
 
 
 
 
 
 
 
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 27-2: dsPIC CONFIGURATION BITS DESCRIPTION  
Bit Field  
Register  
Description  
BWRP  
FBS  
Boot Segment Program Flash Write Protection  
1= Boot segment can be written  
0= Boot segment is write-protected  
BSS<2:0>  
FBS  
Boot Segment Program Flash Code Protection Size  
X11= No Boot program Flash segment  
Boot space is 1K Instruction Words (except interrupt vectors)  
110= Standard security; boot program Flash segment ends at  
0x0007FE  
010= High security; boot program Flash segment ends at 0x0007FE  
Boot space is 4K Instruction Words (except interrupt vectors)  
101= Standard security; boot program Flash segment, ends at  
0x001FFE  
001= High security; boot program Flash segment ends at 0x001FFE  
Boot space is 8K Instruction Words (except interrupt vectors)  
100= Standard security; boot program Flash segment ends at  
0x003FFE  
000= High security; boot program Flash segment ends at 0x003FFE  
RBS<1:0>(1)  
FBS  
Boot Segment RAM Code Protection Size  
11= No Boot RAM defined  
10= Boot RAM is 128 bytes  
01= Boot RAM is 256 bytes  
00= Boot RAM is 1024 bytes  
SWRP(1)  
FSS(1)  
FSS(1)  
Secure Segment Program Flash Write-Protect bit  
1= Secure Segment can bet written  
0= Secure Segment is write-protected  
SSS<2:0>(1)  
Secure Segment Program Flash Code Protection Size  
(Secure segment is not implemented on 32K devices)  
X11= No Secure program flash segment  
Secure space is 4K IW less BS  
110= Standard security; secure program flash segment starts at End  
of BS, ends at 0x001FFE  
010= High security; secure program flash segment starts at End of BS,  
ends at 0x001FFE  
Secure space is 8K IW less BS  
101= Standard security; secure program flash segment starts at End  
of BS, ends at 0x003FFE  
001= High security; secure program flash segment starts at End of BS,  
ends at 0x003FFE  
Secure space is 16K IW less BS  
100= Standard security; secure program flash segment starts at End  
of BS, ends at 007FFEh  
000= High security; secure program flash segment starts at End of BS,  
ends at 0x007FFE  
RSS<1:0>(1)  
FSS(1)  
Secure Segment RAM Code Protection  
11= No Secure RAM defined  
10= Secure RAM is 256 Bytes less BS RAM  
01= Secure RAM is 2048 Bytes less BS RAM  
00= Secure RAM is 4096 Bytes less BS RAM  
Note 1: This Configuration register is not available on dsPIC33FJ32GP302/304 devices.  
DS70292D-page 300  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 27-2: dsPIC CONFIGURATION BITS DESCRIPTION (CONTINUED)  
Bit Field  
Register  
Description  
GSS<1:0>  
FGS  
General Segment Code-Protect bit  
11= User program memory is not code-protected  
10= Standard security  
0x= High security  
GWRP  
IESO  
FGS  
General Segment Write-Protect bit  
1= User program memory is not write-protected  
0= User program memory is write-protected  
FOSCSEL  
Two-speed Oscillator Start-up Enable bit  
1= Start-up device with FRC, then automatically switch to the  
user-selected oscillator source when ready  
0= Start-up device with user-selected oscillator source  
FNOSC<2:0>  
FOSCSEL  
Initial Oscillator Source Selection bits  
111= Internal Fast RC (FRC) oscillator with postscaler  
110= Internal Fast RC (FRC) oscillator with divide-by-16  
101= LPRC oscillator  
100= Secondary (LP) oscillator  
011= Primary (XT, HS, EC) oscillator with PLL  
010= Primary (XT, HS, EC) oscillator  
001= Internal Fast RC (FRC) oscillator with PLL  
000= FRC oscillator  
FCKSM<1:0>  
FOSC  
Clock Switching Mode bits  
1x= Clock switching is disabled, Fail-Safe Clock Monitor is disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
IOL1WAY  
OSCIOFNC  
FOSC  
FOSC  
FOSC  
Peripheral pin select configuration  
1= Allow only one reconfiguration  
0= Allow multiple reconfigurations  
OSC2 Pin Function bit (except in XT and HS modes)  
1= OSC2 is clock output  
0= OSC2 is general purpose digital I/O pin  
POSCMD<1:0>  
Primary Oscillator Mode Select bits  
11= Primary oscillator disabled  
10= HS Crystal Oscillator mode  
01= XT Crystal Oscillator mode  
00= EC (External Clock) mode  
FWDTEN  
FWDT  
Watchdog Timer Enable bit  
1= Watchdog Timer always enabled (LPRC oscillator cannot be disabled.  
Clearing the SWDTEN bit in the RCON register has no effect.)  
0= Watchdog Timer enabled/disabled by user software (LPRC can be  
disabled by clearing the SWDTEN bit in the RCON register)  
WINDIS  
FWDT  
FWDT  
Watchdog Timer Window Enable bit  
1= Watchdog Timer in Non-Window mode  
0= Watchdog Timer in Window mode  
WDTPRE  
Watchdog Timer Prescaler bit  
1= 1:128  
0= 1:32  
Note 1: This Configuration register is not available on dsPIC33FJ32GP302/304 devices.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 301  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 27-2: dsPIC CONFIGURATION BITS DESCRIPTION (CONTINUED)  
Bit Field  
Register  
Description  
WDTPOST<3:0>  
FWDT  
Watchdog Timer Postscaler bits  
1111= 1:32,768  
1110= 1:16,384  
0001= 1:2  
0000= 1:1  
FPWRT<2:0>  
FPOR  
Power-on Reset Timer Value Select bits  
111= PWRT = 128 ms  
110= PWRT = 64 ms  
101= PWRT = 32 ms  
100= PWRT = 16 ms  
011= PWRT = 8 ms  
010= PWRT = 4 ms  
001= PWRT = 2 ms  
000= PWRT = Disabled  
ALTI2C  
FPOR  
FICD  
Alternate I2C™ pins  
1 = I2C mapped to SDA1/SCL1 pins  
0 = I2C mapped to ASDA1/ASCL1 pins  
JTAGEN  
JTAG Enable bit  
1= JTAG enabled  
0= JTAG disabled  
ICS<1:0>  
FICD  
ICD Communication Channel Select bits  
11= Communicate on PGEC1 and PGED1  
10= Communicate on PGEC2 and PGED2  
01= Communicate on PGEC3 and PGED3  
00= Reserved, do not use  
Note 1: This Configuration register is not available on dsPIC33FJ32GP302/304 devices.  
DS70292D-page 302  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
27.2 On-Chip Voltage Regulator  
27.3 BOR: Brown-out Reset  
All  
of  
the  
dsPIC33FJ32GP302/304,  
The Brown-out Reset (BOR) module is based on an  
internal voltage reference circuit that monitors the reg-  
ulated supply voltage VCAP/VDDCORE. The main pur-  
pose of the BOR module is to generate a device Reset  
when a brown-out condition occurs. Brown-out condi-  
tions are generally caused by glitches on the AC mains  
(for example, missing portions of the AC cycle wave-  
form due to bad power transmission lines, or voltage  
sags due to excessive current draw when a large  
inductive load is turned on).  
dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/  
X04 devices power their core digital logic at a nominal  
2.5V. This can create a conflict for designs that are  
required to operate at a higher typical voltage, such as  
3.3V. To simplify system design, all devices in the  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 family incorporate an  
on-chip regulator that allows the device to run its core  
logic from VDD.  
The regulator provides power to the core from the other  
VDD pins. When the regulator is enabled, a low-ESR  
(less than 5 Ohms) capacitor (such as tantalum or  
ceramic) must be connected to the VCAP/VDDCORE pin  
(Figure 27-1). This helps to maintain the stability of the  
regulator. The recommended value for the filter capac-  
itor is provided in Table 30-13 located in Section 30.1  
“DC Characteristics”.  
A BOR generates a Reset pulse, which resets the  
device. The BOR selects the clock source, based on  
the device Configuration bit values (FNOSC<2:0> and  
POSCMD<1:0>).  
If an oscillator mode is selected, the BOR activates the  
Oscillator Start-up Timer (OST). The system clock is  
held until OST expires. If the PLL is used, the clock is  
held until the LOCK bit (OSCCON<5>) is ‘1’.  
Note:  
It is important for the low-ESR capacitor to  
be placed as close as possible to the  
VCAP/VDDCORE pin.  
Concurrently, the PWRT time-out (TPWRT) is applied  
before the internal Reset is released. If TPWRT = 0and  
a crystal oscillator is being used, then a nominal delay  
of TFSCM = 100 is applied. The total delay in this case  
is TFSCM.  
On a POR, it takes approximately 20 s for the on-chip  
voltage regulator to generate an output voltage. During  
this time, designated as TSTARTUP, code execution is  
disabled. TSTARTUP is applied every time the device  
resumes operation after any power-down.  
The BOR Status bit (RCON<1>) is set to indicate that a  
BOR has occurred. The BOR circuit continues to oper-  
ate while in Sleep or Idle modes and resets the device  
should VDD fall below the BOR threshold voltage.  
FIGURE 27-1:  
CONNECTIONS FOR THE  
ON-CHIP VOLTAGE  
REGULATOR(1)  
3.3V  
dsPIC33F  
VDD  
VCAP/VDDCORE  
VSS  
CEFC  
Note 1: These are typical operating voltages. Refer  
to Section TABLE 30-13: “Internal Volt-  
age Regulator Specifications” located in  
Section 30.1 “DC Characteristics” for  
the full operating ranges of VDD and VCAP/  
VDDCORE.  
2: It is important for the low-ESR capacitor to  
be placed as close as possible to the  
VCAP/VDDCORE pin.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 303  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
27.4.2  
SLEEP AND IDLE MODES  
27.4 Watchdog Timer (WDT)  
If the WDT is enabled, it continues to run during Sleep or  
Idle modes. When the WDT time-out occurs, the device  
wakes the device and code execution continues from  
where the PWRSAVinstruction was executed. The corre-  
sponding SLEEP or IDLE bits (RCON<3,2>) needs to be  
cleared in software after the device wakes up.  
For dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 devices, the WDT  
is driven by the LPRC oscillator. When the WDT is  
enabled, the clock source is also enabled.  
27.4.1  
PRESCALER/POSTSCALER  
The nominal WDT clock source from LPRC is 32 kHz.  
This feeds a prescaler than can be configured for either  
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.  
The prescaler is set by the WDTPRE Configuration bit.  
With a 32 kHz input, the prescaler yields a nominal  
WDT time-out period (TWDT) of 1 ms in 5-bit mode, or  
4 ms in 7-bit mode.  
27.4.3  
ENABLING WDT  
The WDT is enabled or disabled by the FWDTEN  
Configuration bit in the FWDT Configuration register.  
When the FWDTEN Configuration bit is set, the WDT is  
always enabled.  
The WDT can be optionally controlled in software  
when the FWDTEN Configuration bit has been  
programmed to ‘0’. The WDT is enabled in software  
by setting the SWDTEN control bit (RCON<5>). The  
SWDTEN control bit is cleared on any device Reset.  
The software WDT option allows the user application  
to enable the WDT for critical code segments and  
disable the WDT during non-critical segments for  
maximum power savings.  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the WDTPOST<3:0>  
Configuration bits (FWDT<3:0>), which allow the selec-  
tion of 16 settings, from 1:1 to 1:32,768. Using the pres-  
caler and postscaler, time-out periods ranging from  
1 ms to 131 seconds can be achieved.  
The WDT, prescaler and postscaler are reset:  
• On any device Reset  
Note:  
If the WINDIS bit (FWDT<6>) is cleared, the  
CLRWDTinstruction should be executed by  
the application software only during the last  
1/4 of the WDT period. This CLRWDT win-  
dow can be determined by using a timer. If  
a CLRWDT instruction is executed before  
this window, a WDT Reset occurs.  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSC bits) or by hardware  
(i.e., Fail-Safe Clock Monitor)  
• When a PWRSAVinstruction is executed  
(i.e., Sleep or Idle mode is entered)  
The WDT flag bit, WDTO (RCON<4>), is not automatically  
cleared following a WDT time-out. To detect subsequent  
WDT events, the flag must be cleared in software.  
• When the device exits Sleep or Idle mode to  
resume normal operation  
• By a CLRWDTinstruction during normal execution  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
FIGURE 27-2:  
WDT BLOCK DIAGRAM  
All Device Resets  
Transition to New Clock Source  
Exit Sleep or Idle Mode  
PWRSAVInstruction  
CLRWDTInstruction  
Watchdog Timer  
Sleep/Idle  
WDTPRE  
WDTPOST<3:0>  
SWDTEN  
FWDTEN  
WDT  
Wake-up  
1
RS  
RS  
Prescaler  
(divide by N1)  
Postscaler  
WDT  
Reset  
LPRC Clock  
(divide by N2)  
0
WDT Window Select  
WINDIS  
CLRWDTInstruction  
DS70292D-page 304  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
27.5 JTAG Interface  
27.8 Code Protection and  
CodeGuard™ Security  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 devices implement a  
JTAG interface, which supports boundary scan device  
testing, as well as in-circuit programming. Detailed  
information on this interface is provided in future  
revisions of the document.  
The  
dsPIC33FJ64GPX02/X04  
and  
dsPIC33FJ128GPX02/X04 devices offer advanced  
implementation of CodeGuard Security that supports  
BS, SS and GS while, the dsPIC33FJ32GP302/304  
devices offer the intermediate level of CodeGuard  
Security that supports only BS and GS. CodeGuard  
Security enables multiple parties to securely share  
resources (memory, interrupts and peripherals) on a  
single chip. This feature helps protect individual  
Intellectual Property in collaborative system designs.  
Note:  
Refer to Section 24. “Programming and  
Diagnostics” (DS70207) of the  
dsPIC33F/PIC24H Family Reference  
Manual” for further information on usage,  
configuration and operation of the JTAG  
interface.  
When coupled with software encryption libraries,  
CodeGuard Security can be used to securely update  
Flash even when multiple IPs reside on the single chip.  
The code protection features vary depending on the  
actual dsPIC33F implemented. The following sections  
provide an overview of these features.  
27.6  
In-Circuit Serial Programming  
The dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/  
X04, and dsPIC33FJ128GPX02/X04 devices can be  
serially programmed while in the end application circuit.  
This is done with two lines for clock and data and three  
other lines for power, ground and the programming  
sequence. Serial programming allows customers to  
manufacture boards with unprogrammed devices and  
then program the digital signal controller just before  
shipping the product. Serial programming also allows  
the most recent firmware or a custom firmware to be  
programmed. Refer to the “dsPIC33F/PIC24H Flash  
Programming Specification” (DS70152) for details  
about In-Circuit Serial Programming (ICSP).  
Secure segment and RAM protection is implemented  
on  
the  
dsPIC33FJ64GPX02/X04  
devices.  
and  
The  
dsPIC33FJ128GPX02/X04  
dsPIC33FJ32GP302/304 devices do not support  
secure segment and RAM protection.  
Note:  
Refer to Section 23. “CodeGuard™  
Security” (DS70199) of the “dsPIC33F/  
PIC24H Family Reference Manual” for  
further  
information  
on  
usage,  
configuration and operation of CodeGuard  
Security.  
Any of the three pairs of programming clock/data pins  
can be used:  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
27.7 In-Circuit Debugger  
When MPLAB® ICD 2 is selected as a debugger, the in-  
circuit debugging functionality is enabled. This function  
allows simple debugging functions when used with  
MPLAB IDE. Debugging functionality is controlled  
through the PGECx (Emulation/Debug Clock) and  
PGEDx (Emulation/Debug Data) pin functions.  
Any of the three pairs of debugging clock/data pins can  
be used:  
• PGEC1 and PGED1  
• PGEC2 and PGED2  
• PGEC3 and PGED3  
To use the in-circuit debugger function of the device,  
the design must implement ICSP connections to  
MCLR, VDD, VSS, PGC, PGD and the PGECx and  
PGEDx pin pairs. In addition, when the feature is  
enabled, some of the resources are not available for  
general use. These resources include the first 80 bytes  
of data RAM and two I/O pins.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 305  
 
 
 
TABLE 27-3: CODE FLASH SECURITY SEGMENT SIZES FOR 32 KB DEVICES  
CONFIG BITS  
BSS<2:0> = x11 0K  
BSS<2:0> = x10 1K  
BSS<2:0> = x01 4K  
BSS<2:0> = x00 8K  
0x000000h  
0x000000h  
0x000000h  
0x000000h  
VS = 256 IW  
VS = 256 IW  
BS = 768 IW  
VS = 256 IW  
BS = 3840 IW  
VS = 256 IW  
BS = 7936 IW  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x0057FEh  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x0057FEh  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x0057FEh  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x0057FEh  
SSS<2:0> = x11  
0K  
GS = 11008 IW  
GS = 10240 IW  
GS = 7168 IW  
GS = 3072 IW  
0x0157FEh  
0x0157FEh  
0x0157FEh  
0x0157FEh  
TABLE 27-4: CODE FLASH SECURITY SEGMENT SIZES FOR 64 KB DEVICES  
CONFIG BITS  
BSS<2:0> = x11 0K  
BSS<2:0> = x10 1K  
BSS<2:0> = x01 4K  
BSS<2:0> = x00 8K  
0x000000h  
0x000000h  
0x000000h  
0x000000h  
VS = 256 IW  
VS = 256 IW  
BS = 768 IW  
VS = 256 IW  
BS = 3840 IW  
VS = 256 IW  
BS = 7936 IW  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
SSS<2:0> = x11  
0K  
GS = 21760 IW  
GS = 20992 IW  
GS = 17920 IW  
GS = 13824 IW  
0x0157FEh  
0x0157FEh  
0x0157FEh  
0x0157FEh  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
VS = 256 IW  
SS = 3840 IW  
VS = 256 IW  
BS = 768 IW  
SS = 3072 IW  
VS = 256 IW  
BS = 3840 IW  
VS = 256 IW  
BS = 7936 IW  
SSS<2:0> = x10  
4K  
GS = 17920 IW  
VS = 256 IW  
GS = 17920 IW  
GS = 17920 IW  
GS = 13824 IW  
0x0157FEh  
0x0157FEh  
0x0157FEh  
0x0157FEh  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
VS = 256 IW  
BS = 768 IW  
VS = 256 IW  
BS = 3840 IW  
VS = 256 IW  
BS = 7936 IW  
SSS<2:0> = x01  
SS = 7936 IW  
SS = 7168 IW  
SS = 4096 IW  
8K  
GS = 13824 IW  
GS = 13824 IW  
GS = 13824 IW  
GS = 13824 IW  
0x0157FEh  
0x0157FEh  
0x0157FEh  
0x0157FEh  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
VS = 256 IW  
VS = 256 IW  
BS = 768 IW  
VS = 256 IW  
BS = 3840 IW  
VS = 256 IW  
BS = 7936 IW  
SSS<2:0> = x00  
SS = 16128 IW  
GS = 5632 IW  
SS = 15360 IW  
GS = 5632 IW  
SS = 12288 IW  
GS = 5632 IW  
SS = 8192 IW  
GS = 5632 IW  
16K  
0x0157FEh  
0x0157FEh  
0x0157FEh  
0x0157FEh  
TABLE 27-5: CODE FLASH SECURITY SEGMENT SIZES FOR 128 KB DEVICES  
CONFIG BITS  
BSS<2:0> = x11 0K  
BSS<2:0> = x10 1K  
BSS<2:0> = x01 4K  
BSS<2:0> = x00 8K  
0x000000h  
0x000000h  
0x000000h  
0x000000h  
VS = 256 IW  
VS = 256 IW  
BS = 768 IW  
VS = 256 IW  
BS = 3840 IW  
VS = 256 IW  
BS = 7936 IW  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00FFFEh  
0x010000h  
SSS<2:0> = x11  
0x003FFEh  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00FFFEh  
0x010000h  
0x004000h  
0K  
0x007FFEh  
0x008000h  
0x00FFFEh  
0x010000h  
0x007FFEh  
0x008000h  
0x00FFFEh  
0x010000h  
GS = 43776 IW  
GS = 43008 IW  
GS = 39936 IW  
GS = 35840 IW  
0x0157FEh  
0x0157FEh  
0x0157FEh  
0x0157FEh  
0x000000h  
0x000000h  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
0x000000h  
VS = 256 IW  
SS = 3840 IW  
VS = 256 IW  
BS = 768 IW  
SS = 3072 IW  
VS = 256 IW  
BS = 3840 IW  
VS = 256 IW  
BS = 7936 IW  
0x0001FEh  
0x000200h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00ABFEh  
SSS<2:0> = x10  
0x003FFEh  
0x004000h  
4K  
0x007FFEh  
0x008000h  
0x00ABFEh  
GS = 39936 IW  
VS = 256 IW  
GS = 39936 IW  
GS = 39936 IW  
GS = 35840 IW  
0x0157FEh  
0x000000h  
0x0157FEh  
0x000000h  
0x0157FEh  
0x0157FEh  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00FFFEh  
0x010000h  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
VS = 256 IW  
BS = 768 IW  
VS = 256 IW  
BS = 3840 IW  
VS = 256 IW  
BS = 7936 IW  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00FFFEh  
0x010000h  
SSS<2:0> = x01  
SS = 7936 IW  
SS = 7168 IW  
SS = 4096 IW  
8K  
0x007FFEh  
0x008000h  
0x008000h  
0x00FFFEh  
0x010000h  
0x00FFFEh  
0x010000h  
GS = 35840 IW  
VS = 256 IW  
GS = 35840 IW  
GS = 35840 IW  
GS = 35840 IW  
0x0157FEh  
0x0157FEh  
0x0157FEh  
0x0157FEh  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00FFFEh  
0x010000h  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00FFFEh  
0x010000h  
0x000000h  
0x0001FEh  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
0x004000h  
0x007FFEh  
0x008000h  
0x00FFFEh  
0x010000h  
0x000000h  
0x0001FEh  
VS = 256 IW  
BS = 768 IW  
VS = 256 IW  
BS = 3840 IW  
VS = 256 IW  
BS = 7936 IW  
0x000200h  
0x0007FEh  
0x000800h  
0x001FFEh  
0x002000h  
0x003FFEh  
SSS<2:0> = x00  
0x004000h  
0x007FFEh  
0x008000h  
0x00FFFEh  
0x010000h  
SS = 16128 IW  
GS = 27648 IW  
SS = 15360 IW  
GS = 27648 IW  
SS = 12288 IW  
GS = 27648 IW  
SS = 8192 IW  
16K  
GS = 27648 IW  
0x0157FEh  
0x0157FEh  
0x0157FEh  
0x0157FEh  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
Most bit-oriented instructions (including simple rotate/  
shift instructions) have two operands:  
28.0 INSTRUCTION SET SUMMARY  
Note:  
This data sheet summarizes the features  
of the dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
dsPIC33FJ128GPX02/X04 families of  
devices. It is not intended to be a compre-  
hensive reference source. To complement  
the information in this data sheet, refer to  
the “dsPIC33F/PIC24H Family Reference  
Manual”. Please see the Microchip web  
site (www.microchip.com) for the latest  
dsPIC33F/PIC24H Family Reference  
Manual sections.  
