DSPOC30F3013BT-20E [MICROCHIP]

High-Performance, 16-bit Digital Signal Controllers; 高性能16位数字信号控制器
DSPOC30F3013BT-20E
型号: DSPOC30F3013BT-20E
厂家: MICROCHIP    MICROCHIP
描述:

High-Performance, 16-bit Digital Signal Controllers
高性能16位数字信号控制器

控制器
文件: 总210页 (文件大小:3121K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
dsPIC30F2011/2012/3012/3013  
Data Sheet  
High-Performance,  
16-bit Digital Signal Controllers  
© 2010 Microchip Technology Inc.  
DS70139G  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
PIC32 logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-631-9  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS70139G-page 2  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
High-Performance, 16-bit Digital Signal Controllers  
Peripheral Features:  
Note:  
This data sheet summarizes features of  
• High-current sink/source I/O pins: 25 mA/25 mA  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC  
• Three 16-bit timers/counters; optionally pair up  
16-bit timers into 32-bit timer modules  
• 16-bit Capture input functions  
• 16-bit Compare/PWM output functions  
• 3-wire SPI modules (supports four Frame modes)  
• I2C™ module supports Multi-Master/Slave mode  
and 7-bit/10-bit addressing  
• Up to two addressable UART modules with FIFO  
buffers  
Programmer’s  
(DS70157).  
Reference  
Manual”  
Analog Features:  
High-Performance Modified RISC CPU:  
• 12-bit Analog-to-Digital Converter (ADC) with:  
- 200 ksps conversion rate  
• Modified Harvard architecture  
• C compiler optimized instruction set architecture  
• Flexible addressing modes  
- Up to 10 input channels  
- Conversion available during Sleep and Idle  
• Programmable Low-Voltage Detection (PLVD)  
• Programmable Brown-out Reset  
• 83 base instructions  
• 24-bit wide instructions, 16-bit wide data path  
• Up to 24 Kbytes on-chip Flash program space  
• Up to 2 Kbytes of on-chip data RAM  
• Up to 1 Kbytes of nonvolatile data EEPROM  
• 16 x 16-bit working register array  
• Up to 30 MIPS operation:  
Special Microcontroller Features:  
• Enhanced Flash program memory:  
- 10,000 erase/write cycle (min.) for  
industrial temperature range, 100K (typical)  
- DC to 40 MHz external clock input  
• Data EEPROM memory:  
- 4 MHz - 10 MHz oscillator input with  
PLL active (4x, 8x, 16x)  
- 100,000 erase/write cycle (min.) for  
industrial temperature range, 1M (typical)  
• Up to 21 interrupt sources:  
- 8 user-selectable priority levels  
- 3 external interrupt sources  
- 4 processor trap sources  
• Self-reprogrammable under software control  
• Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
• Flexible Watchdog Timer (WDT) with on-chip  
low-power RC oscillator for reliable operation  
DSP Features:  
• Fail-Safe Clock Monitor operation:  
- Detects clock failure and switches to on-chip  
low-power RC oscillator  
• Dual data fetch  
• Modulo and Bit-Reversed modes  
• Programmable code protection  
• Two 40-bit wide accumulators with optional  
saturation logic  
• In-Circuit Serial Programming™ (ICSP™)  
• Selectable Power Management modes:  
- Sleep, Idle and Alternate Clock modes  
• 17-bit x 17-bit single-cycle hardware fractional/  
integer multiplier  
• All DSP instructions are single cycle  
- Multiply-Accumulate (MAC) operation  
• Single-cycle ±16 shift  
CMOS Technology:  
• Low-power, high-speed Flash technology  
• Wide operating voltage range (2.5V to 5.5V)  
• Industrial and Extended temperature ranges  
• Low-power consumption  
© 2010 Microchip Technology Inc.  
DS70139G-page 3  
dsPIC30F2011/2012/3012/3013  
dsPIC30F2011/2012/3012/3013 Sensor Family  
Program Memory  
Output  
Comp/Std  
PWM  
SRAM EEPROM Timer Input  
A/D 12-bit  
200 Ksps  
Device  
Pins  
Bytes  
Bytes  
16-bit Cap  
Bytes Instructions  
dsPIC30F2011  
dsPIC30F3012  
dsPIC30F2012  
dsPIC30F3013  
18  
18  
28  
28  
12K  
24K  
12K  
24K  
4K  
8K  
4K  
8K  
1024  
2048  
1024  
2048  
3
3
3
3
2
2
2
2
2
2
2
2
8 ch  
8 ch  
1
1
1
2
1
1
1
1
1
1
1
1
1024  
10 ch  
10 ch  
1024  
Pin Diagrams  
18-Pin PDIP and SOIC  
MCLR  
1
2
3
4
5
6
7
8
18  
17  
16  
15  
14  
13  
12  
11  
AVDD  
AVSS  
EMUD3/AN0/VREF+/CN2/RB0  
EMUC3/AN1/VREF-/CN3/RB1  
AN2/SS1/LVDIN/CN4/RB2  
AN3/CN5/RB3  
AN6/SCK1/INT0/OCFA/RB6  
EMUD2/AN7/OC2/IC2/INT2/RB7  
VDD  
VSS  
PGC/EMUC/AN5/U1RX/SDI1/SDA/CN7/RB5  
PGD/EMUD/AN4/U1TX/SDO1/SCL/CN6/RB4  
EMUC2/OC1/IC1/INT1/RD0  
OSC1/CLKI  
OSC2/CLKO/RC15  
EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13  
EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14  
9
10  
28-Pin PDIP and SOIC  
MCLR  
EMUD3/AN0/VREF+/CN2/RB0  
EMUC3/AN1/VREF-/CN3/RB1  
AN2/SS1/LVDIN/CN4/RB2  
AN3/CN5/RB3  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AVDD  
AVSS  
AN6/OCFA/RB6  
EMUD2/AN7/RB7  
AN8/OC1/RB8  
AN9/OC2/RB9  
CN17/RF4  
CN18/RF5  
VDD  
VSS  
PGC/EMUC/U1RX/SDI1/SDA/RF2  
PGD/EMUD/U1TX/SDO1/SCL/RF3  
SCK1/INT0/RF6  
EMUC2/IC1/INT1/RD8  
AN4/CN6/RB4  
AN5/CN7/RB5  
VSS  
OSC1/CLKI  
9
OSC2/CLKO/RC15  
10  
11  
12  
13  
14  
EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13  
EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14  
VDD  
IC2/INT2/RD9  
28-Pin SPDIP and SOIC  
MCLR  
EMUD3/AN0/VREF+/CN2/RB0  
EMUC3/AN1/VREF-/CN3/RB1  
AN2/SS1/LVDIN/CN4/RB2  
AN3/CN5/RB3  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
AVDD  
AVSS  
AN6/OCFA/RB6  
EMUD2/AN7/RB7  
AN8/OC1/RB8  
AN9/OC2/RB9  
U2RX/CN17/RF4  
U2TX/CN18/RF5  
VDD  
AN4/CN6/RB4  
AN5/CN7/RB5  
VSS  
OSC1/CLKI  
9
OSC2/CLKO/RC15  
VSS  
10  
11  
12  
13  
14  
EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13  
EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14  
VDD  
PGC/EMUC/U1RX/SDI1/SDA/RF2  
PGD/EMUD/U1TX/SDO1/SCL/RF3  
SCK1/INT0/RF6  
EMUC2/IC1/INT1/RD8  
IC2/INT2/RD9  
DS70139G-page 4  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
Pin Diagrams  
28-Pin QFN-S(1)  
AN2/SS1/LVDIN/CN4/RB2  
NC  
NC  
19 NC  
1
2
3
4
5
6
7
21  
20  
AN3/CN5/RB3  
NC  
NC  
VSS  
dsPIC30F2011  
NC  
VDD  
VSS  
18  
17  
16  
15  
OSC1/CLKI  
OSC2/CLKO/RC15  
PGC/EMUC/AN5/U1RX/SDI1/SDA/CN7/RB5  
Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  
© 2010 Microchip Technology Inc.  
DS70139G-page 5  
dsPIC30F2011/2012/3012/3013  
Pin Diagrams  
28-Pin QFN-S(1)  
AN2/SS1/LVDIN/CN4/RB2  
AN3/CN5/RB3  
AN4/CN6/RB4  
AN5/CN7/RB5  
VSS  
1
2
3
4
5
6
7
21  
AN8/OC1/RB8  
20 AN9/OC2/RB9  
19 CN17/RF4  
18  
17 VDD  
16  
15  
dsPIC30F2012  
CN18/RF5  
OSC1/CLKI  
OSC2/CLKO/RC15  
VSS  
PGC/EMUC/U1RX/SDI1/SDA/RF2  
Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  
DS70139G-page 6  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
Pin Diagram  
44-Pin QFN(1)  
44 43 42 41 40 39 38 37 36 35 34  
1
2
3
4
5
6
7
8
9
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
OSC2/CLKO/RC15  
OSC1/CLKI  
VSS  
PGC/EMUC/AN5/U1RX/SDI1/SDA/CN7/RB5  
VSS  
NC  
VDD  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VSS  
NC  
NC  
NC  
NC  
dsPIC30F3012  
AN3/CN5/RB3  
NC  
AN2/SS1/LVDIN/CN4/RB2  
10  
11  
12 13 14 15 16 17 18 19 20 21 22  
Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  
© 2010 Microchip Technology Inc.  
DS70139G-page 7  
dsPIC30F2011/2012/3012/3013  
Pin Diagrams  
44-Pin QFN(1)  
OSC2/CLKO/RC15  
OSC1/CLKI  
VSS  
PGC/EMUC/U1RX/SDI1/SDA/RF2  
1
2
3
33  
32  
31  
30  
VSS  
NC  
VDD  
4
VSS  
5
29 NC  
NC  
NC  
6
7
8
9
10  
11  
28  
27  
26  
25  
24  
23  
NC  
dsPIC30F3013  
AN5/CN7/RB5  
AN4/CN6/RB4  
AN3/CN5/RB3  
NC  
U2TX/CN18/RF5  
NC  
U2RX/CN17/RF4  
AN9/OC2/RB9  
AN8/OC1/RB8  
AN2/SS1/LVDIN/CN4/RB2  
Note 1: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSS externally.  
DS70139G-page 8  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................ 11  
2.0 CPU Architecture Overview........................................................................................................................................................ 19  
3.0 Memory Organization................................................................................................................................................................. 29  
4.0 Address Generator Units............................................................................................................................................................ 43  
5.0 Flash Program Memory.............................................................................................................................................................. 49  
6.0 Data EEPROM Memory ............................................................................................................................................................. 55  
7.0 I/O Ports ..................................................................................................................................................................................... 59  
8.0 Interrupts .................................................................................................................................................................................... 65  
9.0 Timer1 Module ........................................................................................................................................................................... 73  
10.0 Timer2/3 Module ........................................................................................................................................................................ 77  
11.0 Input Capture Module................................................................................................................................................................. 83  
12.0 Output Compare Module............................................................................................................................................................ 87  
13.0 SPI™ Module ............................................................................................................................................................................. 93  
14.0 I2C™ Module ............................................................................................................................................................................. 97  
15.0 Universal Asynchronous Receiver Transmitter (UART) Module .............................................................................................. 105  
16.0 12-bit Analog-to-Digital Converter (ADC) Module .................................................................................................................... 113  
17.0 System Integration ................................................................................................................................................................... 123  
18.0 Instruction Set Summary.......................................................................................................................................................... 137  
19.0 Development Support............................................................................................................................................................... 145  
20.0 Electrical Characteristics.......................................................................................................................................................... 149  
21.0 Packaging Information.............................................................................................................................................................. 187  
Index .................................................................................................................................................................................................. 201  
The Microchip Web Site..................................................................................................................................................................... 207  
Customer Change Notification Service.............................................................................................................................................. 207  
Customer Support.............................................................................................................................................................................. 207  
Reader Response.............................................................................................................................................................................. 208  
Product Identification System ............................................................................................................................................................ 209  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of  
silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
© 2010 Microchip Technology Inc.  
DS70139G-page 9  
dsPIC30F2011/2012/3012/3013  
NOTES:  
DS70139G-page 10  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
1.0  
DEVICE OVERVIEW  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC  
Programmer’s  
Reference  
Manual”  
(DS70157).  
This data sheet contains information specific to the  
dsPIC30F2011, dsPIC30F2012, dsPIC30F3012 and  
dsPIC30F3013 Digital Signal Controllers (DSC). These  
devices contain extensive Digital Signal Processor  
(DSP) functionality within a high-performance 16-bit  
microcontroller (MCU) architecture.  
The following block diagrams depict the architecture for  
these devices:  
Figure 1-1 illustrates the dsPIC30F2011  
Figure 1-2 illustrates the dsPIC30F2012  
Figure 1-3 illustrates the dsPIC30F3012  
Figure 1-4 illustrates the dsPIC30F3013  
Following the block diagrams, Table 1-1 relates the I/O  
functions to pinout information.  
© 2010 Microchip Technology Inc.  
DS70139G-page 11  
dsPIC30F2011/2012/3012/3013  
FIGURE 1-1:  
dsPIC30F2011 BLOCK DIAGRAM  
Y Data Bus  
X Data Bus  
16 16  
16  
16  
Data Latch  
Data Latch  
Interrupt  
Controller  
PSV & Table  
Data Access  
Control Block  
X Data  
RAM  
(512 bytes)  
Address  
Latch  
Y Data  
RAM  
(512 bytes)  
Address  
Latch  
8
16  
24  
24  
16  
24  
16  
16  
16  
EMUD3/AN0/VREF+/CN2/RB0  
EMUC3/AN1/VREF-/CN3/RB1  
AN2/SS1/LVDIN/CN4/RB2  
AN3/CN5/RB3  
X RAGU  
X WAGU  
Y AGU  
PCH PCL  
PCU  
Program Counter  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
Address Latch  
PGD/EMUD/AN4/U1TX/SDO1/SCL/CN6/RB4  
PGC/EMUC/AN5/U1RX/SDI1/SDA/CN7/RB5  
AN6/SCK1/INT0/OCFA/RB6  
Program Memory  
(12 Kbytes)  
EMUD2/AN7/OC2/IC2/INT2/RB7  
Data Latch  
Effective Address  
PORTB  
16  
ROM Latch  
16  
24  
EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13  
EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14  
OSC2/CLKO/RC15  
IR  
16  
16  
16 x 16  
W Reg Array  
Decode  
PORTC  
Instruction  
Decode &  
Control  
16 16  
DSP  
Engine  
Divide  
Unit  
Power-up  
Timer  
EMUC2/OC1/IC1/INT1/RD0  
Timing  
Generation  
Oscillator  
Start-up Timer  
OSC1/CLKI  
ALU<16>  
16  
POR/BOR  
Reset  
16  
PORTD  
Watchdog  
Timer  
MCLR  
Low-Voltage  
Detect  
VDD, VSS  
AVDD, AVSS  
Input  
Capture  
Module  
Output  
Compare  
Module  
2
12-bit ADC  
I C™  
Timers  
SPI1  
UART1  
DS70139G-page 12  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 1-2:  
dsPIC30F2012 BLOCK DIAGRAM  
Y Data Bus  
X Data Bus  
16  
16  
16  
16  
Data Latch  
Data Latch  
Interrupt  
Controller  
PSV & Table  
Data Access  
Control Block  
X Data  
RAM  
(512 bytes)  
Address  
Latch  
Y Data  
RAM  
(512 bytes)  
Address  
Latch  
8
16  
24  
24  
16  
24  
16  
16  
16  
EMUD3/AN0/VREF+/CN2/RB0  
EMUC3/AN1/VREF-/CN3/RB1  
AN2/SS1/LVDIN/CN4/RB2  
X RAGU  
X WAGU  
Y AGU  
PCH PCL  
PCU  
Program Counter  
AN3/CN5/RB3  
AN4/CN6/RB4  
AN5/CN7/RB5  
AN6/OCFA/RB6  
EMUD2/AN7/RB7  
AN8/OC1/RB8  
AN9/OC2/RB9  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
Address Latch  
Program Memory  
(12 Kbytes)  
Data Latch  
Effective Address  
16  
PORTB  
ROM Latch  
16  
24  
IR  
EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13  
EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14  
OSC2/CLKO/RC15  
16  
16  
16 x 16  
W Reg Array  
PORTC  
Decode  
Instruction  
Decode &  
Control  
16 16  
DSP  
Engine  
Divide  
Unit  
Power-up  
Timer  
EMUC2/IC1/INT1/RD8  
IC2/INT2/RD9  
Timing  
Generation  
Oscillator  
Start-up Timer  
OSC1/CLKI  
ALU<16>  
16  
POR/BOR  
Reset  
PORTD  
16  
Watchdog  
Timer  
MCLR  
Low-Voltage  
Detect  
VDD, VSS  
AVDD, AVSS  
Input  
Capture  
Module  
Output  
Compare  
Module  
2
12-bit ADC  
I C™  
PGC/EMUC/U1RX/SDI1/SDA/RF2  
PGD/EMUD/U1TX/SDO1/SCL/RF3  
CN17/RF4  
CN18/RF5  
SCK1/INT0/RF6  
Timers  
SPI1  
UART1  
PORTF  
© 2010 Microchip Technology Inc.  
DS70139G-page 13  
dsPIC30F2011/2012/3012/3013  
FIGURE 1-3:  
dsPIC30F3012 BLOCK DIAGRAM  
Y Data Bus  
X Data Bus  
16 16  
16  
16  
Data Latch  
Data Latch  
Interrupt  
Controller  
PSV & Table  
Data Access  
Control Block  
X Data  
RAM  
(1 Kbytes)  
Address  
Latch  
Y Data  
RAM  
(1 Kbytes)  
Address  
Latch  
8
16  
24  
24  
16  
24  
16  
16  
16  
EMUD3/AN0/VREF+/CN2/RB0  
EMUC3/AN1/VREF-/CN3/RB1  
AN2/SS1/LVDIN/CN4/RB2  
AN3/CN5/RB3  
X RAGU  
X WAGU  
Y AGU  
PCH PCL  
PCU  
Program Counter  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
Address Latch  
PGD/EMUD/AN4/U1TX/SDO1/SCL/CN6/RB4  
PGC/EMUC/AN5/U1RX/SDI1/SDA/CN7/RB5  
AN6/SCK1/INT0/OCFA/RB6  
Program Memory  
(24 Kbytes)  
EMUD2/AN7/OC2/IC2/INT2/RB7  
Data EEPROM  
(1 Kbytes)  
Effective Address  
PORTB  
16  
Data Latch  
ROM Latch  
16  
24  
EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13  
EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14  
OSC2/CLKO/RC15  
IR  
16  
16  
16 x 16  
W Reg Array  
Decode  
PORTC  
Instruction  
Decode &  
Control  
16 16  
DSP  
Engine  
Divide  
Unit  
Power-up  
Timer  
EMUC2/OC1/IC1/INT1/RD0  
Oscillator  
Start-up Timer  
Timing  
Generation  
OSC1/CLKI  
ALU<16>  
16  
POR/BOR  
Reset  
16  
PORTD  
Watchdog  
Timer  
MCLR  
Low-Voltage  
Detect  
VDD, VSS  
AVDD, AVSS  
Input  
Capture  
Module  
Output  
Compare  
Module  
2
I C™  
12-bit ADC  
Timers  
SPI1  
UART1  
DS70139G-page 14  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 1-4:  
dsPIC30F3013 BLOCK DIAGRAM  
Y Data Bus  
X Data Bus  
16  
16  
16  
16  
Data Latch  
Data Latch  
Interrupt  
Controller  
PSV & Table  
Data Access  
Control Block  
X Data  
RAM  
(1 Kbytes)  
Address  
Latch  
Y Data  
RAM  
(1 Kbytes)  
Address  
Latch  
8
16  
24  
24  
16  
24  
16  
16  
16  
EMUD3/AN0/VREF+/CN2/RB0  
EMUC3/AN1/VREF-/CN3/RB1  
AN2/SS1/LVDIN/CN4/RB2  
X RAGU  
X WAGU  
Y AGU  
PCH PCL  
PCU  
Address Latch  
Program Counter  
AN3/CN5/RB3  
AN4/CN6/RB4  
AN5/CN7/RB5  
AN6/OCFA/RB6  
EMUD2/AN7/RB7  
AN8/OC1/RB8  
AN9/OC2/RB9  
Loop  
Control  
Logic  
Stack  
Control  
Logic  
Program Memory  
(24 Kbytes)  
Data EEPROM  
(1 Kbytes)  
Data Latch  
Effective Address  
16  
PORTB  
ROM Latch  
16  
24  
IR  
EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13  
EMUC1/SOSCO/T1CK/U1ARX/CN0/RC14  
OSC2/CLKO/RC15  
16  
16  
16 x 16  
W Reg Array  
PORTC  
Decode  
Instruction  
Decode &  
Control  
16 16  
DSP  
Engine  
Divide  
Unit  
Power-up  
Timer  
EMUC2/IC1/INT1/RD8  
IC2/INT2/RD9  
Timing  
Generation  
Oscillator  
Start-up Timer  
OSC1/CLKI  
ALU<16>  
16  
POR/BOR  
Reset  
PORTD  
16  
Watchdog  
Timer  
MCLR  
Low-Voltage  
Detect  
VDD, VSS  
AVDD, AVSS  
Input  
Capture  
Module  
Output  
Compare  
Module  
2
I C™  
12-bit ADC  
PGC/EMUC/U1RX/SDI1/SDA/RF2  
PGD/EMUD/U1TX/SDO1/SCL/RF3  
U2RX/CN17/RF4  
U2TX/CN18/RF5  
SCK1/INT0/RF6  
UART1,  
UART2  
SPI1  
Timers  
PORTF  
© 2010 Microchip Technology Inc.  
DS70139G-page 15  
dsPIC30F2011/2012/3012/3013  
Table 1-1 provides a brief description of device I/O  
pinouts and the functions that may be multiplexed to a  
port pin. Multiple functions may exist on one port pin.  
When multiplexing occurs, the peripheral module’s  
functional requirements may force an override of the  
data direction of the port pin.  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS  
Pin  
Buffer  
Type  
Description  
Type  
AN0 - AN9  
AVDD  
I
Analog  
Analog input channels.  
P
P
P
P
Positive supply for analog module. This pin must be connected at all times.  
Ground reference for analog module. This pin must be connected at all times.  
AVSS  
CLKI  
I
ST/CMOS External clock source input. Always associated with OSC1 pin function.  
CLKO  
O
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator  
mode. Optionally functions as CLKO in RC and EC modes. Always associated  
with OSC2 pin function.  
CN0 - CN7  
I
ST  
Input change notification inputs.  
Can be software programmed for internal weak pull-ups on all inputs.  
EMUD  
EMUC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ICD Primary Communication Channel data input/output pin.  
ICD Primary Communication Channel clock input/output pin.  
ICD Secondary Communication Channel data input/output pin.  
ICD Secondary Communication Channel clock input/output pin.  
ICD Tertiary Communication Channel data input/output pin.  
ICD Tertiary Communication Channel clock input/output pin.  
ICD Quaternary Communication Channel data input/output pin.  
ICD Quaternary Communication Channel clock input/output pin.  
EMUD1  
EMUC1  
EMUD2  
EMUC2  
EMUD3  
EMUC3  
IC1 - IC2  
I
ST  
Capture inputs 1 through 2.  
INT0  
INT1  
INT2  
I
I
I
ST  
ST  
ST  
External interrupt 0.  
External interrupt 1.  
External interrupt 2.  
LVDIN  
MCLR  
I
Analog  
ST  
Low-Voltage Detect Reference Voltage Input pin.  
I/P  
Master Clear (Reset) input or programming voltage input. This pin is an  
active-low Reset to the device.  
OC1-OC2  
OCFA  
O
I
ST  
Compare outputs 1 through 2.  
Compare Fault A input.  
OSC1  
I
ST/CMOS Oscillator crystal input. ST buffer when configured in RC mode; CMOS  
otherwise.  
OSC2  
I/O  
Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator  
mode. Optionally functions as CLKO in RC and EC modes.  
PGD  
PGC  
I/O  
I
ST  
ST  
In-Circuit Serial Programming™ data input/output pin.  
In-Circuit Serial Programming clock input pin.  
RB0 - RB9  
I/O  
I/O  
I/O  
ST  
ST  
ST  
PORTB is a bidirectional I/O port.  
PORTC is a bidirectional I/O port.  
PORTD is a bidirectional I/O port.  
RC13 - RC15  
RD0,  
RD8-RD9  
RF2 - RF5  
I/O  
ST  
PORTF is a bidirectional I/O port.  
SCK1  
SDI1  
SDO1  
SS1  
I/O  
ST  
ST  
Synchronous serial clock input/output for SPI1.  
SPI1 Data In.  
SPI1 Data Out.  
I
O
I
ST  
SPI1 Slave Synchronization.  
Legend: CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
=
=
Schmitt Trigger input with CMOS levels  
Input  
O
P
=
=
Output  
Power  
DS70139G-page 16  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
TABLE 1-1:  
Pin Name  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin  
Buffer  
Type  
Description  
Type  
SCL  
SDA  
I/O  
I/O  
ST  
ST  
Synchronous serial clock input/output for I2C™.  
Synchronous serial data input/output for I2C.  
SOSCO  
SOSCI  
O
I
32 kHz low-power oscillator crystal output.  
ST/CMOS 32 kHz low-power oscillator crystal input. ST buffer when configured in RC  
mode; CMOS otherwise.  
T1CK  
T2CK  
I
I
ST  
ST  
Timer1 external clock input.  
Timer2 external clock input.  
U1RX  
U1TX  
U1ARX  
U1ATX  
U2RX  
U2TX  
I
O
I
O
I
ST  
ST  
ST  
UART1 Receive.  
UART1 Transmit.  
UART1 Alternate Receive.  
UART1 Alternate Transmit.  
UART2 Receive.  
O
UART2 Transmit.  
VDD  
P
P
I
Positive supply for logic and I/O pins.  
Ground reference for logic and I/O pins.  
Analog Voltage Reference (High) input.  
Analog Voltage Reference (Low) input.  
VSS  
VREF+  
VREF-  
Analog  
Analog  
I
Legend: CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
=
=
Schmitt Trigger input with CMOS levels  
Input  
O
P
=
=
Output  
Power  
© 2010 Microchip Technology Inc.  
DS70139G-page 17  
dsPIC30F2011/2012/3012/3013  
NOTES:  
DS70139G-page 18  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
Two ways to access data in program memory are:  
2.0  
CPU ARCHITECTURE  
OVERVIEW  
• The upper 32 Kbytes of data space memory can  
be mapped into the lower half (user space) of  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC  
program space at any 16K program word  
boundary, defined by the 8-bit Program Space  
Visibility Page register (PSVPAG). Thus any  
instruction can access program space as if it were  
data space, with a limitation that the access  
requires an additional cycle. Only the lower 16  
bits of each instruction word can be accessed  
using this method.  
• Linear indirect access of 32K word pages within  
program space is also possible using any working  
register, via table read and write instructions.  
Table read and write instructions can be used to  
access all 24 bits of an instruction word.  
Programmer’s  
Reference  
Manual”  
(DS70157).  
This section is an overview of the CPU architecture of  
the dsPIC30F. The core has a 24-bit instruction word.  
The Program Counter (PC) is 23 bits wide with the  
Least Significant bit (LSb) always clear (see  
Section 3.1 “Program Address Space”). The Most  
Significant bit (MSb) is ignored during normal program  
execution, except for certain specialized instructions.  
Thus, the PC can address up to 4M instruction words  
of user program space. An instruction prefetch  
mechanism helps maintain throughput. Program loop  
constructs, free from loop count management  
overhead, are supported using the DO and REPEAT  
instructions, both of which are interruptible at any point.  
Overhead-free circular buffers (Modulo Addressing)  
are supported in both X and Y address spaces. This is  
primarily intended to remove the loop overhead for  
DSP algorithms.  
The X AGU also supports Bit-Reversed Addressing on  
destination effective addresses to greatly simplify input  
or output data reordering for radix-2 FFT algorithms.  
Refer to Section 4.0 “Address Generator Units” for  
details on Modulo and Bit-Reversed Addressing.  
The core supports Inherent (no operand), Relative,  
Literal, Memory Direct, Register Direct, Register  
Indirect, Register Offset and Literal Offset Addressing  
modes. Instructions are associated with pre-defined  
addressing modes, depending upon their functional  
requirements.  
2.1  
Core Overview  
The working register array consists of 16 x 16-bit  
registers, each of which can act as data, address or  
offset registers. One working register (W15) operates  
as a Software Stack Pointer for interrupts and calls.  
For most instructions, the core is capable of executing  
a data (or program data) memory read, a working  
register (data) read, a data memory write and a  
program (instruction) memory read per instruction  
The data space is 64 Kbytes (32K words) and is split  
into two blocks, referred to as X and Y data memory.  
Each block has its own independent Address Genera-  
tion Unit (AGU). Most instructions operate solely  
through the X memory, AGU, which provides the  
appearance of a single unified data space. The  
Multiply-Accumulate (MAC) class of dual source DSP  
instructions operate through both the X and Y AGUs,  
splitting the data address space into two parts (see  
Section 3.2 “Data Address Space”). The X and Y  
data space boundary is device specific and cannot be  
altered by the user. Each data word consists of 2 bytes  
and most instructions can address data either as words  
or bytes.  
cycle. As  
a result, 3 operand instructions are  
supported, allowing C = A+B operations to be exe-  
cuted in a single cycle.  
A DSP engine has been included to significantly  
enhance the core arithmetic capability and throughput.  
It features a high-speed 17-bit by 17-bit multiplier, a  
40-bit ALU, two 40-bit saturating accumulators and a  
40-bit bidirectional barrel shifter. Data in the  
accumulator or any working register can be shifted up  
to 15 bits right, or 16 bits left in a single cycle. The DSP  
instructions operate seamlessly with all other  
instructions and have been designed for optimal  
real-time performance. The MAC class of instructions  
can concurrently fetch two data operands from memory  
while multiplying two W registers. To enable this  
concurrent fetching of data operands, the data space  
has been split for these instructions and linear is for all  
others. This has been achieved in a transparent and  
flexible manner, by dedicating certain working registers  
to each address space for the MAC  
class of  
instructions.  
© 2010 Microchip Technology Inc.  
DS70139G-page 19  
dsPIC30F2011/2012/3012/3013  
The core does not support a multi-stage instruction  
pipeline. However, a single-stage instruction prefetch  
mechanism is used, which accesses and partially  
decodes instructions a cycle ahead of execution, in  
order to maximize available execution time. Most  
instructions execute in a single cycle with certain  
exceptions.  
2.2.1  
SOFTWARE STACK POINTER/  
FRAME POINTER  
The dsPIC® DSC devices contain a software stack.  
W15 is the dedicated Software Stack Pointer (SP),  
which is automatically modified by exception  
processing and subroutine calls and returns. However,  
W15 can be referenced by any instruction in the same  
manner as all other W registers. This simplifies the  
reading, writing and manipulation of the Stack Pointer  
(e.g., creating stack frames).  
The core features a vectored exception processing  
structure for traps and interrupts, with 62 independent  
vectors. The exceptions consist of up to 8 traps (of  
which 4 are reserved) and 54 interrupts. Each interrupt  
is prioritized based on a user-assigned priority between  
1 and 7 (1 being the lowest priority and 7 being the  
highest), in conjunction with a predetermined ‘natural  
order’. Traps have fixed priorities ranging from 8 to 15.  
Note:  
In order to protect against misaligned  
stack accesses, W15<0> is always clear.  
W15 is initialized to 0x0800 during a Reset. The user  
may reprogram the SP during initialization to any  
location within data space.  
2.2  
Programmer’s Model  
W14 has been dedicated as a Stack Frame Pointer, as  
defined by the LNK and ULNK instructions. However,  
W14 can be referenced by any instruction in the same  
manner as all other W registers.  
The programmer’s model is shown in Figure 2-1 and  
consists of 16 x 16-bit working registers (W0 through  
W15), 2 x 40-bit accumulators (ACCA and ACCB),  
STATUS register (SR), Data Table Page register  
(TBLPAG), Program Space Visibility Page register  
(PSVPAG), DO and REPEAT registers (DOSTART,  
DOEND, DCOUNT and RCOUNT) and Program Coun-  
ter (PC). The working registers can act as data,  
address or offset registers. All registers are memory  
mapped. W0 acts as the W register for file register  
addressing.  
2.2.2  
STATUS REGISTER  
The dsPIC DSC core has a 16-bit STATUS register  
(SR), the LSB of which is referred to as the SR Low  
byte (SRL) and the MSB as the SR High byte (SRH).  
See Figure 2-1 for SR layout.  
SRL contains all the MCU ALU operation Status flags  
(including the Z bit), as well as the CPU Interrupt  
Priority Level Status bits, IPL<2:0>, and the Repeat  
Active Status bit, RA. During exception processing,  
SRL is concatenated with the MSB of the PC to form a  
complete word value which is then stacked.  
Some of these registers have a shadow register asso-  
ciated with each of them, as shown in Figure 2-1. The  
shadow register is used as a temporary holding register  
and can transfer its contents to or from its host register  
upon the occurrence of an event. None of the shadow  
registers are accessible directly. The following rules  
apply for transfer of registers into and out of shadows.  
The upper byte of the STATUS register contains the  
DSP Adder/Subtracter Status bits, the DO Loop Active  
bit (DA) and the Digit Carry (DC) Status bit.  
PUSH.Sand POP.S  
2.2.3  
PROGRAM COUNTER  
W0, W1, W2, W3, SR (DC, N, OV, Z and C bits  
only) are transferred.  
The program counter is 23 bits wide; bit 0 is always  
clear. Therefore, the PC can address up to 4M  
instruction words.  
DOinstruction  
DOSTART, DOEND, DCOUNT shadows are  
pushed on loop start and popped on loop end.  
When a byte operation is performed on a working reg-  
ister, only the Least Significant Byte (LSB) of the target  
register is affected. However, a benefit of memory  
mapped working registers is that both the Least and  
Most Significant Bytes (MSB) can be manipulated  
through byte-wide data memory space accesses.  
DS70139G-page 20  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 2-1:  
PROGRAMMER’S MODEL  
D15  
D0  
W0/WREG  
W1  
PUSH.SShadow  
DOShadow  
W2  
W3  
Legend  
W4  
DSP Operand  
Registers  
W5  
W6  
W7  
Working Registers  
W8  
W9  
DSP Address  
Registers  
W10  
W11  
W12/DSP Offset  
W13/DSP Write-Back  
W14/Frame Pointer  
W15/Stack Pointer  
SPLIM  
Stack Pointer Limit Register  
AD0  
AD15  
AD39  
ACCA  
AD31  
DSP  
Accumulators  
ACCB  
PC22  
PC0  
0
Program Counter  
0
7
TBLPAG  
Data Table Page Address  
7
0
PSVPAG  
Program Space Visibility Page Address  
15  
0
0
RCOUNT  
REPEATLoop Counter  
DOLoop Counter  
15  
DCOUNT  
22  
0
DOSTART  
DOEND  
DOLoop Start Address  
DOLoop End Address  
22  
15  
0
Core Configuration Register  
CORCON  
OA OB  
SA SB OAB SAB DA DC  
SRH  
IPL0 RA  
N
OV  
Z
C
IPL2 IPL1  
STATUS register  
SRL  
© 2010 Microchip Technology Inc.  
DS70139G-page 21  
dsPIC30F2011/2012/3012/3013  
The divide instructions must be executed within a  
REPEAT loop. Any other form of execution  
(e.g., a series of discrete divide instructions) will not  
function correctly because the instruction flow depends  
on RCOUNT. The divide instruction does not  
automatically set up the RCOUNT value and it must,  
therefore, be explicitly and correctly specified in the  
REPEAT instruction, as shown in Table 2-1 (REPEAT  
executes the target instruction {operand value+1}  
times). The REPEAT loop count must be setup for 18  
iterations of the DIV/DIVF instruction. Thus, a  
complete divide operation requires 19 cycles.  
2.3  
Divide Support  
The dsPIC DSC devices feature a 16/16-bit signed  
fractional divide operation, as well as 32/16-bit and  
16/16-bit signed and unsigned integer divide opera-  
tions, in the form of single instruction iterative divides.  
The following instructions and data sizes are  
supported:  
1. DIVF- 16/16 signed fractional divide  
2. DIV.sd- 32/16 signed divide  
3. DIV.ud- 32/16 unsigned divide  
4. DIV.s- 16/16 signed divide  
5. DIV.u- 16/16 unsigned divide  
Note:  
The divide flow is interruptible; however,  
the user needs to save the context as  
appropriate.  
The 16/16 divides are similar to the 32/16 (same number  
of iterations), but the dividend is either zero-extended or  
sign-extended during the first iteration.  
TABLE 2-1:  
Instruction  
DIVIDE INSTRUCTIONS  
Function  
DIVF  
Signed fractional divide: Wm/Wn W0; Rem W1  
Signed divide: (Wm+1:Wm)/Wn W0; Rem W1  
Signed divide: Wm/Wn W0; Rem W1  
DIV.sd  
DIV.s  
DIV.ud  
DIV.u  
Unsigned divide: (Wm+1:Wm)/Wn W0; Rem W1  
Unsigned divide: Wm/Wn W0; Rem W1  
DS70139G-page 22  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
The DSP engine has several options selected through  
various bits in the CPU Core Configuration register  
(CORCON), which are:  
2.4  
DSP Engine  
The DSP engine consists of a high-speed 17-bit x  
17-bit multiplier, barrel shifter and 40-bit  
adder/subtracter (with two target accumulators, round  
and saturation logic).  
a
a
1. Fractional or integer DSP multiply (IF).  
2. Signed or unsigned DSP multiply (US).  
3. Conventional or convergent rounding (RND).  
4. Automatic saturation on/off for ACCA (SATA).  
5. Automatic saturation on/off for ACCB (SATB).  
The DSP engine also has the capability to perform  
inherent  
which require no additional data. These instructions are  
accumulator-to-accumulator  
operations,  
6. Automatic saturation on/off for writes to data  
memory (SATDW).  
ADD, SUBand NEG.  
The dsPIC30F is a single-cycle instruction flow  
architecture, therefore, concurrent operation of the  
DSP engine with MCU instruction flow is not possible.  
However, some MCU ALU and DSP engine resources  
may be used concurrently by the same instruction  
(e.g., ED, EDAC). See Table 2-2.  
7. Accumulator Saturation mode selection  
(ACCSAT).  
Note:  
For CORCON layout, see Table 3-3.  
A block diagram of the DSP engine is shown in  
Figure 2-2.  
TABLE 2-2:  
DSP INSTRUCTION  
SUMMARY  
Algebraic  
Operation  
Instruction  
ACC WB?  
CLR  
ED  
A = 0  
Yes  
No  
A = (x – y)2  
A = A + (x – y)2  
A = A + (x * y)  
A = A + x2  
EDAC  
MAC  
No  
Yes  
No  
MAC  
MOVSAC  
MPY  
No change in A  
A = x • y  
Yes  
No  
MPY.N  
MSC  
A = – x • y  
No  
A = A – x • y  
Yes  
© 2010 Microchip Technology Inc.  
DS70139G-page 23  
dsPIC30F2011/2012/3012/3013  
FIGURE 2-2:  
DSP ENGINE BLOCK DIAGRAM  
S
a
40  
16  
40-bit Accumulator A  
40-bit Accumulator B  
40  
t
Round  
Logic  
u
r
a
t
Carry/Borrow Out  
Saturate  
e
Adder  
Carry/Borrow In  
Negate  
40  
40  
40  
Barrel  
Shifter  
16  
40  
Sign-Extend  
32  
16  
Zero Backfill  
32  
33  
17-bit  
Multiplier/Scaler  
16  
16  
To/From W Array  
DS70139G-page 24  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
2.4.1  
MULTIPLIER  
2.4.2.1  
Adder/Subtracter, Overflow and  
Saturation  
The 17 x 17-bit multiplier is capable of signed or  
unsigned operation and can multiplex its output using a  
scaler to support either 1.31 fractional (Q31) or 32-bit  
integer results. Unsigned operands are zero-extended  
into the 17th bit of the multiplier input value. Signed  
operands are sign-extended into the 17th bit of the  
multiplier input value. The output of the 17 x 17-bit  
The adder/subtracter is a 40-bit adder with an optional  
zero input into one side and either true or complement  
data into the other input. In the case of addition, the  
carry/borrow input is active high and the other input is  
true data (not complemented), whereas in the case of  
subtraction, the carry/borrow input is active low and the  
other input is complemented. The adder/subtracter  
generates overflow status bits SA/SB and OA/OB,  
which are latched and reflected in the STATUS register:  
multiplier/scaler is  
a
33-bit value which is  
sign-extended to 40 bits. Integer data is inherently  
represented as a signed two’s complement value,  
where the MSB is defined as a sign bit. Generally  
speaking, the range of an N-bit two’s complement  
integer is -2N-1 to 2N-1 – 1. For a 16-bit integer, the data  
range is -32768 (0x8000) to 32767 (0x7FFF) including  
• Overflow from bit 39: This is a catastrophic  
overflow in which the sign of the accumulator is  
destroyed.  
• Overflow into guard bits 32 through 39: This is a  
recoverable overflow. This bit is set whenever all  
the guard bits are not identical to each other.  
0’. For  
a
32-bit integer, the data range is  
-2,147,483,648 (0x8000 0000) to 2,147,483,645  
(0x7FFF FFFF).  
The adder has an additional saturation block which  
controls accumulator data saturation if selected. It uses  
the result of the adder, the overflow Status bits  
described above, and the mode control bits SATA/B  
(CORCON<7:6>) and ACCSAT (CORCON<4>) to  
determine when and to what value to saturate.  
When the multiplier is configured for fractional  
multiplication, the data is represented as a two’s  
complement fraction, where the MSB is defined as a  
sign bit and the radix point is implied to lie just after the  
sign bit (QX format). The range of an N-bit two’s  
complement fraction with this implied radix point is -1.0  
to (1 – 21-N). For a 16-bit fraction, the Q15 data range  
is -1.0 (0x8000) to 0.999969482 (0x7FFF) including ‘0’  
and has a precision of 3.01518x10-5. In Fractional  
mode, the 16x16 multiply operation generates a 1.31  
Six STATUS register bits have been provided to  
support saturation and overflow. They are:  
• OA: ACCA overflowed into guard bits  
• OB: ACCB overflowed into guard bits  
product, which has a precision of 4.65661 x 10-10  
.
• SA: ACCA saturated (bit 31 overflow and  
saturation)  
or  
ACCA overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
The same multiplier is used to support the MCU  
multiply instructions, which include integer 16-bit  
signed, unsigned and mixed sign multiplies.  
The MUL instruction can be directed to use byte or  
word-sized operands. Byte operands direct a 16-bit  
result. Word operands direct a 32-bit result to the  
specified register(s) in the W array.  
• SB: ACCB saturated (bit 31 overflow and  
saturation)  
or  
ACCB overflowed into guard bits and saturated  
(bit 39 overflow and saturation)  
2.4.2  
DATA ACCUMULATORS AND  
ADDER/SUBTRACTER  
• OAB: Logical OR of OA and OB  
• SAB: Logical OR of SA and SB  
The data accumulator consists of  
a
40-bit  
adder/subtracter with automatic sign extension logic. It  
can select one of two accumulators (A or B) as its  
pre-accumulation source and post-accumulation  
destination. For the ADDand LACinstructions, the data  
to be accumulated or loaded can be optionally scaled  
through the barrel shifter prior to accumulation.  
The OA and OB bits are modified each time data  
passes through the adder/subtracter. When set, they  
indicate that the most recent operation has overflowed  
into the accumulator guard bits (bits 32 through 39).  
The OA and OB bits can also optionally generate an  
arithmetic warning trap when set and the  
corresponding overflow trap flag enable bit (OVATE,  
OVBTE) in the INTCON1 register (refer to Section 8.0  
“Interrupts”) is set. This allows the user to take  
immediate action, for example, to correct system gain.  
© 2010 Microchip Technology Inc.  
DS70139G-page 25  
dsPIC30F2011/2012/3012/3013  
The SA and SB bits are modified each time data  
passes through the adder/subtracter but can only be  
cleared by the user. When set, they indicate that the  
accumulator has overflowed its maximum range (bit 31  
for 32-bit saturation or bit 39 for 40-bit saturation) and  
will be saturated if saturation is enabled. When satura-  
tion is not enabled, SA and SB default to bit 39 overflow  
and thus indicate that a catastrophic overflow has  
occurred. If the COVTE bit in the INTCON1 register is  
set, SA and SB bits generate an arithmetic warning trap  
when saturation is disabled.  
2.4.2.2  
Accumulator ‘Write-Back’  
The MAC class of instructions (with the exception of  
MPY, MPY.N, ED and EDAC) can optionally write a  
rounded version of the high word (bits 31 through 16)  
of the accumulator that is not targeted by the instruction  
into data space memory. The write is performed across  
the X bus into combined X and Y address space. The  
following addressing modes are supported:  
1. W13, Register Direct:  
The rounded contents of the non-target  
accumulator are written into W13 as a 1.15  
fraction.  
The overflow and saturation Status bits can optionally  
be viewed in the STATUS register (SR) as the logical  
OR of OA and OB (in bit OAB) and the logical OR of SA  
and SB (in bit SAB). This allows programmers to check  
one bit in the STATUS register to determine if either  
accumulator has overflowed, or one bit to determine if  
either accumulator has saturated. This would be useful  
for complex number arithmetic which typically uses  
both the accumulators.  
2. [W13]+  
=
2,  
Register  
Indirect  
with  
Post-Increment:  
The rounded contents of the non-target  
accumulator are written into the address pointed  
to by W13 as a 1.15 fraction. W13 is then  
incremented by 2 (for a word write).  
2.4.2.3  
Round Logic  
The device supports three saturation and overflow  
modes:  
The round logic is a combinational block which  
performs  
a conventional (biased) or convergent  
1. Bit 39 Overflow and Saturation:  
(unbiased) round function during an accumulator write  
(store). The Round mode is determined by the state of  
the RND bit in the CORCON register. It generates a  
16-bit, 1.15 data value, which is passed to the data  
space write saturation logic. If rounding is not indicated  
by the instruction, a truncated 1.15 data value is stored  
and the least significant word (lsw) is simply discarded.  
When bit 39 overflow and saturation occurs, the  
saturation logic loads the maximally positive 9.31  
(0x7FFFFFFFFF) or maximally negative 9.31  
value  
(0x8000000000)  
into the target  
accumulator. The SA or SB bit is set and remains  
set until cleared by the user. This is referred to as  
‘super saturation’ and provides protection against  
erroneous data or unexpected algorithm  
problems (e.g., gain calculations).  
Conventional rounding takes bit 15 of the accumulator,  
zero-extends it and adds it to the ACCxH word (bits 16  
through 31 of the accumulator). If the ACCxL word  
(bits 0 through 15 of the accumulator) is between  
0x8000 and 0xFFFF (0x8000 included), ACCxH is  
incremented. If ACCxL is between 0x0000 and 0x7FFF,  
ACCxH is left unchanged. A consequence of this  
algorithm is that over a succession of random rounding  
operations, the value tends to be biased slightly  
positive.  
2. Bit 31 Overflow and Saturation:  
When bit 31 overflow and saturation occurs, the  
saturation logic then loads the maximally posi-  
tive 1.31 value (0x007FFFFFFF) or maximally  
negative 1.31 value (0x0080000000) into the  
target accumulator. The SA or SB bit is set and  
remains set until cleared by the user. When this  
Saturation mode is in effect, the guard bits are  
not used, so the OA, OB or OAB bits are never  
set.  
Convergent (or unbiased) rounding operates in the  
same manner as conventional rounding, except when  
ACCxL equals 0x8000. If this is the case, the LSb  
(bit 16 of the accumulator) of ACCxH is examined. If it  
is ‘1’, ACCxH is incremented. If it is ‘0’, ACCxH is not  
modified. Assuming that bit 16 is effectively random in  
nature, this scheme will remove any rounding bias that  
may accumulate.  
3. Bit 39 Catastrophic Overflow:  
The bit 39 overflow Status bit from the adder is  
used to set the SA or SB bit which remains set  
until cleared by the user. No saturation operation  
is performed and the accumulator is allowed to  
overflow (destroying its sign). If the COVTE bit in  
the INTCON1 register is set, a catastrophic  
overflow can initiate a trap exception.  
The SAC and SAC.R instructions store either a  
truncated (SAC) or rounded (SAC.R) version of the  
contents of the target accumulator to data memory via  
the  
X
bus (subject to data saturation, see  
Section 2.4.2.4 “Data Space Write Saturation”).  
Note that for the MAC class of instructions, the  
accumulator write-back operation functions in the  
same manner, addressing combined MCU (X and Y)  
data space though the X bus. For this class of  
instructions, the data is always subject to rounding.  
DS70139G-page 26  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
2.4.2.4  
Data Space Write Saturation  
2.4.3  
BARREL SHIFTER  
In addition to adder/subtracter saturation, writes to data  
space may also be saturated but without affecting the  
contents of the source accumulator. The data space  
write saturation logic block accepts a 16-bit, 1.15  
fractional value from the round logic block as its input,  
together with overflow status from the original source  
(accumulator) and the 16-bit round adder. These are  
combined and used to select the appropriate 1.15  
fractional value as output to write to data space  
memory.  
The barrel shifter is capable of performing up to 16-bit  
arithmetic or logic right shifts, or up to 16-bit left shifts  
in a single cycle. The source can be either of the two  
DSP accumulators, or the X bus (to support multi-bit  
shifts of register or memory data).  
The shifter requires a signed binary value to determine  
both the magnitude (number of bits) and direction of the  
shift operation. A positive value shifts the operand right.  
A negative value shifts the operand left. A value of ‘0’  
does not modify the operand.  
If the SATDW bit in the CORCON register is set, data  
(after rounding or truncation) is tested for overflow and  
adjusted accordingly. For input data greater than  
0x007FFF, data written to memory is forced to the  
maximum positive 1.15 value, 0x7FFF. For input data  
less than 0xFF8000, data written to memory is forced  
to the maximum negative 1.15 value, 0x8000. The MSb  
of the source (bit 39) is used to determine the sign of  
the operand being tested.  
The barrel shifter is 40 bits wide, thereby obtaining a  
40-bit result for DSP shift operations and a 16-bit result  
for MCU shift operations. Data from the X bus is  
presented to the barrel shifter between bit positions 16  
to 31 for right shifts, and bit positions 0 to 16 for left  
shifts.  
