HV512X [MICROCHIP]

SIPO Based Peripheral Driver, CMOS, DIE;
HV512X
型号: HV512X
厂家: MICROCHIP    MICROCHIP
描述:

SIPO Based Peripheral Driver, CMOS, DIE

驱动 接口集成电路
文件: 总11页 (文件大小:100K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HV512  
64-Channel Serial To Parallel Converter  
With Temperature Sense  
and High Voltage Push-Pull Outputs  
Ordering Information  
Package Option  
Micro-BGA  
HV512GA  
Device  
Die  
HV512  
HV512X  
Features  
General Description  
The HV512 is a low voltage serial to high voltage parallel  
converter with push-pull outputs. The device allows switching of  
the outputs between VPP and HVGND.  
High voltage HVCMOS® output  
Output voltages from 0V to 50V-200V  
Low power level shifting  
Data is loaded into the 64-bit shift register using the data input  
signal, DIOA or DIOB, and clock, CLK. Control of the data direction  
is by the use of the DIR pin. Data is shifted out through the data  
output signals, DIOB or DIOA. The data is controlled through the  
device using the latch enable, LE, and blank, BLEX, control  
signals. The output drivers are further controlled by a polarity,  
POL, and high-Z, HI-Z, control lines.  
Shift register speed 12.5MHz double clocked  
for 25MHz data rate  
Logic control includes Direction, Blank, Polarity,  
Latch and High-Z  
CMOS compatible inputs  
Internal pull-up or pull-down on logic inputs  
Continuously monitored temperature sense  
Quad 16-bit output latch control  
Die temperature sensing is provided to inform the user when the  
die temperature reaches the limit of the operating temperature.  
Absolute Maximum Ratings  
Logic supply voltage, VDD  
7.5V  
Driver supply voltage, VPP  
220V  
Output voltage  
220V  
Input voltage1  
-2.0V to VDD+2.0V  
Thermal Resistance  
Junction to Case, RJC  
1 °C/W  
Operating Temperature Range  
-0°C to +150°C  
All voltages are referenced to GND.  
1
Minimum of -2.0V for 20 nsec. Maximum of VDD +2.0V for 20 nsec. allowable.  
10/17/01  
Supertex Inc. does not recommend the use of its products in life support applications and will not knowingly sell its products for use in such applications unless it receives an adequate "products liability  
indemnification insurance agreement." Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of devices determined to be defective due to  
workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the  
Supertex website: http://www.supertex.com. For complete liability information on all Supertex products, refer to the most current databook or to the Legal/Disclaimer page on the Supertex website.  
HV512  
Electrical Characteristics  
DC Characteristics (Over recommended Operating Conditions unless otherwise noted)  
Symbol  
VOH  
Parameter  
Min  
Typ  
Max  
Units  
Conditions  
High-level output voltage  
HV outputs  
Serial output  
HV outputs  
Serial output  
VPP-2.0  
VDD-0.75  
V
V
V
V
V
IOH=-1mA  
VDOH  
VOL  
VDD=4.5V, IOH=-100 µA  
IOL=1mA  
Low-level output voltage  
High level input voltage  
2.0  
0.75  
VDOL  
VIH  
VDD=4.5V, IOL=100 µA  
0.8 VDD  
-0.5  
VDD + 0.5  
Standard CMOS levels, with  
respect to ground  
VIL  
Low level input voltage  
AVDD current  
0.2 VDD  
V
IAVDD  
IDD  
0.2  
25  
1
mA  
mA  
mA  
VDD current  
inputs high, fCLK = 12.5MHz 1  
IDDQ  
VDD quiescent current  
all inputs = floating; DIOA, DIOB  
CLK = LOW  
,
IPP  
VPP current  
mA  
CL=10pF  
CL=30pF  
30  
25  
fOUT = 300Kcycles, VPP = 220V  
fOUT = 100Kcycles, VPP = 220V  
Outputs H or L.  
IPPQ  
IO(OFF)  
IH  
VPP quiescent current  
0.5  
TBD  
10  
ma  
µA  
µA  
High-Z state output current  
High-level input current 2  
For inputs with 20k pull-up resistor  
275  
For inputs with 20k pull-down  
resistor  
IL  
Low-level Input current 2  
10  
µA  
For inputs with 20k pull-down  
resistor  
275  
120  
25  
For inputs with 20k pull-up resistor  
TTRIP  
THYS  
Over temperature trip level  
Temperature hysteresis  
110  
115  
°C  
°C  
Required cooling to reset /OT  
output  
Internal Capacitance  
Symbol Parameter  
Max  
10  
5
Unit  
Condition  
f = 1 MHZ  
f = fO max  
f = 1 MHZ  
CIN  
Input Capacitance  
pF  
pF  
pF  
CHVout  
COUTL  
HV Output Capacitance  
Output Logic Capacitance  
10  
2
HV512  
Electrical Characteristics, continued:  
AC Characteristics (Over recommended Operating Conditions unless otherwise noted)  
Symbol  
fCLK  
Parameter  
Min  
Typ  
Max  
12.5  
25  
Units Conditions  
Clock frequency  
MHZ  
MHZ  
nsec  
nsec  
nsec  
nsec  
nsec  
nsec  
nsec  
nsec  
nsec  
nsec  
to 140°C TJ  
to 140°C TJ  
fDATA  
tWL, tWH  
tSU  
Data rate  
Clock width low / high  
Data setup to before clock rise/fall  
Data hold after clock rise/fall  
Delay clock to logic output rise/fall  
Clock rise/fall to latch enable fall  
Latch enable width  
30  
15  
15  
tH  
tLL, tLH  
tDLE  
tWLE  
tSLE  
200  
250  
Not compatible for cascading at 12.5MHz  
Min. time to allow S/R to settle before LE  
Min. LE pulse width to latch data  
25  
40  
80  
60  
0
Latch enable fall to clock rise/fall  
Setup time from LE to BLEX  
Input rise time  
Delay before restarting clock  
tLBH  
tR  
10  
10  
All input signals  
All input signals  
tF  
Input fall time  
0
tON, tOFF  
BLEX or POL to HV output rise/fall  
500  
100  
nsec  
10pF external load, to start (10%) of output  
rise or start (90%) of output fall  
tON, tOFF Variation on single IC  
tOT  
fD  
Over temp sense  
250  
300  
nsec  
kHz  
From over temp sense to output state 3  
10pF external load  
HV output switching rate  
0
0
100  
550  
30pF external load  
10pF external load 4  
tDR90  
tDR95  
tDF10  
tDF5  
HV output 90% rise time  
HV output 95% rise time  
HV output 10% fall time  
HV output 5%Fall Time  
HV output to high-Z State  
nsec  
nsec  
nsec  
nsec  
nsec  
900  
600  
30pF external load 4  
10pF external load 4  
1000  
550  
30pF external load 4  
10pF external load 4  
900  
600  
30pF external load 4  
10pF external load 4  
1000  
500  
30pF external load 4  
tHI-Z  
Input to high-Z state on outputs  
Recommended Operating Conditions  
Symbol  
VPP  
Parameter  
Min  
50  
Typ Max Units  
Conditions  
High voltage supply  
Logic supply voltage  
Over-temp circuit supply  
Shift clock frequency  
Junction temperature  
200  
5.25  
5.25  
V
V
V
VDD  
4.75  
4.75  
5.0  
5.0  
AVDD  
fSC  
12.5 MHZ  
140 °C  
TJ  
10  
3
HV512  
Electrical Characteristics, continued:  
Absolute Maximum Ratings  
Symbol  
VDD  
Parameter  
Min  
-0.5  
-0.5  
-0.5  
-2.0  
-65  
0
Max  
7.5  
Units  
V
Conditions  
with respect to ground 5  
Logic Supply Voltage  
Analog Supply Voltage  
High Supply Voltage  
Logic Inputs  
AVDD  
VPP  
7.5  
V
with respect to ground 5  
with respect to ground 5  
with respect to ground 5  
No bias  
220  
V
VIN  
VDD+2.0 6  
150  
V
TSTG  
TJ  
Storage Temperature  
Junction Temperature  
°C  
°C  
µsec  
150  
Max DC voltages applied, all inputs GND 7  
TSHORT Output Short Duration  
2
Any high output to any output at any levels, or  
any output to ground, VPP; with VPP at max  
voltage; no IC damage (need characterization)  
Notes:  
1
Outputs switching VPP = 200V to GND, 300,000 times per second, 10pf external load on each output. Or, outputs switching VPP = 200V to GND  
100,000 times per second, 30pF external load on each output.  
2
3
4
Inputs include nominal 20k ±25% value bias resistor to VDD or GND to prevent damage from a floating input.  
Need to respond, typically setting Hi-Z to LOW, to over-temperature (/OT) signal within 1ms to prevent die damage.  
Rise and fall times are currently based on simulation of S-4 process. This is a new process and distribution of variance is not completely modeled.  
Thus, these numbers are goals and not a guarantee of production performance. (DELETE THIS NOTE ON FINAL SPEC)  
5
6
7
All grounds must be at the same potential.  
Minimum of -2.0V for 20 nsec. Maximum of VDD +2.0V for 20 nsec. allowable.  
Power dissipation assumes a package with a thermal resistance = 7.5 °C / Watt in 50 °C ambient. Duty cycle is limited by total power dissipation of  
the carrier.  
Power sequence should be the following:  
1. Connect ground.  
2. Apply VDD, AVDD, and VPP bias (VDD-1V).  
3. Set all inputs (Data, CLK, Enable, etc.) to a known state.  
4. Apply full VPP. Power down sequence should be the reverse of the above.  
Input and Output Equivalent Circuit  
V
DD  
V
DD  
V
PP  
*
Data Out  
HV  
OUT  
Input  
*
GND  
GND  
HV  
GND  
Logic Inputs  
Pull-up or pull-down resistor  
Logic Data Output  
4
High Voltage Outputs  
*
HV512  
Pad/Ball Definitions  
Pad  
13  
12  
5
Ball #  
A6  
A7  
B1  
A2  
B4  
A3  
B6  
B7  
B10  
A9  
A8  
F5  
Name  
AGND  
AVDD  
BLEA  
BLEB  
BLEC  
BLED  
CLK  
I/O  
Function  
-
Analog ground for over-temp circuit  
Over-temp circuit supply voltage  
Transfers data from 64-bit latches to output latches when low  
Transfers data from 64-bit latches to output latches when low  
Transfers data from 64-bit latches to output latches when low  
Transfers data from 64-bit latches to output latches when low  
Clock shift register data on rise/fall edge  
Shift register input data when DIR=L  
Shift register input data when DIR=H  
Controls the data shift directions  
Logic ground  
-
I
6
I
7
I
8
I
15  
18  
19  
14  
11  
2
I
DIOA  
I/O  
DIOB  
O/I  
I
DIR  
GND  
HVGND  
HVGND  
HVGND  
LE  
-
-
VPP ground  
22  
66  
9
F6  
-
VPP ground  
L5  
-
VPP ground  
A4  
B3  
B9  
B2  
N/C  
A5  
E5  
E6  
L6  
I
Transfers data from shift register to 64-bit latches when high  
Set all HV outputs to high-Z state when low  
Logic supply voltage  
3
HI-Z  
I
20  
4
VDD  
-
POL  
N/C  
I
Output polarity control  
21  
10  
1
-
not used, leave open  
VDD  
-
Logic supply voltage  
VPP  
-
High voltage source supply  
23  
47  
16  
17  
VPP  
-
High voltage source supply  
VPP  
-
High voltage source supply  
B8  
A10  
TEST  
OT  
-
Not used, leave open  
O
Signal for die over temperature detection  
High Voltage Outputs  
Pad  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
Ball #  
D2  
C2  
E2  
D1  
E1  
F2  
Name  
Pad  
73  
72  
71  
70  
69  
68  
67  
65  
64  
63  
62  
61  
60  
59  
58  
57  
Ball #  
Name  
HV17  
HV18  
HV19  
HV20  
HV21  
HV22  
HV23  
HV24  
HV25  
HV26  
HV27  
HV28  
HV29  
HV30  
HV31  
HV32  
Pad  
56  
55  
54  
53  
52  
51  
50  
49  
48  
46  
45  
44  
43  
42  
41  
40  
Ball #  
Q6  
Name  
HV33  
HV34  
HV35  
HV36  
HV37  
HV38  
HV39  
HV40  
HV41  
HV42  
HV43  
HV44  
HV45  
HV46  
HV47  
HV48  
Pad  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
Ball #  
K10  
J9  
Name  
HV49  
HV50  
HV51  
HV52  
HV53  
HV54  
HV55  
HV56  
HV57  
HV58  
HV59  
HV60  
HV61  
HV62  
HV63  
HV64  
HV1  
L1  
HV2  
M1  
K2  
P6  
HV3  
Q7  
N10  
J10  
H9  
HV4  
P1  
Q9  
HV5  
N2  
L2  
P7  
HV6  
Q8  
H10  
G10  
F10  
G9  
C1  
F1  
HV7  
M2  
P2  
Q10  
P8  
HV8  
G2  
G1  
H1  
H2  
J1  
HV9  
P3  
P9  
HV10  
HV11  
HV12  
HV13  
HV14  
HV15  
HV16  
Q1  
Q3  
P4  
M9  
L9  
C10  
E10  
F9  
N9  
Q2  
Q4  
P5  
P10  
K9  
D10  
C9  
N1  
J2  
M10  
L10  
E9  
K1  
Q5  
D9  
5
HV512  
Switching Waveforms  
Input Timing Diagram  
tSU  
tH  
tSU  
tH  
VIH  
VIL  
Data Input  
(DIOA or DIOB  
DATA VALID #1  
DATA VALID #2  
)
tWH  
tWL  
VIH  
VIL  
Clock  
tLL  
tLL  
tLH  
tLH  
VDOH  
Data Output  
VALID OUTPUT  
VALID OUTPUT  
(DIOB or DIOA  
)
VDOL  
tDLE  
tDLE  
tSLE  
VIH  
VIL  
LE  
tWLE  
NOTE: First input data is loaded on rising clock edge.  
Output Timing Diagram  
VIH  
VIL  
LE  
tLBH  
VIH  
VIL  
BLE  
X
POL  
VIH  
VIL  
tON  
VOH  
VOL  
HV w/ LO Low  
90%  
10%  
tON  
tOFF  
tON  
tOFF  
90%  
VOH  
HV w/ LO High  
10%  
VOL  
tDR90  
tDF90  
6
HV512  
Functional Block Diagram  
* POL  
** BLEA  
** BLEB  
* LE  
VPP  
Output Latches  
16-bit Latch  
(L01...L016)  
to ouputs 1-16  
DIOB  
SR1  
LI1  
HVOUT1  
HVOUT  
2
16-bit Latch  
(L017...L032)  
to ouputs 17-32  
Clock  
64 bit  
Static Shift  
Register  
60 Additional  
Outputs  
64-bit  
Latch  
* DIR  
16-bit Latch  
(L033...L048)  
to ouputs 33-48  
to ouputs 49-64  
DIOA  
HVOUT63  
HVOUT64  
16-bit Latch  
(L049...L064)  
SR64  
LI64  
** BLEC  
** BLED  
HVGND  
* HI-Z  
*
Inputs have internal 20k-ohm pull-up resistor to V  
DD  
Over Temp Sense  
OT  
** Inputs have internal 20k-ohm pull-down resitor to GND  
Functional Table  
Function  
Data In CLK DIR LE BLEX POL Hi-Z Data Out  
Action  
I/O Relation to Shift  
Register  
SR1 →  
DIOB  
Shift even registers;  
DIOA SR64 SR62 ...  
DIOA  
L
SR2 →  
DIOB  
Shift odd registers;  
DIOA SR63 SR61 ...  
SR64 Shift odd registers;  
DIOA DIOB SR1SR3 ...  
DIOB  
H
SR63 Shift even registers;  
DIOA  
N/A  
N/A  
N/A  
DIOB SR2 SR4 ...  
64-bit Latch transparent  
64-bit Latch held  
X
X
X
X
X
X
X
X
X
H
L
SRN LIN  
LIN held to previous value  
HV outputs OFF  
X
L
H
H
LIN LON; HV outputs High  
LIN LON; HV outputs Low  
L
X
X
X
X
X
X
X
X
H
N/A  
N/A  
HV outputs ON  
LON held to previous value;  
HVOUTN=LON  
L
H
H
H
LON held to previous value;  
HVOUTN=LON  
X
X
X
X
H
N/A  
High-Z  
X
X
X
X
X
X
X
X
X
X
X
X
L
N/A  
N/A  
Outputs have high impedance  
Outputs operational  
Outputs functioning  
H
7
HV512  
Typical Operation  
(refer to the Functional Block Diagram and Function Table)  
Die Temperature Sensing  
Data is first loaded into the 64-bit shift register using the clock,  
CLK, and data input lines, DIOA or DIOB. If the direction pin, DIR,  
is high, then data is shifted into DIOB and out DIOA; SR1 to SR64.  
If DIR is low, then data is shifted into DIOA and out DIOB; SR64 to  
SR1. The data rate is twice the CLK frequency. The first data bit  
is loaded on the rising clock edge and the next data is loaded on  
the falling edge; 32 complete clock cycles are required to load  
the 64-bit shift register. Data is transferred from 64-bit shift  
register to the 64-bit latch when the latch enable, LE, is high.  
When LE is set low, data is retained in the 64-bit latch.  
A signal is provided for die over-temp sensing, OT. A CMOS  
digital LOW signal will be provided when the center of the die  
temperature exceeds TTRIP. This will be a non-synchronized,  
non-latched, continuously monitored output that will contain  
hysteresis to prevent oscillation at the threshold temperature.  