• The bit in the W register or file register (specified  
by a literal value or indirectly by the contents of  
register ‘Wb’)  
The literal instructions that involve data movement can  
use some of the following operands:  
• A literal value to be loaded into a W register or file  
register (specified by ‘k’)  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
The dsPIC33F instruction set is identical to that of the  
dsPIC30F.  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
Most instructions are a single program memory word  
(24 bits). Only three instructions require two program  
memory locations.  
• The first source operand, which is a register ‘Wb’  
without any address modifier  
Each single-word instruction is a 24-bit word, divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction.  
• The second source operand, which is a literal  
value  
• The destination of the result (only if not the same  
as the first source operand), which is typically a  
register ‘Wd’ with or without an address modifier  
The instruction set is highly orthogonal and is grouped  
into five basic categories:  
The MACclass of DSP instructions can use some of the  
following operands:  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• The accumulator (A or B) to be used (required  
operand)  
• The W registers to be used as the two operands  
• The X and Y address space prefetch operations  
• The X and Y address space prefetch destinations  
• The accumulator write back destination  
• DSP operations  
• Control operations  
Table 28-1 shows the general symbols used in  
describing the instructions.  
The other DSP instructions do not involve any  
multiplication and can include:  
The dsPIC33F instruction set summary in Table 28-2  
lists all the instructions, along with the status flags  
affected by each instruction.  
• The accumulator to be used (required)  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
• The source or destination operand (designated as  
Wso or Wdo, respectively) with or without an  
address modifier  
• The amount of shift specified by a W register ‘Wn’  
or a literal value  
• The first source operand, which is typically a  
register ‘Wb’ without any address modifier  
• The second source operand, which is typically a  
register ‘Ws’ with or without an address modifier  
The control instructions can use some of the following  
operands:  
• The destination of the result, which is typically a  
register ‘Wd’ with or without an address modifier  
• A program memory address  
• The mode of the table read and table write  
instructions  
However, word or byte-oriented file register instructions  
have two operands:  
• The file register specified by the value ‘f’  
• The destination, which could be either the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 309  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
Most instructions are a single word. Certain double-  
word instructions are designed to provide all the  
required information in these 48 bits. In the second  
word, the 8 MSbs are ‘0’s. If this second word is exe-  
cuted as an instruction (by itself), it executes as a NOP.  
tional/computed branch), indirect CALL/GOTO, all table  
reads and writes and RETURN/RETFIE instructions,  
which are single-word instructions but take two or three  
cycles. Certain instructions that involve skipping over the  
subsequent instruction require either two or three cycles  
if the skip is performed, depending on whether the  
instruction being skipped is a single-word or two-word  
instruction. Moreover, double-word moves require two  
cycles.  
The double-word instructions execute in two instruction  
cycles.  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true, or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
as a NOP. Notable exceptions are the BRA (uncondi-  
Note:  
For more details on the instruction set,  
refer to the “16-bit MCU and DSC Pro-  
grammer’s  
Reference  
Manual”  
(DS70157).  
TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
Register bit field  
<n:m>  
.b  
Byte mode selection  
.d  
Double-Word mode selection  
Shadow register select  
.S  
.w  
Word mode selection (default)  
One of two accumulators {A, B}  
Acc  
AWB  
bit4  
Accumulator write back destination address register {W13, [W13]+ = 2}  
4-bit bit selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0x0000...0x1FFF}  
C, DC, N, OV, Z  
Expr  
f
lit1  
1-bit unsigned literal {0,1}  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
lit14  
lit16  
16-bit unsigned literal {0...65535}  
lit23  
23-bit unsigned literal {0...8388608}; LSb must be ‘0’  
Field does not require an entry, can be blank  
DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate  
Program Counter  
None  
OA, OB, SA, SB  
PC  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0...W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register   
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Dividend, Divisor working register pair (direct addressing)  
Wm*Wm  
Multiplicand and Multiplier working register pair for Square instructions   
{W4 * W4,W5 * W5,W6 * W6,W7 * W7}  
DS70292D-page 310  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)  
Field  
Description  
Wm*Wn  
Multiplicand and Multiplier working register pair for DSP instructions   
{W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}  
Wn  
One of 16 working registers {W0...W15}  
Wnd  
Wns  
WREG  
Ws  
One of 16 destination working registers {W0...W15}  
One of 16 source working registers {W0...W15}  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Wso  
Source W register   
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
Wx  
X data space prefetch address register for DSP instructions  
{[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2,  
[W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2,  
[W9 + W12], none}  
Wxd  
Wy  
X data space prefetch destination register for DSP instructions {W4...W7}  
Y data space prefetch address register for DSP instructions  
{[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2,  
[W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2,  
[W11 + W12], none}  
Wyd  
Y data space prefetch destination register for DSP instructions {W4...W7}  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 311  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 28-2: INSTRUCTION SET OVERVIEW  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
1
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
ASR  
ASR  
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
BTG  
BTG  
Acc  
Add Accumulators  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
f
f = f + WREG  
f,WREG  
WREG = f + WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
f
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
16-bit Signed Add to Accumulator  
f = f + WREG + (C)  
1
2
3
4
ADDC  
AND  
1
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
Wd = Wb + lit5 + (C)  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
1
f = f .AND. WREG  
1
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
Wd = Wb .AND. Ws  
1
N,Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N,Z  
1
N,Z  
Wd = Wb .AND. lit5  
1
N,Z  
ASR  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
1
Ws,Wd  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
1
N,Z  
5
6
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if greater than or equal  
Branch if unsigned greater than or equal  
Branch if greater than  
Branch if unsigned greater than  
Branch if less than or equal  
Branch if unsigned less than or equal  
Branch if less than  
None  
None  
None  
None  
None  
None  
None  
Branch if unsigned less than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OA,Expr  
OB,Expr  
OV,Expr  
SA,Expr  
SB,Expr  
Expr  
Branch if Not Carry  
None  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Accumulator A overflow  
Branch if Accumulator B overflow  
Branch if Overflow  
None  
None  
None  
Branch if Accumulator A saturated  
Branch if Accumulator B saturated  
Branch Unconditionally  
Branch if Zero  
None  
None  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
7
8
9
BSET  
BSW  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
Bit Toggle f  
1
None  
Ws,Wb  
1
None  
BTG  
f,#bit4  
Ws,#bit4  
1
None  
Bit Toggle Ws  
1
None  
DS70292D-page 312  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
10  
BTSC  
BTSS  
BTST  
BTSC  
BTSC  
BTSS  
BTSS  
f,#bit4  
Ws,#bit4  
f,#bit4  
Ws,#bit4  
Bit Test f, Skip if Clear  
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
Bit Test Ws, Skip if Clear  
Bit Test f, Skip if Set  
1
(2 or 3)  
11  
12  
1
(2 or 3)  
Bit Test Ws, Skip if Set  
1
(2 or 3)  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
Bit Test Ws to Z  
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call subroutine  
C
Z
C
Ws,Wb  
Z
13  
BTSTS  
f,#bit4  
Z
C
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
Z
14  
15  
CALL  
CLR  
CALL  
CALL  
CLR  
lit23  
None  
Wn  
Call indirect subroutine  
f = 0x0000  
None  
f
None  
CLR  
WREG  
WREG = 0x0000  
Ws = 0x0000  
None  
CLR  
Ws  
None  
CLR  
Acc,Wx,Wxd,Wy,Wyd,AWB  
Clear Accumulator  
Clear Watchdog Timer  
f = f  
OA,OB,SA,SB  
WDTO,Sleep  
N,Z  
16  
17  
CLRWDT  
COM  
CLRWDT  
COM  
f
COM  
COM  
CP  
f,WREG  
Ws,Wd  
f
WREG = f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
Wd = Ws  
N,Z  
18  
CP  
Compare f with WREG  
Compare Wb with lit5  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
19  
20  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
21  
22  
23  
24  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Compare Wb with Wn, skip if =  
Compare Wb with Wn, skip if >  
Compare Wb with Wn, skip if <  
Compare Wb with Wn, skip if   
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
25  
26  
DAW  
DEC  
DAW  
Wn  
Wn = decimal adjust Wn  
f = f – 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
DEC  
f
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f – 1  
DEC  
Wd = Ws – 1  
27  
28  
DEC2  
DISI  
DEC2  
DEC2  
DEC2  
DISI  
f = f – 2  
f,WREG  
Ws,Wd  
#lit14  
WREG = f – 2  
Wd = Ws – 2  
Disable Interrupts for k instruction cycles  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 313  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
29  
DIV  
DIV.S  
DIV.SD  
DIV.U  
DIV.UD  
DIVF  
DO  
Wm,Wn  
Signed 16/16-bit Integer Divide  
1
1
1
1
1
2
2
1
18  
18  
18  
18  
18  
2
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
None  
Wm,Wn  
Signed 32/16-bit Integer Divide  
Wm,Wn  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Signed 16/16-bit Fractional Divide  
Do code to PC + Expr, lit14 + 1 times  
Do code to PC + Expr, (Wn) + 1 times  
Euclidean Distance (no accumulate)  
Wm,Wn  
30  
31  
DIVF  
DO  
Wm,Wn  
#lit14,Expr  
Wn,Expr  
DO  
2
None  
32  
33  
ED  
ED  
Wm*Wm,Acc,Wx,Wy,Wxd  
1
OA,OB,OAB,  
SA,SB,SAB  
EDAC  
EDAC  
Wm*Wm,Acc,Wx,Wy,Wxd  
Euclidean Distance  
1
1
OA,OB,OAB,  
SA,SB,SAB  
34  
35  
36  
37  
38  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
GOTO  
INC  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
Ws,Wnd  
Expr  
Swap Wns with Wnd  
Find Bit Change from Left (MSb) Side  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
Go to address  
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
None  
C
C
C
None  
Wn  
Go to indirect  
None  
39  
40  
41  
INC  
f
f = f + 1  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
INC  
f,WREG  
Ws,Wd  
WREG = f + 1  
INC  
Wd = Ws + 1  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f = f + 2  
f,WREG  
Ws,Wd  
WREG = f + 2  
Wd = Ws + 2  
f
f = f .IOR. WREG  
IOR  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
WREG = f .IOR. WREG  
Wd = lit10 .IOR. Wd  
Wd = Wb .IOR. Ws  
Wd = Wb .IOR. lit5  
Load Accumulator  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
42  
LAC  
LAC  
OA,OB,OAB,  
SA,SB,SAB  
43  
44  
LNK  
LSR  
LNK  
LSR  
LSR  
LSR  
LSR  
LSR  
MAC  
#lit14  
Link Frame Pointer  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
None  
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f
f = Logical Right Shift f  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
N,Z  
45  
46  
MAC  
MOV  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply and Accumulate  
,
AWB  
OA,OB,OAB,  
SA,SB,SAB  
MAC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate  
1
1
OA,OB,OAB,  
SA,SB,SAB  
MOV  
f,Wn  
Move f to Wn  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
None  
N,Z  
MOV  
f
Move f to f  
MOV  
f,WREG  
Move f to WREG  
N,Z  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-bit literal to Wn  
Move 8-bit literal to Wn  
Move Wn to f  
None  
None  
None  
None  
N,Z  
MOV.b  
MOV  
MOV  
Wso,Wdo  
Move Ws to Wd  
MOV  
WREG,f  
Move WREG to f  
MOV.D  
MOV.D  
MOVSAC  
Wns,Wd  
Move Double from W(ns):W(ns + 1) to Wd  
Move Double from Ws to W(nd + 1):W(nd)  
Prefetch and store accumulator  
None  
None  
None  
Ws,Wnd  
47  
MOVSAC  
Acc,Wx,Wxd,Wy,Wyd,AWB  
DS70292D-page 314  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
48  
MPY  
MPY  
Multiply Wm by Wn to Accumulator  
Square Wm to Accumulator  
1
1
1
1
1
1
1
1
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MPY  
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd  
49  
50  
MPY.N  
MSC  
MPY.N  
-(Multiply Wm by Wn) to Accumulator  
None  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MSC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Multiply and Subtract from Accumulator  
OA,OB,OAB,  
SA,SB,SAB  
,
AWB  
51  
MUL  
MUL.SS  
MUL.SU  
MUL.US  
MUL.UU  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)  
{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)  
1
1
1
1
1
1
1
1
None  
None  
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(Ws)  
MUL.SU  
MUL.UU  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)  
1
1
1
1
None  
None  
{Wnd + 1, Wnd} = unsigned(Wb) *  
unsigned(lit5)  
MUL  
NEG  
f
W3:W2 = f * WREG  
Negate Accumulator  
1
1
1
1
None  
52  
NEG  
Acc  
OA,OB,OAB,  
SA,SB,SAB  
NEG  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
53  
54  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
Pop from Top-of-Stack (TOS) to  
W(nd):W(nd + 1)  
None  
POP.S  
PUSH  
Pop Shadow Registers  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
All  
None  
None  
None  
None  
WDTO,Sleep  
None  
None  
None  
None  
None  
None  
None  
None  
C,N,Z  
C,N,Z  
C,N,Z  
N,Z  
55  
PUSH  
f
Push f to Top-of-Stack (TOS)  
Push Wso to Top-of-Stack (TOS)  
Push W(ns):W(ns + 1) to Top-of-Stack (TOS)  
Push Shadow Registers  
PUSH  
Wso  
Wns  
1
PUSH.D  
PUSH.S  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
2
1
56  
57  
PWRSAV  
RCALL  
#lit1  
Expr  
Wn  
Go into Sleep or Idle mode  
1
Relative Call  
2
Computed Call  
2
58  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software device Reset  
1
1
59  
60  
61  
62  
63  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
Return from interrupt  
3 (2)  
3 (2)  
3 (2)  
1
#lit10,Wn  
Return with literal in Wn  
Return from Subroutine  
f
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
RLC  
f,WREG  
Ws,Wd  
f
1
RLC  
1
64  
65  
66  
RLNC  
RRC  
RLNC  
1
RLNC  
f,WREG  
Ws,Wd  
f
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
1
N,Z  
RLNC  
1
N,Z  
RRC  
1
C,N,Z  
C,N,Z  
C,N,Z  
N,Z  
RRC  
f,WREG  
Ws,Wd  
f
1
RRC  
1
RRNC  
RRNC  
1
RRNC  
f,WREG  
Ws,Wd  
1
N,Z  
RRNC  
1
N,Z  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 315  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
67  
SAC  
SAC  
Acc,#Slit4,Wdo  
Store Accumulator  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
None  
None  
C,N,Z  
None  
None  
None  
SAC.R  
SE  
Acc,#Slit4,Wdo  
Store Rounded Accumulator  
Wnd = sign-extended Ws  
f = 0xFFFF  
68  
69  
SE  
Ws,Wnd  
f
SETM  
SETM  
SETM  
SETM  
SFTAC  
WREG  
Ws  
WREG = 0xFFFF  
Ws = 0xFFFF  
70  
71  
SFTAC  
SL  
Acc,Wn  
Arithmetic Shift Accumulator by (Wn)  
OA,OB,OAB,  
SA,SB,SAB  
SFTAC  
Acc,#Slit6  
Arithmetic Shift Accumulator by Slit6  
1
1
OA,OB,OAB,  
SA,SB,SAB  
SL  
SL  
SL  
SL  
SL  
SUB  
f
f = Left Shift f  
1
1
1
1
1
1
1
1
1
1
1
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
Ws,Wd  
WREG = Left Shift f  
Wd = Left Shift Ws  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
Acc  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
Subtract Accumulators  
N,Z  
72  
SUB  
OA,OB,OAB,  
SA,SB,SAB  
SUB  
SUB  
SUB  
SUB  
SUB  
SUBB  
SUBB  
f
f = f – WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f – WREG  
Wn = Wn – lit10  
Wd = Wb – Ws  
Wd = Wb – lit5  
73  
SUBB  
f = f – WREG – (C)  
WREG = f – WREG – (C)  
f,WREG  
SUBB  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
Wn = Wn – lit10 – (C)  
Wd = Wb – Ws – (C)  
Wd = Wb – lit5 – (C)  
f = WREG – f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
74  
75  
SUBR  
f,WREG  
WREG = WREG – f  
Wd = Ws – Wb  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wd = lit5 – Wb  
SUBBR  
SUBBR  
SUBBR  
SUBBR  
f
f = WREG – f – (C)  
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
f,WREG  
Wb,Ws,Wd  
WREG = WREG – f – (C)  
Wd = Ws – Wb – (C)  
SUBBR  
SWAP.b  
SWAP  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
Wb,#lit5,Wd  
Wn  
Wd = lit5 – Wb – (C)  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
C,DC,N,OV,Z  
None  
None  
None  
None  
None  
None  
None  
N,Z  
76  
SWAP  
Wn = nibble swap Wn  
Wn = byte swap Wn  
Wn  
77  
78  
79  
80  
81  
82  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Read Prog<23:16> to Wd<7:0>  
Read Prog<15:0> to Wd  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
XOR  
f
XOR  
f,WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
N,Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N,Z  
XOR  
N,Z  
XOR  
Wd = Wb .XOR. lit5  
N,Z  
83  
ZE  
ZE  
Wnd = Zero-extend Ws  
C,Z,N  
DS70292D-page 316  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
29.1 MPLAB Integrated Development  
Environment Software  
29.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- HI-TECH C for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 317  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
29.2 MPLAB C Compilers for Various  
Device Families  
29.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
29.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
29.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
29.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS70292D-page 318  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
29.7 MPLAB SIM Software Simulator  
29.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
29.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
29.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers signifi-  
cant advantages over competitive emulators including  
low-cost, full-speed emulation, run-time variable  
watches, trace analysis, complex breakpoints, a rugge-  
dized probe interface and long (up to three meters) inter-  
connection cables.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 319  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
29.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
29.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
29.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS70292D-page 320  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
30.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/  
X04 electrical characteristics. Additional information is provided in future revisions of this document as it becomes avail-  
able.  