If the SATDW bit in the CORCON register is not set, the  
input data is always passed through unmodified under  
all conditions.  
© 2010 Microchip Technology Inc.  
DS70139G-page 27  
dsPIC30F2011/2012/3012/3013  
NOTES:  
DS70139G-page 28  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
3.0  
MEMORY ORGANIZATION  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC  
Programmer’s  
Reference  
Manual”  
(DS70157).  
3.1  
Program Address Space  
The program address space is 4M instruction words.  
The program space memory maps for the  
dsPIC30F2011/2012/3012/3013 devices is shown in  
Figure 3-1.  
Program memory is addressable by a 24-bit value from  
either the 23-bit PC, table instruction Effective Address  
(EA), or data space EA, when program space is  
mapped into data space as defined by Table 3-1. Note  
that the program space address is incremented by two  
between successive program words in order to provide  
compatibility with data space addressing.  
User program space access is restricted to the lower  
4M instruction word address range (0x000000 to  
0x7FFFFE) for all accesses other than TBLRD/TBLWT,  
which uses TBLPAG<7> to determine user or configu-  
ration space access. In Table 3-1, Program Space  
Address Construction, bit 23 allows access to the  
Device ID, the User ID and the Configuration bits.  
Otherwise, bit 23 is always clear.  
© 2010 Microchip Technology Inc.  
DS70139G-page 29  
dsPIC30F2011/2012/3012/3013  
FIGURE 3-1:  
PROGRAM SPACE MEMORY MAPS  
dsPIC30F2011/2012  
dsPIC30F3012/3013  
Reset - GOTOInstruction  
Reset - Target Address  
Reset - GOTOInstruction  
Reset - Target Address  
000000  
000002  
000004  
000000  
000002  
000004  
Interrupt Vector Table  
Interrupt Vector Table  
Vector Tables  
Vector Tables  
00007E  
000080  
000084  
00007E  
000080  
Reserved  
Reserved  
Alternate Vector Table  
Alternate Vector Table  
000084  
0000FE  
000100  
0000FE  
000100  
User Flash  
User Flash  
Program Memory  
Program Memory  
(4K instructions)  
(8K instructions)  
001FFE  
002000  
003FFE  
004000  
Reserved  
(Read ‘0’s)  
Reserved  
7FFBFE  
7FFC00  
(Read ‘0’s)  
Data EEPROM  
(1 Kbyte)  
7FFFFE  
800000  
7FFFFE  
800000  
Reserved  
Reserved  
8005BE  
8005C0  
8005BE  
8005C0  
UNITID (32 instr.)  
Reserved  
UNITID (32 instr.)  
Reserved  
8005FE  
800600  
8005FE  
800600  
F7FFFE  
F7FFFE  
Device Configuration  
Registers  
Device Configuration  
Registers  
F80000  
F8000E  
F80010  
F80000  
F8000E  
F80010  
Reserved  
DEVID (2)  
Reserved  
DEVID (2)  
FEFFFE  
FF0000  
FFFFFE  
FEFFFE  
FF0000  
FFFFFE  
DS70139G-page 30  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
TABLE 3-1:  
PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
<14:1>  
<0>  
Instruction Access  
User  
User  
(TBLPAG<7> = 0)  
0
PC<22:1>  
0
TBLRD/TBLWT  
TBLPAG<7:0>  
TBLPAG<7:0>  
PSVPAG<7:0>  
Data EA<15:0>  
Data EA<15:0>  
TBLRD/TBLWT  
Configuration  
(TBLPAG<7> = 1)  
Program Space Visibility User  
0
Data EA<14:0>  
FIGURE 3-2:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
23 bits  
Using  
Program  
Counter  
Program Counter  
0
0
0
Select  
1
EA  
Using  
Program  
Space  
PSVPAG Reg  
8 bits  
Visibility  
15 bits  
EA  
Using  
1/0  
TBLPAG Reg  
8 bits  
Table  
Instruction  
16 bits  
User/  
Configuration  
Space  
Select  
Byte  
Select  
24-bit EA  
Note:  
Program space visibility cannot be used to access bits <23:16> of a word in program memory.  
© 2010 Microchip Technology Inc.  
DS70139G-page 31  
dsPIC30F2011/2012/3012/3013  
A set of table instructions are provided to move byte or  
word-sized data to and from program space. See  
Figure 3-4 and Figure 3-5.  
3.1.1  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
1. TBLRDL:Table Read Low  
Word: Read the LS Word of the program address;  
P<15:0> maps to D<15:0>.  
This architecture fetches 24-bit wide program memory.  
Consequently, instructions are always aligned.  
However, as the architecture is modified Harvard, data  
can also be present in program space.  
Byte: Read one of the LSB of the program  
address;  
There are two methods by which program space can  
be accessed: via special table instructions, or through  
the remapping of a 16K word program space page into  
the upper half of data space (see Section 3.1.2 “Data  
Access from Program Memory Using Program  
Space Visibility”). The TBLRDL and TBLWTL  
instructions offer a direct method of reading or writing  
the lsw of any address within program space, without  
going through data space. The TBLRDH and TBLWTH  
instructions are the only method whereby the upper 8  
bits of a program space word can be accessed as data.  
P<7:0> maps to the destination byte when byte  
select = 0;  
P<15:8> maps to the destination byte when byte  
select = 1.  
2. TBLWTL:Table Write Low (refer to Section 5.0  
“Flash Program Memory” for details on Flash  
Programming)  
3. TBLRDH:Table Read High  
Word: Read the MS Word of the program address;  
P<23:16> maps to D<7:0>; D<15:8> will always  
be = 0.  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two 16-bit  
word wide address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space which contains the lsw, and TBLRDH  
and TBLWTH access the space which contains the  
MSB.  
Byte: Read one of the MSB of the program  
address;  
P<23:16> maps to the destination byte when  
byte select = 0;  
The destination byte will always be = 0 when  
byte select = 1.  
4. TBLWTH:Table Write High (refer to Section 5.0  
“Flash Program Memory” for details on Flash  
Programming)  
Figure 3-2 shows how the EA is created for table  
operations and data space accesses (PSV = 1). Here,  
P<23:0> refers to a program space word, whereas  
D<15:0> refers to a data space word.  
FIGURE 3-3:  
PROGRAM DATA TABLE ACCESS (lsw)  
PC Address  
23  
8
0
16  
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
TBLRDL.B (Wn<0> = 0)  
TBLRDL.W  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
TBLRDL.B (Wn<0> = 1)  
DS70139G-page 32  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 3-4:  
PROGRAM DATA TABLE ACCESS (MSB)  
TBLRDH.W  
PC Address  
23  
8
0
16  
0x000000  
0x000002  
0x000004  
0x000006  
00000000  
00000000  
00000000  
00000000  
TBLRDH.B (Wn<0> = 0)  
Program Memory  
‘Phantom’ Byte  
(read as ‘0’)  
TBLRDH.B (Wn<0> = 1)  
Note that by incrementing the PC by 2 for each  
program memory word, the LS 15 bits of data space  
addresses directly map to the LS 15 bits in the  
corresponding program space addresses. The  
remaining bits are provided by the Program Space  
Visibility Page register, PSVPAG<7:0>, as shown in  
Figure 3-5.  
3.1.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING PROGRAM SPACE  
VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word program space page. This  
provides transparent access of stored constant data  
from X data space without the need to use special  
instructions (i.e., TBLRDL/H, TBLWTL/Hinstructions).  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
Program space access through the data space occurs  
if the MSb of the data space EA is set and program  
space visibility is enabled by setting the PSV bit in the  
Core Control register (CORCON). The functions of  
CORCON are discussed in Section 2.4 “DSP  
Engine”.  
For instructions that use PSV which are executed  
outside a REPEATloop:  
• The following instructions require one instruction  
cycle in addition to the specified execution time:  
- MACclass of instructions with data operand  
prefetch  
Data accesses to this area add an additional cycle to  
the instruction being executed, since two program  
memory fetches are required.  
- MOVinstructions  
- MOV.Dinstructions  
Note that the upper half of addressable data space is  
always part of the X data space. Therefore, when a  
DSP operation uses program space mapping to access  
this memory region, Y data space should typically  
contain state (variable) data for DSP operations,  
• All other instructions require two instruction cycles  
in addition to the specified execution time of the  
instruction.  
For instructions that use PSV which are executed  
inside a REPEATloop:  
whereas  
X data space should typically contain  
coefficient (constant) data.  
• The following instances require two instruction  
cycles in addition to the specified execution time  
of the instruction:  
Although each data space address, 0x8000 and higher,  
maps directly into a corresponding program memory  
address (see Figure 3-5), only the lower 16 bits of the  
24-bit program word are used to contain the data. The  
upper 8 bits should be programmed to force an illegal  
instruction to maintain machine robustness. Refer to  
the “16-bit MCU and DSC Programmer’s Reference  
Manual” (DS70157) for details on instruction encoding.  
- Execution in the first iteration  
- Execution in the last iteration  
- Execution prior to exiting the loop due to an  
interrupt  
- Execution upon re-entering the loop after an  
interrupt is serviced  
• Any other iteration of the REPEATloop allow the  
instruction accessing data, using PSV, to execute  
in a single cycle.  
© 2010 Microchip Technology Inc.  
DS70139G-page 33  
dsPIC30F2011/2012/3012/3013  
FIGURE 3-5:  
DATA SPACE WINDOW INTO PROGRAM SPACE OPERATION  
Data Space  
Program Space  
0x0000  
0x000000  
PSVPAG(1)  
15  
15  
EA<15> =  
0
0x00  
8
16  
Data  
Space  
EA  
0x8000  
23  
15  
0
Address  
EA<15> = 1  
0x001200  
0x001FFF  
Concatenation  
15  
23  
Upper Half of Data  
Space is Mapped  
into Program Space  
0xFFFF  
Data Read  
BSET CORCON,#2 ; Set PSV bit  
MOV  
MOV  
MOV  
#0x0, W0  
W0, PSVPAG  
; Set PSVPAG register  
0x9200, W0 ; Access program memory location  
; using a data space access  
Note 1: PSVPAG is an 8-bit register, containing bits <22:15> of the program space address.  
DS70139G-page 34  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
When executing any instruction other than one of the  
MACclass of instructions, the X block consists of the 64  
3.2  
Data Address Space  
The core has two data spaces. The data spaces can be  
considered either separate (for some DSP  
instructions), or as one unified linear address range (for  
MCU instructions). The data spaces are accessed  
using two Address Generation Units (AGUs) and  
separate data paths.  
Kbyte data address space (including all Y addresses).  
When executing one of the MAC class of instructions,  
the X block consists of the 64 Kbyte data address  
space, excluding the Y address block (for data reads  
only). In other words, all other instructions regard the  
entire data memory as one composite address space.  
The MACclass instructions extract the Y address space  
from data space and address it using EAs sourced from  
W10 and W11. The remaining X data space is  
addressed using W8 and W9. Both address spaces are  
concurrently accessed only with the MAC class  
instructions.  
3.2.1  
DATA SPACE MEMORY MAP  
The data space memory is split into two blocks, X and  
Y data space. A key element of this architecture is that  
Y space is a subset of X space, and is fully contained  
within X space. In order to provide an apparent Linear  
Addressing space, X and Y spaces have contiguous  
addresses.  
The data space memory map for the dsPIC30F2011  
and dsPIC30F2012 is shown in Figure 3-6. The data  
space memory map for the dsPIC30F3012 and  
dsPIC30F3013 is shown in Figure 3-7.  
FIGURE 3-6:  
dsPIC30F2011/2012 DATA SPACE MEMORY MAP  
LSB  
Address  
MSB  
Address  
16 bits  
MSB  
LSB  
0x0000  
0x0001  
2 Kbyte  
SFR Space  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
8 Kbyte  
Near  
Data  
X Data RAM (X)  
Y Data RAM (Y)  
0x09FF  
0x0A01  
0x09FE  
0x0A00  
1 Kbyte  
SRAM Space  
Space  
0x0BFF  
0x0C01  
0x0BFE  
0x0C00  
0x1FFF  
0x1FFE  
0x8001  
0x8000  
X Data  
Unimplemented (X)  
Optionally  
Mapped  
into Program  
Memory  
0xFFFF  
0xFFFE  
© 2010 Microchip Technology Inc.  
DS70139G-page 35  
dsPIC30F2011/2012/3012/3013  
FIGURE 3-7:  
dsPIC30F3012/3013 DATA SPACE MEMORY MAP  
LSB  
Address  
MSB  
Address  
16 bits  
MSB  
LSB  
SFR Space  
0x0000  
0x0001  
2 Kbyte  
SFR Space  
0x07FE  
0x0800  
0x07FF  
0x0801  
8 Kbyte  
Near  
Data  
X Data RAM (X)  
Y Data RAM (Y)  
0x0BFF  
0x0C01  
0x0BFE  
0x0C00  
2 Kbyte  
SRAM Space  
Space  
0x0FFF  
0x1001  
0x0FFE  
0x1000  
0x1FFF  
0x1FFE  
0x8001  
0x8000  
X Data  
Unimplemented (X)  
Optionally  
Mapped  
into Program  
Memory  
0xFFFF  
0xFFFE  
DS70139G-page 36  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 3-8:  
DATA SPACE FOR MCU AND DSP (MACCLASS) INSTRUCTIONS EXAMPLE  
SFR SPACE  
SFR SPACE  
UNUSED  
Y SPACE  
UNUSED  
(Y SPACE)  
UNUSED  
Non-MACClass Ops (Read/Write)  
MACClass Ops (Write)  
MACClass Ops (Read)  
Indirect EA using any W  
Indirect EA using W8, W9 Indirect EA using W10, W11  
© 2010 Microchip Technology Inc.  
DS70139G-page 37  
dsPIC30F2011/2012/3012/3013  
3.2.2  
DATA SPACES  
3.2.3  
DATA SPACE WIDTH  
The X data space is used by all instructions and sup-  
ports all addressing modes. There are separate read  
and write data buses. The X read data bus is the return  
data path for all instructions that view data space as  
combined X and Y address space. It is also the X  
address space data path for the dual operand read  
instructions (MAC class). The X write data bus is the  
only write path to data space for all instructions.  
The core data width is 16 bits. All internal registers are  
organized as 16-bit wide words. Data space memory is  
organized in byte addressable, 16-bit wide blocks.  
3.2.4  
DATA ALIGNMENT  
To help maintain backward compatibility with  
PIC® MCU devices and improve data space memory  
usage efficiency, the dsPIC30F instruction set supports  
both word and byte operations. Data is aligned in data  
memory and registers as words, but all data space EAs  
resolve to bytes. Data byte reads read the complete  
word that contains the byte, using the LSb of any EA to  
determine which byte to select. The selected byte is  
placed onto the LSB of the X data path (no byte  
accesses are possible from the Y data path as the MAC  
class of instruction can only fetch words). That is, data  
memory and registers are organized as two parallel  
byte wide entities with shared (word) address decode  
but separate write lines. Data byte writes only write to  
the corresponding side of the array or register which  
matches the byte address.  
The X data space also supports Modulo Addressing for  
all instructions, subject to Addressing mode restric-  
tions. Bit-Reversed Addressing is only supported for  
writes to X data space.  
The Y data space is used in concert with the X data  
space by the MAC class of instructions (CLR, ED,  
EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to  
provide two concurrent data read paths. No writes  
occur across the Y bus. This class of instructions  
dedicates two W register pointers, W10 and W11, to  
always address Y data space, independent of X data  
space, whereas W8 and W9 always address X data  
space. Note that during accumulator write back, the  
data address space is considered a combination of X  
and Y data spaces, so the write occurs across the X  
bus. Consequently, the write can be to any address in  
the entire data space.  
As a consequence of this byte accessibility, all Effective  
Address calculations (including those generated by the  
DSP operations which are restricted to word-sized  
data) are internally scaled to step through word-aligned  
memory. For example, the core would recognize that  
Post-Modified Register Indirect Addressing mode  
[Ws++] results in a value of Ws + 1 for byte operations  
and Ws + 2 for word operations.  
The Y data space can only be used for the data  
prefetch operation associated with the MAC class of  
instructions. It also supports Modulo Addressing for  
automated circular buffers. Of course, all other  
instructions can access the Y data address space  
through the X data path as part of the composite linear  
space.  
All word accesses must be aligned to an even address.  
Misaligned word data fetches are not supported, so  
care should be taken when mixing byte and word  
operations, or translating from 8-bit MCU code. Should  
a misaligned read or write be attempted, an address  
error trap is generated. If the error occurred on a read,  
the instruction underway is completed, whereas if it  
occurred on a write, the instruction is executed, but the  
write does not occur. In either case, a trap is then  
executed, allowing the system and/or user to examine  
the machine state prior to execution of the address  
fault.  
The boundary between the X and Y data spaces is  
defined as shown in Figure 3-7 and is not user  
programmable. Should an EA point to data outside its  
own assigned address space, or to a location outside  
physical memory, an all zero word/byte is returned. For  
example, although Y address space is visible by all  
non-MAC instructions using any addressing mode, an  
attempt by a MAC instruction to fetch data from that  
space using W8 or W9 (X space pointers)  
returns 0x0000.  
FIGURE 3-9:  
DATA ALIGNMENT  
LSB  
TABLE 3-2:  
EFFECT OF INVALID  
MEMORY ACCESSES  
MSB  
15  
8 7  
0
0000  
0002  
0004  
0001  
Byte 1  
Byte 3  
Byte 5  
Byte 0  
Byte 2  
Byte 4  
Attempted Operation  
Data Returned  
0003  
0005  
EA = an unimplemented address  
0x0000  
0x0000  
W8 or W9 used to access Y data  
space in a MACinstruction  
W10 or W11 used to access X  
0x0000  
data space in a MACinstruction  
All Effective Addresses are 16 bits wide and point to  
bytes within the data space. Therefore, the data space  
address range is 64 Kbytes or 32K words.  
DS70139G-page 38  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
All byte loads into any W register are loaded into the  
LSB. The MSB is not modified.  
FIGURE 3-10:  
CALLSTACK FRAME  
0x0000  
15  
0
A Sign-Extend (SE) instruction is provided to allow  
users to translate 8-bit signed data to 16-bit signed  
values. Alternatively, for 16-bit unsigned data, users  
can clear the MSB of any W register by executing a  
Zero-Extend (ZE) instruction on the appropriate  
address.  
PC<15:0>  
000000000  
W15 (before CALL)  
PC<22:16>  
<Free Word>  
Although most instructions are capable of operating on  
word or byte data sizes, it should be noted that some  
instructions, including the DSP instructions, operate  
only on words.  
W15 (after CALL)  
POP : [--W15]  
PUSH: [W15++]  
3.2.5  
NEAR DATA SPACE  
An 8 Kbyte near data space is reserved in X address  
memory space between 0x0000 and 0x1FFF, which is  
directly addressable via a 13-bit absolute address field  
within all memory direct instructions. The remaining X  
address space and all of the Y address space is  
addressable indirectly. Additionally, the whole of X data  
space is addressable using MOV instructions, which  
support memory direct addressing with a 16-bit  
address field.  
There is a Stack Pointer Limit register (SPLIM)  
associated with the Stack Pointer. SPLIM is  
uninitialized at Reset. As is the case for the Stack  
Pointer, SPLIM<0> is forced to ‘0’ because all stack  
operations must be word aligned. Whenever an  
Effective Address (EA) is generated using W15 as a  
source or destination pointer, the address thus  
generated is compared with the value in SPLIM. If the  
contents of the Stack Pointer (W15) and the SPLIM reg-  
ister are equal, and a push operation is performed, a  
stack error trap does not occur. The stack error trap  
occurs on a subsequent push operation. Thus, for  
example, if it is desirable to cause a stack error trap  
when the stack grows beyond address 0x2000 in RAM,  
initialize the SPLIM with the value, 0x1FFE.  
3.2.6  
SOFTWARE STACK  
The dsPIC DSC devices contain a software stack. W15  
is used as the Stack Pointer.  
The Stack Pointer always points to the first available  
free word and grows from lower addresses towards  
higher addresses. It pre-decrements for stack pops  
and post-increments for stack pushes, as shown in  
Figure 3-10. Note that for a PC push during any CALL  
instruction, the MSB of the PC is zero-extended before  
the push, ensuring that the MSB is always clear.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0x0800, thus preventing the stack from  
interfering with the Special Function Register (SFR)  
space.  
Note:  
A PC push during exception processing  
concatenates the SRL register to the MSB  
of the PC prior to the push.  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
© 2010 Microchip Technology Inc.  
DS70139G-page 39  
TABLE 3-3:  
CORE REGISTER MAP  
Address  
(Home)  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
W0  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
0022  
0024  
0026  
0028  
002A  
002C  
002E  
0030  
0032  
0034  
0036  
0038  
003A  
003C  
003E  
0040  
0042  
W0/WREG  
W1  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 1000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuu0  
0000 0000 0uuu uuuu  
uuuu uuuu uuuu uuu0  
0000 0000 0uuu uuuu  
0000 0000 0000 0000  
W1  
W2  
W2  
W3  
W3  
W4  
W4  
W5  
W5  
W6  
W6  
W7  
W7  
W8  
W8  
W9  
W9  
W10  
W10  
W11  
W12  
W13  
W14  
W15  
SPLIM  
ACCAL  
ACCAH  
W11  
W12  
W13  
W14  
W15  
SPLIM  
ACCAL  
ACCAH  
ACCAU  
ACCBL  
ACCBH  
ACCBU  
PCL  
Sign Extension (ACCA<39>)  
Sign Extension (ACCB<39>)  
ACCAU  
ACCBL  
ACCBH  
ACCBU  
PCL  
PCH  
PCH  
TBLPAG  
PSVPAG  
RCOUNT  
DCOUNT  
DOSTARTL  
DOSTARTH  
DOENDL  
TBLPAG  
PSVPAG  
RCOUNT  
DCOUNT  
DOSTARTL  
0
DOSTARTH  
DOENDL  
0
DOENDH  
SR  
DOENDH  
N
OA  
OB  
SA  
SB  
OAB  
SAB  
DA  
DC  
IPL2  
IPL1  
IPL0  
RA  
OV  
Z
C
Legend:  
Note:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 3-3:  
CORE REGISTER MAP (CONTINUED)  
Address  
(Home)  
SFR Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
CORCON  
MODCON  
XMODSRT  
XMODEND  
YMODSRT  
YMODEND  
XBREV  
0044  
0046  
0048  
004A  
004C  
004E  
0050  
0052  
US  
EDT  
DL2  
DL1  
DL0  
SATA  
SATB SATDW ACCSAT  
YWM<3:0>  
IPL3  
PSV  
RND  
IF  
0000 0000 0010 0000  
0000 0000 0000 0000  
uuuu uuuu uuuu uuu0  
uuuu uuuu uuuu uuu1  
uuuu uuuu uuuu uuu0  
uuuu uuuu uuuu uuu1  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
XMODEN YMODEN  
BWM<3:0>  
XWM<3:0>  
XS<15:1>  
XE<15:1>  
YS<15:1>  
YE<15:1>  
0
1
0
1
BREN  
XB<14:0>  
DISICNT  
Legend:  
DISICNT<13:0>  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
Note:  
dsPIC30F2011/2012/3012/3013  
NOTES:  
DS70139G-page 42  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
4.1.1  
FILE REGISTER INSTRUCTIONS  
4.0  
ADDRESS GENERATOR UNITS  
Most file register instructions use a 13-bit address field  
(f) to directly address data present in the first 8192  
bytes of data memory (near data space). Most file  
register instructions employ a working register, W0,  
which is denoted as WREG in these instructions. The  
destination is typically either the same file register or  
WREG (with the exception of the MUL instruction),  
which writes the result to a register or register pair. The  
MOV instruction allows additional flexibility and can  
access the entire data space during file register  
operation.  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC  
Programmer’s  
Reference  
Manual”  
(DS70157).  
4.1.2  
MCU INSTRUCTIONS  
The dsPIC DSC core contains two independent  
address generator units: the X AGU and Y AGU. The Y  
AGU supports word-sized data reads for the DSP MAC  
class of instructions only. The dsPIC DSC AGUs  
support three types of data addressing:  
The three-operand MCU instructions are of the form:  
Operand 3 = Operand 1 <function> Operand 2  
where Operand 1 is always a working register (i.e., the  
addressing mode can only be register direct), which is  
referred to as Wb. Operand 2 can be a W register,  
fetched from data memory or a 5-bit literal. The result  
location can be either a W register or an address  
location. The following addressing modes are  
supported by MCU instructions:  
• Linear Addressing  
• Modulo (Circular) Addressing  
• Bit-Reversed Addressing  
Linear and Modulo Data Addressing modes can be  
applied to data space or program space. Bit-Reversed  
Addressing is only applicable to data space addresses.  
• Register Direct  
• Register Indirect  
• Register Indirect Post-modified  
• Register Indirect Pre-modified  
• 5-bit or 10-bit Literal  
4.1  
Instruction Addressing Modes  
The addressing modes in Table 4-1 form the basis of  
the addressing modes optimized to support the specific  
features of individual instructions. The addressing  
modes provided in the MAC class of instructions are  
somewhat different from those in the other instruction  
types.  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions may support different subsets  
of these addressing modes.  
TABLE 4-1:  
FUNDAMENTAL ADDRESSING MODES SUPPORTED  
Description  
The address of the File register is specified explicitly.  
Addressing Mode  
File Register Direct  
Register Direct  
The contents of a register are accessed directly.  
The contents of Wn forms the EA.  
Register Indirect  
Register Indirect Post-modified  
The contents of Wn forms the EA. Wn is post-modified (incremented or  
decremented) by a constant value.  
Register Indirect Pre-modified  
Wn is pre-modified (incremented or decremented) by a signed constant value  
to form the EA.  
Register Indirect with Register Offset The sum of Wn and Wb forms the EA.  
Register Indirect with Literal Offset  
The sum of Wn and a literal forms the EA.  
© 2010 Microchip Technology Inc.  
DS70139G-page 43  
dsPIC30F2011/2012/3012/3013  
In summary, the following addressing modes are  
supported by the MACclass of instructions:  
4.1.3  
MOVE AND ACCUMULATOR  
INSTRUCTIONS  
• Register Indirect  
Move instructions and the DSP accumulator class of  
instructions provide a greater degree of addressing  
flexibility than other instructions. In addition to the  
addressing modes supported by most MCU  
instructions, move and accumulator instructions also  
support Register Indirect with Register Offset  
Addressing mode, also referred to as Register Indexed  
mode.  
• Register Indirect Post-modified by 2  
• Register Indirect Post-modified by 4  
• Register Indirect Post-modified by 6  
• Register Indirect with Register Offset (Indexed)  
4.1.5  
OTHER INSTRUCTIONS  
Besides the various addressing modes outlined above,  
some instructions use literal constants of various sizes.  
For example, BRA (branch) instructions use 16-bit  
signed literals to specify the branch destination directly,  
whereas the DISI instruction uses a 14-bit unsigned  
literal field. In some instructions, such as ADD Acc, the  
source of an operand or result is implied by the opcode  
itself. Certain operations, such as NOP, do not have any  
operands.  
Note:  
For the MOV instructions, the addressing  
mode specified in the instruction can differ  
for the source and destination EA.  
However, the 4-bit Wb (register offset)  
field is shared between both source and  
destination (but typically only used by  
one).  
In summary, the following addressing modes are  
supported by move and accumulator instructions:  
4.2  
Modulo Addressing  
• Register Direct  
• Register Indirect  
Modulo Addressing is a method of providing an  
automated means to support circular data buffers using  
hardware. The objective is to remove the need for  
software to perform data address boundary checks  
when executing tightly looped code, as is typical in  
many DSP algorithms.  
• Register Indirect Post-modified  
• Register Indirect Pre-modified  
• Register Indirect with Register Offset (Indexed)  
• Register Indirect with Literal Offset  
• 8-bit Literal  
Modulo Addressing can operate in either data or  
program space (since the data pointer mechanism is  
essentially the same for both). One circular buffer can  
be supported in each of the X (which also provides the  
pointers into program space) and Y data spaces.  
Modulo Addressing can operate on any W register  
pointer. However, it is not advisable to use W14 or W15  
for Modulo Addressing since these two registers are  
used as the Stack Frame Pointer and Stack Pointer,  
respectively.  
• 16-bit Literal  
Note:  
Not all instructions support all the  
addressing modes given above. Individual  
instructions may support different subsets  
of these addressing modes.  
4.1.4  
MACINSTRUCTIONS  
The dual source operand DSP instructions (CLR, ED,  
EDAC, MAC, MPY, MPY.N, MOVSACand MSC), also  
referred to as MACinstructions, utilize a simplified set of  
addressing modes to allow the user to effectively  
manipulate the data pointers through register indirect  
tables.  
In general, any particular circular buffer can only be  
configured to operate in one direction, as there are  
certain restrictions on the buffer Start address  
(for incrementing  
buffers),  
or  
end  
address  
The two source operand prefetch registers must belong  
to the set {W8, W9, W10, W11}. For data reads, W8  
and W9 are always directed to the X RAGU. W10 and  
W11 are always directed to the Y AGU. The effective  
addresses generated (before and after modification)  
must, therefore, be valid addresses within X data space  
for W8 and W9 and Y data space for W10 and W11.  
(for decrementing buffers) based upon the direction of  
the buffer.  
The only exception to the usage restrictions is for  
buffers that have a power-of-2 length. As these buffers  
satisfy the Start and the end address criteria, they can  
operate in a Bidirectional mode (i.e., address boundary  
checks are performed on both the lower and upper  
address boundaries).  
Note:  
Register Indirect with Register Offset  
addressing is only available for W9 (in X  
space) and W11 (in Y space).  
DS70139G-page 44  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
4.2.1  
START AND END ADDRESS  
4.2.2  
W ADDRESS REGISTER  
SELECTION  
The Modulo Addressing scheme requires that a  
starting and an ending address be specified and loaded  
into the 16-bit Modulo Buffer Address registers:  
XMODSRT, XMODEND, YMODSRT and YMODEND  
(see Table 3-3).  
The Modulo and Bit-Reversed Addressing Control  
register, MODCON<15:0>, contains enable flags as  
well as a W register field to specify the W address  
registers. The XWM and YWM fields select which  
registers  
If XWM = 15,  
operate  
with  
Modulo  
Addressing.  
Note:  
Y
space Modulo Addressing EA  
X
RAGU and  
X
WAGU Modulo  
calculations assume word-sized data  
(LSb of every EA is always clear).  
Addressing is disabled. Similarly, if YWM = 15, Y AGU  
Modulo Addressing is disabled.  
The length of a circular buffer is not directly specified. It  
is determined by the difference between the  
corresponding Start and end addresses. The maximum  
possible length of the circular buffer is 32K words  
(64 Kbytes).  
The X Address Space Pointer W register (XWM), to  
which Modulo Addressing is to be applied, is stored in  
MODCON<3:0> (see Table 3-3). Modulo Addressing is  
enabled for X data space when XWM is set to any value  
other than ‘15’ and the XMODEN bit is set at  
MODCON<15>.  
The Y Address Space Pointer W register (YWM), to  
which Modulo Addressing is to be applied, is stored in  
MODCON<7:4>. Modulo Addressing is enabled for Y  
data space when YWM is set to any value other  
than ‘15’ and the YMODEN bit is set at  
MODCON<14>.  
FIGURE 4-1:  
MODULO ADDRESSING OPERATION EXAMPLE  
Byte  
Address  
MOV  
MOV  
MOV  
MOV  
MOV  
MOV  
#0x1100,W0  
W0,XMODSRT  
#0x1163,W0  
W0,MODEND  
#0x8001,W0  
W0,MODCON  
;set modulo start address  
;set modulo end address  
;enable W1, X AGU for modulo  
;W0 holds buffer fill value  
;point W1 to buffer  
0x1100  
MOV  
MOV  
#0x0000,W0  
#0x1110,W1  
DO  
AGAIN,#0x31 ;fill the 50 buffer locations  
MOV  
W0,[W1++]  
;fill the next location  
;increment the fill value  
AGAIN: INC W0,W0  
0x1163  
Start Addr = 0x1100  
End Addr = 0x1163  
Length = 0x0032 words  
© 2010 Microchip Technology Inc.  
DS70139G-page 45  
dsPIC30F2011/2012/3012/3013  
If the length of a bit-reversed buffer is M = 2N bytes,  
then the last ‘N’ bits of the data buffer Start address  
must be zeros.  
4.2.3  
MODULO ADDRESSING  
APPLICABILITY  
Modulo Addressing can be applied to the Effective  
Address (EA) calculation associated with any W  
register. It is important to realize that the address  
boundaries check for addresses less than, or greater  
than the upper (for incrementing buffers), and lower (for  
decrementing buffers) boundary addresses (not just  
equal to). Address changes may, therefore, jump  
beyond boundaries and still be adjusted correctly.  
XB<14:0> is the bit-reversed address modifier or ‘pivot  
point’ which is typically a constant. In the case of an  
FFT computation, its value is equal to half of the FFT  
data buffer size.  
Note:  
All bit-reversed EA calculations assume  
word-sized data (LSb of every EA is  
always clear). The XB value is scaled  
accordingly to generate compatible (byte)  
addresses.  
Note:  
The modulo corrected Effective Address  
is written back to the register only when  
Pre-Modify or Post-Modify Addressing  
mode is used to compute the EA. When  
an address offset (e.g., [W7+W2]) is used,  
Modulo address correction is performed,  
but the contents of the register remain  
unchanged.  
When enabled, Bit-Reversed Addressing is only  
executed for register indirect with pre-increment or  
post-increment addressing and word-sized data writes.  
It does not function for any other addressing mode or  
for byte-sized data. Normal addresses are generated  
instead. When Bit-Reversed Addressing is active, the  
W address pointer is always added to the address  
modifier (XB) and the offset associated with the  
Register Indirect Addressing mode is ignored. In  
addition, as word-sized data is a requirement, the LSb  
of the EA is ignored (and always clear).  
4.3  
Bit-Reversed Addressing  
Bit-Reversed Addressing is intended to simplify data  
re-ordering for radix-2 FFT algorithms. It is supported  
by the X AGU for data writes only.  
Note:  
Modulo Addressing and Bit-Reversed  
Addressing should not be enabled  
together. In the event that the user  
attempts to do this, Bit-Reversed Address-  
ing assumes priority when active for the X  
WAGU, and X WAGU Modulo Addressing  
is disabled. However, Modulo Addressing  
continues to function in the X RAGU.  
The modifier, which may be a constant value or register  
contents, is regarded as having its bit order reversed. The  
address source and destination are kept in normal order.  
Thus, the only operand requiring reversal is the modifier.  
4.3.1  
BIT-REVERSED ADDRESSING  
IMPLEMENTATION  
Bit-Reversed Addressing is enabled when:  
If Bit-Reversed Addressing has already been enabled  
by setting the BREN bit (XBREV<15>), then a write to  
the XBREV register should not be immediately followed  
by an indirect read operation using the W register that  
has been designated as the bit-reversed pointer.  
• BWM (W register selection) in the MODCON reg-  
ister is any value other than ‘15’ (the stack cannot  
be accessed using Bit-Reversed Addressing)  
and  
• The BREN bit is set in the XBREV register  
and  
• The addressing mode used is Register Indirect  
with Pre-Increment or Post-Increment.  
DS70139G-page 46  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 4-2:  
BIT-REVERSED ADDRESS EXAMPLE  
Sequential Address  
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1  
0
Bit Locations Swapped Left-to-Right  
Around Center of Binary Value  
b2 b3 b4  
0
b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b1  
Bit-Reversed Address  
Pivot Point  
XB = 0x0008 for a 16-word Bit-Reversed Buffer  
TABLE 4-2:  
BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)  
Normal Address Bit-Reversed Address  
A3  
A2  
A1  
A0  
Decimal  
A3  
A2  
A1  
A0  
Decimal  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
8
2
4
3
12  
2
4
5
10  
6
6
7
14  
1
8
9
9
10  
11  
12  
13  
14  
15  
5
13  
3
11  
7
15  
TABLE 4-3:  
BIT-REVERSED ADDRESS MODIFIER VALUES FOR XBREV REGISTER  
Buffer Size (Words)  
XB<14:0> Bit-Reversed Address Modifier Value  
1024  
512  
256  
128  
64  
0x0200  
0x0100  
0x0080  
0x0040  
0x0020  
0x0010  
0x0008  
0x0004  
0x0002  
0x0001  
32  
16  
8
4
2
© 2010 Microchip Technology Inc.  
DS70139G-page 47  
dsPIC30F2011/2012/3012/3013  
NOTES:  
DS70139G-page 48  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
5.2  
Run-Time Self-Programming  
(RTSP)  
5.0  
FLASH PROGRAM MEMORY  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC  
RTSP is accomplished using TBLRD (table read) and  
TBLWT(table write) instructions.  
With RTSP, the user may erase program memory, 32  
instructions (96 bytes) at a time and can write program  
memory data, 32 instructions (96 bytes) at a time.  
5.3  
Table Instruction Operation  
Summary  
Programmer’s  
(DS70157).  
Reference  
Manual”  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
Word or Byte mode.  
The dsPIC30F family of devices contains internal  
program Flash memory for executing user code. There  
are two methods by which the user can program this  
memory:  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits<23:16> of program memory. TBLRDH  
and TBLWTHcan access program memory in Word or  
Byte mode.  
1. Run-Time Self-Programming (RTSP)  
2. In-Circuit Serial Programming™ (ICSP™)  
A 24-bit program memory address is formed using  
bits<7:0> of the TBLPAG register and the Effective  
Address (EA) from a W register specified in the table  
instruction, as shown in Figure 5-1.  
5.1  
In-Circuit Serial Programming  
(ICSP)  
dsPIC30F devices can be serially programmed while in  
the end application circuit. This is simply done with two  
lines for Programming Clock and Programming Data  
(which are named PGC and PGD respectively), and  
three other lines for Power (VDD), Ground (VSS) and  
Master Clear (MCLR). This allows customers to  
manufacture boards with unprogrammed devices, and  
then program the microcontroller just before shipping  
the product. This also allows the most recent firmware  
or a custom firmware to be programmed.  
FIGURE 5-1:  
ADDRESSING FOR TABLE AND NVM REGISTERS  
24 bits  
Using  
Program  
Counter  
Program Counter  
0
0
NVMADR Reg EA  
Using  
NVMADR  
Addressing  
1/0 NVMADRU Reg  
8 bits  
16 bits  
Working Reg EA  
Using  
Table  
Instruction  
1/0  
TBLPAG Reg  
8 bits  
16 bits  
Byte  
Select  
User/Configuration  
Space Select  
24-bit EA  
© 2010 Microchip Technology Inc.  
DS70139G-page 49  
dsPIC30F2011/2012/3012/3013  
5.4  
RTSP Operation  
5.5  
Control Registers  
The dsPIC30F Flash program memory is organized  
into rows and panels. Each row consists of 32  
instructions or 96 bytes. Each panel consists of 128  
rows or 4K x 24 instructions. RTSP allows the user to  
erase one row (32 instructions) at a time and to  
program four instructions at one time. RTSP may be  
used to program multiple program memory panels, but  
the table pointer must be changed at each panel  
boundary.  
The four SFRs used to read and write the program  
Flash memory are:  
• NVMCON  
• NVMADR  
• NVMADRU  
• NVMKEY  
5.5.1  
NVMCON REGISTER  
The NVMCON register controls which blocks are to be  
erased, which memory type is to be programmed, and  
start of the programming cycle.  
Each panel of program memory contains write latches  
that hold 32 instructions of programming data. Prior to  
the actual programming operation, the write data must  
be loaded into the panel write latches. The data to be  
programmed into the panel is loaded in sequential  
order into the write latches; instruction 0, instruction 1,  
etc. The instruction words loaded must always be from  
a 32 address boundary.  
5.5.2  
NVMADR REGISTER  
The NVMADR register is used to hold the lower two  
bytes of the Effective Address. The NVMADR register  
captures the EA<15:0> of the last table instruction that  
has been executed and selects the row to write.  
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the write latches. Programming is performed by  
setting the special bits in the NVMCON register. 32  
TBLWTL and four TBLWTH instructions are required to  
load the 32 instructions. If multiple panel programming  
is required, the Table Pointer needs to be changed and  
the next set of multiple write latches written.  
5.5.3  
NVMADRU REGISTER  
The NVMADRU register is used to hold the upper byte  
of the Effective Address. The NVMADRU register  
captures the EA<23:16> of the last table instruction  
that has been executed.  
5.5.4  
NVMKEY REGISTER  
All of the table write operations are single-word writes  
(2 instruction cycles), because only the table latches  
are written. A programming cycle is required for  
programming each row.  
NVMKEY is a write-only register that is used for write  
protection. To start a programming or an erase  
sequence, the user must consecutively write 0x55 and  
0xAA to the NVMKEY register. Refer to Section 5.6  
“Programming Operations” for further details.  
The Flash Program Memory is readable, writable and  
erasable during normal operation over the entire VDD  
range.  
Note:  
The user can also directly write to the  
NVMADR and NVMADRU registers to  
specify a program memory address for  
erasing or programming.  
DS70139G-page 50  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
4. Write 32 instruction words of data from data  
5.6  
Programming Operations  
RAM “image” into the program Flash write  
latches.  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. A programming operation is nominally 2 msec in  
duration and the processor stalls (waits) until the  
operation is finished. Setting the WR bit  
(NVMCON<15>) starts the operation and the WR bit is  
automatically cleared when the operation is finished.  
5. Program 32 instruction words into program  
Flash.  
a) Set up NVMCON register for multi-word,  
program Flash, program, and set WREN  
bit.  
b) Write 0x55 to NVMKEY.  
5.6.1  
PROGRAMMING ALGORITHM FOR  
PROGRAM FLASH  
c) Write 0xAA to NVMKEY.  
d) Set the WR bit. This begins program cycle.  
e) CPU stalls for duration of the program cycle.  
The user can erase or program one row of program  
Flash memory at a time. The general process is:  
f) The WR bit is cleared by the hardware  
when program cycle ends.  
1. Read one row of program Flash (32 instruction  
words) and store into data RAM as a data  
“image”.  
6. Repeat steps 1 through 5 as needed to program  
desired amount of program Flash memory.  
2. Update the data image with the desired new  
data.  
5.6.2  
ERASING A ROW OF PROGRAM  
MEMORY  
3. Erase program Flash row.  
Example 5-1 shows a code sequence that can be used  
to erase a row (32 instructions) of program memory.  
a) Set up NVMCON register for multi-word,  
program Flash, erase, and set WREN bit.  
b) Write address of row to be erased into  
NVMADRU/NVMDR.  
c) Write 0x55 to NVMKEY.  
d) Write 0xAA to NVMKEY.  
e) Set the WR bit. This begins erase cycle.  
f) CPU stalls for the duration of the erase cycle.  
g) The WR bit is cleared when erase cycle  
ends.  
EXAMPLE 5-1:  
ERASING A ROW OF PROGRAM MEMORY  
; Setup NVMCON for erase operation, multi word write  
; program memory selected, and writes enabled  
MOV  
MOV  
#0x4041,W0  
W0,NVMCON  
;
; Init NVMCON SFR  
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
MOV  
DISI  
#tblpage(PROG_ADDR),W0  
W0,NVMADRU  
#tbloffset(PROG_ADDR),W0  
W0, NVMADR  
;
; Initialize PM Page Boundary SFR  
; Intialize in-page EA[15:0] pointer  
; Initialize NVMADR SFR  
; Block all interrupts with priority <7 for  
; next 5 instructions  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0,NVMKEY  
#0xAA,W1  
W1,NVMKEY  
NVMCON,#WR  
; Write the 0x55 key  
;
; Write the 0xAA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
© 2010 Microchip Technology Inc.  
DS70139G-page 51  
dsPIC30F2011/2012/3012/3013  
5.6.3  
LOADING WRITE LATCHES  
5.6.4  
INITIATING THE PROGRAMMING  
SEQUENCE  
Example 5-2 shows a sequence of instructions that  
can be used to load the 96 bytes of write latches. 32  
TBLWTL and 32 TBLWTH instructions are needed to  
load the write latches selected by the Table Pointer.  
For protection, the write initiate sequence for NVMKEY  
must be used to allow any erase or program operation  
to proceed. After the programming command has been  
executed, the user must wait for the programming time  
until programming is complete. The two instructions  
following the start of the programming sequence  
should be NOPs as shown in Example 5-3.  
EXAMPLE 5-2:  
LOADING WRITE LATCHES  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000,W0  
W0,TBLPAG  
#0x6000,W0  
;
; Initialize PM Page Boundary SFR  
; An example program memory address  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
#LOW_WORD_0,W2  
#HIGH_BYTE_0,W3  
;
;
TBLWTL W2,[W0]  
TBLWTH W3,[W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 1st_program_word  
MOV  
MOV  
#LOW_WORD_1,W2  
#HIGH_BYTE_1,W3  
;
;
TBLWTL W2,[W0]  
TBLWTH W3,[W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
;
2nd_program_word  
MOV  
MOV  
#LOW_WORD_2,W2  
#HIGH_BYTE_2,W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 31st_program_word  
MOV  
MOV  
#LOW_WORD_31,W2  
#HIGH_BYTE_31,W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
Note:  
In Example 5-2, the contents of the upper byte of W3 has no effect.  
EXAMPLE 5-3:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7 for  
; next 5 instructions  
;
; Write the 0x55 key  
;
; Write the 0xAA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0,NVMKEY  
#0xAA,W1  
W1,NVMKEY  
NVMCON,#WR  
DS70139G-page 52  
© 2010 Microchip Technology Inc.  
TABLE 5-1:  
NVM REGISTER MAP  
File Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All RESETS  
NVMCON  
NVMADR  
NVMADRU  
NVMKEY  
0760  
0762  
0764  
0766  
WR  
WREN  
WRERR  
TWRI  
PROGOP<6:0>  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
NVMADR<15:0>  
NVMADR<23:16>  
KEY<7:0>  
Legend:  
Note:  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F2011/2012/3012/3013  
NOTES:  
DS70139G-page 54  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
A program or erase operation on the data EEPROM  
6.0  
DATA EEPROM MEMORY  
does not stop the instruction flow. The user is  
responsible for waiting for the appropriate duration of  
time before initiating another data EEPROM write/  
erase operation. Attempting to read the data EEPROM  
while a programming or erase operation is in progress  
results in unspecified data.  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC  
Control bit WR initiates write operations similar to  
program Flash writes. This bit cannot be cleared, only  
set, in software. They are cleared in hardware at the  
completion of the write operation. The inability to clear  
the WR bit in software prevents the accidental or  
premature termination of a write operation.  
Programmer’s  
Reference  
Manual”  
(DS70157).  
The WREN bit, when set, allows a write operation. On  
power-up, the WREN bit is clear. The WRERR bit is set  
when a write operation is interrupted by a MCLR Reset  
or a WDT Time-out Reset during normal operation. In  
these situations, following Reset, the user can check  
the WRERR bit and rewrite the location. The address  
register NVMADR remains unchanged.  
The data EEPROM memory is readable and writable  
during normal operation over the entire VDD range. The  
data EEPROM memory is directly mapped in the  
program memory address space.  
The four SFRs used to read and write the program  
Flash memory are used to access data EEPROM  
memory, as well. As described in Section 5.5 “Control  
Registers”, these registers are:  
Note:  
Interrupt flag bit NVMIF in the IFS0  
register is set when write is complete. It  
must be cleared in software.  
• NVMCON  
• NVMADR  
• NVMADRU  
• NVMKEY  
6.1  
Reading the Data EEPROM  
A TBLRD instruction reads a word at the current  
program word address. This example uses W0 as a  
pointer to data EEPROM. The result is placed in  
register W4 as shown in Example 6-1.  
The EEPROM data memory allows read and write of  
single words and 16-word blocks. When interfacing to  
data memory, NVMADR, in conjunction with the  
NVMADRU register, are used to address the  
EEPROM location being accessed. TBLRDL and  
TBLWTLinstructions are used to read and write data  
EEPROM. The dsPIC30F devices have up to 8 Kbytes  
(4K words) of data EEPROM with an address range  
from 0x7FF000 to 0x7FFFFE.  
EXAMPLE 6-1:  
DATA EEPROM READ  
MOV  
MOV  
MOV  
#LOW_ADDR_WORD,W0 ; Init Pointer  
#HIGH_ADDR_WORD,W1  
W1,TBLPAG  
TBLRDL [ W0 ], W4  
; read data EEPROM  
A word write operation should be preceded by an erase  
of the corresponding memory location(s). The write  
typically requires 2 ms to complete, but the write time  
varies with voltage and temperature.  
© 2010 Microchip Technology Inc.  
DS70139G-page 55  
dsPIC30F2011/2012/3012/3013  
6.2  
Erasing Data EEPROM  
6.2.1  
ERASING A BLOCK OF DATA  
EEPROM  
In order to erase a block of data EEPROM, the  
NVMADRU and NVMADR registers must initially point  
to the block of memory to be erased. Configure  
NVMCON for erasing a block of data EEPROM and  
set the WR and WREN bits in the NVMCON register.  
Setting the WR bit initiates the erase, as shown in  
Example 6-2.  
EXAMPLE 6-2:  
DATA EEPROM BLOCK ERASE  
; Select data EEPROM block, WR, WREN bits  
MOV  
MOV  
#0x4045,W0  
W0,NVMCON  
; Initialize NVMCON SFR  
; Start erase cycle by setting WR after writing key sequence  
DISI  
#5  
; Block all interrupts with priority <7 for  
; next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0,NVMKEY  
#0xAA,W1  
W1,NVMKEY  
NVMCON,#WR  
;
; Write the 0x55 key  
;
; Write the 0xAA key  
; Initiate erase sequence  
; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle  
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete  
6.2.2  
ERASING A WORD OF DATA  
EEPROM  
The NVMADRU and NVMADR registers must point to  
the block. Select WR a block of data Flash and set the  
WRandWRENbitsintheNVMCONregister. Settingthe  
WR bit initiates the erase, as shown in Example 6-3.  