This circuit is driven by the analog supply, AVDD and AGND.  
OT Level  
The blanking signals, BLEA, BLEB, BLEC, and BLED, do two  
functions: blanking and data transfer from the 64-bit latch to the  
four 16-bit output latches. BLEA controls HV outputs 1 through  
16, BLEB controls HV outputs 17 through 32, etc. When BLEX is  
low, the high voltage, HV, outputs are blanked and data transfers  
from the 64-bit latch to the output latch. When BLEX is high, the  
HV outputs are enabled and data in the output latch is retained.  
A blanked HV output combined with a high polarity signal, POL,  
sets the HV output low. If POLis low, the blanked HV output is set  
high.  
T
HYS  
H
L
OT  
Temperature  
If BLEX is high, the data in the 16-bit output latch are sent to the  
HV outputs. If POL is high the HV output is not inverted; a high  
data yields a high HV output. If POL is low, the HV output is  
inverted.  
Figure 2: Over-temp/Hysteresis Performance  
The control signal High-Z, HI-Z, sets the HV outputs to a high  
impedance state. If HI-Z is high, the outputs can be set to either  
high or low. If HI-Z is low, the outputs are set to a high impedance  
state, both output transistors are turned off.  
VPP  
C1  
VDD  
VPP  
VDD  
C3  
HVOUT  
HV512  
GND  
HVGND  
Figure 1: Typical Connection  
8
HV512  
µBGA® PACKAGE, 91 BALL, 15x10 ARRAY ASSEMBLY DRAWING  
(Unless Otherwise Specified, Dimensions are in Millimeters)  
Bump View  
NOTES:  
1.  
2.  
3.  
4.  
5.  
6.  
Dimensioning and tolerancing per ASME Y14.5M-1994.  
Do not subject part to ultrasonic cleaning or intense UV.  
Mark back of die with laser.  
Contact ball position designation per JESD 95-1, SOO-010.  
Die P/N HV512.  
Elastomer  
106000200108 (Dow Corning 6811 Encapsulant).  
1030001000108 (Dow Corning 6910 Space Adhesive).  
Make from Eutectic Solder Ball (ø0.3mm). Dimensions apply after solder ball reflow.  
Datum Z established by high points of solder bumps.  
Elastomer shall not extend beyond Datum A.  
Max. vertical load allowed per ball of 40 grams.  
7.  
8.  
9.  
10.  
9
HV512  
µBGA® PACKAGE, 91 BALL, 15x10 ARRAY ASSEMBLY DRAWING,  
Continued  
(Unless Otherwise Specified, Dimensions are in Millimeters)  
Back View  
Side View  
(Not to Scale)  
10  
HV512  
µBGA® PACKAGE, 91 BALL, 15x10 ARRAY ASSEMBLY DRAWING,  
Continued  
(Unless Otherwise Specified, Dimensions are in Millimeters)  
GENERAL ASSEMBLY SECTION  
(NOT TO SCALE)  
10/17/01  
1235 Bordeaux Drive, Sunnyvale, CA 94089  
TEL: (408) 744-0100 • FAX: (408) 222-4895  
www.supertex.com  

相关型号:

HV513

8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect
SUPERTEX

HV513K7-G

8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect
SUPERTEX

HV513K7-GM935

8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect
SUPERTEX

HV513WG

High Voltage 8-Channel Serial to Parallel Converters
SUPERTEX

HV513WG-G

8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect
SUPERTEX

HV513_13

8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs, POL, Hi-Z, and Short Circuit Detect
SUPERTEX

HV514

8-Channel Serial to Parallel Converter with High Voltage Push-Pull Outputs
SUPERTEX

HV514WG

High Voltage 8-Channel Serial to Parallel Converters
SUPERTEX

HV514WG-G

Buffer/Inverter Based Peripheral Driver, PDSO20, 12.80 X 7.50 MM, 2.65 MM HEIGHT, 1.27 MM PITCH, GREEN, MS-013AC, SOW-20
SUPERTEX

HV518

32-Channel Vacuum-Fluorescent Display Driver
SUPERTEX

HV518P

32-Channel Vacuum-Fluorescent Display Driver
SUPERTEX

HV518P-G

32-Channel Vacuum-Fluorescent Display Driver
SUPERTEX