Absolute maximum ratings for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04  
family are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability.  
Functional operation of the device at these or any other conditions above the parameters indicated in the operation list-  
ings of this specification is not implied.  
(1)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any pin that is not 5V tolerant with respect to VSS(4) .................................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS when VDD 3.0V(4) .................................................. -0.3V to +5.6V  
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V(4)......................................... -0.3V to (VDD + 0.3V)  
Voltage on VCAP/VDDCORE with respect to VSS ....................................................................................... 2.25V to 2.75V  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin(2)...........................................................................................................................250 mA  
Maximum output current sunk by any I/O pin(3) ........................................................................................................4 mA  
Maximum output current sourced by any I/O pin(3)...................................................................................................4 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports(2)...............................................................................................................200 mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” can cause permanent damage to the  
device. This is a stress rating only, and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods can affect device reliability.  
2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).  
3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx  
and PGEDx pins, which are able to sink/source 12 mA.  
4: See the “Pin Diagramssection for 5V tolerant pins.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 321  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
30.1 DC Characteristics  
TABLE 30-1: OPERATING MIPS VS. VOLTAGE  
Max MIPS  
VDD Range  
(in Volts)  
Temp Range  
(in °C)  
dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and  
dsPIC33FJ128GPX02/X04  
Characteristic  
3.0-3.6V  
3.0-3.6V  
-40°C to +85°C  
-40°C to +125°C  
40  
40  
TABLE 30-2: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
Industrial Temperature Devices  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
Extended Temperature Devices  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+140  
+125  
°C  
°C  
Power Dissipation:  
Internal chip power dissipation:  
PINT = VDD x (IDD IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
I/O = ({VDD VOH} x IOH) + (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/JA  
TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
Package Thermal Resistance, 44-pin QFN  
Package Thermal Resistance, 44-pin TFQP  
Package Thermal Resistance, 28-pin SPDIP  
Package Thermal Resistance, 28-pin SOIC  
Package Thermal Resistance, 28-pin QFN-S  
JA  
JA  
JA  
JA  
JA  
30  
40  
45  
50  
30  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
1
Note 1: Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations.  
DS70292D-page 322  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max Units  
Conditions  
Operating Voltage  
DC10 Supply Voltage  
VDD  
3.0  
1.8  
3.6  
V
V
V
Industrial and Extended  
DC12  
DC16  
VDR  
RAM Data Retention Voltage(2)  
VDD Start Voltage(4)  
VPOR  
VSS  
to ensure internal  
Power-on Reset signal  
DC17  
DC18  
SVDD  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
VDD Core(3)  
0.03  
2.25  
V/ms 0-3.0V in 0.1s  
VCORE  
2.75  
V
Voltage is dependent on  
Internal regulator voltage  
load, temperature and  
VDD  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: This is the limit to which VDD can be lowered without losing RAM data.  
3: These parameters are characterized but not tested in manufacturing.  
4: VDD voltage must remain at VSS for a minimum of 200 µs to ensure POR.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 323  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Operating Current (IDD)(2)  
DC20d  
DC20a  
DC20b  
DC20c  
DC21d  
DC21a  
DC21b  
DC21c  
DC22d  
DC22a  
DC22b  
DC22c  
DC23d  
DC23a  
DC23b  
DC23c  
DC24d  
DC24a  
DC24b  
DC24c  
19  
19  
19  
19  
29  
29  
28  
28  
33  
33  
33  
33  
47  
48  
48  
48  
60  
60  
60  
60  
30  
30  
30  
35  
40  
40  
45  
45  
50  
50  
55  
55  
70  
70  
70  
70  
90  
90  
90  
90  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
10 MIPS  
16 MIPS  
20 MIPS  
30 MIPS  
40 MIPS  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1  
driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VSS.  
MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are  
operational. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits  
are all zeroed).  
DS70292D-page 324  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Idle Current (IIDLE): Core OFF Clock ON Base Current(2)  
DC40d  
DC40a  
DC40b  
DC40c  
DC41d  
DC41a  
DC41b  
DC41c  
DC42d  
DC42a  
DC42b  
DC42c  
DC43a  
DC43d  
DC43b  
DC43c  
DC44d  
DC44a  
DC44b  
DC44c  
4
4
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
10 MIPS  
16 MIPS  
20 MIPS  
30 MIPS  
40 MIPS  
3.3V  
3.3V  
4
4
6
6
+25°C  
+85°C  
+125°C  
-40°C  
6
6
9
9
+25°C  
+85°C  
+125°C  
+25°C  
-40°C  
3.3V  
3.3V  
3.3V  
9
9
16  
16  
16  
16  
18  
18  
19  
19  
+85°C  
+125°C  
-40°C  
+25°C  
+85°C  
+125°C  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated.  
2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module  
Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to VSS.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 325  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Power-Down Current (IPD)(2)  
DC60d  
DC60a  
DC60b  
DC60c  
DC61d  
DC61a  
DC61b  
DC61c  
24  
28  
124  
350  
8
500  
500  
750  
1000  
13  
A  
A  
A  
A  
A  
A  
A  
A  
-40°C  
+25°C  
+85°C  
+125°C  
-40°C  
3.3V  
3.3V  
Base Power-Down Current(3,4)  
10  
12  
13  
15  
+25°C  
+85°C  
+125°C  
(3)  
Watchdog Timer Current: IWDT  
20  
25  
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.  
2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and  
pulled to VSS. WDT, etc., are all switched off and VREGS (RCON<8>) = 1.  
3: The current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
4: These currents are measured on the device containing the most memory in this family.  
TABLE 30-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Doze  
Ratio  
Parameter No.  
Typical(1)  
Max  
Units  
Conditions  
DC73a  
DC73f  
DC73g  
DC70a  
DC70f  
DC70g  
DC71a  
DC71f  
DC71g  
DC72a  
DC72f  
DC72g  
42  
23  
23  
42  
26  
25  
41  
25  
24  
42  
26  
25  
50  
30  
30  
50  
30  
30  
50  
30  
30  
50  
30  
30  
1:2  
1:64  
1:128  
1:2  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
-40°C  
+25°C  
+85°C  
3.3V  
3.3V  
3.3V  
40 MIPS  
40 MIPS  
40 MIPS  
40 MIPS  
1:64  
1:128  
1:2  
1:64  
1:128  
1:2  
1:64  
1:128  
+125°C 3.3V  
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.  
DS70292D-page 326  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O pins  
DI10  
DI11  
DI15  
DI16  
DI18  
DI19  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.2 VDD  
V
V
V
V
V
V
PMP pins  
PMPTTL = 1  
MCLR  
I/O Pins with OSC1 or SOSCI  
I/O Pins with SDAx, SCLx  
I/O Pins with SDAx, SCLx  
Input High Voltage  
SMbus disabled  
SMbus enabled  
VIH  
DI20  
DI21  
I/O Pins Not 5V Tolerant(4)  
0.7 VDD  
0.7 VDD  
VDD  
5.5  
VDD  
V
V
V
I/O Pins 5V Tolerant(4)  
I/O Pins Not 5V Tolerant with 0.24 VDD + 0.8  
PMP(4)  
I/O Pins 5V Tolerant with  
PMP(4)  
0.24 VDD + 0.8  
50  
5.5  
V
ICNPU  
IIL  
CNx Pull-up Current  
DI30  
250  
400  
A VDD = 3.3V, VPIN = VSS  
Input Leakage Current(2)(3)  
DI50  
DI51  
I/O pins 5V Tolerant(4)  
±2  
±1  
A VSS VPIN VDD,  
Pin at high-impedance  
I/O Pins Not 5V Tolerant(4)  
I/O Pins Not 5V Tolerant(4)  
I/O Pins Not 5V Tolerant(4)  
I/O Pins Not 5V Tolerant(4)  
A VSS VPIN VDD,  
Pin at high-impedance,  
40°C TA +85°C  
DI51a  
DI51b  
DI51c  
±2  
±3.5  
±8  
A Shared with external  
reference pins,  
40°C TA +85°C  
A VSS VPIN VDD, Pin  
at high-impedance,  
-40°C TA +125°C  
A Analog pins shared  
with external reference  
pins,  
-40°C TA +125°C  
DI55  
DI56  
MCLR  
OSC1  
±2  
±2  
A VSS VPIN VDD  
A VSS VPIN VDD,  
XT and HS modes  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current can be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: See Pin Diagramsfor the 5V tolerant I/O pins.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 327  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
VOL  
Output Low Voltage  
I/O ports  
DO10  
DO16  
0.4  
0.4  
V
V
IOL = 2 mA, VDD = 3.3V  
IOL = 2 mA, VDD = 3.3V  
OSC2/CLKO  
VOH  
Output High Voltage  
I/O ports  
DO20  
DO26  
2.40  
2.41  
V
V
IOH = -2.3 mA, VDD = 3.3V  
IOH = -1.3 mA, VDD = 3.3V  
OSC2/CLKO  
TABLE 30-11: ELECTRICAL CHARACTERISTICS: BOR  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min(1) Typ Max(1) Units  
2.40 2.55  
Conditions  
BO10  
VBOR  
BOR Event on VDD transition  
high-to-low  
V
BOR event is tied to VDD core voltage  
decrease  
Note 1: Parameters are for design guidance only and are not tested in manufacturing.  
DS70292D-page 328  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-12: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min Typ(1)  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130a EP  
10,000  
VMIN  
E/W -40C to +125C  
D131  
VPR  
VDD for Read  
3.6  
V
VMIN = Minimum operating  
voltage  
D132B VPEW  
VDD for Self-Timed Write  
Characteristic Retention  
VMIN  
20  
10  
3.6  
V
VMIN = Minimum operating  
voltage  
D134  
D135  
TRETD  
IDDP  
Year Provided no other specifications  
are violated  
Supply Current during  
Programming  
mA  
D136a TRW  
D136b TRW  
D137a TPE  
D137b TPE  
D138a TWW  
D138b TWW  
Row Write Time  
1.32  
1.28  
20.1  
19.5  
42.3  
41.1  
1.74  
1.79  
26.5  
27.3  
55.9  
57.6  
ms TRW = 11064 FRC cycles,  
TA = +85°C, See Note 2  
Row Write Time  
ms TRW = 11064 FRC cycles,  
TA = +125°C, See Note 2  
Page Erase Time  
Page Erase Time  
Word Write Cycle Time  
Word Write Cycle Time  
ms TPE = 168517 FRC cycles,  
TA = +85°C, See Note 2  
ms TPE = 168517 FRC cycles,  
TA = +125°C, See Note 2  
µs TWW = 355 FRC cycles,  
TA = +85°C, See Note 2  
µs TWW = 355 FRC cycles,  
TA = +125°C, See Note 2  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111(for Min), TUN<5:0> = b'100000(for Max).  
This parameter depends on the FRC accuracy (see Table 30-19) and the value of the FRC Oscillator Tun-  
ing register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see  
Section 5.3 “Programming Operations”.  
TABLE 30-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated):  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
CEFC  
External Filter Capacitor  
Value  
4.7  
10  
F  
Capacitor must be low  
series resistance  
(< 5 Ohms)  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 329  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
30.2 AC Characteristics and Timing  
Parameters  
This section defines dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/  
X04 AC characteristics and timing parameters.  
TABLE 30-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Operating voltage VDD range as described in Section 30.0 “Electrical  
Characteristics”.  
FIGURE 30-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
VSS  
TABLE 30-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
No.  
DO50 COSCO  
OSC2/SOSCO pin  
15  
pF In XT and HS modes when  
external clock is used to drive  
OSC1  
DO56 CIO  
DO58 CB  
All I/O pins and OSC2  
SCLx, SDAx  
50  
pF EC mode  
pF In I2C™ mode  
400  
DS70292D-page 330  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-2:  
EXTERNAL CLOCK TIMING  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
OSC1  
CLKO  
OS20  
OS30 OS30  
OS25  
OS31 OS31  
OS41  
OS40  
TABLE 30-16: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10  
FIN  
External CLKI Frequency  
(External clocks allowed only  
in EC and ECPLL modes)  
DC  
40  
MHz EC  
Oscillator Crystal Frequency  
3.5  
10  
10  
40  
33  
MHz XT  
MHz HS  
kHz SOSC  
OS20  
OS25  
OS30  
TOSC  
TCY  
TOSC = 1/FOSC  
Instruction Cycle Time(2)  
12.5  
25  
DC  
DC  
ns  
ns  
TosL,  
TosH  
External Clock in (OSC1)  
High or Low Time  
0.375 x TOSC  
0.625 x TOSC  
ns  
EC  
EC  
OS31  
TosR,  
TosF  
External Clock in (OSC1)  
Rise or Fall Time  
20  
ns  
OS40  
OS41  
OS42  
TckR  
TckF  
GM  
CLKO Rise Time(3)  
CLKO Fall Time(3)  
14  
5.2  
5.2  
16  
18  
ns  
ns  
External Oscillator  
mA/V VDD = 3.3V  
TA = +25ºC  
Transconductance(4)  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at “min.”  
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the  
“max.” cycle time limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.  
4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 331  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS50  
FPLLI  
PLL Voltage Controlled  
Oscillator (VCO) Input  
Frequency Range  
0.8  
8
MHz ECPLL, HSPLL, XTPLL  
modes  
OS51  
FSYS  
On-Chip VCO System  
Frequency  
100  
200  
MHz  
OS52  
OS53  
TLOCK  
DCLK  
PLL Start-up Time (Lock Time)  
CLKO Stability (Jitter)  
0.9  
-3  
1.5  
0.5  
3.1  
3
mS  
%
Measured over 100 ms  
period  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
TABLE 30-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Internal FRC Accuracy @ 7.3728 MHz(1,2)  
F20a  
F20b  
FRC  
FRC  
-2  
-5  
+2  
+5  
%
%
-40°C TA  +85°C VDD = 3.0-3.6V  
-40°C TA  +125°C VDD = 3.0-3.6V  
Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.  
2: FRC is set to initial frequency of 7.37 MHz (±2%) at 25°C.  
TABLE 30-19: INTERNAL RC ACCURACY  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ 32.768 kHz(1)  
F21a LPRC  
F21b LPRC  
-20  
-70  
±6  
+20  
+70  
%
%
-40°C TA  +85°C VDD = 3.0-3.6V  
-40°C TA  +125°C VDD = 3.0-3.6V  
Note 1: Change of LPRC frequency as VDD changes.  
DS70292D-page 332  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-3:  
CLKO AND I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-20: I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
DO31  
DO32  
DI35  
TIOR  
TIOF  
TINP  
TRBP  
Port Output Rise Time  
20  
2
10  
10  
25  
25  
ns  
ns  
Port Output Fall Time  
INTx Pin High or Low Time (output)  
CNx High or Low Time (input)  
ns  
DI40  
TCY  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 333  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-4:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING CHARACTERISTICS  
VDD  
SY12  
MCLR  
SY10  
Internal  
POR  
SY11  
PWRT  
Time-out  
SY30  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
SY20  
SY13  
SY13  
I/O Pins  
SY35  
FSCM  
Delay  
Note: Refer to Figure 30-1 for load conditions.  
DS70292D-page 334  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max Units  
Conditions  
SY10  
SY11  
TMCL  
MCLR Pulse-Width (low)  
2
s -40°C to +85°C  
ms -40°C to +85°C  
TPWRT Power-up Timer Period  
2
4
User programmable  
8
16  
32  
64  
128  
SY12  
SY13  
TPOR  
TIOZ  
Power-on Reset Delay  
3
10  
30  
s -40°C to +85°C  
s  
I/O High-Impedance  
from MCLR Low or  
Watchdog Timer Reset  
0.68  
0.72  
1.2  
SY20  
TWDT1  
Watchdog Timer  
Time-out Period  
See Section 27.4 “Watchdog  
Timer (WDT)” and LPRC  
specification F21 (Table 30-19)  
SY30  
SY35  
TOST  
Oscillator Start-up  
Timer Period  
1024 TOSC  
500  
TOSC = OSC1 period  
TFSCM  
Fail-Safe Clock  
Monitor Delay  
900  
s -40°C to +85°C  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 335  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-5:  
TIMER1, 2, 3 AND 4 EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
Tx11  
Tx10  
Tx15  
Tx20  
OS60  
TMRx  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS(1)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
TA10  
TA11  
TA15  
TTXH  
TTXL  
TTXP  
TxCK High Time  
TxCK Low Time  
Synchronous,  
no prescaler  
0.5 TCY + 20  
ns  
ns  
Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
Asynchronous  
10  
ns  
ns  
Synchronous,  
no prescaler  
0.5 TCY + 20  
Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
ns  
Asynchronous  
10  
ns  
ns  
TxCK Input Period Synchronous,  
no prescaler  
TCY + 40  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
N = prescale  
value  
(TCY + 40)/N  
(1, 8, 64, 256)  
Asynchronous  
20  
ns  
OS60  
TA20  
Ft1  
SOSCI/T1CK Oscillator Input  
DC  
50  
kHz  
frequency Range (oscillator enabled  
by setting bit TCS (T1CON<1>))  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
Note 1: Timer1 is a Type A.  
DS70292D-page 336  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-23: TIMER2 AND TIMER4 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TtxH  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
TB10  
TxCK High Time Synchronous, 0.5 TCY + 20  
no prescaler  
ns  
Must also meet  
parameter TB15  
Synchronous,  
with prescaler  
10  
ns  
ns  
ns  
ns  
TB11  
TB15  
TtxL  
TtxP  
TxCK Low Time  
Synchronous, 0.5 TCY + 20  
no prescaler  
Must also meet  
parameter TB15  
Synchronous,  
with prescaler  
10  
TxCK Input  
Period  
Synchronous,  
no prescaler  
TCY + 40  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
(TCY + 40)/N  
TB20  
TCKEXT-  
MRL  
Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
TABLE 30-24: TIMER3 AND TIMER5 EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Symbol  
TtxH  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
TC10  
TC11  
TC15  
TxCK High Time  
TxCK Low Time  
Synchronous  
Synchronous  
0.5 TCY + 20  
ns  
ns  
ns  
Must also meet  
parameter TC15  
TtxL  
TtxP  
0.5 TCY + 20  
TCY + 40  
Must also meet  
parameter TC15  
TxCK Input Period Synchronous,  
no prescaler  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
(TCY + 40)/N  
TC20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5  
TCY  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 337  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-6:  
INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS  
ICx  
IC10  
IC11  
IC15  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-25: INPUT CAPTURE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
IC10  
IC11  
IC15  
TccL  
TccH  
TccP  
ICx Input Low Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
ICx Input High Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ICx Input Period  
(TCY + 40)/N  
N = prescale  
value (1, 4, 16)  
Note 1: These parameters are characterized but not tested in manufacturing.  