EXAMPLE 6-3:  
DATA EEPROM WORD ERASE  
; Select data EEPROM word, WR, WREN bits  
MOV  
MOV  
#0x4044,W0  
W0,NVMCON  
; Start erase cycle by setting WR after writing key sequence  
DISI  
#5  
; Block all interrupts with priority <7 for  
; next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0,NVMKEY  
#0xAA,W1  
W1,NVMKEY  
NVMCON,#WR  
;
; Write the 0x55 key  
;
; Write the 0xAA key  
; Initiate erase sequence  
; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle  
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete  
DS70139G-page 56  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
The write does not initiate if the above sequence is not  
6.3  
Writing to the Data EEPROM  
exactly followed (write 0x55 to NVMKEY, write 0xAA to  
NVMCON, then set WR bit) for each word. It is strongly  
recommended that interrupts be disabled during this  
code segment.  
To write an EEPROM data location, the following  
sequence must be followed:  
1. Erase data EEPROM word.  
a) Select word, data EEPROM erase, and set  
WREN bit in NVMCON register.  
Additionally, the WREN bit in NVMCON must be set to  
enable writes. This mechanism prevents accidental  
writes to data EEPROM due to unexpected code  
execution. The WREN bit should be kept clear at all  
times except when updating the EEPROM. The WREN  
bit is not cleared by hardware.  
b) Write address of word to be erased into  
NVMADR.  
c) Enable NVM interrupt (optional).  
d) Write 0x55 to NVMKEY.  
After a write sequence has been initiated, clearing the  
WREN bit does not affect the current write cycle. The  
WR bit is inhibited from being set unless the WREN bit  
is set. The WREN bit must be set on a previous  
instruction. Both WR and WREN cannot be set with the  
same instruction.  
e) Write 0xAA to NVMKEY.  
f) Set the WR bit. This begins erase cycle.  
g) Either poll NVMIF bit or wait for NVMIF  
interrupt.  
h) The WR bit is cleared when the erase cycle  
ends.  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the Nonvolatile Memory Write  
Complete Interrupt Flag bit (NVMIF) is set. The user  
may either enable this interrupt or poll this bit. NVMIF  
must be cleared by software.  
2. Write data word into data EEPROM write  
latches.  
3. Program 1 data word into data EEPROM.  
a) Select word, data EEPROM program, and  
set WREN bit in NVMCON register.  
6.3.1  
WRITING A WORD OF DATA  
EEPROM  
b) Enable NVM write done interrupt (optional).  
c) Write 0x55 to NVMKEY.  
Once the user has erased the word to be programmed,  
then a table write instruction is used to write one write  
latch, as shown in Example 6-4.  
d) Write 0xAA to NVMKEY.  
e) Set the WR bit. This begins program cycle.  
f) Either poll NVMIF bit or wait for NVM  
interrupt.  
6.3.2  
WRITING A BLOCK OF DATA  
EEPROM  
g) The WR bit is cleared when the write cycle  
ends.  
To write a block of data EEPROM, write to all sixteen  
latches first, then set the NVMCON register and  
program the block.  
EXAMPLE 6-4:  
DATA EEPROM WORD WRITE  
; Point to data memory  
MOV  
#LOW_ADDR_WORD,W0  
; Init pointer  
MOV  
MOV  
#HIGH_ADDR_WORD,W1  
W1,TBLPAG  
MOV  
TBLWTL  
#LOW(WORD),W2  
W2,[ W0]  
; Get data  
; Write data  
; The NVMADR captures last table access address  
; Select data EEPROM for 1 word op  
MOV  
MOV  
#0x4004,W0  
W0,NVMCON  
; Operate key to allow write operation  
DISI  
#5  
; Block all interrupts with priority <7 for  
; next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0,NVMKEY  
#0xAA,W1  
W1,NVMKEY  
NVMCON,#WR  
; Write the 0x55 key  
; Write the 0xAA key  
; Initiate program sequence  
; Write cycle will complete in 2mS. CPU is not stalled for the Data Write Cycle  
; User can poll WR bit, use NVMIF or Timer IRQ to determine write complete  
© 2010 Microchip Technology Inc.  
DS70139G-page 57  
dsPIC30F2011/2012/3012/3013  
EXAMPLE 6-5:  
DATA EEPROM BLOCK WRITE  
MOV  
MOV  
#LOW_ADDR_WORD,W0 ; Init pointer  
#HIGH_ADDR_WORD,W1  
MOV  
W1,TBLPAG  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
TBLWTL  
MOV  
#data1,W2  
W2,[ W0]++  
#data2,W2  
W2,[ W0]++  
#data3,W2  
W2,[ W0]++  
#data4,W2  
W2,[ W0]++  
#data5,W2  
W2,[ W0]++  
#data6,W2  
W2,[ W0]++  
#data7,W2  
W2,[ W0]++  
#data8,W2  
W2,[ W0]++  
#data9,W2  
W2,[ W0]++  
#data10,W2  
W2,[ W0]++  
#data11,W2  
W2,[ W0]++  
#data12,W2  
W2,[ W0]++  
#data13,W2  
W2,[ W0]++  
#data14,W2  
W2,[ W0]++  
#data15,W2  
W2,[ W0]++  
#data16,W2  
W2,[ W0]++  
#0x400A,W0  
W0,NVMCON  
#5  
; Get 1st data  
; write data  
; Get 2nd data  
; write data  
; Get 3rd data  
; write data  
; Get 4th data  
; write data  
; Get 5th data  
; write data  
; Get 6th data  
; write data  
; Get 7th data  
; write data  
; Get 8th data  
; write data  
; Get 9th data  
; write data  
; Get 10th data  
; write data  
; Get 11th data  
; write data  
; Get 12th data  
; write data  
; Get 13th data  
; write data  
; Get 14th data  
; write data  
; Get 15th data  
; write data  
; Get 16th data  
TBLWTL  
MOV  
MOV  
; write data. The NVMADR captures last table access address.  
; Select data EEPROM for multi word op  
; Operate Key to allow program operation  
; Block all interrupts with priority <7 for  
; next 5 instructions  
DISI  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55,W0  
W0,NVMKEY  
#0xAA,W1  
W1,NVMKEY  
NVMCON,#WR  
; Write the 0x55 key  
; Write the 0xAA key  
; Start write cycle  
6.4  
Write Verify  
6.5  
Protection Against Spurious Write  
Depending on the application, good programming  
practice may dictate that the value written to the mem-  
ory should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built-in. On power-up, the WREN bit is cleared;  
also, the Power-up Timer prevents EEPROM write.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during brown-out,  
power glitch, or software malfunction.  
DS70139G-page 58  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
Writes to the latch, write the latch (LATx). Reads from  
the port (PORTx), read the port pins and writes to the  
7.0  
I/O PORTS  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
port pins, write the latch (LATx).  
Any bit and its associated data and Control registers  
that are not valid for a particular device are disabled.  
That means the corresponding LATx and TRISx  
registers and the port pin read as zeros.  
When a pin is shared with another peripheral or  
function that is defined as an input only, it is  
nevertheless regarded as a dedicated port because  
there is no other competing source of outputs.  
All of the device pins (except VDD, VSS, MCLR and  
OSC1/CLKI) are shared between the peripherals and  
the parallel I/O ports.  
A parallel I/O (PIO) port that shares a pin with a  
peripheral is, in general, subservient to the peripheral.  
The peripheral’s output buffer data and control signals  
are provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pad cell. Figure 7-1 illustrates how ports are  
shared with other peripherals and the associated I/O  
cell (pad) to which they are connected.  
All I/O input ports feature Schmitt Trigger inputs for  
improved noise immunity.  
7.1  
Parallel I/O (PIO) Ports  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as  
a general purpose output pin is disabled. The I/O pin  
can be read, but the output driver for the parallel port bit  
is disabled. If a peripheral is enabled, but the peripheral  
is not actively driving a pin, that pin can be driven by a  
port.  
The format of the registers for the shared ports,  
(PORTB, PORTC, PORTD and PORTF) are shown in  
Table 7-1 through Table 7-6.  
Note:  
The actual bits in use vary between  
devices.  
All port pins have three registers directly associated  
with the operation of the port pin. The Data Direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is a ‘1’, then the pin  
is an input. All port pins are defined as inputs after a  
Reset. Reads from the latch (LATx), read the latch.  
FIGURE 7-1:  
BLOCK DIAGRAM OF A SHARED PORT STRUCTURE  
Output Multiplexers  
Peripheral Module  
Peripheral Input Data  
Peripheral Module Enable  
Peripheral Output Enable  
Peripheral Output Data  
I/O Cell  
1
0
Output Enable  
1
0
Output Data  
PIO Module  
Read TRIS  
I/O Pad  
Data Bus  
WR TRIS  
D
Q
CK  
TRIS Latch  
D
Q
WR LAT +  
WR Port  
CK  
Data Latch  
Read LAT  
Read Port  
Input Data  
© 2010 Microchip Technology Inc.  
DS70139G-page 59  
dsPIC30F2011/2012/3012/3013  
7.2.1  
I/O PORT WRITE/READ TIMING  
7.2  
Configuring Analog Port Pins  
One instruction cycle is required between a port  
direction change or port write operation and a read  
operation of the same port. Typically this instruction  
would be a NOP.  
The use of the ADPCFG and TRIS registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their  
corresponding TRIS bit set (input). If the TRIS bit is  
cleared (output), the digital output level (VOH or VOL) is  
converted.  
EXAMPLE 7-1:  
PORT WRITE/READ  
EXAMPLE  
When the PORT register is read, all pins configured as  
analog input channels are read as cleared (a low level).  
MOV #0xF0, W0 ; Configure PORTB<7:4>  
; as inputs  
MOV W0, TRISB ; and PORTB<3:0> as outputs  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin that is defined as  
a digital input (including the ANx pins) may cause the  
input buffer to consume the current that exceeds  
device specifications.  
NOP  
; additional instruction  
cycle  
btss PORTB, #7 ; bit test RB7 and skip if  
set  
DS70139G-page 60  
© 2010 Microchip Technology Inc.  
TABLE 7-1:  
PORTB REGISTER MAP FOR dsPIC30F2011/3012  
SFR  
Addr.  
Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TRISB  
PORTB  
LATB  
02C6  
02C8  
02CB  
TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 0000 0000 1111 1111  
RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0 0000 0000 0000 0000  
LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 0000 0000 0000 0000  
Legend:  
— = unimplemented bit, read as ‘0’  
TABLE 7-2:  
PORTB REGISTER MAP FOR dsPIC30F2012/3013  
SFR  
Addr.  
Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TRISB  
PORTB  
LATB  
02C6  
02C8  
02CB  
TRISB9 TRISB8 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 0000 0011 1111 1111  
RB9  
RB8  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
0000 0000 0000 0000  
LATB9  
LATB8  
LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 0000 0000 0000 0000  
Legend:  
— = unimplemented bit, read as ‘0’  
TABLE 7-3:  
PORTC REGISTER MAP FOR dsPIC30F2011/2012/3012/3013  
SFR  
Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12 Bit 11 Bit 10 Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TRISC  
PORTC  
LATC  
02CC  
02CE  
02D0  
TRISC15 TRISC14 TRISC13  
RC15 RC14 RC13  
LATC15 LATC14 LATC13  
1110 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
Legend:  
— = unimplemented bit, read as ‘0’  
TABLE 7-4:  
PORTD REGISTER MAP FOR dsPIC30F2011/3012  
SFR  
Addr.  
Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TRISD  
02D2  
TRISD0 0000 0000 0000 0001  
RD0 0000 0000 0000 0000  
LATD0 0000 0000 0000 0000  
PORTD 02D4  
LATD  
02D6  
Legend:  
— = unimplemented bit, read as ‘0’  
TABLE 7-5:  
PORTD REGISTER MAP FOR dsPIC30F2012/3013  
SFR  
Addr.  
Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TRISD  
02D2  
TRISD9 TRISD8  
0000 0011 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
PORTD 02D4  
RD9  
RD8  
LATD  
02D6  
LATD9  
LATD8  
Legend:  
— = unimplemented bit, read as ‘0’  
TABLE 7-6:  
PORTF REGISTER MAP FOR dsPIC30F2012/3013  
SFR  
Addr.  
Name  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TRISF  
02DE  
TRISF6 TRISF5 TRISF4 TRISF3 TRISF2  
0000 0000 0111 1100  
0000 0000 0000 0000  
0000 0000 0000 0000  
PORTF 02E0  
RF6  
RF5  
RF4  
RF3  
RF2  
LATF  
02E2  
LATF6  
LATF5  
LATF4  
LATF3  
LATF2  
Legend:  
Note:  
— = unimplemented bit, read as ‘0’  
The dsPIC30F2011/3012 devices do not have TRISF, PORTF, or LATF.  
dsPIC30F2011/2012/3012/3013  
7.3  
Input Change Notification Module  
The input change notification module provides the  
dsPIC30F devices the ability to generate interrupt  
requests to the processor, in response to a change of  
state on selected input pins. This module is capable of  
detecting input change of states even in Sleep mode,  
when the clocks are disabled. There are up to 10  
external signals (CN0 through CN7, CN17 and CN18)  
that may be selected (enabled) for generating an  
interrupt request on a change of state.  
TABLE 7-7:  
INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F2011/3012 (BITS 7-0)  
SFR  
Name  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
Legend:  
00C0  
00C2  
00C4  
00C6  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000 0000 0000 0000  
0000 0000 0000 0000  
CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE  
CN0PUE 0000 0000 0000 0000  
0000 0000 0000 0000  
— = unimplemented bit, read as ‘0’  
TABLE 7-8:  
INPUT CHANGE NOTIFICATION REGISTER MAP FOR dsPIC30F2012/3013 (BITS 7-0)  
SFR  
Name  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
CNEN1  
CNEN2  
CNPU1  
CNPU2  
Legend:  
00C0  
00C2  
00C4  
00C6  
CN7IE  
CN6IE  
CN5IE  
CN4IE  
CN3IE  
CN2IE  
CN1IE  
CN0IE  
0000 0000 0000 0000  
0000 0000 0000 0000  
CN18IE  
CN17IE  
CN7PUE CN6PUE CN5PUE CN4PUE CN3PUE CN2PUE CN1PUE  
CN18PUE CN17PUE  
CN0PUE 0000 0000 0000 0000  
0000 0000 0000 0000  
— = unimplemented bit, read as ‘0’  
Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
© 2010 Microchip Technology Inc.  
DS70139G-page 63  
dsPIC30F2011/2012/3012/3013  
NOTES:  
DS70139G-page 64  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
• INTCON1<15:0>, INTCON2<15:0>  
Global interrupt control functions are derived from  
8.0  
INTERRUPTS  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC  
these two registers. INTCON1 contains the  
control and status flags for the processor  
exceptions. The INTCON2 register controls the  
external interrupt request signal behavior and the  
use of the alternate vector table.  
Note:  
Interrupt flag bits get set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit. User  
software should ensure the appropriate  
interrupt flag bits are clear prior to  
enabling an interrupt.  
Programmer’s  
Reference  
Manual”  
(DS70157).  
All interrupt sources can be user assigned to one of 7  
priority levels, 1 through 7, through the IPCx registers.  
Each interrupt source is associated with an interrupt  
vector, as shown in Table 8-1. Levels 7 and 1 represent  
the highest and lowest maskable priorities, respec-  
tively.  
The dsPIC30F sensor family has up to 21 interrupt  
sources and 4 processor exceptions (traps) which must  
be arbitrated based on a priority scheme.  
The CPU is responsible for reading the Interrupt Vector  
Table (IVT) and transferring the address contained in  
the interrupt vector to the program counter. The  
interrupt vector is transferred from the program data  
bus into the program counter via a 24-bit wide  
multiplexer on the input of the program counter.  
Note:  
Assigning a priority level of ‘0’ to an  
interrupt source is equivalent to disabling  
that interrupt.  
If the NSTDIS bit (INTCON1<15>) is set, nesting of  
interrupts is prevented. Thus, if an interrupt is currently  
being serviced, processing of a new interrupt is  
prevented even if the new interrupt is of higher priority  
than the one currently being serviced.  
The Interrupt Vector Table (IVT) and Alternate Interrupt  
Vector Table (AIVT) are placed near the beginning of  
program memory (0x000004). The IVT and AIVT are  
shown in Figure 8-1.  
The interrupt controller  
is  
responsible  
for  
Note:  
The IPL bits become read-only whenever  
pre-processing the interrupts and processor  
exceptions before they are presented to the processor  
core. The peripheral interrupts and traps are enabled,  
prioritized and controlled using centralized Special  
Function Registers (SFRs):  
the NSTDIS bit has been set to ‘1’.  
Certain interrupts have specialized control bits for  
features like edge or level triggered interrupts,  
interrupt-on-change, etc. Control of these features  
remains within the peripheral module which generates  
the interrupt.  
• IFS0<15:0>, IFS1<15:0>, IFS2<15:0>  
All interrupt request flags are maintained in these  
three registers. The flags are set by their  
respective peripherals or external signals and  
they are cleared via software.  
The DISI instruction can be used to disable the  
processing of interrupts of priorities 6 and lower for a  
certain number of instructions, during which the DISI bit  
(INTCON2<14>) remains set.  
• IEC0<15:0>, IEC1<15:0>, IEC2<15:0>  
All interrupt enable control bits are maintained in  
these three registers. These control bits are used  
to individually enable interrupts from the  
peripherals or external signals.  
When an interrupt is serviced, the PC is loaded with the  
address stored in the vector location in program  
memory that corresponds to the interrupt. There are 63  
different vectors within the IVT (refer to Table 8-1).  
These vectors are contained in locations 0x000004  
through 0x0000FE of program memory (refer to  
Table 8-1). These locations contain 24-bit addresses,  
and in order to preserve robustness, an address error  
trap takes place if the PC attempts to fetch any of these  
words during normal execution. This prevents  
execution of random data as a result of accidentally  
decrementing a PC into vector space, accidentally  
mapping a data space address into vector space, or the  
PC rolling over to 0x000000 after reaching the end of  
implemented program memory space. Execution of a  
GOTOinstruction to this vector space also generates an  
address error trap.  
• IPC0<15:0> through IPC10<7:0>  
The user assignable priority level associated with  
each of these 41 interrupts is held centrally in  
these eleven registers.  
• IPL<3:0>  
The current CPU priority level is explicitly stored  
in the IPL bits. IPL<3> is present in the CORCON  
register, whereas IPL<2:0> are present in the  
STATUS register (SR) in the processor core.  
© 2010 Microchip Technology Inc.  
DS70139G-page 65  
dsPIC30F2011/2012/3012/3013  
TABLE 8-1:  
INTERRUPT VECTOR TABLE  
8.1  
Interrupt Priority  
Interrupt Vector  
Number Number  
The user-assignable interrupt priority bits (IP<2:0>) for  
each individual interrupt source are located in the  
LS 3 bits of each nibble within the IPCx register(s). Bit  
3 of each nibble is not used and is read as a ‘0’. These  
bits define the priority level assigned to a particular  
interrupt by the user.  
Interrupt Source  
Highest Natural Order Priority  
0
1
8
INT0 – External Interrupt 0  
IC1 – Input Capture 1  
OC1 – Output Compare 1  
T1 – Timer 1  
9
2
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Note:  
The user-assignable priority levels start at  
0 as the lowest priority and level 7 as the  
highest priority.  
3
4
IC2 – Input Capture 2  
OC2 – Output Compare 2  
T2 – Timer2  
5
Natural Order Priority is determined by the position of  
an interrupt in the vector table, and only affects  
interrupt operation when multiple interrupts with the  
same user-assigned priority become pending at the  
same time.  
6
7
T3 – Timer3  
8
SPI1  
9
U1RX – UART1 Receiver  
U1TX – UART1 Transmitter  
ADC – ADC Convert Done  
NVM – NVM Write Complete  
SI2C – I2C™ Slave Interrupt  
MI2C – I2C Master Interrupt  
Input Change Interrupt  
INT1 – External Interrupt 1  
Table 8-1 lists the interrupt numbers and interrupt  
sources for the dsPIC30F2011/2012/3012/3013  
devices and their associated vector numbers.  
10  
11  
12  
13  
14  
15  
16  
17-22  
23  
24  
25  
26-41  
42  
43-53  
Note 1: The natural order priority scheme has 0  
as the highest priority and 53 as the  
lowest priority.  
2: The natural order priority number is the  
same as the INT number.  
The ability for the user to assign every interrupt to one  
of seven priority levels means that the user can assign  
a very high overall priority level to an interrupt with a  
low natural order priority. For example, the PLVD  
(Low Voltage Detect) can be given a priority of 7. The  
INT0 (External Interrupt 0) may be assigned to priority  
level 1, thus giving it a very low effective priority.  
25-30 Reserved  
31  
32  
33  
INT2 – External Interrupt 2  
U2RX(1) – UART2 Receiver  
U2TX(1) – UART2 Transmitter  
34-49 Reserved  
50  
LVD – Low-Voltage Detect  
51-61 Reserved  
Lowest Natural Order Priority  
Note 1: Only the dsPIC30F3013 has UART2 and  
the U2RX, U2TX interrupts. These  
locations are reserved for the  
dsPIC30F2011/2012/3012.  
DS70139G-page 66  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
8.2  
Reset Sequence  
8.3  
Traps  
A Reset is not a true exception because the interrupt  
controller is not involved in the Reset process. The  
processor initializes its registers in response to a Reset  
which forces the PC to zero. The processor then begins  
program execution at location 0x000000. A GOTO  
instruction is stored in the first program memory  
location immediately followed by the address target for  
the GOTOinstruction. The processor executes the GOTO  
to the specified address and then begins operation at  
the specified target (start) address.  
Traps can be considered as non-maskable interrupts  
indicating a software or hardware error, which adhere  
to a predefined priority as shown in Figure 8-1. They  
are intended to provide the user a means to correct  
erroneous operation during debug and when operating  
within the application.  
Note:  
If the user does not intend to take  
corrective action in the event of a trap  
error condition, these vectors must be  
loaded with the address of a default  
handler that contains the RESET instruc-  
tion. If, on the other hand, one of the vec-  
tors containing an invalid address is  
called, an address error trap is generated.  
8.2.1  
RESET SOURCES  
In addition to external Reset and Power-on Reset  
(POR), there are six sources of error conditions which  
‘trap’ to the Reset vector.  
Note that many of these trap conditions can only be  
detected when they occur. Consequently, the  
questionable instruction is allowed to complete prior to  
trap exception processing. If the user chooses to  
recover from the error, the result of the erroneous  
action that caused the trap may have to be corrected.  
• Watchdog Time-out:  
The watchdog has timed out, indicating that the  
processor is no longer executing the correct flow  
of code.  
• Uninitialized W Register Trap:  
An attempt to use an uninitialized W register as  
an Address Pointer causes a Reset.  
There are eight fixed priority levels for traps: Level 8  
through Level 15, which implies that the IPL3 is always  
set during processing of a trap.  
• Illegal Instruction Trap:  
Attempted execution of any unused opcodes  
results in an illegal instruction trap. Note that a  
fetch of an illegal instruction does not result in an  
illegal instruction trap if that instruction is flushed  
prior to execution due to a flow change.  
If the user is not currently executing a trap, and he sets  
the IPL<3:0> bits to a value of ‘0111’ (Level 7), then all  
interrupts are disabled, but traps can still be processed.  
8.3.1  
TRAP SOURCES  
• Brown-out Reset (BOR):  
The following traps are provided with increasing  
priority. However, since all traps can be nested, priority  
has little effect.  
A momentary dip in the power supply to the  
device has been detected which may result in  
malfunction.  
• Trap Lockout:  
Occurrence of multiple trap conditions  
simultaneously causes a Reset.  
Math Error Trap:  
The math error trap executes under the following four  
circumstances:  
1. If an attempt is made to divide by zero, the  
divide operation is aborted on a cycle boundary  
and the trap is taken.  
2. If enabled, a math error trap is taken when an  
arithmetic operation on either accumulator A or  
B causes an overflow from bit 31 and the  
accumulator guard bits are not utilized.  
3. If enabled, a math error trap is taken when an  
arithmetic operation on either accumulator A or  
B causes a catastrophic overflow from bit 39 and  
all saturation is disabled.  
4. If the shift amount specified in a shift instruction  
is greater than the maximum allowed shift  
amount, a trap occurs.  
© 2010 Microchip Technology Inc.  
DS70139G-page 67  
dsPIC30F2011/2012/3012/3013  
Address Error Trap:  
Stack Error Trap:  
This trap is initiated when any of the following  
circumstances occurs:  
This trap is initiated under the following conditions:  
• The Stack Pointer is loaded with a value which is  
greater than the (user programmable) limit value  
written into the SPLIM register (stack overflow).  
1. A misaligned data word access is attempted.  
2. A data fetch from our unimplemented data  
memory location is attempted.  
• The Stack Pointer is loaded with a value which is  
less than 0x0800 (simple stack underflow).  
3. A data access of an unimplemented program  
memory location is attempted.  
Oscillator Fail Trap:  
4. An instruction fetch from vector space is  
attempted.  
This trap is initiated if the external oscillator fails and  
operation becomes reliant on an internal RC backup.  
Note:  
In the MAC class of instructions, wherein  
the data space is split into X and Y data  
space, unimplemented X space includes  
all of Y space, and unimplemented Y  
space includes all of X space.  
8.3.2  
HARD AND SOFT TRAPS  
It is possible that multiple traps can become active  
within the same cycle (e.g., a misaligned word stack  
write to an overflowed address). In such a case, the  
fixed priority shown in Figure 8-2 is implemented,  
which may require the user to check if other traps are  
pending, in order to completely correct the Fault.  
5. Execution of a “BRA #literal” instruction or a  
GOTO #literal” instruction, where literal  
is an unimplemented program memory address.  
6. Executing instructions after modifying the PC to  
point the unimplemented program memory  
addresses. The PC may be modified by loading  
a value into the stack and executing a RETURN  
instruction.  
Soft traps include exceptions of priority level 8 through  
level 11, inclusive. The arithmetic error trap (level 11)  
falls into this category of traps.  
Hard traps include exceptions of priority level 12  
through level 15, inclusive. The address error (level  
12), stack error (level 13) and oscillator error (level 14)  
traps fall into this category.  
Each hard trap that occurs must be acknowledged  
before code execution of any type can continue. If a  
lower priority hard trap occurs while a higher priority  
trap is pending, acknowledged, or is being processed,  
a hard trap conflict occurs.  
The device is automatically Reset in a hard trap conflict  
condition. The TRAPR Status bit (RCON<15>) is set  
when the Reset occurs, so that the condition may be  
detected in software.  
DS70139G-page 68  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 8-1:  
TRAP VECTORS  
FIGURE 8-2:  
INTERRUPT STACK  
FRAME  
Reset - GOTOInstruction  
Reset - GOTOAddress  
0x000000  
0x000002  
0x0000 15  
0
0x000004  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
W15 (before CALL)  
W15 (after CALL)  
PC<15:0>  
SRL IPL3 PC<22:16>  
<Free Word>  
Reserved Vector  
Reserved Vector  
IVT  
Reserved Vector  
Interrupt 0 Vector  
Interrupt 1 Vector  
0x000014  
POP :[--W15]  
PUSH:[W15++]  
Interrupt 52 Vector  
Interrupt 53 Vector  
Reserved  
0x00007E  
0x000080  
0x000082  
Note 1: The user can always lower the priority  
level by writing a new value into SR. The  
Interrupt Service Routine must clear the  
interrupt flag bits in the IFSx register  
before lowering the processor interrupt  
priority, in order to avoid recursive  
interrupts.  
Reserved  
0x000084  
Reserved  
Oscillator Fail Trap Vector  
Stack Error Trap Vector  
Address Error Trap Vector  
Math Error Trap Vector  
Reserved Vector  
AIVT  
Reserved Vector  
2: The IPL3 bit (CORCON<3>) is always  
clear when interrupts are being  
processed. It is set only during execution  
of traps.  
Reserved Vector  
0x000094  
0x0000FE  
Interrupt 0 Vector  
Interrupt 1 Vector  
The RETFIE(return from interrupt) instruction unstacks  
the program counter and STATUS registers to return  
the processor to its state prior to the interrupt  
sequence.  
Interrupt 52 Vector  
Interrupt 53 Vector  
8.5  
Alternate Vector Table  
8.4  
Interrupt Sequence  
In program memory, the Interrupt Vector Table (IVT) is  
followed by the Alternate Interrupt Vector Table (AIVT),  
as shown in Figure 8-1. Access to the alternate vector  
table is provided by the ALTIVT bit in the INTCON2  
register. If the ALTIVT bit is set, all interrupt and  
exception processes use the alternate vectors instead  
of the default vectors. The alternate vectors are  
organized in the same manner as the default vectors.  
The AIVT supports emulation and debugging efforts by  
providing a means to switch between an application  
and a support environment without requiring the  
interrupt vectors to be reprogrammed. This feature also  
enables switching between applications for evaluation  
of different software algorithms at run time.  
All interrupt event flags are sampled in the beginning of  
each instruction cycle by the IFSx registers. A pending  
Interrupt Request (IRQ) is indicated by the flag bit  
being equal to a ‘1’ in an IFSx register. The IRQ causes  
an interrupt to occur if the corresponding bit in the  
Interrupt Enable (IECx) register is set. For the  
remainder of the instruction cycle, the priorities of all  
pending interrupt requests are evaluated.  
If there is a pending IRQ with a priority level greater  
than the current processor priority level in the IPL bits,  
the processor is interrupted.  
The processor then stacks the current program counter  
and the low byte of the processor STATUS register  
(SRL), as shown in Figure 8-2. The low byte of the  
STATUS register contains the processor priority level at  
the time prior to the beginning of the interrupt cycle.  
The processor then loads the priority level for this  
interrupt into the STATUS register. This action disables  
all lower priority interrupts until the completion of the  
Interrupt Service Routine (ISR).  
If the AIVT is not required, the program memory  
allocated to the AIVT may be used for other purposes.  
AIVT is not a protected section and may be freely  
programmed by the user.  
© 2010 Microchip Technology Inc.  
DS70139G-page 69  
dsPIC30F2011/2012/3012/3013  
8.6  
Fast Context Saving  
8.7  
External Interrupt Requests  
A context saving option is available using shadow  
registers. Shadow registers are provided for the DC, N,  
OV, Z and C bits in SR, and the registers W0 through  
W3. The shadows are only one level deep. The shadow  
registers are accessible using the PUSH.Sand POP.S  
instructions only.  
The interrupt controller supports three external  
interrupt request signals, INT0-INT2. These inputs are  
edge sensitive; they require a low-to-high or a  
high-to-low transition to generate an interrupt request.  
The INTCON2 register has three bits, INT0EP-INT2EP,  
that select the polarity of the edge detection circuitry.  
When the processor vectors to an interrupt, the  
PUSH.S instruction can be used to store the current  
value of the aforementioned registers into their  
respective shadow registers.  
8.8  
Wake-up from Sleep and Idle  
The interrupt controller may be used to wake-up the  
processor from either Sleep or Idle modes, if Sleep or  
Idle mode is active when the interrupt is generated.  
If an ISR of a certain priority uses the PUSH.S and  
POP.S instructions for fast context saving, then a  
higher priority ISR should not include the same instruc-  
tions. Users must save the key registers in software  
during a lower priority interrupt if the higher priority ISR  
uses fast context saving.  
If an enabled interrupt request of sufficient priority is  
received by the interrupt controller, then the standard  
interrupt request is presented to the processor. At the  
same time, the processor wakes up from Sleep or Idle  
and begins execution of the ISR needed to process the  
interrupt request.  
DS70139G-page 70  
© 2010 Microchip Technology Inc.  
TABLE 8-2:  
dsPIC30F2011/2012/3012 INTERRUPT CONTROLLER REGISTER MAP  
SFR  
Name  
ADR Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0000 0000 0000 0100  
0100 0000 0000 0000  
0000 0000 0100 0100  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0100 0000 0000  
INTCON1 0080 NSTDIS  
INTCON2 0082 ALTIVT  
OVATE OVBTE COVTE  
MATHERR ADDRERR STKERR OSCFAIL  
DISI  
IC2IF  
T1IF  
INT2EP INT1EP INT0EP  
IFS0  
IFS1  
IFS2  
IEC0  
IEC1  
IEC2  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC10  
0084 CNIF  
MI2CIF SI2CIF NVMIF  
ADIF U1TXIF U1RXIF SPI1IF  
T3IF  
INT2IF  
T2IF OC2IF  
OC1IF  
IC1IF  
INT0IF  
INT1IF  
0086  
0088  
LVDIF  
008C CNIE MI2CIE SI2CIE NVMIE ADIE U1TXIE U1RXIE SPI1IE  
T3IE  
INT2IE  
T2IE OC2IE  
IC2IE  
T1IE  
OC1IE  
IC1IE  
INT0IE  
INT1IE  
008E  
0090  
0094  
0096  
0098  
009A  
009C  
009E  
00A0  
00A2  
00A4  
00A6  
00A8  
LVDIE  
T1IP<2:0>  
OC1IP<2:0>  
IC1IP<2:0>  
INT0IP<2:0>  
T31P<2:0>  
T2IP<2:0>  
OC2IP<2:0>  
IC2IP<2:0>  
ADIP<2:0>  
U1TXIP<2:0>  
U1RXIP<2:0>  
SPI1IP<2:0>  
CNIP<2:0>  
MI2CIP<2:0>  
SI2CIP<2:0>  
NVMIP<2:0>  
1
0
0
INT1IP<2:0>  
INT2IP<2:0>  
1
0
0
LVDIP<2:0>  
Legend: u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 8-3:  
dsPIC30F3013 INTERRUPT CONTROLLER REGISTER MAP  
SFR  
Name  
ADR Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0100 0100 0100 0100  
0000 0000 0000 0100  
0100 0000 0000 0000  
0000 0000 0100 0100  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0100 0000 0000  
INTCON1 0080 NSTDIS  
INTCON2 0082 ALTIVT  
OVATE OVBTE COVTE  
MATHERR ADDRERR STKERR OSCFAIL  
DISI  
IC2IF  
T1IF  
INT2EP INT1EP INT0EP  
IFS0  
IFS1  
IFS2  
IEC0  
IEC1  
IEC2  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC10  
0084 CNIF  
MI2CIF SI2CIF NVMIF  
ADIF U1TXIF U1RXIF SPI1IF  
T3IF  
T2IF OC2IF  
OC1IF  
IC1IF  
INT0IF  
INT1IF  
0086  
0088  
U2TXIF U2RXIF INT2IF  
LVDIF  
008C CNIE MI2CIE SI2CIE NVMIE ADIE U1TXIE U1RXIE SPI1IE  
T3IE  
T2IE OC2IE  
IC2IE  
T1IE  
OC1IE  
IC1IE  
INT0IE  
INT1IE  
008E  
0090  
0094  
0096  
0098  
009A  
009C  
009E  
00A0  
00A2  
00A4  
00A6  
00A8  
U2TXIE U2RXIE INT2IE  
LVDIE  
T1IP<2:0>  
OC1IP<2:0>  
IC1IP<2:0>  
INT0IP<2:0>  
IC2IP<2:0>  
SPI1IP<2:0>  
NVMIP<2:0>  
INT1IP<2:0>  
T31P<2:0>  
T2IP<2:0>  
OC2IP<2:0>  
ADIP<2:0>  
U1TXIP<2:0>  
U1RXIP<2:0>  
CNIP<2:0>  
MI2CIP<2:0>  
SI2CIP<2:0>  
INT2IP<2:0>  
U2TXIP<2:0>  
U2RXIP<2:0>  
LVDIP<2:0>  
Legend: u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F2011/2012/3012/3013  
These operating modes are determined by setting the  
appropriate bit(s) in the 16-bit SFR, T1CON. Figure 9-1  
9.0  
TIMER1 MODULE  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
presents a block diagram of the 16-bit timer module.  
16-bit Timer Mode: In the 16-bit Timer mode, the timer  
increments on every instruction cycle up to a match  
value preloaded into the Period register PR1, then  
resets to ‘0’ and continues to count.  
When the CPU goes into the Idle mode, the timer stops  
incrementing unless the TSIDL (T1CON<13>) bit = 0.  
If TSIDL = 1, the timer module logic resumes the incre-  
menting sequence on termination of CPU Idle mode.  
This section describes the 16-bit general purpose  
Timer1 module and associated operational modes.  
Figure 9-1 depicts the simplified block diagram of the  
16-bit Timer1 module. The following sections provide  
detailed descriptions including setup and Control  
registers, along with associated block diagrams for the  
operational modes of the timers.  
16-bit Synchronous Counter Mode: In the 16-bit  
Synchronous Counter mode, the timer increments on  
the rising edge of the applied external clock signal  
which is synchronized with the internal phase clocks.  
The timer counts up to a match value preloaded in PR1,  
then resets to ‘0’ and continues.  
The Timer1 module is a 16-bit timer that serves as the  
time counter for the real-time clock or operates as a  
free-running interval timer/counter. The 16-bit timer has  
the following modes:  
When the CPU goes into the Idle mode, the timer stops  
incrementing unless the respective TSIDL bit = 0. If  
TSIDL = 1, the timer module logic resumes the  
incrementing sequence upon termination of the CPU  
Idle mode.  
• 16-bit Timer  
• 16-bit Synchronous Counter  
• 16-bit Asynchronous Counter  
16-bit Asynchronous Counter Mode: In the 16-bit  
Asynchronous Counter mode, the timer increments on  
every rising edge of the applied external clock signal.  
The timer counts up to a match value preloaded in PR1,  
then resets to ‘0’ and continues.  
These operational characteristics are supported:  
• Timer gate operation  
• Selectable prescaler settings  
• Timer operation during CPU Idle and Sleep  
modes  
• Interrupt on 16-bit Period register match or falling  
edge of external gate signal  
When the timer is configured for the Asynchronous  
mode of operation and the CPU goes into the Idle  
mode, the timer stops incrementing if TSIDL = 1.  
FIGURE 9-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
PR1  
Comparator x 16  
TMR1  
Equal  
Reset  
TSYNC  
1
0
Sync  
0
1
T1IF  
Event Flag  
Q
Q
D
TGATE  
CK  
TGATE  
TCKPS<1:0>  
2
TON  
SOSCO/  
T1CK  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
LPOSCEN  
SOSCI  
TCY  
© 2010 Microchip Technology Inc.  
DS70139G-page 73  
dsPIC30F2011/2012/3012/3013  
When the Gated Time Accumulation mode is enabled,  
an interrupt is also generated on the falling edge of the  
gate signal (at the end of the accumulation cycle).  
9.1  
Timer Gate Operation  
The 16-bit timer can be placed in the Gated Time  
Accumulation mode. This mode allows the internal TCY  
to increment the respective timer when the gate input  
signal (T1CK pin) is asserted high. Control bit,  
TGATE (T1CON<6>), must be set to enable this mode.  
The timer must be enabled (TON = 1) and the timer  
clock source set to internal (TCS = 0).  
Enabling an interrupt is accomplished via the  
respective timer interrupt enable bit, T1IE. The timer  
interrupt enable bit is located in the IEC0 Control  
register in the interrupt controller.  
9.5  
Real-Time Clock  
When the CPU goes into Idle mode, the timer stops  
incrementing unless TSIDL = 0. If TSIDL = 1, the timer  
resumes the incrementing sequence upon termination  
of the CPU Idle mode.  
Timer1, when operating in Real-Time Clock (RTC)  
mode, provides time of day and event time-stamping  
capabilities. Key operational features of the RTC are:  
• Operation from 32 kHz LP oscillator  
• 8-bit prescaler  
9.2  
Timer Prescaler  
• Low power  
• Real-Time Clock interrupts  
The input clock (FOSC/4 or external clock) to the 16-bit  
Timer has a prescale option of 1:1, 1:8, 1:64 and 1:256,  
selected by control bits, TCKPS<1:0> (T1CON<5:4>).  
The prescaler counter is cleared when any of the  
following occurs:  
These operating modes are determined by setting the  
appropriate bit(s) in the T1CON register.  
FIGURE 9-2:  
RECOMMENDED  
COMPONENTS FOR  
TIMER1 LP OSCILLATOR  
RTC  
• A write to the TMR1 register  
• A write to the T1CON register  
• A device Reset, such as a POR and BOR  
However, if the timer is disabled (TON = 0), then the  
timer prescaler cannot be reset since the prescaler  
clock is halted.  
C1  
SOSCI  
32.768 kHz  
XTAL  
The TMR1 register is not cleared when the T1CON  
register is written. It is cleared by writing to the TMR1  
register.  
dsPIC30FXXXX  
SOSCO  
C2  
R
9.3  
Timer Operation During Sleep Mode  
C1 = C2 = 18 pF; R = 100K  
The timer operates during CPU Sleep mode, if:  
• The timer module is enabled (TON = 1), and  
9.5.1  
RTC OSCILLATOR OPERATION  
• The timer clock source is selected as external  
When the TON = 1, TCS = 1and TGATE = 0, the timer  
increments on the rising edge of the 32 kHz LP oscilla-  
tor output signal, up to the value specified in the Period  
register and is then reset to ‘0’.  
(TCS = 1), and  
• The TSYNC bit (T1CON<2>) is asserted to a logic  
0’ which defines the external clock source as  
asynchronous.  
The TSYNC bit must be asserted to a logic ‘0’  
(Asynchronous mode) for correct operation.  
When all three conditions are true, the timer continues  
to count up to the Period register and be reset to  
0x0000.  
Enabling the LPOSCEN bit (OSCCON<1>) disables  
the normal Timer and Counter modes and enables a  
timer carry-out wake-up event.  
When a match between the timer and the Period  
register occurs, an interrupt can be generated if the  
respective timer interrupt enable bit is asserted.  
When the CPU enters Sleep mode, the RTC continues  
to operate, provided the 32 kHz external crystal  
oscillator is active and the control bits have not been  
changed. The TSIDL bit should be cleared to ‘0’ in  
order for RTC to continue operation in Idle mode.  
9.4  
Timer Interrupt  
The 16-bit timer has the ability to generate an  
interrupt-on-period match. When the timer count  
matches the Period register, the T1IF bit is asserted and  
an interrupt is generated, if enabled. The T1IF bit must be  
cleared in software. The timer interrupt flag, T1IF, is  
located in the IFS0 Control register in the interrupt  
controller.  
9.5.2  
RTC INTERRUPTS  
When an interrupt event occurs, the respective interrupt  
flag, T1IF, is asserted and an interrupt is generated if  
enabled. The T1IF bit must be cleared in software. The  
respective Timer interrupt flag, T1IF, is located in the  
IFS0 register in the interrupt controller.  
DS70139G-page 74  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
Enabling an interrupt is accomplished via the  
respective timer interrupt enable bit, T1IE. The timer  
interrupt enable bit is located in the IEC0 Control  
register in the interrupt controller.  
© 2010 Microchip Technology Inc.  
DS70139G-page 75  
TABLE 9-1:  
TIMER1 REGISTER MAP  
SFR Name Addr. Bit 15  
Bit 14 Bit 13  
Bit 12  
Bit 11  
Bit 10 Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
TMR1  
PR1  
0100  
0102  
0104  
Timer1 Register  
uuuu uuuu uuuu uuuu  
1111 1111 1111 1111  
0000 0000 0000 0000  
Period Register 1  
TGATE TCKPS1 TCKPS0  
T1CON  
TON  
TSIDL  
TSYNC  
TCS  
Legend: u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F2011/2012/3012/3013  
For 32-bit timer/counter operation, Timer2 is the ls word  
and Timer3 is the ms word of the 32-bit timer.  
10.0 TIMER2/3 MODULE  
Note:  
This data sheet summarizes features of  
Note:  
For 32-bit timer operation, T3CON control  
bits are ignored. Only T2CON control bits  
are used for setup and control. Timer2  
clock and gate inputs are utilized for the  
32-bit timer module, but an interrupt is  
generated with the Timer3 interrupt flag  
(T3IF) and the interrupt is enabled with the  
Timer3 interrupt enable bit (T3IE).  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual  
“(DS70046).  
This section describes the 32-bit general purpose  
Timer module (Timer2/3) and associated Operational  
modes. Figure 10-1 depicts the simplified block  
diagram of the 32-bit Timer2/3 module. Figure 10-2  
and Figure 10-3 show Timer2/3 configured as two  
independent 16-bit timers, Timer2 and Timer3,  
respectively.  
16-bit Timer Mode: In the 16-bit mode, Timer2 and  
Timer3 can be configured as two independent 16-bit  
timers. Each timer can be set up in either 16-bit Timer  
mode or 16-bit Synchronous Counter mode. See  
Section 9.0 “Timer1 Module” for details on these two  
operating modes.  
The only functional difference between Timer2 and  
Timer3 is that Timer2 provides synchronization of the  
clock prescaler output. This is useful for high frequency  
external clock inputs.  
The Timer2/3 module is a 32-bit timer (which can be  
configured as two 16-bit timers) with selectable  
operating modes. These timers are utilized by other  
peripheral modules, such as:  
32-bit Timer Mode: In the 32-bit Timer mode, the timer  
increments on every instruction cycle, up to a match  
value preloaded into the combined 32-bit Period  
register PR3/PR2, then resets to ‘0’ and continues to  
count.  
• Input Capture  
• Output Compare/Simple PWM  
The following sections provide a detailed description,  
including setup and Control registers, along with  
associated block diagrams for the operational modes of  
the timers.  
For synchronous 32-bit reads of the Timer2/Timer3  
pair, reading the ls word (TMR2 register) causes the ms  
word to be read and latched into a 16-bit holding  
register, termed TMR3HLD.  
The 32-bit timer has the following modes:  
• Two independent 16-bit timers (Timer2 and  
Timer3) with all 16-bit operating modes (except  
Asynchronous Counter mode)  
For synchronous 32-bit writes, the holding register  
(TMR3HLD) must first be written to. When followed by  
a write to the TMR2 register, the contents of TMR3HLD  
is transferred and latched into the MSB of the 32-bit  
timer (TMR3).  
• Single 32-bit timer operation  
• Single 32-bit synchronous counter  
Further, the following operational characteristics are  
supported:  
32-bit Synchronous Counter Mode: In the 32-bit  
Synchronous Counter mode, the timer increments on  
the rising edge of the applied external clock signal  
which is synchronized with the internal phase clocks.  
The timer counts up to a match value preloaded in the  
combined 32-bit period register, PR3/PR2, then resets  
to ‘0’ and continues.  
• ADC event trigger  
• Timer gate operation  
• Selectable prescaler settings  
• Timer operation during Idle and Sleep modes  
• Interrupt on a 32-bit period register match  
When the timer is configured for the Synchronous  
Counter mode of operation and the CPU goes into the  
Idle mode, the timer stops incrementing unless the  
TSIDL bit (T2CON<13>) = 0. If TSIDL = 1, the timer  
module logic resumes the incrementing sequence  
upon termination of the CPU Idle mode.  
These operating modes are determined by setting the  
appropriate bit(s) in the 16-bit T2CON and T3CON  
SFRs.  
© 2010 Microchip Technology Inc.  
DS70139G-page 77  
dsPIC30F2011/2012/3012/3013  
FIGURE 10-1:  
32-BIT TIMER2/3 BLOCK DIAGRAM  
Data Bus<15:0>  
TMR3HLD  
16  
16  
Write TMR2  
Read TMR2  
16  
Reset  
Sync  
TMR3  
MSB  
TMR2  
LSB  
ADC Event Trigger  
Comparator x 32  
Equal  
PR3  
PR2  
0
1
T3IF  
Event Flag  
Q
Q
D
TGATE (T2CON<6>)  
CK  
TGATE  
(T2CON<6>)  
TCKPS<1:0>  
2
TON  
T2CK  
1x  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
01  
00  
TCY  
Note:  
Timer Configuration bit T32 (T2CON<3>) must be set to ‘1’ for a 32-bit timer/counter operation. All control  
bits are respective to the T2CON register.  
DS70139G-page 78  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 10-2:  
16-BIT TIMER2 BLOCK DIAGRAM  
PR2  
Comparator x 16  
TMR2  
Equal  
Reset  
Sync  
0
1
T2IF  
Event Flag  
TGATE  
Q
D
Q
CK  
TGATE  
TCKPS<1:0>  
2
TON  
T2CK  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
TCY  
FIGURE 10-3:  
16-BIT TIMER3 BLOCK DIAGRAM  
PR3  
ADC Event Trigger  
Equal  
Comparator x 16  
TMR3  
Reset  
0
1
T3IF  
Event Flag  
TGATE  
Q
Q
D
CK  
TGATE  
TCKPS<1:0>  
2
TON  
T3CK  
Sync  
TCY  
1x  
Prescaler  
1, 8, 64, 256  
01  
00  
© 2010 Microchip Technology Inc.  
DS70139G-page 79  
dsPIC30F2011/2012/3012/3013  
10.1 Timer Gate Operation  
10.4 Timer Operation During Sleep  
Mode  
The 32-bit timer can be placed in the Gated Time  
Accumulation mode. This mode allows the internal TCY  
to increment the respective timer when the gate input  
signal (T2CK pin) is asserted high. Control bit, TGATE  
(T2CON<6>), must be set to enable this mode. When  
in this mode, Timer2 is the originating clock source.  
The TGATE setting is ignored for Timer3. The timer  
must be enabled (TON = 1) and the timer clock source  
set to internal (TCS = 0).  
The timer does not operate during CPU Sleep mode  
because the internal clocks are disabled.  
10.5 Timer Interrupt  
The 32-bit timer module can generate an  
interrupt-on-period match or on the falling edge of the  
external gate signal. When the 32-bit timer count  
matches the respective 32-bit period register, or the  
falling edge of the external “gate” signal is detected, the  
T3IF bit (IFS0<7>) is asserted and an interrupt is  
generated if enabled. In this mode, the T3IF interrupt  
flag is used as the source of the interrupt. The T3IF bit  
must be cleared in software.  
The falling edge of the external signal terminates the  
count operation but does not reset the timer. The user  
must reset the timer in order to start counting from zero.  
10.2 ADC Event Trigger  
When a match occurs between the 32-bit timer  
(TMR3/TMR2) and the 32-bit combined period register  
(PR3/PR2), or between the 16-bit timer TMR3 and the  
16-bit period register PR3, a special ADC trigger event  
signal is generated by Timer3.  
Enabling an interrupt is accomplished via the  
respective timer interrupt enable bit, T3IE (IEC0<7>).  
10.3 Timer Prescaler  
The input clock (FOSC/4 or external clock) to the timer  
has a prescale option of 1:1, 1:8, 1:64, and 1:256,  
selected by control bits, TCKPS<1:0> (T2CON<5:4>  
and T3CON<5:4>). For the 32-bit timer operation, the  
originating clock source is Timer2. The prescaler  
operation for Timer3 is not applicable in this mode. The  
prescaler counter is cleared when any of the following  
occurs:  
• A write to the TMR2/TMR3 register  
• A write to the T2CON/T3CON register  
• A device Reset, such as a POR and BOR  
However, if the timer is disabled (TON = 0), the Timer  
2 prescaler cannot be reset since the prescaler clock is  
halted.  
