HV53001 [MICROCHIP]

16-Channel, ±135V Push-Pull Driver with RTZ, Current Sensor and Built-in Boost Converter;
HV53001
型号: HV53001
厂家: MICROCHIP    MICROCHIP
描述:

16-Channel, ±135V Push-Pull Driver with RTZ, Current Sensor and Built-in Boost Converter

文件: 总40页 (文件大小:1904K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HV53001  
16-Channel, ±135V Push-Pull Driver with RTZ,  
Current Sensor and Built-in Boost Converter  
Features  
General Description  
• 16-Channel Push-Pull Output  
The HV53001 device is an integrated driver solution  
for various applications, which consists of three main  
functional blocks (1) high-voltage driver, (2) SPI inter-  
face and (3) DC/DC boost controller with power  
MOSFET.  
• Return-To-Zero (RTZ) and High-Impedance (Hi-Z)  
Function  
• Up to ±135V Output Voltage  
• 24 mA Minimum Source Sink Output Current  
• 250 pF Maximum Output Load  
• Current Sensor Output  
The high-voltage driver block includes 16 push-pull  
drivers capable of ±135V output swing with Return-To-  
Zero (RTZ) function. Each output driver is capable of  
sourcing and sinking at least 24 mA. Each high-volt-  
age output is capable of driving up to 250 pF capaci-  
tive load. A global current sensor function is also  
integrated into this device to monitor the charge and  
discharge currents. The measured current is mapped  
to a low-voltage analog output with a scale factor of  
3.1 V/V via a current sensing resistor.  
• SPI Interface with Quad-Latched 2-bit per Chan-  
nel Architecture  
• Power-on Reset Function  
• DC/DC Boost Converter with Power MOSFET  
• 2.7 to 5.5V Converter Input Voltage  
• Short Circuit Protection  
• Overtemperature Monitor  
The SPI interface is used to communicate between the  
host processor and the high-voltage drivers. This inter-  
face accepts a 3.3V logic I/O signal up to clock speed  
of 32 MHz. Five digital LATCH control signals manage  
the data flow and the firing pattern. It establishes the  
output to one of four possible states: VPP, VNN, 0V or  
high impedance.  
• Power ON/OFF Sequence Control  
• Shutdown Function  
• 105-ball 9 x 9 mm TFBGA Package  
Application  
• Surface Haptic Application  
• MEMS Driver  
This IC also includes an integrated DC/DC controller  
with power MOSFET. The controller is used in a fly-  
back configuration to generate four high-voltage rails,  
±135V and ±123V, for the high-voltage driver block.  
The ±123V rails are created from two 12V floating sup-  
plies referenced to the ±135V supply rails.  
• Piezo Driver  
The converter accepts input voltage from a single  
2.7V-5.5V input voltage rail. A built-in positive charge  
pump and a simple external negative charge pump  
convert the input supply to +6.5V and -6.0V supplies to  
power the high-voltage driver block.  
Aproper power on and off sequence is critical to ensure  
the operation of the high-voltage driver. A power  
sequence control circuit is included for the user to con-  
trol the power supplies to power up or down the high-  
voltage driver. It is used in conjunction with the external  
high-voltage FET transistors.  
Safety features are added to the DC/DC converter. The  
overvoltage protection monitors both high-voltage rails  
to protect the driver against an overvoltage condition.  
Short circuit protection detects any short circuit event at  
the high-voltage rails by monitoring the current flow  
2021 Microchip Technology Inc.  
DS20006518A-page 1  
HV53001  
through the power FET transistor. When a short circuit  
is detected, the DC/DC controller will shut down the  
converter and send a fault signal at the SHORT pin.  
The HV53001 device is packaged in a 9x9mm 105 ball  
TFBGA package. All high-voltage I/Os are arranged to  
have sufficient clearance for safety.  
An overtemperature monitor function is also added in  
the converter IC. It sends a fault signal at the TEMP pin  
when it detects a temperature over the threshold  
temperature.  
Typical Application Diagram  
2.7 to 12V  
-VE LDO  
LVGND  
HVGND  
+VE LDO  
VBOVP  
VBFB  
RSHT  
2.7V to 5.5V  
Logic voltage  
supply  
VPF  
VNF  
VPP VNN VNNO VPPO  
Sensor Circuit  
POR  
FILN FILP  
VLL  
FBP FBN  
VDD  
VCC  
VIN  
S
D
OVPP  
OVPN  
SHTN SHTP  
CCP2  
POWER  
VNNSENSE  
VPPSENSE  
Power On  
MOSFET  
Sequence  
Control  
GATE  
actuator  
CHARGE  
PUMP  
DRIVER  
CCP1  
High Voltage  
REGULATOR  
Overvoltage  
Protection  
LATCHIN  
LATCHA  
LATCHB  
LATCHC  
LATCHD  
HVOUT  
0
DC/DC  
VSSPUL  
VSS  
VBFB  
VBOVP  
REF  
EN  
CONTROLLER  
Control  
Logic  
Short Circuit  
Protection  
Low Voltage  
VSSPUL  
Driver  
HVOUT15  
HV53001  
TON  
SPI  
Temp  
VREF  
Interface  
Sensor  
STDBY  
VLDO  
AGND  
SHTEN RT TEMP  
SDI SDO SCK SS  
SHORT  
TRIG  
SEQ[0:3]  
HVGND  
SHDN  
PGND  
DATA FROM MCU  
CONTROL FROM MCU  
DS20006518A-page 2  
2021 Microchip Technology Inc.  
HV53001  
Package Types (Top View)  
HV53001  
9 x 9 TFBGA*  
9
1
2
3
4
5
6
7
8
10  
11  
12  
13  
HV  
1
HV  
5
6
HV  
4
HV  
3
HV  
2
HV 0  
OUT  
FILP  
A
B
OUT  
A
B
OUT  
OUT  
OUT  
OUT  
VPP  
SENSE  
HV  
V
PPO  
OUT  
LATCHD  
SS  
SHDN  
V
V
AGND  
FBP  
V
SS  
VSSPUL  
VBFB  
LL  
CC  
C
D
E
C
D
E
HVGND LATCHC  
HVGND LATCHB  
SDI  
Reserved OVPP  
OVPN  
NC  
FBN  
SDO  
SCK  
HVGND Reserved  
HVGND STDBY  
VBOVP  
VLDO  
TEMP  
REF  
HV  
7
V
PP  
OUT  
VNN  
LATCHA  
SENSE  
SHTEN SHORT  
AGND  
F
F
NC  
NC  
LATCHIN HVGND HVGND  
HVGND HVGND HVGND  
SEQ3  
SHTN  
SEQ2  
SEQ1  
SEQ0  
TRIG  
CSEQ  
HV  
HV  
HV  
8
9
V
G
G
OUT  
PF  
NF  
NN  
V
T
CCP1N  
IN  
ON  
H
J
H
J
S
S
S
S
D
D
D
D
SHTP  
D
V
EN  
D
RT  
CCP1P  
CCP2N  
V
OUT  
DD  
D
D
PGND  
K
L
K
L
10  
S
S
D
D
D
D
PGND  
CCP2P  
V
OUT  
M
N
M
N
HV  
11  
HV  
12  
HV  
13  
HV  
14  
HV  
15  
FILN  
V
NNO  
OUT  
OUT  
OUT  
OUT  
OUT  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
* see Table 2-1.  
2021 Microchip Technology Inc.  
DS20006518A-page 3  
HV53001  
Block Diagram  
SHDN  
LATCHA,B,C,D  
LATCHIN  
4
GPIOs  
32  
32  
32  
32  
32  
32  
32  
32  
Surface  
Haptics  
Element  
4
2
2
HVOUT  
HVOUT  
0
1
SS  
SCK  
SDI  
SPI  
32  
MCU  
SDO  
2
2
HVOUT14  
HVOUT15  
VPPSENSE  
VNNSENSE  
Analog  
Inputs  
IPP and INN  
Current Sensors  
DC/DC convrter  
HV53001  
VPP, VNN, VPF, VNF  
DS20006518A-page 4  
2021 Microchip Technology Inc.  
HV53001  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Converter Input Supply Voltage (VIN).........................................................................................................-0.3V to +6.0V  
Enable Pin Input Voltage (EN) ....................................................................................................................... -0.3V to VIN  
Power FET Drain-Source Voltage (VDS) .....................................................................................................-0.3V to +80V  
Low Positive Voltage Supply (VDD) ............................................................................................................-0.3V to +8.0V  
High Positive Supply Voltage (VPP)...........................................................................................................-0.3V to +140V  
High Negative Supply Voltage (VNN).........................................................................................................-140V to +0.3V  
High Positive Floating Supply Voltage (VPF)..........................................................................................VPP - 14V to VPP  
High Negative Floating Supply Voltage (VNF) ...................................................................................... VNN to VNN + 14V  
Analog Low Positive Voltage Supply (VCC)................................................................................................-0.3V to +8.0V  
Analog Low Negative Voltage Supply (VSS).............................................................................................. -8.0V to +0.3V  
Logic Voltage Supply (VLL).........................................................................................................................-0.3V to +4.0V  
Logic Input Levels (Hi-V Driver, SPI Interface, LATCHX and SHDN).................................................. -0.3V to VLL +0.3V  
Logic Input Levels (DC/DC Converter Controls) ...............................................................................-0.3V to VLDO +0.3V  
Maximum Junction Temperature (TJ(MAX)) ...........................................................................................................+125°C  
Storage Temperature...............................................................................................................................-65°C to +150°C  
ESD Rating on Low-Voltage Pins (Human Body Model)............................................................................................2 kV  
ESD Rating on Low-Voltage Pins (Charged Device Model).....................................................................................500 V  
ESD Rating on High-Voltage Pins (Human Body Model).........................................................................................500 V  
ESD Rating on High-Voltage Pins (Charged Device Model)....................................................................................500 V  
† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at those or any other conditions above those indicated in the  
operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
TABLE 1-1:  
OPERATING SUPPLY VOLTAGES  
Electrical Specifications: Unless otherwise specified: TA = TJ = +25°C. Boldface specifications apply over the TA=  
TJ = range of -40°C to +125°C.  
Parameter  
Sym.  
Min.  
Typ.  
-
Max.  
Units  
Conditions  
Note 1  
Input Supply Voltage  
VIN  
VPP  
VNN  
2.7  
48  
5.5  
135  
-48  
V
V
V
High Positive Supply Voltage  
High Negative Supply Voltage  
-135  
Low Positive Supply Voltage  
(High-Voltage Driver)  
VCC  
VSS  
6.0  
6.5  
7.0  
V
V
Low Negative Supply Voltage  
(High-Voltage Driver)  
-6.5  
-6.0  
-5.5  
Logic Input Supply Voltage (SPI  
Interface)  
VLL  
VNF  
VPF  
3.0  
3.3  
3.6  
V
V
V
Negative Floating Supply Voltage  
Positive Floating Supply Voltage  
VNN + 9V  
VPP-13.2V  
-
-
VNN+13.2V  
VPP - 9V  
High-Level Input Logic Voltage  
(DC/DC Controls)  
2.0  
VIH  
V
V
High-Level Input Logic Voltage  
(High-Voltage Driver Controls)  
0.8VLL  
Low-Level Input Logic Voltage  
(DC/DC Controls)  
0
0
0.8  
VIL  
Low-Level Input Logic Voltage  
(High-Voltage Driver Controls)  
0.2VLL  
Note 1: Specification is obtained by characterization and is not 100% tested.  
2021 Microchip Technology Inc.  
DS20006518A-page 5  
HV53001  
TABLE 1-2:  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: unless otherwise specified, all limits apply for TA = TJ = 25°C; Boldface specifications  
apply over the full operating temperature range of TA= TJ = -40°C to 125°C. Typical values are at +25°C. RT = 200k,  
EN = 3.3V, VPP= +135V, VNN= -135V, VPF= +123V, VNF= -123V, VCC= +6.5V, VSS= -6.0V, VLL= +3.3V, VIN = +3.3V  
unless otherwise specified.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Low Current Standby Mode  
Low Threshold for EN Pin  
High Threshold for EN Pin  
Pull Down Resistor at EN Pin  
Quiescent Current Draw from  
VIL  
VIH  
0
0.8  
VIN  
V
V
2.0  
500  
k  
A  
EN = 3.3V  
IINQ  
5
EN = open  
VIN Pin  
Charge Pump Converter  
Output Voltage  
VDD  
6.0  
6.5  
6.75  
V
2.7V VIN 5.5V  
Io = 10mA  
Output IDD Load Current  
Output Ripple Voltage  
IDD  
10  
mA  
mV  
VRIPPLE  
150  
VIN = 3.3V, Io = 10mA,  
CVDD = 10F (Note 3)  
V
DD Under Voltage Lockout  
VDDUVLO  
4.25  
4.75  
V
V
(Note 2)  
(Note 2)  
(Rising Edge)  
VDD Hysteresis (Falling)  
Low Dropout Linear Regulator  
Internal LDO Output Voltage  
Clock Generation  
0.25  
VLDO  
5.0  
5.25  
5.5  
V
Minimum Switching Frequency  
fs,min  
fs,max  
160  
320  
200  
400  
240  
480  
kHz  
kHz  
RT = 400k  
RT = 200k  
Maximum Switching  
Frequency  
Clock Ramp Maximum  
Clock Ramp Minimum  
Output Voltage Reference  
Internally Set Reference  
VTS  
3.75  
0.2  
V
V
(Note 2)  
(Note 2)  
VRST  
VREFINT  
REFS  
-3%  
1.19  
0.6  
+3%  
V
V
(Note 2) VIN = 3.7V  
Internal Reference to Select  
External Reference  
-5.5%  
+5.5%  
External Reference Range  
Output Current Feedback  
OCP Threshold  
REF  
0.6  
2.4  
V
(Note 2)  
(Note 2)  
VREF2  
40  
60  
mV  
Ton Generation  
T
T
T
ON Voltage Range  
ON Ceiling Voltage  
ON Floor Range  
VTON  
LIMITCL  
LIMITFL  
TON(min)  
KTON  
0
3
3
3
V
V
0.8VTS  
0.25VTS  
40  
V
Minimum TON Time  
250  
ns  
(Note 2)  
Internal Gain in TON  
Generation  
s/V (Note 2)  
Note 1: Recommended Operating Conditions: VIN=3.3V, VCC=+6.5V, VSS=-6.0V, VPP=+135V, VNN= -135V all  
input pins =0V unless noted. TJ=25°C  
2: Design guidance only.  
3: Specification is obtained by characterization and is not 100% tested.  
DS20006518A-page 6  
2021 Microchip Technology Inc.  
HV53001  
TABLE 1-2:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: unless otherwise specified, all limits apply for TA = TJ = 25°C; Boldface specifications  
apply over the full operating temperature range of TA= TJ = -40°C to 125°C. Typical values are at +25°C. RT = 200k,  
EN = 3.3V, VPP= +135V, VNN= -135V, VPF= +123V, VNF= -123V, VCC= +6.5V, VSS= -6.0V, VLL= +3.3V, VIN = +3.3V  
unless otherwise specified.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Over Voltage Protection  
OVPP Set Point  
OVPPR  
OVPNR  
OVPHYS  
OVPDLY  
-3%  
-3%  
1.19  
1.07  
0.12  
50  
+3%  
+3%  
V
V
VIN = 3.7V  
OVPN Set Point  
VIN = 3.7V  
OVP Hysteresis  
V
OVP Comparator Delay Time  
ns  
100 mV overdrive  
(Note 2)  
VSSPUL DRIVER  
VSSPUL Switching Frequency  
VSSPUL High Level Output  
VSSPUL Low Level Output  
Pull Up Resistance  
fPUL  
VOH  
VOL  
500  
kHz  
V
5.75  
VDD = 6.5V, IO = 5 mA  
VDD = 6.5V, IO = 5 mA  
0.25  
10  
V
VDD = 5.75V  
RON(UP)  
RON(DN)  
IPUL  
(Note 2)  
Pull Down Resistance  
VDD = 5.75V  
(Note 2)  
5
Source and Sink Current  
IL = 5mA at -6.0V out-  
put (Note 2)  
11  
135  
80  
mA  
Temp Sensor  
Threshold Temperature  
Power FET  
TTH  
°C  
V
Note 2  
Drain to Source Breakdown  
voltage  
VGS = 0V, ID = 250 .  
BVDSS  
Drain to Source ON-Resis-  
tance  
V
GS = 5V, VDS=12V.  
RDS(ON)  
60  
m  
(Note 2)  
High-Voltage Driver  
Quiescent VPP Supply Current  
(Sum of Current at VPP and  
VPPO Pins)  
IPP  
Q
3.7  
5.6  
mA  
mA  
Quiescent VNN Supply Current  
(Sum of Current at VNN and  
VNNO Pins)  
INN  
Q
-5.8  
-5.2  
-3.8  
Quiescent VPF Supply Current  
(Source)  
IPF  
Q
Q
-3.6  
3.7  
mA  
mA  
Quiescent VNF Supply Cur-  
rent (Source)  
INF  
5.4  
0.4  
Quiescent High-Voltage Posi-  
tive Supply Resultant Cur-  
I
PPRQ  
mA  
mA  
rent, IPPQ + IPF  
Q
Quiescent High-Voltage Nega-  
tive Supply Resultant Cur-  
I
NNRQ  
-0.4  
rent, INNQ + INF  
Q
Note 1: Recommended Operating Conditions: VIN=3.3V, VCC=+6.5V, VSS=-6.0V, VPP=+135V, VNN= -135V all  
input pins =0V unless noted. TJ=25°C  
2: Design guidance only.  
3: Specification is obtained by characterization and is not 100% tested.  
2021 Microchip Technology Inc.  
DS20006518A-page 7  
HV53001  
TABLE 1-2:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: unless otherwise specified, all limits apply for TA = TJ = 25°C; Boldface specifications  
apply over the full operating temperature range of TA= TJ = -40°C to 125°C. Typical values are at +25°C. RT = 200k,  
EN = 3.3V, VPP= +135V, VNN= -135V, VPF= +123V, VNF= -123V, VCC= +6.5V, VSS= -6.0V, VLL= +3.3V, VIN = +3.3V  
unless otherwise specified.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
VPP Supply Current (Sum of  
current at VPP and VPPO  
pins)  
V
PP=+90V, VNN=-90V,  
IPP  
7.5  
mA  
VPF=+78V, VNF=-78V,  
HVOUT = 20kHz,CL=  
f
250 pF, Running two  
channels. Test pattern  
= Figure 1-3 with  
VNN Supply Current (Sum of  
current at VNN and VNNO  
pins)  
INN  
-7.5  
mA  
mA  
12.5s pulse width  
V
V
PP=+90V, VNN=-90V,  
PF=+78V, VNF=-78V,  
High-Voltage Positive Supply  
Resultant Current, IPP + IPF  
IPPR  
2
fHVOUT = 20kHz,CL=  
250 pF, Running two  
channels. Test pattern  
= Figure 1-3 with  
High-Voltage Negative Supply  
Resultant Current, INN + INF  
INNR  
-2  
mA  
mA  
12.5s pulse width  
VPP=+90V, VNN=-90V,  
VCC Operating Supply Current  
ICC  
0.2  
VPF=+78V, VNF=-78V,  
Test pattern =  
Figure 1-3 with 12.5s  
pulse width  
VSS Operating Supply Current  
VLL Operating Supply Current  
ISS  
-0.2  
-5.5  
mA  
mA  
VLL = +3.3V  
ILL  
25  
SCK = 32MHz, SDI =  
16 MHz pulse train  
VPP=+90V, VNN=-90V,  
VPF Operating Supply Current  
VNF Operating Supply Current  
IPF  
mA  
mA  
VPF=+78V, VNF=-78V,  
fHVOUT = 20kHz,CL=  
250 pF, Running two  
channels. Test pattern  
= Figure 1-3 with  
INF  
5.5  
12.5 s pulse width  
VNF Negative Floating Supply  
Voltage  
VNN+9V  
VNN+13.2V  
VPP-9V  
VNF  
-
-
V
V
VPF Positive Floating Supply  
Voltage  
VPP-13.2V  
VPF  
Note 1: Recommended Operating Conditions: VIN=3.3V, VCC=+6.5V, VSS=-6.0V, VPP=+135V, VNN= -135V all  
input pins =0V unless noted. TJ=25°C  
2: Design guidance only.  
3: Specification is obtained by characterization and is not 100% tested.  
DS20006518A-page 8  
2021 Microchip Technology Inc.  
HV53001  
TABLE 1-2:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: unless otherwise specified, all limits apply for TA = TJ = 25°C; Boldface specifications  
apply over the full operating temperature range of TA= TJ = -40°C to 125°C. Typical values are at +25°C. RT = 200k,  
EN = 3.3V, VPP= +135V, VNN= -135V, VPF= +123V, VNF= -123V, VCC= +6.5V, VSS= -6.0V, VLL= +3.3V, VIN = +3.3V  
unless otherwise specified.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
VPP=+90V, VNN=-90V,  
VPF=+78V, VNF=-78V,  
CL=250pF, Test pat-  
tern = Figure 1-3 with  
12.5s pulse width  
HVOUT Switching Frequency  
fHVOUT  
0
25  
kHz  
HVOUT Output Source and  
Sink urrent  
VPP=+90V, VNN=-90V,  
VPF=+78V, VNF=-78V  
IHVOUT  
24  
40  
mA  
Return-To-Zero Slew Rate  
90% to 10%  
(i) from VPP to 0V  
(ii) from VNN to 0V  
VPP=+90V,VNN=-90V,  
VPF=+78V,VNF=-78V,  
VCC=+6.5V,VSS=-6.0V  
CL = 250 pF  
SR  
100  
200  
V/s  
Delay time for output to start  
rise/fall  
(from LATCHA, B, C, D to 1V  
VPP = +135 V, VNN = -  
135 V, VCC= 6.5V, VSS  
= -6.0V No load. (Note  
3)  
td(ON/OFF)  
100  
40  
ns  
of HVOUT  
)
Variation of delay time  
(channel to channel)  
td  
ns  
V
(Note 3)  
Shutdown pin input enable  
voltage  
VIH(SHDN)  
2.5  
VPPSENSE and VNNSENSE Current Sensor  
Vout  
VPP = +135V, VNN = -  
135V, VCC = +6.5V,  
VSS = -6.0V  
VPPSENSE/VNNSENSE Out-  
put Voltage  
0
3.6  
V
(VPPSENSE/  
VNNSENSE)  
VPP = +135V, VNN = -  
135V, VCC = +6.5V,  
VSS = -6.0V, VPP-VPPO  
and VNNO-VNN: from  
0.1V to 1.0V  
AVSENSE  
(-40°C to  
125°C)  
Voltage Gain of Current Sen-  
sor  
-14%  
-280  
3.1  
+14%  
V/V  
VPP = +135V, VNN = -  
135V, VCC = +6.5V,  
VSS = -6.0V, VPP-VPPO  
and VNNO-VNN: from  
0.1V to 1.0V  
Sensing Amplifier Output  
Offset  
VOS  
+280  
mV  
Note 1: Recommended Operating Conditions: VIN=3.3V, VCC=+6.5V, VSS=-6.0V, VPP=+135V, VNN= -135V all  
input pins =0V unless noted. TJ=25°C  
2: Design guidance only.  
3: Specification is obtained by characterization and is not 100% tested.  
2021 Microchip Technology Inc.  
DS20006518A-page 9  
HV53001  
TABLE 1-2:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: unless otherwise specified, all limits apply for TA = TJ = 25°C; Boldface specifications  
apply over the full operating temperature range of TA= TJ = -40°C to 125°C. Typical values are at +25°C. RT = 200k,  
EN = 3.3V, VPP= +135V, VNN= -135V, VPF= +123V, VNF= -123V, VCC= +6.5V, VSS= -6.0V, VLL= +3.3V, VIN = +3.3V  
unless otherwise specified.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
(Note 3)  
VPP = +90V, VNN = -  
90V, VCC = +6.5V, VSS  
= -6.0V, CL=3pF, Test  
pulse: 1V, 1s pulse  
width  
Rise Time  
(Time from 10% to 90% of  
targeted value)  
tR  
300  
ns  
1. VPP and VPPO  
2. VNN and VNNO  
VPP = +90V, VNN = -  
90V, VCC = +6.5V, VSS  
= -6.0V, CL=20pF, Test  
pulse: 1V, 1s pulse  
width  
Rise Time  
(Time from 10% to 90% of  
targeted value)  
tR  
740  
ns  
1. VPP and VPPO  
2. VNN and VNNO  
RLOAD  
CLOAD  
10  
M  
(Note 2)  
(Note 2)  
VPPSENSE/VNNSENSE  
Output Load  
3
pF  
SPI Interface  
Digital Input Clock frequency  
High-level input logic voltage  
Low-level input logic voltage  
Logic I/O pin rise and fall time  
fCLK  
VIH  
32  
MHz Note: 3.3V logic input  
0.8VLL  
0
V
V
VIL  
0.2VLL  
tR, tF  
5
ns  
(Note 3) CL=15pF  
(Note 2)  
Sourced by any standard I/O  
pin  
Isource  
Isink  
10  
10  
mA  
mA  
Sunk by any standard I/O pin  
(Note 2)  
SPI Quiescent current of low-  
voltage supplies with Shut-  
down asserted  
In shutdown mode.  
All logic input = 0V.  
V(SHDN) = VLL  
ILL  
Q
100  
A  
Time to enter and exit shut-  
down  
SCK=32MHz and SDI  
= 16MHz pulse train.  
tSHDN  
tWAIT  
tPKT  
1
-
ms  
ns  
s  
ns  
Time from chip select and SPI  
data  
Refer to Figure 1-1  
(Note 2)  
20  
4
50  
-
Time to transfer 128-bits of  
data  
Refer to Figure 1-1  
(Note 2)  
-
Time from last clock pulse to  
LATCHIN  
Refer to Figure 1-1  
(Note 2)  
tH(LAT)  
20  
50  
-
Digital Interface  
Refer to Figure 1-2  
(Note 2)  
Time SPI latch held low  
tab  
tac  
20  
10  
50  
12  
-
-
ns  
Refer to Figure 1-2  
(Note 2)  
Time between SPI latches  
s  
Note 1: Recommended Operating Conditions: VIN=3.3V, VCC=+6.5V, VSS=-6.0V, VPP=+135V, VNN= -135V all  
input pins =0V unless noted. TJ=25°C  
2: Design guidance only.  
3: Specification is obtained by characterization and is not 100% tested.  
DS20006518A-page 10  
2021 Microchip Technology Inc.  
HV53001  
TABLE 1-2:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: unless otherwise specified, all limits apply for TA = TJ = 25°C; Boldface specifications  
apply over the full operating temperature range of TA= TJ = -40°C to 125°C. Typical values are at +25°C. RT = 200k,  
EN = 3.3V, VPP= +135V, VNN= -135V, VPF= +123V, VNF= -123V, VCC= +6.5V, VSS= -6.0V, VLL= +3.3V, VIN = +3.3V  
unless otherwise specified.  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Time from SPI latch assert to  
data valid  
Refer to Figure 1-2  
(Note 2)  
tae  
-
10  
20  
ns  
Time from SPI latch to data  
latch  
Refer to Figure 1-2  
(Note 2)  
tak  
tgk  
tmn  
trs  
20  
20  
20  
80  
-
50  
50  
-
-
ns  
ns  
ns  
ns  
ns  
Refer to Figure 1-2  
(Note 2)  
Time latch signal held high  
Time latch signal held low  
Refer to Figure 1-2  
(Note 2)  
50  
-
Time between two data latch  
events  
Refer to Figure 1-2  
(Note 2)  
100  
10  
-
Propagation delay from data  
register to output register  
Refer to Figure 1-2  
(Note 2)  
tkv  
20  
Note 1: Recommended Operating Conditions: VIN=3.3V, VCC=+6.5V, VSS=-6.0V, VPP=+135V, VNN= -135V all  
input pins =0V unless noted. TJ=25°C  
2: Design guidance only.  
3: Specification is obtained by characterization and is not 100% tested.  
2021 Microchip Technology Inc.  
DS20006518A-page 11  
HV53001  
TEMPERATURE SPECIFICATIONS  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Operating Junction Temperature Range  
Storage Temperature Range  
TJ  
-40  
-65  
+125  
+150  
°C  
°C  
TA  
Package Thermal Resistance  
Thermal Resistance, 105B-9x9 TFBGA  
JA  
38.1  
°C/W  
1.1  
Timing Diagrams  
FIGURE 1-1:  
SPI and LATCHIN Timing Diagram  
DS20006518A-page 12  
2021 Microchip Technology Inc.  
HV53001  
tac  
tab  
LATCHIN  
Register D  
Register C  
Register B  
Register A  
LATCHA  
c
a
b
SPI buffer bit 127:96  
SPI buffer bit 95:64  
SPI buffer bit 63:32  
SPI buffer bit 31:0  
e
tae  
g
k
tak  
tgk  
tmn  
LATCHB  
m
n
LATCHC  
s
trs  
LATCHD  
r
Output  
v
Reg A  
Reg D  
Reg D  
Reg C  
Reg C  
Reg B  
Reg B  
tkv  
Register  
w
HV Output  
Reg A  
tkw  
FIGURE 1-2:  
LATCHA, B, C, D and High-Voltage Output Timing Diagram  
FIGURE 1-3:  
High-Voltage Output Test Pattern  
2021 Microchip Technology Inc.  
DS20006518A-page 13  
HV53001  
1.2  
Typical Performance Curves  
Note:  
The graphs and tables provided below are a statistical summary based on a limited number of samples and  
are provided for informational purposes only. The performance characteristics listed herein are not tested  
or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range  
(e.g. outside specified power supply range) and therefore outside the warranted range.  
FIGURE 1-4:  
Typical HV  
output  
FIGURE 1-7:  
Typical HV  
from 0V to  
OUT  
OUT  
waveform V =135V V =-135V, Load = 100pF  
135V, Load = 100pF  
PP  
NN  
FIGURE 1-5:  
Typical HV  
from 135V to  
FIGURE 1-8:  
Typical HV  
from 0V to  
OUT  
-
OUT  
0V, Load = 100pF  
135V, Load = 100pF  
FIGURE 1-6:  
Typical HV  
from -135V  
FIGURE 1-9:  
Typ. HV  
Rise Time  
OUT  
OUT  
to 0V, Load = 100pF  
Distribution, HV  
from 0V to 90V, Load =  
OUT  
250pF  
DS20006518A-page 14  
2021 Microchip Technology Inc.  
HV53001  
Note:  
The graphs and tables provided below are a statistical summary based on a limited number of samples and  
are provided for informational purposes only. The performance characteristics listed herein are not tested  
or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range  
(e.g. outside specified power supply range) and therefore outside the warranted range.  
FIGURE 1-10:  
Typ. HV  
Fall Time  
FIGURE 1-13:  
Typ. HV  
Fall Time  
OUT  
OUT  
Distribution, from 90V to 0V, Load = 250pF  
Distribution, from 0V to -90V, Load = 250pF  
FIGURE 1-11:  
Typ. HV  
Rise Time  
FIGURE 1-14:  
Typical VPPSENSE  
OUT  
Distribution, from -90V to 0V, Load = 250pF  
Buffered Output, V =135V, V =-135V,  
PP  
NN  
Load=100pF, 6.04ohm Sense Resistor, Four  
Channels Active  
FIGURE 1-12:  
Typical VNNSENSE  
buffered output, V =135V, V =-135V,  
PP  
NN  
Load=100pF, 6.04ohm sense resistor, four  
channels active  
FIGURE 1-15:  
Channel Delay  
Typical HV  
Channel-to-  
OUT  
2021 Microchip Technology Inc.  
DS20006518A-page 15  
HV53001  
FIGURE 1-16:  
Propagation Delay.  
Typical LATCHA to HV  
FIGURE 1-19:  
Propagation Delay.  
Typical LATCHB to HV  
Typical LATCHD to HV  
Typical Charge Pump  
OUT  
OUT  
FIGURE 1-17:  
Propagation Delay.  
Typical LATCHC to HV  
FIGURE 1-20:  
Propagation Delay.  
OUT  
OUT  
FIGURE 1-18:  
Typical SDO output Rise  
FIGURE 1-21:  
Time and Fall Time.  
Output Noise Ripple.  
DS20006518A-page 16  
2021 Microchip Technology Inc.  
HV53001  
FIGURE 1-22:  
Typical Charge Pump  
FIGURE 1-23:  
Typical VSSPUL output  
Output Voltage vs Output current V =3.3V.  
waveform Io = -5mA.  
IN  
2021 Microchip Technology Inc.  
DS20006518A-page 17  
HV53001  
2.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
Pin  
PIN FUNCTION TABLE  
Symbol  
Description  
E13  
C13  
L13  
N13  
C8  
VPP  
VPPO  
VNN  
Positive High-Voltage Supply  
Positive High-Voltage Current Sense  
Negative High-Voltage Supply  
Negative High-Voltage Current Sense  
Positive Low-Voltage Supply  
Negative Low-Voltage Supply  
VLL Logic Voltage  
VNNO  
VCC  
C10  
C7  
VSS  
VLL  
D3, E3, H4-6,  
HVGND  
High-Voltage Ground  
G5-6.E6, F6  
G13  
J13  
N11  
A13  
C3  
VPF  
VNF  
Positive floating voltage supply reference to VPP level  
Negative floating voltage supply reference to VNN level  
0.1uF cap across FILN and VNNO  
FILN  
FILP  
0.1uF cap across FILP and VPPO  
VPPSENSE Positive High-Voltage Sense Analog Output  
VNNSENSE Negative High-Voltage Sense Analog Output  
F3  
E10  
G3  
VLDO  
NC  
LDO output pin  
No Connection. (Do not connect. Keep the pin floating)  
No Connection. (Do not connect. Keep the pin floating)  
High-Voltage Output 0  
H3  
NC  
A11  
A9  
HVOUT0  
HVOUT  
1
2
High-Voltage Output 1  
A7  
HVOUT  
High-Voltage Output 2  
A5  
HVOUT3  
High-Voltage Output 3  
A3  
HVOUT  
4
5
High-Voltage Output 4  
A1  
HVOUT  
High-Voltage Output 5  
C1  
HVOUT6  
High-Voltage Output 6  
E1  
HVOUT  
7
8
High-Voltage Output 7  
G1  
HVOUT  
High-Voltage Output 8  
J1  
HVOUT9  
High-Voltage Output 9  
L1  
HVOUT10 High-Voltage Output 10  
HVOUT11 High-Voltage Output 11  
HVOUT12 High-Voltage Output 12  
HVOUT13 High-Voltage Output 13  
HVOUT14 High-Voltage Output 14  
HVOUT15 High-Voltage Output 15  
N1  
N3  
N5  
N7  
N9  
C5  
SS  
SPI Chip Select  
SPI Data In  
D5  
SDI  
DS20006518A-page 18  
2021 Microchip Technology Inc.  
HV53001  
TABLE 2-1:  
Pin  
PIN FUNCTION TABLE (CONTINUED)  
Symbol  
Description  
E5  
F5  
G4  
F4  
E4  
D4  
C4  
H8  
J8  
SDO  
SCK  
SPI Data Out (for daisy chain)  
SPI Clock  
LATCHIN Latch SPI Data (SPI -> Latch A, B, C, D)  
LATCHA  
LATCHB  
LATCHC  
LATCHD  
VIN  
Latch A -> Output Register  
Latch B -> Output Register  
Latch C -> Output Register  
Latch D -> Output Register  
Input Voltage  
VDD  
Positive Low-Voltage Supply  
Power Ground  
K10,L10  
PGND  
AGND  
CCP2N  
CCP2P  
CCP1N  
CCP1P  
TON  
C9,F11  
K11  
L11  
H11  
J11  
Analog Ground  
Charge Pump 2 NEG  
Charge Pump 2 POS  
Charge Pump 1 NEG  
Charge Pump 1 POS  
TON pin  
H9  
J10  
D11  
E9  
RT  
RT pin  
VBFB  
VBOVP  
REF  
FB Bias  
OVP Bias  
E11  
C11  
F10  
F9  
Controller Voltage Reference  
VSS Pulse Train  
VSSPUL  
TEMP  
SHORT  
SHTEN  
SHDN  
STDBY  
EN  
Temp Sensor Output  
Short circuit indicator  
Short circuit protection enable  
Shutdown Mode  
F8  
C6  
F7  
Standby Mode  
J9  
DC/DC Enable  
G7  
G8  
G9  
G10  
H10  
G11  
J7  
SEQ3  
SEQ2  
SEQ1  
SEQ0  
TRIG  
Power Sequence Channel 3  
Power Sequence Channel 2  
Power Sequence Channel 1  
Power Sequence Channel 0  
Power ON/OFF Sequence Trigger  
Sequence timer. External capacitor to ground  
Short Sense POS  
CSEQ  
SHTP  
SHTN  
OVPP  
OVPN  
FBP  
H7  
Short Sense NEG  
D7  
Over-voltage POS  
D8  
Over-voltage NEG  
D9  
Feedback POS  
D10  
FBN  
Feedback NEG  
2021 Microchip Technology Inc.  
DS20006518A-page 19  
HV53001  
TABLE 2-1:  
Pin  
PIN FUNCTION TABLE (CONTINUED)  
Symbol  
Description  
E8  
E7  
D6  
NC  
No Connection (Do not connect. Keep the pin floating)  
Reserved Reserved pin. Connect to Ground.  
Reserved Reserved pin. Connect to Ground.  
J3-4, K3-4,L3-4  
S
D
Source of Power FET  
Drain of Power FET  
J5-6, K5-9,L5-9  
DS20006518A-page 20  
2021 Microchip Technology Inc.  
HV53001  
The SS pin is a chip select function which is similar to  
the enable function to guard the clock and data input  
signal. The SCK contains the bus clock signal from the  
host processor. The SDI and SDO are the data input  
and data output pins of the SPI shift register buffer.  
3.0  
3.1  
DEVICE DESCRIPTION  
Serial Peripheral Interface  
The SPI interface is used to transfer data of the chan-  
nel settings from the host controller to the high-voltage  
driver. The HV53001 operates as an SPI slave device  
and receives 128 bits of data from the master device  
(host controller). The HV53001 SPI interface is  
designed to be compatible with all Microchip 8-bit, 16-  
bit and 32-bit SPI data transmission formats. This SPI  
interface has a 128-bit shift register buffer to store 128  
bits of data.  
SDI and SDO can be used to cascade multiple  
HV53001 or HV53011 drivers together if only a single  
SPI port is available. This SPI interface is compatible  
with 3.3V logic input voltage with its maximum clock  
frequency of 32 MHz.  
The SPI shift register captures the data at the SDI  
input in the rising edge of the SCK clock and pushes  
out the data from the buffer to the SDO output in the  
falling edge of the SCK clock. When the SPI bus is at  
idle status, the SS pin stays in logic “1” and the SCK  
clock is expected to stay at “0”.  
FIGURE 3-1:  
SPI Signal Diagram.  
The bit order of the SDI data input is defined in the  
following. The first and second data bits represent bit 1  
and bit 0 of channel 15 in register D, respectively. The  
third and fourth bits represent bit 1 and bit 0 of channel  
14 in register D. This pattern is extended all the way to  
channel 0. Hence, there are 32 data bits to control  
register D to cover all sixteen channels.  
The next 32 data bits are arranged in the same fashion  
for register C. Similarly, the exact pattern repeats itself  
for register B and A. Since each register (A, B, C and  
D) contains 32 bits of data, the SPI shift register buffer  
is 128 bits long.  
Bit 1 of channel 15 in register D is defined as the MSb  
(Most Significant bit) and bit 0 of channel 0 in register  
A as the LSb (Least Significant bit) in this SPI shift  
register buffer definition.  
128 clock cycle  
SCK  
SDI  
* * * * * * * * * * * * * * * * * *  
MSb… Data < D_CH15[1], D_CH15[0], D_CH14[1], ……. A_CH0[1], A_CH0[0] > … LSb  
For example, D_CH15[1] = Setting of Register D, Channel 15, Bit 1  
FIGURE 3-2:  
SPI Bit Pattern Diagram.  
2021 Microchip Technology Inc.  
DS20006518A-page 21  
HV53001  
The following table shows the summary of the SPI shift register buffer.  
TABLE 3-1:  
Sym  
REGISTER LEGEND  
Description  
Sym  
Description  
Cleared by Hardware only  
R
W
U
P
Readable bit  
Writable bit  
HC  
HS  
1
Set by Hardware only  
Bit is set at Reset  
Unimplemented bit, read as ‘0’  
Programmable bit  
Settable bit  
0
Bit is cleared at Reset  
Bit is unknown at Reset  
S
x
C
Clearable bit  
Example: R/W - 0 indicates the bit is both readable or writable, and reads ‘0’ after a Reset.  
TABLE 3-2: SPI_SR 128-BIT BUFFER SUMMARY  
Register  
Name  
Bit Range  
Bit  
Bit  
Bit  
101  
Bit  
Bit  
99  
Bit  
Bit  
97  
Bit  
127/119/111/ 126/118/110/ 125/117/109/ 124/116/108/ 123/115/107/ 122/114/106/ 121/113/105/ 120/112/104/  
103  
102  
100  
98  
96  
LATCHD  
<127:120>  
<119:112>  
<111:104>  
<103:96>  
Bit Range  
CH15<1:0>  
CH11<1:0>  
CH7<1:0>  
CH3<1:0>  
CH14<1:0>  
CH10<1:0>  
CH6<1:0>  
CH2<1:0>  
CH13<1:0>  
CH9<1:0>  
CH5<1:0>  
CH1<1:0>  
CH12<1:0>  
CH8<1:0>  
CH4<1:0>  
CH0<1:0>  
Register  
Name  
Bit  
95/87/79/71  
Bit  
Bit  
93/85/77/69  
Bit  
Bit  
91/83/75/67  
Bit  
Bit  
89/81/73/65  
Bit  
94/86/78/70  
92/84/76/68  
90/82/74/66  
88/80/72/64  
LATCHC  
<95:88>  
<87:80>  
<79:72>  
<71:64>  
Bit Range  
CH15<1:0>  
CH14<1:0>  
CH13<1:0>  
CH12<1:0>  
CH11<1:0>  
CH7<1:0>  
CH3<1:0>  
CH10<1:0>  
CH6<1:0>  
CH2<1:0>  
CH9<1:0>  
CH5<1:0>  
CH1<1:0>  
CH8<1:0>  
CH4<1:0>  
CH0<1:0>  
Register  
Name  
Bit  
63/55/47/39  
Bit  
Bit  
61/53/45/37  
Bit  
Bit  
59/51/43/35  
Bit  
Bit  
57/49/41/33  
Bit  
62/54/46/38  
60/52/44/36  
58/50/42/34  
56/48/40/32  
LATCHB  
<63:56>  
<55:48>  
<47:40>  
<39:32>  
Bit Range  
CH15<1:0>  
CH14<1:0>  
CH13<1:0>  
CH12<1:0>  
CH11<1:0>  
CH7<1:0>  
CH3<1:0>  
CH10<1:0>  
CH6<1:0>  
CH2<1:0>  
CH9<1:0>  
CH5<1:0>  
CH1<1:0>  
CH8<1:0>  
CH4<1:0>  
CH0<1:0>  
Register  
Name  
Bit  
31/23/15/7  
Bit  
Bit  
29/21/13/5  
Bit  
Bit  
27/19/11/3  
Bit  
Bit  
25/17/9/1  
Bit  
30/22/14/6  
28/20/12/4  
26/18/10/2  
24/16/8/0  
LATCHA  
<31:24>  
<23:16>  
<15:8>  
<7:0>  
CH15<1:0>  
CH14<1:0>  
CH13<1:0>  
CH12<1:0>  
CH11<1:0>  
CH7<1:0>  
CH3<1:0>  
CH10<1:0>  
CH6<1:0>  
CH2<1:0>  
CH9<1:0>  
CH5<1:0>  
CH1<1:0>  
CH8<1:0>  
CH4<1:0>  
CH0<1:0>  
updated using one of the latch signals, the output will  
go to a not driven state temporarily to avoid shoot-  
through.  
3.2  
Quad-Latched Two-Bit per  
Channel Architecture  
In the Quad-Latched 2-bit per channel architecture,  
each channel is controlled by a 2-bit encoding for each  
of the four possible states: “00” = (Hi-Z) high imped-  
The data in these four latched arrays can be updated  
by the SPI shift register buffer. The 128 bits of data is  
first transmitted from the host process to this device  
via the SPI interface. The data format has been dis-  
cussed in the previous section. After the 128 bits  
transaction completes, the data will stay in the SPI  
shift register buffer. The user then sends an activation  
signal at the LATCHIN pin to initiate the transfer of the  
data from the SPI shift register to the four 32-bit  
registers (A, B, C and D).  
ance, “01” = pull-down to VNN, “10” = pull-up to VPP  
,
11” = driven to ground. Since there are 16 channels  
on each HV53001 device, a 32-bit output control  
register is required.  
Four separate latched arrays (A, B, C and D) hold four  
possible 32-bit output configurations. The data is  
loaded from the arrays into the output control register  
by four separate external control signals (LATCHA, B,  
C, D). When the output control register is being  
DS20006518A-page 22  
2021 Microchip Technology Inc.  
HV53001  
When the application requires more output channels,  
the user can cascade more driver devices in a daisy  
chain configuration. The SDO pin is used to pass the  
data from the SPI shift register buffer to the cascaded  
driver.  
TABLE 3-1:  
2-BIT CONTROL AND  
OUTPUT VOLTAGE LOGIC  
TABLE  
CONTROL BITS  
HVOUT OUTPUT  
The SPI signal pins (SCK, SS, SDI and SDO) are used  
to control the data flow of the SPI shift register buffer.  
The five latch control signals (LATCHIN, LATCHA,  
LATCHB, LATCHC and LATCHD) are used to control  
the data selection of the high-voltage output from the  
four 32-bit registers. The SPI interface and latch  
functions are two independent operation blocks.  
Bit 1  
Bit 0  
0
0
1
1
0
1
0
1
High impedance (Hi-Z)  
Driven Low (VNN  
)
Driven High (VPP  
)
Driven to Ground (0V)  
To achieve some power savings when idling for a  
period of time, a shutdown pin is available to reduce the  
quiescent current draw as much as possible.  
SS  
SCK  
Clock Control  
SDO  
SDI  
SPI 128 bits shift register buffer  
32  
32  
32  
32  
LATCHIN  
32-bit LATCHA  
32  
32-bit LATCHB  
32  
32-bit LATCHC  
32  
32-bit LATCHD  
32  
LATCHA,B,C,D  
SWITCHES  
4
32-bit OUTPUT CONTROL REGISTER  
SHDN  
FIGURE 3-3:  
Quad-Latched Two-Bit per Channel Architecture.  
TABLE 3-3:  
LATCHIN  
QUAD-LATCHED TWO-BIT LOGIC STATE TABLE  
LATCHA  
LATCHB  
LATCHC  
LATCHD  
Description  
X
X
X
X
SPI bit[127:96] into Latch Register D  
SPI bit[95:64] into Latch Register C  
SPI bit[63:32] into Latch Register B  
SPI bit[31:0] into Latch Register A  
X*  
X*  
X*  
X*  
X
X
X
X
X
X
Register A to output  
Register B to output  
Register C to output  
Register D to output  
X
X
X
X
X
X
Note:  
* = LATCHX should be delayed appropriately if a register update from LATCHIN is still in progress.  
= Negative edge-triggered  
X = Don’t care  
2021 Microchip Technology Inc.  
DS20006518A-page 23  
HV53001  
3.3  
Driver Shutdown Mode  
3.6  
Negative Charge Pump  
When the shutdown (SHDN) pin is at logic “1”, any  
unnecessary circuit in the line driver is disabled to min-  
imize the power consumption. It includes the level  
translator, bias current, voltage reference, driver out-  
put, SPI interface and combinational logic. During  
shutdown, the ILL quiescent current is less than  
100 A. The system response time is less than 1 ms to  
switch between shutdown and active states when a  
new signal is asserted at the shutdown pin.  
A continuous pulse train is created at the VSSPUL  
output and is used in conjunction with a few external  
components to create a negative charge pump circuit.  
The pulse train is a 0 to 6.5V square wave with a fixed  
oscillation frequency. This -6.0V negative low supply  
voltage is generated at the output of the external circu-  
ity and is capable of supplying a minimum of 5 mA.  
This negative supply provides enough power to  
operate the high-voltage driver device.  
It is recommended to use 10 F 25V X5R 0805  
ceramic capacitors and B0530WS 400 mV 500 mA  
30V Schottky diodes for this circuit.  
3.4  
Driver Power On Reset  
The Power-on Reset function resets all high-voltage  
HVOUT output to high impedance when the device is  
initially powered on. It also resets and clears the SPI  
buffer registers, registers A, B, C and D, to logic “0”.  
Note:  
Please consider the operating temperature  
for component selection.  
3.5  
Positive Charge Pump Regulator  
The device is targeted to operate with a standard bat-  
tery voltage range of 2.7V to 5.5V. An internal 3X  
charge pump converter is integrated to generate a reg-  
ulated output at high-voltage level. This regulated out-  
put supply rail powers the gate driver to drive the  
power MOSFET transistor.  
It is recommended to use 1 F 16V X7R 0603 ceramic  
capacitors for the two CCP capacitors and a 10 F  
25V X5R 0805 ceramic capacitor for the output  
storage capacitor.  
FIGURE 3-6:  
Converter  
Negative Charge Pump  
Note:  
Please consider the operating temperature  
for component selection.  
3.7  
Standby Mode  
Standby mode is used to guard the PWM pulses from  
the DC/DC controller to the power FET. It momentarily  
disables the gate driver of the power FET to minimize  
the noise level so that the output current sensor can  
measure the output current precisely. While the device  
is in Standby mode, all other circuits are expected to  
be in their operating condition.  
3.8  
Enable Function  
FIGURE 3-4:  
Positive Charge Pump  
Converter Conceptual Diagram  
The enable function is used to switch the DC/DC con-  
troller on/off completely. When it is set to Off mode, all  
internal circuits of the DC/DC converter are turned off  
and minimum current is drawn. When the DC/DC con-  
verter is disabled, the boost converter, charge pump  
converter and linear regulator shut off.  
+6.5V to high voltage driver  
2.7 to  
5.5V  
VDD  
CCP1+/-  
CCP2+/-  
VIN  
The SHDN and EN are two separate controls. SHDN  
is for the high-voltage driver, and EN is for the DC/DC  
converter.  
HV53001  
Positive Charge Pump Converter  
FIGURE 3-5:  
HV53001 Positive Charge  
Pump Connections  
DS20006518A-page 24  
2021 Microchip Technology Inc.  
HV53001  
3.9  
Power-On/Off Sequence Control  
The HV53001 DC/DC converter generates multiple  
rails to power the high-voltage driver IC. The power-on  
sequence is important to the high-voltage IC because  
any incorrect power-on/off sequence may cause  
damage to the high-voltage driver IC.  
A sequence control block is included in this device to  
avoid an incorrect sequence caused by user error  
which could damage the driver IC.  
When a single pulse is asserted at the TRIG pin, the  
four sequence control outputs generate a logic “1” in  
sequential order. First, a logic “1” will appear in SEQ0,  
and then in SEQ1, SEQ2 and SEQ3. When a second  
pulse is asserted at the TRIG pin, a logic “0” appears  
in SEQ3, SEQ2, SEQ1 and SEQ0 sequentially in  
reverse order. The timing between each is controlled  
by an external capacitor connected at the CSEQ pin.  
The sequence switch time period is calculated in the  
following equation.  
FIGURE 3-8:  
State Diagram.  
Sequence On/Off Control  
+135V  
Logic voltage supply  
VPP  
SEQY  
Tseq = 2 x ln(2) x R x CSEQ where R = 100 k  
The four sequence logic output signals, SEQ[3:0], can  
be used to control the enable function of the power  
module or external analog power switches to control  
the supply voltage rails.  
SEQX  
VNN  
-135V  
.
FIGURE 3-9:  
Example of Power Switch  
Circuit  
FIGURE 3-7:  
Power-On/Off Sequence  
Control  
TABLE 3-2:  
Steps  
ACCEPTABLE POWER-ON SEQUENCES  
Description  
1
2
3
4
5
6
Connect ground.  
Keep shutdown pin to low.  
Set all driver inputs to low.  
Apply VIN.  
Set all converter inputs to a known state.  
The power-on sequence will enable supplies in this sequence: VLL, VNN, VNF, VSS, VCC, VPF and  
VPP  
Set all inputs to a known state.  
.
7
2021 Microchip Technology Inc.  
DS20006518A-page 25  
HV53001  
TABLE 3-3:  
Steps  
ACCEPTABLE POWER-OFF SEQUENCES  
Description  
1
2
Set all inputs and shutdown pin to low.  
The power-off sequence will disable supplies in this sequence: VPP, VPF, VCC, VSS, VNF, VNN and  
VLL  
.
3
4
Disconnect VIN.  
Disconnect ground  
The following schematic diagram shows how this  
DC/DC converter can be configured. VPP, VPF, VNN and  
VNF represent all output rails. VIN is the main supply rail  
to the DC/DC converter.  
3.10 Built-in DC/DC Converter  
A hysteretic step-up DC/DC converter is integrated in  
this driver IC to generate two high-voltage rails, one  
positive and one negative. In normal operation, this  
converter operates at a fixed duty cycle and frequency.  
The controller monitors both positive and negative  
voltage rails alternately to regulate the output voltage.  
The positive supply feedback input is a typical DC/DC  
feedback which monitors the feedback voltage from a  
resistor divider referenced to ground. When the sens-  
ing voltage is higher than the internal reference volt-  
age, it deactivates the pulse in the next cycle. When the  
sensing voltage is lower, it activates the pulse.  
For the negative supply feedback input, the controller  
provides a low DC bias voltage to map the feedback  
voltage above ground because the controller is pow-  
ered by a low-voltage positive power rail. Hence, the  
negative supply feedback voltage is referenced to the  
bias voltage VBFB pin via the resistor divider network.  
The negative supply feedback path works differently  
from the positive supply feedback path since it senses  
the negative voltage. When the sensing voltage is  
higher than the internal reference voltage, it activates  
the pulse in the next cycle. When the sensing voltage  
is lower, it deactivates the pulse.  
Based on the operation described above, the controller  
basically regulates the mid-point of the VPP and VNN  
voltage rails. As long as the two transformers are  
closely matched, the two high-voltage outputs can be  
coupled within a few percentage of each other. For  
matching the transformers, their absolute values are  
not important. The important factor is the difference  
between the two transformers. Since both transformers  
are built the same way, their secondary effects are very  
similar. The major factor is their primary parameter,  
magnetizing inductance.  
In addition to the two extreme high-voltage rails, the  
driver requires two floating voltage rails. Both floating  
supplies are referenced to one of the extreme high-volt-  
age outputs. These two floating supply rails are created  
using the multi-winding transformer and two 12V regu-  
lators. The positive voltage rail requires a negative 12V  
regulator referenced to VPP. The negative voltage rail  
uses a positive 12V regulator reference to VNN  
.
DS20006518A-page 26  
2021 Microchip Technology Inc.  
HV53001  
Coilcraft  
VIN  
WA8775-BE  
4.49  
1
VPP  
VPF  
0.58  
GND  
Vi  
Vo  
Neg LDO  
4.49  
0.58  
POWER  
MOSFET  
D
VIN  
1
VNN  
VNF  
S
GND  
SHTP  
Vi  
Vo  
Pos LDO  
HV53001  
Coilcraft  
WA8775-BE  
SHTN  
DC/DC  
converter  
FBP  
FBN  
VPP  
VNN  
VBFB  
FIGURE 3-10:  
3.10.1  
HV53001 DC-DC converter configuration  
SETTING  
fSW = 1/ (C * RT) where C = 12pF  
OVERVOLTAGE PROTECTION  
T
ON  
The TON pin is used to set the duty cycle of the DC-DC  
converter. An internal ramp generator in the DC-DC  
converter creates a ramp between 0 and 3.75V. A low-  
to-high transition starts at 0V. When this ramp voltage  
reaches the same voltage level presented at the TON  
pin, it triggers the internal comparator and sets the  
pulse high-to-low transition. The voltage present at the  
TON pin sets the duty cycle of the pulses.  
3.10.3  
Overvoltage protection is to monitor the output voltage  
of the boost converter. If the output voltage of the  
DC/DC converter reaches above the threshold volt-  
age, it will pause the DC/DC converter operation for  
safety purpose.  
An internal lower bound and upper bound of the duty  
cycle are set to avoid any malfunction. The user can  
select any TON voltage between 0 and 3V.  
The DC/DC stays in Standby mode until the monitored  
voltage drops below the threshold. Then, the DC/DC  
controller exits Standby mode and resumes normal  
operation.  
For example, the duty cycle is set to 80% for  
VTON = 3V.  
The overvoltage protection is intended to guard any  
momentarily overvoltage condition for a short period of  
time and does not require any user interaction. The  
threshold voltage can be set by the external resistor  
network.  
VTON  
DutyCycle = -------------  
3.75  
The OVPP and OVPN pins are used to monitor the  
feedback voltage from the VPP and VNN supplies via  
two sets of voltage divider networks. The sampled  
voltage from VPP and VNN are compared with the inter-  
3.10.2  
CONVERTER SWITCHING  
FREQUENCY  
The converter switching frequency is set by an external  
resistor RT. The frequency is set by the following equa-  
tion.  
2021 Microchip Technology Inc.  
DS20006518A-page 27  
HV53001  
nal reference voltage. If the sampled VPP or VNN volt-  
age is above the threshold, the controller will turn off  
the pulses until VPP and VNN drop below the threshold.  
The amplifier output accuracy is less important. Both  
VPPSENSE and VNNSENSE outputs have a tolerance  
of ±14%.  
3.10.4  
SHORT CIRCUIT PROTECTION  
Sense  
A short circuit at the flyback transformer output may  
cause damage to the power supply circuit and gener-  
ate a lot of heat. This may create a hazardous situa-  
tion for the end user. A short circuit protection scheme  
is implemented in the DC/DC controller by monitoring  
the current of the power FET transistor.  
Resistor  
+135V  
VPPO  
VPP  
V+  
V-  
Av  
HVOUT  
HVOUT  
0
1
Difference  
Amplifier  
x3.1  
This DC/DC controller is running in Discontinuous  
Conduction mode (DCM). When a short circuit situa-  
tion happens, the converter goes into Continuous  
Conduction mode (CCM). This causes the FET current  
at turn on to be non-zero. The controller detects this  
and shuts down the pulse to the power FET and sets a  
logic '1' at the SHORT pin. The user toggles the EN  
signal to restart the converter.  
VPPSENSE  
(Reference to GND)  
HVOUT14  
HVOUT15  
The short circuit protection function can be bypassed  
by inserting a logic “0” to the short circuit enable pin  
(SHTEN).  
FIGURE 3-11:  
Current Sensing Topology.  
3.11 Driver Output Current Sensing  
Some system designs require a load sensing function  
to determine the size or change of the capacitive load.  
One simple scheme is to place a series current sensing  
resistor on the power supply rail and measure the volt-  
age drop across this resistor. This solution is very effec-  
tive if the voltage drop is small enough not to affect the  
operation of the system.  
The HV53001 driver IC provides this function and the  
user can monitor the supply current flowing through  
both high-voltage positive and negative supplies. Two  
external current sensing resistors are connected to the  
VPP and VNN supply rails, respectively, as high side  
current sensing. The voltage drop across these resis-  
tors are connected to two pin pairs, VPP-VPPO and VNN  
-
VNNO. Since these voltage drops are referenced to VPP  
and VNN supply rails, it is not practical for a low-voltage  
ADC to measure these voltages. Hence, two internal  
difference amplifiers in the driver IC convert these volt-  
age drops to near ground potential.  
The difference amplifier accepts a maximum input volt-  
age of 1V. The amplifier gain of 3.1 amplifies this input  
and sends the output to the VPPSENSE and VNN-  
SENSE pins. These amplifiers are designed using  
high-voltage and high value resistors to minimize its  
power consumption. These amplifier outputs are high  
impedance in nature, so an external high bandwidth  
(200MHz) unity gain buffer is highly recommended.  
The high bandwidth is needed to capture the fast  
current pulse during the transition.  
The user selects the value of the sensing resistor to fit  
the system requirement. The speed of difference ampli-  
fier is a high priority parameter because the charge or  
discharge current appears for a short period of time.  
DS20006518A-page 28  
2021 Microchip Technology Inc.  
HV53001  
4.0  
4.1  
PACKAGING INFORMATION  
Package Marking Information  
105-Ball TFBGA(9x9x1.2 mm)  
Example  
HV53001  
1508256  
Legend: XX...X Product Code or Customer-specific information  
Y
YY  
WW  
NNN  
e8  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e8  
)
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information. Package may or may not include  
the corporate logo.  
2021 Microchip Technology Inc.  
DS20006518A-page 29  
HV53001  
ꢁꢂꢃꢄ%DOOꢅ7KLQꢅ)LQHꢅ3LWFKꢅ%DOOꢅ*ULGꢅ$UUD\ꢅꢆ.:;ꢇꢅꢄꢅꢈ[ꢈꢅPPꢅ%RG\ꢅ>7)%*$@  
1RWHꢀ )RUꢅWKHꢅPRVWꢅFXUUHQWꢅSDFNDJHꢅGUDZLQJVꢎꢅSOHDVHꢅVHHꢅWKHꢅ0LFURFKLSꢅ3DFNDJLQJꢅ6SHFLILFDWLRQꢅORFDWHGꢅDW  
KWWSꢏꢐꢐZZZꢁPLFURFKLSꢁFRPꢐSDFNDJLQJ  
'
$
%
(
127(ꢅꢂ  
ꢈ ꢌ ꢂꢀ ꢂꢂ ꢂꢇ ꢂꢍ  
$
%
&
'
(
)
*
+
-
ꢄ'$780ꢅ%ꢆ  
ꢄ'$780ꢅ$ꢆ  
.
/
0
1
ꢇ;  
ꢀꢁꢂꢃ &  
ꢇ;  
ꢀꢁꢂꢃ &  
ꢄ$ꢇꢆ  
723ꢅ9,(:  
$ꢂ  
ꢀꢁꢇꢀ &  
&
$
6($7,1*  
3/$1(  
ꢂꢀꢃ;  
ꢀꢁꢀꢈ &  
ꢄ$ꢍꢆ  
6,'(ꢅ9,(:  
'ꢂ  
ꢇ ꢍ ꢉ ꢃ ꢋ ꢑ ꢈ ꢌ ꢂꢀ ꢂꢂ ꢂꢇ ꢂꢍ  
1
0
/
.
-
H
+
*
)
(ꢇ  
(
'
&
%
$
127(ꢅꢂ  
H
%27720ꢅ9,(:  
0LFURFKLSꢅ7HFKQRORJ\ꢅ'UDZLQJꢅꢅ&ꢀꢉꢊꢉꢋꢌꢅ5HYꢁꢅ$ꢅ6KHHWꢅꢂꢅRIꢅꢇ  
DS20006518A-page 30  
2021 Microchip Technology Inc.  
HV53001  
ꢁꢂꢃꢄ%DOOꢅ7KLQꢅ)LQHꢅ3LWFKꢅ%DOOꢅ*ULGꢅ$UUD\ꢅꢆ.:;ꢇꢅꢄꢅꢈ[ꢈꢅPPꢅ%RG\ꢅ>7)%*$@  
1RWHꢀ )RUꢅWKHꢅPRVWꢅFXUUHQWꢅSDFNDJHꢅGUDZLQJVꢎꢅSOHDVHꢅVHHꢅWKHꢅ0LFURFKLSꢅ3DFNDJLQJꢅ6SHFLILFDWLRQꢅORFDWHGꢅDW  
KWWSꢏꢐꢐZZZꢁPLFURFKLSꢁFRPꢐSDFNDJLQJ  
8QLWV  
'LPHQVLRQꢅ/LPLWV  
0,//,0(7(56  
120  
0,1  
0$;  
1XPEHUꢅRIꢅ7HUPLQDOV  
3LWFK  
2YHUDOOꢅ+HLJKW  
6WDQGRII  
0ROGꢅ7KLFNQHVV  
6XEVWUDWHꢅ7KLFNQHVV  
2YHUDOOꢅ/HQJWK  
2YHUDOOꢅ7HUPLQDOꢅ6SDFLQJ  
2YHUDOOꢅ:LGWK  
1
ꢂꢀꢃ  
ꢀꢁꢋꢃꢅ%6&  
H
$
ꢂꢁꢇꢀ  
ꢀꢁꢍꢇ  
$ꢂ  
$ꢇ  
$ꢍ  
'
'ꢂ  
(
ꢀꢁꢇꢇ  
ꢀꢁꢇꢑ  
ꢀꢁꢃꢍꢅ5()  
ꢀꢁꢇꢋꢅ5()  
ꢌꢁꢀꢀꢅ%6&  
ꢑꢁꢈꢀꢅ%6&  
ꢌꢁꢀꢀꢅ%6&  
ꢑꢁꢈꢀꢅ%6&  
ꢀꢁꢍꢑ  
2YHUDOOꢅ7HUPLQDOꢅ6SDFLQJ  
7HUPLQDOꢅ'LDPHWHU  
(ꢂ  
E
ꢀꢁꢍꢇ  
ꢀꢁꢉꢇ  
Notes:  
ꢂꢁ 3LQꢅꢂꢅYLVXDOꢅLQGH[ꢅIHDWXUHꢅPD\ꢅYDU\ꢎꢅEXWꢅPXVWꢅEHꢅORFDWHGꢅZLWKLQꢅWKHꢅKDWFKHGꢅDUHDꢁ  
ꢇꢁ 3DFNDJHꢅLVꢅVDZꢅVLQJXODWHG  
ꢍꢁ 'LPHQVLRQLQJꢅDQGꢅWROHUDQFLQJꢅSHUꢅ$60(ꢅ<ꢂꢉꢁꢃ0  
%6&ꢏꢅ%DVLFꢅ'LPHQVLRQꢁꢅ7KHRUHWLFDOO\ꢅH[DFWꢅYDOXHꢅVKRZQꢅZLWKRXWꢅWROHUDQFHVꢁ  
5()ꢏꢅ5HIHUHQFHꢅ'LPHQVLRQꢎꢅXVXDOO\ꢅZLWKRXWꢅWROHUDQFHꢎꢅIRUꢅLQIRUPDWLRQꢅSXUSRVHVꢅRQO\ꢁ  
0LFURFKLSꢅ7HFKQRORJ\ꢅ'UDZLQJꢅꢅ&ꢀꢉꢊꢉꢋꢌꢅ5HYꢁꢅ$ꢅ6KHHWꢅꢇꢅRIꢅꢇ  
2021 Microchip Technology Inc.  
DS20006518A-page 31  
HV53001  
1RWHꢀ )RUꢅWKHꢅPRVWꢅFXUUHQWꢅSDFNDJHꢅGUDZLQJVꢎꢅSOHDVHꢅVHHꢅWKHꢅ0LFURFKLSꢅ3DFNDJLQJꢅ6SHFLILFDWLRQꢅORFDWHGꢅDW  
KWWSꢏꢐꢐZZZꢁPLFURFKLSꢁFRPꢐSDFNDJLQJ  
*
ꢌ ꢂꢀ ꢂꢂ ꢂꢇ ꢂꢍ  
$
%
&
'
(
)
*
+
,
(
&ꢇ  
-
*
.
/
0
1
‘;  
(
6,/.ꢅ6&5((1  
&ꢂ  
5(&200(1'('ꢅ/$1'ꢅ3$77(51  
8QLWV  
'LPHQVLRQꢅ/LPLWV  
(
0,//,0(7(56  
0,1  
ꢀꢁꢇꢀ  
120  
ꢀꢁꢋꢃꢅ%6&  
ꢑꢁꢈꢀ  
0$;  
ꢀꢁꢍꢃ  
&RQWDFWꢅ3LWFK  
2YHUDOOꢅ&RQWDFWꢅ3DGꢅ6SDFLQJ  
2YHUDOOꢅ&RQWDFWꢅ3DGꢅ6SDFLQJ  
&RQWDFWꢅ3DGꢅ:LGWKꢅꢄ;ꢂꢀꢃꢆ  
&RQWDFWꢅ3DGꢅWRꢅ&RQWDFWꢅ3DG  
&ꢂ  
&ꢇ  
;
ꢑꢁꢈꢀ  
*
1RWHVꢏ  
ꢂꢁ 'LPHQVLRQLQJꢅDQGꢅWROHUDQFLQJꢅSHUꢅ$60(ꢅ<ꢂꢉꢁꢃ0  
%6&ꢏꢅ%DVLFꢅ'LPHQVLRQꢁꢅ7KHRUHWLFDOO\ꢅH[DFWꢅYDOXHꢅVKRZQꢅZLWKRXWꢅWROHUDQFHVꢁ  
ꢇꢁ )RUꢅEHVWꢅVROGHULQJꢅUHVXOWVꢎꢅWKHUPDOꢅYLDVꢎꢅLIꢅXVHGꢎꢅVKRXOGꢅEHꢅILOOHGꢅRUꢅWHQWHGꢅWRꢅDYRLGꢅVROGHUꢅORVVꢅGXULQJ  
UHIORZꢅSURFHVV  
0LFURFKLSꢅ7HFKQRORJ\ꢅ'UDZLQJꢅ&ꢀꢉꢊꢇꢉꢋꢌꢅ5HYꢁꢅ$  
DS20006518A-page 32  
2021 Microchip Technology Inc.  
HV53001  
NOTES:  
2021 Microchip Technology Inc.  
DS20006518A-page 33  
HV53001  
DS20006518A-page 34  
2021 Microchip Technology Inc.  
HV53001  
APPENDIX A: REVISION HISTORY  
Revision A (March 2021)  
• Original Release of this Document.  
2021 Microchip Technology Inc.  
DS20006518A-page 35  
HV53001  
NOTES:  
DS20006518A-page 36  
2021 Microchip Technology Inc.  
HV53001  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X-  
X
/XXX  
a)  
HV53001-E/KWX:16-Channel, ±135V Push-Pull  
Driver with RTZ, Current Sensor  
and Built-in Boost Converter. Thin  
Fine Pitch Ball Grid Array, 105-Ball  
TFBGA (9 x 9 x 1.2mm) Package,  
260/Tray  
Media Type Temperature  
Tape and Reel Range  
Package  
Device:  
HV53001: 16-Channel, +/-135V Push-Pull Driver with RTZ,  
Current Sensor and Built-in Boost Converter  
b)  
HV53001T-E/KWX:16-Channel, ±135V Push-Pull  
Driver with RTZ, Current Sensor  
and Built-in Boost Converter.  
Thin Fine Pitch Ball Grid Array,  
105-Ball TFBGA (9 x 9 x 1.2mm)  
Package, 1000/Tape & Reel  
Media Type:  
blank = 260/Tray for KWX Package  
T
= 1000/Reel for KWX Package  
Temperature  
Range:  
E
=-40°C to +125°C (Extended) RoHS Compliant  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identifier  
is used for ordering purposes and is not  
printed on the device package. Check with  
your Microchip Sales Office for package  
availability with the Tape and Reel option.  
Package:  
KWX =Thin Fine Pitch Ball Grid Array  
105-Ball TFBGA (9 x 9 x 1.2 mm)  
2021 Microchip Technology Inc.  
DS20006518A-page 37  
HV53001  
NOTES:  
DS20006518A-page 38  
2021 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specifications contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip  
devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications  
contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished  
without violating Microchip's intellectual property rights.  
Microchip is willing to work with any customer who is concerned about the integrity of its code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not  
mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are  
committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection  
feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or  
other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication is provided for the sole  
purpose of designing with and using Microchip products. Infor-  
mation regarding device applications and the like is provided  
only for your convenience and may be superseded by updates.  
It is your responsibility to ensure that your application meets  
with your specifications.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,  
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,  
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,  
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,  
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,  
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,  
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,  
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A. and  
other countries.  
THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION INCLUDING BUT NOT  
LIMITED TO ANY IMPLIED WARRANTIES OF NON-  
INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A  
PARTICULAR PURPOSE OR WARRANTIES RELATED TO  
ITS CONDITION, QUALITY, OR PERFORMANCE.  
AgileSwitch, APT, ClockWorks, The Embedded Control Solutions  
Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight  
Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3,  
Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-  
Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, WinPath, and ZL are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-  
RECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUEN-  
TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND  
WHATSOEVER RELATED TO THE INFORMATION OR ITS  
USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS  
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES  
ARE FORESEEABLE. TO THE FULLEST EXTENT  
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON  
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION  
OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF  
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP  
FOR THE INFORMATION. Use of Microchip devices in life sup-  
port and/or safety applications is entirely at the buyer's risk, and  
the buyer agrees to defend, indemnify and hold harmless  
Microchip from any and all damages, claims, suits, or expenses  
resulting from such use. No licenses are conveyed, implicitly or  
otherwise, under any Microchip intellectual property rights  
unless otherwise stated.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky,  
BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive,  
CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net,  
Dynamic Average Matching, DAM, ECAN, Espresso T1S,  
EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP,  
INICnet, Intelligent Paralleling, Inter-Chip Connectivity,  
JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi,  
MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK,  
NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net,  
PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,  
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O,  
simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI,  
SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total  
Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,  
ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks  
of Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, and Symmcom are registered trademarks of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2021, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-7936-9  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
2021 Microchip Technology Inc.  
DS20006518A-page 39  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4485-5910  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20006518A-page 40  
2021 Microchip Technology Inc.  
02/28/20  

相关型号:

HV53001-EKWX

16-Channel, ±135V Push-Pull Driver with RTZ, Current Sensor and Built-in Boost Converter
MICROCHIP

HV53001T-EKWX

16-Channel, ±135V Push-Pull Driver with RTZ, Current Sensor and Built-in Boost Converter
MICROCHIP

HV53011

16-Channel ±135V Push-Pull Driver with RTZ
MICROCHIP

HV53011-E/KVX

16-Channel ±135V Push-Pull Driver with RTZ
MICROCHIP

HV53011T-E/KVX

16-Channel ±135V Push-Pull Driver with RTZ
MICROCHIP

HV5306PJ

Interface IC
ETC

HV5306X

Interface IC
ETC

HV5308

32-Channel Serial To Parallel Converter With High Voltage Push-Pull Outputs
SUPERTEX

HV5308

32-Channel, Serial-to-Parallel Converter
MICROCHIP

HV5308B

32-Channel Serial To Parallel Converter With High Voltage Push-Pull Outputs
SUPERTEX

HV5308BPJ-B-G

HV5308BPJ-B-G
MICROCHIP

HV5308DJ

32-Channel Serial To Parallel Converter With High Voltage Push-Pull Outputs
SUPERTEX