FIGURE 30-7:  
OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS  
OCx  
(Output Compare  
or PWM Mode)  
OC10  
OC11  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
OC10 TccF  
OC11 TccR  
OCx Output Fall Time  
OCx Output Rise Time  
ns  
ns  
See parameter D032  
See parameter D031  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70292D-page 338  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-8:  
OC/PWM MODULE TIMING CHARACTERISTICS  
OC20  
OCFA  
OC15  
OCx  
TABLE 30-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
OC15  
TFD  
Fault Input to PWM I/O  
Change  
50  
ns  
OC20  
TFLT  
Fault Input Pulse-Width  
50  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 339  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-9:  
SPIx MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP31  
SP21  
LSb  
Bit 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30  
MSb In  
SP40  
LSb In  
Bit 14 - - - -1  
SP41  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-28: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
See Note 3  
SP10  
SP11  
SP20  
TscL  
TscH  
TscF  
SCKx Output Low Time  
SCKx Output High Time  
SCKx Output Fall Time  
TCY/2  
TCY/2  
ns  
ns  
ns  
See Note 3  
See parameter D032  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP40  
SP41  
TscR  
TdoF  
TdoR  
SCKx Output Rise Time  
23  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter D031  
and Note 4  
SDOx Data Output Fall Time  
SDOx Data Output Rise Time  
See parameter D032  
and Note 4  
See parameter D031  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
to SCKx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS70292D-page 340  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-10:  
SPIx MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS  
SP36  
SCKX  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP20  
SP21  
SCKX  
(CKP = 1)  
SP35  
LSb  
MSb  
SP40  
Bit 14 - - - - - -1  
SDOX  
SDIX  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-29: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscL  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SCKx Output Low Time(3)  
SCKx Output High Time(3)  
SCKx Output Fall Time(4)  
TCY/2  
TCY/2  
ns  
ns  
ns  
See Note 3  
SP10  
SP11  
SP20  
TscH  
TscF  
See Note 3  
See parameter D032  
and Note 4  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
TscR  
TdoF  
TdoR  
SCKx Output Rise Time(4)  
30  
23  
30  
6
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter D031  
and Note 4  
SDOx Data Output Fall  
Time(4)  
See parameter D032  
and Note 4  
SDOx Data Output Rise  
Time(4)  
See parameter D031  
and Note 4  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdoV2sc, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
TdiV2scH, Setup Time of SDIx Data  
TdiV2scL Input to SCKx Edge  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 341  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-11:  
SPIx MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP71  
SP70  
SP72  
SP73  
SP72  
SCKX  
(CKP = 1)  
SP73  
LSb  
SP35  
MSb  
SDOX  
SDIX  
Bit 14 - - - - - -1  
SP51  
SP30,SP31  
Bit 14 - - - -1  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 30-1 for load conditions.  
TABLE 30-30: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscL  
Characteristic(1)  
Min  
Typ(2) Max Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
SCKx Input Low Time  
30  
30  
10  
10  
25  
25  
ns  
ns  
ns  
ns  
ns  
TscH  
TscF  
TscR  
TdoF  
SCKx Input High Time  
SCKx Input Fall Time(3)  
SCKx Input Rise Time(3)  
SDOx Data Output Fall Time(3)  
See Note 3  
See Note 3  
See parameter D032  
and Note 3  
SP31  
SP35  
SP40  
SP41  
SP50  
SP51  
SP52  
TdoR  
SDOx Data Output Rise Time(3)  
30  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter D031  
and Note 3  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
20  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
20  
120  
to SCKx Edge  
TssL2scH, SSx to SCKx or SCKx Input  
TssL2scL  
See Note 3  
TssH2doZ SSx to SDOx Output  
10  
High-Impedance(3)  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: Assumes 50 pF load on all SPIx pins.  
DS70292D-page 342  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-12:  
SPIx MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS  
SP60  
SSx  
SP52  
SP50  
SCKx  
(CKP = 0)  
SP71  
SP70  
SP72  
SP73  
SP73  
SCKx  
(CKP = 1)  
SP35  
SP72  
LSb  
MSb  
Bit 14 - - - - - -1  
SDOx  
SDIx  
SP30,SP31  
Bit 14 - - - -1  
SP51  
MSb In  
SP41  
LSb In  
SP40  
Note: Refer to Figure 30-1 for load conditions.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 343  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-31: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscL  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
SCKx Input Low Time  
30  
30  
10  
10  
25  
25  
ns  
ns  
ns  
ns  
ns  
TscH  
TscF  
TscR  
TdoF  
SCKx Input High Time  
SCKx Input Fall Time(3)  
SCKx Input Rise Time(3)  
SDOx Data Output Fall Time(3)  
See Note 3  
See Note 3  
See parameter D032  
and Note 3  
SP31  
SP35  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
TdoR  
SDOx Data Output Rise Time(3)  
30  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter D031  
and Note 3  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
20  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL to SCKx Edge  
20  
TssL2scH, SSx to SCKx or SCKx   
TssL2scL Input  
120  
TssH2doZ SSx to SDOX Output  
10  
1.5 TCY + 40  
See Note 4  
High-Impedance(4)  
TscH2ssH SSx after SCKx Edge  
TscL2ssH  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this  
specification.  
4: Assumes 50 pF load on all SPIx pins.  
DS70292D-page 344  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-13:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCLx  
IM31  
IM34  
IM30  
IM33  
SDAx  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 30-1 for load conditions.  
FIGURE 30-14:  
I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCLx  
IM11  
IM26  
IM10  
IM33  
IM25  
SDAx  
In  
IM45  
IM40  
IM40  
SDAx  
Out  
Note: Refer to Figure 30-1 for load conditions.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 345  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-32: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min(1)  
Max  
Units  
Conditions  
IM10  
TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
pF  
1 MHz mode(2) TCY/2 (BRG + 1)  
IM11  
IM20  
IM21  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
IM40  
IM45  
THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TF:SCL  
TR:SCL  
SDAx and SCLx 100 kHz mode  
300  
300  
100  
1000  
300  
300  
CB is specified to be  
from 10 to 400 pF  
Fall Time  
400 kHz mode  
20 + 0.1 CB  
1 MHz mode(2)  
SDAx and SCLx 100 kHz mode  
CB is specified to be  
from 10 to 400 pF  
Rise Time  
400 kHz mode  
20 + 0.1 CB  
1 MHz mode(2)  
250  
100  
40  
0
TSU:DAT Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
THD:DAT Data Input  
Hold Time  
0
0.9  
0.2  
TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
After this period the  
first clock pulse is  
generated  
Hold Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1)  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TAA:SCL Output Valid  
From Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
3500  
1000  
400  
TBF:SDA Bus Free Time 100 kHz mode  
4.7  
1.3  
0.5  
Time the bus must be  
free before a new  
transmission can start  
400 kHz mode  
1 MHz mode(2)  
IM50  
IM51  
CB  
Bus Capacitive Loading  
400  
TPGD  
Pulse Gobbler Delay  
65  
390  
ns  
See Note 3  
Note 1: BRG is the value of the I2C Baud Rate Generator. Refer to Section 19. “Inter-Integrated Circuit™  
(I2C™)” (DS70195) in the “dsPIC33F/PIC24H Family Reference Manual”. Please see the Microchip web-  
site (www.microchip.com) for the latest dsPIC33F Family Reference Manual chapters.  
2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
3: Typical value for this parameter is 130 ns.  
DS70292D-page 346  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-15:  
I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCLx  
IS34  
IS31  
IS30  
IS33  
SDAx  
Stop  
Condition  
Start  
Condition  
FIGURE 30-16:  
I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS21  
IS11  
IS10  
SCLx  
IS30  
IS26  
IS31  
IS33  
IS25  
SDAx  
In  
IS45  
IS40  
IS40  
SDAx  
Out  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 347  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for  
Extended  
Param. Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
IS10  
IS11  
TLO:SCL Clock Low Time 100 kHz mode  
4.7  
s  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1.3  
s  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
4.0  
s  
s  
THI:SCL Clock High Time 100 kHz mode  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
s  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
300  
300  
100  
1000  
300  
300  
s  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
ns  
ns  
ns  
s  
s  
s  
pF  
IS20  
IS21  
IS25  
IS26  
IS30  
IS31  
IS33  
IS34  
IS40  
IS45  
IS50  
TF:SCL SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Fall Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
TR:SCL SDAx and SCLx 100 kHz mode  
CB is specified to be from  
10 to 400 pF  
Rise Time  
400 kHz mode  
1 MHz mode(1)  
20 + 0.1 CB  
TSU:DAT Data Input  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
250  
100  
100  
0
THD:DAT Data Input  
Hold Time  
0
0.9  
0.3  
0
TSU:STA Start Condition  
Setup Time  
4.7  
0.6  
0.25  
4.0  
0.6  
0.25  
4.7  
0.6  
0.6  
4000  
600  
250  
0
Only relevant for Repeated  
Start condition  
THD:STA Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
THD:ST Stop Condition  
O
Hold Time  
TAA:SCL Output Valid  
From Clock  
3500  
1000  
350  
0
0
TBF:SDA Bus Free Time  
4.7  
1.3  
0.5  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus Capacitive Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).  
DS70292D-page 348  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-17:  
DCI MODULE (MULTI-CHANNEL, I2S MODES) TIMING CHARACTERISTICS  
CSCK  
(SCKE =  
0
)
)
CS11  
CS10  
CS21  
CS20  
CS20  
CS21  
CSCK  
(SCKE =  
1
COFS  
CS55 CS56  
CS35  
70  
CS51  
High-Z  
CS50  
LSb  
High-Z  
MSb  
CSDO  
CSDI  
CS30  
CS31  
LSb In  
MSb In  
CS40 CS41  
Note: Refer to Figure 30-1 for load conditions.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 349  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-34: DCI MODULE (MULTI-CHANNEL, I2S MODES) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
CS10  
TCSCKL  
CSCK Input Low Time  
(CSCK pin is an input)  
TCY/2 + 20  
ns  
CSCK Output Low Time(3)  
(CSCK pin is an output)  
30  
10  
10  
25  
25  
ns  
ns  
ns  
ns  
ns  
CS11  
TCSCKH  
CSCK Input High Time  
(CSCK pin is an input)  
CSCK Output High Time(3)  
(CSCK pin is an output)  
CSCK Output Fall Time(4)  
(CSCK pin is an output)  
TCY/2 + 20  
30  
CS20  
CS21  
TCSCKF  
TCSCKR  
CSCK Output Rise Time(4)  
(CSCK pin is an output)  
CS30  
CS31  
CS35  
CS36  
CS40  
TCSDOF  
TCSDOR  
TDV  
CSDO Data Output Fall Time(4)  
CSDO Data Output Rise Time(4)  
Clock Edge to CSDO Data Valid  
Clock Edge to CSDO Tri-Stated  
10  
20  
10  
10  
25  
25  
10  
20  
ns  
ns  
ns  
ns  
ns  
TDIV  
TCSDI  
Setup Time of CSDI Data Input to  
CSCK Edge (CSCK pin is input  
or output)  
CS41  
THCSDI  
Hold Time of CSDI Data Input to  
CSCK Edge (CSCK pin is input  
or output)  
20  
ns  
CS50  
CS51  
CS55  
TCOFSF  
TCOFSR  
TSCOFS  
COFS Fall Time  
(COFS pin is output)  
20  
10  
10  
25  
25  
ns  
ns  
ns  
Note 1  
Note 1  
COFS Rise Time  
(COFS pin is output)  
Setup Time of COFS Data Input  
to CSCK Edge (COFS pin is  
input)  
CS56  
THCOFS  
Hold Time of COFS Data Input to  
CSCK Edge (COFS pin is input)  
20  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
3: The minimum clock period for CSCK is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all DCI pins.  
DS70292D-page 350  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-18:  
DCI MODULE (AC-LINK MODE) TIMING CHARACTERISTICS  
BIT_CLK  
(CSCK)  
CS62  
CS71  
CS61  
CS60  
CS21  
CS20  
CS70  
CS72  
SYNC  
(COFS)  
CS76  
CS75  
CS80  
MSb  
LSb  
LSb  
SDOx  
(CSDO)  
CS76  
CS75  
MSb In  
SDIx  
(CSDI)  
CS65 CS66  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 351  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-35: DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1,2)  
BIT_CLK Low Time  
Min  
Typ(3)  
Max  
Units  
Conditions  
CS60  
CS61  
CS62  
CS65  
TBCLKL  
TBCLKH  
TBCLK  
TSACL  
36  
36  
40.7  
40.7  
81.4  
45  
45  
10  
ns  
ns  
ns  
ns  
BIT_CLK High Time  
BIT_CLK Period  
Bit clock is input  
Input Setup Time to  
Falling Edge of BIT_CLK  
CS66  
THACL  
Input Hold Time from  
10  
ns  
Falling Edge of BIT_CLK  
CS70  
CS71  
CS72  
CS75  
CS76  
CS80  
TSYNCLO SYNC Data Output Low Time  
19.5  
1.3  
20.8  
30  
30  
15  
s  
s  
s  
ns  
ns  
ns  
Note 1  
TSYNCHI  
TSYNC  
TRACL  
TFACL  
SYNC Data Output High Time  
SYNC Data Output Period  
Note 1  
Note 1  
Rise Time, SYNC, SDATA_OUT  
Fall Time, SYNC, SDATA_OUT  
CLOAD = 50 pF, VDD = 3V  
CLOAD = 50 pF, VDD = 3V  
TOVDACL Output Valid Delay from Rising  
Edge of BIT_CLK  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: These values assume BIT_CLK frequency is 12.288 MHz.  
3: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
DS70292D-page 352  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-19:  
ECAN™ MODULE I/O TIMING CHARACTERISTICS  
CiTx Pin  
(output)  
New Value  
Old Value  
CA10 CA11  
CiRx Pin  
(input)  
CA20  
TABLE 30-36: ECAN™ MODULE I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
CA10  
CA11  
CA20  
TioF  
TioR  
Tcwf  
Port Output Fall Time  
Port Output Rise Time  
ns  
ns  
ns  
See parameter D032  
See parameter D031  
Pulse-Width to Trigger  
CAN Wake-up Filter  
120  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 353  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-37: ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Device Supply  
AD01  
AVDD  
Module VDD Supply  
Greater of  
VDD – 0.3  
or 3.0  
Lesser of  
VDD + 0.3  
or 3.6  
V
V
AD02  
AVSS  
Module VSS Supply  
VSS – 0.3  
VSS + 0.3  
Reference Inputs  
AD05  
VREFH  
Reference Voltage High  
AVSS + 2.7  
AVDD  
3.6  
V
V
See Note 1  
AD05a  
3.0  
VREFH = AVDD  
VREFL = AVSS = 0  
AD06  
VREFL  
VREF  
Reference Voltage Low  
AVSS  
0
AVDD – 2.7  
0
V
V
See Note 1  
AD06a  
VREFH = AVDD  
VREFL = AVSS = 0  
AD07  
Absolute Reference  
Voltage  
2.7  
3.6  
V
VREF = VREFH - VREFL  
AD08  
AD09  
IREF  
IAD  
Current Drain  
10  
A ADC off  
Operating Current  
7.0  
9.0  
mA ADC operating in 10-bit  
mode, see Note 1  
2.7  
3.2  
mA ADC operating in 12-bit  
mode, see Note 1  
Analog Input  
AD12  
AD13  
AD17  
VINH  
VINL  
RIN  
Input Voltage Range VINH  
Input Voltage Range VINL  
VINL  
VREFH  
V
This voltage reflects Sample  
and Hold Channels 0, 1, 2,  
and 3 (CH0-CH3), positive  
input  
VREFL  
AVSS + 1V  
V
This voltage reflects Sample  
and Hold Channels 0, 1, 2,  
and 3 (CH0-CH3), negative  
input  
Recommended Imped-  
ance of Analog Voltage  
Source  
200  
200  
10-bit ADC  
12-bit ADC  
Note 1: These parameters are not characterized or tested in manufacturing.  
DS70292D-page 354  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-38: ADC MODULE SPECIFICATIONS (12-BIT MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ  
Max. Units  
Conditions  
ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF-  
AD20a Nr  
AD21a INL  
Resolution  
12 data bits  
bits  
Integral Nonlinearity  
-2  
>-1  
1.25  
-0.2  
+2  
<1  
10  
5
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
AD22a DNL  
Differential Nonlinearity  
Gain Error  
3.4  
0.9  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
AD23a  
AD24a  
AD25a  
GERR  
EOFF  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Offset Error  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Monotonicity  
Guaranteed  
ADC Accuracy (12-bit Mode) – Measurements with internal VREF+/VREF-  
AD20a Nr  
AD21a INL  
AD22a DNL  
Resolution  
12 data bits  
bits  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-2  
>-1  
2
+2  
<1  
20  
10  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
AD23a  
AD24a  
AD25a  
GERR  
EOFF  
10.5  
3.8  
Offset Error  
2
Monotonicity  
Guaranteed  
Dynamic Performance (12-bit Mode)  
AD30a THD  
Total Harmonic Distortion  
-75  
dB  
dB  
AD31a SINAD  
Signal to Noise and  
Distortion  
68.5  
69.5  
AD32a SFDR  
Spurious Free Dynamic  
Range  
80  
dB  
AD33a  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
250  
kHz  
bits  
AD34a ENOB  
11.09  
11.3  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 355  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-39: ADC MODULE SPECIFICATIONS (10-BIT MODE)  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ  
Max. Units  
Conditions  
ADC Accuracy (10-bit Mode) – Measurements with external VREF+/VREF-  
AD20b Nr  
AD21b INL  
Resolution  
10 data bits  
bits  
Integral Nonlinearity  
-1.5  
>-1  
0.4  
0.2  
+1.5  
<1  
6
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
AD22b DNL  
Differential Nonlinearity  
Gain Error  
3
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
AD23b  
AD24b  
AD25b  
GERR  
EOFF  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Offset Error  
2
5
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Monotonicity  
Guaranteed  
ADC Accuracy (10-bit Mode) – Measurements with internal VREF+/VREF-  
AD20b Nr  
AD21b INL  
AD22b DNL  
Resolution  
10 data bits  
bits  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-1  
>-1  
3
7
+1  
<1  
15  
7
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
AD23b  
AD24b  
AD25b  
GERR  
EOFF  
Offset Error  
1.5  
3
Monotonicity  
Guaranteed  
Dynamic Performance (10-bit Mode)  
AD30b THD  
Total Harmonic Distortion  
-64  
dB  
dB  
AD31b SINAD  
Signal to Noise and  
Distortion  
57  
58.5  
AD32b SFDR  
Spurious Free Dynamic  
Range  
72  
dB  
AD33b  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
550  
kHz  
bits  
AD34b ENOB  
9.16  
9.4  
DS70292D-page 356  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-20:  
ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS  
(ASAM = 0, SSRC<2:0> = 000)  
AD50  
ADCLK  
Instruction  
Execution  
Set SAMP  
AD61  
Clear SAMP  
SAMP  
AD60  
TSAMP  
AD55  
DONE  
AD1IF  
1
2
3
4
5
6
7
8
9
– Software sets AD1CON. SAMP to start sampling.  
– Sampling ends, conversion sequence starts.  
1
2
4
– Sampling starts after discharge period. TSAMP is described in  
Section 28. “Analog-to-Digital Converter (ADC) without DMA”  
(DS70210) in the “dsPIC33F/PIC24H Family Reference Manual”.  
Please see the Microchip web site (www.microchip.com)  
for the latest dsPIC33F Family Reference Manual sections.  
– Convert bit 11.  
5
6
7
8
9
– Convert bit 10.  
– Convert bit 1.  
– Convert bit 0.  
– Software clears AD1CON. SAMP to start conversion.  
3
– One TAD for end of conversion.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 357  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-40: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ(2) Max.  
Units  
Conditions  
Clock Parameters(1)  
AD50  
AD51  
TAD  
ADC Clock Period  
117.6  
ns  
ns  
tRC  
ADC Internal RC Oscillator  
Period  
250  
Conversion Rate  
AD55  
AD56  
AD57  
tCONV  
FCNV  
Conversion Time  
Throughput Rate  
Sample Time  
14 TAD  
ns  
ksps  
500  
TSAMP  
3 TAD  
Timing Parameters  
AD60  
tPCS  
2 TAD  
3 TAD  
Auto convert trigger not  
selected  
Conversion Start from Sample  
Trigger(2)  
AD61  
AD62  
AD63  
tPSS  
tCSS  
tDPU  
Sample Start from Setting  
Sample (SAMP) bit(2)  
2 TAD  
0.5 TAD  
3 TAD  
s  
Conversion Completion to  
Sample Start (ASAM = 1)(2)  
Time to Stabilize Analog Stage  
from ADC Off to ADC On(2,3)  
20  
Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity  
performance, especially at elevated temperatures.  
2: These parameters are characterized but not tested in manufacturing.  
3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is  
turned on (AD1CON1<ADON>=’1’). During this time, the ADC result is indeterminate.  
DS70292D-page 358  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-21:  
ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS  
(CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)  
AD50  
Set SAMP  
AD61  
ADCLK  
Instruction  
Execution  
Clear SAMP  
AD60  
SAMP  
TSAMP  
AD55  
AD55  
DONE  
AD1IF  
1
2
3
4
5
6
7
8
5
6
7
8
– Software sets AD1CON. SAMP to start sampling.  
1
2
– Sampling starts after discharge period. TSAMP is described in Section 28. “Analog-to-Digital Converter (ADC)  
without DMA” (DS70210) in the “dsPIC33F/PIC24H Family Reference Manual”.  
– Software clears AD1CON. SAMP to start conversion.  
– Sampling ends, conversion sequence starts.  
– Convert bit 9.  
3
4
5
6
7
8
– Convert bit 8.  
– Convert bit 0.  
– One TAD for end of conversion.  
FIGURE 30-22:  
ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,  
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)  
AD50  
ADCLK  
Instruction  
Set ADON  
Execution  
SAMP  
AD1IF  
TSAMP  
TSAMP  
AD55  
AD55  
AD55  
DONE  
1
2
3
4
5
6
7
3
4
5
6
8
– Convert bit 8.  
– Convert bit 0.  
4
– Software sets AD1CON. ADON to start AD operation.  
1
2
5
6
7
8
– Sampling starts after discharge period. TSAMP is described in  
Section 28. “Analog-to-Digital Converter (ADC) without DMA”  
(DS70210) in the “dsPIC33F/PIC24H Family Reference Manual'.  
– One TAD for end of conversion.  
– Begin conversion of next channel.  
– Convert bit 9.  
3
– Sample for time specified by SAMC<4:0>.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 359  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-41: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ(2)  
Max.  
Units  
Conditions  
Clock Parameters(1)  
AD50 TAD  
AD51 tRC  
ADC Clock Period  
ADC Internal RC Oscillator Period  
76  
ns  
ns  
250  
Conversion Rate  
AD55 tCONV  
AD56 FCNV  
Conversion Time  
Throughput Rate  
12 TAD  
1.1  
Msps  
AD57 TSAMP Sample Time  
2 TAD  
Timing Parameters  
AD60 tPCS  
AD61 tPSS  
AD62 tCSS  
AD63 tDPU  
Conversion Start from Sample  
2 TAD  
2 TAD  
3 TAD  
3 TAD  
s  
Auto-Convert Trigger  
not selected  
Trigger(2)  
Sample Start from Setting  
Sample (SAMP) bit(2)  
0.5 TAD  
Conversion Completion to  
Sample Start (ASAM = 1)(2)  
Time to Stabilize Analog Stage  
from ADC Off to ADC On(2,3)  
20  
Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity  
performance, especially at elevated temperatures.  
2: These parameters are characterized but not tested in manufacturing.  
3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is  
turned on (AD1CON1<ADON>=’1’). During this time, the ADC result is indeterminate.  
TABLE 30-42: AUDIO DAC MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC/DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ Max. Units  
Conditions  
Clock Parameters  
DA01  
DA02  
VOD+  
VOD-  
Positive Output Differential  
Voltage  
1
1.15  
2
V
V
VOD+ = VDACH – VDACL  
See Note 1, 2  
Negative Output Differential  
Voltage  
-2  
-1.15  
-1  
VOD- = VDACL – VDACH  
See Note 1, 2  
DA03  
DA04  
DA08  
DA09  
DA10  
DA11  
VRES  
GERR  
FDAC  
FSAMP  
FINPUT  
TINIT  
Resolution  
16  
3.1  
bits  
%
Gain Error  
Clock frequency  
Sample Rate  
25.6 MHz  
0
100  
45  
kHz  
Input data frequency  
Initialization period  
Signal-to-Noise Ratio  
0
kHz Sampling frequency = 100 kHz  
Clks Time before first sample  
1024  
DA12 SNR  
61  
dB Sampling frequency = 96 kHz  
Note 1: Measured VDACH and VDACL output with respect to VSS, with no load and FORM bit (DACXCON<8>) = 0.  
2: This parameter is tested at -40°C TA 85°C only.  
DS70292D-page 360  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-43: COMPARATOR TIMING SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
Symbol  
Characteristic  
Min.  
Typ  
Max. Units  
Conditions  
No.  
300  
301  
TRESP  
Response Time(1,2)  
150  
400  
10  
ns  
TMC2OV  
Comparator Mode Change  
to Output Valid(1)  
s  
Note 1: Parameters are characterized but not tested.  
2: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from  
VSS to VDD.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 361  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 30-44: COMPARATOR MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
D300  
D301  
VIOFF  
VICM  
Input Offset Voltage(1)  
Input Common Mode Voltage(1)  
0
±10  
mV  
V
AVDD-1.5V  
D302  
CMRR  
Common Mode Rejection Ratio (1)  
-54  
dB  
Note 1: Parameters are characterized but not tested.  
TABLE 30-45: COMPARATOR REFERENCE VOLTAGE SETTLING TIME SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Settling Time(1)  
Min.  
Typ  
Max.  
Units  
Conditions  
VR310  
TSET  
10  
s  
Note 1: Settling time measured while CVRR = 1and CVR3:CVR0 bits transition from ‘0000’ to ‘1111’.  
TABLE 30-46: COMPARATOR REFERENCE VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Resolution  
Min.  
Typ  
Max.  
Units  
Conditions  
VRD310 CVRES  
VRD311 CVRAA  
VRD312 CVRUR  
CVRSRC/24  
2k  
CVRSRC/32 LSb  
Absolute Accuracy  
0.5  
LSb  
Unit Resistor Value (R)  
DS70292D-page 362  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-23:  
PARALLEL SLAVE PORT TIMING DIAGRAM  
CS  
RD  
WR  
PS4  
PMD<7:0>  
PS1  
PS3  
PS2  
TABLE 30-47: PARALLEL SLAVE PORT TIME SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
PS1  
PS2  
PS3  
PS4  
TdtV2wrH Data in Valid before WR or CS  
Inactive (setup time)  
20  
ns  
TwrH2dtI  
WR or CS Inactive to Data-In  
Invalid (hold time)  
20  
10  
80  
30  
ns  
ns  
ns  
TrdL2dtV RD and CS to Active Data-Out  
Valid  
TrdH2dtI  
RD Active or CS Inactive to  
Data-Out Invalid  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 363  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-24:  
PARALLEL MASTER PORT READ TIMING DIAGRAM  
P2  
P2  
P1  
P3  
P3  
P4  
P1  
P4  
P2  
P1  
System  
Clock  
PMA<13:8>  
PMD<7:0>  
Address  
Data  
PM7  
Address <7:0>  
PM2  
PM6  
PM3  
PMRD  
PMWR  
PM5  
PMALL/PMALH  
PMCS1  
PM1  
TABLE 30-48: PARALLEL MASTER PORT READ TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for  
Extended  
Param  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
No.  
PM1  
PMALL/PMALH Pulse-Width  
0.5 TCY  
ns  
ns  
PM2  
Address Out Valid to PMALL/PMALH Invalid  
(address setup time)  
0.75 TCY  
PM3  
PMALL/PMALH Invalid to Address Out Invalid  
(address hold time)  
0.25 TCY  
ns  
PM5  
PM6  
PMRD Pulse-Width  
0.5 TCY  
ns  
ns  
PMRD or PMENB Active to Data In Valid (data  
setup time)  
PM7  
PMRD or PMENB Inactive to Data In Invalid  
(data hold time)  
ns  
DS70292D-page 364  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
FIGURE 30-25:  
PARALLEL MASTER PORT WRITE TIMING DIAGRAM  
P2  
P1  
P3  
P4  
P1  
P2  
P3  
P4  
P2  
P1  
System  
Clock  
PMA<13:8>  
PMD<7:0>  
Address  
Address <7:0>  
Data  
PM12  
PM13  
PMRD  
PMWR  
PM11  
PMALL/PMALH  
PM16  
PMCS1  
TABLE 30-49: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
PM11 PMWR Pulse-Width  
0.5 TCY  
ns  
ns  
PM12 Data Out Valid before PMWR or PMENB goes  
Inactive (data setup time)  
PM13 PMWR or PMEMB Invalid to Data Out Invalid  
(data hold time)  
ns  
ns  
PM16 PMCSx Pulse-Width  
TCY - 5  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 365  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 366  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
31.0 HIGH TEMPERATURE ELECTRICAL CHARACTERISTICS  
This section provides an overview of dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/  
X04 electrical characteristics for devices operating in an ambient temperature range of -40°C to +140°C.  
Note:  
Programming of the Flash memory is not allowed above 125°C.  
The specifications between -40°C to +140°C are identical to those shown in Section 30.0 “Electrical Characteristics”  
for operation between -40°C to +125°C, with the exception of the parameters listed in this section.  
Parameters in this section begin with an H, which denotes High temperature. For example, parameter DC10 in  
Section 30.0 “Electrical Characteristics” is the Industrial and Extended temperature equivalent of HDC10.  
Absolute maximum ratings for the dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and dsPIC33FJ128GPX02/X04  
high temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect  
device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in  
the operation listings of this specification is not implied.  
(1)  
Absolute Maximum Ratings  
Ambient temperature under bias(4) .........................................................................................................-40°C to +140°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any pin that is not 5V tolerant with respect to VSS(5) .................................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS when VDD < 3.0V(5) ....................................... -0.3V to (VDD + 0.3V)  
Voltage on any 5V tolerant pin with respect to VSS when VDD 3.0V(5) .................................................... -0.3V to 5.6V  
Voltage on VCAP/VDDCORE with respect to VSS ....................................................................................... 2.25V to 2.75V  
Maximum current out of VSS pin .............................................................................................................................60 mA  
Maximum current into VDD pin(2).............................................................................................................................60 mA  
Maximum junction temperature............................................................................................................................. +145°C  
Maximum output current sunk by any I/O pin(3) ........................................................................................................1 mA  
Maximum output current sourced by any I/O pin(3)...................................................................................................1 mA  
Maximum current sunk by all ports combined ........................................................................................................10 mA  
Maximum current sourced by all ports combined(2) ................................................................................................10 mA  
Note 1: Stresses above those listed under “Absolute Maximum Ratings” can cause permanent damage to the  
device. This is a stress rating only, and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods can affect device reliability.  
2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).  
3: Unlike devices at 125°C and below, the specifications in this section also apply to the CLKOUT, VREF+,  
VREF-, SCLx, SDAx, PGCx, and PGDx pins.  
4: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which  
the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior  
written approval from Microchip Technology Inc.  
5: Refer to the “Pin Diagramssection for 5V tolerant pins.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 367  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
31.1 High Temperature DC Characteristics  
TABLE 31-1: OPERATING MIPS VS. VOLTAGE  
Max MIPS  
VDD Range  
(in Volts)  
Temperature Range  
(in °C)  
dsPIC33FJ32GP302/304,  
dsPIC33FJ64GPX02/X04, and  
dsPIC33FJ128GPX02/X04  
Characteristic  
3.0V to 3.6V  
-40°C to +140°C  
20  
TABLE 31-2: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
High Temperature Devices  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+145  
+140  
°C  
°C  
Power Dissipation:  
Internal chip power dissipation:  
PINT = VDD x (IDD - IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
I/O = ({VDD - VOH} x IOH) + (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ - TA)/JA  
TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +140°C for High Temperature  
DC CHARACTERISTICS  
Parameter  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Operating Voltage  
HDC10  
Supply Voltage  
VDD  
3.0  
3.3  
3.6  
V
-40°C to +140°C  
TABLE 31-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +140°C for High Temperature  
Parameter  
Typical  
No.  
Max  
Units  
Conditions  
Power-Down Current (IPD)  
HDC60e  
HDC61c  
250  
3
2000  
5
A  
A  
+140°C  
+140°C  
3.3V  
3.3V  
Base Power-Down Current(1,3)  
(2,4)  
Watchdog Timer Current: IWDT  
Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and  
pulled to VSS. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.  
2: The current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
3: These currents are measured on the device containing the most memory in this family.  
4: These parameters are characterized, but are not tested in manufacturing.  
DS70292D-page 368  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 31-5: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +140°C for High Temperature  
Parameter  
Typical(1)  
No.  
Doze  
Ratio  
Max  
Units  
Conditions  
HDC72a  
HDC72f  
HDC72g  
39  
18  
18  
45  
25  
25  
1:2  
1:64  
1:128  
mA  
mA  
mA  
+140°C  
3.3V  
20 MIPS  
Note 1: Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.  
TABLE 31-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
DC CHARACTERISTICS  
(unless otherwise stated)  
Operating temperature -40°C TA +140°C for High Temperature  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
VOL  
Output Low Voltage  
I/O ports  
HDO10  
HDO16  
0.4  
0.4  
V
V
IOL = 1 mA, VDD = 3.3V  
IOL = 1 mA, VDD = 3.3V  
OSC2/CLKO  
VOH  
Output High Voltage  
I/O ports  
HDO20  
HDO26  
2.40  
2.41  
V
V
IOH = -1 mA, VDD = 3.3V  
IOH = -1 mA, VDD = 3.3V  
OSC2/CLKO  
TABLE 31-7: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +140°C for High Temperature  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
HD130 EP  
10,000  
20  
E/W -40C to +140C(2)  
HD134 TRETD  
Characteristic Retention  
Year 1000 E/W cycles or less and no  
other specifications are violated  
Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.  
2: Programming of the Flash memory is not allowed above 125°C.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 369  
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
31.2 AC Characteristics and Timing  
Parameters  
The information contained in this section defines  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 AC characteristics and  
timing parameters for high temperature devices.  
However, all AC timing specifications in this section are  
the same as those in Section 30.2 “AC  
Characteristics and Timing Parameters”, with the  
exception of the parameters listed in this section.  
Parameters in this section begin with an H, which  
denotes High temperature. For example, parameter  
OS53 in Section 30.2 “AC Characteristics and  
Timing Parameters” is the Industrial and Extended  
temperature equivalent of HOS53.  
TABLE 31-8: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +140°C for High Temperature  
AC CHARACTERISTICS  
Operating voltage VDD range as described in Table 31-1.  
FIGURE 31-1:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
VSS  
TABLE 31-9: PLL CLOCK TIMING SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +140°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
HOS53  
DCLK  
CLKO Stability (Jitter)(1)  
-5  
0.5  
5
%
Measured over 100 ms  
period  
Note 1: These parameters are characterized, but are not tested in manufacturing.  
DS70292D-page 370  
Preliminary  
2009 Microchip Technology Inc.  
 
 
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 31-10: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +140°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
HSP35  
HSP40  
HSP41  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
10  
25  
ns  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
28  
35  
ns  
ns  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
TABLE 31-11: SPIx MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +140°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
HSP35 TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
10  
25  
ns  
HSP36 TdoV2sc, SDOx Data Output Setup to  
TdoV2scL First SCKx Edge  
35  
28  
35  
ns  
ns  
ns  
HSP40 TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
HSP41 TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 371  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 31-12: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +140°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max Units  
Conditions  
HSP35 TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
HSP40 TdiV2scH, Setup Time of SDIx Data Input  
35  
55  
ns  
ns  
ns  
ns  
25  
25  
15  
TdiV2scL  
to SCKx Edge  
HSP41 TscH2diL,  
TscL2diL  
Hold Time of SDIx Data Input to  
SCKx Edge  
See Note 2  
HSP51 TssH2doZ SSx to SDOx Output  
High-Impedance  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Assumes 50 pF load on all SPIx pins.  
TABLE 31-13: SPIx MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +140°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
HSP35  
HSP40  
HSP41  
HSP51  
HSP60  
TscH2doV, SDOx Data Output Valid after  
TscL2doV SCKx Edge  
35  
ns  
TdiV2scH, Setup Time of SDIx Data Input  
TdiV2scL to SCKx Edge  
25  
25  
15  
55  
55  
ns  
ns  
ns  
ns  
TscH2diL, Hold Time of SDIx Data Input  
TscL2diL  
to SCKx Edge  
See Note 2  
TssH2doZ SSx to SDOX Output  
High-Impedance  
TssL2doV SDOx Data Output Valid after  
SSx Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Assumes 50 pF load on all SPIx pins.  
DS70292D-page 372  
Preliminary  
2009 Microchip Technology Inc.  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 31-14: ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +140°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
Reference Inputs  
HAD08  
IREF  
Current Drain  
250  
600  
50  
A ADC operating, See Note 1  
A ADC off, See Note 1  
Note 1: These parameters are not characterized or tested in manufacturing.  
2: These parameters are characterized, but are not tested in manufacturing.  
TABLE 31-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +140°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
ADC Accuracy (12-bit Mode) – Measurements with External VREF+/VREF-(1)  
HAD20a Nr  
HAD21a INL  
Resolution  
12 data bits  
bits  
Integral Nonlinearity  
-2  
> -1  
-2  
+2  
< 1  
10  
5
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
HAD22a DNL  
HAD23a GERR  
HAD24a EOFF  
Differential Nonlinearity  
Gain Error  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Offset Error  
-3  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
ADC Accuracy (12-bit Mode) – Measurements with Internal VREF+/VREF-(1)  
HAD20a Nr  
Resolution  
12 data bits  
bits  
HAD21a INL  
HAD22a DNL  
HAD23a GERR  
HAD24a EOFF  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-2  
> -1  
2
+2  
< 1  
20  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
Offset Error  
2
10  
Dynamic Performance (12-bit Mode)(2)  
HAD33a FNYQ  
Input Signal Bandwidth 200 kHz  
Note 1: These parameters are characterized, but are tested at 20 ksps only.  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 373  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 31-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +140°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
ADC Accuracy (10-bit Mode) – Measurements with External VREF+/VREF-(1)  
HAD20b Nr  
HAD21b INL  
Resolution  
10 data bits  
bits  
Integral Nonlinearity  
-3  
> -1  
-5  
3
< 1  
6
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
HAD22b DNL  
HAD23b GERR  
HAD24b EOFF  
Differential Nonlinearity  
Gain Error  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
Offset Error  
-1  
5
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3.6V  
ADC Accuracy (10-bit Mode) – Measurements with Internal VREF+/VREF-(1)  
HAD20b Nr  
Resolution  
10 data bits  
bits  
HAD21b INL  
HAD22b DNL  
HAD23b GERR  
HAD24b EOFF  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
-2  
> -1  
-5  
2
< 1  
15  
7
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
LSb VINL = AVSS = 0V, AVDD = 3.6V  
Offset Error  
-1.5  
Dynamic Performance (10-bit Mode)(2)  
HAD33b FNYQ  
Input Signal Bandwidth 400 kHz  
Note 1: These parameters are characterized, but are tested at 20 ksps only.  
2: These parameters are characterized by similarity, but are not tested in manufacturing.  
DS70292D-page 374  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE 31-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +140°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Clock Parameters  
HAD50 TAD  
ADC Clock Period(1)  
Throughput Rate(1)  
147  
Conversion Rate  
ns  
HAD56 FCNV  
400  
Ksps  
Note 1: These parameters are characterized but not tested in manufacturing.  
TABLE 31-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS  
Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +140°C for High Temperature  
AC  
CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Clock Parameters  
HAD50  
HAD56  
TAD  
ADC Clock Period(1)  
Throughput Rate(1)  
104  
ns  
Conversion Rate  
FCNV  
800  
Ksps  
Note 1: These parameters are characterized but not tested in manufacturing.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 375  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 376  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
32.0 PACKAGING INFORMATION  
28-Lead SPDIP  
Example  
dsPIC33FJ32GP  
302-E/SP  
0730235  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
e
3
28-Lead SOIC (.300”)  
Example  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
dsPIC33FJ32GP  
302-E/SO  
e
3
0730235  
YYWWNNN  
28-Lead QFN-S  
Example  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
33FJ32GP  
3
e
302EMM  
0730235  
44-Lead QFN  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
dsPIC  
33FJ32GP304  
-E/ML  
0730235  
e
3
Example  
44-Lead TQFP  
dsPIC  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
33FJ32GP304  
-I/PT  
e3  
0730235  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: If the full Microchip part number cannot be marked on one line, it is carried over to the next  
line, thus limiting the number of available characters for customer-specific information.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 377  
 
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
32.1 Package Details  
28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
Units  
Dimension Limits  
INCHES  
NOM  
28  
.100 BSC  
MIN  
MAX  
Number of Pins  
Pitch  
N
e
A
Top to Seating Plane  
.200  
.150  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
A2  
A1  
E
E1  
D
L
c
b1  
b
eB  
.120  
.015  
.290  
.240  
1.345  
.110  
.008  
.040  
.014  
.135  
.310  
.285  
1.365  
.130  
.010  
.050  
.018  
.335  
.295  
1.400  
.150  
.015  
.070  
.022  
.430  
Lower Lead Width  
Overall Row Spacing §  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-070B  
DS70292D-page 378  
Preliminary  
2009 Microchip Technology Inc.  
 
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
1
2
3
e
b
h
α
h
c
φ
A2  
A
L
A1  
L1  
β
Units  
MILLMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
28  
1.27 BSC  
Overall Height  
Molded Package Thickness  
Standoff §  
A
2.05  
0.10  
2.65  
0.30  
A2  
A1  
E
Overall Width  
10.30 BSC  
Molded Package Width  
Overall Length  
Chamfer (optional)  
Foot Length  
E1  
D
h
7.50 BSC  
17.90 BSC  
0.25  
0.40  
0.75  
1.27  
L
Footprint  
L1  
φ
c
b
α
1.40 REF  
Foot Angle Top  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0°  
0.18  
0.31  
5°  
8°  
0.33  
0.51  
15°  
β
5°  
15°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic.  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-052B  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 379  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S]  
with 0.40 mm Contact Length  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D2  
D
EXPOSED  
PAD  
e
E2  
E
b
2
1
2
1
K
N
N
L
NOTE 1  
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Number of Pins  
Pitch  
Overall Height  
Standoff  
Contact Thickness  
Overall Width  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
N
e
A
A1  
A3  
E
E2  
D
28  
0.65 BSC  
0.90  
0.80  
0.00  
1.00  
0.05  
0.02  
0.20 REF  
6.00 BSC  
3.70  
6.00 BSC  
3.70  
0.38  
0.40  
3.65  
4.70  
D2  
b
L
3.65  
0.23  
0.30  
0.20  
4.70  
0.43  
0.50  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-124B  
DS70292D-page 380  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢆꢇꢐꢉꢅꢋꢑꢇꢒꢓꢇꢃꢄꢅꢆꢇꢈꢅꢍꢔꢅꢕꢄꢇꢖꢗꢗꢘꢇMꢇꢙꢚꢙꢚꢛꢜ ꢇ!!ꢇ"ꢓꢆ#ꢇ$ꢎꢐꢒꢂ%&  
'ꢌꢋ(ꢇꢛꢜ)ꢛꢇ!!ꢇ*ꢓ+ꢋꢅꢍꢋꢇꢃꢄ+ꢕꢋ(  
ꢒꢓꢋꢄ, ꢀꢁꢂꢃ ꢄꢅꢃ!ꢁ" ꢃꢆ#ꢂꢂꢅꢇ ꢃꢈꢉꢆ$ꢉꢊꢅꢃ%ꢂꢉ&ꢋꢇꢊ"'ꢃꢈꢌꢅꢉ"ꢅꢃ"ꢅꢅꢃ ꢄꢅꢃꢍꢋꢆꢂꢁꢆꢄꢋꢈꢃ(ꢉꢆ$ꢉꢊꢋꢇꢊꢃꢎꢈꢅꢆꢋ)ꢋꢆꢉ ꢋꢁꢇꢃꢌꢁꢆꢉ ꢅ%ꢃꢉ ꢃ  
ꢄ  ꢈ*++&&&ꢏ!ꢋꢆꢂꢁꢆꢄꢋꢈꢏꢆꢁ!+ꢈꢉꢆ$ꢉꢊꢋꢇꢊ  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 381  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D2  
D
EXPOSED  
PAD  
e
b
K
E
E2  
2
1
2
1
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
44  
0.65 BSC  
0.90  
MAX  
Number of Pins  
Pitch  
Overall Height  
Standoff  
Contact Thickness  
Overall Width  
N
e
A
A1  
A3  
E
E2  
D
0.80  
0.00  
1.00  
0.05  
0.02  
0.20 REF  
8.00 BSC  
6.45  
8.00 BSC  
6.45  
0.30  
0.40  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
6.30  
6.80  
D2  
b
L
6.30  
0.25  
0.30  
0.20  
6.80  
0.38  
0.50  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-103B  
DS70292D-page 382  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
))ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢆꢇꢐꢉꢅꢋꢑꢇꢒꢓꢇꢃꢄꢅꢆꢇꢈꢅꢍꢔꢅꢕꢄꢇꢖꢗꢃꢘꢇMꢇꢁꢚꢁꢇ!!ꢇ"ꢓꢆ#ꢇ$ꢎꢐꢒ&  
ꢒꢓꢋꢄ, ꢀꢁꢂꢃ ꢄꢅꢃ!ꢁ" ꢃꢆ#ꢂꢂꢅꢇ ꢃꢈꢉꢆ$ꢉꢊꢅꢃ%ꢂꢉ&ꢋꢇꢊ"'ꢃꢈꢌꢅꢉ"ꢅꢃ"ꢅꢅꢃ ꢄꢅꢃꢍꢋꢆꢂꢁꢆꢄꢋꢈꢃ(ꢉꢆ$ꢉꢊꢋꢇꢊꢃꢎꢈꢅꢆꢋ)ꢋꢆꢉ ꢋꢁꢇꢃꢌꢁꢆꢉ ꢅ%ꢃꢉ ꢃ  
ꢄ  ꢈ*++&&&ꢏ!ꢋꢆꢂꢁꢆꢄꢋꢈꢏꢆꢁ!+ꢈꢉꢆ$ꢉꢊꢋꢇꢊ  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 383  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
))ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ-(ꢌ+ꢇꢎꢏꢅꢆꢇꢐꢉꢅꢋ.ꢅꢍꢔꢇꢖꢈ-ꢘꢇMꢇ/ꢛꢚ/ꢛꢚ/ꢇ!!ꢇ"ꢓꢆ#ꢑꢇꢀꢜꢛꢛꢇ!!ꢇ$-ꢎꢐꢈ&  
ꢒꢓꢋꢄ, ꢀꢁꢂꢃ ꢄꢅꢃ!ꢁ" ꢃꢆ#ꢂꢂꢅꢇ ꢃꢈꢉꢆ$ꢉꢊꢅꢃ%ꢂꢉ&ꢋꢇꢊ"'ꢃꢈꢌꢅꢉ"ꢅꢃ"ꢅꢅꢃ ꢄꢅꢃꢍꢋꢆꢂꢁꢆꢄꢋꢈꢃ(ꢉꢆ$ꢉꢊꢋꢇꢊꢃꢎꢈꢅꢆꢋ)ꢋꢆꢉ ꢋꢁꢇꢃꢌꢁꢆꢉ ꢅ%ꢃꢉ ꢃ  
ꢄ  ꢈ*++&&&ꢏ!ꢋꢆꢂꢁꢆꢄꢋꢈꢏꢆꢁ!+ꢈꢉꢆ$ꢉꢊꢋꢇꢊ  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
β
A1  
L
L1  
6ꢇꢋ "  
ꢍꢚ77ꢚꢍ2ꢘ2ꢙꢎ  
ꢔꢋ!ꢅꢇ"ꢋꢁꢇꢃ7ꢋ!ꢋ "  
ꢍꢚ8  
89ꢍ  
ꢖꢖ  
ꢕꢏ;ꢕꢃ5ꢎ/  
M
ꢐꢏꢕꢕ  
M
ꢍꢗ:  
8#!.ꢅꢂꢃꢁ)ꢃ7ꢅꢉ%"  
7ꢅꢉ%ꢃ(ꢋ ꢆꢄ  
9,ꢅꢂꢉꢌꢌꢃ<ꢅꢋꢊꢄ  
ꢍꢁꢌ%ꢅ%ꢃ(ꢉꢆ$ꢉꢊꢅꢃꢘꢄꢋꢆ$ꢇꢅ""  
ꢎ ꢉꢇ%ꢁ))ꢃꢃ  
ꢀꢁꢁ ꢃ7ꢅꢇꢊ ꢄ  
8
ꢗꢒ  
ꢗꢐ  
7
M
ꢐꢏꢒꢕ  
ꢐꢏꢕ3  
ꢕꢏꢐ3  
ꢕꢏꢜ3  
ꢕꢏꢛ3  
ꢕꢏꢕ3  
ꢕꢏꢖ3  
ꢕꢏ>ꢕ  
ꢀꢁꢁ ꢈꢂꢋꢇ  
ꢀꢁꢁ ꢃꢗꢇꢊꢌꢅ  
7ꢐ  
ꢐꢏꢕꢕꢃꢙ2ꢀ  
ꢓꢏ3ꢝ  
ꢕꢝ  
ꢜꢝ  
9,ꢅꢂꢉꢌꢌꢃ@ꢋ% ꢄ  
9,ꢅꢂꢉꢌꢌꢃ7ꢅꢇꢊ ꢄ  
2
2ꢐ  
ꢔꢐ  
ꢐꢒꢏꢕꢕꢃ5ꢎ/  
ꢐꢒꢏꢕꢕꢃ5ꢎ/  
ꢐꢕꢏꢕꢕꢃ5ꢎ/  
ꢐꢕꢏꢕꢕꢃ5ꢎ/  
M
ꢍꢁꢌ%ꢅ%ꢃ(ꢉꢆ$ꢉꢊꢅꢃ@ꢋ% ꢄ  
ꢍꢁꢌ%ꢅ%ꢃ(ꢉꢆ$ꢉꢊꢅꢃ7ꢅꢇꢊ ꢄ  
7ꢅꢉ%ꢃꢘꢄꢋꢆ$ꢇꢅ""  
7ꢅꢉ%ꢃ@ꢋ% ꢄ  
ꢍꢁꢌ%ꢃꢔꢂꢉ) ꢃꢗꢇꢊꢌꢅꢃ  
ꢍꢁꢌ%ꢃꢔꢂꢉ) ꢃꢗꢇꢊꢌꢅꢃ5ꢁ  ꢁ!  
ꢕꢏꢕꢛ  
ꢕꢏꢓꢕ  
ꢐꢐꢝ  
ꢕꢏꢒꢕ  
ꢕꢏꢖ3  
ꢐꢓꢝ  
.
ꢕꢏꢓꢜ  
ꢐꢒꢝ  
ꢐꢒꢝ  
ꢐꢐꢝ  
ꢐꢓꢝ  
ꢒꢓꢋꢄꢊ,  
ꢐꢏ (ꢋꢇꢃꢐꢃ,ꢋ"#ꢉꢌꢃꢋꢇ%ꢅ-ꢃ)ꢅꢉ #ꢂꢅꢃ!ꢉꢑꢃ,ꢉꢂꢑ'ꢃ.# ꢃ!#" ꢃ.ꢅꢃꢌꢁꢆꢉ ꢅ%ꢃ&ꢋ ꢄꢋꢇꢃ ꢄꢅꢃꢄꢉ ꢆꢄꢅ%ꢃꢉꢂꢅꢉꢏ  
ꢒꢏ /ꢄꢉ!)ꢅꢂ"ꢃꢉ ꢃꢆꢁꢂꢇꢅꢂ"ꢃꢉꢂꢅꢃꢁꢈ ꢋꢁꢇꢉꢌ0ꢃ"ꢋ1ꢅꢃ!ꢉꢑꢃ,ꢉꢂꢑꢏ  
ꢓꢏ ꢔꢋ!ꢅꢇ"ꢋꢁꢇ"ꢃꢔꢐꢃꢉꢇ%ꢃ2ꢐꢃ%ꢁꢃꢇꢁ ꢃꢋꢇꢆꢌ#%ꢅꢃ!ꢁꢌ%ꢃ)ꢌꢉ"ꢄꢃꢁꢂꢃꢈꢂꢁ ꢂ#"ꢋꢁꢇ"ꢏꢃꢍꢁꢌ%ꢃ)ꢌꢉ"ꢄꢃꢁꢂꢃꢈꢂꢁ ꢂ#"ꢋꢁꢇ"ꢃ"ꢄꢉꢌꢌꢃꢇꢁ ꢃꢅ-ꢆꢅꢅ%ꢃꢕꢏꢒ3ꢃ!!ꢃꢈꢅꢂꢃ"ꢋ%ꢅꢏ  
ꢖꢏ ꢔꢋ!ꢅꢇ"ꢋꢁꢇꢋꢇꢊꢃꢉꢇ%ꢃ ꢁꢌꢅꢂꢉꢇꢆꢋꢇꢊꢃꢈꢅꢂꢃꢗꢎꢍ2ꢃ4ꢐꢖꢏ3ꢍꢏ  
5ꢎ/* 5ꢉ"ꢋꢆꢃꢔꢋ!ꢅꢇ"ꢋꢁꢇꢏꢃꢘꢄꢅꢁꢂꢅ ꢋꢆꢉꢌꢌꢑꢃꢅ-ꢉꢆ ꢃ,ꢉꢌ#ꢅꢃ"ꢄꢁ&ꢇꢃ&ꢋ ꢄꢁ# ꢃ ꢁꢌꢅꢂꢉꢇꢆꢅ"ꢏ  
ꢙ2ꢀ* ꢙꢅ)ꢅꢂꢅꢇꢆꢅꢃꢔꢋ!ꢅꢇ"ꢋꢁꢇ'ꢃ#"#ꢉꢌꢌꢑꢃ&ꢋ ꢄꢁ# ꢃ ꢁꢌꢅꢂꢉꢇꢆꢅ'ꢃ)ꢁꢂꢃꢋꢇ)ꢁꢂ!ꢉ ꢋꢁꢇꢃꢈ#ꢂꢈꢁ"ꢅ"ꢃꢁꢇꢌꢑꢏ  
ꢍꢋꢆꢂꢁꢆꢄꢋꢈ ꢆꢄꢇꢁꢌꢁꢊꢑ ꢔꢂꢉ&ꢋꢇꢊ /ꢕꢖꢞꢕꢜ>5  
DS70292D-page 384  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
))ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ-(ꢌ+ꢇꢎꢏꢅꢆꢇꢐꢉꢅꢋ.ꢅꢍꢔꢇꢖꢈ-ꢘꢇMꢇ/ꢛꢚ/ꢛꢚ/ꢇ!!ꢇ"ꢓꢆ#ꢑꢇꢀꢜꢛꢛꢇ!!ꢇ$-ꢎꢐꢈ&  
ꢒꢓꢋꢄ, ꢀꢁꢂꢃ ꢄꢅꢃ!ꢁ" ꢃꢆ#ꢂꢂꢅꢇ ꢃꢈꢉꢆ$ꢉꢊꢅꢃ%ꢂꢉ&ꢋꢇꢊ"'ꢃꢈꢌꢅꢉ"ꢅꢃ"ꢅꢅꢃ ꢄꢅꢃꢍꢋꢆꢂꢁꢆꢄꢋꢈꢃ(ꢉꢆ$ꢉꢊꢋꢇꢊꢃꢎꢈꢅꢆꢋ)ꢋꢆꢉ ꢋꢁꢇꢃꢌꢁꢆꢉ ꢅ%ꢃꢉ ꢃ  
ꢄ  ꢈ*++&&&ꢏ!ꢋꢆꢂꢁꢆꢄꢋꢈꢏꢆꢁ!+ꢈꢉꢆ$ꢉꢊꢋꢇꢊ  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 385  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 386  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
APPENDIX A: REVISION HISTORY  
Revision A (September 2007)  
Initial release of this document.  
Revision B (March 2008)  
This revision includes minor typographical and  
formatting changes throughout the data sheet text. In  
addition, redundant information was removed that is  
now available in the respective chapters of the  
dsPIC33F/PIC24H Family Reference Manual, which  
can be obtained from the Microchip website  
(www.microchip.com).  
The major changes are referenced by their respective  
section in the following table.  
TABLE A-1:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
“High-Performance, 16-Bit Digital Signal  
Controllers”  
Note 1 added to all pin diagrams (see “Pin Diagrams”).  
Add External Interrupts column and Note 3 to the  
“dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, and  
dsPIC33FJ128GPX02/X04 Controller Families” table.  
Section 1.0 “Device Overview”  
Section 6.0 “Interrupt Controller”  
Updated parameters PMA0, PMA1, and PMD0 through PMPD7  
(Table 1-1).  
IFS0-IFSO4 changed to IFSX (see Section 6.3.2 “IFSx”).  
IEC0-IEC4 changed to IECX (see Section 6.3.3 “IECx”).  
IPC0-IPC19 changed to IPCx (see Section 6.3.4 “IPCx”).  
Section 7.0 “Direct Memory Access (DMA)” Updated parameter PMP (see Table 7-1).  
Section 8.0 “Oscillator Configuration”  
Updated the third clock source item (External Clock) in  
Section 8.1.1 “System Clock Sources”.  
Updated TUN<5:0> (OSCTUN<5:0>) bit description (see  
Register 8-4).  
Section 20.0 “10-Bit/12-Bit Analog-to-Digital Added Note 2 to Figure 20-3.  
Converter (ADC1)”  
Section 26.0 “Special Features”  
Added Note 2 to Figure 26-1.  
Added Note after second paragraph in Section 26.2 “On-Chip  
Voltage Regulator”.  
Section 29.0 “Electrical Characteristics”  
Updated Max MIPS for temperature range of -40ºC to +125ºC in  
Table 29-1.  
Updated typical values in Thermal Packaging Characteristics in  
Table 29-3.  
Added parameters DI11 and DI12 to Table 29-9.  
Updated minimum values for parameters D136 (TRW) and D137  
(TPE) and removed typical values in Table 29-12.  
Added Extended temperature range to Table 29-13.  
Updated parameter AD63 and added Note 3 to Table 29-40 and  
Table 29-41.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 387  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
Revision C (May 2009)  
This revision includes minor typographical and  
formatting changes throughout the data sheet text.  
Global changes include:  
• Changed all instances of OSCI to OSC1 and  
OSCO to OSC2  
• Changed all instances of VDDCORE and VDDCORE/  
VCAP to VCAP/VDDCORE  
The other changes are referenced by their respective  
section in the following table.  
TABLE A-2:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
High-Performance, 16-Bit Digital  
Signal Controllers  
Updated all pin diagrams to denote the pin voltage tolerance (see “Pin  
Diagrams”).  
Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which  
references pin connections to VSS.  
Section 1.0 “Device Overview”  
Updated AVDD in the PINOUT I/O Descriptions (see Table 1-1).  
Added Peripheral Pin Select (PPS) capability column to Pinout I/O  
Descriptions (see Table 1-1).  
Section 2.0 “Guidelines for Getting Added new section to the data sheet that provides guidelines on getting  
Started with 16-Bit Digital Signal  
Controllers”  
started with 16-bit Digital Signal Controllers.  
Section 3.0 “CPU”  
Updated CPU Core Block Diagram with a connection from the DSP Engine  
to the Y Data Bus (see Figure 3-1).  
Vertically extended the X and Y Data Bus lines in the DSP Engine Block  
Diagram (see Figure 3-3).  
Section 4.0 “Memory Organization” Updated Reset value for CORCON in the CPU Core Register Map (see  
Table 4-1).  
Updated the Reset values for IPC14 and IPC15 and removed the FLTA1IE  
bit (IEC3) from the Interrupt Controller Register Map (see Table 4-4).  
Updated bit locations for RPINR25 in the Peripheral Pin Select Input  
Register Map (see Table 4-21).  
Updated the Reset value for CLKDIV in the System Control Register Map  
(see Table 4-33).  
Section 5.0 “Flash Program  
Memory”  
Updated Section 5.3 “Programming Operations” with programming time  
formula.  
Section 9.0 “Oscillator  
Configuration”  
Updated the Oscillator System Diagram and added Note 2 (see Figure 9-1).  
Added Note 1 and Note 2 to the OSCON register (see Register 9-1).  
Updated default bit values for DOZE<2:0> and FRCDIV<2:0> in the Clock  
Divisor (CLKDIV) Register (see Register 9-2).  
Added a paragraph regarding FRC accuracy at the end of Section 9.1.1  
“System Clock Sources”.  
Added Note 3 to Section 9.2.2 “Oscillator Switching Sequence”.  
Added Note 1 to the FRC Oscillator Tuning (OSCTUN) Register (see  
Register 9-4).  
DS70292D-page 388  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE A-2:  
MAJOR SECTION UPDATES (CONTINUED)  
Update Description  
Added the following registers:  
Section Name  
Section 10.0 “Power-Saving  
Features”  
PMD1: Peripheral Module Disable Control Register 1 (Register 10-1)  
PMD2: Peripheral Module Disable Control Register 2 (Register 10-2)  
PMD3: Peripheral Module Disable Control Register 3 (Register 10-3)  
Section 11.0 “I/O Ports”  
Removed Table 11-1 and added reference to pin diagrams for I/O pin  
availability and functionality.  
Added paragraph on ADPCFG register default values to Section 11.3  
“Configuring Analog Port Pins”.  
Added Note box regarding PPS functionality with input mapping to  
Section 11.6.2.1 “Input Mapping”.  
Section 16.0 “Serial Peripheral  
Interface (SPI)”  
Added Note 2 and 3 to the SPIxCON1 register (see Register 16-2).  
Updated the Notes in the UxMode register (see Register 18-1).  
Section 18.0 “Universal  
Asynchronous Receiver Transmitter  
(UART)”  
Updated the UTXINV bit settings in the UxSTA register and added Note 1  
(see Register 18-2).  
Section 19.0 “Enhanced CAN  
(ECAN™) Module”  
Changed bit 11 in the ECAN Control Register 1 (CiCTRL1) to Reserved (see  
Register 19-1).  
Section 21.0 “10-Bit/12-Bit Analog- Replaced the ADC1 Module Block Diagrams with new diagrams (see  
to-Digital Converter (ADC)”  
Figure 21-1 and Figure 21-2).  
Updated bit values for ADCS<7:0> and added Notes 1 and 2 to the ADC1  
Control Register 3 (AD1CON3) (see Register 21-3).  
Added Note 2 to the ADC1 Input Scan Select Register Low (AD1CSSL) (see  
Register 21-7).  
Added Note 2 to the ADC1 Port Configuration Register Low (AD1PCFGL)  
(see Register 21-8).  
Section 22.0 “Audio Digital-to-  
Analog Converter (DAC)”  
Updated the midpoint voltage in the last sentence of the first paragraph.  
Updated the voltage swing values in the last sentence of the last paragraph  
in Section 22.3 “DAC Output Format”.  
Section 23.0 “Comparator Module” Updated the Comparator Voltage Reference Block Diagram  
(see Figure 23-2).  
Section 24.0 “Real-Time Clock and Updated the minimum positive adjust value for CAL<7:0> in the RTCC  
Calendar (RTCC)”  
Calibration and Configuration (RCFGCAL) Register (see Register 24-1).  
Section 27.0 “Special Features”  
Added Note 1 to the Device Configuration Register Map (see Table 27-1).  
Updated Note 1 in the dsPIC33F Configuration Bits Description (see  
Table 27-2).  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 389  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
TABLE A-2:  
MAJOR SECTION UPDATES (CONTINUED)  
Section Name  
Update Description  
Section 30.0 “Electrical  
Characteristics”  
Updated Typical values for Thermal Packaging Characteristics (see  
Table 30-3).  
Updated Min and Max values for parameter DC12 (RAM Data Retention  
Voltage) and added Note 4 (see Table 30-4).  
Updated Power-Down Current Max values for parameters DC60b and  
DC60c (see Table 30-7).  
Updated Characteristics for I/O Pin Input Specifications and added  
parameter DI21 (see Table 30-9).  
Updated Program Memory values for parameters 136, 137, and 138  
(renamed to 136a, 137a, and 138a), added parameters 136b, 137b, and  
138b, and added Note 2 (see Table 30-12).  
Added parameter OS42 (GM) to the External Clock Timing Requirements  
(see Table 30-16).  
Updated Watchdog Timer Time-out Period parameter SY20 (see  
Table 30-21).  
Updated the IREF Current Drain parameter AD08 (see Table 30-37).  
Updated parameters AD30a, AD31a, AD32a, AD33a, and AD34a (see  
Table 30-38)  
Updated parameters AD30b, AD31b, AD32b, AD33b, and AD34b (see  
Table 30-39)  
DS70292D-page 390  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
Revision D (November 2009)  
The revision includes the following global update:  
• Added Note 2 to the shaded table that appears at  
the beginning of each chapter. This new note  
provides information regarding the availability of  
registers and their associated bits  
This revision also includes minor typographical and  
formatting changes throughout the data sheet text.  
All other major changes are referenced by their  
respective section in the following table.  
TABLE A-3:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
High-Performance, 16-Bit Digital Signal  
Controllers”  
Added information on high temperature operation (see Operating  
Range:”).  
Section 11.0 “I/O Ports”  
Changed the reference to digital-only pins to 5V tolerant pins in the  
second paragraph of Section 11.2 “Open-Drain Configuration”.  
Section 18.0 “Universal Asynchronous  
Receiver Transmitter (UART)”  
Updated the two baud rate range features to: 10 Mbps to 38 bps at  
40 MIPS.  
Section 21.0 “10-Bit/12-Bit Analog-to-  
Digital Converter (ADC)”  
Updated the ADC block diagrams (see Figure 21-1 and Figure 21-2).  
Section 22.0 “Audio Digital-to-Analog  
Converter (DAC)”  
Removed last sentence of the first paragraph in the section.  
Added a shaded note to Section 22.2 “DAC Module Operation”.  
Updated Figure 22-2: “Audio DAC Output for Ramp Input  
(Unsigned)”.  
Section 27.0 “Special Features”  
Updated the second paragraph and removed the fourth paragraph in  
Section 27.1 “Configuration Bits”.  
Updated the Device Configuration Register Map (see Table 27-1).  
Section 30.0 “Electrical Characteristics”  
Updated the Absolute Maximum Ratings for high temperature and  
added Note 4.  
Removed parameters DI26, DI28, and DI29 from the I/O Pin Input  
Specifications (see Table 30-9).  
Updated the SPIx Module Slave Mode (CKE = 1) Timing  
Characteristics (see Figure 30-12).  
Removed Table 30-43: Audio DAC Module Specifications. Original  
contents were updated and combined with Table 30-42 of the same  
name.  
Section 31.0 “High Temperature Electrical Added new chapter with high temperature specifications.  
Characteristics”  
Product Identification System”  
Added the “H” definition for high temperature.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 391  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 392  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
INDEX  
CPU  
A
Control Register.......................................................... 28  
A/D Converter ................................................................... 253  
CPU Clocking System ...................................................... 142  
DMA.......................................................................... 253  
PLL Configuration..................................................... 143  
Initialization ............................................................... 253  
Selection................................................................... 142  
Key Features............................................................. 253  
Sources .................................................................... 142  
AC Characteristics .................................................... 332, 372  
Customer Change Notification Service............................. 401  
ADC Module.............................................................. 375  
Customer Notification Service .......................................... 401  
ADC Module (10-bit Mode) ....................................... 376  
Customer Support............................................................. 401  
ADC Module (12-bit Mode) ....................................... 375  
Internal RC Accuracy................................................ 334  
D
Load Conditions................................................ 332, 372  
Data Accumulators and Adder/Subtracter .......................... 34  
ADC Module  
Data Space Write Saturation...................................... 36  
ADC11 Register Map.................................................. 51  
Overflow and Saturation............................................. 34  
Alternate Interrupt Vector Table (AIVT) .............................. 87  
Round Logic ............................................................... 35  
Arithmetic Logic Unit (ALU)................................................. 32  
Write Back .................................................................. 35  
Assembler  
Data Address Space........................................................... 39  
MPASM Assembler................................................... 320  
Alignment.................................................................... 39  
Memory Map for dsPIC33FJ128GP202/204 and  
B
dsPIC33FJ64GP202/204 Devices  
with 8 KB RAM ................................................... 41  
Memory Map for dsPIC33FJ128GP802/804 and  
Barrel Shifter ....................................................................... 36  
Bit-Reversed Addressing .................................................... 66  
Example...................................................................... 67  
Implementation ........................................................... 66  
Sequence Table (16-Entry)......................................... 67  
dsPIC33FJ64GP802/804 Devices  
with 16 KB RAM ................................................. 42  
Memory Map for dsPIC33FJ32GP302/304  
Block Diagrams  
Devices with 4 KB RAM...................................... 40  
16-bit Timer1 Module................................................ 187  
A/D Module ....................................................... 254, 255  
Near Data Space........................................................ 39  
Software Stack ........................................................... 63  
Connections for On-Chip Voltage Regulator............. 305  
Width .......................................................................... 39  
DCI Module............................................................... 247  
Data Converter Interface (DCI) Module............................ 247  
Device Clock..................................................... 141, 143  
DC Characteristics............................................................ 324  
DSP Engine ................................................................ 33  
Doze Current (IDOZE)................................................ 371  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
High Temperature..................................................... 370  
and dsPIC33FJ128GPX02/X04......................... 16  
I/O Pin Input Specifications ...................................... 329  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
I/O Pin Output........................................................... 371  
and dsPIC33FJ128GPX02/X04 CPU Core........ 26  
I/O Pin Output Specifications.................................... 330  
ECAN Module ........................................................... 222  
Idle Current (IDOZE) .................................................. 328  
Input Capture ............................................................ 195  
Idle Current (IIDLE).................................................... 327  
Output Compare ....................................................... 197  
Operating Current (IDD) ............................................ 326  
PLL............................................................................ 143  
Operating MIPS vs. Voltage ..................................... 370  
Reset System.............................................................. 79  
Power-Down Current (IPD)........................................ 328  
Shared Port Structure ............................................... 159  
Power-down Current (IPD) ........................................ 370  
SPI ............................................................................ 201  
Program Memory.............................................. 331, 371  
Timer2 (16-bit) .......................................................... 189  
Temperature and Voltage......................................... 370  
Timer2/3 (32-bit) ....................................................... 191  
Temperature and Voltage Specifications.................. 325  
UART ........................................................................ 215  
Thermal Operating Conditions.................................. 370  
Watchdog Timer (WDT)............................................ 306  
DCI  
Introduction............................................................... 247  
DCI Module  
C
C Compilers  
Register Map .............................................................. 56  
Demonstration/Development Boards, Evaluation Kits,  
and Starter Kits......................................................... 322  
Development Support....................................................... 319  
DMA Module  
DMA Register Map ..................................................... 52  
DMAC Registers............................................................... 131  
DMAxCNT ................................................................ 131  
DMAxCON................................................................ 131  
DMAxPAD ................................................................ 131  
DMAxREQ................................................................ 131  
DMAxSTA................................................................. 131  
DMAxSTB................................................................. 131  
Doze Mode ....................................................................... 154  
DSP Engine ........................................................................ 32  
Multiplier ..................................................................... 34  
Hi-Tech C.................................................................. 320  
MPLAB C .................................................................. 320  
Clock Switching................................................................. 151  
Enabling.................................................................... 151  
Sequence.................................................................. 151  
Code Examples  
Erasing a Program Memory Page............................... 77  
Initiating a Programming Sequence............................ 78  
Loading Write Buffers ................................................. 78  
Port Write/Read ........................................................ 160  
PWRSAV Instruction Syntax..................................... 153  
Code Protection ........................................................ 301, 307  
Comparator Module .......................................................... 265  
Configuration Bits.............................................................. 301  
Configuration Register Map .............................................. 301  
Configuring Analog Port Pins............................................ 160  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 393  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
ECAN TX/RX Buffer m Control Register (CiTRmnCON).. 242  
Electrical Characteristics .................................................. 323  
E
ECAN Module  
AC..................................................................... 332, 372  
CiBUFPNT1 register .................................................233  
Enhanced CAN Module .................................................... 221  
CiBUFPNT2 register .................................................234  
CiBUFPNT3 register .................................................234  
Equations  
Device Operating Frequency.................................... 142  
CiBUFPNT4 register .................................................235  
Errata.................................................................................. 14  
CiCFG1 register ........................................................231  
CiCFG2 register ........................................................232  
F
CiCTRL1 register ......................................................224  
Flash Program Memory ...................................................... 73  
CiCTRL2 register ......................................................225  
Control Registers........................................................ 74  
CiEC register.............................................................231  
Operations .................................................................. 74  
CiFCTRL register......................................................227  
Programming Algorithm.............................................. 77  
CiFEN1 register ........................................................233  
RTSP Operation ......................................................... 74  
CiFIFO register .........................................................228  
Table Instructions ....................................................... 73  
CiFMSKSEL1 register...............................................237  
Flexible Configuration....................................................... 301  
CiFMSKSEL2 register...............................................238  
CiINTE register .........................................................230  
CiINTF register..........................................................229  
H
High Temperature Electrical Characteristics .................... 369  
CiRXFnEID register ..................................................237  
CiRXFnSID register ..................................................236  
CiRXFUL1 register....................................................240  
CiRXFUL2 register....................................................240  
CiRXMnEID register..................................................239  
CiRXMnSID register..................................................239  
CiRXOVF1 register ...................................................241  
CiRXOVF2 register ...................................................241  
CiTRmnCON register................................................242  
CiVEC register ..........................................................226  
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1).........54  
ECAN1 Register Map (C1CTRL1.WIN = 0) ................54  
ECAN1 Register Map (C1CTRL1.WIN = 1) ................55  
Frame Types.............................................................221  
Modes of Operation ..................................................223  
Overview ...................................................................221  
I
I/O Ports............................................................................ 159  
Parallel I/O (PIO) ...................................................... 159  
Write/Read Timing.................................................... 160  
2
I C  
Operating Modes...................................................... 207  
Registers .................................................................. 207  
In-Circuit Debugger........................................................... 307  
In-Circuit Emulation .......................................................... 301  
In-Circuit Serial Programming (ICSP)....................... 301, 307  
Input Capture.................................................................... 195  
Registers .................................................................. 196  
Input Change Notification ................................................. 160  
Instruction Addressing Modes ............................................ 63  
File Register Instructions ............................................ 63  
Fundamental Modes Supported ................................. 64  
MAC Instructions ........................................................ 64  
MCU Instructions ........................................................ 63  
Move and Accumulator Instructions............................ 64  
Other Instructions ....................................................... 64  
Instruction Set  
ECAN Registers  
Acceptance Filter Enable Register (CiFEN1)............233  
Acceptance Filter Extended Identifier Register n  
(CiRXFnEID).....................................................237  
Acceptance Filter Mask Extended Identifier Register n  
(CiRXMnEID) ....................................................239  
Acceptance Filter Mask Standard Identifier Register n  
(CiRXMnSID) ....................................................239  
Acceptance Filter Standard Identifier Register n (CiRXF-  
nSID).................................................................236  
Baud Rate Configuration Register 1 (CiCFG1).........231  
Baud Rate Configuration Register 2 (CiCFG2).........232  
Control Register 1 (CiCTRL1)...................................224  
Control Register 2 (CiCTRL2)...................................225  
FIFO Control Register (CiFCTRL) ............................227  
FIFO Status Register (CiFIFO) .................................228  
Filter 0-3 Buffer Pointer Register (CiBUFPNT1) .......233  
Filter 12-15 Buffer Pointer Register (CiBUFPNT4) ...235  
Filter 15-8 Mask Selection Register (CiFMSKSEL2).238  
Filter 4-7 Buffer Pointer Register (CiBUFPNT2) .......234  
Filter 7-0 Mask Selection Register (CiFMSKSEL1)...237  
Filter 8-11 Buffer Pointer Register (CiBUFPNT3) .....234  
Interrupt Code Register (CiVEC) ..............................226  
Interrupt Enable Register (CiINTE) ...........................230  
Interrupt Flag Register (CiINTF) ...............................229  
Receive Buffer Full Register 1 (CiRXFUL1)..............240  
Receive Buffer Full Register 2 (CiRXFUL2)..............240  
Receive Buffer Overflow Register 2 (CiRXOVF2).....241  
Receive Overflow Register (CiRXOVF1) ..................241  
ECAN Transmit/Receive Error Count Register (CiEC) .....231  
Overview................................................................... 314  
Summary .................................................................. 311  
Instruction-Based Power-Saving Modes........................... 153  
Idle............................................................................ 154  
Sleep ........................................................................ 153  
Internal RC Oscillator  
Use with WDT........................................................... 306  
Internet Address ............................................................... 401  
Interrupt Control and Status Registers ............................... 91  
IECx............................................................................ 91  
IFSx ............................................................................ 91  
INTCON1.................................................................... 91  
INTCON2.................................................................... 91  
IPCx............................................................................ 91  
Interrupt Setup Procedures............................................... 128  
Initialization............................................................... 128  
Interrupt Disable ....................................................... 128  
Interrupt Service Routine.......................................... 128  
Trap Service Routine................................................ 128  
Interrupt Vector Table (IVT)................................................ 87  
Interrupts Coincident with Power Save Instructions ......... 154  
J
JTAG Boundary Scan Interface........................................ 301  
JTAG Interface.................................................................. 307  
DS70292D-page 394  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
M
R
Memory Organization.......................................................... 37  
Microchip Internet Web Site.............................................. 401  
Modes of Operation  
Reader Response............................................................. 402  
Register Map  
CRC............................................................................ 60  
Dual Comparator ........................................................ 60  
Parallel Master/Slave Port.......................................... 59  
Real-Time Clock and Calendar .................................. 60  
Registers  
Disable...................................................................... 223  
Initialization ............................................................... 223  
Listen All Messages.................................................. 223  
Listen Only................................................................ 223  
Loopback .................................................................. 223  
Normal Operation...................................................... 223  
Modulo Addressing ............................................................. 65  
Applicability................................................................. 66  
Operation Example ..................................................... 65  
Start and End Address................................................ 65  
W Address Register Selection .................................... 65  
MPLAB ASM30 Assembler, Linker, Librarian ................... 320  
MPLAB ICD 3 In-Circuit Debugger System ...................... 321  
MPLAB Integrated Development Environment Software .. 319  
MPLAB PM3 Device Programmer .................................... 322  
MPLAB REAL ICE In-Circuit Emulator System................. 321  
MPLINK Object Linker/MPLIB Object Librarian ................ 320  
AD1CHS0 (ADC1 Input Channel 0 Select................ 263  
AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select)... 262  
AD1CON1 (ADC1 Control 1).................................... 257  
AD1CON2 (ADC1 Control 2).................................... 259  
AD1CON3 (ADC1 Control 3).................................... 260  
AD1CON4 (ADC1 Control 4).................................... 261  
AD1CSSL (ADC1 Input Scan Select Low) ............... 264  
AD1PCFGL (ADC1 Port Configuration Low)............ 264  
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer) .......... 233  
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer) .......... 234  
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer) ........ 234  
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer) ...... 235  
CiCFG1 (ECAN Baud Rate Configuration 1)............ 231  
CiCFG2 (ECAN Baud Rate Configuration 2)............ 232  
CiCTRL1 (ECAN Control 1)...................................... 224  
CiCTRL2 (ECAN Control 2)...................................... 225  
CiEC (ECAN Transmit/Receive Error Count) ........... 231  
CiFCTRL (ECAN FIFO Control) ............................... 227  
CiFEN1 (ECAN Acceptance Filter Enable)............... 233  
CiFIFO (ECAN FIFO Status) .................................... 228  
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection) .... 237,  
238  
CiINTE (ECAN Interrupt Enable).............................. 230  
CiINTF (ECAN Interrupt Flag) .................................. 229  
CiRXFnEID (ECAN Acceptance Filter n  
Extended Identifier) .......................................... 237  
CiRXFnSID (ECAN Acceptance Filter n  
Standard Identifier)........................................... 236  
CiRXFUL1 (ECAN Receive Buffer Full 1)................. 240  
CiRXFUL2 (ECAN Receive Buffer Full 2)................. 240  
CiRXMnEID (ECAN Acceptance Filter Mask n  
Extended Identifier) .......................................... 239  
CiRXMnSID (ECAN Acceptance Filter Mask n  
N
NVM Module  
Register Map............................................................... 62  
O
Open-Drain Configuration ................................................. 160  
Output Compare ............................................................... 197  
P
Packaging ......................................................................... 379  
Details....................................................................... 380  
Marking ..................................................................... 379  
Peripheral Module Disable (PMD) .................................... 154  
PICkit 2 Development Programmer/Debugger and  
PICkit 2 Debug Express............................................ 322  
PICkit 3 In-Circuit Debugger/Programmer and  
PICkit 3 Debug Express............................................ 321  
Pinout I/O Descriptions (table)............................................ 17  
PMD Module  
Register Map............................................................... 62  
PORTA  
Register Map......................................................... 60, 61  
PORTB  
Register Map............................................................... 61  
Power-on Reset (POR) ....................................................... 84  
Power-Saving Features .................................................... 153  
Clock Frequency and Switching................................ 153  
Program Address Space..................................................... 37  
Construction................................................................ 68  
Data Access from Program Memory  
Standard Identifier)........................................... 239  
CiRXOVF1 (ECAN Receive Buffer Overflow 1)........ 241  
CiRXOVF2 (ECAN Receive Buffer Overflow 2)........ 241  
CiTRBnSID (ECAN Buffer n Standard Identifier)..... 243,  
244, 246  
CiTRmnCON (ECAN TX/RX Buffer m Control) ........ 242  
CiVEC (ECAN Interrupt Code) ................................. 226  
CLKDIV (Clock Divisor) ............................................ 147  
CORCON (Core Control)...................................... 30, 93  
DCICON1 (DCI Control 1) ........................................ 248  
DCICON2 (DCI Control 2) ........................................ 249  
DCICON3 (DCI Control 3) ........................................ 250  
DCISTAT (DCI Status) ............................................. 251  
DMACS0 (DMA Controller Status 0) ........................ 136  
DMACS1 (DMA Controller Status 1) ........................ 138  
DMAxCNT (DMA Channel x Transfer Count)........... 135  
DMAxCON (DMA Channel x Control)....................... 132  
DMAxPAD (DMA Channel x Peripheral Address) .... 135  
DMAxREQ (DMA Channel x IRQ Select)................. 133  
DMAxSTA (DMA Channel x RAM Start Address A). 134  
DMAxSTB (DMA Channel x RAM Start Address B). 134  
DSADR (Most Recent DMA RAM Address) ............. 139  
I2CxCON (I2Cx Control)........................................... 209  
I2CxMSK (I2Cx Slave Mode Address Mask)............ 213  
I2CxSTAT (I2Cx Status)........................................... 211  
Using Program Space Visibility........................... 71  
Data Access from Program Memory  
Using Table Instructions ..................................... 70  
Data Access from, Address Generation...................... 69  
Memory Map............................................................... 37  
Table Read Instructions  
TBLRDH ............................................................. 70  
TBLRDL .............................................................. 70  
Visibility Operation ...................................................... 71  
Program Memory  
Interrupt Vector ........................................................... 38  
Organization................................................................ 38  
Reset Vector ............................................................... 38  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 395  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
IFS0 (Interrupt Flag Status 0) ............................. 97, 104  
IFS1 (Interrupt Flag Status 1) ............................. 99, 106  
IFS2 (Interrupt Flag Status 2) ........................... 101, 108  
IFS3 (Interrupt Flag Status 3) ........................... 102, 109  
IFS4 (Interrupt Flag Status 4) ........................... 103, 110  
INTCON1 (Interrupt Control 1)....................................94  
INTCON2 (Interrupt Control 2)....................................96  
INTTREG Interrupt Control and Status Register.......127  
IPC0 (Interrupt Priority Control 0) .............................111  
IPC1 (Interrupt Priority Control 1) .............................112  
IPC11 (Interrupt Priority Control 11) .........................121  
IPC14 (Interrupt Priority Control 14) .........................122  
IPC15 (Interrupt Priority Control 15) .........................123  
IPC16 (Interrupt Priority Control 16) .........................124  
IPC17 (Interrupt Priority Control 17) .........................125  
IPC18 (Interrupt Priority Control 18) .........................126  
IPC2 (Interrupt Priority Control 2) .............................113  
IPC3 (Interrupt Priority Control 3) .............................114  
IPC4 (Interrupt Priority Control 4) .............................115  
IPC5 (Interrupt Priority Control 5) .............................116  
IPC6 (Interrupt Priority Control 6) .............................117  
IPC7 (Interrupt Priority Control 7) .............................118  
IPC8 (Interrupt Priority Control 8) .............................119  
IPC9 (Interrupt Priority Control 9) .............................120  
NVMCON (Flash Memory Control) .............................75  
NVMKEY (Nonvolatile Memory Key) ..........................76  
OCxCON (Output Compare x Control) .....................199  
OSCCON (Oscillator Control) ...................................145  
OSCTUN (FRC Oscillator Tuning) ............................149  
PLLFBD (PLL Feedback Divisor)..............................148  
PMD1 (Peripheral Module Disable  
System Control  
Register Map .............................................................. 62  
T
Temperature and Voltage Specifications  
AC..................................................................... 332, 372  
Timer1............................................................................... 187  
Timer2/3............................................................................ 189  
Timing Characteristics  
CLKO and I/O ........................................................... 335  
Timing Diagrams  
10-bit A/D Conversion (CHPS<1:0> = 01,  
SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000)... 361  
10-bit A/D Conversion (CHPS<1:0> = 01,  
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111,  
SAMC<4:0> = 00001)...................................... 361  
12-bit A/D Conversion  
(ASAM = 0, SSRC<2:0> = 000)........................ 359  
Brown-out Situations................................................... 85  
DCI AC-Link Mode.................................................... 353  
2
DCI Multi -Channel, I S Modes................................. 351  
ECAN I/O.................................................................. 355  
External Clock........................................................... 333  
I2Cx Bus Data (Master Mode) .................................. 347  
I2Cx Bus Data (Slave Mode) .................................... 349  
I2Cx Bus Start/Stop Bits (Master Mode)................... 347  
I2Cx Bus Start/Stop Bits (Slave Mode)..................... 349  
Input Capture (CAPx) ............................................... 340  
OC/PWM................................................................... 341  
Output Compare (OCx)............................................. 340  
Reset, Watchdog Timer, Oscillator Start-up Timer  
and Power-up Timer......................................... 336  
SPIx Master Mode (CKE = 0) ................................... 342  
SPIx Master Mode (CKE = 1) ................................... 343  
SPIx Slave Mode (CKE = 0) ..................................... 344  
SPIx Slave Mode (CKE = 1) ..................................... 345  
Timer1, 2 and 3 External Clock ................................ 338  
Timing Requirements  
Control Register 1)............................................155  
PMD2 (Peripheral Module Disable  
Control Register 2)............................................156  
PMD3 (Peripheral Module Disable  
Control Register 3)............................................157  
PxTCON (PWM Time Base Control).........267, 268, 269  
RCON (Reset Control)................................................80  
RSCON (DCI Receive Slot Control)..........................252  
SPIxCON1 (SPIx Control 1)......................................203  
SPIxCON2 (SPIx Control 2)......................................205  
SPIxSTAT (SPIx Status and Control) .......................202  
SR (CPU Status)................................................... 28, 92  
T1CON (Timer1 Control)...........................................188  
TCxCON (Input Capture x Control)...........................196  
TSCON (DCI Transmit Slot Control) .........................252  
TxCON (Type B Time Base Control) ........................192  
TyCON (Type C Time Base Control) ........................193  
UxMODE (UARTx Mode)..........................................216  
UxSTA (UARTx Status and Control).........................218  
ADC Conversion (10-bit mode)................................. 377  
ADC Conversion (12-bit Mode)................................. 377  
CLKO and I/O ........................................................... 335  
DCI AC-Link Mode.................................................... 354  
2
DCI Multi-Channel, I S Modes.................................. 352  
External Clock........................................................... 333  
Input Capture............................................................ 340  
SPIx Master Mode (CKE = 0) ................................... 373  
SPIx Module Master Mode (CKE = 1) ...................... 373  
SPIx Module Slave Mode (CKE = 0) ........................ 374  
SPIx Module Slave Mode (CKE = 1) ........................ 374  
Timing Specifications  
10-bit A/D Conversion Requirements ....................... 362  
12-bit A/D Conversion Requirements ....................... 360  
CAN I/O Requirements............................................. 355  
I2Cx Bus Data Requirements (Master Mode)........... 348  
I2Cx Bus Data Requirements (Slave Mode)............. 350  
Output Compare Requirements................................ 340  
PLL Clock ......................................................... 334, 372  
QEI External Clock Requirements............................ 339  
QEI Index Pulse Requirements ................................ 342  
Reset, Watchdog Timer, Oscillator Start-up Timer,  
Power-up Timer and Brown-out Reset  
Requirements ................................................... 337  
Simple OC/PWM Mode Requirements ..................... 341  
SPIx Master Mode (CKE = 0) Requirements............ 342  
SPIx Master Mode (CKE = 1) Requirements............ 343  
SPIx Slave Mode (CKE = 0) Requirements.............. 344  
SPIx Slave Mode (CKE = 1) Requirements.............. 346  
Reset  
Illegal Opcode....................................................... 79, 86  
Trap Conflict.......................................................... 85, 86  
Uninitialized W Register........................................ 79, 86  
Reset Sequence..................................................................87  
Resets.................................................................................79  
S
Serial Peripheral Interface (SPI) .......................................201  
Software Reset Instruction (SWR) ......................................85  
Software Simulator (MPLAB SIM).....................................321  
Software Stack Pointer, Frame Pointer  
CALL Stack Frame......................................................63  
Special Features of the CPU.............................................301  
SPI Module  
SPI1 Register Map......................................................50  
Symbols Used in Opcode Descriptions.............................312  
DS70292D-page 396  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
Timer1 External Clock Requirements ....................... 338  
Timer2 External Clock Requirements ....................... 339  
Timer3 External Clock Requirements ....................... 339  
U
UART Module  
UART1 Register Map............................................ 49, 50  
Universal Asynchronous Receiver Transmitter (UART).... 215  
Using the RCON Status Bits............................................... 86  
V
Voltage Regulator (On-Chip) ............................................ 305  
W
Watchdog Time-out Reset (WDTR) .................................... 85  
Watchdog Timer (WDT) ............................................ 301, 306  
Programming Considerations ................................... 306  
WWW Address.................................................................. 401  
WWW, On-Line Support ..................................................... 14  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 397  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
NOTES:  
DS70292D-page 398  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This website is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the website contains the following information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQs), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the website  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
receives e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip website at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 399  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04,  
and dsPIC33FJ128GPX02/X04 Data Sheet  
DS70292D  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS70292D-page 400  
Preliminary  
2009 Microchip Technology Inc.  
dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04, AND dsPIC33FJ128GPX02/X04  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
dsPIC 33 FJ 32 GP3 02 T E / SP - XXX  
a) dsPIC33FJ32GP302-E/SP:  
General Purpose dsPIC33, 32 KB program  
memory, 28-pin, Extended temperature,  
SPDIP package.  
Microchip Trademark  
Architecture  
Flash Memory Family  
Program Memory Size (KB)  
Product Group  
Pin Count  
Tape and Reel Flag (if applicable)  
Temperature Range  
Package  
Pattern  
Architecture:  
33  
=
=
16-bit Digital Signal Controller  
Flash program memory, 3.3V  
Flash Memory Family: FJ  
Product Group:  
GP2  
GP3  
GP8  
=
=
=
General Purpose family  
General Purpose family  
General Purpose family  
Pin Count:  
02  
04  
=
=
28-pin  
44-pin  
Temperature Range:  
I
E
H
=
=
=
-40C to+85C (Industrial)  
-40C to+125C (Extended)  
-40C to+140C (High)  
Package:  
SP  
SO  
ML  
MM  
PT  
=
=
=
=
=
Skinny Plastic Dual In-Line - 300 mil body (SPDIP)  
Plastic Small Outline - Wide - 300 mil body (SOIC)  
Plastic Quad, No Lead Package - 8x8 mm body (QFN)  
Plastic Quad, No Lead Package - 6x6x0.9 mm body (QFN-S)  
Plastic Thin Quad Flatpack - 10x10x1 mm body (TQFP)  
2009 Microchip Technology Inc.  
Preliminary  
DS70292D-page 401  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS70292D-page 402  
Preliminary  
2009 Microchip Technology Inc.  
Mouser Electronics  
Authorized Distributor  
Click to View Pricing, Inventory, Delivery & Lifecycle Information:  
Microchip:  
dsPIC33FJ128GP202-E/MM dsPIC33FJ128GP202-I/MM dsPIC33FJ128GP202T-I/MM dsPIC33FJ128GP206-E/PT  
dsPIC33FJ128GP306-E/PT dsPIC33FJ128GP310-E/PT dsPIC33FJ128GP310T-I/PF dsPIC33FJ128GP310T-I/PT  
dsPIC33FJ128GP706-E/PT dsPIC33FJ128GP708-E/PT dsPIC33FJ128GP710-E/PF dsPIC33FJ128GP710-E/PT  
dsPIC33FJ128GP802-E/MM dsPIC33FJ128GP802-I/MM dsPIC33FJ128GP802T-I/MM dsPIC33FJ32GP302-E/MM  
dsPIC33FJ64GP802T-I/MM dsPIC33FJ32GP302-I/MM dsPIC33FJ64GP802-I/MM dsPIC33FJ64GP802-E/MM  
dsPIC33FJ32GP302T-I/MM dsPIC33FJ64GP202T-I/MM dsPIC33FJ64GP202-I/MM dsPIC33FJ128GP310-E/PF  
dsPIC33FJ64GP202-E/MM dsPIC33FJ128GP202-E/SO dsPIC33FJ128GP202-E/SP dsPIC33FJ128GP202-I/SO  
dsPIC33FJ128GP202-I/SP dsPIC33FJ128GP202T-I/SO dsPIC33FJ128GP204-E/ML dsPIC33FJ128GP204-E/PT  
dsPIC33FJ128GP204-I/ML dsPIC33FJ128GP204-I/PT dsPIC33FJ128GP204T-I/ML dsPIC33FJ128GP204T-I/PT  
dsPIC33FJ128GP802-E/SO dsPIC33FJ128GP802-E/SP dsPIC33FJ128GP802-I/SO dsPIC33FJ128GP802-I/SP  
dsPIC33FJ128GP802T-I/SO dsPIC33FJ128GP804-E/ML dsPIC33FJ128GP804-E/PT dsPIC33FJ128GP804-I/ML  
dsPIC33FJ128GP804-I/PT dsPIC33FJ128GP804T-I/ML dsPIC33FJ128GP804T-I/PT dsPIC33FJ32GP302-E/SO  
dsPIC33FJ32GP302-E/SP dsPIC33FJ32GP302-I/SO dsPIC33FJ32GP302-I/SP dsPIC33FJ32GP302T-I/SO  
dsPIC33FJ32GP304-E/ML dsPIC33FJ32GP304-E/PT dsPIC33FJ32GP304-I/ML dsPIC33FJ32GP304-I/PT  
dsPIC33FJ32GP304T-I/ML dsPIC33FJ32GP304T-I/PT dsPIC33FJ64GP202-E/SO dsPIC33FJ64GP202-E/SP  
dsPIC33FJ64GP202-I/SO dsPIC33FJ64GP202-I/SP dsPIC33FJ64GP202T-I/SO dsPIC33FJ64GP204-E/ML  
dsPIC33FJ64GP204-E/PT dsPIC33FJ64GP204-I/ML dsPIC33FJ64GP204-I/PT dsPIC33FJ64GP204T-I/ML  
dsPIC33FJ64GP204T-I/PT dsPIC33FJ64GP802-E/SO dsPIC33FJ64GP802-E/SP dsPIC33FJ64GP802-I/SO  
dsPIC33FJ64GP802-I/SP dsPIC33FJ64GP802T-I/SO dsPIC33FJ64GP804-E/ML dsPIC33FJ64GP804-E/PT  
dsPIC33FJ64GP804-I/ML dsPIC33FJ64GP804-I/PT dsPIC33FJ64GP804T-I/ML dsPIC33FJ64GP804T-I/PT  
dsPIC33FJ128GP206A-I/PT dsPIC33FJ128GP206AT-I/PT dsPIC33FJ128GP306AT-I/PT dsPIC33FJ128GP310A-E/PF  
dsPIC33FJ128GP310AT-I/PF dsPIC33FJ128GP310AT-I/PT dsPIC33FJ128GP706A-E/PT dsPIC33FJ128GP706AT-  
I/PT dsPIC33FJ128GP708A-E/PT dsPIC33FJ128GP708AT-I/PT dsPIC33FJ128GP710A-E/PT  
dsPIC33FJ128GP710AT-I/PF dsPIC33FJ128GP710AT-I/PT dsPIC33FJ128GP804-H/PT DSPIC33FJ128GP202-E/SO  
DSPIC33FJ128GP202-E/SP DSPIC33FJ128GP202-I/SO DSPIC33FJ128GP202-I/SP DSPIC33FJ128GP202T-I/SO  
DSPIC33FJ128GP204-E/ML  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY