KSZ8001L [MICROCHIP]

DATACOM, ETHERNET TRANSCEIVER, PQFP48;
KSZ8001L
型号: KSZ8001L
厂家: MICROCHIP    MICROCHIP
描述:

DATACOM, ETHERNET TRANSCEIVER, PQFP48

以太网:16GBASE-T 电信 电信集成电路
文件: 总46页 (文件大小:563K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KSZ8001L/S  
1.8V, 3.3V 10/100BASE-T/TX/FX  
Physical Layer Transceiver  
Data Sheet Rev. 1.04  
General Description  
Features  
The KSZ8001 is a 10BASE-T/100BASE-TX/100BASE-FX  
Physical Layer Transceiver, operating the core at 1.8 volts  
to meet low voltage and low power requirements. The  
solution provides MII/RMII/SMII interfaces to transmit and  
receive data. A unique mixed-signal design extends  
signaling distance while reducing power consumption.  
Single chip 100BASE-TX/100BASE-FX/10BASE-T  
physical layer solution  
1.8V CMOS design, power consumption 250 mW  
Robust (130m+) operation over standard cables  
Supports Media Independent Interface (MII), Reduced  
MII (RMII), and Serial MII (SMII)  
LinkMD feature to determine cable length and  
diagnose faulty cables up 200 m with +/- 2 m accuracy  
Supports HP MDI/MDI-X auto crossover  
Supports power down mode and power saving mode  
MDC/MDIO to 12.5 MHz for rapid configuration  
Fully compliant to IEEE 802.3u standard  
HP Auto MDI/MDI-X provides the most robust solution for  
eliminating the need to differentiate between crossover and  
straight-through cables.  
Featuring LinkMD cable diagnostics, which allows  
detection of common cabling plant problems such as open  
and short circuits, the KSZ8001 represents a new level of  
features and performance and is an ideal choice of  
physical layer transceiver for 100BASE-TX/10BASE-  
T/100BASE-FX applications.  
Supports auto-negotiation and manual selection for  
10/100Mbps speed and full / half-duplex mode  
Functional Diagram  
Micrel, Inc. 1849 Fortune Drive San Jose, CA 95131 USA tel + 1 (408) 944-0800 fax + 1 (408) 944-0970 http://www.micrel.com  
June 2009 Revision 1.04  
1
Micrel  
KSZ8001  
Features (continued)  
Configurable through MII serial management port or via  
external control pins  
Programmable LED outputs for link, activity, full/half  
duplex, collision and speed  
On-chip built-in analog front end filtering for both  
100BASE-TX and 10BASE-T  
Supports back-to-back, 100BASE-FX to 100BASE-TX for  
media converter applications  
Single 3.3V power supply with built-in 1.8V regulator  
(‘L’ parts)  
48 Pin LQFP, 48 Pin SSOP  
Ordering Information  
Part Number  
Integrated LDO  
Temperature Range  
Package  
Lead Finish  
KS8001L  
Yes  
No  
0°-70°C  
48-LQFP  
Standard  
KS8001S  
0o–70oC  
48-SSOP  
48-LQFP  
48-LQFP  
48-SSOP  
48-SSOP  
Standard  
Lead-free  
Lead-free  
Lead-free  
Lead-free  
KSZ8001L  
KSZ8001LI  
KSZ8001S  
KSZ8001SI  
Yes  
Yes  
No  
0o–70oC  
-40o–85oC  
0o–70oC  
No  
-40o–85oC  
June 2009  
Revision 1.04  
2
Micrel  
KSZ8001  
Revision History  
Revision  
Date  
Summary of Changes  
PRELIMINARY  
0.8  
25 Mar 2004  
9 Aug 2004  
Preliminary data  
Updated pin 38 (VDDRCV) definition to 3.3V  
Corrected pin configuration diagrams to reflect NC on pins 42 and 43  
Updated crystal tolerance to +/- 50 ppm  
Updated series resistance for crystal specification to 40 Ω  
LinkMD distance coefficient changed to 0.39  
Interrupt register status bits set to RO/SC  
Recommended reset circuit added  
0.81  
0.82  
17 Sep 2004  
25 Jan 2005  
RMII timing added  
1.00  
1.01  
31 Mar 2005  
16 May 2005  
Added lead-free part numbers  
Changed REXT value to 6.65 KΩ  
Removed preliminary status  
Added KSZ8001S to ordering information  
Updated part ordering information  
1.02  
30 Jan 2006  
Corrected recommended reset circuits to match corresponding description  
Added Micrel disclaimer to last page  
Corrected crystal/oscillator PPM in Reference Clock Connection Diagrams  
Added current consumption for KSZ8001L  
Correct RXC clock pulse width timing in 100BASE-TX MII Receive Timing  
Diagram  
Added description for Auto MDI/MDI-X mode in register 1f.15  
Updated description for MDI/MDI-X select in register 1f.14  
Corrected Auto-Negotiation Complete bit, register 1f.7, to read only  
Added “Circuit Design Reference for Power Supply” section  
Updated Pin Description for the following pins: MDIO, VDDIO, VDDC, RX+, RX-,  
TX+, TX-, XI, XO  
1.03  
1.04  
7 March 2006  
25 June 2009  
Removed 48 Pin QFN (targeted) package option  
Renamed KS8001 to KSZ8001 throughout datasheet  
Added mechanical info for SSOP package  
Updated package thermal resistance  
Update ordering information.  
June 2009  
Revision 1.04  
3
Micrel  
KSZ8001  
Table of Contents  
Pin Description .................................................................................................................................................................................... 6  
Strapping Options ............................................................................................................................................................................. 10  
Pin Configuration .............................................................................................................................................................................. 11  
Functional Description...................................................................................................................................................................... 12  
100BASE-TX Transmit .................................................................................................................................................................... 12  
100BASE-TX Receive ..................................................................................................................................................................... 12  
PLL Clock Synthesizer .................................................................................................................................................................... 12  
Scrambler/De-scrambler (100BASE-TX only).................................................................................................................................. 12  
10BASE-T Transmit......................................................................................................................................................................... 12  
10BASE-T Receive.......................................................................................................................................................................... 12  
SQE and Jabber Function (10BASE-T only).................................................................................................................................... 13  
Auto-Negotiation.............................................................................................................................................................................. 13  
MII Management Interface................................................................................................................................................................. 13  
MII Data Interface............................................................................................................................................................................ 13  
RMII (Reduced MII) Data Interface.................................................................................................................................................... 14  
RMII Signal Definition...................................................................................................................................................................... 14  
Reference Clock (REF_CLK)........................................................................................................................................................... 15  
Carrier Sense/Receive Data Valid (CRS_DV)................................................................................................................................. 15  
Receive Data [1:0] (RXD[1:0])......................................................................................................................................................... 15  
Transmit Enable (TX_EN) ............................................................................................................................................................... 15  
Transmit Data [1:0] (TXD[1:0])......................................................................................................................................................... 15  
Collision Detection........................................................................................................................................................................... 15  
RX_ER ............................................................................................................................................................................................ 15  
RMII AC Characteristics .................................................................................................................................................................. 16  
RMII Transmit Timing ...................................................................................................................................................................... 16  
RMII Receive Timing ....................................................................................................................................................................... 16  
SMII Signal Definition........................................................................................................................................................................ 17  
SMII Signals .................................................................................................................................................................................... 17  
Receive Path................................................................................................................................................................................... 17  
Receive Sequence Diagram............................................................................................................................................................ 17  
Transmit Path.................................................................................................................................................................................. 18  
Transmit Sequence Diagram........................................................................................................................................................... 18  
Collision Detection........................................................................................................................................................................... 19  
DC Specification.............................................................................................................................................................................. 19  
Timing Specification ........................................................................................................................................................................ 20  
HP Auto Crossover (Auto MDI/MDI-X) ............................................................................................................................................. 21  
Auto MDI/MDI-X Cross-Over Transformer Connection.................................................................................................................... 22  
Power Management........................................................................................................................................................................... 22  
100BASE-FX Mode ............................................................................................................................................................................ 22  
Media Converter Operation............................................................................................................................................................... 22  
LinkMD Cable Diagnostics................................................................................................................................................................ 23  
Reference Clock Connection Options ............................................................................................................................................. 24  
Circuit Design Reference for Power Supply.................................................................................................................................... 25  
Register Map...................................................................................................................................................................................... 26  
Register 0h – Basic Control............................................................................................................................................................. 26  
Register 1h – Basic Status .............................................................................................................................................................. 27  
Register 2h – PHY Identifier 1......................................................................................................................................................... 27  
Register 3h – PHY Identifier 2......................................................................................................................................................... 27  
Register 4h – Auto-Negotiation Advertisement................................................................................................................................ 27  
June 2009  
Revision 1.04  
4
Micrel  
KSZ8001  
Register 5h – Auto-Negotiation Link Partner Ability......................................................................................................................... 28  
Register 6h – Auto-Negotiation Expansion...................................................................................................................................... 28  
Register 7h – Auto-Negotiation Next Page...................................................................................................................................... 29  
Register 8h – Link Partner Next Page Ability................................................................................................................................... 29  
Register 15h – RXER Counter......................................................................................................................................................... 29  
Register 1bh – Interrupt Control/Status Register............................................................................................................................. 30  
Register 1dh – LinkMD Control/Status Register.............................................................................................................................. 30  
Register 1eh – PHY Control ............................................................................................................................................................ 31  
Register 1fh – 100BASE-TX PHY Controller................................................................................................................................... 31  
Absolute Maximum Rating (Note 1)...................................................................................................................................................... 33  
Operating Range (Note 2)...................................................................................................................................................................... 33  
Package Thermal Resistance (θJA)(Note 3) .......................................................................................................................................... 34  
Electrical Characteristics (Note4)......................................................................................................................................................... 34  
Timing Diagrams ............................................................................................................................................................................... 36  
Reset Timing Diagram....................................................................................................................................................................... 41  
Reset Timing Parameters................................................................................................................................................................ 41  
Reset Circuit Diagram....................................................................................................................................................................... 41  
Reference Circuit for Strapping Option Configuration .................................................................................................................. 43  
Selection of Isolation Transformer .................................................................................................................................................. 44  
Selection of Reference Crystal......................................................................................................................................................... 44  
Package Information ......................................................................................................................................................................... 45  
June 2009  
Revision 1.04  
5
Micrel  
KSZ8001  
Pin Description  
Pin Number  
Pin Name  
Type (Note 1)  
Pin Function  
1
MDIO  
I/O  
MII Management (MIIM) Interface: Data I/O  
This pin requires an external 4.7K pull-up resistor.  
MII Management (MIIM) Interface: Clock Input  
This pin is synchronous to the MDIO data line.  
MII Mode: Receive Data Output[3]2 /  
2
3
MDC  
I
RXD3/  
Ipd/O  
PHYAD1  
Configuration Mode: The pull-up/pull-down value is latched as PHYADDR[1]  
during reset. See “Strapping Options” section for details.  
4
5
RXD2/  
PHYAD2  
Ipd/O  
Ipd/O  
MII Mode: MII Receive Data Output[2]2 /  
Configuration Mode: The pull-up/pull-down value is latched as PHYADDR[2]  
during reset. See “Strapping Options” section for details.  
MII Mode: Receive Data Output[1]2 /  
RMII Mode: Receive Data Output[1]3 /  
RXD1/  
RXD[1]/  
PHYAD3  
Configuration Mode: The pull-up/pull-down value is latched as PHYADDR[3]  
during reset. See “Strapping Options” section for details.  
6
RXD0/  
RXD[0]/  
RX  
Ipd/O  
MII Mode: Receive Data Output[0]2 /  
RMII Mode: Receive Data Output[0]3 /  
SMII Mode: Receive Data and Control4 /  
PHYAD4  
Configuration Mode: The pull-up/pull-down value is latched as PHYADDR[4]  
during reset. See “Strapping Options” section for details.  
7
8
9
VDDIO  
GND  
Pwr  
3.3V digital VDD  
Gnd  
Ipd/O  
Ground  
RXDV/  
CRSDV/  
PCS_LPBK  
MII Mode: Receive Data Valid Output /  
RMII Mode: Carrier Sense/Receive Data Valid /  
Configuration Mode: The pull-up/pull-down value is latched as pcs_lpbk  
during reset. See “Strapping Options” section for details.  
10  
11  
RXC/  
Ipd/O  
Ipd/O  
MII Receive Clock Output  
Operating at:  
SMII_SELE  
CT  
25 MHz = 100 Mbps  
2.5 MHz = 10 Mbps  
Configuration Mode: The pull-up/pull-down value is latched as SMII during  
reset. See “Strapping Options” section for details.  
RXER/  
RX_ER/  
ISO  
MII Mode: Receive Error Output /  
RMII Mode: Receive Error /  
Configuration Mode: The pull-up/pull-down value is latched as ISOLATE  
during reset. See “Strapping Options” section for details.  
12  
13  
GND  
Gnd  
Pwr  
Ground  
VDDC  
1.8V digital core VDD  
VDD output  
VDD input  
:
:
KSZ8001L / KSZ8001SL  
KSZ8001S  
(See “Circuit Design Reference for Power Supply” section for details)  
MII Transmit Error Input  
14  
15  
TXER  
Ipd  
I/O  
TXC/  
REFCLK/  
CLOCK  
MII Mode: MII Transmit Clock Output /  
RMII Mode: 50 MHz Reference Clock Input /  
SMII Mode: 125 MHz Synchronization Clock Input  
MII Transmit Enable Input  
16  
TXEN  
Ipd  
June 2009  
Revision 1.04  
6
Micrel  
KSZ8001  
Pin Number  
Pin Name  
Type (Note 1)  
Pin Function  
17  
TXD0/  
TXD[0]/  
TX  
Ipd  
MII Mode: Transmit Data Input[0] /  
RMII Mode: Transmit Data Input[0] /  
SMII Mode: Transmit Data and Control  
MII Mode: Transmit Data Input[1] /  
RMII Mode: Transmit Data Input[1] /  
SMII Mode: SYNC  
18  
TXD1/  
TXD[1]/  
SYNC  
TXD2  
TXD3  
Ipd  
19  
20  
21  
Ipd  
MII Transmit Data Input[2]  
Ipd  
MII Transmit Data Input[3]  
COL /  
Ipd/O  
MII Collision Detect Output  
RMII_SELE  
CT  
Configuration Mode: The pull-up/pull-down value is latched as RMII select  
during reset. See “Strapping Options” section for details.  
22  
CRS/  
Ipd/O  
MII Carrier Sense Output  
RMII_BTB  
Configuration Mode: The pull-up/pull-down value is latched as RMII Loop-  
back during reset when RMII mode is selected. See “Strapping Options  
section” for details.  
23  
24  
25  
GND  
Gnd  
Pwr  
Ground  
VDDIO  
3.3V digital VDD  
INT#/  
Ipu/O  
Management Interface (MII) Interrupt Out.  
PHYAD0  
Configuration Mode: Latched as PHYAD[0] during power up / reset. See  
“Strapping Options” section for details.  
26  
LED0/  
TEST  
Ipu/O  
Programmable LED Output 0  
Configuration Mode: The external pull down enable test mode and only used  
for tfactory test. Active Low. The LED0 pin is also programmable via register  
1eh.  
LED mode = 00  
Link/Act  
No Link  
Link  
Pin State  
LED Definition  
H
L
-
Off  
On  
Activity  
Toggle  
LED mode = 01  
Link  
Pin State  
LED Definition  
No Link  
Link  
H
L
Off  
On  
LED mode = 10  
10Mbps Link  
No Link  
Link  
Pin State  
LED Definition  
H
L
Off  
On  
27  
LED1 /  
SPD100/  
noFEF  
Ipu/O  
Programmable LED Output 1  
Configuration Mode: Latched as SPEED (Register 0, bit 13) during power up  
/ reset. See “Strapping Options” Section for details. Active Low. The LED1  
pin is also programmable via register 1eh.  
LED mode = 00  
Speed  
10BT  
Pin State  
LED Definition  
H
L
Off  
On  
100BT  
June 2009  
Revision 1.04  
7
Micrel  
KSZ8001  
Pin Number  
Pin Name  
Type (Note 1)  
Pin Function  
LED mode = 01  
Speed  
Pin State  
LED Definition  
10BT  
H
L
Off  
On  
100BT  
LED mode = 10  
100Mbps Link  
No Link  
Pin State  
LED Definition  
H
L
Off  
On  
Link  
28  
LED2/  
Ipu/O  
Programmable LED Output 2  
DUPLEX  
Configuration Mode: Latched as DUPLEX (register 0h, bit 8) during power up  
/ reset. See “Strapping Options” Section for details. Active Low. The LED2  
pin is also programmable via register 1eh.  
LED mode = 00  
Duplex  
Pin State  
LED Definition  
Half  
H
L
Off  
On  
Full  
LED mode = 01  
Full Duplex/Col Pin State  
LED Definition  
Half  
H
L
-
Off  
Full  
On  
Collision  
LED mode = 10  
Duplex  
Half  
Toggle  
Pin State  
LED Definition  
H
L
Off  
On  
Full  
29  
LED3/  
Ipu/O  
Programmable LED Output 3  
NWAYEN  
Configuration Mode: Latched as ANEG_EN (register 0h, bit 12) during power  
up / reset. See “Strapping Options” Section for details. Active Low. The  
LED3 pin is also programmable via register 1eh.  
LED mode = 00  
Collision  
Pin State  
LED Definition  
No Collision  
Collision  
H
L
Off  
On  
LED mode = 01  
Activity  
Pin State  
-
LED Definition  
Toggle  
Activity  
LED mode = 10  
Activity  
Pin State  
-
LED Definition  
Toggle  
Activity  
30  
PD#  
Ipu  
Chip power down input (active low)  
1 (high) = Normal operation  
0 (low) = Power down  
June 2009  
Revision 1.04  
8
Micrel  
KSZ8001  
Pin Number  
Pin Name  
Type (Note 1)  
Pin Function  
31  
VDDRX  
Pwr  
1.8V analog VDD  
(See “Circuit Design Reference for Power Supply” section for details)  
Physical receive or transmit ‘-’ differential signal  
Physical receive or transmit ‘+’ differential signal  
Fiber Mode Enable / Signal Detect in Fiber Mode  
If FXEN=0, FX mode is disable. The default is “0”.  
(See “100BASE-FX Mode” section for details)  
Ground  
32  
33  
34  
RX-  
RX+  
FXSD/  
FXEN  
I/O  
I/O  
Ipd/O  
35  
36  
37  
38  
GND  
GND  
REXT  
VDDRCV  
Gnd  
Gnd  
I
Ground  
Connect a 6.65KΩ external resistor from this pin to ground  
3.3V analog VDD  
Pwr  
(See “Circuit Design Reference for Power Supply” section for details)  
39  
40  
41  
42  
43  
44  
45  
46  
GND  
TX-  
TX+  
NC  
Gnd  
I/O  
Ground  
Physical transmit or receive ‘-’ differential signal  
Physical transmit or receive ‘+’ differential signal  
No Connect  
I/O  
NC  
No Connect  
GND  
XO  
Gnd  
Ground  
O
I
25MHz crystal/oscillator clock connections  
Pins (XI, XO) connect to a crystal. If an oscillator is used, XI connects to a  
3.3V tolerant oscillator and XO is a no connect.  
XI  
Clock is +/- 50ppm for both crystal and oscillator.  
1.8V analog PLL VDD  
(See “Circuit Design Reference for Power Supply” section for details)  
Chip Reset  
47  
48  
VDDPLL  
RST#  
Pwr  
Ipu  
Active low, minimum of 50 us pulse is required  
Note 1:  
Pwr = power supply;  
Gnd = ground;  
Ipu/O = input w/ internal pull up during  
reset, output pin otherwise;  
Ipd/O = input w/ internal pull down during  
reset, output pin otherwise;  
PD = strap pull down;  
I = input;  
O = output;  
I/O = bi-directional  
Ipu = input w/ internal pull up;  
Ipd = input w/ internal pull down;  
PU = strap pull up;  
Note 2:  
MII Rx Mode: The RXD[3..0] bits are synchronous with RXCLK. When RXDV is asserted, RXD [3..0]  
presents valid data to MAC through the MII. RXD [3..0] is invalid when RXDV is de-asserted.  
Note 3:  
RMII Rx Mode: The RXD[1..0] bits are synchronous with REF_CLK. For each clock period in which  
CRS_DV is asserted, two bits of recovered data are sent from the PHY.  
Note 4:  
SMII Rx Mode: Receive data and control information are sent in 10 bit segments. In 100MBit mode, each  
segment represents a new byte of data. In 10MBit mode, each segment is repeated ten times; therefore,  
every ten segments represents a new byte of data. The MAC can sample any one of every 10 segments in  
10MBit mode.  
June 2009  
Revision 1.04  
9
Micrel  
KSZ8001  
Note 5:  
MII Tx Mode: The TXD[3..0] bits are synchronous with TXCLK. When TXEN is asserted, TXD [3..0]  
presents valid data from the MAC through the MII. TXD [3..0] has no effect when TXEN is de-asserted.  
Note 6:  
RMII Tx Mode: The TXD[1..0] bits are synchronous with REF_CLK. For each clock period in which TX_EN  
is asserted, two bits of recovered data are recovered by the PHY.  
Note 7:  
SMII Tx Mode: Transmit data and control information are received in 10 bit segments. In 100MBit mode,  
each segment represents a new byte of data. In 10MBit mode, each segment is repeated ten times;  
therefore, every ten segments represents a new byte of data. The PHY can sample any one of every 10  
segments in 10MBit mode.  
Strapping Options  
Pin Number  
6, 5, 4,  
3
Pin Name  
PHYAD[4:1] /  
RXD[0:3]  
Type (Note 2)  
Ipd/O  
Description  
PHY Address latched at power-up / reset.  
The default PHY address is 00001.  
25  
PHYAD0 /  
INT#  
Ipu/O  
Ipd/O  
9
PCS_LPBK /  
RXDV  
Enables PCS_LPBK mode at power-up / reset.  
PD (default) = Disable, PU = Enable  
10  
11  
21  
22  
27  
SMII_SELECT  
/ RXC  
Ipd/O  
Ipd/O  
Ipd/O  
Ipd/O  
Ipu/O  
Enables SMII mode at power-up / reset.  
PD (default) = Disable, PU = Enable  
ISO / RXER  
Enables ISOLATE mode at power-up /reset.  
PD (default) = Disable, PU = Enable  
RMII_SELECT  
/ COL  
Enables RMII mode at power-up / reset.  
PD (default) = Disable, PU = Enable  
RMII_BTB/  
CRS  
Enable RMII_BTB mode at power-up / reset.  
PD (default) = Disable, PU = Enable  
SPD100 /  
No FEF /  
LED1  
Latched into Register 0h bit 13 during power-up / reset.  
PD = 10Mb/s, PU (default) = 100Mb/s.  
If SPD100 is asserted during power-up / reset, this pin also  
latched as the Speed Support in register 4h. (If FXEN is  
pulled up, the latched value 0 means no Far _End _Fault.)  
28  
DUPLEX/  
LED2  
Ipu/O  
Latched into Register 0h bit 8 during power-up / reset.  
PD = Half Duplex, PU (default) = Full duplex.  
If Duplex is pulled up during reset, this pin also latched as the  
Duplex support in register 4h.  
29  
30  
NWAYEN/  
LED3  
Ipu/O  
Ipu  
Nway (auto-=Negotiation) Enable  
Latched into Register 0h bit 12 during power-up / reset. PD =  
Disable Auto-Negotiation, PU (default) = Enable Auto-  
Negotiation  
PD#  
Power Down Enable  
PU (default) = Normal operation, PD = Power down mode  
Note: Strap-in is latched during power up or reset. In some systems, the MAC RXD pins may drive high at all times causing the  
PHY strap-in to be latched high during power up or system reset. In this case, it is recommended to use a strong pull down to GND  
via 1kohm resistor on RXDV, RXC, and RXER pins. Otherwise, the PHY may stay in Isolate or loop back modes.  
June 2009  
Revision 1.04  
10  
Micrel  
KSZ8001  
Pin Configuration  
Top View  
SSOP 48  
RST#  
1
2
48  
47  
MDIO  
MDC  
VDDPLL  
3
XI 46  
RXD3/PHYAD1  
RXD2/PHYAD2  
4
XO 45  
5
44  
43  
42  
41  
40  
39  
38  
37  
RXD1/PHYAD3  
RXD0/PHYAD4  
VDDIO  
GND  
NC  
1
2
36  
GND  
6
MDIO  
7
NC  
Top View  
LQFP 48  
MDC  
GND 35  
8
GND  
TX+  
RXD3/PHYAD1  
3
34  
FXSD/FXEN  
9
RXDV/PCS_LPBK  
RXC  
TX-  
10  
11  
12  
GND  
4
33  
RXD2/PHYAD2  
RXD1/PHYAD3  
RXD0/PHYAD4  
RX+  
RX- 32  
RXER/ISO  
VDDRCV  
REXT  
GND  
KSZ8001S  
5
GND  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
36  
35  
34  
33  
32  
31  
30  
VDDRX  
VDDC  
6
31  
30  
KSZ8001L  
TXER  
GND  
7
VDDIO  
GND  
PD#  
TXC/REF_CLK  
FXSD/FXEN  
8
LED3/NWAYEN 29  
TXEN  
TXD0  
RX+  
RX-  
9
28  
RXDV/PCS_LPBK  
RXC  
LED2/DUPLEX  
TXD1  
TXD2  
TXD3  
VDDRX  
PD#  
10  
11  
12  
27  
LED1/SPD100  
LED3/NWAYEN 29  
LED2/DUPLEX 28  
26  
RXER/ISO  
GND  
LED0/TEST  
COL/RMII  
25  
INT#/PHYAD0  
27  
CRS/RMII_BTB  
LED1/SPD100  
26  
GND  
LED0/TEST  
VDDIO  
INT#/PHYAD0 25  
June 2009  
Revision 1.04  
11  
Micrel  
KSZ8001  
Functional Description  
100BASE-TX Transmit  
The 100BASE-TX transmit function performs parallel-to-serial conversion, NRZ to NRZI conversion, MLT-3 encoding and  
transmission. The circuitry starts with a parallel-to-serial conversion, which converts the 25 MHz, 4-bit nibbles into a 125 MHz serial  
bit stream. The incoming data is clocked in at the positive edge of the TXC signal. The serialized data is further converted from  
NRZ to NRZI format, and then transmitted in MLT3 current output. The output current is set by an external 1% 6.65 KΩ resistor for  
the 1:1 transformer ratio. It has typical rise/fall times of 4 ns and complies with the ANSI TP-PMD standard regarding amplitude  
balance, overshoot and timing jitter. The wave-shaped 10BASE-T output driver is also incorporated into the 100BASE-TX driver.  
100BASE-TX Receive  
The 100BASE-TX receive function performs adaptive equalization, DC restoration, MLT-3 to NRZI conversion, data and clock  
recovery, NRZI to NRZ conversion, and serial-to-parallel conversion. The receiving side starts with the equalization filter to  
compensate for inter-symbol interference (ISI) over the twisted pair cable. Since the amplitude loss and phase distortion are a  
function of the length of the cable, the equalizer has to adjust its characteristic to optimize performance. In this design, the variable  
equalizer will make an initial estimation based upon comparisons of incoming signal strength against some known cable  
characteristics, then tunes itself for optimization. This is an ongoing process and can self adjust against environmental changes  
such as temperature variations.  
The equalized signal then goes through a DC restoration and data conversion block. The DC restoration circuit is used to  
compensate for the effects of base line wander and to improve the dynamic range. The differential data conversion circuit converts  
the MLT3 format back to NRZI. The slicing threshold is also adaptive.  
The clock recovery circuit extracts the 125 MHz clock from the edges of the NRZI signal. This recovered clock is then used to  
convert the NRZI signal into the NRZ format. Finally, the NRZ serial data is converted to 4-bit parallel 4B nibbles. A synchronized  
25 MHz RXC is generated so that the 4B nibbles is clocked out at the negative edge of RCK25 and is valid for the receiver at the  
positive edge. When no valid data is present, the clock recovery circuit is locked to the 25 MΗz reference clock and both TXC and  
RXC clocks continue to run.  
PLL Clock Synthesizer  
The KSZ8001 generates 125 MΗz, 25 MΗz and 20 MΗz clocks for system timing. An internal crystal oscillator circuit provides the  
reference clock for the synthesizer.  
Scrambler/De-scrambler (100BASE-TX only)  
The purpose of the scrambler is to spread the power spectrum of the signal in order to reduce EMI and baseline wander.  
10BASE-T Transmit  
When TXEN (transmit enable) goes high, data encoding and transmission will begin. The KSZ8001 will continue to encode and  
transmit data as long as TXEN remains high. The data transmission will end when TXEN goes low. The last transition occurs at the  
boundary of the bit cell if the last bit is zero, or at the center of the bit cell if the last bit is one. The output driver is incorporated into  
the 100BASE- driver to allow transmission with the same magnetic. They are internally wave-shaped and pre-emphasized into  
outputs with a typical 2.5 V amplitude. The harmonic contents are at least 27 dB below the fundamental when driven by an all-ones  
Manchester-encoded signal.  
10BASE-T Receive  
On the receive side, input buffer and level detecting squelch circuits are employed. A differential input receiver circuit and a PLL  
performs the decoding function. The Manchester-encoded data stream is separated into clock signal and NRZ data. A squelch  
circuit rejects signals with levels less than 300 mV or with short pulse widths in order to prevent noises at the RX+ or RX- input from  
falsely trigger the decoder. When the input exceeds the squelch limit, the PLL locks onto the incoming signal and the KSZ8001  
decodes a data frame. This activates the carrier sense (CRS) ad RXDV signals and makes the receive data (RXD) available. The  
receive clock is maintained active during idle periods in between data reception.  
June 2009  
Revision 1.04  
12  
Micrel  
KSZ8001  
SQE and Jabber Function (10BASE-T only)  
In 10BASE-T operation, a short pulse will be put out on the COL pin after each packet is transmitted. This is required as a test of the  
10BASE-T transmit/receive path and is called SQE test. The 10BASE-T transmitter will be disabled and COL will go high if TXEN is  
High for more than 20 ms (Jabbering). If TXEN then goes low for more than 250 ms, the 10BASE-T transmitter will be re-enabled  
and COL will go Low.  
Auto-Negotiation  
The KSZ8001 performs auto-negotiation by hardware strapping option (pin 29) or software (Register 0.12). It will automatically  
choose its mode of operation by advertising its abilities and comparing them with those received from its link partner whenever auto-  
negotiation is enabled. It can also be configured to advertise 100BASE-TX or 10BASE-T in either full- or half-duplex mode. Auto-  
negotiation is disabled in FX mode.  
During auto-negotiation, the contents of Register 4, coded in Fast Link Pulse (FLP), will be sent to its link partner under the  
conditions of power-on, link-loss or re-start. At the same time, the KSZ8001 will monitor incoming data to determine its mode of  
operation. Parallel detection circuit will be enabled as soon as either 10BASE-T NLP (Normal Link Pulse) or 100BASE-TX idle is  
detected. The operation mode is configured based on the following priority:  
Priority 1: 100BASE-TX, full-duplex  
Priority 2: 100BASE-TX, half-duplex  
Priority 3: 10BASE-T, full-duplex  
Priority 4: 10BASE-T, half-duplex  
When the KSZ8001 receives a burst of FLP from its link partner with 3 identical link code words (ignoring acknowledge bit), it will  
store these code words in Register 5 and wait for the next 3 identical code words. Once the KSZ8001 detects the second code  
words, it then configures itself according to the above-mentioned priority. In addition, the KSZ8001 also checks for 100BASE-TX idle  
or 10BASE-T NLP symbols. If either is detected, the KSZ8001 automatically configures to match the detected operating speed.  
MII Management Interface  
The KSZ8001 supports the IEEE 802.3 MII Management Interface, also known as the Management Data Input / Output (MDIO)  
Interface. This interface allows upper-layer devices to monitor and control the state of the KSZ8001. The MDIO interface consists of  
the following:  
A physical connection including a data line (MDIO), a clock line (MDC) and an optional interrupt line (INTRPT)  
A specific protocol that runs across the above-mentioned physical connection and it also allows one controller to  
communicate with multiple KSZ8001 devices. Each KSZ8001 is assigned an MII address between 0 and 31 by the PHYAD  
inputs.  
An internal addressable set of fourteen 16-bit MDIO registers. Register [0:6] are required and their functions are specified  
by the IEEE 802.3 specifications. Additional registers are provided for expanded functionality.  
The INTPRT pin functions as a management data interrupt in the MII. An active Low or High in this pin indicates a status change on  
the KSZ8001 based upon 1fh.9 level control. Register bits at 1bh[15:8] are the interrupt enable bits. Register bits at 1bh[7:0] are the  
interrupt condition bits. This interrupt is cleared by reading Register 1bh.  
MII Data Interface  
The data interface consists of separate channels for transmitting data from a 10/100 802.3 compliant Media Access Controller (MAC)  
to the KSZ8001, and for receiving data from the line. Normal data transmission is implemented in 4B Nibble Mode (4-bit wide  
nibbles).  
Transmit Clock (TXC): The transmit clock is normally generated by the KSZ8001 from an external 25MHz reference source at the  
X1 input. The transmit data and control signals must always be synchronized to the TXC by the MAC. The KSZ8001 normally  
samples these signals on the rising edge of the TXC.  
June 2009  
Revision 1.04  
13  
Micrel  
KSZ8001  
Receive Clock (RXC): For 100BASE-TX links, the receive clock is continuously recovered from the line. If the link goes down, and  
auto-negotiation is disabled, the receive clock then operates off the master input clock (X1 or TXC). For 10BASE-T links, the receive  
clock is recovered from the line while carrier is active, and operates from the master input clock when the line is idle. The KSZ8001  
synchronizes the receive data and control signals on the falling edge of RXC in order to stabilize the signals at the rising edge of the  
clock with 10ns setup and hold times.  
Transmit Enable: The MAC must assert TXEN at the same time as the first nibble of the preamble, and de-assert TXEN after the  
last bit of the packet.  
Receive Data Valid: The KSZ8001 asserts RXDV when it receives a valid packet. Line operating speed and MII mode will  
determine timing changes in the following way:  
For 100BASE-TX link with the MII in 4B mode, RXDV is asserted from the first nibble of the preamble to the last nibble of  
the data packet.  
For 10BASE-T links, the entire preamble is truncated. RXDV is asserted with the first nibble of the SFD “ 5D” and remains  
asserted until the end of the packet.  
Error Signals: Whenever the KSZ8001 receives an error symbol from the network, it asserts RXER and drives “1110” (4B) on the  
RXD pins. When the MAC asserts TXER, the KSZ8001 will drive “H” symbols (a Transmit Error define in the IEEE 802.3 4B/5B  
code group) out on the line to force signaling errors.  
Carrier Sense (CRS): For 100TX links, a start-of-stream delimiter, or /J/K symbol pair causes assertion of Carrier Sense (CRS).  
An end-of-stream delimiter, or /T/R symbol pair causes de-assertion of CRS. The PMA layer will also de-assert CRS if IDLE  
symbols are received without /T/R, yet in this case RXER will be asserted for one clock cycle when CRS is de-asserted. For 10T  
links, CRS assertion is based on reception of valid preamble, and de-assertion on reception of an end-of-frame (EOF) marker.  
Collision: Whenever the line state is half-duplex and the transmitter and receiver are active at the same time, then the KSZ8001  
asserts its collision signal, which is asynchronous to any clock.  
RMII (Reduced MII) Data Interface  
RMII interface specifies a low pin count (Reduced) Media Independent Interface (RMII) intended for use between Ethernet PHYs and  
Switch or Repeater ASICs. It is fully compliant with IEEE 802.3u [2].  
This interface has the following characteristics:  
It is capable of supporting 10Mb/s and 100Mb/s data rates  
A single clock reference is sourced from the MAC to PHY (or from an external source)  
It provides independent 2 bit wide (di-bit) transmit and receive data paths  
It uses TTL signal levels, compatible with common digital CMOS ASIC processes  
RMII Signal Definition  
Direction  
Direction  
Signal Name  
Use  
(with respect to  
the PHY)  
(with respect to  
the MAC)  
Synchronous clock reference for receive, transmit and control  
interface  
REF_CLK  
Input  
Input or Output  
CRS_DV  
RXD[1:0]  
TX_EN  
Output  
Output  
Input  
Input  
Carrier Sense/Receive Data Valid  
Receive Data  
Input  
Output  
Output  
Input  
Transit Enable  
TXD[1:0]  
Input  
Transit Data  
RX_ER  
Output  
Receive Error  
(Not Required)  
Note: Unused MII signals, TXD[3:2], TXER need to be tied to GND when RMII is used  
June 2009  
Revision 1.04  
14  
Micrel  
KSZ8001  
Reference Clock (REF_CLK)  
REF_CLK is a continuous 50 MHz clock that provides the timing reference for CRS_DV, RXD[1:0], TX_EN, TXD[1:0], and RX_ER.  
REF_CLK is sourced by the MAC or an external source. Switch implementations may choose to provide REF_CLK as an input or an  
output depending on whether they provide a REF_CLK output or rely on an external clock distribution device. Each PHY device shall  
have an input corresponding to this clock but may use a single clock input for multiple PHYs implemented on a single IC.  
Carrier Sense/Receive Data Valid (CRS_DV)  
CRS_DV is asserted asynchronously on detection of carrier due to the criteria relevant to the operating mode. That is, in 10BASE-T  
mode, when squelch is passed or in 100BASE-X mode when 2 non-contiguous zeroes in 10 bits are detected carrier is said to be  
detected.  
Loss of carrier shall result in the de-assertion of CRS_DV synchronous to REF_CLK. So long as carrier criteria are being met,  
CRS_DV shall remain asserted continuously from the first recovered di-bit of the frame through the final recovered di-bit and shall be  
negated prior to the first REF_CLK that follows the final di-bit.  
The data on RXD[1:0] is considered valid once CRS_DV is asserted. However, since the assertion of CRS_DV is asynchronous  
relative to REF_CLK, the data on RXD[1:0] shall be "00" until proper receive signal decoding takes place (see definition of RXD[1:0]  
behavior).  
Receive Data [1:0] (RXD[1:0])  
RXD[1:0] shall transition synchronously to REF_CLK. For each clock period in which CRS_DV is asserted, RXD[1:0] transfers two  
bits of recovered data from the PHY. In some cases (e.g. before data recovery or during error conditions) a pre-determined value for  
RXD[1:0] is transferred instead of recovered data. RXD[1:0] shall be "00" to indicate idle when CRS_DV is de-asserted. Values of  
RXD[1:0] other than "00" when CRS_DV is de-asserted are reserved for out-of-band signaling (to be defined). Values other than "00"  
on RXD[1:0] while CRS_DV is de-asserted shall be ignored by the MAC/repeater. Upon assertion of CRS_DV, the PHY shall ensure  
that RXD[1:0]=00 until proper receive decoding takes place.  
Transmit Enable (TX_EN)  
Transmit Enable TX_EN indicates that the MAC is presenting di-bits on TXD[1:0] on the RMII for trans-mission. TX_EN shall be  
asserted synchronously with the first nibble of the preamble and shall remain asserted while all di-bits to be transmitted are  
presented to the RMII. TX_EN shall be negated prior to the first REF_CLK following the final di-bit of a frame. TX_EN shall transition  
synchronously with respect to REF_CLK.  
Transmit Data [1:0] (TXD[1:0])  
Transmit Data TXD[1:0] shall transition synchronously with respect to REF_CLK. When TX_EN is asserted, TXD[1:0] are accepted  
for transmission by the PHY. TXD[1:0] shall be "00" to indicate idle when TX_EN is de-asserted. Values of TXD[1:0] other than "00"  
when TX_EN is de-asserted are reserved for out-of-band signaling (to be defined). Values other than "00" on TXD[1:0] while TX_EN  
is disserted shall be ignored by the PHY.  
Collision Detection  
Since the definition of CRS_DV and TX_EN both contain an accurate indication of the start of frame, the MAC can reliably  
regenerate the COL signal of the MII by Ending TX_EN and CRS_DV.  
During the IPG time following the successful transmission of a frame, the COL signal is asserted by some transceivers as a self-test.  
The Signal Quality Error (SQE) function will not be supported by the reduced MII due to the lack of the COL signal. Historically, SQE  
was present to indicate that a transceiver located physically remote from the MAC was functioning. Since the reduced MII only  
supports chip-to-chip connections on a PCB, SQE functionality is not required.  
RX_ER  
The PHY shall provide RX_ER as an output according to the rules specified in IEEE 802.3u [2] (see Clause 24, Figure 24-11 -  
Receive State Diagram). RX_ER shall be asserted for one or more REF_CLK periods to indicate that an error (e.g. a coding error or  
any error that a PHY is capable of detecting, and that may otherwise be undetectable by the MAC sublayer) was detected  
somewhere in the frame presently being transferred from the PHY. RX_ER shall transition synchronously with respect to REF_CLK.  
While CRS_DV is de-asserted, RX_ER shall have no effect on the MAC.  
June 2009  
Revision 1.04  
15  
Micrel  
KSZ8001  
RMII AC Characteristics  
RMII Transmit Timing  
20ns  
REF_CLK  
t
1
t
2
TXD[1:0]  
TXEN  
Parameter  
Min  
Typ  
50  
Max  
Unit  
REF_CLK Frequency  
MHz  
TXD[1:0], TX_EN, Data Setup to REF_CLK rising  
edge  
4
2
ns  
ns  
TXD[1:0], TX_EN, Data hold from REF_CLK rising  
edge  
RMII Receive Timing  
20ns  
REF_CLK  
RXD[1:0]  
RXDV  
RXER  
tod  
Parameter  
REF_CLK Frequency  
Min  
2.8  
Typ  
50  
Max  
10  
Unit  
MHz  
RXD[1:0], CRS_DV, RX_ER Output delay from  
REF_CLK rising edge  
ns  
June 2009  
Revision 1.04  
16  
Micrel  
KSZ8001  
SMII Signal Definition  
SMII is composed of two signals per port, a global synchronization signal, and a global 125MHz reference clock. All signals are  
synchronous to the clock. All SMII I/F uses a common 125MHz reference clock and SYNC signals that are synchronous to the  
reference clock. There are two signals in SMII from MAC-to-PHY for each port (TXD and TxSYNC), and one signal per port from  
PHY-to-MAC (RXD).  
The Serial Media Independent Interface (SMII) is designed to satisfy the following requirements:  
Convey complete MII information between a 10/100 PHY and MAC with two pins per port.  
Allow a multi-port MAC/PHY communication with one system clock.  
Operate in both half and full duplex.  
Per packet switching between 10Mbit and 100Mbit data rates.  
Allow direct MAC-to-MAC communication.  
SMII Signals  
Signal Name  
RX  
TX  
SYNC  
Clock  
From  
PHY  
MAC  
MAC  
System  
To  
MAC  
PHY  
PHY  
Use  
Receive Data and Control  
Transmit Data and Control  
Synchronization  
MAC&PHY  
Synchronization  
Receive Path  
Receive data and control information are signaled in ten bit segments. In 100Mbit mode, each segment represents a new byte of  
data. In 10Mbit mode, each segment is repeated ten times; therefore, every ten segments represent a new byte of data. The MAC  
can simply any one of every 10 segment ion 10Mbit mode.  
Segment boundaries are delimited by SYNC. The MAC continuously generates a pulse on SYNC every 10 clocks.  
Receive Sequence Diagram  
RX_C LK  
R X_SYNC  
CRS  
RX_DV  
RXD0  
RXD1  
RXD2  
RXD3  
RXD4  
RXD5  
RXD6  
RXD7  
RX  
RX contains all of the information found on the receive path of the standard MII.  
Bits  
Purpose  
CRS  
RX_DV  
Carrier Sense – identical to MII, except that it is not an asynchronous signal  
Receive Data Valid – identical to MII  
RXD7-0  
Encoded Data, see the RXD0-7 Encoding table  
RX – Bit Description  
RXD7-0 are used to convey packet data, RX_ER, and PHY status. The MAC can infer the meaning of RXD on a segment-by-basis  
by encoding the two control bits.  
June 2009  
Revision 1.04  
17  
Micrel  
KSZ8001  
CRS  
X
RX_DV  
0
RXD0  
RXD1  
RXD2  
RXD3  
RXD4  
RXD5  
RXD6  
RXD7  
1
RX_ER  
from  
previous  
frame  
Speed  
0=10Mbit  
Duplex  
0=Half  
Link  
0=Down  
1=Up  
Jabber  
0=OK  
Upper  
Nibble  
False  
Carrier  
Detected  
1=100Mbit 1=Full  
1=Error  
0=invalid  
1=valid  
X
1
One Data Byte (Two MII Data Nibble)  
TXD7 – 0 Encoding  
Inter-frame status bit RXD5 conveys the validity of the upper nibble of the byte of the previous frame. Inter-frame status bit RXD0  
indicates whether or not the PHY detected an error somewhere on the previous frame. Both of these bits should be valid in the  
segment immediately following a frame, and should stay valid until the first data segment of the next frame begins.  
When asserted, inter-frame status bit RXD6 indicates that the PHY has detected a false carrier event.  
In order to send receive data to the MAC synchronous to the reference clock, the PHY must pass the data through an elasticity FIFO  
to handle any difference between the reference clock rate and the clock at the packet source. The Ethernet specification calls for  
packet data to be referenced to a clock with a frequency tolerance of 100ppm (0.01%); however, it is not uncommon to encounter  
Ethernet stations with clocks that have frequency errors up to 0.1%. Therefore, the elasticity FIFO should be at least 27 bits * long,  
filling to the halfway point before beginning valid data transfer via RX. RX_ER should be asserted if, during the reception of a frame,  
this FIFO overflows or underflows.  
Only RXD and RX_DV should be passed through the elasticity FIFO. CRS should not be passed through the elasticity FIFO. Instead,  
CRS should be asserted for the time the ‘wire’ is busy receiving a frame.  
Transmit Path  
Transmit data and control information are signaled in ten bit segments, just like the receive path. In 100Mbit mode, each segment  
represents anew byte of data. In 10Mbit mode each segment is repeated ten times; therefore, every ten segments represents a new  
byte of data. The PHY can sample any one of every 10 segments in 10Mbit mode.  
Segment boundaries are delimited by SYNC. The MAC continuously generates a pulse on SYNC every 10 clocks.  
Transmit Sequence Diagram  
T X _C L K  
T X _S Y N C  
T X _E R  
T X _E N  
T X D 0  
T X D 1  
T X D 2  
T X D 3  
T X D 4  
T X D 5  
T X D 6  
T X D 7  
T X  
Bits  
Purpose  
TX_EN  
TX_ER  
TXD7-0  
Transmit Enable – identical to MII  
Transmit Error – identical to MII  
Encoded Data – see TXD7-0 Encoding Table  
TX- Bit Description  
June 2009  
Revision 1.04  
18  
Micrel  
KSZ8001  
As far as the PHY is concerned, TXD7-0 are used to convey only packet data. To allow for a direct MAC-to-MAC connection, the  
MAC uses TXD7-0 to signal ‘status’ in between frames.  
TX_ER  
TX_EN  
TXD0  
TXD1  
TXD2  
TXD3  
TXD4  
TXD7-5  
x
0
Use to force  
an error in a  
direct MAC to  
MAC  
1
1
1
0
1
100MBit  
Full Duplex  
Link Up  
No Jabber  
connection  
x
1
One Data Byte (Two MII Data Nibbles)  
TXD7 – 0 Encoding  
Collision Detection  
Collisions occur when CRS and TX_EN are simultaneously asserted. For this to work, the PHY must ensure that CRS is not affected  
by its transmit path.  
DC Specification  
Parameter  
Symbol  
Vih  
Vil  
Min  
2.0  
Max  
Units  
Volts  
Volts  
uA  
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
0.8  
10  
10  
Iih  
Iil  
-10  
-10  
uA  
June 2009  
Revision 1.04  
19  
Micrel  
KSZ8001  
Timing Specification  
Parameter  
Input Setup  
Input Hold  
Min  
1.5  
1
Max  
Units  
ns  
ns  
Output Delay  
1.5  
5
ns  
June 2009  
Revision 1.04  
20  
Micrel  
KSZ8001  
HP Auto Crossover (Auto MDI/MDI-X)  
Automatic MDI/MDI-X configuration is intended to eliminate the need for crossover cables between similar devices. The assignment  
of pin-outs for a 10/100 BASE-T crossover function cable is shown below.  
This feature can eliminate the confusion in real applications by allowing both straight cable and crossover cables. This feature is  
controlled by register 1f:13, see “Register 1fh” section for details.  
S tr a ig h t T h r o u g h C a b le  
1 0 /1 0 0 B a s e -T  
1 0 /1 0 0 B a s e -T  
M e d ia D e p e n d e n t In te rfa c e  
M e d ia D e p e n d e n t In te rfa c e  
1
1
T ra n s m it P a ir  
2
R e c e iv e P a ir  
2
3
3
4
4
R e c e iv e P a ir  
5
T ra n s m it P a ir  
5
6
7
8
6
7
8
M o d u la r C o n n e c to r  
(R J 4 5 )  
M o d u la r C o n n e c to r  
(R J 4 5 )  
H U B  
N IC  
(R e p e a te r o r S w itc h )  
C ro s s o v e r C a b le  
1 0 /1 0 0 B A S E -T  
1 0 /1 0 0 B a s e -T  
M e d ia D e p e n d e n t In te rfa c e  
M e d ia D e p e n d e n t In te rfa c e  
1
1
R e c e iv e P a ir  
2
R e c e iv e P a ir  
2
3
3
4
4
T ra n s m it P a ir  
5
T ra n s m it P a ir  
5
6
7
8
6
7
8
M o d u la r C o n n e c to r (R J 4 5 )  
M o d u la r C o n n e c to r (R J 4 5 )  
H U B  
H U B  
(R e p e a te r o r S w itc h )  
(R e p e a te r o r S w itc h )  
June 2009  
Revision 1.04  
21  
Micrel  
KSZ8001  
Auto MDI/MDI-X Cross-Over Transformer Connection  
KSZ8001 features HP Auto MDI/MDI-X crossover and requires symmetric transformers that support Auto MDI/MDI-X. See  
“Selection of Isolation Transformer” for a list of transformers that support Auto MDI/MDI-X.  
Power Management  
The KSZ8001 offers the following modes for power management:  
Power Down Mode: This mode can be achieved by writing to Register 0.11 or pulling pin 30 PD# Low. In the power down  
state, the KS8061 disables all internal functions and drives output pins to logic zero, except for the MII serial management  
interface.  
Power Saving Mode: writing to register 1fh.10 can disable this mode. The KSZ8001 will then turn off everything except for  
the Energy Detect and PLL circuits when the cable is not installed. In other words, the KSZ8001 will shutdown most of the  
internal circuits to save power if there is no link. Power Saving mode will be in this most effective state when Auto-  
Negotiation Mode is enabled.  
100BASE-FX Mode  
100BASE-FX mode is activated when FXSD/FXEN is higher than 0.6V (This pin has a default pull down). Under this mode, the auto-  
negotiation and auto-MDIX features are disabled.  
In fiber operation FXSD pin should connect to the SD (signal detect) output of the fiber module. The internal threshold of FXSD is  
around Vdd +/- 50 mV (2.2V +/- 0.05V at 3.3V). Above this level, it is considered Fiber signal detected, and the operation is  
summarized in the following table:  
FXSD/FXEN  
Condition  
Less than 0.6V  
Less than 2.15V,  
but greater than 0.6V  
100TX mode  
FX mode  
No signal detected  
FEF generated  
FX mode  
Greater than 2.25V  
Signal detected  
To ensure proper operation, the swing of fiber module SD should cover the threshold variation. A resistive voltage divider is  
recommended to adjust the SD voltage range.  
FEF (Far End Fault), repetition of a special pattern, which consists of 84-ones and 1-zero, is generated under “FX mode with no  
signal detected”. The purpose of FEF is to notify the sender of a faulty link. When receiving a FEF, the LINK will go down to indicate  
a fault, even with fiber signal detected. The transmitter is not affected by receiving a FEF and still sends out its normal transmit  
pattern from MAC. FEF can be disabled by strapping pin27 low, please refer to “Strapping Options” section.  
Media Converter Operation  
The KSZ8001 is capable of performing media conversion with 2 parts in a back-to-back RMII mode as indicated in the diagram. Both  
parts are in RMII mode and with RMII_BTB asserted (pin21 & 22 strapped high). One part is operating at TX mode and the other in  
FX mode. Both parts can share a common 50MHz oscillator.  
Under this operation, auto-Negotiation on the TX side will prohibit 10BASE-T link up. Additional options can be implemented under  
this operation. Disable the transmitter and set it at tri-state by controlling the high TXD2 pin. In order to do this, RXD2 and TXD2 pins  
need to be connected via an inverter. When TXD2 pin is high in both the copper and fiber operation, it disables transmit. Meanwhile,  
the RXD2 pin on the copper side serves as the energy detect and can indicate if a line signal is detected. TXD3 should be tied low  
and RXD3 let float. Please contact your local Micrel FAE for a Media Converter reference design.  
June 2009  
Revision 1.04  
22  
Micrel  
KSZ8001  
Vcc  
21 22  
Pin  
Rx +/-  
Tx +/-  
RxD  
KSZ8001  
TxD  
TxC/  
Ref_CLK  
OSC  
50 MHz  
TxC/  
Ref_CLK  
FTx  
FRx  
TxD  
KSZ8001  
(Fiber Mode)  
RxD  
Pin  
34  
Pin  
21 22  
Vcc  
To the SD pin of the  
Fiber Module  
LinkMD Cable Diagnostics  
The KSZ8001 utilizes time domain reflectometry (TDR) to analyze the cabling plant for common cabling problems such as open  
circuits, short circuits and impedance mismatches. LinkMD works by sending a pulse of known amplitude and duration down the  
MDI and MDIX pairs and analyzing the shape of the reflected signal. Timing the duration gives an indication of the distance to the  
cabling fault with maximum distance of 200 m and accuracy of +/- 2 m. Cable diagnostics are only valid for copper connections and  
do not support fiber optic operation.  
LinkMD is used by accessing register 1dh, the LinkMD Control/Status register in conjunction with register 1fh, the 100BASE-TX PHY  
Controller register. To use LinkMD, HP Auto-MDIX is disabled by writing a ‘1’ to 1f:13 to enable manual control over which pair is  
used to transmit the LinkMD pulse. The self-clearing Cable diagnostic test enable bit, 1d.15 is set to ‘1’ to start the test on this pair.  
When 1d.15 returns to ‘0’, the test is complete. The test result is returned in 1d.14:13 and the distance is returned in 1d.8:0. The  
cable diagnostic test results are as follows:  
00 = Valid test, normal condition  
01 = Valid test, open circuit in cable  
10 = Valid test, short circuit in cable  
11 = Invalid test, LinkMD failed  
The ‘11’ case, Invalid test, occurs when it is not possible for the KSZ8001 to shut down the link partner. In this case, the test is not  
run, since it would not be possible for the KSZ8001 to determine if the detected signal is a reflection of the signal generated or a  
signal from another source.  
Cable length can be determined by multiplying the contents of 1d.8:0 by 0.39. This constant may be calibrated for different cabling  
conditions, including cables with a velocity of propagation that varies significantly from the norm.  
June 2009  
Revision 1.04  
23  
Micrel  
KSZ8001  
Reference Clock Connection Options  
KSZ8001 is capable of performing three different kinds of clock speed options for connecting the external reference clock depends  
upon the different interface of using MII/RMII/SMII. The figures below illustrate the recommended connection for using the different  
interface options. Please see the selection of reference crystal table for specifications.  
XI  
25MHz Osc  
+/-50ppm  
XO  
NC  
NC  
25MHz Oscillator Reference Clock Connection Diagram  
27pF  
XI  
27pF  
27pF  
27pF  
XO  
25MHz Xtal  
+/-50ppm  
25MHz Crystal Reference Clock Connection Diagram  
VCC  
XI  
10K  
XO  
NC  
50/125MHz Osc  
+/-50ppm  
NC  
REF_CLK  
50/125 MHz Oscillator Reference Clock Connection for RMII/SMII Mode Diagram  
June 2009  
Revision 1.04  
24  
Micrel  
KSZ8001  
Circuit Design Reference for Power Supply  
The following diagram shows the power connections for the single 3.3V supply KSZ8001L and KSZ8001SL devices.  
Ferrite  
Bead  
Ferrite  
Bead  
Ferrite  
Bead  
3.3A  
1uF  
1.8PLL  
1.8A  
1.8V  
0.1uF  
1uF  
0.1uF  
0.1uF  
0.1uF  
31  
13  
47  
38  
VDDRCV  
VIN  
VDDIO  
VDDIO  
7
VOUT  
1.8V  
LDO  
Regulator  
3.3V  
24  
KSZ8001L  
KSZ8001SL  
GND  
8 12  
23  
36 39 44  
35  
June 2009  
Revision 1.04  
25  
Micrel  
KSZ8001  
Register Map  
Register No.  
Description  
0h  
1h  
Basic Control Register  
Basic Status Register  
2h  
PHY Identifier I  
3h  
PHY Identifier II  
4h  
5h  
6h  
7h  
Auto-Negotiation Advertisement Register  
Auto-Negotiation Link Partner Ability Register  
Auto-Negotiation Expansion Register  
Auto-Negotiation Next Page Register  
Link Partner Next Page Ability  
Reserved  
RXER Counter Register  
Reserved  
Interrupt Control/Status Register  
Reserved  
8h  
9h-14h  
15h  
16h – 1ah  
1bh  
1ch  
1dh  
1eh  
1fh  
LinkMD Control/Status Register  
PHY Control Register  
100BASE-TX PHY Control Register  
Address  
Name  
Description  
Mode  
Default  
Register 0h – Basic Control  
0.15  
0.14  
0.13  
Reset  
1 = software reset. Bit is self-clearing  
RW/  
SC  
0
Loop-back  
1 = loop-back mode  
0 = normal operation  
1 = 100Mb/s  
RW  
0
Speed Select  
(LSB)  
RW  
Set by SPD100  
0 = 10Mb/s  
Ignored if Auto-Negotiation is enabled  
(0.12 = 1)  
0.12  
0.11  
Auto-  
Negotiation  
Enable  
1 = enable auto-negotiation process (override  
0.13 and 0.8)  
0 = disable auto-negotiation process  
1 = power down mode  
RW  
RW  
Set by NWAYEN  
0
Power Down  
Isolate  
0 = normal operation  
0.10  
1 = electrical isolation of PHY from MII and  
TX+/TX-  
RW  
Set by ISO  
0 = normal operation  
0.9  
0.8  
0.7  
Restart Auto-  
Negotiation  
1 = restart auto-negotiation process  
0 = normal operation. Bit is self-clearing  
1 = full duplex  
RW/  
SC  
0
Duplex Mode  
RW  
Set by DUPLEX  
0
0 = half duplex  
Collision Test  
1 = enable COL test  
RW  
0 = disable COL test  
0.6:1  
0.0  
Reserved  
Disable  
RO  
RW  
0
0
0 = enable transmitter  
1 = disable transmitter  
Transmitter  
June 2009  
Revision 1.04  
26  
Micrel  
KSZ8001  
Address  
Name  
Description  
Mode  
Default  
Register 1h – Basic Status  
1.15  
1.14  
1.13  
1.12  
1.11  
100BASE-T4  
1 = T4 capable  
RO  
RO  
RO  
RO  
RO  
0
1
1
1
1
0 = not T4 capable  
100BASE-TX  
Full Duplex  
1 = capable of 100BASE-X full duplex  
0 = not capable of 100BASE-X full duplex  
1 = capable of 100BASE-X half duplex  
0 = not capable of 100BASE-X half duplex  
100BASE-TX  
Half Duplex  
10BASE-T Full 1 = 10Mbps with full duplex  
Duplex  
0 = no 10Mbps with full duplex capability  
10BASE-T Half 1 = 10Mbps with half duplex  
Duplex  
0 = no 10Mbps with half duplex capability  
1.10:7  
1.6  
Reserved  
RO  
RO  
0
1
No Preamble  
1 = preamble suppression  
0 = normal preamble  
1.5  
Auto-  
Negotiation  
Complete  
1 = auto-negotiation process completed  
0 = auto-negotiation process not completed  
RO  
0
1.4  
1.3  
Remote Fault  
1 = remote fault  
RO/  
LH  
0
1
0 = no remote fault  
Auto-  
Negotiation  
Ability  
1 = capable to perform auto-negotiation  
0 = unable to perform auto-negotiation  
RO  
1.2  
1.1  
1.0  
Link Status  
1 = link is up  
RO/  
LL  
0
0
1
0 = link is down  
Jabber Detect  
1 = jabber detected  
RO/  
LH  
0 = jabber not detected. Default is Low  
1 = supports extended capabilities registers  
Extended  
Capability  
RO  
Register 2h – PHY Identifier 1  
2.15:0  
PHY ID  
Number  
Assigned to the 3rd through 18th bits of the  
Organizationally Unique Identifier (OUI).  
Kendin Communication’s OUI is 0010A1 (hex)  
RO  
RO  
0022h  
Register 3h – PHY Identifier 2  
3.15:10  
PHY ID  
Number  
Assigned to the 19th through 24th bits of the  
Organizationally Unique Identifier (OUI).  
Kendin Communication’s OUI is 0010A1 (hex)  
000101  
3.9:4  
3.3:0  
Model Number Six bit manufacturer’s model number  
RO  
RO  
100001  
1010  
Revision  
Number  
Four bit manufacturer’s model number  
Register 4h – Auto-Negotiation Advertisement  
4.15  
Next Page  
1 = next page capable  
RW  
0
0 = no next page capability.  
4.14  
4.13  
Reserved  
RO  
RW  
0
0
Remote Fault  
1 = remote fault supported  
0 = no remote fault  
4.12 : 11  
Reserved  
RO  
0
June 2009  
Revision 1.04  
27  
Micrel  
KSZ8001  
Address  
Name  
Description  
Mode  
Default  
4.10  
Pause  
1 = pause function supported  
0 = no pause function  
1 = T4 capable  
RW  
0
4.9  
4.8  
100BASE-T4  
RO  
RW  
RW  
RW  
RW  
RW  
0
0 = no T4 capability  
1 = TX with full duplex  
0 = no TX full duplex capability  
1 = TX capable  
100BASE-TX  
Full Duplex  
Set by SPD100 & DUPLEX  
Set by SPD100  
4.7  
4.6  
100BASE-TX  
0 = no TX capability  
10BASE-T Full 1 = 10Mbps with full duplex  
Duplex  
Set by  
DUPLEX  
1
0 = no 10Mbps full duplex capability  
1 = 10Mbps capable  
4.5  
4.4:0  
10BASE-T  
0 = no 10Mbps capability  
[00001] = IEEE 802.3  
Selector Field  
00001  
Register 5h – Auto-Negotiation Link Partner Ability  
5.15  
5.14  
5.13  
Next Page  
1 = next page capable  
RO  
RO  
RO  
0
0
0
0 = no next page capability  
1 = link code word received from partner  
0 = link code word not yet received  
1 = remote fault detected  
Acknowledge  
Remote Fault  
0 = no remote fault  
5.12  
Reserved  
Pause  
RO  
RO  
0
0
5.11:10  
5.10 5 .11  
0
No PAUSE  
1
Asymmetric PAUSE (link partner)  
0
Symmetric PAUSE  
1
Symmetric & Asymmetric PAUSE (local  
device)  
5.9  
5.8  
100 BASE-T4  
1 = T4 capable  
RO  
RO  
RO  
RO  
RO  
RO  
0
0 = no T4 capability  
1 = TX with full duplex  
0 = no TX full duplex capability  
1 = TX capable  
100BASE-TX  
Full Duplex  
0
5.7  
5.6  
100BASE-TX  
0
0 = no TX capability  
10BASE-T Full 1 = 10Mbps with full duplex  
Duplex  
0
0 = no 10Mbps full duplex capability  
1 = 10Mbps capable  
5.5  
5.4:0  
10BASE-T  
0
0 = no 10Mbps capability  
[00001] = IEEE 802.3  
Selector Field  
00001  
Register 6h – Auto-Negotiation Expansion  
6.15:5  
Reserved  
RO  
0
June 2009  
Revision 1.04  
28  
Micrel  
KSZ8001  
Address  
6.4  
Name  
Parallel  
Detection Fault  
Description  
Mode  
RO/  
LH  
Default  
0
1 = fault detected by parallel detection  
0 = no fault detected by parallel detection.  
1 = link partner has next page capability  
6.3  
6.2  
Link Partner  
Next Page  
Able  
RO  
0
1
0 = link partner does not have next page  
capability  
Next Page  
Able  
1 = local device has next page capability  
RO  
0 = local device does not have next page  
capability  
6.1  
6.0  
Page Received 1 = new page received  
0 = new page not yet received  
RO/  
LH  
0
0
Link Partner  
Auto-  
1 = link partner has auto-negotiation capability  
RO  
0 = link partner does not have auto-negotiation  
capability  
Negotiation  
Able  
Register 7h – Auto-Negotiation Next Page  
7.15  
Next Page  
1 = additional next page(s) will follow  
0 = last page  
RW  
0
7.14  
7.13  
Reserved  
RO  
RW  
0
1
Message Page 1 = message page  
0 = unformatted page  
7.12  
7.11  
Acknowledge2 1 = will comply with message  
0 = cannot comply with message  
RW  
RO  
0
0
Toggle  
1 = previous value of the transmitted link code  
word equaled logic One  
0 = logic Zero  
7.10:0  
Message Field 11-bit wide field to encode 2048 messages  
RW  
001  
Register 8h – Link Partner Next Page Ability  
8.15  
8.14  
8.13  
8.12  
Next Page  
1 = additional Next Page(s) will follow  
0 = last page  
RO  
RO  
RO  
RO  
0
0
0
0
Acknowledge  
1 = successful receipt of link word  
0 = no successful receipt of link word  
Message Page 1 = Message Page  
0 = Unformatted Page  
Acknowledge2 1 = able to act on the information  
0 = not able to act on the information  
8.11  
Toggle  
1 = previous value of transmitted Link Code  
Word equal  
RO  
0
to logic zero  
0 = previous value of transmitted Link Code  
Word equal to logic one  
8.10:0  
Message Field  
RO  
RO  
0
Register 15h – RXER Counter  
15.15:0  
RXER Counter RX Error counter for the RX_ER in each  
package  
0000  
June 2009  
Revision 1.04  
29  
Micrel  
KSZ8001  
Address  
Name  
Description  
Mode  
Default  
Register 1bh – Interrupt Control/Status Register  
1b.15  
1b.14  
1b.13  
1b.12  
1b.11  
Jabber  
Interrupt  
Enable  
1=Enable Jabber Interrupt  
0=Disable Jabber Interrupt  
RW  
RW  
RW  
RW  
RW  
0
0
0
0
0
Receive Error  
Interrupt  
Enable  
1=Enable Receive Error Interrupt  
0=Disable Receive Error Interrupt  
Page Received 1=Enable Page Received Interrupt  
Interrupt  
Enable  
0=Disable Page Received Interrupt  
Parallel Detect 1= Enable Parallel Detect Fault Interrupt  
Fault Interrupt  
Enable  
0= Disable Parallel Detect Fault Interrupt  
Link Partner  
Acknowledge  
Interrupt  
1= Enable Link Partner Acknowledge Interrupt  
0= Disable Link Partner Acknowledge Interrupt  
Enable  
1b.10  
1b.9  
1b.8  
Link Down  
Interrupt  
Enable  
1= Enable Link Down Interrupt  
0= Disable Link Down Interrupt  
RW  
RW  
RW  
0
0
0
Remote Fault  
Interrupt  
Enable  
1= Enable Remote Fault Interrupt  
0= Disable Remote Fault Interrupt  
Link Up  
Interrupt  
Enable  
1= Enable Link Up Interrupt  
0= Disable Link Up Interrupt  
1b.7  
1b.6  
1b.5  
1b.4  
1b.3  
Jabber  
Interrupt  
1= Jabber Interrupt Occurred  
RO/  
SC  
0
0
0
0
0
0= Jabber Interrupt Does Not Occurred  
1= Receive Error Occurred  
Receive Error  
Interrupt  
RO/  
SC  
0= Receive Error Does Not Occurred  
1= Page Receive Occurred  
Page Receive  
Interrupt  
RO/  
SC  
0= Page Receive Does Not Occurred  
Parallel Detect 1= Parallel Detect Fault Occurred  
Fault Interrupt  
RO/  
SC  
0= Parallel Detect Fault Does Not Occurred  
1= Link Partner Acknowledge Occurred  
Link Partner  
Acknowledge  
Interrupt  
RO/  
SC  
0= Link Partner Acknowledge Does Not  
Occurred  
1b.2  
1b.1  
1b.0  
Link Down  
Interrupt  
1= Link Down Occurred  
RO/  
SC  
0
0
0
0= Link Down Does Not Occurred  
1= Remote Fault Occurred  
Remote Fault  
Interrupt  
RO/  
SC  
0= Remote Fault Does Not Occurred  
1= Link Up Interrupt Occurred  
0= Link Up Interrupt Does Not Occurred  
Link Up  
Interrupt  
RO/  
SC  
Register 1dh – LinkMD Control/Status Register  
1d.15  
Cable  
diagnostic test  
enable  
0 = Indicates cable diagnostic test has  
completed and the status information is valid  
for read.  
RW/  
SC  
0
1 = the cable diagnostic test is activated. This  
bit is self-clearing.  
June 2009  
Revision 1.04  
30  
Micrel  
KSZ8001  
Address  
Name  
Description  
Mode  
Default  
1d.14:13  
Cable  
[00] = normal condition  
RO  
0
diagnostic test  
result  
[01] = open condition has been detected in  
cable  
[10] = short condition has been detected in  
cable  
[11] = cable diagnostic test failed  
1d.12:9  
1d.8:0  
Reserved  
Cable fault  
counter  
Distance to fault, approximately  
0.39m*cabfaultcnt value  
RO  
RW  
0
0
Register 1eh – PHY Control  
1e:15:14  
LED mode  
[00] =  
LED3 <- collision  
LED2 <- full duplex  
LED1 <- speed  
LED0 <- link/activity  
[01] =  
LED3 <- activity  
LED2 <- full duplex/collision  
LED1 <- speed  
LED0 <- link  
[10] =  
LED3 <- activity  
LED2 <- full duplex  
LED1 <- 100Mbps link  
LED0 <- 10Mbps link  
[11] = reserved  
1e.13  
1e.12  
1e.11  
Polarity  
0 = Polarity is not reversed  
1 = Polarity is reversed  
0 = Far end fault detected  
1 = Far end fault not detected  
0 = MDIX  
RO  
RO  
RO  
Far end fault  
detect  
MDIX/MDI  
state  
1 = MDI  
1e:10:8  
1e:7  
Reserved  
Remote  
loopback  
0: normal mode  
RW  
RW  
0
1
1: remote (analog) loop back is enable  
1e:6:0  
Reserved  
Register 1fh – 100BASE-TX PHY Controller  
1f:15  
HP_MDIX  
0: Micrel Auto MDI/MDI-X mode  
1: HP Auto MDI/MDI-X mode  
June 2009  
Revision 1.04  
31  
Micrel  
KSZ8001  
Address  
Name  
Description  
Mode  
Default  
1f:14  
MDI/MDI-X  
Select  
When Auto MDI/MDI-X is disabled,  
RW  
0
0 = Transmit on TX+/- (pins 41,40)  
Receive on RX+/- (pins 33,32)  
1 = Transmit on RX+/- (pins 33,32)  
Receive on TX+/- (pins 41,40)  
1 = disable MDI/MDIX  
1f:13  
1f.12  
Pairswap  
disable  
RW  
RO  
0
0
0 = enable MDI/MDIX  
Energy detect  
1 = presence of signal on RX+/- analog wire  
pair  
0 = no signal detected on RX+/-  
1 = force link pass  
1f.11  
Force link  
RW  
0
0 = normal link operation  
This bit bypasses the control logic and allow  
transmitter to send pattern even if there is no  
link.  
1f.10  
1f.9  
1f.8  
1f.7  
Power Saving  
Interrupt Level  
Enable Jabber  
1 = enable power saving  
0 = disable  
RW  
RW  
RW  
RO  
1
0
1
0
1 = interrupt pin active high  
0 = active low  
1 = enable jabber counter  
0 = disable  
Auto-  
Negotiation  
Complete  
1 = auto-negotiation complete  
0 = not complete  
This bit has the same definition as register 1.5.  
1 = flow control capable  
0 = no flow control  
1f.6  
Enable Pause  
(Flow-Control  
Result)  
RO  
0
1f.5  
PHY Isolate  
1 = PHY in isolate mode  
0 = not isolated  
RO  
RO  
0
0
1f.4:2  
Operation  
Mode  
Indication  
[000] = still in auto-negotiation  
[001] = 10BASE-T half duplex  
[010] = 100BASE-TX half duplex  
[011] = default  
[101] = 10BASE-T full duplex  
[110] = 100BASE-TX full duplex  
[111] = PHY/MII isolate  
1 = enable SQE test  
1f.1  
1f.0  
Enable SQE  
test  
RW  
RW  
0
0
0 = disable  
Disable Data  
Scrambling  
1 = disable scrambler  
0 = enable  
June 2009  
Revision 1.04  
32  
Micrel  
KSZ8001  
Absolute Maximum Rating (Note 1)  
Storage Temperature (TS) ………… -55°C to +150°C  
Supply Referenced to GND…… ….……-0.5V to +4.0  
All pins …………………………………....-0.5V to +4.0  
Operating Range (Note 2)  
Supply Voltage  
(VDDPLL, VDDRX, VDDC)………….….………1.8V ± 5%  
(VDDRCV, VDDIO)….…………………………3.3V ± 5%  
Ambient Temperature Commercial (TAC)...…0°C to  
+70°C  
Ambient Temperature Industrial (TAI)….…-40°C to  
+85°C  
Important: Please read the Notes at the end of the  
Electrical Characteristics.  
June 2009  
Revision 1.04  
33  
Micrel  
KSZ8001  
Package Thermal Resistance (θJA)(Note 3)  
θJA  
θJA  
θJA  
θJC  
Thermal Resistance  
Airflow Velocity (m/s)  
0
1
2
0
KSZ8001L / KSZ8001LI  
KSZ8001SL / KSZ8001SLI  
KSZ8001S  
83.56  
75.19  
42.43  
77.08  
68.20  
36.19  
72.36  
66.43  
34.24  
35.90  
42.65  
6.75  
Electrical Characteristics (Note4)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
(Note 5)  
Total Supply Current  
KSZ8001L  
- Current consumption is for the single 3.3V supply KSZ8001L device only, and includes the 1.8V supply  
voltages (VDDRX, VDDPLL) that are provided by the KSZ8001L via power output pin 13 (VDDC).  
- Transformer consumes an additional 45mA @ 3.3V for 100BASE-TX and 70mA @ 3.3V for 10BASE-T.  
mA  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
52  
32  
35  
5
100BASE-TX  
Chip only, no transformer  
mA  
mA  
mA  
mA  
10BASE-T  
Chip only, no transformer  
Power Saving Mode  
SW Power Down Mode  
Power down pin (PD#)  
Ethernet cable disconnected  
Register (software) power down  
Chip (hardware) power down  
3
TTL Inputs  
VIH  
VIL  
IIN  
Input High Voltage  
Input Low Voltage  
Input Current  
2.0  
V
0.8  
10  
V
VIN = GND – VDD  
IOH = -4mA  
-10  
μA  
TTL Outputs  
VOH  
VOL  
I IOZ  
Output High Voltage  
2.4  
V
Output Low Voltage  
0.4  
10  
V
I
Output Tri-State Leakage  
μA  
100BASE-TX Transmit (measured differentially after 1:1 transformer)  
Peak Differential Ouput  
Voltage  
VO  
0.95  
1.05  
V
50Ω from each output to VDD  
50Ω from each output to VDD  
VIMB  
tr, tt  
Output Voltage Imbalance  
Rise/Fall Time  
2
%
3
0
5
ns  
Rise/Fall Time Imbalance  
Duty Cycle Distortion  
Overshoot  
0.5  
±0.25  
5
ns  
ns  
%
VSET  
Refernce Voltage of ISET  
Propagation Delay  
Jitter  
0.75  
45  
V
60  
Ns  
ns(pk-pk)  
0.7  
1.4  
June 2009  
Revision 1.04  
34  
Micrel  
KSZ8001  
10BASE-T Transmit (measured differentially after 1:1 transformer)  
Peak Differential Ouput  
Voltage  
VP  
2.2  
2.8  
V
50Ω from each output to VDD  
50Ω from each output to VDD  
VIMB  
tr, tt  
Output Voltage Imbalance  
Rise/Fall Time  
ns  
ns  
±3.5  
25  
Clock Outputs  
X1, X2  
RXC100  
RXC10  
Crystal Oscillator  
25  
MHz  
Receive Clock, 100TX  
Receive Clock, 10T  
Receive Clock Jitter  
Transmit Clock, 100TX  
Transmit Clock, 10T  
Transmit Clock Jitter  
25  
MHz  
2.5  
3.0  
25  
MHz  
ns(pk-pk)  
MHz  
TXC100  
TXC10  
2.5  
1.8  
MHz  
ns(pk-pk)  
Note 1:  
Note 2:  
Exceeding the absolute rating(s) may cause permanent damage to the device. Operating at maximum conditions for extended  
periods may affect device reliability.  
This device is not guaranteed to operate beyond its specified operating rating. Unused inputs must always be tied to an  
appropriate logic voltage level (Ground to VDD).  
Note 3:  
Note 4:  
Note 5:  
No HS (heat spreader) in package.  
Specification for packaged product only.  
100% data transmission in full-duplex mode and minimum IPG with 130-meter cable.  
June 2009  
Revision 1.04  
35  
Micrel  
KSZ8001  
Timing Diagrams  
10BaseT M II Transm it Timing  
TXC  
tHD2  
tSU2  
TXEN  
tHD1  
TXD[3:0]  
CRS  
tSU1  
tCRS1  
tCRS2  
Valid  
Data  
TXP/TXM  
tLAT  
SQ E Tim ing  
TXC  
TXEN  
CO L  
tSQE  
tSQEP  
min.  
typ.  
max.  
tSU1  
tSU2  
TXD[3:0] Setup to TXC High  
TXEN Setup to TXC High  
TXD[3:0] Hold after TXC High  
TXEN Hold after TXC High  
TXEN High to CRS asserted latency  
TXEN Low to CRS de-asserted latency  
TXEN High to TXP/TXM output (TX latency)  
COL (SQE) Delay after TXEN de-asserted  
COL (SQE) Pulse Duration  
10ns  
10ns  
0ns  
tHD1  
tHD2  
tCRS1  
tCRS2  
tLAT  
tSQE  
tSQEP  
0ns  
4BT  
8BT  
4BT  
2.5us  
1.0us  
June 2009  
Revision 1.04  
36  
Micrel  
KSZ8001  
100BaseTX MII Transmit Timing  
TXC  
tHD2  
tSU2  
TXEN  
tHD1  
tSU1  
TXD[3:0],  
TXER  
Data  
In  
tCRS2  
tCRS1  
tLAT  
CRS  
Symbol  
Out  
TX+/TX-  
min.  
typ.  
max.  
tSU1  
tSU2  
TXD[3:0] Setup to TXC High  
TX_ER Setup to TXC High  
TXD[3:0] Hold after TXC High  
TXER Hold after TXC High  
TXEN Hold after TXC High  
TXEN High to CRS asserted latency  
TXEN Low to CRS de-asserted latency  
10ns  
10ns  
0ns  
0ns  
0ns  
tHD1  
tHD2  
tHD3  
tCRS1  
tCRS2  
tLAT  
4BT  
4BT  
7BT  
TXEN High to TX+/TX- output (TX latency)  
June 2009  
Revision 1.04  
37  
Micrel  
KSZ8001  
100BaseTX M II Receive Tim ing  
Start of  
Stream  
End of  
Stream  
R X+/R X-  
C R S  
tCRS1  
tCRS2  
R X D V  
tRLA T  
tH D  
R X D[3:0]  
R X ER  
tSU  
tW H  
R X C  
tW L  
tP  
m in.  
typ.  
m ax.  
tP  
RXC period  
RXC pulse width  
RXC pulse width  
RXD[3:0], RXER, RXDV setup to rising edge of RXC  
RXD[3:0], RXER, RXDV hold from rising edge of RXC  
CRS to RXD latency, 4B or 5B aligned  
40ns  
20ns  
20ns  
20ns  
20ns  
2BT  
tW L  
tW H  
tSU  
tHD  
tRLAT  
tCRS1  
tCRS2  
1BT  
3BT  
"Start of Stream " to CRS asserted  
"End of Stream " to CRS de-asserted  
140ns  
170ns  
June 2009  
Revision 1.04  
38  
Micrel  
KSZ8001  
Auto Negotiation / Fast Link Pulse Timing  
FLP  
FLP  
Burst  
Burst  
TX+/TX-  
tFLPW  
tBTB  
Clock  
Pulse  
Data  
Pulse  
Clock  
Pulse  
Data  
Pulse  
TX+/TX-  
tPW  
tPW  
tCTD  
tCTC  
min.  
8ms  
typ.  
max.  
tBTB  
tFLPW  
tPW  
tCTD  
tCTC  
FLP burst to FLP burst  
FLP burst width  
Clock/Data pulse width  
Clock pulse to data pulse  
Clock pulse to clock pulse  
16ms  
2ms  
100ns  
69us  
24ms  
136us  
Number of Clock/Data pulses per burst  
17  
33  
June 2009  
Revision 1.04  
39  
Micrel  
KSZ8001  
Serial Management Interface Timing  
tP  
MDC  
tMD1  
tMD2  
MDIO  
(Into Chip)  
Valid  
Data  
Valid  
Data  
tMD3  
MDIO  
(Out of Chip)  
Valid  
Data  
min.  
typ.  
max.  
tP  
MDC period  
400 ns  
tMD1  
tMD2  
tMD3  
MDIO Setup to MDC (MDIO as input)  
MDIO Hold after MDC (MDIO as input)  
MDC to MDIO Valid (MDIO as output)  
10ns  
10ns  
222ns  
June 2009  
Revision 1.04  
40  
Micrel  
KSZ8001  
Reset Timing Diagram  
Supply  
Voltage  
tsr  
RST_N  
Strap-In  
Value  
Reset Timing Parameters  
Parameter  
tsr  
Description  
Stable supply voltages to reset high  
Min  
50  
Max  
Units  
us  
Reset Circuit Diagram  
Micrel recommends the following discrete reset circuit when powering up the KSZ8001 device.  
VCC  
D1: 1N4148  
D1  
R 10K  
KSZ8001  
RST#  
C 10uF  
Recommended Reset Circuit  
June 2009  
Revision 1.04  
41  
Micrel  
KSZ8001  
For the application where the reset circuit signal comes from another device (e.g., CPU, FPGA, etc), the following reset circuit  
is recommended.  
VCC  
R 10K  
D1  
KSZ8001  
CPU/FPGA  
RST#  
RST_OUT_n  
D2  
C 10uF  
D1, D2: 1N4148  
Recommended Circuit for Interfacing with CPU/FPGA Reset  
At power-on-reset, R, C, and D1 provide the necessary ramp rise time to reset the Micrel device. The reset out  
from CPU/FPGA provides warm reset after power up. It is also recommend to power up VDD core voltage earlier  
than VDDIO voltage. At worst case, the both VDD core and VDDIO voltages should come up at the same time.  
June 2009  
Revision 1.04  
42  
Micrel  
KSZ8001  
Reference Circuit for Strapping Option Configuration  
The following figure shows the reference circuits for external pull-up and pull-down on the LED strapping pins.  
3.3 V  
220Ω  
Pull Up  
10ΚΩ  
LED pin  
KSZ8001  
3.3 V  
Pull Down  
220Ω  
LED pin  
KSZ8001  
1ΚΩ  
Reference circuits for unmanaged programming through LED ports  
June 2009  
Revision 1.04  
43  
Micrel  
KSZ8001  
Selection of Isolation Transformer  
A 1:1 isolation transformer is required at the line interface. An isolation transformer with integrated common-mode choke is  
recommended for exceeding FCC requirements. The following table gives recommended transformer characteristics.  
Transformer Selection Criteria  
Parameter  
Value  
Test Condition  
Turns Ratio  
1 CT : 1 CT  
350 uH  
Open-Circuit Inductance (min.)  
Leakage Inductance (max.)  
Inter-Winding Capacitance (max.)  
D.C. Resistance (max.)  
Insertion Loss (max.)  
HIPOT (min.)  
100 mV, 100 kHz, 8 mA  
1 MHz (min.)  
0.4 uH  
12 pF  
0.9 Ohms  
1.0 dB  
0-65 MHz  
1500 Vrms  
Magnetic Vendor Selection Lists  
Single Port  
Magnetic manufacturer  
Pulse  
Part number  
H1102  
AUTO MDIX  
Number of port  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1
1
1
1
1
1
1
1
Bel Fuse  
Bel Fuse  
Bel Fuse  
YCL  
S558-5999-U7  
SI-46001  
SI-50170  
PT163020  
HB726  
Transpower  
Delta  
LF8505  
LanKom  
LF-H41S  
Selection of Reference Crystal  
An oscillator or crystal with the following typical characteristics is recommended.  
Charateristics  
Value  
25.00000  
± 50  
Units  
MHz  
ppm  
pF  
Frequency  
Frequency Tolerance(max)  
Load Capacitance (max)  
Series Resistance  
20  
40  
Ω
June 2009  
Revision 1.04  
44  
Micrel  
KSZ8001  
Package Information  
June 2009  
Revision 1.04  
45  
Micrel  
KSZ8001  
MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL: +1 (408) 944-0800 FAX: +1 (408) 944-0970 WEB: http:/www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel  
for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a  
product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended  
for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant  
injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk  
and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.  
© 2006 Micrel, Incorporated.  
June 2009  
Revision 1.04  
46  

相关型号:

KSZ8001LI

1.8C, 3.3V 10/100BASE-T/TX/FX Physical Layer Transceiver
MICREL

KSZ8001LI

DATACOM, ETHERNET TRANSCEIVER, PQFP48
MICROCHIP

KSZ8001LI-TR

DATACOM, ETHERNET TRANSCEIVER, PQFP48
MICROCHIP

KSZ8001LIS-TR

1.8V, 3.3V 10/100BASE-T/TX/FX Physical Layer Transceiver
MICROCHIP

KSZ8001LITR

暂无描述
MICREL

KSZ8001S

1.8V, 3.3V 10/100BASETX/FX Physical Layer Transceiver
MICREL

KSZ8001S

DATACOM, ETHERNET TRANSCEIVER, PDSO48
MICROCHIP

KSZ8001S-TR

DATACOM, ETHERNET TRANSCEIVER, PDSO48
MICROCHIP

KSZ8001SI

1.8C, 3.3V 10/100BASE-T/TX/FX Physical Layer Transceiver
MICREL

KSZ8001SI

DATACOM, ETHERNET TRANSCEIVER, PDSO48
MICROCHIP

KSZ8001SIS-TR

1.8V, 3.3V 10/100BASE-T/TX/FX Physical Layer Transceiver
MICROCHIP

KSZ8001SL

1.8V, 3.3V 10/100BASE-T/TX/FX Physical Layer Transceiver
MICREL