TMR2/TMR3 is not cleared when T2CON/T3CON is  
written.  
DS70139G-page 80  
© 2010 Microchip Technology Inc.  
TABLE 10-1: TIMER2/3 REGISTER MAP  
SFR Name Addr.  
TMR2 0106  
TMR3HLD 0108  
Bit 15  
Bit 14 Bit 13  
Bit 12  
Bit 11  
Bit 10 Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
Timer2 Register  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
uuuu uuuu uuuu uuuu  
1111 1111 1111 1111  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
Timer3 Holding Register (for 32-bit timer operations only)  
Timer3 Register  
TMR3  
PR2  
010A  
010C  
010E  
0110  
0112  
Period Register 2  
PR3  
Period Register 3  
T2CON  
T3CON  
TON  
TON  
TSIDL  
TSIDL  
TGATE TCKPS1 TCKPS0  
TGATE TCKPS1 TCKPS0  
T32  
TCS  
TCS  
Legend: u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F2011/2012/3012/3013  
NOTES:  
DS70139G-page 82  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
These operating modes are determined by setting the  
11.0 INPUT CAPTURE MODULE  
appropriate bits in the IC1CON and IC2CON registers.  
The dsPIC30F2011/2012/3012/3013 devices have two  
capture channels.  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
11.1 Simple Capture Event Mode  
The simple capture events in the dsPIC30F product  
family are:  
• Capture every falling edge  
• Capture every rising edge  
This section describes the input capture module and  
associated operational modes. The features provided  
by this module are useful in applications requiring  
frequency (period) and pulse measurement.  
• Capture every 4th rising edge  
• Capture every 16th rising edge  
• Capture every rising and falling edge  
Figure 11-1 depicts a block diagram of the input  
capture module. Input capture is useful for such modes  
as:  
These simple Input Capture modes are configured by  
setting the appropriate bits, ICM<2:0> (ICxCON<2:0>).  
11.1.1  
CAPTURE PRESCALER  
• Frequency/Period/Pulse Measurements  
• Additional Sources of External Interrupts  
There are four input capture prescaler settings  
specified by bits ICM<2:0> (ICxCON<2:0>). Whenever  
the capture channel is turned off, the prescaler counter  
is cleared. In addition, any Reset clears the prescaler  
counter.  
Important operational features of the input capture  
module are:  
• Simple Capture Event mode  
• Timer2 and Timer3 mode selection  
• Interrupt on input capture event  
(1)  
FIGURE 11-1:  
INPUT CAPTURE MODE BLOCK DIAGRAM  
T3_CNT  
16  
From GP Timer Module  
T2_CNT  
16  
ICTMR  
1
0
ICx pin  
Edge  
Detection  
Logic  
FIFO  
R/W  
Logic  
Prescaler  
1, 4, 16  
Clock  
Synchronizer  
ICM<2:0>  
Mode Select  
3
ICxBUF  
ICBNE, ICOV  
ICI<1:0>  
Interrupt  
Logic  
ICxCON  
Data Bus  
Set Flag  
ICxIF  
Note 1: Where ‘x’ is shown, reference is made to the registers or bits associated to the respective input capture  
channel (1 or 2).  
© 2010 Microchip Technology Inc.  
DS70139G-page 83  
dsPIC30F2011/2012/3012/3013  
11.1.2  
CAPTURE BUFFER OPERATION  
11.2 Input Capture Operation During  
Sleep and Idle Modes  
Each capture channel has an associated FIFO buffer  
which is four 16-bit words deep. There are two status  
flags which provide status on the FIFO buffer:  
An input capture event generates a device wake-up or  
interrupt, if enabled, if the device is in CPU Idle or Sleep  
mode.  
• ICBNE – Input Capture Buffer Not Empty  
• ICOV – Input Capture Overflow  
Independent of the timer being enabled, the input  
capture module wakes up from the CPU Sleep or Idle  
mode when a capture event occurs if ICM<2:0> = 111  
and the interrupt enable bit is asserted. The same  
wake-up can generate an interrupt if the conditions for  
processing the interrupt have been satisfied.  
The wake-up feature is useful as a method of adding  
extra external pin interrupts.  
The ICBNE is set on the first input capture event and  
remains set until all capture events have been read  
from the FIFO. As each word is read from the FIFO, the  
remaining words are advanced by one position within  
the buffer.  
In the event that the FIFO is full with four capture  
events, and a fifth capture event occurs prior to a read  
of the FIFO, an overflow condition occurs and the ICOV  
bit is set to a logic ‘1’. The fifth capture event is lost and  
is not stored in the FIFO. No additional events are  
captured until all four events have been read from the  
buffer.  
11.2.1  
INPUT CAPTURE IN CPU SLEEP  
MODE  
CPU Sleep mode allows input capture module  
operation with reduced functionality. In the CPU Sleep  
mode, the ICI<1:0> bits are not applicable and the input  
capture module can only function as an external  
interrupt source.  
If a FIFO read is performed after the last read and no  
new capture event has been received, the read will  
yield indeterminate results.  
The capture module must be configured for interrupt  
only on rising edge (ICM<2:0> = 111) in order for the  
input capture module to be used while the device is in  
Sleep mode. The prescale settings of 4:1 or 16:1 are  
not applicable in this mode.  
11.1.3  
TIMER2 AND TIMER3 SELECTION  
MODE  
The input capture module consists of up to 8 input  
capture channels. Each channel can select between  
one of two timers for the time base, Timer2 or Timer3.  
11.2.2  
INPUT CAPTURE IN CPU IDLE  
MODE  
Selection of the timer resource is accomplished  
through SFR bit, ICTMR (ICxCON<7>). Timer3 is the  
default timer resource available for the input capture  
module.  
CPU Idle mode allows input capture module operation  
with full functionality. In the CPU Idle mode, the Interrupt  
mode selected by the ICI<1:0> bits is applicable, as well  
as the 4:1 and 16:1 capture prescale settings which are  
defined by control bits ICM<2:0>. This mode requires  
the selected timer to be enabled. Moreover, the ICSIDL  
bit must be asserted to a logic ‘0’.  
11.1.4  
HALL SENSOR MODE  
When the input capture module is set for capture on  
every edge, rising and falling, ICM<2:0> = 001, the  
following operations are performed by the input capture  
logic:  
If the input capture module is defined as  
ICM<2:0> = 111in CPU Idle mode, the input capture  
pin serves only as an external interrupt pin.  
• The input capture interrupt flag is set on every  
edge, rising and falling.  
• The interrupt on Capture mode setting bits,  
ICI<1:0>, is ignored since every capture  
generates an interrupt.  
11.3 Input Capture Interrupts  
The input capture channels have the ability to generate  
an interrupt based on the selected number of capture  
events. The selection number is set by control  
bits, ICI<1:0> (ICxCON<6:5>).  
• A capture overflow condition is not generated in  
this mode.  
Each channel provides an interrupt flag (ICxIF) bit. The  
respective capture channel interrupt flag is located in  
the corresponding IFSx register.  
Enabling an interrupt is accomplished via the  
respective capture channel interrupt enable (ICxIE) bit.  
The capture interrupt enable bit is located in the  
corresponding IEC Control register.  
DS70139G-page 84  
© 2010 Microchip Technology Inc.  
TABLE 11-1: INPUT CAPTURE REGISTER MAP  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Input 1 Capture Register  
ICTMR  
Input 2 Capture Register  
ICTMR  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
IC1BUF  
IC1CON  
IC2BUF  
IC2CON  
0140  
0142  
0144  
0146  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
uuuu uuuu uuuu uuuu  
0000 0000 0000 0000  
ICSIDL  
ICSIDL  
ICI<1:0>  
ICOV  
ICOV  
ICBNE  
ICBNE  
ICM<2:0>  
ICM<2:0>  
ICI<1:0>  
Legend: u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Note: Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F2011/2012/3012/3013  
NOTES:  
DS70139G-page 86  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
The key operational features of the output compare  
module include:  
12.0 OUTPUT COMPARE MODULE  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
• Timer2 and Timer3 Selection mode  
• Simple Output Compare Match mode  
• Dual Output Compare Match mode  
• Simple PWM mode  
• Output Compare During Sleep and Idle modes  
• Interrupt on Output Compare/PWM Event  
These operating modes are determined by setting the  
appropriate bits in the 16-bit OC1CON and OC2CON  
registers. The dsPIC30F2011/2012/3012/3013 devices  
have 2 compare channels.  
This section describes the output compare module and  
associated operational modes. The features provided  
by this module are useful in applications requiring  
operational modes, such as:  
OCxRS and OCxR in Figure 12-1 represent the Dual  
Compare registers. In the Dual Compare mode, the  
OCxR register is used for the first compare and OCxRS  
is used for the second compare.  
• Generation of Variable Width Output Pulses  
• Power Factor Correction  
Figure 12-1 depicts a block diagram of the output  
compare module.  
(1)  
FIGURE 12-1:  
OUTPUT COMPARE MODE BLOCK DIAGRAM  
Set Flag bit  
OCxIF  
OCxRS  
OCxR  
Output  
Logic  
S
R
Q
OCx  
Output  
Enable  
3
OCM<2:0>  
Mode Select  
Comparator  
OCFA  
(for x = 1, 2, 3 or 4)  
OCTSEL  
0
1
0
1
From GP  
Timer Module  
TMR2<15:0  
TMR3<15:0> T2P2_MATCH  
T3P3_MATCH  
Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare  
channel (1 or 2).  
© 2010 Microchip Technology Inc.  
DS70139G-page 87  
dsPIC30F2011/2012/3012/3013  
12.3.2  
CONTINUOUS PULSE MODE  
12.1 Timer2 and Timer3 Selection Mode  
For the user to configure the module for the generation  
of a continuous stream of output pulses, the following  
steps are required:  
Each output compare channel can select between one  
of two 16-bit timers, Timer2 or Timer3.  
The selection of the timers is controlled by the OCTSEL  
bit (OCxCON<3>). Timer2 is the default timer resource  
for the output compare module.  
• Determine instruction cycle time TCY.  
• Calculate desired pulse value based on TCY.  
• Calculate timer to start pulse width from timer start  
value of 0x0000.  
12.2 Simple Output Compare Match  
Mode  
• Write pulse width start and stop times into OCxR  
and OCxRS (x denotes channel 1 to N) Compare  
registers, respectively.  
When control bits OCM<2:0> (OCxCON<2:0>) = 001,  
010 or 011, the selected output compare channel is  
configured for one of three simple Output Compare  
Match modes:  
• Set Timer Period register to value equal to or  
greater than value in OCxRS Compare register.  
• Set OCM<2:0> = 101.  
• Compare forces I/O pin low  
• Compare forces I/O pin high  
• Compare toggles I/O pin  
• Enable timer, TON bit (TxCON<15>) = 1.  
12.4 Simple PWM Mode  
The OCxR register is used in these modes. The OCxR  
register is loaded with a value and is compared to the  
selected incrementing timer count. When a compare  
occurs, one of these Compare Match modes occurs. If  
the counter resets to zero before reaching the value in  
OCxR, the state of the OCx pin remains unchanged.  
When control bits OCM<2:0> (OCxCON<2:0>) = 110  
or 111, the selected output compare channel is  
configured for the PWM mode of operation. When  
configured for the PWM mode of operation, OCxR is  
the main latch (read-only) and OCxRS is the secondary  
latch. This enables glitchless PWM transitions.  
The user must perform the following steps in order to  
configure the output compare module for PWM  
operation:  
12.3 Dual Output Compare Match Mode  
When control bits OCM<2:0> (OCxCON<2:0>) = 100  
or 101, the selected output compare channel is  
configured for one of two Dual Output Compare modes,  
which are:  
1. Set the PWM period by writing to the appropriate  
period register.  
2. Set the PWM duty cycle by writing to the OCxRS  
register.  
• Single Output Pulse mode  
• Continuous Output Pulse mode  
3. Configure the output compare module for PWM  
operation.  
12.3.1  
SINGLE PULSE MODE  
4. Set the TMRx prescale value and enable the  
For the user to configure the module for the generation  
of a single output pulse, the following steps are  
required (assuming timer is off):  
Timer, TON bit (TxCON<15>) = 1.  
12.4.1  
INPUT PIN FAULT PROTECTION  
FOR PWM  
• Determine instruction cycle time TCY.  
• Calculate desired pulse width value based on TCY.  
When control bits OCM<2:0> (OCxCON<2:0>) = 111,  
the selected output compare channel is again  
configured for the PWM mode of operation with the  
additional feature of input Fault protection. While in this  
mode, if a logic ‘0’ is detected on the OCFA/B pin, the  
respective PWM output pin is placed in the high  
impedance input state. The OCFLT bit (OCxCON<4>)  
indicates whether a Fault condition has occurred. This  
state is maintained until both of the following events  
have occurred:  
• Calculate time to start pulse from timer start value  
of 0x0000.  
• Write pulse width start and stop times into OCxR  
and OCxRS Compare registers (x denotes  
channel 1 to N).  
• Set Timer Period register to value equal to or  
greater than value in OCxRS Compare register.  
• Set OCM<2:0> = 100.  
• Enable timer, TON bit (TxCON<15>) = 1.  
• The external Fault condition has been removed.  
To initiate another single pulse, issue another write to  
set OCM<2:0> = 100.  
• The PWM mode has been re-enabled by writing  
to the appropriate control bits.  
DS70139G-page 88  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
When the selected TMRx is equal to its respective  
period register, PRx, the following four events occur on  
the next increment cycle:  
12.4.2  
PWM PERIOD  
The PWM period is specified by writing to the PRx  
register. The PWM period can be calculated using  
Equation 12-1.  
• TMRx is cleared.  
• The OCx pin is set.  
EQUATION 12-1:  
- Exception 1: If PWM duty cycle is 0x0000,  
the OCx pin remains low.  
PWM period = [(PRx) + 1] • 4 • Tosc •  
(TMRx prescale value)  
- Exception 2: If duty cycle is greater than PRx,  
the pin remains high.  
• The PWM duty cycle is latched from OCxRS into  
OCxR.  
PWM frequency is defined as 1/[PWM period].  
• The corresponding timer interrupt flag is set.  
See Figure 12-2 for key PWM period comparisons.  
Timer3 is referred to in Figure 12-2 for clarity.  
FIGURE 12-2:  
PWM OUTPUT TIMING  
Period  
Duty Cycle  
TMR3 = PR3  
T3IF = 1  
(Interrupt Flag)  
TMR3 = PR3  
T3IF = 1  
(Interrupt Flag)  
OCxR = OCxRS  
OCxR = OCxRS  
TMR3 = Duty Cycle  
(OCxR)  
TMR3 = Duty Cycle  
(OCxR)  
© 2010 Microchip Technology Inc.  
DS70139G-page 89  
dsPIC30F2011/2012/3012/3013  
12.5 Output Compare Operation During  
CPU Sleep Mode  
12.7 Output Compare Interrupts  
The output compare channels have the ability to  
generate an interrupt on a compare match, for  
whichever Match mode has been selected.  
When the CPU enters Sleep mode, all internal clocks  
are stopped. Therefore, when the CPU enters the  
Sleep state, the output compare channel drives the pin  
to the active state that was observed prior to entering  
the CPU Sleep state.  
For all modes except the PWM mode, when a compare  
event occurs, the respective interrupt flag (OCxIF) is  
asserted and an interrupt is generated if enabled. The  
OCxIF bit is located in the corresponding IFS register  
and must be cleared in software. The interrupt is  
enabled via the respective compare interrupt enable  
(OCxIE) bit located in the corresponding IEC Control  
register.  
For example, if the pin was high when the CPU entered  
the Sleep state, the pin remains high. Likewise, if the  
pin was low when the CPU entered the Sleep state, the  
pin remains low. In either case, the output compare  
module resumes operation when the device wakes up.  
For the PWM mode, when an event occurs, the  
respective timer interrupt flag (T2IF or T3IF) is asserted  
and an interrupt is generated if enabled. The IF bit is  
located in the IFS0 register and must be cleared in  
software. The interrupt is enabled via the respective  
timer interrupt enable bit (T2IE or T3IE) located in the  
IEC0 Control register. The output compare interrupt  
flag is never set during the PWM mode of operation.  
12.6 Output Compare Operation During  
CPU Idle Mode  
When the CPU enters the Idle mode, the output  
compare module can operate with full functionality.  
The output compare channel operates during the CPU  
Idle mode if the OCSIDL bit (OCxCON<13>) is at logic  
0’ and the selected time base (Timer2 or Timer3) is  
enabled and the TSIDL bit of the selected timer is set  
to logic ‘0’.  
DS70139G-page 90  
© 2010 Microchip Technology Inc.  
TABLE 12-1: OUTPUT COMPARE REGISTER MAP  
SFR Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
OC1RS  
OC1R  
0180  
0182  
0184  
0186  
0188  
018A  
Output Compare 1 Secondary Register  
Output Compare 1 Main Register  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
OC1CON  
OC2RS  
OC2R  
OCSIDL  
OCSIDL  
OCFLT  
OCFLT  
OCTSEL  
OCTSEL  
OCM<2:0>  
OCM<2:0>  
Output Compare 2 Secondary Register  
Output Compare 2 Main Register  
OC2CON  
Legend:  
Note:  
— = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F2011/2012/3012/3013  
NOTES:  
DS70139G-page 92  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
In Master mode operation, SCK1 is a clock output. In  
Slave mode, it is a clock input.  
13.0 SPI™ MODULE  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
A series of eight (8) or sixteen (16) clock pulses shift  
out bits from the SPI1SR to SDO1 pin and  
simultaneously shift in data from SDI1 pin. An interrupt  
is generated when the transfer is complete and the  
interrupt flag bit (SPI1IF) is set. This interrupt can be  
disabled through the interrupt enable bit, SPI1IE.  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
The receive operation is double-buffered. When a  
complete byte is received, it is transferred from SPI1SR  
to SPI1BUF.  
The Serial Peripheral Interface (SPI™) module is a  
synchronous serial interface. It is useful for  
communicating with other peripheral devices, such as  
EEPROMs, shift registers, display drivers and A/D  
converters, or other microcontrollers. It is compatible  
with Motorola's SPI and SIOP interfaces. The  
dsPIC30F2011/2012/3012/3013 devices feature one  
SPI module, SPI1.  
If the receive buffer is full when new data is being  
transferred from SPI1SR to SPI1BUF, the module will  
set the SPIROV bit indicating an overflow condition.  
The transfer of the data from SPI1SR to SPI1BUF is not  
completed and the new data is lost. The module will not  
respond to SCL transitions while SPIROV is ‘1’, effec-  
tively disabling the module until SPI1BUF is read by  
user software.  
13.1 Operating Function Description  
Transmit writes are also double-buffered. The user  
writes to SPI1BUF. When the master or slave transfer  
is completed, the contents of the shift register  
(SPI1SR) are moved to the receive buffer. If any  
transmit data has been written to the buffer register, the  
contents of the transmit buffer are moved to SPI1SR.  
The received data is thus placed in SPI1BUF and the  
transmit data in SPI1SR is ready for the next transfer.  
Figure 13-1 is a simplified block diagram of the SPI  
module, which consists of a 16-bit shift register,  
SPI1SR, used for shifting data in and out, and a buffer  
register, SPI1BUF. Control register SPI1CON (not  
shown) configures the module. Additionally, status  
register SPI1STAT (not shown) indicates various status  
conditions.  
Note:  
See “dsPIC30F Family Reference  
Manual” (DS70046) for detailed  
information on the control and status  
registers.  
Note:  
Both the transmit buffer (SPI1TXB) and  
the receive buffer (SPI1RXB) are mapped  
to the same register address, SPI1BUF.  
Four I/O pins comprise the serial interface:  
• SDI1 (serial data input)  
• SDO1 (serial data output)  
• SCK1 (shift clock input or output)  
• SS1 (active-low slave select).  
© 2010 Microchip Technology Inc.  
DS70139G-page 93  
dsPIC30F2011/2012/3012/3013  
FIGURE 13-1:  
SPI BLOCK DIAGRAM  
Internal  
Data Bus  
Read  
Write  
SPIxBUF  
Transmit  
SPIxBUF  
Receive  
SPI1SR  
bit 0  
SDI1  
SDO1  
Shift  
Clock  
Clock  
Control  
Edge  
Select  
SS & FSYNC  
Control  
SS1  
Secondary  
Prescaler  
1:1 – 1:8  
Primary  
Prescaler  
1, 4, 16, 64  
FCY  
SCK1  
Enable Master Clock  
Figure 13-2 depicts the a master/slave connection  
between two processors. In Master mode, the clock is  
generated by prescaling the system clock. Data is  
transmitted as soon as a value is written to SPI1BUF.  
The interrupt is generated at the middle of the transfer  
of the last bit.  
13.1.2  
SDO1 DISABLE  
A control bit, DISSDO, is provided to the SPI1CON  
register to allow the SDO1 output to be disabled. This  
will allow the SPI module to be connected in an input  
only configuration. SDO1 can also be used for general  
purpose I/O.  
In Slave mode, data is transmitted and received as  
external clock pulses appear on SCK. Again, the  
interrupt is generated when the last bit is latched. If  
SS1 control is enabled, then transmission and  
reception are enabled only when SS1 = low. The SDO1  
output will be disabled in SS1 mode with SS1 high.  
13.2 Framed SPI Support  
The module supports a basic framed SPI protocol in  
Master or Slave mode. The control bit, FRMEN,  
enables framed SPI support and causes the SS1 pin to  
perform the Frame Synchronization Pulse (FSYNC)  
function. The control bit, SPIFSD, determines whether  
the SS1 pin is an input or an output (i.e., whether the  
module receives or generates the Frame  
Synchronization Pulse). The frame pulse is an  
active-high pulse for a single SPI clock cycle. When  
Frame Synchronization is enabled, the data  
transmission starts only on the subsequent transmit  
edge of the SPI clock.  
The clock provided to the module is (FOSC/4). This  
clock is then prescaled by the primary (PPRE<1:0>)  
and the secondary (SPRE<2:0>) prescale factors. The  
CKE bit determines whether transmit occurs on  
transition from active clock state to Idle clock state, or  
vice versa. The CKP bit selects the Idle state (high or  
low) for the clock.  
13.1.1  
WORD AND BYTE  
COMMUNICATION  
A control bit, MODE16 (SPI1CON<10>), allows the  
module to communicate in either 16-bit or 8-bit mode.  
16-bit operation is identical to 8-bit operation except  
that the number of bits transmitted is 16 instead of 8.  
The user software must disable the module prior to  
changing the MODE16 bit. The SPI module is reset  
when the MODE16 bit is changed by the user.  
A basic difference between 8-bit and 16-bit operation is  
that the data is transmitted out of bit 7 of the SPI1SR  
for 8-bit operation, and data is transmitted out of bit 15  
of the SPI1SR for 16-bit operation. In both modes, data  
is shifted into bit 0 of the SPI1SR.  
DS70139G-page 94  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 13-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master  
SPI Slave  
SDO1  
SDI1  
Serial Input Buffer  
(SPI1BUF)  
Serial Input Buffer  
(SPI1BUF)  
SDI1  
SDO1  
SCK1  
Shift Register  
(SPI1SR)  
Shift Register  
(SPI1SR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK1  
PROCESSOR 1  
PROCESSOR 2  
13.3 Slave Select Synchronization  
13.5 SPI Operation During CPU Idle  
Mode  
The SS1 pin allows a Synchronous Slave mode. The  
SPI must be configured in SPI Slave mode with SS1  
pin control enabled (SSEN = 1). When the SS1 pin is  
low, transmission and reception are enabled and the  
SDOx pin is driven. When SS1 pin goes high, the  
SDOx pin is no longer driven. Also, the SPI module is  
resynchronized, and all counters/control circuitry are  
reset. Therefore, when the SS1 pin is asserted low  
again, transmission/reception will begin at the MSb  
even if SS1 had been de-asserted in the middle of a  
transmit/receive.  
When the device enters Idle mode, all clock sources  
remain functional. The SPISIDL bit (SPI1STAT<13>)  
selects if the SPI module will stop or continue on idle. If  
SPISIDL = 0, the module will continue to operate when  
the CPU enters Idle mode. If SPISIDL = 1, the module  
will stop when the CPU enters Idle mode.  
13.4 SPI Operation During CPU Sleep  
Mode  
During Sleep mode, the SPI module is shut down. If the  
CPU enters Sleep mode while an SPI transaction is in  
progress, then the transmission and reception is  
aborted.  
The transmitter and receiver will stop in Sleep mode.  
However, register contents are not affected by entering  
or exiting Sleep mode.  
© 2010 Microchip Technology Inc.  
DS70139G-page 95  
TABLE 13-1: SPI1 REGISTER MAP  
SFR  
Name  
Addr. Bit 15 Bit 14  
Bit 13  
Bit 12 Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
SPI1STAT  
SPI1CON  
SPI1BUF  
Legend:  
Note:  
0220 SPIEN  
SPISIDL  
SPIROV  
CKP  
SPITBF SPIRBF 0000 0000 0000 0000  
0222  
0224  
FRMEN SPIFSD  
DISSDO MODE16 SMP  
CKE  
SSEN  
MSTEN SPRE2 SPRE1 SPRE0 PPRE1 PPRE0 0000 0000 0000 0000  
Transmit and Receive Buffer  
0000 0000 0000 0000  
— = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F2011/2012/3012/3013  
2
2
14.1.1  
VARIOUS I C MODES  
14.0 I C™ MODULE  
The following types of I2C operation are supported:  
Note:  
This data sheet summarizes features of  
• I2C slave operation with 7-bit addressing  
• I2C slave operation with 10-bit addressing  
• I2C master operation with 7-bit or 10-bit addressing  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
See the I2C programmer’s model (Figure 14-1).  
2
14.1.2  
PIN CONFIGURATION IN I C MODE  
I2C has a 2-pin interface; the SCL pin is clock and the  
SDA pin is data.  
The Inter-Integrated Circuit (I2CTM) module provides  
complete hardware support for both Slave and  
Multi-Master modes of the I2C serial communication  
standard, with a 16-bit interface.  
2
14.1.3  
I C REGISTERS  
I2CCON and I2CSTAT are control and status registers,  
respectively. The I2CCON register is readable and  
writable. The lower 6 bits of I2CSTAT are read-only.  
The remaining bits of the I2CSTAT are read/write.  
This module offers the following key features:  
• I2C interface supporting both master and slave  
operation.  
• I2C Slave mode supports 7-bit and 10-bit  
addressing.  
• I2C Master mode supports 7-bit and 10-bit  
addressing.  
• I2C port allows bidirectional transfers between  
master and slaves.  
• Serial clock synchronization for I2C port can be  
used as a handshake mechanism to suspend and  
resume serial transfer (SCLREL control).  
I2CRSR is the shift register used for shifting data,  
whereas I2CRCV is the buffer register to which data  
bytes are written, or from which data bytes are read.  
I2CRCV is the receive buffer as shown in Figure 14-1.  
I2CTRN is the transmit register to which bytes are  
written during a transmit operation, as shown in  
Figure 14-2.  
The I2CADD register holds the slave address. A Status  
bit, ADD10, indicates 10-bit Address mode. The  
I2CBRG acts as the Baud Rate Generator reload  
value.  
• I2C supports multi-master operation; detects bus  
collision and will arbitrate accordingly.  
In receive operations, I2CRSR and I2CRCV together  
form  
a double-buffered receiver. When I2CRSR  
14.1 Operating Function Description  
receives a complete byte, it is transferred to I2CRCV  
and an interrupt pulse is generated. During  
transmission, the I2CTRN is not double-buffered.  
The hardware fully implements all the master and slave  
functions of the I2C Standard and Fast mode  
specifications, as well as 7 and 10-bit addressing.  
Thus, the I2C module can operate either as a slave or  
a master on an I2C bus.  
Note:  
Following a Restart condition in 10-bit  
mode, the user only needs to match the  
first 7-bit address.  
FIGURE 14-1:  
PROGRAMMER’S MODEL  
I2CRCV (8 bits)  
Bit 0  
Bit 7  
I2CTRN (8 bits)  
Bit 0  
Bit 7  
Bit 8  
I2CBRG (9 bits)  
Bit 0  
I2CCON (16 bits)  
Bit 0  
Bit 15  
Bit 15  
I2CSTAT (16 bits)  
Bit 0  
I2CADD (10 bits)  
Bit 0  
Bit 9  
© 2010 Microchip Technology Inc.  
DS70139G-page 97  
dsPIC30F2011/2012/3012/3013  
2
FIGURE 14-2:  
I C™ BLOCK DIAGRAM  
Internal  
Data Bus  
I2CRCV  
Read  
Shift  
Clock  
SCL  
SDA  
I2CRSR  
LSB  
Addr_Match  
Match Detect  
I2CADD  
Write  
Read  
Start and  
Stop bit Detect  
Write  
Read  
Start, Restart,  
Stop bit Generate  
Collision  
Detect  
Write  
Read  
Acknowledge  
Generation  
Clock  
Stretching  
Write  
Read  
I2CTRN  
LSB  
Shift  
Clock  
Reload  
Control  
Write  
Read  
I2CBRG  
BRG Down  
Counter  
FCY  
DS70139G-page 98  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
14.2 I2C Module Addresses  
14.3.2  
SLAVE RECEPTION  
If the R_W bit received is a ‘0’ during an address  
match, then Receive mode is initiated. Incoming bits  
are sampled on the rising edge of SCL. After 8 bits are  
received, if I2CRCV is not full or I2COV is not set,  
I2CRSR is transferred to I2CRCV. ACK is sent on the  
ninth clock.  
The I2CADD register contains the Slave mode  
addresses. The register is a 10-bit register.  
If the A10M bit (I2CCON<10>) is ‘0’, the address is  
interpreted by the module as a 7-bit address. When an  
address is received, it is compared to the 7 LSb of the  
I2CADD register.  
If the RBF flag is set, indicating that I2CRCV is still  
holding data from a previous operation (RBF = 1), then  
ACK is not sent; however, the interrupt pulse is  
generated. In the case of an overflow, the contents of  
the I2CRSR are not loaded into the I2CRCV.  
If the A10M bit is ‘1’, the address is assumed to be a  
10-bit address. When an address is received, it will be  
compared with the binary value ‘11110 A9 A8’ (where  
A9and A8are two Most Significant bits of I2CADD). If  
that value matches, the next address will be compared  
with the Least Significant 8 bits of I2CADD, as specified  
in the 10-bit addressing protocol.  
Note:  
The I2CRCV will be loaded if the I2COV  
bit = 1and the RBF flag = 0. In this case,  
a read of the I2CRCV was performed but  
the user did not clear the state of the  
I2COV bit before the next receive  
occurred. The acknowledgement is not  
sent (ACK = 1) and the I2CRCV is  
updated.  
The 7-bit I2C Slave Addresses supported by the  
dsPIC30F are shown in Table 14-1.  
2
TABLE 14-1: 7-BIT I C™ SLAVE  
ADDRESSES  
0x00  
General call address or start byte  
Reserved  
0x01-0x03  
0x04-0x07  
0x04-0x77  
0x78-0x7b  
14.4 I2C 10-bit Slave Mode Operation  
Hs-mode Master codes  
Valid 7-bit addresses  
In 10-bit mode, the basic receive and transmit  
operations are the same as in the 7-bit mode. However,  
the criteria for address match is more complex.  
Valid 10-bit addresses (lower 7  
bits)  
The I2C specification dictates that a slave must be  
addressed for a write operation with two address bytes  
following a Start bit.  
0x7c-0x7f  
Reserved  
14.3 I2C 7-bit Slave Mode Operation  
The A10M bit is a control bit that signifies that the  
address in I2CADD is a 10-bit address rather than a 7-bit  
address. The address detection protocol for the first byte  
of a message address is identical for 7-bit and 10-bit  
messages, but the bits being compared are different.  
Once enabled (I2CEN = 1), the slave module will wait  
for a Start bit to occur (i.e., the I2C module is ‘Idle’).  
Following the detection of a Start bit, 8 bits are shifted  
into I2CRSR and the address is compared against  
I2CADD. In 7-bit mode (A10M = 0), bits I2CADD<6:0>  
are compared against I2CRSR<7:1> and I2CRSR<0>  
is the R_W bit. All incoming bits are sampled on the ris-  
ing edge of SCL.  
I2CADD holds the entire 10-bit address. Upon  
receiving an address following a Start bit, I2CRSR  
<7:3> is compared against a literal ‘11110’ (the default  
10-bit address) and I2CRSR<2:1> are compared  
against I2CADD<9:8>. If a match occurs and if  
R_W = 0, the interrupt pulse is sent. The ADD10 bit will  
be cleared to indicate a partial address match. If a  
match fails or R_W = 1, the ADD10 bit is cleared and  
the module returns to the Idle state.  
If an address match occurs, an acknowledgement will  
be sent, and the slave event interrupt flag (SI2CIF) is  
set on the falling edge of the ninth (ACK) bit. The  
address match does not affect the contents of the  
I2CRCV buffer or the RBF bit.  
The low byte of the address is then received and  
compared with I2CADD<7:0>. If an address match  
occurs, the interrupt pulse is generated and the ADD10  
bit is set, indicating a complete 10-bit address match. If  
an address match did not occur, the ADD10 bit is  
cleared and the module returns to the Idle state.  
14.3.1  
SLAVE TRANSMISSION  
If the R_W bit received is a ‘1’, then the serial port will  
go into Transmit mode. It will send ACK on the ninth bit  
and then hold SCL to ‘0’ until the CPU responds by  
writing to I2CTRN. SCL is released by setting the  
SCLREL bit, and 8 bits of data are shifted out. Data bits  
are shifted out on the falling edge of SCL, such that  
SDA is valid during SCL high. The interrupt pulse is  
sent on the falling edge of the ninth clock pulse,  
regardless of the status of the ACK received from the  
master.  
© 2010 Microchip Technology Inc.  
DS70139G-page 99  
dsPIC30F2011/2012/3012/3013  
Clock stretching takes place following the ninth clock of  
the receive sequence. On the falling edge of the ninth  
clock at the end of the ACK sequence, if the RBF bit is  
set, the SCLREL bit is automatically cleared, forcing  
the SCL output to be held low. The user’s ISR must set  
the SCLREL bit before reception is allowed to continue.  
By holding the SCL line low, the user has time to  
service the ISR and read the contents of the I2CRCV  
before the master device can initiate another receive  
sequence. This will prevent buffer overruns from  
occurring.  
14.4.1  
10-BIT MODE SLAVE  
TRANSMISSION  
Once a slave is addressed in this fashion with the full  
10-bit address (we will refer to this state as  
“PRIOR_ADDR_MATCH”), the master can begin  
sending data bytes for a slave reception operation.  
14.4.2  
10-BIT MODE SLAVE RECEPTION  
Once addressed, the master can generate a Repeated  
Start, reset the high byte of the address and set the  
R_W bit without generating a Stop bit, thus initiating a  
slave transmit operation.  
Note 1: If the user reads the contents of the  
I2CRCV, clearing the RBF bit before the  
falling edge of the ninth clock, the  
SCLREL bit will not be cleared and clock  
stretching will not occur.  
14.5 Automatic Clock Stretch  
In the Slave modes, the module can synchronize buffer  
reads and write to the master device by clock stretching.  
2: The SCLREL bit can be set in software  
regardless of the state of the RBF bit. The  
user should be careful to clear the RBF  
bit in the ISR before the next receive  
sequence in order to prevent an overflow  
condition.  
14.5.1  
TRANSMIT CLOCK STRETCHING  
Both 10-bit and 7-bit Transmit modes implement clock  
stretching by asserting the SCLREL bit after the falling  
edge of the ninth clock, if the TBF bit is cleared,  
indicating the buffer is empty.  
In Slave Transmit modes, clock stretching is always  
performed irrespective of the STREN bit.  
14.5.4  
CLOCK STRETCHING DURING  
10-BIT ADDRESSING (STREN = 1)  
Clock synchronization takes place following the ninth  
clock of the transmit sequence. If the device samples  
an ACK on the falling edge of the ninth clock and if the  
TBF bit is still clear, then the SCLREL bit is  
automatically cleared. The SCLREL being cleared to  
0’ will assert the SCL line low. The user’s ISR must set  
the SCLREL bit before transmission is allowed to  
continue. By holding the SCL line low, the user has time  
to service the ISR and load the contents of the I2CTRN  
before the master device can initiate another transmit  
sequence.  
Clock stretching takes place automatically during the  
addressing sequence. Because this module has a  
register for the entire address, it is not necessary for  
the protocol to wait for the address to be updated.  
After the address phase is complete, clock stretching  
will occur on each data receive or transmit sequence as  
was described earlier.  
14.6 Software Controlled Clock  
Stretching (STREN = 1)  
Note 1: If the user loads the contents of I2CTRN,  
setting the TBF bit before the falling edge  
of the ninth clock, the SCLREL bit will not  
be cleared and clock stretching will not  
occur.  
When the STREN bit is ‘1’, the SCLREL bit may be  
cleared by software to allow software to control the  
clock stretching. The logic will synchronize writes to the  
SCLREL bit with the SCL clock. Clearing the SCLREL  
bit will not assert the SCL output until the module  
detects a falling edge on the SCL output and SCL is  
sampled low. If the SCLREL bit is cleared by the user  
while the SCL line has been sampled low, the SCL  
output will be asserted (held low). The SCL output will  
remain low until the SCLREL bit is set, and all other  
devices on the I2C bus have de-asserted SCL. This  
ensures that a write to the SCLREL bit will not violate  
the minimum high time requirement for SCL.  
2: The SCLREL bit can be set in software,  
regardless of the state of the TBF bit.  
14.5.2  
RECEIVE CLOCK STRETCHING  
The STREN bit in the I2CCON register can be used to  
enable clock stretching in Slave Receive mode. When  
the STREN bit is set, the SCL pin will be held low at the  
end of each data receive sequence.  
If the STREN bit is ‘0’, a software write to the SCLREL  
bit will be disregarded and have no effect on the  
SCLREL bit.  
14.5.3  
CLOCK STRETCHING DURING  
7-BIT ADDRESSING (STREN = 1)  
When the STREN bit is set in Slave Receive mode, the  
SCL line is held low when the buffer register is full. The  
method for stretching the SCL output is the same for  
both 7 and 10-bit addressing modes.  
DS70139G-page 100  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
14.7 Interrupts  
14.11 I2C Master Support  
The I2C module generates two interrupt flags, MI2CIF  
(I2C Master Interrupt Flag) and SI2CIF (I2C Slave  
Interrupt Flag). The MI2CIF interrupt flag is activated  
on completion of a master message event. The SI2CIF  
interrupt flag is activated on detection of a message  
directed to the slave.  
As a master device, six operations are supported:  
• Assert a Start condition on SDA and SCL.  
• Assert a Restart condition on SDA and SCL.  
• Write to the I2CTRN register initiating  
transmission of data/address.  
• Generate a Stop condition on SDA and SCL.  
• Configure the I2C port to receive data.  
14.8 Slope Control  
• Generate an ACK condition at the end of a  
received byte of data.  
The I2C standard requires slope control on the SDA  
and SCL signals for Fast mode (400 kHz). The control  
bit, DISSLW, enables the user to disable slew rate  
control if desired. It is necessary to disable the slew  
rate control for 1 MHz mode.  
14.12 I2C Master Operation  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
14.9 IPMI Support  
The control bit, IPMIEN, enables the module to support  
Intelligent Peripheral Management Interface (IPMI).  
When this bit is set, the module accepts and acts upon  
all addresses.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the data direction bit. In  
this case, the data direction bit (R_W) is logic ‘0’. Serial  
data is transmitted 8 bits at a time. After each byte is  
transmitted, an ACK bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
14.10 General Call Address Support  
The general call address can address all devices.  
When this address is used, all devices should, in  
theory, respond with an acknowledgement.  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R_W = 0.  
In Master Receive mode, the first byte transmitted  
contains the slave address of the transmitting device  
(7 bits) and the data direction bit. In this case, the data  
direction bit (R_W) is logic ‘1’. Thus, the first byte  
transmitted is a 7-bit slave address, followed by a ‘1’ to  
indicate receive bit. Serial data is received via SDA  
while SCL outputs the serial clock. Serial data is  
received 8 bits at a time. After each byte is received, an  
ACK bit is transmitted. Start and Stop conditions  
indicate the beginning and end of transmission.  
The general call address is recognized when the  
General Call Enable (GCEN) bit is set  
(I2CCON<7> = 1). Following a Start bit detection, 8 bits  
are shifted into I2CRSR and the address is compared  
with I2CADD, and is also compared with the general  
call address which is fixed in hardware.  
If a general call address match occurs, the I2CRSR is  
transferredtotheI2CRCVaftertheeighthclock,theRBF  
flag is set and on the falling edge of the ninth bit (ACK  
bit), the master event interrupt flag (MI2CIF) is set.  
2
14.12.1 I C MASTER TRANSMISSION  
When the interrupt is serviced, the source for the  
interrupt can be checked by reading the contents of the  
I2CRCV to determine if the address was device  
specific or a general call address.  
Transmission of a data byte, a 7-bit address, or the sec-  
ond half of a 10-bit address, is accomplished by simply  
writing a value to I2CTRN register. The user should  
only write to I2CTRN when the module is in a WAIT  
state. This action will set the Buffer Full Flag (TBF) and  
allow the Baud Rate Generator to begin counting and  
start the next transmission. Each bit of address/data  
will be shifted out onto the SDA pin after the falling  
edge of SCL is asserted. The Transmit Status Flag,  
TRSTAT (I2CSTAT<14>), indicates that a master  
transmit is in progress.  
© 2010 Microchip Technology Inc.  
DS70139G-page 101  
dsPIC30F2011/2012/3012/3013  
2
If a transmit was in progress when the bus collision  
14.12.2 I C MASTER RECEPTION  
occurred, the transmission is halted, the TBF flag is  
cleared, the SDA and SCL lines are de-asserted and a  
value can now be written to I2CTRN. When the user  
services the I2C master event Interrupt Service  
Routine, if the I2C bus is free (i.e., the P bit is set), the  
user can resume communication by asserting a Start  
condition.  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN (I2CCON<3>). The I2C  
module must be Idle before the RCEN bit is set,  
otherwise the RCEN bit will be disregarded. The Baud  
Rate Generator begins counting and on each rollover,  
the state of the SCL pin ACK and data are shifted into  
the I2CRSR on the rising edge of each clock.  
If a Start, Restart, Stop or Acknowledge condition was  
in progress when the bus collision occurred, the  
condition is aborted, the SDA and SCL lines are  
de-asserted, and the respective control bits in the  
I2CCON register are cleared to ‘0’. When the user  
services the bus collision Interrupt Service Routine,  
and if the I2C bus is free, the user can resume  
communication by asserting a Start condition.  
14.12.3 BAUD RATE GENERATOR  
In I2C Master mode, the reload value for the BRG is  
located in the I2CBRG register. When the BRG is  
loaded with this value, the BRG counts down to ‘0’ and  
stops until another reload has taken place. If clock  
arbitration is taking place, for instance, the BRG is  
reloaded when the SCL pin is sampled high.  
The master will continue to monitor the SDA and SCL  
pins, and if a Stop condition occurs, the MI2CIF bit will  
be set.  
As per the I2C standard, FSCK may be 100 kHz or  
400 kHz. However, the user can specify any baud rate  
up to 1 MHz. I2CBRG values of ‘0’ or ‘1’ are illegal.  
A write to the I2CTRN will start the transmission of data  
at the first data bit regardless of where the transmitter  
left off when bus collision occurred.  
EQUATION 14-1: SERIAL CLOCK RATE  
In a multi-master environment, the interrupt generation  
on the detection of Start and Stop conditions allows the  
determination of when the bus is free. Control of the I2C  
bus can be taken when the P bit is set in the I2CSTAT  
register, or the bus is Idle and the S and P bits are  
cleared.  
FCY  
FSCL  
FCY  
1,111,111  
I2CBRG =  
1  
(
)
14.12.4 CLOCK ARBITRATION  
Clock arbitration occurs when the master de-asserts  
the SCL pin (SCL allowed to float high) during any  
receive, transmit, or Restart/Stop condition. When the  
SCL pin is allowed to float high, the Baud Rate  
Generator (BRG) is suspended from counting until the  
SCL pin is actually sampled high. When the SCL pin is  
sampled high, the Baud Rate Generator is reloaded  
with the contents of I2CBRG and begins counting. This  
ensures that the SCL high time will always be at least  
one BRG rollover count in the event that the clock is  
held low by an external device.  
14.13 I2C Module Operation During CPU  
Sleep and Idle Modes  
2
14.13.1 I C OPERATION DURING CPU  
SLEEP MODE  
When the device enters Sleep mode, all clock sources  
to the module are shut down and stay at logic ‘0’. If  
Sleep occurs in the middle of a transmission and the  
state machine is partially into a transmission as the  
clocks stop, then the transmission is aborted. Similarly,  
if Sleep occurs in the middle of a reception, then the  
reception is aborted.  
14.12.5 MULTI-MASTER COMMUNICATION,  
BUS COLLISION, AND BUS  
ARBITRATION  
2
14.13.2 I C OPERATION DURING CPU IDLE  
Multi-master operation support is achieved by bus  
arbitration. When the master outputs address/data bits  
onto the SDA pin, arbitration takes place when the  
master outputs a ‘1’ on SDA by letting SDA float high  
while another master asserts a ‘0’. When the SCL pin  
floats high, data should be stable. If the expected data  
on SDA is a ‘1’ and the data sampled on the SDA  
pin = 0, then a bus collision has taken place. The  
master will set the MI2CIF pulse and reset the master  
portion of the I2C port to its Idle state.  
MODE  
For the I2C, the I2CSIDL bit selects if the module will  
stop on Idle or continue on Idle. If I2CSIDL = 0, the  
module will continue operation on assertion of the Idle  
mode. If I2CSIDL = 1, the module will stop on Idle.  
DS70139G-page 102  
© 2010 Microchip Technology Inc.  
2
TABLE 14-2: I C REGISTER MAP  
SFR Name Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
I2CRCV  
I2CTRN  
I2CBRG  
I2CCON  
I2CSTAT  
I2CADD  
Legend:  
Note:  
0200  
0202  
0204  
0206  
Receive Register  
Transmit Register  
0000 0000 0000 0000  
0000 0000 1111 1111  
0000 0000 0000 0000  
Baud Rate Generator  
GCEN STREN ACKDT ACKEN RCEN  
GCSTAT ADD10 IWCOL I2COV D_A  
Address Register  
I2CEN  
I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN  
PEN  
R_W  
RSEN  
RBF  
SEN 0001 0000 0000 0000  
0208 ACKSTAT TRSTAT  
020A  
BCL  
P
S
TBF  
0000 0000 0000 0000  
0000 0000 0000 0000  
— = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F2011/2012/3012/3013  
NOTES:  
DS70139G-page 104  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
15.1 UART Module Overview  
15.0 UNIVERSAL ASYNCHRONOUS  
RECEIVER TRANSMITTER  
(UART) MODULE  
The key features of the UART module are:  
• Full-duplex, 8 or 9-bit data communication  
• Even, odd or no parity options (for 8-bit data)  
• One or two Stop bits  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
• Fully integrated Baud Rate Generator with 16-bit  
prescaler  
• Baud rates range from 38 bps to 1.875 Mbps at a  
30 MHz instruction rate  
• 4-word deep transmit data buffer  
• 4-word deep receive data buffer  
This section describes the Universal Asynchronous  
Receiver/Transmitter Communications module. The  
dsPIC30F2011/2012/3012 processors have one UART  
module (UART1). The dsPIC30F3013 processor has  
two UART modules (UART1 and UART2).  
• Parity, framing and buffer overrun error detection  
• Support for interrupt only on address detect  
(9th bit = 1)  
• Separate transmit and receive interrupts  
• Loopback mode for diagnostic support  
• Alternate receive and transmit pins for UART1  
FIGURE 15-1:  
UART TRANSMITTER BLOCK DIAGRAM  
Internal Data Bus  
Control and Status bits  
Write  
Write  
UTX8 UxTXREG Low Byte  
Transmit Control  
– Control TSR  
– Control Buffer  
– Generate Flags  
– Generate Interrupt  
Load TSR  
UxTXIF  
UTXBRK  
Data  
Transmit Shift Register (UxTSR)  
0’ (Start)  
1’ (Stop)  
UxTX  
16x Baud Clock  
from Baud Rate  
Generator  
Parity  
Generator  
16 Divider  
Parity  
Control  
Signals  
Note:  
x = 1 or 2.  
© 2010 Microchip Technology Inc.  
DS70139G-page 105  
dsPIC30F2011/2012/3012/3013  
FIGURE 15-2:  
UART RECEIVER BLOCK DIAGRAM  
Internal Data Bus  
16  
Write  
Read  
Read Read  
Write  
UxMODE  
UxSTA  
UxRXREG Low Byte  
URX8  
Receive Buffer Control  
– Generate Flags  
– Generate Interrupt  
– Shift Data Characters  
8-9  
LPBACK  
From UxTX  
Load RSR  
to Buffer  
Receive Shift Register  
(UxRSR)  
1
0
Control  
Signals  
UxRX  
· Start bit Detect  
· Parity Check  
· Stop bit Detect  
· Shift Clock Generation  
· Wake Logic  
16 Divider  
16x Baud Clock from  
Baud Rate Generator  
UxRXIF  
DS70139G-page 106  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
15.2 Enabling and Setting Up UART  
15.3 Transmitting Data  
15.2.1  
ENABLING THE UART  
15.3.1  
TRANSMITTING IN 8-BIT DATA  
MODE  
The UART module is enabled by setting the UARTEN  
bit in the UxMODE register (where x = 1 or 2). Once  
enabled, the UxTX and UxRX pins are configured as an  
output and an input respectively, overriding the TRIS  
and LAT register bit settings for the corresponding I/O  
port pins. The UxTX pin is at logic ‘1’ when no  
transmission is taking place.  
The following steps must be performed to transmit 8-bit  
data:  
1. Set up the UART:  
First, the data length, parity and number of Stop  
bits must be selected. Then, the transmit and  
receive interrupt enable and priority bits are  
setup in the UxMODE and UxSTA registers.  
Also, the appropriate baud rate value must be  
written to the UxBRG register.  
15.2.2  
DISABLING THE UART  
The UART module is disabled by clearing the UARTEN  
bit in the UxMODE register. This is the default state  
after any Reset. If the UART is disabled, all I/O pins  
operate as port pins under the control of the LAT and  
TRIS bits of the corresponding port pins.  
2. Enable the UART by setting the UARTEN bit  
(UxMODE<15>).  
3. Set the UTXEN bit (UxSTA<10>), thereby  
enabling a transmission.  
Disabling the UART module resets the buffers to empty  
states. Any data characters in the buffers are lost and  
the baud rate counter is reset.  
4. Write the byte to be transmitted to the lower byte  
of UxTXREG. The value will be transferred to the  
Transmit Shift register (UxTSR) immediately  
and the serial bit stream will start shifting out  
during the next rising edge of the baud clock.  
Alternatively, the data byte may be written while  
UTXEN = 0, following which, the user may set  
UTXEN. This will cause the serial bit stream to  
begin immediately because the baud clock will  
start from a cleared state.  
All error and status flags associated with the UART  
module are reset when the module is disabled. The  
URXDA, OERR, FERR, PERR, UTXEN, UTXBRK and  
UTXBF bits are cleared, whereas RIDLE and TRMT  
are set. Other control bits, including ADDEN,  
URXISEL<1:0>, UTXISEL, as well as the UxMODE  
and UxBRG registers, are not affected.  
5.  
A
transmit interrupt will be generated,  
Clearing the UARTEN bit while the UART is active will  
abort all pending transmissions and receptions and  
reset the module as defined above. Re-enabling the  
UART will restart the UART in the same configuration.  
depending on the value of the interrupt control  
bit UTXISEL (UxSTA<15>).  
15.3.2  
TRANSMITTING IN 9-BIT DATA  
MODE  
15.2.3  
ALTERNATE I/O  
The sequence of steps involved in the transmission  
of 9-bit data is similar to 8-bit transmission, except that  
a 16-bit data word (of which the upper 7 bits are always  
clear) must be written to the UxTXREG register.  
The alternate I/O function is enabled by setting the  
ALTIO bit (UxMODE<10>). If ALTIO = 1, the UxATX  
and UxARX pins (alternate transmit and alternate  
receive pins, respectively) are used by the UART  
module instead of the UxTX and UxRX pins. If  
ALTIO = 0, the UxTX and UxRX pins are used by the  
UART module.  
15.3.3  
TRANSMIT BUFFER (UXTXB)  
The transmit buffer is 9 bits wide and 4 characters deep.  
Including the Transmit Shift register (UxTSR), the user  
effectively has a 5-deep FIFO (First-In, First- Out) buffer.  
The UTXBF bit (UxSTA<9>) indicates whether the  
transmit buffer is full.  
15.2.4  
SETTING UP DATA, PARITY AND  
STOP BIT SELECTIONS  
Control bits PDSEL<1:0> in the UxMODE register are  
used to select the data length and parity used in the  
transmission. The data length may either be 8 bits with  
even, odd or no parity, or 9 bits with no parity.  
If a user attempts to write to a full buffer, the new data  
will not be accepted into the FIFO and no data shift will  
occur within the buffer. This enables recovery from a  
buffer overrun condition.  
The STSEL bit determines whether one or two Stop bits  
will be used during data transmission.  
The FIFO is reset during any device Reset, but is not  
affected when the device enters or wakes up from a  
Power Saving mode.  
The default (power-on) setting of the UART is 8 bits, no  
parity and 1 Stop bit (typically represented as 8, N, 1).  
© 2010 Microchip Technology Inc.  
DS70139G-page 107  
dsPIC30F2011/2012/3012/3013  
15.3.4  
TRANSMIT INTERRUPT  
15.4.2  
RECEIVE BUFFER (UXRXB)  
The transmit interrupt flag (U1TXIF or U2TXIF) is  
located in the corresponding interrupt flag register.  
The receive buffer is 4 words deep. Including the  
Receive Shift register (UxRSR), the user effectively  
has a 5-word deep FIFO buffer.  
The transmitter generates an edge to set the UxTXIF  
bit. The condition for generating the interrupt depends  
on the UTXISEL control bit:  
URXDA (UxSTA<0>) = 1 indicates that the receive  
buffer has data available. URXDA = 0implies that the  
buffer is empty. If a user attempts to read an empty  
buffer, the old values in the buffer will be read and no  
data shift will occur within the FIFO.  
a) If UTXISEL = 0, an interrupt is generated when  
a word is transferred from the transmit buffer to  
the Transmit Shift register (UxTSR). This means  
that the transmit buffer has at least one empty  
word.  
The FIFO is reset during any device Reset. It is not  
affected when the device enters or wakes up from a  
Power Saving mode.  
b) If UTXISEL = 1, an interrupt is generated when  
a word is transferred from the transmit buffer to  
the Transmit Shift register (UxTSR) and the  
transmit buffer is empty.  
15.4.3  
RECEIVE INTERRUPT  
The receive interrupt flag (U1RXIF or U2RXIF) can be  
read from the corresponding interrupt flag register. The  
interrupt flag is set by an edge generated by the  
receiver. The condition for setting the receive interrupt  
flag depends on the settings specified by  
the URXISEL<1:0> (UxSTA<7:6>) control bits.  
Switching between the two Interrupt modes during  
operation is possible and sometimes offers more  
flexibility.  
15.3.5  
TRANSMIT BREAK  
a) If URXISEL<1:0> = 00 or 01, an interrupt is  
generated every time a data word is transferred  
from the Receive Shift register (UxRSR) to the  
receive buffer. There may be one or more  
characters in the receive buffer.  
Setting the UTXBRK bit (UxSTA<11>) will cause the  
UxTX line to be driven to logic ‘0’. The UTXBRK bit  
overrides all transmission activity. Therefore, the user  
should generally wait for the transmitter to be Idle  
before setting UTXBRK.  
b) If URXISEL<1:0> = 10, an interrupt is generated  
when a word is transferred from the Receive Shift  
register (UxRSR) to the receive buffer, which as a  
result of the transfer, contains 3 characters.  
To send a Break character, the UTXBRK bit must be set  
by software and must remain set for a minimum of 13  
baud clock cycles. The UTXBRK bit is then cleared by  
software to generate Stop bits. The user must wait for  
a duration of at least one or two baud clock cycles in  
order to ensure a valid Stop bit(s) before reloading the  
UxTXB, or starting other transmitter activity.  
Transmission of a Break character does not generate a  
transmit interrupt.  
c) If URXISEL<1:0> = 11, an interrupt is set when  
a word is transferred from the Receive Shift  
register (UxRSR) to the receive buffer, which as  
a result of the transfer, contains 4 characters  
(i.e., becomes full).  
Switching between the Interrupt modes during  
operation is possible, though generally not advisable  
during normal operation.  
15.4 Receiving Data  
15.4.1  
RECEIVING IN 8-BIT OR 9-BIT  
DATA MODE  
15.5 Reception Error Handling  
The following steps must be performed while receiving  
8-bit or 9-bit data:  
15.5.1  
RECEIVE BUFFER OVERRUN  
ERROR (OERR BIT)  
1. Set up the UART (see Section 15.3.1  
“Transmitting in 8-bit data mode”).  
The OERR bit (UxSTA<1>) is set if all of the following  
conditions occur:  
2. Enable the UART (see Section 15.3.1  
“Transmitting in 8-bit data mode”).  
a) The receive buffer is full.  
3. A receive interrupt will be generated when one  
ormoredatawordshavebeenreceived, depend-  
ing on the receive interrupt settings specified by  
the URXISEL bits (UxSTA<7:6>).  
b) The Receive Shift register is full, but unable to  
transfer the character to the receive buffer.  
c) The Stop bit of the character in the UxRSR is  
detected, indicating that the UxRSR needs to  
transfer the character to the buffer.  
4. ReadtheOERRbittodetermineifanoverrunerror  
hasoccurred. TheOERRbitmustberesetinsoft-  
ware.  
Once OERR is set, no further data is shifted in UxRSR  
(until the OERR bit is cleared in software or a Reset  
occurs). The data held in UxRSR and UxRXREG  
remains valid.  
5. Read the received data from UxRXREG. The act  
of reading UxRXREG will move the next word to  
the top of the receive FIFO, and the PERR and  
FERR values will be updated.  
DS70139G-page 108  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
15.5.2  
FRAMING ERROR (FERR)  
15.7 Loopback Mode  
The FERR bit (UxSTA<2>) is set if a ‘0’ is detected  
instead of a Stop bit. If two Stop bits are selected, both  
Stop bits must be ‘1’, otherwise FERR will be set. The  
read-only FERR bit is buffered along with the received  
data. It is cleared on any Reset.  
Setting the LPBACK bit enables this special mode in  
which the UxTX pin is internally connected to the UxRX  
pin. When configured for the Loopback mode, the  
UxRX pin is disconnected from the internal UART  
receive logic. However, the UxTX pin still functions as  
in a normal operation.  
15.5.3  
PARITY ERROR (PERR)  
To select this mode:  
The PERR bit (UxSTA<3>) is set if the parity of the  
received word is incorrect. This error bit is applicable  
only if a Parity mode (odd or even) is selected. The  
read-only PERR bit is buffered along with the received  
data bytes. It is cleared on any Reset.  
a) Configure UART for desired mode of operation.  
b) Set LPBACK = 1to enable Loopback mode.  
c) Enable transmission as defined in Section 15.3  
“Transmitting Data”.  
15.5.4  
IDLE STATUS  
15.8 Baud Rate Generator  
When the receiver is active (i.e., between the initial  
detection of the Start bit and the completion of the Stop  
bit), the RIDLE bit (UxSTA<4>) is ‘0’. Between the com-  
pletion of the Stop bit and detection of the next Start bit,  
the RIDLE bit is ‘1’, indicating that the UART is Idle.  
The UART has a 16-bit Baud Rate Generator to allow  
maximum flexibility in baud rate generation. The Baud  
Rate Generator register (UxBRG) is readable and  
writable. The baud rate is computed as follows:  
BRG = 16-bit value held in UxBRG register  
(0 through 65535)  
15.5.5  
RECEIVE BREAK  
The receiver will count and expect a certain number of  
bittimesbasedonthevaluesprogrammedinthePDSEL  
(UxMODE<2:1>) and STSEL (UxMODE<0>) bits.  
FCY = Instruction Clock Rate (1/TCY)  
The baud rate is given by Equation 15-1.  
If the break is longer than 13 bit times, the reception is  
considered complete after the number of bit times  
specified by PDSEL and STSEL. The URXDA bit is set,  
FERR is set, zeros are loaded into the receive FIFO,  
interrupts are generated if appropriate and the RIDLE  
bit is set.  
EQUATION 15-1: BAUD RATE  
Baud Rate = FCY / (16*(BRG+1))  
Therefore, the maximum baud rate possible is:  
FCY /16 (if BRG = 0),  
When the module receives a long break signal and the  
receiver has detected the Start bit, the data bits and the  
invalid Stop bit (which sets the FERR), the receiver  
must wait for a valid Stop bit before looking for the next  
Start bit. It cannot assume that the break condition on  
the line is the next Start bit.  
and the minimum baud rate possible is:  
FCY / (16* 65536).  
With a full 16-bit Baud Rate Generator at 30 MIPS  
operation, the minimum baud rate achievable is  
28.5 bps.  
Break is regarded as a character containing all ‘0’s with  
the FERR bit set. The Break character is loaded into  
the buffer. No further reception can occur until a Stop bit  
is received. Note that RIDLE goes high when the Stop  
bit has not yet been received.  
15.9 Auto-Baud Support  
To allow the system to determine baud rates of  
received characters, the input can be optionally linked  
to a selected capture input (IC1 for UART1 and IC2 for  
UART2). To enable this mode, you must program the  
input capture module to detect the falling and rising  
edges of the Start bit.  
15.6 Address Detect Mode  
Setting the ADDEN bit (UxSTA<5>) enables this  
special mode in which a 9th bit (URX8) value of ‘1’  
identifies the received word as an address, rather than  
data. This mode is only applicable for 9-bit data  
communication. The URXISEL control bit does not  
have any impact on interrupt generation in this mode  
since an interrupt (if enabled) will be generated every  
time the received word has the 9th bit set.  
© 2010 Microchip Technology Inc.  
DS70139G-page 109  
dsPIC30F2011/2012/3012/3013  
15.10 UART Operation During CPU  
Sleep and Idle Modes  
15.10.1 UART OPERATION DURING CPU  
SLEEP MODE  
When the device enters Sleep mode, all clock sources  
to the module are shut down and stay at logic ‘0’. If  
entry into Sleep mode occurs while a transmission is in  
progress, then the transmission is aborted. The UxTX  
pin is driven to logic ‘1’. Similarly, if entry into Sleep  
mode occurs while a reception is in progress, then the  
reception is aborted. The UxSTA, UxMODE, transmit  
and receive registers and buffers, and the UxBRG  
register are not affected by Sleep mode.  
If the WAKE bit (UxMODE<7>) is set before the device  
enters Sleep mode, then a falling edge on the UxRX pin  
will generate a receive interrupt. The Receive Interrupt  
Select mode bit (URXISEL) has no effect for this  
function. If the receive interrupt is enabled, then this will  
wake-up the device from Sleep. The UARTEN bit must  
be set in order to generate a wake-up interrupt.  
15.10.2 UART OPERATION DURING CPU  
IDLE MODE  
For the UART, the USIDL bit selects if the module will  
stop operation when the device enters Idle mode or  
whether the module will continue on Idle. If USIDL = 0,  
the module will continue to operate during Idle mode. If  
USIDL = 1, the module will stop on Idle.  
DS70139G-page 110  
© 2010 Microchip Technology Inc.  
TABLE 15-1: UART1 REGISTER MAP FOR dsPIC30F2011/2012/3012/3013  
SFR Name Addr.  
Bit 15  
Bit 14 Bit 13 Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
U1MODE  
U1STA  
020C UARTEN  
020E UTXISEL  
USIDL  
ALTIO  
WAKE  
LPBACK ABAUD  
PDSEL1 PDSEL0 STSEL 0000 0000 0000 0000  
UTXBRK UTXEN UTXBF  
TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR  
FERR  
OERR URXDA 0000 0001 0001 0000  
0000 000u uuuu uuuu  
U1TXREG 0210  
U1RXREG 0212  
UTX8  
Transmit Register  
Receive Register  
URX8  
0000 0000 0000 0000  
U1BRG  
0214  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Baud Rate Generator Prescaler  
0000 0000 0000 0000  
Legend:  
(1)  
TABLE 15-2: UART2 REGISTER MAP FOR dsPIC30F3013  
SFR  
Name  
Addr.  
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
U2MODE  
U2STA  
0216 UARTEN  
0218 UTXISEL  
USIDL  
WAKE  
LPBACK ABAUD  
PDSEL1 PDSEL0 STSEL 0000 0000 0000 0000  
UTXBRK UTXEN UTXBF  
TRMT URXISEL1 URXISEL0 ADDEN RIDLE PERR  
FERR  
OERR URXDA 0000 0001 0001 0000  
0000 000u uuuu uuuu  
U2TXREG 021A  
U2RXREG 021C  
UTX8  
Transmit Register  
Receive Register  
URX8  
0000 0000 0000 0000  
U2BRG  
021E  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
UART2 is not available on dsPIC30F2011/2012/3012 devices.  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
Baud Rate Generator Prescaler  
0000 0000 0000 0000  
Legend:  
Note 1:  
2:  
dsPIC30F2011/2012/3012/3013  
NOTES:  
DS70139G-page 112  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
The ADC module has six 16-bit registers:  
16.0 12-BIT ANALOG-TO-DIGITAL  
• A/D Control Register 1 (ADCON1)  
• A/D Control Register 2 (ADCON2)  
• A/D Control Register 3 (ADCON3)  
• A/D Input Select Register (ADCHS)  
• A/D Port Configuration Register (ADPCFG)  
• A/D Input Scan Selection Register (ADCSSL)  
CONVERTER (ADC) MODULE  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046).  
The ADCON1, ADCON2 and ADCON3 registers  
control the operation of the ADC module. The ADCHS  
register selects the input channels to be converted. The  
ADPCFG register configures the port pins as analog  
inputs or as digital I/O. The ADCSSL register selects  
inputs for scanning.  
The 12-bit Analog-to-Digital Converter allows  
conversion of an analog input signal to a 12-bit digital  
number. This module is based on a Successive  
Approximation Register (SAR) architecture and  
provides a maximum sampling rate of 200 ksps. The  
ADC module has up to 10 analog inputs which are  
multiplexed into a sample and hold amplifier. The  
output of the sample and hold is the input into the  
converter which generates the result. The analog  
reference voltage is software selectable to either the  
device supply voltage (AVDD/AVSS) or the voltage level  
on the (VREF+/VREF-) pin. The ADC has a unique  
feature of being able to operate while the device is in  
Sleep mode with RC oscillator selection.  
Note:  
The SSRC<2:0>, ASAM, SMPI<3:0>,  
BUFM and ALTS bits, as well as the  
ADCON3 and ADCSSL registers, must  
not be written to while ADON = 1. This  
would lead to indeterminate results.  
The block diagram of the 12-bit ADC module is shown  
in Figure 16-1.  
FIGURE 16-1:  
12-BIT ADC FUNCTIONAL BLOCK DIAGRAM  
AVDD/VREF+  
AVSS/VREF-  
Comparator  
DAC  
0000  
AN0  
0001  
0010  
0011  
AN1  
AN2  
AN3  
12-bit SAR  
Conversion Logic  
0100  
0101  
0110  
0111  
1000  
1001  
AN4  
AN5  
AN6  
AN7  
AN8  
AN9  
16-word, 12-bit  
Dual Port  
Buffer  
Sample/Sequence  
Control  
Sample  
CH0  
S/H  
Input  
Switches  
Input MUX  
Control  
© 2010 Microchip Technology Inc.  
DS70139G-page 113  
dsPIC30F2011/2012/3012/3013  
16.1 A/D Result Buffer  
16.3 Selecting the Conversion  
Sequence  
The module contains a 16-word dual port read-only  
buffer, called ADCBUF0...ADCBUFF, to buffer the A/D  
results. The RAM is 12 bits wide but the data obtained  
is represented in one of four different 16-bit data  
formats. The contents of the sixteen A/D Conversion  
Result Buffer registers, ADCBUF0 through ADCBUFF,  
cannot be written by user software.  
Several groups of control bits select the sequence in  
which the A/D connects inputs to the sample/hold  
channel, converts a channel, writes the buffer memory  
and generates interrupts.  
The sequence is controlled by the sampling clocks.  
The  
SMPI  
bits  
select  
the  
number  
of  
acquisition/conversion sequences that would be per-  
formed before an interrupt occurs. This can vary from 1  
sample per interrupt to 16 samples per interrupt.  
16.2 Conversion Operation  
After the ADC module has been configured, the sample  
acquisition is started by setting the SAMP bit. Various  
sources, such as a programmable bit, timer time-outs  
and external events, will terminate acquisition and start  
a conversion. When the A/D conversion is complete,  
the result is loaded into ADCBUF0...ADCBUFF, and  
the DONE bit and the A/D interrupt flag, ADIF, are set  
after the number of samples specified by the SMPI bit.  
The ADC module can be configured for different inter-  
rupt rates as described in Section 16.3 “Selecting the  
Conversion Sequence”.  
The BUFM bit will split the 16-word results buffer into  
two 8-word groups. Writing to the 8-word buffers will be  
alternated on each interrupt event.  
Use of the BUFM bit will depend on how much time is  
available for the moving of the buffers after the  
interrupt.  
If the processor can quickly unload a full buffer within  
the time it takes to acquire and convert one channel,  
the BUFM bit can be ‘0’ and up to 16 conversions  
(corresponding to the 16 input channels) may be done  
per interrupt. The processor will have one acquisition  
and conversion time to move the sixteen conversions.  
The following steps should be followed for doing an  
A/D conversion:  
1. Configure the ADC module:  
If the processor cannot unload the buffer within the  
acquisition and conversion time, the BUFM bit should be  
1’. For example, if SMPI<3:0> (ADCON2<5:2>) = 0111,  
then eight conversions will be loaded into 1/2 of the  
buffer, following which an interrupt occurs. The next  
eight conversions will be loaded into the other 1/2 of the  
buffer. The processor will have the entire time between  
interrupts to move the eight conversions.  
• Configure analog pins, voltage reference and  
digital I/O  
• Select A/D input channels  
• Select A/D conversion clock  
• Select A/D conversion trigger  
• Turn on ADC module  
2. Configure A/D interrupt (if required):  
• Clear ADIF bit  
The ALTS bit can be used to alternate the inputs  
selected during the sampling sequence. The input  
multiplexer has two sets of sample inputs: MUX A and  
MUX B. If the ALTS bit is ‘0’, only the MUX A inputs are  
selected for sampling. If the ALTS bit is ‘1’ and  
SMPI<3:0> = 0000 on the first sample/convert  
sequence, the MUX A inputs are selected and on the  
next acquire/convert sequence, the MUX B inputs are  
selected.  
• Select A/D interrupt priority  
3. Start sampling  
4. Wait the required acquisition time  
5. Trigger acquisition end, start conversion  
6. Wait for A/D conversion to complete, by either:  
• Waiting for the A/D interrupt, or  
• Waiting for the DONE bit to get set  
7. Read A/D result buffer; clear ADIF if required  
The CSCNA bit (ADCON2<10>) will allow the  
multiplexer input to be alternately scanned across a  
selected number of analog inputs for the MUX A group.  
The inputs are selected by the ADCSSL register. If a  
particular bit in the ADCSSL register is ‘1’, the  
corresponding input is selected. The inputs are always  
scanned from lower to higher numbered inputs, starting  
after each interrupt. If the number of inputs selected is  
greater than the number of samples taken per interrupt,  
the higher numbered inputs are unused.  
DS70139G-page 114  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
The internal RC oscillator is selected by setting the  
ADRC bit.  
16.4 Programming the Start of  
Conversion Trigger  
For correct ADC conversions, the ADC conversion  
clock (TAD) must be selected to ensure a minimum TAD  
time of 334 nsec (for VDD = 5V). Refer to Section 20.0  
“Electrical Characteristics” for minimum TAD under  
other operating conditions.  
The conversion trigger will terminate acquisition and  
start the requested conversions.  
The SSRC<2:0> bits select the source of the  
conversion trigger. The SSRC bits provide for up to four  
alternate sources of conversion trigger.  
Example 16-1 shows a sample calculation for the  
ADCS<5:0> bits, assuming a device operating speed  
of 30 MIPS.  
When SSRC<2:0> = 000, the conversion trigger is  
under software control. Clearing the SAMP bit will  
cause the conversion trigger.  
EXAMPLE 16-1:  
ADC CONVERSION  
CLOCK AND SAMPLING  
RATE CALCULATION  
When SSRC<2:0> = 111 (Auto-Start mode), the  
conversion trigger is under A/D clock control. The  
SAMC bits select the number of A/D clocks between  
the start of acquisition and the start of conversion. This  
provides the fastest conversion rates on multiple  
channels. SAMC must always be at least one clock  
cycle.  
Minimum TAD = 334 nsec  
TCY = 33 .33 nsec (30 MIPS)  
TAD  
TCY  
ADCS<5:0> = 2  
– 1  
Other trigger sources can come from timer modules or  
external interrupts.  
334 nsec  
33.33 nsec  
= 2 •  
– 1  
= 19.04  
16.5 Aborting a Conversion  
Therefore,  
Clearing the ADON bit during a conversion will abort  
the current conversion and stop the sampling  
sequencing until the next sampling trigger. The  
ADCBUF will not be updated with the partially  
completed A/D conversion sample. That is, the  
ADCBUF will continue to contain the value of the last  
completed conversion (or the last value written to the  
ADCBUF register).  
Set ADCS<5:0> = 19  
TCY  
2
Actual TAD =  
(ADCS<5:0> + 1)  
33.33 nsec  
2
=
(19 + 1)  
= 334 nsec  
If SSRC<2:0> = ‘111’ and SAMC<4:0> = ‘00001’  
If the clearing of the ADON bit coincides with an  
auto-start, the clearing has a higher priority and a new  
conversion will not start.  
Since,  
Sampling Time = Acquisition Time + Conversion Time  
= 1 TAD + 14 TAD  
After the A/D conversion is aborted, a 2 TAD wait is  
required before the next sampling may be started by  
setting the SAMP bit.  
= 15 x 334 nsec  
Therefore,  
1
Sampling Rate =  
(15 x 334 nsec)  
16.6 Selecting the ADC Conversion  
Clock  
= ~200 kHz  
The ADC conversion requires 14 TAD. The source of  
the ADC conversion clock is software selected, using a  
6-bit counter. There are 64 possible options for TAD.  
EQUATION 16-1: ADC CONVERSION  
CLOCK  
TAD = TCY * (0.5*(ADCS<5:0> + 1))  
© 2010 Microchip Technology Inc.  
DS70139G-page 115  
dsPIC30F2011/2012/3012/3013  
16.7  
ADC Speeds  
The dsPIC30F 12-bit ADC specifications permit a  
maximum of 200 ksps sampling rate. Table 16-1  
summarizes the conversion speeds for the dsPIC30F  
12-bit ADC and the required operating conditions.  
Figure 16-2 depicts the recommended circuit for the  
conversion rates above 200 ksps. The dsPIC30F2011  
is shown as an example.  
TABLE 16-1: 12-BIT ADC EXTENDED CONVERSION RATES  
dsPIC30F 12-bit ADC Conversion Rates  
TAD  
Sampling  
Speed  
Rs Max  
VDD  
Temperature  
Channel Configuration  
Minimum Time Min  
Up to 200  
ksps(1)  
334 ns 1 TAD  
2.5 kΩ  
4.5V -40°C to +85°C  
to  
VREF- VREF+  
5.5V  
CHX  
S/H  
ANx  
ADC  
Up to 100  
ksps  
668 ns  
1 TAD  
2.5 kΩ  
3.0V -40°C to +125°C  
to  
5.5V  
VREF- VREF+  
or  
or  
AVSS AVDD  
CHX  
S/H  
ANx  
ADC  
ANx or VREF-  
Note 1: External VREF- and VREF+ pins must be used for correct operation. See Figure 16-2 for recommended  
circuit.  
FIGURE 16-2:  
ADC VOLTAGE REFERENCE SCHEMATIC  
VDD  
See Note 1:  
R2  
10  
VDD  
VDD  
VDD  
C2  
0.1 μF  
C1  
0.01 μF  
VDD  
C8  
1 μF  
C7  
0.1 μF  
C6  
0.01 μF  
R1  
10  
1
2
3
4
21  
20  
19  
18  
VDD  
dsPIC30F2011  
AVDD  
AVDD  
AVDD  
VDD  
VSS  
15  
VSS  
6
7
C5  
C4  
C3  
1 μF  
0.1 μF  
0.01 μF  
VDD  
Note 1: Ensure adequate bypass capacitors are provided on each VDD pin.  
DS70139G-page 116  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
The configuration procedures in the next section pro-  
vide the required setup values for the conversion  
speeds above 100 ksps.  
The following figure shows the timing diagram of the  
ADC running at 200 ksps. The TAD selection in  
conjunction with the guidelines described above allows  
a conversion speed of 200 ksps. See Example 16-1 for  
code example.  
16.7.1  
200 KSPS CONFIGURATION  
GUIDELINE  
16.8 A/D Acquisition Requirements  
The following configuration items are required to  
achieve a 200 ksps conversion rate.  
The analog input model of the 12-bit ADC is shown in  
Figure 16-3. The total sampling time for the A/D is a  
function of the internal amplifier settling time and the  
holding capacitor charge time.  
• Comply with conditions provided in Table 16-1.  
• Connect external VREF+ and VREF- pins following  
the recommended circuit shown in Figure 16-2.  
• Set SSRC<2.0> = 111in the ADCON1 register to  
enable the auto convert option.  
For the ADC to meet its specified accuracy, the charge  
holding capacitor (CHOLD) must be allowed to fully  
charge to the voltage level on the analog input pin. The  
• Enable automatic sampling by setting the ASAM  
control bit in the ADCON1 register.  
source  
impedance  
(RS),  
the  
interconnect  
impedance (RIC) and the internal sampling switch  
(RSS) impedance combine to directly affect the time  
required to charge the capacitor CHOLD. The combined  
impedance of the analog sources must therefore be  
small enough to fully charge the holding capacitor  
within the chosen sample time. To minimize the effects  
of pin leakage currents on the accuracy of the ADC, the  
maximum recommended source impedance, RS,  
is 2.5 kΩ. After the analog input channel is selected  
(changed), this sampling function must be completed  
prior to starting the conversion. The internal holding  
capacitor will be in a discharged state prior to each  
sample operation.  
• Write the SMPI<3.0> control bits in the ADCON2  
register for the desired number of conversions  
between interrupts.  
• Configure the ADC clock period to be:  
1
= 334 ns  
(14 + 1) x 200,000  
by writing to the ADCS<5:0> control bits in the  
ADCON3 register.  
• Configure the sampling time to be 1 TAD by  
writing: SAMC<4:0> = 00001.  
FIGURE 16-3:  
12-BIT A/D CONVERTER ANALOG INPUT MODEL  
VDD  
RIC 250Ω  
RSS 3 kΩ  
Sampling  
Switch  
VT = 0.6V  
VT = 0.6V  
ANx  
RSS  
Rs  
CHOLD  
CPIN  
= DAC capacitance  
VA  
I leakage  
500 nA  
= 18 pF  
VSS  
Legend: CPIN  
= input capacitance  
= threshold voltage  
VT  
I leakage = leakage current at the pin due to  
various junctions  
RIC  
= interconnect resistance  
RSS  
= sampling switch resistance  
= sample/hold capacitance (from DAC)  
CHOLD  
Note: CPIN value depends on device package and is not tested. Effect of CPIN negligible if Rs 2.5 kΩ.  
© 2010 Microchip Technology Inc.  
DS70139G-page 117  
dsPIC30F2011/2012/3012/3013  
If the A/D interrupt is enabled, the device will wake-up  
16.9 Module Power-Down Modes  
from Sleep. If the A/D interrupt is not enabled, the ADC  
module will then be turned off, although the ADON bit  
will remain set.  
The module has two internal power modes.  
When the ADON bit is ‘1’, the module is in Active mode;  
it is fully powered and functional.  
16.10.2 A/D OPERATION DURING CPU IDLE  
MODE  
When ADON is ‘0’, the module is in Off mode. The  
digital and analog portions of the circuit are disabled for  
maximum current savings.  
The ADSIDL bit selects if the module will stop on Idle or  
continue on Idle. If ADSIDL = 0, the module will  
continue operation on assertion of Idle mode. If  
ADSIDL = 1, the module will stop on Idle.  
In order to return to the Active mode from Off mode, the  
user must wait for the ADC circuitry to stabilize.  
16.10 A/D Operation During CPU Sleep  
and Idle Modes  
16.11 Effects of a Reset  
A device Reset forces all registers to their Reset state.  
This forces the ADC module to be turned off, and any  
conversion and sampling sequence is aborted. The  
values that are in the ADCBUF registers are not  
modified. The A/D Result register will contain unknown  
data after a Power-on Reset.  
16.10.1 A/D OPERATION DURING CPU  
SLEEP MODE  
When the device enters Sleep mode, all clock sources  
to the module are shut down and stay at logic ‘0’.  
If Sleep occurs in the middle of a conversion, the  
conversion is aborted. The converter will not continue  
with a partially completed conversion on exit from  
Sleep mode.  
16.12 Output Formats  
The A/D result is 12 bits wide. The data buffer RAM is  
also 12 bits wide. The 12-bit data can be read in one of  
four different formats. The FORM<1:0> bits select the  
format. Each of the output formats translates to a 16-bit  
result on the data bus.  
Register contents are not affected by the device  
entering or leaving Sleep mode.  
The ADC module can operate during Sleep mode if the  
A/D clock source is set to RC (ADRC = 1). When the  
RC clock source is selected, the ADC module waits  
one instruction cycle before starting the conversion.  
This allows the SLEEPinstruction to be executed which  
eliminates all digital switching noise from the  
conversion. When the conversion is complete, the  
CONV bit will be cleared and the result loaded into the  
ADCBUF register.  
FIGURE 16-4:  
RAM Contents:  
Read to Bus:  
A/D OUTPUT DATA FORMATS  
d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
Signed Fractional  
d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
0
0
0
0
0
0
0
0
Fractional  
Signed Integer  
Integer  
d11 d11 d11 d11 d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
0
0
0
0
d11 d10 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00  
DS70139G-page 118  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
16.13 Configuring Analog Port Pins  
16.14 Connection Considerations  
The use of the ADPCFG and TRIS registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their  
corresponding TRIS bit set (input). If the TRIS bit is  
cleared (output), the digital output level (VOH or VOL)  
will be converted.  
The analog inputs have diodes to VDD and VSS as ESD  
protection. This requires that the analog input be  
between VDD and VSS. If the input voltage exceeds this  
range by greater than 0.3V (either direction), one of the  
diodes becomes forward biased and it may damage the  
device if the input current specification is exceeded.  
The A/D operation is independent of the state of the  
CH0SA<3:0>/CH0SB<3:0> bits and the TRIS bits.  
An external RC filter is sometimes added for  
anti-aliasing of the input signal. The R component  
should be selected to ensure that the sampling time  
requirements are satisfied. Any external components  
connected (via high-impedance) to an analog input pin  
(capacitor, zener diode, etc.) should have very little  
leakage current at the pin.  
When reading the PORT register, all pins configured as  
analog input channels will read as cleared.  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin that is defined as  
a digital input (including the ANx pins) may cause the  
input buffer to consume current that exceeds the  
device specifications.  
© 2010 Microchip Technology Inc.  
DS70139G-page 119  
TABLE 16-2: A/D CONVERTER REGISTER MAP FOR dsPIC30F2011/3012  
SFR  
Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
ADCBUF0 0280  
ADCBUF1 0282  
ADCBUF2 0284  
ADCBUF3 0286  
ADCBUF4 0288  
ADCBUF5 028A  
ADCBUF6 028C  
ADCBUF7 028E  
ADCBUF8 0290  
ADCBUF9 0292  
ADCBUFA 0294  
ADCBUFB 0296  
ADCBUFC 0298  
ADCBUFD 029A  
ADCBUFE 029C  
ADCBUFF 029E  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
SSRC<2:0>  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
ADCON1  
ADCON2  
ADCON3  
ADCHS  
ADPCFG  
ADCSSL  
Legend:  
Note:  
02A0  
02A2  
02A4  
02A6  
02A8  
02AA  
ADON  
ADSIDL  
CSCNA  
FORM<1:0>  
ASAM SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
BUFS  
ADRC  
SMPI<3:0>  
SAMC<4:0>  
ADCS<5:0>  
CH0SA<3:0>  
CH0NB  
CH0SB<3:0>  
CH0NA  
PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0  
CSSL7 CSSL6 CSSL5 CSSL4 CSSL3 CSSL2 CSSL1 CSSL0  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
TABLE 16-3: A/D CONVERTER REGISTER MAP FOR dsPIC30F2012/3013  
SFR  
Name  
Addr.  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
ADCBUF0 0280  
ADCBUF1 0282  
ADCBUF2 0284  
ADCBUF3 0286  
ADCBUF4 0288  
ADCBUF5 028A  
ADCBUF6 028C  
ADCBUF7 028E  
ADCBUF8 0290  
ADCBUF9 0292  
ADCBUFA 0294  
ADCBUFB 0296  
ADCBUFC 0298  
ADCBUFD 029A  
ADCBUFE 029C  
ADCBUFF 029E  
ADC Data Buffer 0  
ADC Data Buffer 1  
ADC Data Buffer 2  
ADC Data Buffer 3  
ADC Data Buffer 4  
ADC Data Buffer 5  
ADC Data Buffer 6  
ADC Data Buffer 7  
ADC Data Buffer 8  
ADC Data Buffer 9  
ADC Data Buffer 10  
ADC Data Buffer 11  
ADC Data Buffer 12  
ADC Data Buffer 13  
ADC Data Buffer 14  
ADC Data Buffer 15  
SSRC<2:0>  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 uuuu uuuu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
ADCON1  
ADCON2  
ADCON3  
ADCHS  
ADPCFG  
ADCSSL  
Legend:  
Note:  
02A0  
02A2  
02A4  
02A6  
02A8  
02AA  
ADON  
ADSIDL  
CSCNA  
FORM<1:0>  
ASAM SAMP  
BUFM  
DONE  
ALTS  
VCFG<2:0>  
BUFS  
ADRC  
SMPI<3:0>  
SAMC<4:0>  
ADCS<5:0>  
CH0SA<3:0>  
CH0NB  
CH0SB<3:0>  
CH0NA  
PCFG9 PCFG8 PCFG7 PCFG6 PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0  
CSSL9 CSSL8 CSSL7 CSSL6 CSSL5 CSSL4 CSSL3 CSSL2 CSSL1 CSSL0  
u= uninitialized bit; — = unimplemented bit, read as ‘0’  
Refer to the “dsPIC30F Family Reference Manual” (DS70046) for descriptions of register bit fields.  
dsPIC30F2011/2012/3012/3013  
NOTES:  
DS70139G-page 122  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
17.1 Oscillator System Overview  
17.0 SYSTEM INTEGRATION  
The dsPIC30F oscillator system has the following  
modules and features:  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “16-bit MCU and DSC  
• Various external and internal oscillator options as  
clock sources  
• An on-chip PLL to boost internal operating  
frequency  
• A clock switching mechanism between various  
clock sources  
• Programmable clock postscaler for system power  
savings  
Programmer’s  
Reference  
Manual”  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and takes fail-safe measures  
(DS70157).  
There are several features intended to maximize  
system reliability, minimize cost through elimination of  
external components, provide Power Saving Operating  
modes and offer code protection:  
• Clock Control register (OSCCON)  
• Configuration bits for main oscillator selection  
Configuration bits determine the clock source upon  
Power-on Reset (POR) and Brown-out Reset (BOR).  
Thereafter, the clock source can be changed between  
permissible clock sources. The OSCCON register  
controls the clock switching and reflects system clock  
related status bits.  
• Oscillator Selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Programmable Brown-out Reset (BOR)  
• Watchdog Timer (WDT)  
• Low-Voltage Detect  
Table 17-1 provides a summary of the dsPIC30F  
Oscillator Operating modes. A simplified diagram of the  
oscillator system is shown in Figure 17-1.  
• Power-Saving Modes (Sleep and Idle)  
• Code Protection  
• Unit ID Locations  
• In-Circuit Serial Programming (ICSP)  
dsPIC30F devices have a Watchdog Timer which is  
permanently enabled via the Configuration bits or can  
be software controlled. It runs off its own RC oscillator  
for added reliability. There are two timers that offer  
necessary delays on power-up. One is the Oscillator  
Start-up Timer (OST), intended to keep the chip in  
Reset until the crystal oscillator is stable. The other is  
the Power-up Timer (PWRT) which provides a delay on  
power-up only, designed to keep the part in Reset while  
the power supply stabilizes. With these two timers  
on-chip, most applications need no external Reset  
circuitry.  
Sleep mode is designed to offer a very low current  
Power-Down mode. The user can wake-up from Sleep  
through external Reset, Watchdog Timer Wake-up, or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit a wide variety of  
applications. In the Idle mode, the clock sources are  
still active but the CPU is shut-off. The RC oscillator  
option saves system cost while the LP crystal option  
saves power.  
© 2010 Microchip Technology Inc.  
DS70139G-page 123  
dsPIC30F2011/2012/3012/3013  
TABLE 17-1: OSCILLATOR OPERATING MODES  
Oscillator Mode  
Description  
XTL  
XT  
200 kHz-4 MHz crystal on OSC1:OSC2.  
4 MHz-10 MHz crystal on OSC1:OSC2.  
XT w/PLL 4x  
XT w/PLL 8x  
XT w/PLL 16x  
LP  
4 MHz-10 MHz crystal on OSC1:OSC2, 4x PLL enabled.  
4 MHz-10 MHz crystal on OSC1:OSC2, 8x PLL enabled.  
4 MHz-7.5 MHz crystal on OSC1:OSC2, 16x PLL enabled(1)  
.
32 kHz crystal on SOSCO:SOSCI(2)  
10 MHz-25 MHz crystal.  
.
HS  
HS/2 w/PLL 4x  
HS/2 w/PLL 8x  
HS/2 w/PLL 16x  
10 MHz-20 MHz crystal, divide by 2, 4x PLL enabled.  
10 MHz-20 MHz crystal, divide by 2, 8x PLL enabled.  
10 MHz-15 MHz crystal, divide by 2, 16x PLL enabled(1)  
.
HS/3 w/PLL 4x  
HS/3 w/PLL 8x  
HS/3 w/PLL 16x  
12 MHz-25 MHz crystal, divide by 3, 4x PLL enabled.  
12 MHz-25 MHz crystal, divide by 3, 8x PLL enabled.  
12 MHz-22.5 MHz crystal, divide by 3, 16x PLL enabled(1)  
.
EC  
External clock input (0-40 MHz).  
ECIO  
External clock input (0-40 MHz), OSC2 pin is I/O.  
EC w/PLL 4x  
EC w/PLL 8x  
EC w/PLL 16x  
ERC  
External clock input (4-10 MHz), OSC2 pin is I/O, 4x PLL enabled.  
External clock input (4-10 MHz), OSC2 pin is I/O, 8x PLL enabled.  
External clock input (4-7.5 MHz), OSC2 pin is I/O, 16x PLL enabled(1)  
.
External RC oscillator, OSC2 pin is FOSC/4 output(3)  
.
ERCIO  
External RC oscillator, OSC2 pin is I/O(3)  
.
FRC  
7.37 MHz internal RC oscillator.  
FRC w/PLL 4x  
FRC w/PLL 8x  
FRC w/PLL 16x  
7.37 MHz Internal RC oscillator, 4x PLL enabled.  
7.37 MHz Internal RC oscillator, 8x PLL enabled.  
7.37 MHz Internal RC oscillator, 16x PLL enabled.  
LPRC  
512 kHz internal RC oscillator.  
Note 1: dsPIC30F maximum operating frequency of 120 MHz must be met.  
2: LP oscillator can be conveniently shared as system clock, as well as real-time clock for Timer1.  
3: Requires external R and C. Frequency operation up to 4 MHz.  
DS70139G-page 124  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 17-1:  
OSCILLATOR SYSTEM BLOCK DIAGRAM  
Oscillator Configuration bits  
PWRSAVInstruction  
Wake-up Request  
FPLL  
OSC1  
OSC2  
Primary  
PLL  
Oscillator  
x4, x8, x16  
PLL  
Lock  
Primary Osc  
COSC<2:0>  
NOSC<2:0>  
OSWEN  
Internal FRC Osc  
Primary  
Oscillator  
Internal Fast RC  
Oscillator (FRC)  
Stability Detector  
Oscillator  
Start-up  
Timer  
POR Done  
Clock  
Programmable  
Switching  
and Control  
Block  
Secondary Osc  
Clock Divider  
System  
Clock  
SOSCO  
SOSCI  
Secondary  
Oscillator  
Stability Detector  
32 kHz LP  
Oscillator  
2
POST<1:0>  
LPRC  
Internal Low  
Power RC  
Oscillator (LPRC)  
CF  
Fail-Safe Clock  
Monitor (FSCM)  
FCKSM<1:0>  
2
Oscillator Trap  
To Timer1  
© 2010 Microchip Technology Inc.  
DS70139G-page 125  
dsPIC30F2011/2012/3012/3013  
17.2.2  
OSCILLATOR START-UP TIMER  
(OST)  
17.2 Oscillator Configurations  
17.2.1  
INITIAL CLOCK SOURCE  
SELECTION  
In order to ensure that a crystal oscillator (or ceramic  
resonator) has started and stabilized, an Oscillator  
Start-up Timer is included. It is a simple 10-bit counter  
that counts 1024 TOSC cycles before releasing the  
oscillator clock to the rest of the system. The time-out  
period is designated as TOST.  
While coming out of Power-on Reset or Brown-out  
Reset, the device selects its clock source based on:  
a) FOS<2:0> Configuration bits that select one of  
four oscillator groups,  
The TOST time is involved every time the oscillator has  
to restart (i.e., on POR, BOR and wake-up from Sleep).  
The Oscillator Start-up Timer is applied to the LP  
oscillator, XT, XTL and HS modes (upon wake-up from  
Sleep, POR and BOR) for the primary oscillator.  
b) and FPR<4:0> Configuration bits that select one  
of 15 oscillator choices within the primary group.  
The selection is as shown in Table 17-2.  
TABLE 17-2: CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator  
OSC2  
Function  
Oscillator Mode  
FOS<2:0>  
FPR<4:0>  
Source  
ECIO w/PLL 4x  
PLL  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
X
X
X
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
1
0
X
X
X
1
1
1
0
0
0
1
1
1
0
0
0
1
1
1
1
1
0
0
0
0
0
X
X
X
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
0
1
1
0
0
0
X
X
X
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
0
0
1
1
0
0
X
X
X
I/O  
I/O  
ECIO w/PLL 8x  
ECIO w/PLL 16x  
FRC w/PLL 4X  
FRC w/PLL 8x  
FRC w/PLL 16x  
XT w/PLL 4x  
XT w/PLL 8x  
XT w/PLL 16x  
HS2 w/PLL 4x  
HS2 w/PLL 8x  
HS2 w/ PLL 16x  
HS3 w/PLL 4x  
HS3 w/PLL 8x  
HS3 w/PLL 16x  
ECIO  
PLL  
PLL  
I/O  
PLL  
I/O  
PLL  
I/O  
PLL  
I/O  
PLL  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
OSC2  
I/O  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
PLL  
External  
External  
External  
External  
External  
External  
External  
Secondary  
Internal FRC  
Internal LPRC  
XT  
OSC2  
OSC2  
CLKO  
CLKO  
I/O  
HS  
EC  
ERC  
ERCIO  
XTL  
OSC2  
(Note 1, 2)  
(Note 1, 2)  
(Note 1, 2)  
LP  
FRC  
LPRC  
Note 1: The OSC2 pin is either usable as a general purpose I/O pin or is completely unusable, depending on the  
Primary Oscillator mode selection (FPR<4:0>).  
2: OSC1 pin cannot be used as an I/O pin even if the secondary oscillator or an internal clock source is  
selected at all times.  
DS70139G-page 126  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
If OSCCON<14:12> are set to ‘111’ and FPR<4:0> are  
set to ‘00001’, ‘01010’ or ‘00011’, a PLL multiplier of  
4, 8 or 16 (respectively) is applied.  
17.2.3  
LP OSCILLATOR CONTROL  
Enabling the LP oscillator is controlled with two elements:  
• The current oscillator group bits COSC<2:0>.  
• The LPOSCEN bit (OSCCON register).  
Note:  
When a 16x PLL is used, the FRC fre-  
quency must not be tuned to a frequency  
greater than 7.5 MHz.  
The LP oscillator is on (even during Sleep mode) if  
LPOSCEN = 1. The LP oscillator is the device clock if:  
• COSC<2:0> = 000(LP selected as main osc.) and  
• LPOSCEN = 1  
TABLE 17-4: FRC TUNING  
TUN<3:0>  
FRC Frequency  
Bits  
Keeping the LP oscillator on at all times allows for a fast  
switch to the 32 kHz system clock for lower power oper-  
ation. Returning to the faster main oscillator will still  
require a start-up time  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
+ 10.5%  
+ 9.0%  
+ 7.5%  
+ 6.0%  
+ 4.5%  
+ 3.0%  
+ 1.5%  
17.2.4  
PHASE LOCKED LOOP (PLL)  
The PLL multiplies the clock which is generated by the  
primary oscillator or Fast RC oscillator. The PLL is  
selectable to have either gains of x4, x8, and x16. Input  
and output frequency ranges are summarized in  
Table 17-3.  
Center Frequency (oscillator is  
running at calibrated frequency)  
1111  
1110  
1101  
1100  
1011  
1010  
1001  
1000  
- 1.5%  
- 3.0%  
- 4.5%  
- 6.0%  
- 7.5%  
- 9.0%  
- 10.5%  
- 12.0%  
TABLE 17-3: PLL FREQUENCY RANGE  
PLL  
FIN  
FOUT  
Multiplier  
4 MHz-10 MHz  
4 MHz-10 MHz  
4 MHz-7.5 MHz  
x4  
x8  
16 MHz-40 MHz  
32 MHz-80 MHz  
64 MHz-120 MHz  
x16  
The PLL features a lock output which is asserted when  
the PLL enters a phase locked state. Should the loop  
fall out of lock (e.g., due to noise), the lock signal will be  
rescinded. The state of this signal is reflected in the  
read-only LOCK bit in the OSCCON register.  
17.2.6  
LOW-POWER RC OSCILLATOR (LPRC)  
The LPRC oscillator is a component of the Watchdog  
Timer (WDT) and oscillates at a nominal frequency of  
512 kHz. The LPRC oscillator is the clock source for  
the Power-up Timer (PWRT) circuit, WDT and clock  
monitor circuits. It may also be used to provide a  
low-frequency clock source option for applications  
where power consumption is critical and timing  
accuracy is not required.  
17.2.5  
FAST RC OSCILLATOR (FRC)  
The FRC oscillator is a fast (7.37 MHz ±2% nominal)  
internal RC oscillator. This oscillator is intended to  
provide reasonable device operating speeds without  
the use of an external crystal, ceramic resonator, or RC  
network. The FRC oscillator can be used with the PLL  
to obtain higher clock frequencies.  
The LPRC oscillator is always enabled at a Power-on  
Reset because it is the clock source for the PWRT.  
After the PWRT expires, the LPRC oscillator will remain  
on if one of the following is true:  
The dsPIC30F operates from the FRC oscillator when-  
ever the current oscillator selection control bits in the  
OSCCON register (OSCCON<14:12>) are set to ‘001’.  
• The Fail-Safe Clock Monitor is enabled  
• The WDT is enabled  
• The LPRC oscillator is selected as the system  
clock via the COSC<2:0> control bits in the  
OSCCON register  
The four bit field specified by TUN<3:0> (OSCTUN  
<3:0>) allows the user to tune the internal fast RC  
oscillator (nominal 7.37 MHz). The user can tune the  
FRC oscillator within a range of +10.5% (840 kHz)  
and -12% (960 kHz) in steps of 1.50% around the  
factory calibrated setting, as shown in Table 17-4.  
If one of the above conditions is not true, the LPRC will  
shut-off after the PWRT expires.  
Note 1: OSC2 pin function is determined by the  
Primary Oscillator mode selection  
(FPR<4:0>).  
Note:  
OSCTUN functionality has been provided  
to help customers compensate for  
temperature effects on the FRC frequency  
over a wide range of temperatures. The  
tuning step size is an approximation and is  
neither characterized nor tested.  
2: OSC1 pin cannot be used as an I/O pin  
even if the secondary oscillator or an  
internal clock source is selected at all  
times.  
© 2010 Microchip Technology Inc.  
DS70139G-page 127  
dsPIC30F2011/2012/3012/3013  
The OSCCON register holds the Control and Status  
bits related to clock switching.  
17.2.7  
FAIL-SAFE CLOCK MONITOR  
The Fail-Safe Clock Monitor (FSCM) allows the device  
to continue to operate even in the event of an oscillator  
failure. The FSCM function is enabled by appropriately  
programming the FCKSM Configuration bits (clock  
switch and monitor selection bits) in the FOSC Device  
Configuration register. If the FSCM function is enabled,  
the LPRC internal oscillator will run at all times (except  
during Sleep mode) and will not be subject to control by  
the SWDTEN bit.  
• COSC<2:0>: Read-only bits always reflect the  
current oscillator group in effect.  
• NOSC<2:0>: Control bits which are written to  
indicate the new oscillator group of choice.  
- On POR and BOR, COSC<2:0> and  
NOSC<2:0> are both loaded with the  
Configuration bit values FOS<2:0>.  
• LOCK: The LOCK bit indicates a PLL lock.  
In the event of an oscillator failure, the FSCM will gen-  
erate a clock failure trap event and will switch the sys-  
tem clock over to the FRC oscillator. The user will then  
have the option to either attempt to restart the oscillator  
or execute a controlled shutdown. The user may decide  
to treat the trap as a warm Reset by simply loading the  
Reset address into the oscillator fail trap vector. In this  
event, the CF (Clock Fail) bit (OSCCON<3>) is also set  
whenever a clock failure is recognized.  
• CF: Read-only bit indicating if a clock fail detect  
has occurred.  
• OSWEN: Control bit changes from a ‘0’ to a ‘1’  
when a clock transition sequence is initiated.  
Clearing the OSWEN control bit will abort a clock  
transition in progress (used for hang-up  
situations).  
If Configuration bits FCKSM<1:0> = 1x, then the clock  
switching and Fail-Safe Clock monitoring functions are  
disabled. This is the default Configuration bit setting.  
In the event of a clock failure, the WDT is unaffected  
and continues to run on the LPRC clock.  
If clock switching is disabled, then the FOS<2:0> and  
FPR<4:0> bits directly control the oscillator selection  
and the COSC<2:0> bits do not control the clock selec-  
tion. However, these bits will reflect the clock source  
selection.  
If the oscillator has a very slow start-up time coming out  
of POR, BOR or Sleep, it is possible that the PWRT  
timer will expire before the oscillator has started. In  
such cases, the FSCM will be activated and the FSCM  
will initiate a clock failure trap, and the COSC<2:0> bits  
are loaded with FRC oscillator selection. This will  
effectively shut-off the original oscillator that was trying  
to start.  
Note:  
The application should not attempt to  
switch to a clock of frequency lower than  
100 kHz when the Fail-Safe Clock Monitor  
is enabled. If such clock switching is  
performed, the device may generate an  
oscillator fail trap and switch to the Fast  
RC oscillator.  
The user may detect this situation and restart the  
oscillator in the clock fail trap ISR.  
Upon a clock failure detection, the FSCM module will  
initiate a clock switch to the FRC oscillator as follows:  
1. The COSC bits (OSCCON<14:12>) are loaded  
with the FRC oscillator selection value.  
17.2.8  
PROTECTION AGAINST  
ACCIDENTAL WRITES TO OSCCON  
2. CF bit is set (OSCCON<3>).  
A write to the OSCCON register is intentionally made  
difficult because it controls clock switching and clock  
scaling.  
3. OSWEN control bit (OSCCON<0>) is cleared.  
For the purpose of clock switching, the clock sources  
are sectioned into four groups:  
To write to the OSCCON low byte, the following code  
sequence must be executed without any other  
instructions in between:  
• Primary (with or without PLL)  
• Secondary  
Byte Write 0x46 to OSCCON low  
Byte Write 0x57 to OSCCON low  
• Internal FRC  
• Internal LPRC  
Byte write is allowed for one instruction cycle. Write the  
desired value or use bit manipulation instruction.  
The user can switch between these functional groups  
but cannot switch between options within a group. If the  
primary group is selected, then the choice within the  
group is always determined by the FPR<4:0>  
Configuration bits.  
To write to the OSCCON high byte, the following  
instructions must be executed without any other  
instructions in between:  
Byte Write0x78to OSCCON high  
Byte Write0x9Ato OSCCON high  
Byte write is allowed for one instruction cycle. Write the  
desired value or use bit manipulation instruction.  
DS70139G-page 128  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
17.3.1  
POR: POWER-ON RESET  
17.3 Reset  
A power-on event will generate an internal POR pulse  
when a VDD rise is detected. The Reset pulse will occur  
at the POR circuit threshold voltage (VPOR) which is  
nominally 1.85V. The device supply voltage  
characteristics must meet specified starting voltage  
and rise rate requirements. The POR pulse will reset a  
POR timer and place the device in the Reset state. The  
POR also selects the device clock source identified by  
the oscillator configuration fuses.  
The  
dsPIC30F2011/2012/3012/3013  
devices  
differentiate between various kinds of Reset:  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during Sleep  
d) Watchdog Timer (WDT) Reset (during normal  
operation)  
e) Programmable Brown-out Reset (BOR)  
f) RESETInstruction  
The POR circuit inserts a small delay, TPOR, which is  
nominally 10 μs and ensures that the device bias  
circuits are stable. Furthermore, a user selected  
power-up time-out (TPWRT) is applied. The TPWRT  
parameter is based on device Configuration bits and  
can be 0 ms (no delay), 4 ms, 16 ms or 64 ms. The total  
delay is at device power-up, TPOR + TPWRT. When  
these delays have expired, SYSRST will be negated on  
the next leading edge of the Q1 clock and the PC will  
jump to the Reset vector.  
g) Reset caused by trap lockup (TRAPR)  
h) Reset caused by illegal opcode or by using an  
uninitialized W register as an address pointer  
(IOPUWR)  
Different registers are affected in different ways by  
various Reset conditions. Most registers are not  
affected by a WDT wake-up since this is viewed as the  
resumption of normal operation. Status bits from the  
RCON register are set or cleared differently in different  
Reset situations, as indicated in Table 17-5. These bits  
are used in software to determine the nature of the  
Reset.  
The timing for the SYSRST signal is shown in  
Figure 17-3 through Figure 17-5.  
A block diagram of the On-Chip Reset Circuit is shown  
in Figure 17-2.  
A MCLR noise filter is provided in the MCLR Reset  
path. The filter detects and ignores small pulses.  
Internally generated Resets do not drive MCLR pin low.  
FIGURE 17-2:  
RESET SYSTEM BLOCK DIAGRAM  
RESET  
Instruction  
Digital  
Glitch Filter  
MCLR  
Sleep or Idle  
WDT  
Module  
POR  
VDD Rise  
Detect  
S
VDD  
Brown-out  
Reset  
BOR  
BOREN  
Q
R
SYSRST  
Trap Conflict  
Illegal Opcode/  
Uninitialized W Register  
© 2010 Microchip Technology Inc.  
DS70139G-page 129  
dsPIC30F2011/2012/3012/3013  
FIGURE 17-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TOST  
OST TIME-OUT  
TPWRT  
PWRT TIME-OUT  
INTERNAL Reset  
FIGURE 17-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TOST  
OST TIME-OUT  
TPWRT  
PWRT TIME-OUT  
INTERNAL Reset  
FIGURE 17-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TOST  
OST TIME-OUT  
TPWRT  
PWRT TIME-OUT  
INTERNAL Reset  
DS70139G-page 130  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
A BOR will generate a Reset pulse which will reset the  
device. The BOR will select the clock source based on  
the device Configuration bit values (FOS<2:0> and  
FPR<4:0>). Furthermore, if an Oscillator mode is  
selected, the BOR will activate the Oscillator Start-up  
Timer (OST). The system clock is held until OST  
expires. If the PLL is used, then the clock will be held  
until the LOCK bit (OSCCON<5>) is ‘1’.  
17.3.1.1  
POR with Long Crystal Start-up Time  
(with FSCM Enabled)  
The oscillator start-up circuitry is not linked to the POR  
circuitry. Some crystal circuits (especially low  
frequency crystals) will have a relatively long start-up  
time. Therefore, one or more of the following conditions  
is possible after the POR timer and the PWRT have  
expired:  
Concurrently, the POR time-out (TPOR) and the PWRT  
time-out (TPWRT) will be applied before the internal Reset  
is released. If TPWRT = 0and a crystal oscillator is being  
used, then a nominal delay of TFSCM = 100 μs is applied.  
The total delay in this case is (TPOR + TFSCM).  
• The oscillator circuit has not begun to oscillate.  
• The Oscillator Start-up Timer has not expired (if a  
crystal oscillator is used).  
• The PLL has not achieved a LOCK (if PLL is  
used).  
The BOR Status bit (RCON<1>) will be set to indicate  
that a BOR has occurred. The BOR circuit, if enabled,  
will continue to operate while in Sleep or Idle modes  
and will reset the device should VDD fall below the BOR  
threshold voltage.  
If the FSCM is enabled and one of the above conditions  
is true, then a clock failure trap will occur. The device  
will automatically switch to the FRC oscillator and the  
user can switch to the desired crystal oscillator in the  
trap ISR.  
FIGURE 17-6:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
17.3.1.2  
Operating without FSCM and PWRT  
If the FSCM is disabled and the Power-up Timer  
(PWRT) is also disabled, then the device will exit rap-  
idly from Reset on power-up. If the clock source is  
FRC, LPRC, ERC or EC, it will be active immediately.  
VDD  
D
R
If the FSCM is disabled and the system clock has not  
started, the device will be in a frozen state at the Reset  
vector until the system clock starts. From the user’s  
perspective, the device will appear to be in Reset until  
a system clock is available.  
R1  
MCLR  
dsPIC30F  
C
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
17.3.2  
BOR: PROGRAMMABLE  
BROWN-OUT RESET  
The BOR (Brown-out Reset) module is based on an  
internal voltage reference circuit. The main purpose of  
the BOR module is to generate a device Reset when a  
brown-out condition occurs. Brown-out conditions are  
generally caused by glitches on the AC mains  
(i.e., missing portions of the AC cycle waveform due to  
bad power transmission lines, or voltage sags due to  
excessive current draw when a large inductive load is  
turned on).  
2: R should be suitably chosen so as to make  
sure that the voltage drop across R does not  
violate the device’s electrical specifications.  
3: R1 should be suitably chosen so as to limit  
any current flowing into MCLR from external  
capacitor C, in the event of MCLR/VPP pin  
breakdown due to Electrostatic Discharge  
(ESD) or Electrical Overstress (EOS).  
The BOR module allows selection of one of the  
following voltage trip points (see Table 20-11):  
Note:  
Dedicated supervisory devices, such as  
the MCP1XX and MCP8XX, may also be  
used as an external Power-on Reset  
circuit.  
• 2.6V-2.71V  
• 4.1V-4.4V  
• 4.58V-4.73V  
Note:  
The BOR voltage trip points indicated here  
are nominal values provided for design  
guidance only. Refer to the Electrical  
Specifications in the specific device data  
sheet for BOR voltage limit specifications.  
© 2010 Microchip Technology Inc.  
DS70139G-page 131  
dsPIC30F2011/2012/3012/3013  
Table 17-5 shows the Reset conditions for the RCON  
register. Since the control bits within the RCON register  
are R/W, the information in the table means that all the  
bits are negated prior to the action specified in the  
condition column.  
TABLE 17-5: INITIALIZATION CONDITION FOR RCON REGISTER: CASE 1  
Program  
Condition  
TRAPR IOPUWR EXTR SWR WDTO IDLE SLEEP POR BOR  
Counter  
Power-on Reset  
Brown-out Reset  
0x000000  
0x000000  
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
MCLR Reset during normal 0x000000  
operation  
Software Reset during  
normal operation  
0x000000  
0
0
0
1
0
0
0
0
0
MCLR Reset during Sleep  
MCLR Reset during Idle  
WDT Time-out Reset  
WDT Wake-up  
0x000000  
0x000000  
0x000000  
PC + 2  
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
Interrupt Wake-up from  
Sleep  
PC + 2(1)  
Clock Failure Trap  
Trap Reset  
0x000004  
0x000000  
0x000000  
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Illegal Operation Trap  
Note 1: When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector.  
Table 17-6 shows a second example of the bit  
conditions for the RCON register. In this case, it is not  
assumed the user has set/cleared specific bits prior to  
action specified in the condition column.  
TABLE 17-6: INITIALIZATION CONDITION FOR RCON REGISTER: CASE 2  
Program  
Condition  
TRAPR IOPUWR EXTR SWR WDTO IDLE SLEEP POR BOR  
Counter  
Power-on Reset  
0x000000  
0x000000  
0x000000  
0
u
u
0
u
u
0
u
1
0
u
0
0
u
0
0
u
0
0
u
0
1
0
u
1
1
u
Brown-out Reset  
MCLR Reset during normal  
operation  
Software Reset during  
normal operation  
0x000000  
u
u
0
1
0
0
0
u
u
MCLR Reset during Sleep  
MCLR Reset during Idle  
WDT Time-out Reset  
WDT Wake-up  
0x000000  
0x000000  
0x000000  
PC + 2  
u
u
u
u
u
u
u
u
u
u
1
1
0
u
u
u
u
0
u
u
0
0
1
1
u
0
1
0
u
u
1
0
0
1
1
u
u
u
u
u
u
u
u
u
u
Interrupt Wake-up from  
Sleep  
PC + 2(1)  
Clock Failure Trap  
Trap Reset  
0x000004  
0x000000  
0x000000  
u
1
u
u
u
1
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
Illegal Operation Reset  
Legend: u= unchanged  
Note 1: When the wake-up is due to an enabled interrupt, the PC is loaded with the corresponding interrupt vector.  
DS70139G-page 132  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
17.4 Watchdog Timer (WDT)  
17.6 Power-Saving Modes  
There are two power-saving states that can be entered  
through the execution of a special instruction, PWRSAV;  
17.4.1  
WATCHDOG TIMER OPERATION  
The primary function of the Watchdog Timer (WDT) is  
to reset the processor in the event of a software  
malfunction. The WDT is a free-running timer which  
runs off an on-chip RC oscillator, requiring no external  
component. Therefore, the WDT timer will continue to  
operate even if the main processor clock (e.g., the  
crystal oscillator) fails.  
these are Sleep and Idle.  
The format of the PWRSAVinstruction is as follows:  
PWRSAV <parameter>, where ‘parameter’ defines  
Idle or Sleep mode.  
17.6.1  
SLEEP MODE  
In Sleep mode, the clock to the CPU and peripherals is  
shut down. If an on-chip oscillator is being used, it is  
shut down.  
17.4.2  
ENABLING AND DISABLING  
THE WDT  
The Watchdog Timer can be “Enabled” or “Disabled”  
only through a Configuration bit (FWDTEN) in the  
Configuration register, FWDT.  
The Fail-Safe Clock Monitor is not functional during  
Sleep since there is no clock to monitor. However,  
LPRC clock remains active if WDT is operational during  
Sleep.  
Setting FWDTEN = 1enables the Watchdog Timer. The  
enabling is done when programming the device. By  
default, after chip erase, FWDTEN bit = 1. Any device  
programmer capable of programming dsPIC30F  
devices allows programming of this and other  
Configuration bits.  
The brown-out protection circuit and the Low-Voltage  
Detect circuit, if enabled, will remain functional during  
Sleep.  
The processor wakes up from Sleep if at least one of  
the following conditions has occurred:  
If enabled, the WDT will increment until it overflows or  
“times out”. A WDT time-out will force a device Reset  
(except during Sleep). To prevent a WDT time-out, the  
user must clear the Watchdog Timer using a CLRWDT  
instruction.  
• any interrupt that is individually enabled and  
meets the required priority level  
• any Reset (POR, BOR and MCLR)  
• WDT time-out  
If a WDT times out during Sleep, the device will  
wake-up. The WDTO bit in the RCON register will be  
cleared to indicate a wake-up resulting from a WDT  
time-out.  
On waking up from Sleep mode, the processor will  
restart the same clock that was active prior to entry into  
Sleep mode. When clock switching is enabled, bits  
COSC<2:0> will determine the oscillator source that  
will be used on wake-up. If clock switch is disabled,  
then there is only one system clock.  
Setting FWDTEN  
= 0 allows user software to  
enable/disable the Watchdog Timer via the SWDTEN  
(RCON<5>) control bit.  
Note:  
If a POR or BOR occurred, the selection of  
the oscillator is based on the FOS<2:0>  
and FPR<4:0> Configuration bits.  
17.5 Low-Voltage Detect  
The Low-Voltage Detect (LVD) module is used to  
detect when the VDD of the device drops below a  
threshold value, VLVD, which is determined by the  
LVDL<3:0> bits (RCON<11:8>) and is thus user pro-  
grammable. The internal voltage reference circuitry  
requires a nominal amount of time to stabilize, and the  
BGST bit (RCON<13>) indicates when the voltage  
reference has stabilized.  
If the clock source is an oscillator, the clock to the  
device will be held off until OST times out (indicating a  
stable oscillator). If PLL is used, the system clock is  
held off until LOCK = 1 (indicating that the PLL is  
stable). In either case, TPOR, TLOCK and TPWRT delays  
are applied.  
If EC, FRC, LPRC or ERC oscillators are used, then a  
delay of TPOR (~ 10 μs) is applied. This is the smallest  
delay possible on wake-up from Sleep.  
In some devices, the LVD threshold voltage may be  
applied externally on the LVDIN pin.  
Moreover, if LP oscillator was active during Sleep and  
LP is the oscillator used on wake-up, then the start-up  
delay will be equal to TPOR. PWRT delay and OST  
timer delay are not applied. In order to have the  
smallest possible start-up delay when waking up from  
Sleep, one of these faster wake-up options should be  
selected before entering Sleep.  
The LVD module is enabled by setting the LVDEN bit  
(RCON<12>).  
© 2010 Microchip Technology Inc.  
DS70139G-page 133  
dsPIC30F2011/2012/3012/3013  
Any interrupt that is individually enabled (using the  
corresponding IE bit) and meets the prevailing priority  
level will be able to wake-up the processor. The  
processor will process the interrupt and branch to the  
ISR. The Sleep Status bit in the RCON register is set  
upon wake-up.  
Any interrupt that is individually enabled (using IE bit)  
and meets the prevailing priority level will be able to  
wake-up the processor. The processor will process the  
interrupt and branch to the ISR. The Idle Status bit in  
the RCON register is set upon wake-up.  
Any Reset other than POR will set the Idle Status bit.  
On a POR, the Idle bit is cleared.  
Note:  
In spite of various delays applied (TPOR,  
TLOCK and TPWRT), the crystal oscillator  
(and PLL) may not be active at the end of  
the time-out (e.g., for low-frequency  
crystals). In such cases, if FSCM is  
enabled, then the device will detect this as  
a clock failure and process the clock failure  
trap, the FRC oscillator will be enabled and  
the user will have to re-enable the crystal  
oscillator. If FSCM is not enabled, then the  
device will simply suspend execution of  
code until the clock is stable and will remain  
in Sleep until the oscillator clock has  
started.  
If Watchdog Timer is enabled, then the processor will  
wake-up from Idle mode upon WDT time-out. The Idle  
and WDTO Status bits are both set.  
Unlike wake-up from Sleep, there are no time delays  
involved in wake-up from Idle.  
17.7 Device Configuration Registers  
The Configuration bits in each device Configuration  
register specify some of the device modes and are  
programmed by a device programmer, or by using the  
In-Circuit Serial Programming™ (ICSP™) feature of  
the device. Each device Configuration register is a  
24-bit register, but only the lower 16 bits of each  
register are used to hold configuration data. There are  
five device Configuration registers available to the  
user:  
All Resets will wake-up the processor from Sleep  
mode. Any Reset, other than POR, will set the Sleep  
Status bit. In a POR, the Sleep bit is cleared.  
If the Watchdog Timer is enabled, then the processor  
will wake-up from Sleep mode upon WDT time-out. The  
Sleep and WDTO Status bits are both set.  
1. FOSC (0xF80000): Oscillator Configuration  
Register  
2. FWDT (0xF80002): Watchdog Timer  
Configuration Register  
17.6.2  
IDLE MODE  
3. FBORPOR (0xF80004): BOR and POR  
Configuration Register  
In Idle mode, the clock to the CPU is shut down while  
peripherals keep running. Unlike Sleep mode, the clock  
source remains active.  
4. FGS (0xF8000A): General Code Segment  
Configuration Register  
Several peripherals have a control bit in each module  
that allows them to operate during Idle.  
5. FICD (0xF8000C): Debug Configuration  
Register  
LPRC Fail-Safe Clock remains active if clock failure  
detect is enabled.  
The placement of the Configuration bits is  
automatically handled when you select the device in  
your device programmer. The desired state of the  
Configuration bits may be specified in the source code  
(dependent on the language tool used), or through the  
programming interface. After the device has been  
programmed, the application software may read the  
Configuration bit values through the table read  
instructions. For additional information, please refer to  
the Programming Specifications of the device.  
The processor wakes up from Idle if at least one of the  
following conditions has occurred:  
• any interrupt that is individually enabled (IE bit is  
1’) and meets the required priority level  
• any Reset (POR, BOR, MCLR)  
• WDT time-out  
Upon wake-up from Idle mode, the clock is re-applied  
to the CPU and instruction execution begins  
immediately, starting with the instruction following the  
PWRSAVinstruction.  
Note:  
If the code protection Configuration fuse  
bits (FGS<GCP> and FGS<GWRP>)  
have been programmed, an erase of the  
entire code-protected device is only  
possible at voltages VDD 4.5V.  
DS70139G-page 134  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
17.8 Peripheral Module Disable (PMD)  
17.9 In-Circuit Debugger  
Registers  
When MPLAB® ICD 2 is selected as a Debugger, the  
In-Circuit Debugging functionality is enabled. This  
function allows simple debugging functions when used  
with MPLAB IDE. When the device has this feature  
enabled, some of the resources are not available for  
general use. These resources include the first 80 bytes  
of Data RAM and two I/O pins.  
The Peripheral Module Disable (PMD) registers  
provide a method to disable a peripheral module by  
stopping all clock sources supplied to that module.  
When a peripheral is disabled via the appropriate PMD  
control bit, the peripheral is in a minimum power  
consumption state. The Control and Status registers  
associated with the peripheral will also be disabled so  
writes to those registers will have no effect and read  
values will be invalid.  
One of four pairs of Debug I/O pins may be selected by  
the user using configuration options in MPLAB IDE.  
These pin pairs are named EMUD/EMUC,  
EMUD1/EMUC1,  
EMUD3/EMUC3.  
EMUD2/EMUC2  
and  
A peripheral module will only be enabled if both the  
associated bit in the PMD register is cleared and the  
peripheral is supported by the specific dsPIC DSC  
variant. If the peripheral is present in the device, it is  
enabled in the PMD register by default.  
In each case, the selected EMUD pin is the  
Emulation/Debug Data line, and the EMUC pin is the  
Emulation/Debug Clock line. These pins will interface  
to the MPLAB ICD 2 module available from Microchip.  
The selected pair of Debug I/O pins is used by MPLAB  
ICD 2 to send commands and receive responses, as  
well as to send and receive data. To use the In-Circuit  
Debugger function of the device, the design must  
implement ICSP connections to MCLR, VDD, VSS,  
PGC, PGD and the selected EMUDx/EMUCx pin pair.  
Note 1: If a PMD bit is set, the corresponding  
module is disabled after a delay of 1  
instruction cycle. Similarly, if a PMD bit is  
cleared, the corresponding module is  
enabled after a delay of 1 instruction  
cycle (assuming the module Control reg-  
isters are already configured to enable  
module operation).  
This gives rise to two possibilities:  
1. If EMUD/EMUC is selected as the Debug I/O pin  
pair, then only a 5-pin interface is required, as  
the EMUD and EMUC pin functions are multi-  
plexed with the PGD and PGC pin functions in  
all dsPIC30F devices.  
2: In dsPIC30F2011, dsPIC30F3012 and  
dsPIC30F2012 devices, the U2MD bit is  
readable and writable and will be read as  
1’ when set.  
2. If  
EMUD1/EMUC1,  
EMUD2/EMUC2  
or  
EMUD3/EMUC3 is selected as the Debug I/O  
pin pair, then a 7-pin interface is required, as the  
EMUDx/EMUCx pin functions (x = 1, 2 or 3) are  
not multiplexed with the PGD and PGC pin  
functions.  
© 2010 Microchip Technology Inc.  
DS70139G-page 135  
TABLE 17-7: SYSTEM INTEGRATION REGISTER MAP  
SFR  
Name  
Address Bit 15  
Bit 14  
Bit 13 Bit 12 Bit 11 Bit 10 Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset State  
RCON  
0740  
0742  
0744  
0770  
0772  
TRAPR IOPUWR BGST LVDEN  
LVDL<3:0>  
NOSC<2:0>  
EXTR  
SWR  
SWDTEN WDTO SLEEP  
IDLE  
BOR  
POR  
(Note 1)  
(Note 2)  
OSCCON  
OSCTUN  
PMD1  
COSC<2:0>  
POST<1:0>  
LOCK  
CF  
TUN3  
SPI1MD  
LPOSCEN OSWEN  
TUN2  
TUN1  
TUN0  
(Note 2)  
(3)  
T3MD T2MD T1MD  
I2CMD U2MD  
U1MD  
ADCMD  
OC1MD  
0000 0000 0000 0000  
0000 0000 0000 0000  
PMD2  
IC2MD IC1MD  
OC2MD  
Legend:  
— = unimplemented bit, read as ‘0’  
Note 1:  
Reset state depends on type of reset.  
2:  
3:  
Reset state depends on Configuration bits.  
Only available on dsPIC30F3013 devices.  
TABLE 17-8: DEVICE CONFIGURATION REGISTER MAP  
Name  
FOSC  
FWDT  
Address  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
F80000  
F80002  
FCKSM<1:0>  
FOS<2:0>  
FPR<4:0>  
FWDTEN  
MCLREN  
FWPSA<1:0>  
BORV<1:0>  
FWPSB<3:0>  
(1)  
(1)  
(1)  
FBORPOR F80004  
(2)  
PWMPIN  
HPOL  
LPOL  
BOREN  
FPWRT<1:0>  
(2)  
(2)  
FBS  
FSS  
FGS  
FICD  
F80006  
F80008  
F8000A  
F8000C  
Reserved  
Reserved  
Reserved  
(2)  
(2)  
(2)  
Reserved  
Reserved  
Reserved  
(3)  
Reserved  
GCP  
GWRP  
BKBUG  
COE  
ICS<1:0>  
Legend:  
— = unimplemented bit, read as ‘0’  
Note 1:  
These bits are reserved (read as ‘1’ and must be programmed as ‘1’).  
Reserved bits read as ‘1’ and must be programmed as ‘1’.  
The FGS<2> bit is a read-only copy of the GCP bit (FGS<1>).  
2:  
3:  
dsPIC30F2011/2012/3012/3013  
Most bit-oriented instructions (including simple  
rotate/shift instructions) have two operands:  
18.0 INSTRUCTION SET SUMMARY  
Note:  
This data sheet summarizes features of  
this group of dsPIC30F devices and is not  
intended to be a complete reference  
source. For more information on the CPU,  
peripherals, register descriptions and  
general device functionality, refer to the  
dsPIC30F Family Reference Manual”  
(DS70046). For more information on the  
device instruction set and programming,  
refer to the “dsPIC30F Programmer’s  
Reference Manual” (DS70030).  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register  
(specified by a literal value or indirectly by the  
contents of register ‘Wb’)  
The literal instructions that involve data movement may  
use some of the following operands:  
• A literal value to be loaded into a W register or file  
register (specified by the value of ‘k’)  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
The dsPIC30F instruction set adds many  
enhancements to the previous PIC® MCU instruction  
sets, while maintaining an easy migration from  
MCU instruction sets.  
PIC  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
Most instructions are a single program memory word  
(24 bits). Only three instructions require two program  
memory locations.  
• The first source operand which is a register ‘Wb’  
without any address modifier  
• The second source operand which is a literal  
value  
Each single-word instruction is a 24-bit word divided  
into an 8-bit opcode which specifies the instruction  
type, and one or more operands which further specify  
the operation of the instruction.  
• The destination of the result (only if not the same  
as the first source operand) which is typically a  
register ‘Wd’ with or without an address modifier  
The instruction set is highly orthogonal and is grouped  
into five basic categories:  
The MACclass of DSP instructions may use some of the  
following operands:  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
• DSP operations  
• Control operations  
• The accumulator (A or B) to be used (required  
operand)  
• The W registers to be used as the two operands  
• The X and Y address space prefetch operations  
• The X and Y address space prefetch destinations  
• The accumulator write-back destination  
Table 18-1 shows the general symbols used in  
describing the instructions.  
The other DSP instructions do not involve any  
multiplication, and may include:  
The dsPIC30F instruction set summary in Table 18-2  
lists all the instructions, along with the status flags  
affected by each instruction.  
• The accumulator to be used (required)  
• The source or destination operand (designated as  
Wso or Wdo, respectively) with or without an  
address modifier  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
• The amount of shift specified by a W register ‘Wn’  
or a literal value  
• The first source operand which is typically a  
register ‘Wb’ without any address modifier  
The control instructions may use some of the following  
operands:  
• The second source operand which is typically a  
register ‘Ws’ with or without an address modifier  
• A program memory address  
• The destination of the result which is typically a  
register ‘Wd’ with or without an address modifier  
• The mode of the table read and table write  
instructions  
However, word or byte-oriented file register instructions  
have two operands:  
• The file register specified by the value ‘f’  
• The destination, which could either be the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
© 2010 Microchip Technology Inc.  
DS70139G-page 137  
dsPIC30F2011/2012/3012/3013  
All instructions are a single word, except for certain  
double-word instructions, which were made  
double-word instructions so that all the required  
information is available in these 48 bits. In the second  
word, the 8 MSbs are ‘0’s. If this second word is  
executed as an instruction (by itself), it will execute as  
a NOP.  
RETURN/RETFIE instructions, which are single-word  
instructions but take two or three cycles. Certain  
instructions that involve skipping over the subsequent  
instruction require either two or three cycles if the skip  
is performed, depending on whether the instruction  
being skipped is a single-word or two-word instruction.  
Moreover, double-word moves require two cycles. The  
double-word instructions execute in two instruction  
cycles.  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the  
instruction. In these cases, the execution takes two  
instruction cycles with the additional instruction  
cycle(s) executed as a NOP. Notable exceptions are the  
BRA (unconditional/computed branch), indirect  
CALL/GOTO, all table reads and writes, and  
Note:  
For more details on the instruction set,  
refer to the “MCU and DSC Programmer’s  
Reference Manual” (DS70157).  
TABLE 18-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
Register bit field  
<n:m>  
.b  
Byte mode selection  
.d  
Double-Word mode selection  
Shadow register select  
.S  
.w  
Word mode selection (default)  
One of two accumulators {A, B}  
Acc  
AWB  
bit4  
Accumulator write-back destination address register {W13, [W13]+=2}  
4-bit bit selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0x0000...0x1FFF}  
1-bit unsigned literal {0,1}  
C, DC, N, OV, Z  
Expr  
f
lit1  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
lit14  
lit16  
16-bit unsigned literal {0...65535}  
lit23  
23-bit unsigned literal {0...8388608}; LSB must be 0  
Field does not require an entry, may be blank  
DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate  
Program Counter  
None  
OA, OB, SA, SB  
PC  
Slit10  
Slit16  
Slit6  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
DS70139G-page 138  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
TABLE 18-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)  
Field  
Description  
Wb  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register ∈  
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Dividend, Divisor working register pair (direct addressing)  
Wm*Wm  
Multiplicand and Multiplier working register pair for Square instructions ∈  
{W4*W4,W5*W5,W6*W6,W7*W7}  
Wm*Wn  
Multiplicand and Multiplier working register pair for DSP instructions ∈  
{W4*W5,W4*W6,W4*W7,W5*W6,W5*W7,W6*W7}  
Wn  
One of 16 working registers {W0..W15}  
Wnd  
Wns  
WREG  
Ws  
One of 16 destination working registers {W0..W15}  
One of 16 source working registers {W0..W15}  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
Wso  
Source W register ∈  
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
Wx  
X data space prefetch address register for DSP instructions  
{[W8]+=6, [W8]+=4, [W8]+=2, [W8], [W8]-=6, [W8]-=4, [W8]-=2,  
[W9]+=6, [W9]+=4, [W9]+=2, [W9], [W9]-=6, [W9]-=4, [W9]-=2,  
[W9+W12],none}  
Wxd  
Wy  
X data space prefetch destination register for DSP instructions {W4..W7}  
Y data space prefetch address register for DSP instructions  
{[W10]+=6, [W10]+=4, [W10]+=2, [W10], [W10]-=6, [W10]-=4, [W10]-=2,  
[W11]+=6, [W11]+=4, [W11]+=2, [W11], [W11]-=6, [W11]-=4, [W11]-=2,  
[W11+W12], none}  
Wyd  
Y data space prefetch destination register for DSP instructions {W4..W7}  
© 2010 Microchip Technology Inc.  
DS70139G-page 139  
dsPIC30F2011/2012/3012/3013  
TABLE 18-2: INSTRUCTION SET OVERVIEW  
Base  
Instr  
#
# of  
Cycle  
s
Assembly  
Mnemonic  
# of  
Words  
Status Flags  
Affected  
Assembly Syntax  
Description  
1
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
ASR  
ASR  
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
Acc  
Add Accumulators  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
OA,OB,SA,SB  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
f
f = f + WREG  
f,WREG  
WREG = f + WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
f
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
16-bit Signed Add to Accumulator  
f = f + WREG + (C)  
1
2
3
4
ADDC  
1
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
Wd = Wb + lit5 + (C)  
1
AND  
f = f .AND. WREG  
1
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
1
N,Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N,Z  
Wd = Wb .AND. Ws  
1
N,Z  
Wd = Wb .AND. lit5  
1
N,Z  
ASR  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
1
Ws,Wd  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
1
N,Z  
5
6
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if greater than or equal  
Branch if unsigned greater than or equal  
Branch if greater than  
Branch if unsigned greater than  
Branch if less than or equal  
Branch if unsigned less than or equal  
Branch if less than  
None  
None  
None  
None  
None  
None  
None  
Branch if unsigned less than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OA,Expr  
OB,Expr  
OV,Expr  
SA,Expr  
SB,Expr  
Expr  
Branch if Not Carry  
None  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Accumulator A overflow  
Branch if Accumulator B overflow  
Branch if Overflow  
None  
None  
None  
Branch if Accumulator A saturated  
Branch if Accumulator B saturated  
Branch Unconditionally  
Branch if Zero  
None  
None  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
7
8
BSET  
BSW  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
1
None  
Ws,Wb  
1
None  
DS70139G-page 140  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
TABLE 18-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
# of  
Cycle  
s
Assembly  
Mnemonic  
# of  
Words  
Status Flags  
Affected  
Assembly Syntax  
Description  
9
BTG  
BTG  
f,#bit4  
Ws,#bit4  
f,#bit4  
Bit Toggle f  
1
1
1
1
1
None  
None  
None  
BTG  
Bit Toggle Ws  
10  
11  
12  
BTSC  
BTSC  
Bit Test f, Skip if Clear  
Bit Test Ws, Skip if Clear  
Bit Test f, Skip if Set  
1
(2 or 3)  
BTSC  
BTSS  
BTSS  
Ws,#bit4  
f,#bit4  
Ws,#bit4  
1
1
1
1
None  
None  
None  
(2 or 3)  
BTSS  
BTST  
1
(2 or 3)  
Bit Test Ws, Skip if Set  
1
(2 or 3)  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
C
Bit Test Ws to Z  
Z
C
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Ws,Wb  
Z
13  
BTSTS  
f,#bit4  
Z
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call subroutine  
C
Z
14  
15  
CALL  
CLR  
CALL  
CALL  
CLR  
CLR  
CLR  
CLR  
CLRWDT  
COM  
COM  
COM  
CP  
lit23  
None  
Wn  
Call indirect subroutine  
f = 0x0000  
None  
f
None  
WREG  
WREG = 0x0000  
None  
Ws  
Ws = 0x0000  
None  
Acc,Wx,Wxd,Wy,Wyd,AWB  
Clear Accumulator  
Clear Watchdog Timer  
f = f  
OA,OB,SA,SB  
WDTO,Sleep  
N,Z  
16  
17  
CLRWDT  
COM  
f
f,WREG  
Ws,Wd  
f
WREG = f  
N,Z  
Wd = Ws  
N,Z  
18  
CP  
Compare f with WREG  
Compare Wb with lit5  
Compare Wb with Ws (Wb - Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
19  
20  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb - Ws - C)  
21  
22  
23  
24  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Wb, Wn  
Compare Wb with Wn, skip if =  
Compare Wb with Wn, skip if >  
Compare Wb with Wn, skip if <  
Compare Wb with Wn, skip if ≠  
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
25  
26  
DAW  
DEC  
DAW  
Wn  
Wn = decimal adjust Wn  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
DEC  
f
f = f -1  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f -1  
DEC  
Wd = Ws - 1  
27  
28  
DEC2  
DISI  
DEC2  
DEC2  
DEC2  
DISI  
f = f -2  
f,WREG  
Ws,Wd  
#lit14  
WREG = f -2  
Wd = Ws - 2  
Disable Interrupts for k instruction cycles  
© 2010 Microchip Technology Inc.  
DS70139G-page 141  
dsPIC30F2011/2012/3012/3013  
TABLE 18-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
# of  
Cycle  
s
Assembly  
Mnemonic  
# of  
Words  
Status Flags  
Affected  
Assembly Syntax  
Description  
29  
DIV  
DIV.S  
DIV.SD  
DIV.U  
DIV.UD  
DIVF  
DO  
Wm,Wn  
Signed 16/16-bit Integer Divide  
Signed 32/16-bit Integer Divide  
Unsigned 16/16-bit Integer Divide  
Unsigned 32/16-bit Integer Divide  
Signed 16/16-bit Fractional Divide  
Do code to PC+Expr, lit14+1 times  
Do code to PC+Expr, (Wn)+1 times  
Euclidean Distance (no accumulate)  
1
1
1
1
1
2
2
1
18  
18  
18  
18  
18  
2
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
N,Z,C,OV  
None  
Wm,Wn  
Wm,Wn  
Wm,Wn  
30  
31  
DIVF  
DO  
Wm,Wn  
#lit14,Expr  
Wn,Expr  
DO  
2
None  
32  
33  
ED  
ED  
Wm*Wm,Acc,Wx,Wy,Wxd  
1
OA,OB,OAB,  
SA,SB,SAB  
EDAC  
EDAC  
Wm*Wm,Acc,Wx,Wy,Wxd  
Euclidean Distance  
1
1
OA,OB,OAB,  
SA,SB,SAB  
34  
35  
36  
37  
38  
EXCH  
FBCL  
FF1L  
EXCH  
FBCL  
FF1L  
FF1R  
GOTO  
GOTO  
INC  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
Ws,Wnd  
Expr  
Swap Wns with Wnd  
Find Bit Change from Left (MSb) Side  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
Go to address  
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
None  
C
C
FF1R  
GOTO  
C
None  
Wn  
Go to indirect  
None  
39  
40  
41  
INC  
f
f = f + 1  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
N,Z  
INC  
f,WREG  
Ws,Wd  
WREG = f + 1  
INC  
Wd = Ws + 1  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f = f + 2  
f,WREG  
Ws,Wd  
WREG = f + 2  
Wd = Ws + 2  
f
f = f .IOR. WREG  
IOR  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wso,#Slit4,Acc  
WREG = f .IOR. WREG  
Wd = lit10 .IOR. Wd  
Wd = Wb .IOR. Ws  
Wd = Wb .IOR. lit5  
Load Accumulator  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
IOR  
N,Z  
42  
LAC  
LAC  
OA,OB,OAB,  
SA,SB,SAB  
43  
44  
LNK  
LSR  
LNK  
LSR  
LSR  
LSR  
LSR  
LSR  
MAC  
#lit14  
Link frame pointer  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
None  
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f
f = Logical Right Shift f  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
N,Z  
45  
46  
MAC  
MOV  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd Multiply and Accumulate  
,
AWB  
OA,OB,OAB,  
SA,SB,SAB  
MAC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Square and Accumulate  
1
1
OA,OB,OAB,  
SA,SB,SAB  
MOV  
f,Wn  
Move f to Wn  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
None  
N,Z  
MOV  
f
Move f to f  
MOV  
f,WREG  
Move f to WREG  
N,Z  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-bit literal to Wn  
Move 8-bit literal to Wn  
Move Wn to f  
None  
None  
None  
None  
N,Z  
MOV.b  
MOV  
MOV  
Wso,Wdo  
Move Ws to Wd  
MOV  
WREG,f  
Move WREG to f  
MOV.D  
MOV.D  
MOVSAC  
Wns,Wd  
Move Double from W(ns):W(ns+1) to Wd  
Move Double from Ws to W(nd+1):W(nd)  
Prefetch and store accumulator  
None  
None  
None  
Ws,Wnd  
47  
MOVSAC  
Acc,Wx,Wxd,Wy,Wyd,AWB  
DS70139G-page 142  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
TABLE 18-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
# of  
Cycle  
s
Assembly  
Mnemonic  
# of  
Words  
Status Flags  
Affected  
Assembly Syntax  
Description  
48  
MPY  
MPY  
Multiply Wm by Wn to Accumulator  
Square Wm to Accumulator  
1
1
1
1
1
1
1
1
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MPY  
OA,OB,OAB,  
SA,SB,SAB  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd  
49  
50  
MPY.N  
MSC  
MPY.N  
-(Multiply Wm by Wn) to Accumulator  
None  
Wm*Wn,Acc,Wx,Wxd,Wy,Wyd  
MSC  
Wm*Wm,Acc,Wx,Wxd,Wy,Wyd Multiply and Subtract from Accumulator  
OA,OB,OAB,  
SA,SB,SAB  
,
AWB  
51  
MUL  
MUL.SS  
MUL.SU  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
{Wnd+1, Wnd} = signed(Wb) * signed(Ws)  
1
1
1
1
None  
None  
{Wnd+1, Wnd} = signed(Wb) *  
unsigned(Ws)  
MUL.US  
MUL.UU  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
{Wnd+1, Wnd} = unsigned(Wb) *  
signed(Ws)  
1
1
1
1
None  
None  
{Wnd+1, Wnd} = unsigned(Wb) *  
unsigned(Ws)  
MUL.SU  
MUL.UU  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
{Wnd+1, Wnd} = signed(Wb) * unsigned(lit5)  
1
1
1
1
None  
None  
{Wnd+1, Wnd} = unsigned(Wb) *  
unsigned(lit5)  
MUL  
NEG  
f
W3:W2 = f * WREG  
Negate Accumulator  
1
1
1
1
None  
52  
NEG  
Acc  
OA,OB,OAB,  
SA,SB,SAB  
NEG  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
53  
54  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from top-of-stack (TOS)  
Pop from top-of-stack (TOS) to Wdo  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
Pop from top-of-stack (TOS) to  
W(nd):W(nd+1)  
None  
POP.S  
PUSH  
Pop Shadow Registers  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
All  
None  
None  
None  
None  
WDTO,Sleep  
None  
None  
None  
None  
None  
None  
None  
None  
C,N,Z  
C,N,Z  
C,N,Z  
N,Z  
55  
PUSH  
f
Push f to top-of-stack (TOS)  
Push Wso to top-of-stack (TOS)  
Push W(ns):W(ns+1) to top-of-stack (TOS)  
Push Shadow Registers  
1
PUSH  
Wso  
Wns  
1
PUSH.D  
PUSH.S  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
2
1
56  
57  
PWRSAV  
RCALL  
#lit1  
Expr  
Go into Sleep or Idle mode  
Relative Call  
1
2
Wn  
Computed Call  
2
58  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14+1 times  
Repeat Next Instruction (Wn)+1 times  
Software device Reset  
1
1
59  
60  
61  
62  
63  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
Return from interrupt  
3 (2)  
#lit10,Wn  
Return with literal in Wn  
3 (2)  
Return from Subroutine  
3 (2)  
1
f
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
RLC  
f,WREG  
Ws,Wd  
f
1
RLC  
1
64  
65  
RLNC  
RRC  
RLNC  
1
RLNC  
f,WREG  
Ws,Wd  
f
1
N,Z  
RLNC  
1
N,Z  
RRC  
1
C,N,Z  
C,N,Z  
C,N,Z  
RRC  
f,WREG  
Ws,Wd  
1
RRC  
1
© 2010 Microchip Technology Inc.  
DS70139G-page 143  
dsPIC30F2011/2012/3012/3013  
TABLE 18-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Base  
Instr  
#
# of  
Cycle  
s
Assembly  
Mnemonic  
# of  
Words  
Status Flags  
Affected  
Assembly Syntax  
Description  
66  
RRNC  
RRNC  
RRNC  
RRNC  
SAC  
f
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Store Accumulator  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N,Z  
N,Z  
f,WREG  
Ws,Wd  
N,Z  
67  
SAC  
Acc,#Slit4,Wdo  
None  
None  
C,N,Z  
None  
None  
None  
SAC.R  
SE  
Acc,#Slit4,Wdo  
Store Rounded Accumulator  
Wnd = sign-extended Ws  
f = 0xFFFF  
68  
69  
SE  
Ws,Wnd  
f
SETM  
SETM  
SETM  
SETM  
SFTAC  
WREG  
Ws  
WREG = 0xFFFF  
Ws = 0xFFFF  
70  
71  
SFTAC  
SL  
Acc,Wn  
Arithmetic Shift Accumulator by (Wn)  
OA,OB,OAB,  
SA,SB,SAB  
SFTAC  
Acc,#Slit6  
Arithmetic Shift Accumulator by Slit6  
1
1
OA,OB,OAB,  
SA,SB,SAB  
SL  
SL  
SL  
SL  
SL  
SUB  
f
f = Left Shift f  
1
1
1
1
1
1
1
1
1
1
1
1
C,N,OV,Z  
C,N,OV,Z  
C,N,OV,Z  
N,Z  
f,WREG  
Ws,Wd  
WREG = Left Shift f  
Wd = Left Shift Ws  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
Acc  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
Subtract Accumulators  
N,Z  
72  
SUB  
OA,OB,OAB,  
SA,SB,SAB  
SUB  
f
f = f - WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
C,DC,N,OV,Z  
None  
SUB  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f - WREG  
Wn = Wn - lit10  
SUB  
SUB  
Wd = Wb - Ws  
SUB  
Wd = Wb - lit5  
73  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
SUBBR  
SUBBR  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
f = f - WREG - (C)  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f - WREG - (C)  
Wn = Wn - lit10 - (C)  
Wd = Wb - Ws - (C)  
Wd = Wb - lit5 - (C)  
f = WREG - f  
74  
75  
76  
SUBR  
SUBBR  
SWAP  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = WREG - f  
Wd = Ws - Wb  
Wd = lit5 - Wb  
f = WREG - f - (C)  
f,WREG  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
WREG = WREG -f - (C)  
Wd = Ws - Wb - (C)  
Wd = lit5 - Wb - (C)  
Wn = nibble swap Wn  
Wn = byte swap Wn  
Read Prog<23:16> to Wd<7:0>  
Read Prog<15:0> to Wd  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink frame pointer  
f = f .XOR. WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
Wd = Wb .XOR. lit5  
Wnd = Zero-extend Ws  
Wn  
None  
77  
78  
79  
80  
81  
82  
TBLRDH  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
Ws,Wd  
None  
Ws,Wd  
None  
Ws,Wd  
None  
Ws,Wd  
None  
None  
XOR  
f
N,Z  
XOR  
f,WREG  
N,Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N,Z  
XOR  
N,Z  
XOR  
N,Z  
83  
ZE  
ZE  
C,Z,N  
DS70139G-page 144  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
19.1 MPLAB Integrated Development  
Environment Software  
19.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- HI-TECH C for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2010 Microchip Technology Inc.  
DS70139G-page 145  
dsPIC30F2011/2012/3012/3013  
19.2 MPLAB C Compilers for Various  
Device Families  
19.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
19.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
19.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
19.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS70139G-page 146  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
19.7 MPLAB SIM Software Simulator  
19.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
19.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
19.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including low-cost, full-speed emulation, run-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
© 2010 Microchip Technology Inc.  
DS70139G-page 147  
dsPIC30F2011/2012/3012/3013  
19.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
19.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
19.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS70139G-page 148  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
20.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of dsPIC30F electrical characteristics. Additional information will be provided in future  
revisions of this document as it becomes available.  
For detailed information about the dsPIC30F architecture and core, refer to the “dsPIC30F Family Reference Manual”  
(DS70046).  
Absolute maximum ratings for the dsPIC30F family are listed below. Exposure to these maximum rating conditions for  
extended periods may affect device reliability. Functional operation of the device at these or any other conditions above  
the parameters indicated in the operation listings of this specification is not implied.  
Absolute Maximum Ratings(†)  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD and MCLR) (Note 1)..................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +5.5V  
Voltage on MCLR with respect to VSS........................................................................................................ 0V to +13.25V  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin (Note 2)................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..........................................................................................................±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD)...................................................................................................±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports (Note 2)....................................................................................................200 mA  
Note 1: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100Ωshould be used when applying a “low” level to the MCLR/VPP pin, rather  
than pulling this pin directly to VSS.  
2: Maximum allowable current is a function of device maximum power dissipation. See Table 20-2 for PDMAX.  
NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Note: All peripheral electrical characteristics are specified. For exact peripherals available on specific  
devices, please refer to the dsPIC30F2011/2012/3012/3013 Sensor Family table on page 4 of  
this data sheet.  
© 2010 Microchip Technology Inc.  
DS70139G-page 149  
dsPIC30F2011/2012/3012/3013  
20.1 DC Characteristics  
TABLE 20-1: OPERATING MIPS VS. VOLTAGE  
Max MIPS  
VDD Range  
Temp Range  
dsPIC30FXXX-30I  
dsPIC30FXXX-20E  
4.5-5.5V  
4.5-5.5V  
3.0-3.6V  
3.0-3.6V  
2.5-3.0V  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
30  
20  
10  
20  
15  
TABLE 20-2: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
dsPIC30F201x-30I  
dsPIC30F301x-30I  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
dsPIC30F201x-20E  
dsPIC30F301x-20E  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+150  
+125  
°C  
°C  
Power Dissipation:  
Internal chip power dissipation:  
PINT = VDD × (IDD –  
)
IOH  
PD  
PINT + PI/O  
W
W
I/O Pin power dissipation:  
=
({VDD VOH}×  
) +  
(
)
VOL × IOL  
PI/O  
IOH  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ - TA) / θJA  
TABLE 20-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
Package Thermal Resistance, 18-pin PDIP (P)  
Package Thermal Resistance, 18-pin SOIC (SO)  
Package Thermal Resistance, 28-pin SPDIP (SP)  
Package Thermal Resistance, 28-pin (SOIC)  
Package Thermal Resistance, 44-pin QFN  
θJA  
θJA  
θJA  
θJA  
θJA  
44  
57  
42  
49  
28  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1
1
1
1
1
Note 1: Junction to ambient thermal resistance, Theta-ja (θJA) numbers are achieved by package simulations.  
DS70139G-page 150  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
TABLE 20-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
Operating Voltage(2)  
DC10  
DC11  
DC12  
DC16  
VDD  
VDD  
VDR  
VPOR  
Supply Voltage  
2.5  
3.0  
1.75  
5.5  
5.5  
V
V
V
V
Industrial temperature  
Extended temperature  
Supply Voltage  
RAM Data Retention Voltage(3)  
VDD Start Voltage (to ensure  
VSS  
internal Power-on Reset signal)  
DC17  
SVDD  
VDD Rise Rate (to ensure  
internal Power-on Reset signal)  
0.05  
V/ms 0-5V in 0.1 sec  
0-3V in 60 ms  
Note 1: “Typ” column data is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
3: This is the limit to which VDD can be lowered without losing RAM data.  
© 2010 Microchip Technology Inc.  
DS70139G-page 151  
dsPIC30F2011/2012/3012/3013  
TABLE 20-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Operating Current (IDD)(2)  
DC31a  
DC31b  
DC31c  
DC31e  
DC31f  
DC31g  
DC30a  
DC30b  
DC30c  
DC30e  
DC30f  
DC30g  
DC23a  
DC23b  
DC23c  
DC23e  
DC23f  
DC23g  
DC24a  
DC24b  
DC24c  
DC24e  
DC24f  
DC24g  
DC27a  
DC27b  
DC27d  
DC27e  
DC27f  
DC29a  
DC29b  
1.6  
1.6  
3.0  
3.0  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
25°C  
85°C  
125°C  
25°C  
85°C  
3.3V  
5V  
1.6  
3.0  
0.128 MIPS  
LPRC (512 kHz)  
3.6  
6.0  
3.3  
6.0  
3.2  
6.0  
3.0  
5.0  
3.0  
5.0  
3.3V  
5V  
3.1  
5.0  
(1.8 MIPS)  
FRC (7.37 MHz)  
6.0  
9.0  
5.8  
9.0  
5.7  
9.0  
9.0  
15.0  
15.0  
15.0  
24.0  
24.0  
24.0  
33.0  
33.0  
33.0  
56.0  
56.0  
56.0  
60.0  
60.0  
90.0  
90.0  
90.0  
140.0  
140.0  
10.0  
10.0  
16.0  
16.0  
16.0  
22.0  
22.0  
22.0  
37.0  
37.0  
37.0  
41.0  
40.0  
68.0  
67.0  
66.0  
96.0  
94.0  
3.3V  
5V  
4 MIPS  
3.3V  
10 MIPS  
5V  
3.3V  
5V  
20 MIPS  
30 MIPS  
5V  
Note 1: Data in “Typical” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have  
an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1  
driven with external square wave from rail to rail. All I/O pins are configured as Inputs and pulled to VDD.  
MCLR = VDD, WDT, FSCM, LVD and BOR are disabled. CPU, SRAM, Program Memory and Data  
Memory are operational. No peripheral modules are operating.  
DS70139G-page 152  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
TABLE 20-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Operating Current (IDD)(2)  
DC51a  
DC51b  
DC51c  
DC51e  
DC51f  
DC51g  
DC50a  
DC50b  
DC50c  
DC50e  
DC50f  
DC50g  
DC43a  
DC43b  
DC43c  
DC43e  
DC43f  
DC43g  
DC44a  
DC44b  
DC44c  
DC44e  
DC44f  
DC44g  
DC47a  
DC47b  
DC47d  
DC47e  
DC47f  
DC49a  
DC49b  
1.3  
1.3  
2.5  
2.5  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
25°C  
85°C  
125°C  
25°C  
85°C  
3.3V  
5V  
1.2  
2.5  
0.128 MIPS  
LPRC (512 kHz)  
3.2  
5.0  
2.9  
5.0  
2.8  
5.0  
3.0  
5.0  
3.0  
5.0  
3.3V  
5V  
3.0  
5.0  
(1.8 MIPS)  
FRC (7.37 MHz)  
6.0  
9.0  
5.8  
9.0  
5.7  
9.0  
5.2  
8.0  
5.3  
8.0  
3.3V  
5V  
5.4  
8.0  
4 MIPS  
9.7  
15.0  
15.0  
15.0  
17.0  
17.0  
17.0  
29.0  
29.0  
30.0  
35.0  
35.0  
50.0  
50.0  
50.0  
70.0  
70.0  
9.6  
9.5  
11.0  
11.0  
11.0  
19.0  
19.0  
20.0  
20.0  
21.0  
35.0  
36.0  
36.0  
51.0  
51.0  
3.3V  
10 MIPS  
5V  
3.3V  
5V  
20 MIPS  
30 MIPS  
5V  
Note 1: Data in “Typical” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Base IIDLE current is measured with Core off, Clock on and all modules turned off.  
© 2010 Microchip Technology Inc.  
DS70139G-page 153  
dsPIC30F2011/2012/3012/3013  
TABLE 20-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Parameter  
Typical(1)  
Max  
Units  
Conditions  
No.  
Power-Down Current (IPD)(2)  
DC60a  
DC60b  
DC60c  
DC60e  
DC60f  
DC60g  
DC61a  
DC61b  
DC61c  
DC61e  
DC61f  
DC61g  
DC62a  
DC62b  
DC62c  
DC62e  
DC62f  
DC62g  
DC63a  
DC63b  
DC63c  
DC63e  
DC63f  
DC63g  
DC66a  
DC66b  
DC66c  
DC66e  
DC66f  
DC66g  
0.3  
1.3  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
25°C  
85°C  
125°C  
30.0  
60.0  
3.3V  
5V  
16.0  
0.5  
Base Power-Down Current(3)  
3.7  
45.0  
90.0  
9.0  
25.0  
6.0  
6.0  
9.0  
3.3V  
5V  
6.0  
9.0  
(3)  
Watchdog Timer Current: ΔIWDT  
13.0  
12.0  
12.0  
4.0  
20.0  
20.0  
20.0  
10.0  
10.0  
10.0  
15.0  
15.0  
15.0  
53.0  
53.0  
53.0  
62.0  
62.0  
62.0  
40.0  
40.0  
40.0  
44.0  
44.0  
44.0  
5.0  
3.3V  
5V  
4.0  
Timer1 w/32 kHz Crystal: ΔITI32(3)  
4.0  
6.0  
5.0  
33.0  
35.0  
19.0  
38.0  
41.0  
41.0  
21.0  
26.0  
27.0  
25.0  
27.0  
29.0  
3.3V  
5V  
(3)  
BOR On: ΔIBOR  
3.3V  
5V  
(3)  
Low-Voltage Detect: ΔILVD  
Note 1: Data in the Typical column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and  
pulled high. LVD, BOR, WDT, etc. are all switched off.  
3: The Δ current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
DS70139G-page 154  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
TABLE 20-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
Input Low Voltage(2)  
VIL  
DI10  
I/O pins:  
with Schmitt Trigger buffer  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.3 VDD  
0.8  
V
V
V
V
V
V
DI15  
DI16  
DI17  
DI18  
DI19  
MCLR  
OSC1 (in XT, HS and LP modes)  
OSC1 (in RC mode)(3)  
SDA, SCL  
SM bus disabled  
SM bus enabled  
SDA, SCL  
VIH  
Input High Voltage(2)  
DI20  
I/O pins:  
with Schmitt Trigger buffer  
0.8 VDD  
0.8 VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
DI25  
DI26  
DI27  
DI28  
DI29  
MCLR  
OSC1 (in XT, HS and LP modes) 0.7 VDD  
OSC1 (in RC mode)(3)  
0.9 VDD  
0.7 VDD  
2.1  
SDA, SCL  
SM bus disabled  
SM bus enabled  
SDA, SCL  
ICNPU  
IIL  
CNXX Pull-up Current(2)  
DI30  
50  
250  
400  
μA  
VDD = 5V, VPIN = VSS  
Input Leakage Current(2)(4)(5)  
DI50  
DI51  
I/O ports  
0.01  
0.50  
±1  
μA  
μA  
VSS VPIN VDD,  
Pin at high impedance  
Analog input pins  
VSS VPIN VDD,  
Pin at high impedance  
DI55  
DI56  
MCLR  
OSC1  
0.05  
0.05  
±5  
±5  
μA  
μA  
VSS VPIN VDD  
VSS VPIN VDD, XT, HS  
and LP Osc mode  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
3: In RC oscillator configuration, the OSC1/CLKl pin is a Schmitt Trigger input. It is not recommended that  
the dsPIC30F device be driven with an external clock while in RC mode.  
4: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
5: Negative current is defined as current sourced by the pin.  
© 2010 Microchip Technology Inc.  
DS70139G-page 155  
dsPIC30F2011/2012/3012/3013  
TABLE 20-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
VOL  
Output Low Voltage(2)  
DO10  
DO16  
I/O ports  
0.6  
0.15  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 5V  
IOL = 2.0 mA, VDD = 3V  
IOL = 1.6 mA, VDD = 5V  
IOL = 2.0 mA, VDD = 3V  
OSC2/CLKO  
(RC or EC Osc mode)  
Output High Voltage(2)  
I/O ports  
0.72  
VOH  
DO20  
DO26  
VDD – 0.7  
VDD – 0.2  
VDD – 0.7  
VDD – 0.1  
V
V
V
V
IOH = -3.0 mA, VDD = 5V  
IOH = -2.0 mA, VDD = 3V  
IOH = -1.3 mA, VDD = 5V  
IOH = -2.0 mA, VDD = 3V  
OSC2/CLKO  
(RC or EC Osc mode)  
Capacitive Loading Specs  
on Output Pins(2)  
DO50 COSC2  
OSC2/SOSC2 pin  
15  
pF In XTL, XT, HS and LP modes  
when external clock is used to  
drive OSC1.  
DO56 CIO  
DO58 CB  
All I/O pins and OSC2  
SCL, SDA  
50  
pF RC or EC Osc mode  
pF In I2C mode  
400  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
DS70139G-page 156  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 20-1:  
LOW-VOLTAGE DETECT CHARACTERISTICS  
VDD  
LV10  
LVDIF  
(LVDIF set by hardware)  
TABLE 20-10: ELECTRICAL CHARACTERISTICS: LVDL  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ  
Max Units Conditions  
LV10  
VPLVD  
LVDL Voltage on VDD transition LVDL = 0000(2)  
V
high-to-low  
LVDL = 0001(2)  
LVDL = 0010(2)  
LVDL = 0011(2)  
LVDL = 0100  
LVDL = 0101  
LVDL = 0110  
LVDL = 0111  
LVDL = 1000  
LVDL = 1001  
LVDL = 1010  
LVDL = 1011  
LVDL = 1100  
LVDL = 1101  
LVDL = 1110  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
2.50  
2.70  
2.80  
3.00  
3.30  
3.50  
3.60  
3.80  
4.00  
4.20  
4.50  
2.65  
2.86  
2.97  
3.18  
3.50  
3.71  
3.82  
4.03  
4.24  
4.45  
4.77  
LV15  
VLVDIN  
External LVD input pin  
threshold voltage  
LVDL = 1111  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: These values not in usable operating range.  
© 2010 Microchip Technology Inc.  
DS70139G-page 157  
dsPIC30F2011/2012/3012/3013  
FIGURE 20-2:  
BROWN-OUT RESET CHARACTERISTICS  
VDD  
(Device not in Brown-out Reset)  
BO15  
BO10  
(Device in Brown-out Reset)  
RESET (due to BOR)  
Power-Up Time-out  
TABLE 20-11: ELECTRICAL CHARACTERISTICS: BOR  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min Typ(1) Max Units  
Conditions  
BO10  
VBOR  
BOR Voltage(2) on  
VDD transition high to  
low  
BORV = 11(3)  
V
Not in operating  
range  
BORV = 10  
BORV = 01  
BORV = 00  
2.6  
4.1  
4.58  
5
2.71  
4.4  
V
V
4.73  
V
BO15  
VBHYS  
mV  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
3: 11values not in usable operating range.  
DS70139G-page 158  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
TABLE 20-12: DC CHARACTERISTICS: PROGRAM AND EEPROM  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min Typ(1)  
Max  
Units  
Conditions  
Data EEPROM Memory(2)  
Byte Endurance  
D120  
D121  
ED  
100K  
VMIN  
1M  
E/W -40°C TA +85°C  
Using EECON to Read/Write  
VDRW  
VDD for Read/Write  
5.5  
V
VMIN = Minimum operating  
voltage  
D122  
D123  
TDEW  
Erase/Write Cycle Time  
Characteristic Retention  
0.8  
40  
2
2.6  
ms RTSP  
TRETD  
100  
Year Provided no other specifications  
are violated  
D124  
IDEW  
IDD During Programming  
Program Flash Memory(2)  
Cell Endurance  
10  
30  
mA Row Erase  
D130  
D131  
EP  
10K  
100K  
E/W -40°C TA +85°C  
VPR  
VDD for Read  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D132  
D133  
D134  
D135  
VEB  
VDD for Bulk Erase  
4.5  
3.0  
0.8  
40  
5.5  
5.5  
2.6  
V
V
VPEW  
TPEW  
TRETD  
VDD for Erase/Write  
Erase/Write Cycle Time  
Characteristic Retention  
2
ms RTSP  
100  
Year Provided no other specifications  
are violated  
D137  
D138  
IPEW  
IEB  
IDD During Programming  
IDD During Programming  
10  
10  
30  
30  
mA Row Erase  
mA Bulk Erase  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
2: These parameters are characterized but not tested in manufacturing.  
© 2010 Microchip Technology Inc.  
DS70139G-page 159  
dsPIC30F2011/2012/3012/3013  
20.2 AC Characteristics and Timing Parameters  
The information contained in this section defines dsPIC30F AC characteristics and timing parameters.  
TABLE 20-13: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for Extended  
Operating voltage VDD range as described in Section 20.1 “DC  
Characteristics”.  
FIGURE 20-3:  
Load Condition 1 — for all pins except OSC2  
VDD/2  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 2 — for OSC2  
CL  
RL  
Pin  
VSS  
CL  
Legend:  
Pin  
RL = 464 Ω  
CL = 50 pF for all pins except OSC2  
VSS  
5 pF for OSC2 output  
FIGURE 20-4:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1  
CLKO  
OS20  
OS30 OS30  
OS25  
OS31 OS31  
OS40  
OS41  
DS70139G-page 160  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
TABLE 20-14: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10 FOSC  
External CLKN Frequency(2)  
(External clocks allowed only  
in EC mode)  
DC  
4
4
40  
10  
10  
7.5  
MHz  
MHz  
MHz  
MHz  
EC  
EC with 4x PLL  
EC with 8x PLL  
EC with 16x PLL  
4
Oscillator Frequency(2)  
DC  
0.4  
4
4
4
4
4
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
kHz  
RC  
XTL  
XT  
10  
10  
10  
7.5  
25  
20  
20  
15  
25  
25  
22.5  
33  
XT with 4x PLL  
XT with 8x PLL  
XT with 16x PLL  
HS  
HS/2 with 4x PLL  
HS/2 with 8x PLL  
HS/2 with 16x PLL  
HS/3 with 4x PLL  
HS/3 with 8x PLL  
HS/3 with 16x PLL  
LP  
4
10  
10  
10  
10  
12  
12  
12  
31  
7.37  
7.37  
7.37  
7.37  
512  
MHz  
MHz  
MHz  
MHz  
kHz  
FRC internal  
FRC internal w/4x PLL  
FRC internal w/8x PLL  
FRC internal w/16x PLL  
LPRC internal  
OS20 TOSC  
OS25 TCY  
TOSC = 1/FOSC  
See parameter OS10  
for FOSC value  
Instruction Cycle Time(2)(3)  
External Clock(2) in (OSC1)  
High or Low Time  
33  
DC  
ns  
ns  
See Table 20-17  
EC  
OS30 TosL,  
TosH  
.45 x  
TOSC  
OS31 TosR,  
TosF  
External Clock(2) in (OSC1)  
Rise or Fall Time  
20  
ns  
EC  
OS40 TckR  
OS41 TckF  
CLKO Rise Time(2)(4)  
CLKO Fall Time(2)(4)  
ns  
ns  
See parameter DO31  
See parameter DO32  
Note 1: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
2: These parameters are characterized but not tested in manufacturing.  
3: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at “min.”  
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the  
“Max.” cycle time limit is “DC” (no clock) for all devices.  
4: Measurements are taken in EC or ERC modes. The CLKO signal is measured on the OSC2 pin. CLKO is  
low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).  
© 2010 Microchip Technology Inc.  
DS70139G-page 161  
dsPIC30F2011/2012/3012/3013  
TABLE 20-15: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.5 TO 5.5 V)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OS50  
FPLLI  
PLL Input Frequency Range(2)  
4
4
4
4
4
10  
10  
MHz EC with 4x PLL  
MHz EC with 8x PLL  
MHz EC with 16x PLL  
MHz XT with 4x PLL  
MHz XT with 8x PLL  
MHz XT with 16x PLL  
MHz HS/2 with 4x PLL  
MHz HS/2 with 8x PLL  
MHz HS/2 with 16x PLL  
7.5(4)  
10  
10  
4
7.5(4)  
10  
5(3)  
5(3)  
5(3)  
4
10  
7.5(4)  
8.33(3) MHz HS/3 with 4x PLL  
8.33(3) MHz HS/3 with 8x PLL  
4
4
7.5(4)  
120  
MHz HS/3 with 16x PLL  
OS51  
OS52  
FSYS  
TLOC  
On-Chip PLL Output(2)  
16  
MHz EC, XT, HS/2, HS/3  
modes with PLL  
PLL Start-up Time (Lock Time)  
20  
50  
μs  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: Limited by oscillator frequency range.  
4: Limited by device operating frequency range.  
TABLE 20-16: PLL JITTER  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature  
AC CHARACTERISTICS  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
-40°C TA +85°C  
OS61  
x4 PLL  
0.251 0.413  
0.251 0.413  
%
%
%
%
%
%
%
%
%
%
%
VDD = 3.0 to 3.6V  
VDD = 3.0 to 3.6V  
VDD = 4.5 to 5.5V  
VDD = 4.5 to 5.5V  
VDD = 3.0 to 3.6V  
VDD = 3.0 to 3.6V  
VDD = 4.5 to 5.5V  
VDD = 4.5 to 5.5V  
VDD = 3.0 to 3.6V  
VDD = 4.5 to 5.5V  
VDD = 4.5 to 5.5V  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +125°C  
-40°C TA +85°C  
-40°C TA +85°C  
-40°C TA +125°C  
0.256  
0.256  
0.47  
0.47  
x8 PLL  
0.355 0.584  
0.355 0.584  
0.362 0.664  
0.362 0.664  
x16 PLL  
0.67  
0.92  
0.632 0.956  
0.632 0.956  
Note 1: These parameters are characterized but not tested in manufacturing.  
DS70139G-page 162  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
TABLE 20-17: INTERNAL CLOCK TIMING EXAMPLES  
Clock  
Oscillator  
Mode  
FOSC  
MIPS(3)  
w/o PLL  
MIPS(3)  
w PLL x4  
MIPS(3)  
w PLL x8  
MIPS(3)  
w PLL x16  
TCY (μsec)(2)  
(MHz)(1)  
EC  
XT  
0.200  
4
20.0  
1.0  
0.05  
1.0  
4.0  
10.0  
8.0  
20.0  
16.0  
10  
25  
4
0.4  
2.5  
0.16  
1.0  
6.25  
1.0  
4.0  
10.0  
8.0  
20.0  
16.0  
10  
0.4  
2.5  
Note 1: Assumption: Oscillator Postscaler is divide by 1.  
2: Instruction Execution Cycle Time: TCY = 1/MIPS.  
3: Instruction Execution Frequency: MIPS = (FOSC * PLLx)/4 [since there are 4 Q clocks per instruction  
cycle].  
TABLE 20-18: AC CHARACTERISTICS: INTERNAL FRC ACCURACY  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature  
AC CHARACTERISTICS  
-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Internal FRC Accuracy @ FRC Freq. = 7.37 MHz(1)  
OS63  
FRC  
±2.00  
±5.00  
%
%
-40°C TA +85°C  
-40°C TA +125°C  
VDD = 3.0-5.5V  
VDD = 3.0-5.5V  
Note 1: Frequency calibrated at 7.372 MHz ±2%, 25°C and 5V. TUN bits (OSCCON<3:0>) can be used to  
compensate for temperature drift.  
TABLE 20-19: AC CHARACTERISTICS: INTERNAL LPRC ACCURACY  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
LPRC @ Freq. = 512 kHz(1)  
OS65A  
OS65B  
OS65C  
-50  
-60  
-70  
+50  
+60  
+70  
%
%
%
VDD = 5.0V, ±10%  
VDD = 3.3V, ±10%  
VDD = 2.5V  
Note 1: Change of LPRC frequency as VDD changes.  
© 2010 Microchip Technology Inc.  
DS70139G-page 163  
dsPIC30F2011/2012/3012/3013  
FIGURE 20-5:  
CLKO AND I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note: Refer to Figure 20-3 for load conditions.  
TABLE 20-20: CLKO AND I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)(2)(3)  
Min  
Typ(4)  
Max  
Units  
Conditions  
DO31  
DO32  
DI35  
TIOR  
TIOF  
TINP  
TRBP  
Port output rise time  
7
7
20  
20  
ns  
ns  
ns  
ns  
Port output fall time  
INTx pin high or low time (output)  
CNx high or low time (input)  
20  
DI40  
2 TCY  
Note 1: These parameters are asynchronous events not related to any internal clock edges  
2: Measurements are taken in RC mode and EC mode where CLKO output is 4 x TOSC.  
3: These parameters are characterized but not tested in manufacturing.  
4: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
DS70139G-page 164  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 20-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING CHARACTERISTICS  
VDD  
SY12  
MCLR  
SY10  
Internal  
POR  
SY11  
PWRT  
Time-out  
SY30  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
SY20  
SY13  
SY13  
I/O Pins  
SY35  
FSCM  
Delay  
Note: Refer to Figure 20-3 for load conditions.  
TABLE 20-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max Units  
Conditions  
SY10  
SY11  
TmcL  
MCLR Pulse Width (low)  
Power-up Timer Period  
2
μs  
-40°C to +85°C  
TPWRT  
2
10  
43  
4
16  
64  
8
32  
128  
ms  
-40°C to +85°C, VDD =  
5V  
User programmable  
SY12  
SY13  
TPOR  
TIOZ  
Power On Reset Delay  
3
10  
30  
μs  
μs  
-40°C to +85°C  
I/O high impedance from MCLR  
Low or Watchdog Timer Reset  
0.8  
1.0  
SY20  
TWDT1  
TWDT2  
TWDT3  
Watchdog Timer Time-out Period  
(No Prescaler)  
1.1  
1.2  
1.3  
2.0  
2.0  
2.0  
6.6  
5.0  
4.0  
ms  
ms  
ms  
VDD = 2.5V  
VDD = 3.3V, ±10%  
VDD = 5V, ±10%  
SY25  
SY30  
SY35  
TBOR  
TOST  
Brown-out Reset Pulse Width(3)  
Oscillation Start-up Timer Period  
Fail-Safe Clock Monitor Delay  
100  
1024 TOSC  
500  
μs  
μs  
VDD VBOR (D034)  
TOSC = OSC1 period  
-40°C to +85°C  
TFSCM  
900  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
3: Refer to Figure 20-2 and Table 20-11 for BOR.  
© 2010 Microchip Technology Inc.  
DS70139G-page 165  
dsPIC30F2011/2012/3012/3013  
FIGURE 20-7:  
BAND GAP START-UP TIME CHARACTERISTICS  
VBGAP  
0V  
Enable Band Gap  
(see Note)  
Band Gap  
Stable  
SY40  
Note: Set LVDEN bit (RCON<12>) or FBORPOR<7>set.  
TABLE 20-22: BAND GAP START-UP TIME REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Band Gap Start-up Time  
Min Typ(2) Max Units  
Conditions  
SY40  
TBGAP  
40 65  
µs Defined as the time between the  
instant that the band gap is enabled  
and the moment that the band gap  
reference voltage is stable.  
RCON<13> bit  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated.  
DS70139G-page 166  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 20-8:  
TYPE A, B AND C TIMER EXTERNAL CLOCK TIMING CHARACTERISTICS  
TxCK  
Tx11  
Tx10  
Tx15  
OS60  
Tx20  
TMRX  
Note: Refer to Figure 20-3 for load conditions.  
TABLE 20-23: TYPE A TIMER (TIMER1) EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TTXH  
Characteristic  
Synchronous,  
Min  
Typ  
Max Units  
Conditions  
TA10  
TxCK High Time  
0.5 TCY + 20  
ns  
ns  
Must also meet  
parameter TA15  
no prescaler  
Synchronous,  
with prescaler  
10  
Asynchronous  
10  
ns  
ns  
TA11  
TA15  
TTXL  
TTXP  
TxCK Low Time  
Synchronous,  
no prescaler  
0.5 TCY + 20  
Must also meet  
parameter TA15  
Synchronous,  
with prescaler  
10  
ns  
Asynchronous  
10  
ns  
ns  
TxCK Input Period Synchronous,  
no prescaler  
TCY + 10  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
N = prescale  
value  
(TCY + 40)/N  
(1, 8, 64, 256)  
Asynchronous  
20  
ns  
OS60  
Ft1  
SOSC1/T1CK oscillator input  
DC  
50  
kHz  
frequency range (oscillator enabled  
by setting bit TCS (T1CON, bit 1))  
TA20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
Note:  
Timer1 is a Type A.  
© 2010 Microchip Technology Inc.  
DS70139G-page 167  
dsPIC30F2011/2012/3012/3013  
TABLE 20-24: TYPE B TIMER (TIMER2 AND TIMER4) EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TtxH  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
TB10  
TxCK High Time Synchronous, 0.5 TCY + 20  
no prescaler  
ns  
Must also meet  
parameter TB15  
Synchronous,  
with prescaler  
10  
ns  
ns  
ns  
ns  
TB11  
TB15  
TtxL  
TtxP  
TxCK Low Time  
Synchronous, 0.5 TCY + 20  
no prescaler  
Must also meet  
parameter TB15  
Synchronous,  
with prescaler  
10  
TxCK Input Period Synchronous,  
no prescaler  
TCY + 10  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
(TCY + 40)/N  
TB20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5 TCY  
Note:  
Timer2 and Timer4 are Type B.  
TABLE 20-25: TYPE C TIMER (TIMER3 AND TIMER5) EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TtxH  
Characteristic  
Min  
Typ  
Max Units  
Conditions  
TC10  
TxCK High Time  
TxCK Low Time  
Synchronous  
Synchronous  
0.5 TCY + 20  
ns  
ns  
ns  
Must also meet  
parameter TC15  
TC11  
TC15  
TtxL  
TtxP  
0.5 TCY + 20  
TCY + 10  
Must also meet  
parameter TC15  
TxCK Input Period Synchronous,  
no prescaler  
N = prescale  
value  
(1, 8, 64, 256)  
Synchronous,  
with prescaler  
Greater of:  
20 ns or  
(TCY + 40)/N  
TC20  
TCKEXTMRL Delay from External TxCK Clock  
Edge to Timer Increment  
0.5 TCY  
1.5  
TCY  
Note:  
Timer3 and Timer5 are Type C.  
DS70139G-page 168  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 20-9:  
INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS  
ICX  
IC10  
IC11  
IC15  
Note: Refer to Figure 20-3 for load conditions.  
TABLE 20-26: INPUT CAPTURE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Max  
Units  
Conditions  
IC10  
IC11  
IC15  
TccL  
TccH  
TccP  
ICx Input Low Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
ICx Input High Time No Prescaler  
With Prescaler  
0.5 TCY + 20  
10  
ICx Input Period  
(2 TCY + 40)/N  
N = prescale  
value (1, 4, 16)  
Note 1: These parameters are characterized but not tested in manufacturing.  
© 2010 Microchip Technology Inc.  
DS70139G-page 169  
dsPIC30F2011/2012/3012/3013  
FIGURE 20-10:  
OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS  
OCx  
(Output Compare  
or PWM Mode)  
OC10  
OC11  
Note: Refer to Figure 20-3 for load conditions.  
TABLE 20-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OC10 TccF  
OC11 TccR  
OCx Output Fall Time  
OCx Output Rise Time  
ns  
ns  
See Parameter DO32  
See Parameter DO31  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
DS70139G-page 170  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 20-11:  
OCFA/OCFB  
OCx  
OC/PWM MODULE TIMING CHARACTERISTICS  
OC20  
OC15  
TABLE 20-28: SIMPLE OC/PWM MODE TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OC15 TFD  
Fault Input to PWM I/O  
Change  
50  
ns  
OC20 TFLT  
Fault Input Pulse Width  
50  
ns  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
© 2010 Microchip Technology Inc.  
DS70139G-page 171  
dsPIC30F2011/2012/3012/3013  
FIGURE 20-12:  
SPI MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS  
SCKx  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SCKx  
(CKP = 1)  
SP35  
SP31  
SP21  
LSb  
SP20  
BIT 14 - - - - - -1  
MSb  
SDOx  
SDIx  
SP30  
MSb IN  
SP40  
LSb IN  
BIT 14 - - - -1  
SP41  
Note: Refer to Figure 20-3 for load conditions.  
TABLE 20-29: SPI MASTER MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP11  
SP20  
TscL  
TscH  
TscF  
SCKX Output Low Time(3)  
SCKX Output High Time(3)  
SCKX Output Fall Time(4  
TCY/2  
TCY/2  
ns  
ns  
ns  
See parameter  
DO32  
SP21  
SP30  
SP31  
SP35  
SP40  
SP41  
TscR  
TdoF  
TdoR  
SCKX Output Rise Time(4)  
20  
20  
30  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter  
DO31  
SDOX Data Output Fall Time(4)  
SDOX Data Output Rise Time(4)  
See parameter  
DO32  
See parameter  
DO31  
TscH2doV, SDOX Data Output Valid after  
TscL2doV SCKX Edge  
TdiV2scH, Setup Time of SDIX Data Input  
TdiV2scL  
TscH2diL, Hold Time of SDIX Data Input  
TscL2diL to SCKX Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
to SCKX Edge  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCK is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPI pins.  
DS70139G-page 172  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 20-13:  
SPI MODULE MASTER MODE (CKE =1) TIMING CHARACTERISTICS  
SP36  
SCKX  
(CKP = 0)  
SP11  
SP10  
SP21  
SP20  
SP21  
SCKX  
(CKP = 1)  
SP35  
SP20  
LSb  
MSb  
SP40  
BIT 14 - - - - - -1  
SDOX  
SDIX  
SP30,SP31  
BIT 14 - - - -1  
MSb IN  
SP41  
LSb IN  
Note: Refer to Figure 20-3 for load conditions.  
TABLE 20-30: SPI MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscL  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP10  
SP11  
SP20  
SCKX output low time(3)  
SCKX output high time(3)  
SCKX output fall time(4)  
TCY/2  
TCY/2  
ns  
ns  
ns  
TscH  
TscF  
See parameter  
DO32  
SP21  
SP30  
SP31  
SP35  
SP36  
SP40  
SP41  
TscR  
TdoF  
TdoR  
SCKX output rise time(4)  
30  
20  
20  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter  
DO31  
SDOX data output fall time(4)  
SDOX data output rise time(4)  
See parameter  
DO32  
See parameter  
DO31  
TscH2doV, SDOX data output valid after  
TscL2doV SCKX edge  
TdoV2sc, SDOX data output setup to  
TdoV2scL first SCKX edge  
TdiV2scH, Setup time of SDIX data input  
TdiV2scL to SCKX edge  
TscH2diL, Hold time of SDIX data input  
TscL2diL  
to SCKX edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCK is 100 ns. Therefore, the clock generated in master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPI pins.  
© 2010 Microchip Technology Inc.  
DS70139G-page 173  
dsPIC30F2011/2012/3012/3013  
FIGURE 20-14:  
SPI MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS  
SSX  
SP52  
SP50  
SCK  
(CKP =  
X
0
)
)
SP71  
SP70  
SP72  
SP73  
SCK  
(CKP =  
X
1
SP73  
LSb  
SP72  
SP35  
MSb  
BIT 14 - - - - - -1  
SDO  
X
SP51  
SP30,SP31  
BIT 14 - - - -1  
SDIX  
MSb IN  
SP41  
LSb IN  
SP40  
Note: Refer to Figure 20-3 for load conditions.  
TABLE 20-31: SPI MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature  
-40°C  
T
A
+85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscL  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
SP31  
SP35  
SCKX Input Low Time  
30  
30  
10  
10  
25  
25  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TscH  
TscF  
TscR  
TdoF  
TdoR  
SCKX Input High Time  
SCKX Input Fall Time(3)  
SCKX Input Rise Time(3)  
SDOX Data Output Fall Time(3)  
SDOX Data Output Rise Time(3)  
See DO32  
See DO31  
TscH2doV,  
TscL2doV  
SDOX Data Output Valid after  
SCKX Edge  
SP40  
SP41  
SP50  
SP51  
SP52  
TdiV2scH,  
TdiV2scL  
Setup Time of SDIX Data Input  
to SCKX Edge  
20  
20  
50  
ns  
ns  
ns  
ns  
ns  
TscH2diL,  
TscL2diL  
Hold Time of SDIX Data Input  
to SCKX Edge  
TssL2scH,  
TssL2scL  
SSXto SCKXor SCKXInput  
120  
10  
TssH2doZ  
SSXto SDOX Output  
high impedance(3)  
TscH2ssH SSX after SCK Edge  
TscL2ssH  
1.5 TCY  
+40  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: Assumes 50 pF load on all SPI pins.  
DS70139G-page 174  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 20-15:  
SPI MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS  
SP60  
SSX  
SP52  
SP50  
SCKX  
(CKP = 0)  
SP71  
SP70  
SP72  
SP73  
SP73  
SCKX  
(CKP = 1)  
SP35  
SP72  
LSb  
SP52  
BIT 14 - - - - - -1  
MSb  
SDOX  
SDIX  
SP30,SP31  
BIT 14 - - - -1  
SP51  
MSb IN  
SP41  
LSb IN  
SP40  
Note: Refer to Figure 20-3 for load conditions.  
© 2010 Microchip Technology Inc.  
DS70139G-page 175  
dsPIC30F2011/2012/3012/3013  
TABLE 20-32: SPI MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
TscL  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
SP70  
SP71  
SP72  
SP73  
SP30  
SCKX Input Low Time  
30  
30  
10  
10  
25  
25  
ns  
ns  
ns  
ns  
ns  
TscH  
TscF  
TscR  
TdoF  
SCKX Input High Time  
SCKX Input Fall Time(3)  
SCKX Input Rise Time(3)  
SDOX Data Output Fall Time(3)  
See parameter  
DO32  
SP31  
SP35  
SP40  
SP41  
SP50  
SP51  
SP52  
SP60  
TdoR  
SDOX Data Output Rise Time(3)  
30  
50  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See parameter  
DO31  
TscH2doV, SDOX Data Output Valid after  
TscL2doV SCKX Edge  
TdiV2scH, Setup Time of SDIX Data Input  
20  
TdiV2scL  
TscH2diL, Hold Time of SDIX Data Input  
TscL2diL to SCKX Edge  
to SCKX Edge  
20  
TssL2scH, SSXto SCKXor SCKXinput  
TssL2scL  
120  
TssH2doZ SSto SDOX Output  
10  
1.5 TCY + 40  
high impedance(4)  
TscH2ssH SSXafter SCKX Edge  
TscL2ssH  
TssL2doV SDOX Data Output Valid after  
SCKX Edge  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
3: The minimum clock period for SCK is 100 ns. Therefore, the clock generated in Master mode must not  
violate this specification.  
4: Assumes 50 pF load on all SPI pins.  
DS70139G-page 176  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
2
FIGURE 20-16:  
I C™ BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)  
SCL  
SDA  
IM31  
IM34  
IM30  
IM33  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 20-3 for load conditions.  
2
FIGURE 20-17:  
I C™ BUS DATA TIMING CHARACTERISTICS (MASTER MODE)  
IM20  
IM21  
IM11  
IM10  
SCL  
IM11  
IM26  
IM10  
IM33  
IM25  
SDA  
In  
IM45  
IM40  
IM40  
SDA  
Out  
Note: Refer to Figure 20-3 for load conditions.  
© 2010 Microchip Technology Inc.  
DS70139G-page 177  
dsPIC30F2011/2012/3012/3013  
I
2
TABLE 20-33: I C™ BUS DATA TIMING REQUIREMENTS (MASTER MODE)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min(1)  
Max  
Units  
Conditions  
IM10  
IM11  
IM20  
IM21  
IM25  
IM26  
IM30  
IM31  
IM33  
IM34  
IM40  
IM45  
IM50  
TLO:SCL Clock Low Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
pF  
1 MHz mode(2) TCY/2 (BRG + 1)  
THI:SCL Clock High Time 100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TF:SCL  
TR:SCL  
SDA and SCL  
Fall Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
300  
300  
100  
1000  
300  
300  
CB is specified to be  
from 10 to 400 pF  
20 + 0.1 CB  
SDA and SCL  
Rise Time  
CB is specified to be  
from 10 to 400 pF  
20 + 0.1 CB  
250  
100  
TSU:DAT Data Input  
Setup Time  
THD:DAT Data Input  
Hold Time  
0
0
0.9  
TSU:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
Only relevant for  
Repeated Start  
condition  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STA Start Condition 100 kHz mode TCY/2 (BRG + 1)  
After this period the  
first clock pulse is  
generated  
Hold Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TSU:STO Stop Condition 100 kHz mode TCY/2 (BRG + 1)  
Setup Time  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode TCY/2 (BRG + 1)  
400 kHz mode TCY/2 (BRG + 1)  
1 MHz mode(2) TCY/2 (BRG + 1)  
TAA:SCL Output Valid  
From Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(2)  
3500  
1000  
TBF:SDA Bus Free Time 100 kHz mode  
4.7  
1.3  
Time the bus must be  
free before a new  
transmission can start  
400 kHz mode  
1 MHz mode(2)  
CB  
Bus Capacitive Loading  
400  
Note 1: BRG is the value of the I2C Baud Rate Generator. Refer to Section 21. “Inter-Integrated Circuit™ (I2C)”  
(DS70068) in the dsPIC30F Family Reference Manual (DS70046).  
2: Maximum pin capacitance = 10 pF for all I2C™ pins (for 1 MHz mode only).  
DS70139G-page 178  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
2
FIGURE 20-18:  
I C™ BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)  
SCL  
SDA  
IS34  
IS31  
IS30  
IS33  
Stop  
Condition  
Start  
Condition  
2
FIGURE 20-19:  
I C™ BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)  
IS20  
IS21  
IS11  
IS10  
SCL  
IS30  
IS26  
IS31  
IS33  
IS25  
SDA  
In  
IS45  
IS40  
IS40  
SDA  
Out  
2
TABLE 20-34: I C™ BUS DATA TIMING REQUIREMENTS (SLAVE MODE)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
IS10  
TLO:SCL Clock Low Time 100 kHz mode  
400 kHz mode  
4.7  
μs  
μs  
Device must operate at a  
minimum of 1.5 MHz  
1.3  
Device must operate at a  
minimum of 10 MHz.  
1 MHz mode(1)  
0.5  
4.0  
μs  
μs  
IS11  
THI:SCL  
Clock High Time 100 kHz mode  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
μs  
Device must operate at a  
minimum of 10 MHz  
1 MHz mode(1)  
0.5  
300  
300  
100  
1000  
300  
300  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
IS20  
IS21  
TF:SCL  
TR:SCL  
SDA and SCL  
Fall Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
SDA and SCL  
Rise Time  
20 + 0.1 CB  
CB is specified to be from  
10 to 400 pF  
Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins (for 1 MHz mode only).  
© 2010 Microchip Technology Inc.  
DS70139G-page 179  
dsPIC30F2011/2012/3012/3013  
2
TABLE 20-34: I C™ BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
IS25  
TSU:DAT Data Input  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
250  
100  
100  
0
0.9  
0.3  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
μs  
pF  
Setup Time  
IS26  
IS30  
IS31  
IS33  
IS34  
IS40  
IS45  
IS50  
THD:DAT Data Input  
Hold Time  
0
0
TSU:STA Start Condition  
Setup Time  
4.7  
0.6  
0.25  
4.0  
0.6  
0.25  
4.7  
0.6  
0.6  
4000  
600  
250  
0
Only relevant for Repeated  
Start condition  
THD:STA Start Condition  
Hold Time  
After this period the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
THD:STO Stop Condition  
Hold Time  
TAA:SCL  
Output Valid  
From Clock  
3500  
1000  
350  
0
0
TBF:SDA Bus Free Time  
4.7  
1.3  
0.5  
Time the bus must be free  
before a new transmission  
can start  
CB  
Bus Capacitive  
Loading  
400  
Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins (for 1 MHz mode only).  
DS70139G-page 180  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
FIGURE 20-20:  
CAN MODULE I/O TIMING CHARACTERISTICS  
CXTX Pin  
(output)  
New Value  
Old Value  
CA10 CA11  
CA20  
CXRX Pin  
(input)  
TABLE 20-35: CAN MODULE I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
TioF  
TioR  
Tcwf  
CA10  
CA11  
CA20  
Port Output Fall Time  
Port Output Rise Time  
10  
10  
25  
25  
ns  
ns  
ns  
Pulse Width to Trigger  
CAN Wake-up Filter  
500  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and  
are not tested.  
© 2010 Microchip Technology Inc.  
DS70139G-page 181  
dsPIC30F2011/2012/3012/3013  
TABLE 20-36: 12-BIT ADC MODULE SPECIFICATIONS  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Device Supply  
AD01 AVDD  
AD02 AVSS  
Module VDD Supply  
Module VSS Supply  
Greater of  
VDD - 0.3  
or 2.7  
Lesser of  
VDD + 0.3  
or 5.5  
V
V
VSS - 0.3  
VSS + 0.3  
Reference Inputs  
AD05  
AD06  
AD07  
VREFH  
VREFL  
VREF  
Reference Voltage High  
Reference Voltage Low  
AVSS + 2.7  
AVSS  
AVDD  
V
V
V
AVDD - 2.7  
AVDD + 0.3  
Absolute Reference  
Voltage  
AVSS - 0.3  
AD08  
IREF  
Current Drain  
200  
.001  
300  
2
μA  
μA  
A/D operating  
A/D off  
Analog Input  
AD10 VINH-VINL Full-Scale Input Span  
VREFL  
AVSS - 0.3  
VREFH  
AVDD + 0.3  
±0.610  
V
V
See Note 1  
AD11  
AD12  
VIN  
Absolute Input Voltage  
Leakage Current  
±0.001  
μA  
VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 5V  
Source Impedance =  
2.5 kΩ  
AD13  
AD15  
Leakage Current  
Switch Resistance  
±0.001  
±0.610  
μA  
VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
Source Impedance =  
2.5 kΩ  
RSS  
3.2K  
18  
Ω
pF  
Ω
AD16 CSAMPLE Sample Capacitor  
AD17  
RIN  
Recommended Impedance  
of Analog Voltage Source  
2.5K  
DC Accuracy(2)  
12 data bits  
AD20 Nr  
Resolution  
bits  
AD21 INL  
Integral Nonlinearity  
<±1  
<±1  
<±1  
<±1  
+3  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 5V  
AD21A INL  
AD22 DNL  
AD22A DNL  
Integral Nonlinearity  
Differential Nonlinearity  
Differential Nonlinearity  
Gain Error  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 5V  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
AD23  
GERR  
+1.25  
+1.25  
+1.5  
+1.5  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 5V  
AD23A GERR  
Gain Error  
+3  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing  
codes.  
2: Measurements taken with external VREF+ and VREF- used as the ADC voltage references.  
DS70139G-page 182  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
TABLE 20-36: 12-BIT ADC MODULE SPECIFICATIONS (CONTINUED)  
Standard Operating Conditions: 2.5V to 5.5V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Offset Error  
Min.  
Typ  
Max.  
Units  
Conditions  
AD24  
AD24A EOFF  
AD25  
EOFF  
-2  
-1.5  
-1.25  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 5V  
Offset Error  
-2  
-1.5  
-1.25  
LSb VINL = AVSS = VREFL =  
0V, AVDD = VREFH = 3V  
Monotonicity(1)  
Guaranteed  
Dynamic Performance  
AD30 THD  
Total Harmonic Distortion  
-71  
68  
dB  
dB  
AD31 SINAD  
Signal to Noise and  
Distortion  
AD32 SFDR  
Spurious Free Dynamic  
Range  
83  
dB  
AD33  
FNYQ  
Input Signal Bandwidth  
Effective Number of Bits  
100  
kHz  
bits  
AD34 ENOB  
10.95  
11.1  
Note 1: The A/D conversion result never decreases with an increase in the input voltage, and has no missing  
codes.  
2: Measurements taken with external VREF+ and VREF- used as the ADC voltage references.  
© 2010 Microchip Technology Inc.  
DS70139G-page 183  
dsPIC30F2011/2012/3012/3013  
FIGURE 20-21:  
12-BIT A/D CONVERSION TIMING CHARACTERISTICS  
(ASAM = 0, SSRC = 000)  
AD50  
ADCLK  
Instruction  
Execution  
Set SAMP  
Clear SAMP  
SAMP  
ch0_dischrg  
ch0_samp  
eoc  
AD61  
AD60  
TSAMP  
AD55  
DONE  
ADIF  
ADRES(0)  
1
2
3
4
5
6
7
8
9
- Software sets ADCON. SAMP to start sampling.  
- Sampling starts after discharge period.  
1
2
TSAMP is described in Section 18. “12-bit A/D Converter” in the dsPIC30F Family Reference Manual (DS70046).  
- Software clears ADCON. SAMP to Start conversion.  
- Sampling ends, conversion sequence starts.  
- Convert bit 11.  
3
4
5
6
7
8
9
- Convert bit 10.  
- Convert bit 1.  
- Convert bit 0.  
- One TAD for end of conversion.  
DS70139G-page 184  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
TABLE 20-37: 12-BIT A/D CONVERSION TIMING REQUIREMENTS  
Standard Operating Conditions: 2.7V to 5.5V  
(unless otherwise stated)  
Operating temperature-40°C TA +85°C for Industrial  
-40°C TA +125°C for Extended  
AC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic  
Min.  
Typ  
Max.  
Units  
Conditions  
Clock Parameters  
AD50  
AD51  
TAD  
tRC  
A/D Clock Period  
A/D Internal RC Oscillator Period  
334  
1.2  
ns  
VDD = 3-5.5V (Note 1)  
1.5  
1.8  
μs  
Conversion Rate  
AD55  
tCONV  
Conversion Time  
Throughput Rate  
14 TAD  
200  
ns  
AD56a FCNV  
ksps  
VDD = VREF = 5V,  
Industrial temperature  
AD56b FCNV  
Throughput Rate  
Sampling Time  
100  
ksps  
ns  
VDD = VREF = 5V,  
Extended temperature  
AD57  
TSAMP  
1 TAD  
VDD = 3-5.5V source  
resistance  
RS = 0-2.5 kΩ  
Timing Parameters  
AD60  
AD61  
AD62  
AD63  
tPCS  
tPSS  
tCSS  
Conversion Start from Sample  
Trigger  
0.5 TAD  
1 TAD  
ns  
ns  
ns  
μs  
Sample Start from Setting  
Sample (SAMP) Bit  
1.5  
TAD  
Conversion Completion to  
Sample Start (ASAM = 1)  
0.5 TAD  
(2)  
tDPU  
Time to Stabilize Analog Stage  
from A/D Off to A/D On  
20  
Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
2: tDPU is the time required for the ADC module to stabilize when it is turned on (ADCON1<ADON> = 1).  
During this time the ADC result is indeterminate.  
© 2010 Microchip Technology Inc.  
DS70139G-page 185  
dsPIC30F2011/2012/3012/3013  
NOTES:  
DS70139G-page 186  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
21.0 PACKAGING INFORMATION  
21.1 Package Marking Information  
18-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
dsPIC30F3012  
30I/P  
0610017  
e
3
18-Lead SOIC  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
dsPIC30F2011  
30I/SO  
e
3
YYWWNNN  
0610017  
28-Lead SPDIP  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
dsPIC30F2012  
30I/SP  
0610017  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2010 Microchip Technology Inc.  
DS70139G-page 187  
dsPIC30F2011/2012/3012/3013  
21.2 Package Marking Information (Continued)  
28-Lead SOIC  
Example  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
dsPIC30F3013  
30I/SO  
e
3
YYWWNNN  
0610017  
28-Lead QFN-S  
Example  
XXXXXXX  
XXXXXXX  
30F2011  
30I/MM  
e
3
YYWWNNN  
0610017  
44-Lead QFN  
Example  
dsPIC  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
30F3013  
30I/ML  
e
3
0610017  
DS70139G-page 188  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒꢈꢓꢇMꢇꢔꢕꢕꢇꢖꢌꢉꢇꢗꢘꢆꢙꢇꢚꢈꢎꢐꢈꢛ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
N
NOTE 1  
E1  
2
3
1
D
E
A2  
A
L
c
A1  
b1  
e
b
eB  
6ꢅꢄ&!  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢚ7,8.ꢐ  
7:ꢔ  
ꢁ<  
ꢂꢁꢕꢕꢀ1ꢐ,  
M
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
M
ꢂꢎꢁꢕ  
ꢂꢁꢛꢘ  
M
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
1ꢆ!ꢈꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢀ&ꢋꢀꢐꢍꢋ"ꢇ#ꢈꢉꢀ>ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
ꢙꢄꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
6ꢓꢓꢈꢉꢀ9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
ꢗꢎ  
ꢗꢁ  
.
.ꢁ  
9
)ꢁ  
)
ꢈ1  
ꢂꢁꢁꢘ  
ꢂꢕꢁꢘ  
ꢂ-ꢕꢕ  
ꢂꢎꢖꢕ  
ꢂ<<ꢕ  
ꢂꢁꢁꢘ  
ꢂꢕꢕ<  
ꢂꢕꢖꢘ  
ꢂꢕꢁꢖ  
M
ꢂꢁ-ꢕ  
M
ꢂ-ꢁꢕ  
ꢂꢎꢘꢕ  
ꢂꢛꢕꢕ  
ꢂꢁ-ꢕ  
ꢂꢕꢁꢕ  
ꢂꢕ?ꢕ  
ꢂꢕꢁ<  
M
ꢂ-ꢎꢘ  
ꢂꢎ<ꢕ  
ꢂꢛꢎꢕ  
ꢂꢁꢘꢕ  
ꢂꢕꢁꢖ  
ꢂꢕꢜꢕ  
ꢂꢕꢎꢎ  
ꢂꢖ-ꢕ  
9ꢋ*ꢈꢉꢀ9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀꢝꢋ*ꢀꢐꢓꢆꢌꢄꢅꢑꢀꢀꢏ  
ꢜꢘꢋꢄꢊ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢏꢀꢐꢄꢑꢅꢄ%ꢄꢌꢆꢅ&ꢀ,ꢍꢆꢉꢆꢌ&ꢈꢉꢄ!&ꢄꢌꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢂꢕꢁꢕ/ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
ꢖꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢕꢜ1  
© 2010 Microchip Technology Inc.  
DS70139G-page 189  
dsPIC30F2011/2012/3012/3013  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ!ꢖꢅꢉꢉꢇ"ꢏꢋꢉꢌꢑꢄꢇꢒ!"ꢓꢇMꢇ#ꢌꢆꢄ$ꢇ%&'ꢕꢇꢖꢖꢇꢗꢘꢆꢙꢇꢚ!"ꢐ(ꢛ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
D
N
E
E1  
NOTE 1  
1
2
3
b
e
α
h
h
c
φ
A2  
A
β
A1  
L
L1  
6ꢅꢄ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢁ<  
ꢁꢂꢎꢜꢀ1ꢐ,  
: ꢈꢉꢆꢇꢇꢀ8ꢈꢄꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
ꢐ&ꢆꢅ#ꢋ%%ꢀꢀꢏ  
M
ꢎꢂꢕꢘ  
ꢕꢂꢁꢕ  
M
M
M
ꢎꢂ?ꢘ  
M
ꢕꢂ-ꢕ  
ꢗꢎ  
ꢗꢁ  
.
: ꢈꢉꢆꢇꢇꢀ>ꢄ#&ꢍ  
ꢁꢕꢂ-ꢕꢀ1ꢐ,  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
,ꢍꢆ'%ꢈꢉꢀ@ꢋꢓ&ꢄꢋꢅꢆꢇA  
3ꢋꢋ&ꢀ9ꢈꢅꢑ&ꢍ  
.ꢁ  
ꢜꢂꢘꢕꢀ1ꢐ,  
ꢁꢁꢂꢘꢘꢀ1ꢐ,  
ꢕꢂꢎꢘ  
ꢕꢂꢖꢕ  
M
M
ꢕꢂꢜꢘ  
ꢁꢂꢎꢜ  
9
3ꢋꢋ&ꢓꢉꢄꢅ&  
3ꢋꢋ&ꢀꢗꢅꢑꢇꢈ  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
ꢔꢋꢇ#ꢀꢒꢉꢆ%&ꢀꢗꢅꢑꢇꢈꢀ  
ꢔꢋꢇ#ꢀꢒꢉꢆ%&ꢀꢗꢅꢑꢇꢈꢀ1ꢋ&&ꢋ'  
9ꢁ  
ꢁꢂꢖꢕꢀꢝ.3  
ꢕꢟ  
ꢕꢂꢎꢕ  
ꢕꢂ-ꢁ  
ꢘꢟ  
M
M
M
M
M
<ꢟ  
)
ꢕꢂ--  
ꢕꢂꢘꢁ  
ꢁꢘꢟ  
ꢘꢟ  
ꢁꢘꢟ  
ꢜꢘꢋꢄꢊ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢏꢀꢐꢄꢑꢅꢄ%ꢄꢌꢆꢅ&ꢀ,ꢍꢆꢉꢆꢌ&ꢈꢉꢄ!&ꢄꢌꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢕꢂꢁꢘꢀ''ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
ꢖꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢅꢌꢈꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅ(ꢀ"!"ꢆꢇꢇꢊꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ(ꢀ%ꢋꢉꢀꢄꢅ%ꢋꢉ'ꢆ&ꢄꢋꢅꢀꢓ"ꢉꢓꢋ!ꢈ!ꢀꢋꢅꢇꢊꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢘꢁ1  
DS70139G-page 190  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2010 Microchip Technology Inc.  
DS70139G-page 191  
dsPIC30F2011/2012/3012/3013  
)ꢁꢂꢃꢄꢅꢆꢇ!*ꢌꢑꢑꢙꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒ!ꢈꢓꢇMꢇꢔꢕꢕꢇꢖꢌꢉꢇꢗꢘꢆꢙꢇꢚ!ꢈꢎꢐꢈꢛ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
6ꢅꢄ&!  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢚ7,8.ꢐ  
7:ꢔ  
ꢎ<  
ꢂꢁꢕꢕꢀ1ꢐ,  
M
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
M
ꢂꢎꢕꢕ  
ꢂꢁꢘꢕ  
M
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
1ꢆ!ꢈꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢀ&ꢋꢀꢐꢍꢋ"ꢇ#ꢈꢉꢀ>ꢄ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
ꢙꢄꢓꢀ&ꢋꢀꢐꢈꢆ&ꢄꢅꢑꢀꢃꢇꢆꢅꢈ  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
6ꢓꢓꢈꢉꢀ9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
ꢗꢎ  
ꢗꢁ  
.
.ꢁ  
9
)ꢁ  
)
ꢈ1  
ꢂꢁꢎꢕ  
ꢂꢕꢁꢘ  
ꢂꢎꢛꢕ  
ꢂꢎꢖꢕ  
ꢁꢂ-ꢖꢘ  
ꢂꢁꢁꢕ  
ꢂꢕꢕ<  
ꢂꢕꢖꢕ  
ꢂꢕꢁꢖ  
M
ꢂꢁ-ꢘ  
M
ꢂ-ꢁꢕ  
ꢂꢎ<ꢘ  
ꢁꢂ-?ꢘ  
ꢂꢁ-ꢕ  
ꢂꢕꢁꢕ  
ꢂꢕꢘꢕ  
ꢂꢕꢁ<  
M
ꢂ--ꢘ  
ꢂꢎꢛꢘ  
ꢁꢂꢖꢕꢕ  
ꢂꢁꢘꢕ  
ꢂꢕꢁꢘ  
ꢂꢕꢜꢕ  
ꢂꢕꢎꢎ  
ꢂꢖ-ꢕ  
9ꢋ*ꢈꢉꢀ9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀꢝꢋ*ꢀꢐꢓꢆꢌꢄꢅꢑꢀꢀꢏ  
ꢜꢘꢋꢄꢊ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢏꢀꢐꢄꢑꢅꢄ%ꢄꢌꢆꢅ&ꢀ,ꢍꢆꢉꢆꢌ&ꢈꢉꢄ!&ꢄꢌꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢂꢕꢁꢕ/ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
ꢖꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢜꢕ1  
DS70139G-page 192  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
)ꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ!ꢖꢅꢉꢉꢇ"ꢏꢋꢉꢌꢑꢄꢇꢒ!"ꢓꢇMꢇ#ꢌꢆꢄ$ꢇ%&'ꢕꢇꢖꢖꢇꢗꢘꢆꢙꢇꢚ!"ꢐ(ꢛ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
D
N
E
E1  
NOTE 1  
1
2
3
e
b
h
α
h
c
φ
A2  
A
L
A1  
L1  
β
6ꢅꢄ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
7
ꢎ<  
ꢁꢂꢎꢜꢀ1ꢐ,  
: ꢈꢉꢆꢇꢇꢀ8ꢈꢄꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀꢙꢍꢄꢌ4ꢅꢈ!!  
ꢐ&ꢆꢅ#ꢋ%%ꢀꢀꢏ  
M
ꢎꢂꢕꢘ  
ꢕꢂꢁꢕ  
M
M
M
ꢎꢂ?ꢘ  
M
ꢕꢂ-ꢕ  
ꢗꢎ  
ꢗꢁ  
.
: ꢈꢉꢆꢇꢇꢀ>ꢄ#&ꢍ  
ꢁꢕꢂ-ꢕꢀ1ꢐ,  
ꢔꢋꢇ#ꢈ#ꢀꢃꢆꢌ4ꢆꢑꢈꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
,ꢍꢆ'%ꢈꢉꢀ@ꢋꢓ&ꢄꢋꢅꢆꢇA  
3ꢋꢋ&ꢀ9ꢈꢅꢑ&ꢍ  
.ꢁ  
ꢜꢂꢘꢕꢀ1ꢐ,  
ꢁꢜꢂꢛꢕꢀ1ꢐ,  
ꢕꢂꢎꢘ  
ꢕꢂꢖꢕ  
M
M
ꢕꢂꢜꢘ  
ꢁꢂꢎꢜ  
9
3ꢋꢋ&ꢓꢉꢄꢅ&  
9ꢁ  
ꢁꢂꢖꢕꢀꢝ.3  
3ꢋꢋ&ꢀꢗꢅꢑꢇꢈꢀ  
9ꢈꢆ#ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
9ꢈꢆ#ꢀ>ꢄ#&ꢍ  
ꢔꢋꢇ#ꢀꢒꢉꢆ%&ꢀꢗꢅꢑꢇꢈꢀ  
ꢔꢋꢇ#ꢀꢒꢉꢆ%&ꢀꢗꢅꢑꢇꢈꢀ1ꢋ&&ꢋ'  
ꢕꢟ  
ꢕꢂꢁ<  
ꢕꢂ-ꢁ  
ꢘꢟ  
M
M
M
M
M
<ꢟ  
)
ꢕꢂ--  
ꢕꢂꢘꢁ  
ꢁꢘꢟ  
ꢘꢟ  
ꢁꢘꢟ  
ꢜꢘꢋꢄꢊ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢏꢀꢐꢄꢑꢅꢄ%ꢄꢌꢆꢅ&ꢀ,ꢍꢆꢉꢆꢌ&ꢈꢉꢄ!&ꢄꢌꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅ!ꢀꢒꢀꢆꢅ#ꢀ.ꢁꢀ#ꢋꢀꢅꢋ&ꢀꢄꢅꢌꢇ"#ꢈꢀ'ꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢂꢀꢔꢋꢇ#ꢀ%ꢇꢆ!ꢍꢀꢋꢉꢀꢓꢉꢋ&ꢉ"!ꢄꢋꢅ!ꢀ!ꢍꢆꢇꢇꢀꢅꢋ&ꢀꢈ$ꢌꢈꢈ#ꢀꢕꢂꢁꢘꢀ''ꢀꢓꢈꢉꢀ!ꢄ#ꢈꢂ  
ꢖꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢅꢌꢈꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅ(ꢀ"!"ꢆꢇꢇꢊꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ(ꢀ%ꢋꢉꢀꢄꢅ%ꢋꢉ'ꢆ&ꢄꢋꢅꢀꢓ"ꢉꢓꢋ!ꢈ!ꢀꢋꢅꢇꢊꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢕꢘꢎ1  
© 2010 Microchip Technology Inc.  
DS70139G-page 193  
dsPIC30F2011/2012/3012/3013  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS70139G-page 194  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
)ꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ+ꢏꢅꢆꢇ,ꢉꢅꢋ$ꢇꢜꢘꢇꢃꢄꢅꢆꢇꢈꢅꢍ*ꢅ-ꢄꢇꢒ..ꢓꢇMꢇ/0/0ꢕ&1ꢇꢖꢖꢇꢗꢘꢆꢙꢇꢚ+,ꢜꢂ!ꢛ  
2ꢌꢋ3ꢇꢕ&4ꢕꢇꢖꢖꢇ(ꢘꢑꢋꢅꢍꢋꢇꢃꢄꢑ-ꢋ3  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
D2  
D
EXPOSED  
PAD  
e
E2  
E
b
2
1
2
1
K
N
N
L
NOTE 1  
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
6ꢅꢄ&!  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
7:ꢔ  
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢀ8ꢈꢄꢑꢍ&  
ꢐ&ꢆꢅ#ꢋ%%ꢀ  
,ꢋꢅ&ꢆꢌ&ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
: ꢈꢉꢆꢇꢇꢀ>ꢄ#&ꢍ  
.$ꢓꢋ!ꢈ#ꢀꢃꢆ#ꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢀꢃꢆ#ꢀ9ꢈꢅꢑ&ꢍ  
,ꢋꢅ&ꢆꢌ&ꢀ>ꢄ#&ꢍ  
,ꢋꢅ&ꢆꢌ&ꢀ9ꢈꢅꢑ&ꢍ  
,ꢋꢅ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢀꢃꢆ#  
7
ꢗꢁ  
ꢗ-  
.
.ꢎ  
ꢎ<  
ꢕꢂ?ꢘꢀ1ꢐ,  
ꢕꢂꢛꢕ  
ꢕꢂ<ꢕ  
ꢕꢂꢕꢕ  
ꢁꢂꢕꢕ  
ꢕꢂꢕꢘ  
ꢕꢂꢕꢎ  
ꢕꢂꢎꢕꢀꢝ.3  
?ꢂꢕꢕꢀ1ꢐ,  
-ꢂꢜꢕ  
?ꢂꢕꢕꢀ1ꢐ,  
-ꢂꢜꢕ  
ꢕꢂ-<  
ꢕꢂꢖꢕ  
M
-ꢂ?ꢘ  
ꢖꢂꢜꢕ  
ꢒꢎ  
)
9
-ꢂ?ꢘ  
ꢕꢂꢎ-  
ꢕꢂ-ꢕ  
ꢕꢂꢎꢕ  
ꢖꢂꢜꢕ  
ꢕꢂꢖ-  
ꢕꢂꢘꢕ  
M
C
ꢜꢘꢋꢄꢊ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢃꢆꢌ4ꢆꢑꢈꢀꢄ!ꢀ!ꢆ*ꢀ!ꢄꢅꢑ"ꢇꢆ&ꢈ#ꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢅꢌꢈꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅ(ꢀ"!"ꢆꢇꢇꢊꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ(ꢀ%ꢋꢉꢀꢄꢅ%ꢋꢉ'ꢆ&ꢄꢋꢅꢀꢓ"ꢉꢓꢋ!ꢈ!ꢀꢋꢅꢇꢊꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢁꢎꢖ1  
© 2010 Microchip Technology Inc.  
DS70139G-page 195  
dsPIC30F2011/2012/3012/3013  
)ꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ+ꢏꢅꢆꢇ,ꢉꢅꢋ$ꢇꢜꢘꢇꢃꢄꢅꢆꢇꢈꢅꢍ*ꢅ-ꢄꢇꢒ..ꢓꢇMꢇ/0/0ꢕ&1ꢇꢖꢖꢇꢗꢘꢆꢙꢇꢚ+,ꢜꢂ!ꢛ  
2ꢌꢋ3ꢇꢕ&4ꢕꢇꢖꢖꢇ(ꢘꢑꢋꢅꢍꢋꢇꢃꢄꢑ-ꢋ3  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
DS70139G-page 196  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
44ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ+ꢏꢅꢆꢇ,ꢉꢅꢋ$ꢇꢜꢘꢇꢃꢄꢅꢆꢇꢈꢅꢍ*ꢅ-ꢄꢇꢒ.ꢃꢓꢇMꢇꢁ0ꢁꢇꢖꢖꢇꢗꢘꢆꢙꢇꢚ+,ꢜꢛ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
D2  
D
EXPOSED  
PAD  
e
b
K
E
E2  
2
1
2
1
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
6ꢅꢄ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢀ9ꢄ'ꢄ&!  
ꢔꢚ7  
7:ꢔ  
ꢖꢖ  
ꢕꢂ?ꢘꢀ1ꢐ,  
ꢕꢂꢛꢕ  
ꢔꢗ;  
7"')ꢈꢉꢀꢋ%ꢀꢃꢄꢅ!  
ꢃꢄ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢀ8ꢈꢄꢑꢍ&  
ꢐ&ꢆꢅ#ꢋ%%ꢀ  
,ꢋꢅ&ꢆꢌ&ꢀꢙꢍꢄꢌ4ꢅꢈ!!  
: ꢈꢉꢆꢇꢇꢀ>ꢄ#&ꢍ  
7
ꢗꢁ  
ꢗ-  
.
.ꢎ  
ꢕꢂ<ꢕ  
ꢕꢂꢕꢕ  
ꢁꢂꢕꢕ  
ꢕꢂꢕꢘ  
ꢕꢂꢕꢎ  
ꢕꢂꢎꢕꢀꢝ.3  
<ꢂꢕꢕꢀ1ꢐ,  
?ꢂꢖꢘ  
<ꢂꢕꢕꢀ1ꢐ,  
?ꢂꢖꢘ  
ꢕꢂ-ꢕ  
ꢕꢂꢖꢕ  
M
.$ꢓꢋ!ꢈ#ꢀꢃꢆ#ꢀ>ꢄ#&ꢍ  
: ꢈꢉꢆꢇꢇꢀ9ꢈꢅꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢀꢃꢆ#ꢀ9ꢈꢅꢑ&ꢍ  
,ꢋꢅ&ꢆꢌ&ꢀ>ꢄ#&ꢍ  
,ꢋꢅ&ꢆꢌ&ꢀ9ꢈꢅꢑ&ꢍ  
,ꢋꢅ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢀꢃꢆ#  
?ꢂ-ꢕ  
?ꢂ<ꢕ  
ꢒꢎ  
)
9
?ꢂ-ꢕ  
ꢕꢂꢎꢘ  
ꢕꢂ-ꢕ  
ꢕꢂꢎꢕ  
?ꢂ<ꢕ  
ꢕꢂ-<  
ꢕꢂꢘꢕ  
M
C
ꢜꢘꢋꢄꢊ  
ꢁꢂ ꢃꢄꢅꢀꢁꢀ ꢄ!"ꢆꢇꢀꢄꢅ#ꢈ$ꢀ%ꢈꢆ&"ꢉꢈꢀ'ꢆꢊꢀ ꢆꢉꢊ(ꢀ)"&ꢀ'"!&ꢀ)ꢈꢀꢇꢋꢌꢆ&ꢈ#ꢀ*ꢄ&ꢍꢄꢅꢀ&ꢍꢈꢀꢍꢆ&ꢌꢍꢈ#ꢀꢆꢉꢈꢆꢂ  
ꢎꢂ ꢃꢆꢌ4ꢆꢑꢈꢀꢄ!ꢀ!ꢆ*ꢀ!ꢄꢅꢑ"ꢇꢆ&ꢈ#ꢂ  
-ꢂ ꢒꢄ'ꢈꢅ!ꢄꢋꢅꢄꢅꢑꢀꢆꢅ#ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢄꢅꢑꢀꢓꢈꢉꢀꢗꢐꢔ.ꢀ0ꢁꢖꢂꢘꢔꢂ  
1ꢐ,2 1ꢆ!ꢄꢌꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅꢂꢀꢙꢍꢈꢋꢉꢈ&ꢄꢌꢆꢇꢇꢊꢀꢈ$ꢆꢌ&ꢀ ꢆꢇ"ꢈꢀ!ꢍꢋ*ꢅꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ!ꢂ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢅꢌꢈꢀꢒꢄ'ꢈꢅ!ꢄꢋꢅ(ꢀ"!"ꢆꢇꢇꢊꢀ*ꢄ&ꢍꢋ"&ꢀ&ꢋꢇꢈꢉꢆꢅꢌꢈ(ꢀ%ꢋꢉꢀꢄꢅ%ꢋꢉ'ꢆ&ꢄꢋꢅꢀꢓ"ꢉꢓꢋ!ꢈ!ꢀꢋꢅꢇꢊꢂ  
ꢔꢄꢌꢉꢋꢌꢍꢄꢓ ꢌꢍꢅꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢄꢅꢑ ,ꢕꢖꢞꢁꢕ-1  
© 2010 Microchip Technology Inc.  
DS70139G-page 197  
dsPIC30F2011/2012/3012/3013  
44ꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ+ꢏꢅꢆꢇ,ꢉꢅꢋ$ꢇꢜꢘꢇꢃꢄꢅꢆꢇꢈꢅꢍ*ꢅ-ꢄꢇꢒ.ꢃꢓꢇMꢇꢁ0ꢁꢇꢖꢖꢇꢗꢘꢆꢙꢇꢚ+,ꢜꢛ  
ꢜꢘꢋꢄ  3ꢋꢉꢀ&ꢍꢈꢀ'ꢋ!&ꢀꢌ"ꢉꢉꢈꢅ&ꢀꢓꢆꢌ4ꢆꢑꢈꢀ#ꢉꢆ*ꢄꢅꢑ!(ꢀꢓꢇꢈꢆ!ꢈꢀ!ꢈꢈꢀ&ꢍꢈꢀꢔꢄꢌꢉꢋꢌꢍꢄꢓꢀꢃꢆꢌ4ꢆꢑꢄꢅꢑꢀꢐꢓꢈꢌꢄ%ꢄꢌꢆ&ꢄꢋꢅꢀꢇꢋꢌꢆ&ꢈ#ꢀꢆ&ꢀ  
ꢍ&&ꢓ255***ꢂ'ꢄꢌꢉꢋꢌꢍꢄꢓꢂꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢄꢅꢑ  
DS70139G-page 198  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
Revision F (May 2008)  
APPENDIX A: REVISION HISTORY  
Revision D (August 2006)  
This revision reflects these updates:  
• Added FUSE Configuration Register (FICD)  
details (see Section 17.7 “Device Configuration  
Registers” and Table 17-8)  
Previous versions of this data sheet contained  
Advance or Preliminary Information. They were  
distributed with incomplete characterization data.  
• Added Note 2 to Device Configuration Registers  
table (Table 17-8)  
This revision reflects these updates:  
• Updated Bit 10 in the UART2 Register Map (see  
Table 15-2). This bit is unimplemented.  
• Supported I2C Slave Addresses  
(see Table 14-1)  
• Electrical Specifications:  
• ADC Conversion Clock selection to allow  
200 kHz sampling rate (see Section 16.0 “12-bit  
Analog-to-Digital Converter (ADC) Module”)  
- Resolved TBD values for parameters DO10,  
DO16, DO20, and DO26 (see Table 20-9)  
- 10-bit High-Speed ADC tPDU timing  
parameter (time to stabilize) has been  
updated from 20 µs typical to 20 µs maximum  
(see Table 20-37)  
• Operating Current (IDD) Specifications  
(see Table 20-5)  
• Idle Current (IIDLE) Specifications  
(see Table 20-6)  
- Parameter OS65 (Internal RC Accuracy) has  
been expanded to reflect multiple Min and  
Max values for different temperatures (see  
Table 20-19)  
• Power-Down Current (IPD) Specifications  
(see Table 20-7)  
• I/O pin Input Specifications  
(see Table 20-8)  
- Parameter DC12 (RAM Data Retention  
Voltage) has been updated to include a Min  
value (see Table 20-4)  
• BOR voltage limits  
(see Table 20-11)  
• Watchdog Timer time-out limits  
(see Table 20-21)  
- Parameter D134 (Erase/Write Cycle Time)  
has been updated to include Min and Max  
values and the Typ value has been removed  
(see Table 20-12)  
Revision E (December 2006)  
- Removed parameters OS62 (Internal FRC  
Jitter) and OS64 (Internal FRC Drift) and  
Note 2 from AC Characteristics (see  
Table 20-18)  
This revision includes updates to the packaging  
diagrams.  
- Parameter OS63 (Internal FRC Accuracy)  
has been expanded to reflect multiple Min  
and Max values for different temperatures  
(see Table 20-18)  
- Updated Min and Max values and Conditions  
for parameter SY11 and updated Min, Typ,  
and Max values and Conditions for  
parameter SY20 (see Table 20-21)  
• Additional minor corrections throughout the  
document  
© 2010 Microchip Technology Inc.  
DS70139G-page 199  
dsPIC30F2011/2012/3012/3013  
Revision G (November 2010)  
This revision includes minor typographical and  
formatting changes throughout the data sheet text.  
The major changes are referenced by their respective  
section in Table A-1.  
TABLE A-1:  
MAJOR SECTION UPDATES  
Section Name  
Update Description  
High-Performance, 16-Bit Digital  
Signal Controllers”  
Added Note 1 to all QFN pin diagrams (see Pin Diagrams).  
Section 1.0 “Device Overview”  
Updated the Pinout I/O Descriptions for AVDD and AVSS (see Table 1-1).  
Section 17.0 “System Integration”  
Added a shaded note on OSCTUN functionality in Section 17.2.5 “Fast RC  
Oscillator (FRC)”.  
Section 20.0 “Electrical  
Characteristics”  
Updated the maximum value for parameter DI19 and the minimum value for  
parameter DI29 in the I/O Pin Input Specifications (see Table 20-8).  
Removed parameter D136 and updated the minimum, typical, maximum,  
and conditions for parameters D122 and D134 in the Program and  
EEPROM specifications (see Table 20-12).  
Renamed parameter AD56 to AD56a and added parameter AD56b to the  
12-bit A/D Conversion Timing Requirements (see Table 20-37).  
Product Identification System”  
Added the “MM” package definition.  
DS70139G-page 200  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
I2C .............................................................................. 98  
Input Capture Mode.................................................... 83  
Oscillator System...................................................... 125  
Output Compare Mode............................................... 87  
INDEX  
Numerics  
12-bit Analog-to-Digital Converter (A/D) Module .............. 113  
Reset System ........................................................... 129  
Shared Port Structure................................................. 59  
SPI.............................................................................. 94  
SPI Master/Slave Connection..................................... 95  
UART Receiver......................................................... 106  
UART Transmitter..................................................... 105  
BOR Characteristics ......................................................... 158  
BOR. See Brown-out Reset.  
A
A/D.................................................................................... 113  
Aborting a Conversion .............................................. 115  
ADCHS Register....................................................... 113  
ADCON1 Register..................................................... 113  
ADCON2 Register..................................................... 113  
ADCON3 Register..................................................... 113  
ADCSSL Register ..................................................... 113  
ADPCFG Register..................................................... 113  
Configuring Analog Port Pins.............................. 60, 119  
Connection Considerations....................................... 119  
Conversion Operation............................................... 114  
Effects of a Reset...................................................... 118  
Operation During CPU Idle Mode ............................. 118  
Operation During CPU Sleep Mode.......................... 118  
Output Formats......................................................... 118  
Power-Down Modes.................................................. 118  
Programming the Sample Trigger............................. 115  
Register Map............................................................. 121  
Result Buffer ............................................................. 114  
Sampling Requirements............................................ 117  
Selecting the Conversion Sequence......................... 114  
AC Characteristics ............................................................ 160  
Load Conditions........................................................ 160  
AC Temperature and Voltage Specifications.................... 160  
ADC  
Brown-out Reset  
Characteristics.......................................................... 158  
Timing Requirements ............................................... 165  
C
C Compilers  
MPLAB C18.............................................................. 146  
CAN Module  
I/O Timing Characteristics ........................................ 181  
I/O Timing Requirements.......................................... 181  
CLKOUT and I/O Timing  
Characteristics.......................................................... 164  
Requirements ........................................................... 164  
Code Examples  
Data EEPROM Block Erase ....................................... 56  
Data EEPROM Block Write ........................................ 58  
Data EEPROM Read.................................................. 55  
Data EEPROM Word Erase ....................................... 56  
Data EEPROM Word Write ........................................ 57  
Erasing a Row of Program Memory ........................... 51  
Initiating a Programming Sequence ........................... 52  
Loading Write Latches................................................ 52  
Code Protection................................................................ 123  
Control Registers................................................................ 50  
NVMADR.................................................................... 50  
NVMADRU ................................................................. 50  
NVMCON.................................................................... 50  
NVMKEY .................................................................... 50  
Core Architecture  
Selecting the Conversion Clock................................ 115  
ADC Conversion Speeds.................................................. 116  
Address Generator Units .................................................... 43  
Alternate Vector Table ........................................................ 69  
Analog-to-Digital Converter. See ADC.  
Assembler  
MPASM Assembler................................................... 146  
Automatic Clock Stretch.................................................... 100  
During 10-bit Addressing (STREN = 1)..................... 100  
During 7-bit Addressing (STREN = 1)....................... 100  
Receive Mode........................................................... 100  
Transmit Mode.......................................................... 100  
Overview..................................................................... 19  
CPU Architecture Overview................................................ 19  
Customer Change Notification Service............................. 205  
Customer Notification Service .......................................... 205  
Customer Support............................................................. 205  
B
Bandgap Start-up Time  
Requirements............................................................ 166  
Timing Characteristics .............................................. 166  
Barrel Shifter....................................................................... 27  
Bit-Reversed Addressing .................................................... 46  
Example...................................................................... 47  
Implementation ........................................................... 46  
Modifier Values Table ................................................. 47  
Sequence Table (16-Entry)......................................... 47  
Block Diagrams  
D
Data Accumulators and Adder/Subtractor .......................... 25  
Data Space Write Saturation...................................... 27  
Overflow and Saturation............................................. 25  
Round Logic ............................................................... 26  
Write-Back.................................................................. 26  
Data Address Space........................................................... 35  
Alignment.................................................................... 38  
Alignment (Figure)...................................................... 38  
Effect of Invalid Memory Accesses (Table) ................ 38  
MCU and DSP (MAC Class) Instructions Example .... 37  
Memory Map......................................................... 35, 36  
Near Data Space........................................................ 39  
Software Stack ........................................................... 39  
Spaces........................................................................ 38  
Width .......................................................................... 38  
Data EEPROM Memory...................................................... 55  
Erasing ....................................................................... 56  
Erasing, Block............................................................. 56  
12-bit ADC Functional............................................... 113  
16-bit Timer1 Module.................................................. 73  
16-bit Timer2............................................................... 79  
16-bit Timer3............................................................... 79  
32-bit Timer2/3............................................................ 78  
DSP Engine ................................................................ 24  
dsPIC30F2011............................................................ 12  
dsPIC30F2012............................................................ 13  
dsPIC30F3013............................................................ 15  
External Power-on Reset Circuit............................... 131  
© 2010 Microchip Technology Inc.  
DS70139G-page 201  
dsPIC30F2011/2012/3012/3013  
Erasing, Word .............................................................56  
Protection Against Spurious Write ..............................58  
Reading.......................................................................55  
Write Verify .................................................................58  
Writing.........................................................................57  
Writing, Block..............................................................57  
Writing, Word ..............................................................57  
DC Characteristics ............................................................150  
BOR ..........................................................................158  
Brown-out Reset .......................................................158  
I/O Pin Input Specifications.......................................156  
I/O Pin Output Specifications....................................156  
Idle Current (IIDLE) ....................................................153  
Low-Voltage Detect...................................................157  
LVDL.........................................................................157  
Operating Current (IDD).............................................152  
Power-Down Current (IPD) ........................................154  
Program and EEPROM.............................................159  
Temperature and Voltage Specifications ..................150  
Development Support .......................................................145  
Device Configuration  
Input.......................................................................... 156  
Output....................................................................... 156  
I/O Ports.............................................................................. 59  
Parallel (PIO) .............................................................. 59  
I2C 10-bit Slave Mode Operation........................................ 99  
Reception ................................................................. 100  
Transmission ............................................................ 100  
I2C 7-bit Slave Mode Operation.......................................... 99  
Reception ................................................................... 99  
Transmission .............................................................. 99  
I2C Master Mode Operation.............................................. 101  
Baud Rate Generator ............................................... 102  
Clock Arbitration ....................................................... 102  
Multi-Master Communication,  
Bus Collision and Bus Arbitration ..................... 102  
Reception ................................................................. 102  
Transmission ............................................................ 101  
I2C Master Mode Support................................................. 101  
I2C Module  
Addresses................................................................... 99  
Bus Data Timing Characteristics  
Register Map.............................................................136  
Device Configuration Registers  
Master Mode..................................................... 177  
Slave Mode....................................................... 179  
Bus Data Timing Requirements  
Master Mode..................................................... 178  
Slave Mode....................................................... 179  
Bus Start/Stop Bits Timing Characteristics  
FBORPOR ................................................................134  
FGS...........................................................................134  
FOSC........................................................................134  
FWDT........................................................................134  
Device Overview ...........................................................11, 19  
Disabling the UART...........................................................107  
Divide Support.....................................................................22  
Instructions (Table) .....................................................22  
DSP Engine.........................................................................23  
Multiplier......................................................................25  
Dual Output Compare Match Mode ....................................88  
Continuous Pulse Mode..............................................88  
Single Pulse Mode......................................................88  
Master Mode..................................................... 177  
Slave Mode....................................................... 179  
General Call Address Support.................................. 101  
Interrupts .................................................................. 101  
IPMI Support............................................................. 101  
Operating Function Description.................................. 97  
Operation During CPU Sleep and Idle Modes.......... 102  
Pin Configuration........................................................ 97  
Programmer’s Model .................................................. 97  
Register Map ............................................................ 103  
Registers .................................................................... 97  
Slope Control............................................................ 101  
Software Controlled Clock Stretching (STREN = 1) . 100  
Various Modes............................................................ 97  
Idle Current (IIDLE) ............................................................ 153  
In-Circuit Serial Programming (ICSP)......................... 49, 123  
Input Capture (CAPX) Timing Characteristics .................. 169  
Input Capture Module ......................................................... 83  
Interrupts .................................................................... 84  
Register Map .............................................................. 85  
Input Capture Operation During Sleep and Idle Modes...... 84  
CPU Idle Mode ........................................................... 84  
CPU Sleep Mode........................................................ 84  
Input Capture Timing Requirements................................. 169  
Input Change Notification Module....................................... 63  
dsPIC30F2012/3013 Register Map (Bits 7-0)............. 63  
Instruction Addressing Modes ............................................ 43  
File Register Instructions ............................................ 43  
Fundamental Modes Supported ................................. 43  
MAC Instructions ........................................................ 44  
MCU Instructions ........................................................ 43  
Move and Accumulator Instructions............................ 44  
Other Instructions ....................................................... 44  
Instruction Set  
E
Electrical Characteristics  
AC.............................................................................160  
DC.............................................................................150  
Enabling and Setting Up UART  
Alternate I/O..............................................................107  
Setting Up Data, Parity and Stop Bit Selections .......107  
Enabling the UART ...........................................................107  
Equations  
ADC Conversion Clock .............................................115  
Baud Rate.................................................................109  
Serial Clock Rate ......................................................102  
Errata ....................................................................................9  
Exception Sequence  
Trap Sources ..............................................................67  
External Clock Timing Characteristics  
Type A, B and C Timer .............................................167  
External Clock Timing Requirements................................161  
Type A Timer ............................................................167  
Type B Timer ............................................................168  
Type C Timer ............................................................168  
External Interrupt Requests ................................................70  
F
Fast Context Saving............................................................70  
Flash Program Memory.......................................................49  
Overview................................................................... 140  
Summary .................................................................. 137  
Internal Clock Timing Examples ....................................... 163  
Internet Address ............................................................... 205  
I
I/O Pin Specifications  
DS70139G-page 202  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
Interrupt Controller  
PLL Clock Timing Specifications ...................................... 162  
Register Map......................................................... 71, 72  
POR. See Power-on Reset.  
Interrupt Priority .................................................................. 66  
Traps........................................................................... 67  
Interrupt Sequence ............................................................. 69  
Interrupt Stack Frame ................................................. 69  
Interrupts............................................................................. 65  
Port Write/Read Example ................................................... 60  
PORTB  
Register Map for dsPIC30F2011/3012....................... 61  
Register Map for dsPIC30F2012/3013....................... 61  
PORTC  
Register Map for dsPIC30F2011/2012/3012/3013..... 61  
PORTD  
L
Load Conditions................................................................ 160  
Low Voltage Detect (LVD) ................................................ 133  
Low-Voltage Detect Characteristics.................................. 157  
LVDL Characteristics ........................................................ 157  
Register Map for dsPIC30F2011/3012....................... 61  
Register Map for dsPIC30F2012/3013....................... 62  
PORTF  
Register Map for dsPIC30F2012/3013....................... 62  
Power Saving Modes........................................................ 133  
Idle............................................................................ 134  
Sleep ........................................................................ 133  
Sleep and Idle........................................................... 123  
Power-Down Current (IPD)................................................ 154  
Power-up Timer  
Timing Characteristics.............................................. 165  
Timing Requirements ............................................... 165  
Program Address Space..................................................... 29  
Construction ............................................................... 31  
Data Access from Program Memory Using  
M
Memory Organization.......................................................... 29  
Core Register Map...................................................... 39  
Microchip Internet Web Site.............................................. 205  
Modulo Addressing ............................................................. 44  
Applicability................................................................. 46  
Incrementing Buffer Operation Example..................... 45  
Start and End Address................................................ 45  
W Address Register Selection .................................... 45  
MPLAB ASM30 Assembler, Linker, Librarian ................... 146  
MPLAB Integrated Development Environment Software.. 145  
MPLAB PM3 Device Programmer .................................... 148  
MPLAB REAL ICE In-Circuit Emulator System................. 147  
MPLINK Object Linker/MPLIB Object Librarian ................ 146  
Program Space Visibility..................................... 33  
Data Access From Program Memory Using  
Table Instructions ............................................... 32  
Data Access from, Address Generation ..................... 31  
Data Space Window into Operation ........................... 34  
Data Table Access (LS Word).................................... 32  
Data Table Access (MS Byte) .................................... 33  
Memory Maps............................................................. 30  
Table Instructions  
N
NVM  
Register Map............................................................... 53  
O
TBLRDH............................................................. 32  
TBLRDL.............................................................. 32  
TBLWTH............................................................. 32  
TBLWTL ............................................................. 32  
Program and EEPROM Characteristics............................ 159  
Program Counter................................................................ 20  
Programmable.................................................................. 123  
Programmer’s Model .......................................................... 20  
Diagram...................................................................... 21  
Programming Operations.................................................... 51  
Algorithm for Program Flash....................................... 51  
Erasing a Row of Program Memory ........................... 51  
Initiating the Programming Sequence ........................ 52  
Loading Write Latches................................................ 52  
Protection Against Accidental Writes to OSCCON........... 128  
OC/PWM Module Timing Characteristics.......................... 171  
Operating Current (IDD)..................................................... 152  
Operating Frequency vs Voltage  
dsPIC30FXXXX-20 (Extended)................................. 150  
Oscillator  
Configurations........................................................... 126  
Fail-Safe Clock Monitor .................................... 128  
Fast RC (FRC).................................................. 127  
Initial Clock Source Selection ........................... 126  
Low-Power RC (LPRC)..................................... 127  
LP Oscillator Control......................................... 127  
Phase Locked Loop (PLL) ................................ 127  
Start-up Timer (OST)........................................ 126  
Operating Modes (Table).......................................... 124  
System Overview...................................................... 123  
Oscillator Selection ........................................................... 123  
Oscillator Start-up Timer  
Timing Characteristics .............................................. 165  
Timing Requirements................................................ 165  
Output Compare Interrupts ................................................. 90  
Output Compare Module..................................................... 87  
Register Map............................................................... 91  
Timing Characteristics .............................................. 170  
Timing Requirements................................................ 170  
Output Compare Operation During CPU Idle Mode............ 90  
Output Compare Sleep Mode Operation ............................ 90  
R
Reader Response............................................................. 206  
Reset ........................................................................ 123, 129  
BOR, Programmable ................................................ 131  
Brown-out Reset (BOR)............................................ 123  
Oscillator Start-up Timer (OST)................................ 123  
POR  
Operating without FSCM and PWRT................ 131  
With Long Crystal Start-up Time ...................... 131  
POR (Power-on Reset)............................................. 129  
Power-on Reset (POR)............................................. 123  
Power-up Timer (PWRT).......................................... 123  
Reset Sequence................................................................. 67  
Reset Sources............................................................ 67  
Reset Sources  
P
Packaging Information ...................................................... 187  
Marking ............................................................. 187, 188  
Peripheral Module Disable (PMD) Registers .................... 135  
Pinout Descriptions............................................................. 16  
Brown-out Reset (BOR).............................................. 67  
Illegal Instruction Trap ................................................ 67  
© 2010 Microchip Technology Inc.  
DS70139G-page 203  
dsPIC30F2011/2012/3012/3013  
Trap Lockout...............................................................67  
Uninitialized W Register Trap .....................................67  
Watchdog Time-out.....................................................67  
Reset Timing Characteristics ............................................165  
Reset Timing Requirements..............................................165  
Run-Time Self-Programming (RTSP) .................................49  
Register Map .............................................................. 75  
Timer2 and Timer3 Selection Mode.................................... 88  
Timer2/3 Module  
16-bit Timer Mode....................................................... 77  
32-bit Synchronous Counter Mode............................. 77  
32-bit Timer Mode....................................................... 77  
ADC Event Trigger...................................................... 80  
Gate Operation........................................................... 80  
Interrupt ...................................................................... 80  
Operation During Sleep Mode.................................... 80  
Register Map .............................................................. 81  
Timer Prescaler .......................................................... 80  
Timing Characteristics  
S
Simple Capture Event Mode ...............................................83  
Buffer Operation..........................................................84  
Hall Sensor Mode .......................................................84  
Prescaler.....................................................................83  
Timer2 and Timer3 Selection Mode............................84  
Simple OC/PWM Mode Timing Requirements..................171  
Simple Output Compare Match Mode.................................88  
Simple PWM Mode .............................................................88  
Input Pin Fault Protection............................................88  
Period..........................................................................89  
Software Simulator (MPLAB SIM).....................................147  
Software Stack Pointer, Frame Pointer...............................20  
CALL Stack Frame......................................................39  
SPI Module..........................................................................93  
Framed SPI Support ...................................................94  
Operating Function Description ..................................93  
Operation During CPU Idle Mode ...............................95  
Operation During CPU Sleep Mode............................95  
SDOx Disable .............................................................94  
Slave Select Synchronization .....................................95  
SPI1 Register Map......................................................96  
Timing Characteristics  
A/D Conversion  
Low-speed (ASAM = 0, SSRC = 000) .............. 184  
Bandgap Start-up Time............................................. 166  
CAN Module I/O........................................................ 181  
CLKOUT and I/O ...................................................... 164  
External Clock........................................................... 160  
I2C Bus Data  
Master Mode..................................................... 177  
Slave Mode....................................................... 179  
I2C Bus Start/Stop Bits  
Master Mode..................................................... 177  
Slave Mode....................................................... 179  
Input Capture (CAPX)............................................... 169  
OC/PWM Module...................................................... 171  
Oscillator Start-up Timer........................................... 165  
Output Compare Module .......................................... 170  
Power-up Timer ........................................................ 165  
Reset ........................................................................ 165  
SPI Module  
Master Mode (CKE = 0)....................................172  
Master Mode (CKE = 1)....................................173  
Slave Mode (CKE = 1)..............................174, 175  
Timing Requirements  
Master Mode (CKE = 0).................................... 172  
Master Mode (CKE = 1).................................... 173  
Slave Mode (CKE = 0)...................................... 174  
Slave Mode (CKE = 1)...................................... 175  
Type A, B and C Timer External Clock..................... 167  
Watchdog Timer ....................................................... 165  
Timing Diagrams  
Master Mode (CKE = 0)....................................172  
Master Mode (CKE = 1)....................................173  
Slave Mode (CKE = 0)......................................174  
Slave Mode (CKE = 1)......................................176  
Word and Byte Communication ..................................94  
Status Bits, Their Significance and the Initialization Condition  
for  
PWM Output Timing ................................................... 89  
Time-out Sequence on Power-up  
RCON Register, Case 1............................................132  
Status Bits, Their Significance and the Initialization Condition  
for RCON Register, Case 2 ......................................132  
Status Register....................................................................20  
Symbols Used in Opcode Descriptions.............................138  
System Integration  
(MCLR Not Tied to VDD), Case 1 ..................... 130  
Time-out Sequence on Power-up  
(MCLR  
Not Tied to VDD), Case 2.................................. 130  
Time-out Sequence on Power-up  
(MCLR  
Register Map.............................................................136  
Tied to VDD)...................................................... 130  
Timing Diagrams and Specifications  
T
DC Characteristics - Internal RC Accuracy............... 163  
Timing Diagrams.See Timing Characteristics  
Timing Requirements  
Table Instruction Operation Summary ................................49  
Temperature and Voltage Specifications  
AC.............................................................................160  
DC.............................................................................150  
Timer 2/3 Module ................................................................77  
Timer1 Module ....................................................................73  
16-bit Asynchronous Counter Mode ...........................73  
16-bit Synchronous Counter Mode .............................73  
16-bit Timer Mode.......................................................73  
Gate Operation ...........................................................74  
Interrupt.......................................................................74  
Operation During Sleep Mode ....................................74  
Prescaler.....................................................................74  
Real-Time Clock .........................................................74  
Interrupts.............................................................74  
Oscillator Operation ............................................74  
A/D Conversion  
Low-speed........................................................ 185  
Bandgap Start-up Time............................................. 166  
Brown-out Reset....................................................... 165  
CAN Module I/O........................................................ 181  
CLKOUT and I/O ...................................................... 164  
External Clock........................................................... 161  
I2C Bus Data (Master Mode) .................................... 178  
I2C Bus Data (Slave Mode) ...................................... 179  
Input Capture............................................................ 169  
Oscillator Start-up Timer........................................... 165  
Output Compare Module .......................................... 170  
Power-up Timer ........................................................ 165  
DS70139G-page 204  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
Reset......................................................................... 165  
Simple OC/PWM Mode............................................. 171  
SPI Module  
Master Mode (CKE = 0).................................... 172  
Master Mode (CKE = 1).................................... 173  
Slave Mode (CKE = 0)...................................... 174  
Slave Mode (CKE = 1)...................................... 176  
Type A Timer External Clock .................................... 167  
Type B Timer External Clock .................................... 168  
Type C Timer External Clock.................................... 168  
Watchdog Timer........................................................ 165  
Timing Specifications  
PLL Clock.................................................................. 162  
Trap Vectors ....................................................................... 69  
U
UART Module  
Address Detect Mode ............................................... 109  
Auto-Baud Support ................................................... 109  
Baud Rate Generator................................................ 109  
Enabling and Setting Up ........................................... 107  
Framing Error (FERR)............................................... 109  
Idle Status................................................................. 109  
Loopback Mode ........................................................ 109  
Operation During CPU Sleep and Idle Modes .......... 110  
Overview................................................................... 105  
Parity Error (PERR) .................................................. 109  
Receive Break........................................................... 109  
Receive Buffer (UxRXB) ........................................... 108  
Receive Buffer Overrun Error (OERR Bit) ................ 108  
Receive Interrupt....................................................... 108  
Receiving Data.......................................................... 108  
Receiving in 8-bit or 9-bit Data Mode........................ 108  
Reception Error Handling.......................................... 108  
Transmit Break.......................................................... 108  
Transmit Buffer (UxTXB)........................................... 107  
Transmit Interrupt...................................................... 108  
Transmitting Data...................................................... 107  
Transmitting in 8-bit Data Mode................................ 107  
Transmitting in 9-bit Data Mode................................ 107  
UART1 Register Map................................................ 111  
UART2 Register Map................................................ 111  
UART Operation  
Idle Mode .................................................................. 110  
Sleep Mode............................................................... 110  
Unit ID Locations............................................................... 123  
Universal Asynchronous Receiver Transmitter  
(UART) Module......................................................... 105  
W
Wake-up from Sleep ......................................................... 123  
Wake-up from Sleep and Idle ............................................. 70  
Watchdog Timer  
Timing Characteristics .............................................. 165  
Timing Requirements................................................ 165  
Watchdog Timer (WDT)............................................ 123, 133  
Enabling and Disabling ............................................. 133  
Operation .................................................................. 133  
WWW Address.................................................................. 205  
WWW, On-Line Support ....................................................... 9  
© 2010 Microchip Technology Inc.  
DS70139G-page 205  
dsPIC30F2011/2012/3012/3013  
NOTES:  
DS70139G-page 206  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
© 2010 Microchip Technology Inc.  
DS70139G-page 207  
dsPIC30F2011/2012/3012/3013  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
dsPIC30F2011/2012/3012/3013  
DS70139G  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS70139G-page 208  
© 2010 Microchip Technology Inc.  
dsPIC30F2011/2012/3012/3013  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
dsPIC30F3013AT-30I/SP-ES  
Custom ID (3 digits) or  
Engineering Sample (ES)  
Trademark  
Architecture  
Package  
= DIP  
SO = SOIC  
P
Flash  
SP = SPDIP  
ML = QFN (8x8)  
MM = QFN-S (6x6)  
Memory Size in Bytes  
0 = ROMless  
1 = 1K to 6K  
2 = 7K to 12K  
3 = 13K to 24K  
4 = 25K to 48K  
5 = 49K to 96K  
6 = 97K to 192K  
7 = 193K to 384K  
8 = 385K to 768K  
9 = 769K and Up  
Temperature  
I = Industrial -40°C to +85°C  
E = Extended High Temp -40°C to +125°C  
Speed  
20 = 20 MIPS  
30 = 30 MIPS  
Device ID  
T = Tape and Reel  
A,B,C… = Revision Level  
Example:  
dsPIC30F3013AT-30I/SP = 30 MIPS, Industrial temp., SPDIP package, Rev. A  
© 2010 Microchip Technology Inc.  
DS70139G-page 209  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Fax: 886-7-330-9305  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/04/10  
DS70139G-page 210  
© 2010 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY