KSZ8081RNA [MICROCHIP]

10BASE-T/100BASE-TX PHY with RMII Support;
KSZ8081RNA
型号: KSZ8081RNA
厂家: MICROCHIP    MICROCHIP
描述:

10BASE-T/100BASE-TX PHY with RMII Support

文件: 总52页 (文件大小:454K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KSZ8081RNA/RND  
10BASE-T/100BASE-TX PHY with RMII  
Support  
Features  
Target Applications  
• Single-Chip 10BASE-T/100BASE-TX IEEE 802.3  
Compliant Ethernet Transceiver  
• Game Consoles  
• IP Phones  
• IP Set-Top Boxes  
• IP TVs  
• RMII v1.2 Interface Support with a 50 MHz Refer-  
ence Clock Output to MAC, and an Option to  
Input a 50 MHz Reference Clock  
• LOM  
• RMII Back-to-Back Mode Support for a 100 Mbps  
Copper Repeater  
• Printers  
• MDC/MDIO Management Interface for PHY Reg-  
ister Configuration  
• Programmable Interrupt Output  
• LED Outputs for Link and Activity Status Indica-  
tion  
• On-Chip Termination Resistors for the Differential  
Pairs  
• Baseline Wander Correction  
• HP Auto MDI/MDI-X to Reliably Detect and Cor-  
rect Straight-Through and Crossover Cable Con-  
nections with Disable and Enable Option  
• Auto-Negotiation to Automatically Select the  
Highest Link-Up Speed (10/100 Mbps) and  
Duplex (Half/Full)  
• Power-Down and Power-Saving Modes  
• LinkMD® TDR-Based Cable Diagnostics to Iden-  
tify Faulty Copper Cabling  
• Parametric NAND Tree Support for Fault Detec-  
tion Between Chip I/Os and the Board  
• HBM ESD Rating (6 kV)  
• Loopback Modes for Diagnostics  
• Single 3.3V Power Supply with VDD I/O Options  
for 1.8V, 2.5V, or 3.3V  
• Built-In 1.2V Regulator for Core  
• Available in 24-pin 4 mm x 4 mm QFN Package  
2016 Microchip Technology Inc.  
DS00002199A-page 1  
KSZ8081RNA/RND  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com. We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for cur-  
rent devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the  
revision of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS00002199A-page 2  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
Table of Contents  
1.0 Introduction ..................................................................................................................................................................................... 4  
2.0 Pin Description and Configuration .................................................................................................................................................. 5  
3.0 Functional Description .................................................................................................................................................................. 10  
4.0 Register Descriptions .................................................................................................................................................................... 26  
5.0 Operational Characteristics ........................................................................................................................................................... 35  
6.0 Electrical Characteristics ............................................................................................................................................................... 36  
7.0 Timing Diagrams............................................................................................................................................................................ 38  
8.0 Reset Circuit .................................................................................................................................................................................. 42  
9.0 Reference Circuits - LED Strap-In Pins ......................................................................................................................................... 43  
10.0 Reference Clock - Connection and Selection .............................................................................................................................. 44  
11.0 Magnetic - Connection and Selection .......................................................................................................................................... 45  
12.0 Package Outlines......................................................................................................................................................................... 47  
Appendix A: Data Sheet Revision History ........................................................................................................................................... 48  
The Microchip Web Site ...................................................................................................................................................................... 49  
Customer Change Notification Service ............................................................................................................................................... 49  
Customer Support ............................................................................................................................................................................... 49  
Product Identification System ............................................................................................................................................................. 50  
2016 Microchip Technology Inc.  
DS00002199A-page 3  
KSZ8081RNA/RND  
1.0  
1.1  
INTRODUCTION  
General Description  
The KSZ8081RNA/RND is a single-supply 10BASE-T/100BASE-TX Ethernet physical-layer transceiver for transmis-  
sion and reception of data over standard CAT-5 unshielded twisted pair (UTP) cable.  
The KSZ8081RNA/RND is a highly-integrated PHY solution. It reduces board cost and simplifies board layout by using  
on-chip termination resistors for the differential pairs and by integrating a low-noise regulator to supply the 1.2V core,  
and by offering 1.8/2.5/3.3V digital I/O interface support.  
The KSZ8081RNA/RND offers the Reduced Media Independent Interface (RMII) for direct connection to RMII-compliant  
MACs in Ethernet processors and switches.  
As the power-up default, the KSZ8081RNA/RND uses a 25 MHz crystal to generate all required clocks, including the  
50 MHz RMII reference clock output for the MAC. The KSZ8081RND is the version that takes in the 50 MHz RMII ref-  
erence clock as the power-up default.  
To facilitate system bring-up and debugging in production testing and in product deployment, parametric NAND tree sup-  
port enables fault detection between KSZ8081RNA/RND I/Os and the board. LinkMD® TDR-based cable diagnostics  
identify faulty copper cabling.  
The KSZ8081RNA and KSZ8081RND are available in 24-pin, lead-free QFN packages.  
FIGURE 1-1:  
SYSTEM BLOCK DIAGRAM  
MDC/MDIO  
MANAGEMENT  
MEDIA TYPES:  
10BASE-T  
100BASE-TX  
RMII  
RJ-45  
CONNECTOR  
10/100Mbps  
RMII MAC  
KSZ8081RNA  
50MHz  
REF_CLK  
XO  
XI  
25MHz  
XTAL  
22pF  
22pF  
DS00002199A-page 4  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
2.0  
PIN DESCRIPTION AND CONFIGURATION  
FIGURE 2-1:  
24-QFN PIN ASSIGNMENT (TOP VIEW)  
22  
19  
24  
23  
21  
20  
INTRP  
RXER  
VDD_1.2  
1
2
3
4
18  
17  
16  
15  
VDDA_3.3  
RXM  
REF_CLK  
PADDLE GROUND  
(ON BOTTOM OF CHIP)  
CRS_DV/  
PHYAD[1:0]  
RXP  
TXM  
TXP  
VDDIO  
RXD0  
5
6
14  
13  
9
10  
11  
12  
7
8
2016 Microchip Technology Inc.  
DS00002199A-page 5  
KSZ8081RNA/RND  
TABLE 2-1:  
SIGNALS - KSZ8081RNA/RND  
Type  
Pin  
Number  
Pin  
Note  
Name  
2-1  
Description  
1.2V Core VDD (power supplied by KSZ8081RNA/KSZ8081RND). Decouple  
with 2.2 µF and 0.1 µF capacitors to ground.  
1
VDD_1.2  
P
2
3
4
5
6
VDDA_3.3  
RXM  
P
3.3V Analog VDD.  
I/O  
I/O  
I/O  
I/O  
Physical Receive or Transmit Signal (– differential).  
Physical Receive or Transmit Signal (+ differential).  
Physical Transmit or Receive Signal (– differential).  
Physical Transmit or Receive Signal (+ differential).  
RXP  
TXM  
TXP  
Crystal Feedback for 25 MHz Crystal. This pin is a no connect if an oscillator  
or external clock source is used.  
7
XO  
O
RMII – 25 MHz Mode: 25 MHz ±50 ppm Crystal/Oscillator/External Clock  
Input  
RMII – 50 MHz Mode: 50 MHz ±50 ppm Oscillator/External Clock Input  
For unmanaged mode (power-up default setting):  
– KSZ8081RNA takes in the 25 MHz crystal/clock on this pin.  
– KSZ8081RND takes in the 50 MHz clock on this pin.  
8
XI  
I
After power-up, both the KSZ8081RNA and KSZ8081RND can be pro-  
grammed to either the 25 MHz mode or 50 MHz mode using PHY Register  
1Fh Bit [7].  
See also REF_CLK (Pin 16).  
Set PHY Transmit Output Current. Connect a 6.49 kresistor to ground on  
this pin.  
9
REXT  
MDIO  
MDC  
I
Ipu/  
Opu  
Management Interface (MII) Data I/O. This pin has a weak pull-up, is open-  
drain, and requires an external 1.0 kpull-up resistor.  
10  
11  
Management Interface (MII) Clock Input. This clock pin is synchronous to the  
MDIO data pin.  
Ipu  
12  
13  
14  
RXD1  
RXD0  
VDDIO  
Ipd/O  
Ipu/O  
P
RMII Receive Data Output[1] (Note 2-2).  
RMII Receive Data Output[0] (Note 2-2).  
3.3V, 2.5V, or 1.8V Digital VDD  
.
RMII Mode: Carrier Sense/Receive Data Valid Output.  
Config. Mode: The pull-up/pull-down value is latched as PHYAD[1:0] at the  
de-assertion of reset.  
CRS_DV/  
PHYAD[1:0]  
15  
Ipd/O  
See the Strapping Options section for details.  
DS00002199A-page 6  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
TABLE 2-1:  
SIGNALS - KSZ8081RNA/RND (CONTINUED)  
Type  
Pin  
Number  
Pin  
Note  
Name  
2-1  
Description  
RMII – 25 MHz Mode: This pin provides the 50 MHz RMII reference clock out-  
put to the MAC.  
RMII – 50 MHz Mode: This pin is a no connect.  
For unmanaged mode (power-up default setting),  
– KSZ8081RNA is in RMII – 25 MHz mode and outputs the 50 MHz RMII ref-  
erence clock on this pin.  
16  
REF_CLK  
Ipd/O  
– KSZ8081RND is in RMII – 50 MHz mode and does not use this pin.  
After power-up, both KSZ8081RNA and KSZ8081RND can be programmed  
to either 25 MHz mode or 50 MHz mode using PHY Register 1Fh Bit [7].  
See also XI (Pin 8).  
RMII Receive Error Output.  
At the de-assertion of reset, this pin needs to latch in a pull-down value for  
normal operation. If MAC side pulls this pin high, see Register 16h, Bit [15] for  
solution. It is better having an external pull-down resistor to avoid MAC side  
pulls this pin high.  
17  
18  
RXER  
INTRP  
Ipd/O  
Ipu/  
Opu  
Interrupt Output: Programmable interrupt output. This pin has a weak pull-up,  
is open drain, and requires an external 1.0 kpull-up resistor.  
19  
20  
TXEN  
TXD0  
I
I
RMII Transmit Enable Input.  
RMII Transmit Data Input [0] (Note 2-3).  
RMII Transmit Data Input [1] (Note 2-3).  
NAND Tree Mode: NAND Tree output pin.  
21  
22  
TXD1  
GND  
I/O  
GND  
Ground.  
LED Output: Programmable LED0 Output.  
Config. Mode: Latched as auto-negotiation enable (Register 0h, Bit [12]) and  
Speed (Register 0h, Bit [13]) at the de-assertion of reset. See the Strapping  
Options section for details.  
The LED0 pin is programmable using Register 1Fh bits [5:4], and is defined  
as follows:  
LED Mode = [00]  
Link/Activity  
Pin State  
High  
LED Definition  
OFF  
No Link  
LED0/  
ANEN_SPEED  
23  
Ipu/O  
Link  
Low  
ON  
Activity  
Toggle  
Blinking  
LED Mode = [01]  
Link  
Pin State  
High  
LED Definition  
No Link  
OFF  
ON  
Link  
Low  
LED Mode = [10], [11]: Reserved  
Chip Reset (active-low).  
24  
RST#  
Ipu  
2016 Microchip Technology Inc.  
DS00002199A-page 7  
KSZ8081RNA/RND  
TABLE 2-1:  
SIGNALS - KSZ8081RNA/RND (CONTINUED)  
Type  
Note  
2-1  
Pin  
Number  
Pin  
Name  
Description  
Paddle  
GND  
GND  
Ground.  
Note 2-1  
P = power supply  
GND = ground  
I = input  
O = output  
I/O = bi-directional  
Ipu = Input with internal pull-up (see Section 6.0, "Electrical Characteristics" for value).  
Ipu/O = Input with internal pull-up (see Section 6.0, "Electrical Characteristics" for value) during  
power-up/reset; output pin otherwise.  
Ipd/O = Input with internal pull-down (see Electrical Characteristics for value) during power-up/reset;  
output pin otherwise.  
Ipu/Opu = Input with internal pull-up (see Electrical Characteristics for value) and output with internal  
pull-up (see Electrical Characteristics for value).  
Note 2-2  
Note 2-3  
RMII RX Mode: The RXD[1:0] bits are synchronous with the 50 MHz RMII Reference Clock. For each  
clock period in which CRS_DV is asserted, two bits of recovered data are sent by the PHY to the  
MAC.  
RMII TX Mode: The TXD[1:0] bits are synchronous with the 50 MHz RMII Reference Clock. For each  
clock period in which TXEN is asserted, two bits of data are received by the PHY from the MAC.  
DS00002199A-page 8  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
The PHYAD[1:0] strap-in pin is latched at the de-assertion of reset. In some systems, the RMII MAC receive input pins  
may drive high/low during power-up or reset, and consequently cause the PHYAD[1:0] strap-in pin, a shared pin with  
the RMII CRS_DV signal, to be latched to the unintended high/low state. In this case an external pull-up (4.7 k) or pull-  
down (1.0 k) should be added on the PHYAD[1:0] strap-in pin to ensure that the intended value is strapped-in correctly.  
TABLE 2-2:  
Pin Number  
STRAP-IN OPTIONS - KSZ8081RNA/RND  
Type  
Pin Name  
Description  
Note 2-4  
The PHY Address is latched at the de-assertion of reset and is con-  
figurable to either one of the following two values:  
Pull-up = PHY Address is set to 00011b (0x3h)  
Pull-down (default) = PHY Address is set to 00000b (0x0h)  
15  
PHYAD[1:0]  
Ipd/O  
Ipu/O  
PHY Address Bits [4:2] are set to 000 by default.  
Auto-Negotiation Enable and SPEED Mode  
Pull-up (default) = Enable Auto-Negotiation and set 100 Mbps Speed  
Pull-down = Disable Auto-Negotiation and set 10 Mbps Speed  
23  
ANEN_SPEED  
At the de-assertion of reset, this pin value is latched into Register 0h  
Bit [12] for Auto-negotiation enable/disable, Register 0h Bit [13] for  
the speed select, and Register 4h (Auto-Negotiation Advertisement)  
for the speed capability support.  
Note 2-4  
Ipu/O = Input with internal pull-up (see Electrical Characteristics for value) during power-up/reset;  
output pin otherwise.  
Ipd/O = Input with internal pull-down (see Electrical Characteristics for value) during power-up/reset;  
output pin otherwise.  
2016 Microchip Technology Inc.  
DS00002199A-page 9  
KSZ8081RNA/RND  
3.0  
FUNCTIONAL DESCRIPTION  
The KSZ8081RNA is an integrated, single 3.3V supply, fast Ethernet transceiver. It is fully compliant with the IEEE 802.3  
Specification, and reduces board cost and simplifies board layout by using on-chip termination resistors for the two dif-  
ferential pairs and by integrating the regulator to supply the 1.2V core.  
On the copper media side, the KSZ8081RNA supports 10BASE-T and 100BASE-TX for transmission and reception of  
data over a standard CAT-5 unshielded twisted pair (UTP) cable, and HP Auto MDI/MDI-X for reliable detection of and  
correction for straight-through and crossover cables.  
On the MAC processor side, the KSZ8081RNA offers the Reduced Media Independent Interface (RMII) for direct con-  
nection with RMII-compliant Ethernet MAC processors and switches  
The MII management bus option gives the MAC processor complete access to the KSZ8081RNA control and status  
registers. Additionally, an interrupt pin eliminates the need for the processor to poll for PHY status change.  
As the power-up default, the KSZ8081RNA uses a 25 MHz crystal to generate all required clocks, including the 50 MHz  
RMII reference clock output for the MAC. The KSZ8081RND version uses the 50 MHz RMII reference clock as the  
power-up default.  
The KSZ8081RNA/RND is used to refer to both KSZ8081RNA and KSZ8081RND versions in this data sheet.  
3.1  
10BASE-T/100BASE-TX Transceiver  
3.1.1  
100BASE-TX TRANSMIT  
The 100BASE-TX transmit function performs parallel-to-serial conversion, 4B/5B encoding, scrambling, NRZ-to-NRZI  
conversion, and MLT3 encoding and transmission.  
The circuitry starts with a parallel-to-serial conversion, which converts the MII data from the MAC into a 125 MHz serial  
bit stream. The data and control stream is then converted into 4B/5B coding and followed by a scrambler. The serialized  
data is further converted from NRZ-to-NRZI format, and then transmitted in MLT3 current output. The output current is  
set by an external 6.49 k1% resistor for the 1:1 transformer ratio.  
The output signal has a typical rise/fall time of 4 ns and complies with the ANSI TP-PMD standard regarding amplitude  
balance, overshoot, and timing jitter. The wave-shaped 10BASE-T output is also incorporated into the 100BASE-TX  
transmitter.  
3.1.2  
100BASE-TX RECEIVE  
The 100BASE-TX receiver function performs adaptive equalization, DC restoration, MLT3-to-NRZI conversion, data and  
clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion.  
The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted  
pair cable. Because the amplitude loss and phase distortion is a function of the cable length, the equalizer must adjust  
its characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on  
comparisons of incoming signal strength against some known cable characteristics, then tunes itself for optimization.  
This is an ongoing process and self-adjusts against environmental changes such as temperature variations.  
Next, the equalized signal goes through a DC-restoration and data-conversion block. The DC-restoration circuit com-  
pensates for the effect of baseline wander and improves the dynamic range. The differential data-conversion circuit con-  
verts MLT3 format back to NRZI. The slicing threshold is also adaptive.  
The clock-recovery circuit extracts the 125 MHz clock from the edges of the NRZI signal. This recovered clock is then  
used to convert the NRZI signal to NRZ format. This signal is sent through the de-scrambler, then the 4B/5B decoder.  
Finally, the NRZ serial data is converted to MII format and provided as the input data to the MAC.  
3.1.3  
SCRAMBLER/DE-SCRAMBLER (100BASE-TX ONLY)  
The scrambler spreads the power spectrum of the transmitted signal to reduce electromagnetic interference (EMI) and  
baseline wander. The de-scrambler recovers the scrambled signal.  
3.1.4  
10BASE-T TRANSMIT  
The 10BASE-T drivers are incorporated with the 100BASE-TX drivers to allow for transmission using the same mag-  
netic. The drivers perform internal wave-shaping and pre-emphasis, and output 10BASE-T signals with typical ampli-  
tude of 2.5V peak. The 10BASE-T signals have harmonic contents that are at least 27 dB below the fundamental  
frequency when driven by an all-ones Manchester-encoded signal.  
DS00002199A-page 10  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
3.1.5  
10BASE-T RECEIVE  
On the receive side, input buffer and level detecting squelch circuits are used. A differential input receiver circuit and a  
phase-locked loop (PLL) performs the decoding function. The Manchester-encoded data stream is separated into clock  
signal and NRZ data. A squelch circuit rejects signals with levels less than 400 mV, or with short pulse widths, to prevent  
noise at the RXP and RXM inputs from falsely triggering the decoder. When the input exceeds the squelch limit, the PLL  
locks onto the incoming signal and the KSZ8081RNA/RND decodes a data frame. The receive clock is kept active  
during idle periods between data receptions.  
3.1.6  
PLL CLOCK SYNTHESIZER  
The KSZ8081RNA/RND in RMII – 25 MHz Clock mode generates all internal clocks and all external clocks for system  
timing from an external 25 MHz crystal, oscillator, or reference clock. For the KSZ8081RNA/RND in RMII – 50 MHz  
clock mode, these clocks are generated from an external 50 MHz oscillator or system clock.  
3.1.7  
AUTO-NEGOTIATION  
The KSZ8081RNA/RND conforms to the auto-negotiation protocol, defined in Clause 28 of the IEEE 802.3 Specifica-  
tion.  
Auto-negotiation allows unshielded twisted pair (UTP) link partners to select the highest common mode of operation.  
During auto-negotiation, link partners advertise capabilities across the UTP link to each other and then compare their  
own capabilities with those they received from their link partners. The highest speed and duplex setting that is common  
to the two link partners is selected as the mode of operation.  
The following list shows the speed and duplex operation mode from highest to lowest priority.  
• Priority 1: 100BASE-TX, full-duplex  
• Priority 2: 100BASE-TX, half-duplex  
• Priority 3: 10BASE-T, full-duplex  
• Priority 4: 10BASE-T, half-duplex  
If auto-negotiation is not supported or the KSZ8081RNA/RND link partner is forced to bypass auto-negotiation, then the  
KSZ8081RNA/RND sets its operating mode by observing the signal at its receiver. This is known as parallel detection,  
which allows the KSZ8081RNA/RND to establish a link by listening for a fixed signal protocol in the absence of the auto-  
negotiation advertisement protocol.  
Auto-negotiation is enabled by either hardware pin strapping (ANEN_SPEED, Pin 23) or software (Register 0h, Bit [12]).  
By default, auto-negotiation is enabled after power-up or hardware reset. After that, auto-negotiation can be enabled or  
disabled by Register 0h, Bit [12]. If auto-negotiation is disabled, the speed is set by Register 0h, Bit [13], and the duplex  
is set by Register 0h, Bit [8].  
The auto-negotiation link-up process is shown in Figure 3-1.  
2016 Microchip Technology Inc.  
DS00002199A-page 11  
KSZ8081RNA/RND  
FIGURE 3-1:  
AUTO-NEGOTIATION FLOW CHART  
START AUTO-NEGOTIATION  
PARALLEL  
OPERATION  
FORCE LINK SETTING  
YES  
NO  
ATTEMPT AUTO-  
NEGOTIATION  
LISTEN FOR 100BASE-TX  
IDLES  
LISTEN FOR 10BASE-T  
LINK PULSES  
BYPASS AUTO-NEGOTIATION  
AND SET LINK MODE  
NO  
JOIN FLOW  
LINK MODE SET?  
YES  
LINK MODE SET  
3.2  
RMII Interface  
The Reduced Media Independent Interface (RMII) specifies a low pin count Media Independent Interface (MII). It pro-  
vides a common interface between physical layer and MAC layer devices, and has the following key characteristics:  
• Pin count is 8 pins (3 pins for data transmission, 4 pins for data reception, and 1 pin for the 50 MHz reference  
clock).  
• 10 Mbps and 100 Mbps data rates are supported at both half- and full-duplex.  
• Data transmission and reception are independent and belong to separate signal groups.  
• Transmit data and receive data are each 2 bits wide, a dibit.  
3.2.1  
RMII SIGNAL DEFINITION  
Table 3-1 describes the RMII signals. Refer to RMII Specification v1.2 for detailed information.  
DS00002199A-page 12  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
TABLE 3-1:  
RMII SIGNAL DEFINITION  
Direction with  
RMII Signal  
Name  
Direction with  
Respect to PHY,  
KSZ8081 Signal  
Description  
Respect to MAC  
Output (25 MHz  
Clock Mode)/  
Input/  
Synchronous 50 MHz reference clock for receive, trans-  
REF_CLK  
No Connect (50 MHz Input or No Connect mit, and control interface  
Clock Mode)  
TXEN  
Input  
Input  
Output  
Output  
Input  
Transmit Enable  
TXD[1:0]  
CRS_DV  
RXD[1:0]  
Transmit Data[1:0]  
Output  
Output  
Carrier Sense/Receive Data Valid  
Receive Data[1:0]  
Input  
Input or  
Not Required  
RXER  
Output  
Receive Error  
3.2.1.1  
Reference Clock (REF_CLK)  
REF_CLK is a continuous 50 MHz clock that provides the timing reference for TXEN, TXD[1:0], CRS_DV, RXD[1:0],  
and RX_ER.  
For RMII – 25 MHz Clock Mode, the KSZ8081RNA/RND generates and outputs the 50 MHz RMII REF_CLK to the MAC  
at REF_CLK (Pin 16).  
For RMII – 50 MHz Clock Mode, the KSZ8081RNA/RND takes in the 50 MHz RMII REF_CLK from the MAC or system  
board at XI (Pin 8) and leaves the REF_CLK (Pin 16) as no connect.  
3.2.1.2  
Transmit Enable (TXEN)  
TXEN indicates that the MAC is presenting dibits on TXD[1:0] for transmission. It is asserted synchronously with the first  
dibit of the preamble and remains asserted while all dibits to be transmitted are presented on the RMII. It is negated  
before the first REF_CLK following the final dibit of a frame.  
TXEN transitions synchronously with respect to REF_CLK.  
3.2.1.3  
Transmit Data[1:0] (TXD[1:0])  
TXD[1:0] transitions synchronously with respect to REF_CLK. When TXEN is asserted, the PHY accepts TXD[1:0] for  
transmission.  
TXD[1:0] is 00 to indicate idle when TXEN is de-asserted. The PHY ignores values other than 00 on TXD[1:0] while  
TXEN is de-asserted.  
3.2.1.4  
Carrier Sense/Receive Data Valid (CRS_DV)  
The PHY asserts CRS_DV when the receive medium is non-idle. It is asserted asynchronously when a carrier is  
detected. This happens when squelch is passed in 10 Mbps mode, and when two non-contiguous 0s in 10 bits are  
detected in 100 Mbps mode. Loss of carrier results in the de-assertion of CRS_DV.  
While carrier detection criteria are met, CRS_DV remains asserted continuously from the first recovered dibit of the  
frame through the final recovered dibit. It is negated before the first REF_CLK that follows the final dibit. The data on  
RXD[1:0] is considered valid after CRS_DV is asserted. However, because the assertion of CRS_DV is asynchronous  
relative to REF_CLK, the data on RXD[1:0] is 00 until receive signals are properly decoded.  
3.2.1.5  
Receive Data[1:0] (RXD[1:0])  
RXD[1:0] transitions synchronously with respect to REF_CLK. For each clock period in which CRS_DV is asserted,  
RXD[1:0] transfers two bits of recovered data from the PHY.  
RXD[1:0] is 00 to indicate idle when CRS_DV is de-asserted. The MAC ignores values other than 00 on RXD[1:0] while  
CRS_DV is de-asserted.  
2016 Microchip Technology Inc.  
DS00002199A-page 13  
KSZ8081RNA/RND  
3.2.1.6  
Receive Error (RXER)  
RXER is asserted for one or more REF_CLK periods to indicate that a symbol error (for example, a coding error that a  
PHY can detect that may otherwise be undetectable by the MAC sub-layer) was detected somewhere in the frame being  
transferred from the PHY.  
RXER transitions synchronously with respect to REF_CLK. While CRS_DV is de-asserted, RXER has no effect on the  
MAC.  
3.2.1.7  
Collision Detection (COL)  
The MAC regenerates the COL signal of the MII from TXEN and CRS_DV.  
3.2.2  
RMII SIGNAL DIAGRAM – 25/50 MHZ CLOCK MODE  
The KSZ8081RNA/RND RMII pin connections to the MAC for 25 MHz clock mode are shown in Figure 3-2. The con-  
nections for 50 MHz clock mode are shown in Figure 3-3.  
3.2.2.1  
RMII – 25 MHz Clock Mode  
The KSZ8081RNA is configured to RMII – 25 MHz clock mode after it is powered up or hardware reset with the following:  
• A 25 MHz crystal connected to XI, XO (Pins 8, 7), or an external 25 MHz clock source (oscillator) connected to XI  
The KSZ8081RND can optionally be configured to RMII – 25 MHz clock mode after it is powered up or hardware reset  
and software programmed with the following:  
• A 25 MHz crystal connected to XI, XO (Pins 8, 7), or an external 25 MHz clock source (oscillator) connected to XI  
• Register 1Fh, Bit [7] programmed to ‘1’ to select RMII – 25 MHz clock mode  
FIGURE 3-2:  
KSZ8081RNA/RND RMII INTERFACE (RMII - 25 MHZ CLOCK MODE)  
'
RMII MAC  
KSZ8081RNA/RND  
CRS_DV  
RXD[1:0]  
RXER  
CRS_DV  
RXD[1:0]  
RX_ER  
TXEN  
TX_EN  
TXD[1:0]  
TXD[1:0]  
REF_CLK  
REF_CLK  
XO  
XI  
25MHz  
XTAL  
22pF  
22pF  
DS00002199A-page 14  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
3.2.2.2  
RMII – 50 MHz Clock Mode  
The KSZ8081RND is configured to RMII – 50 MHz clock mode after it is powered up or hardware reset with the follow-  
ing:  
• An external 50 MHz clock source (oscillator) connected to XI (Pin 8)  
The KSZ8081RNA can optionally be configured to RMII – 50 MHz clock mode after it is powered up or hardware reset  
and software programmed with the following:  
• An external 50 MHz clock source (oscillator) connected to XI (Pin 8)  
• Register 1Fh, Bit [7] programmed to ‘1’ to select RMII – 50 MHz clock mode  
FIGURE 3-3:  
KSZ8081RNA/RND RMII INTERFACE (RMII - 50 MHZ CLOCK MODE)  
RMII MAC  
KSZ8081RNA/RND  
CRS_DV  
RXD[1:0]  
RXER  
CRS_DV  
RXD[1:0]  
RX_ER  
TXEN  
TX_EN  
TXD[1:0]  
TXD[1:0]  
REF_CLK  
XI  
50MHz  
OSC  
2016 Microchip Technology Inc.  
DS00002199A-page 15  
KSZ8081RNA/RND  
3.3  
Back-to-Back Mode – 100 Mbps Copper Repeater  
Two KSZ8081RNA/RND devices can be connected back-to-back to form a managed 100BASE-TX copper repeater.  
FIGURE 3-4:  
KSZ8081RNA/RND AND KSZ8081RNA/RND RMII BACK-TO-BACK COPPER  
REPEATER  
RxD  
RXP/RXM  
TXP/TXM  
KSZ8081RNA/RND  
(COPPER MODE)  
TxD  
XI  
50MHz  
OSC  
XI  
KSZ8081RNA/RND  
(COPPER MODE)  
TXP/TXM  
RXP/RXM  
TxD  
RxD  
3.3.1  
RMII BACK-TO-BACK MODE  
In RMII back-to-back mode, a KSZ8081RNA/RND interfaces with another KSZ8081RNA/RND to provide a 100 Mbps  
copper repeater solution.  
The KSZ8081RNA/RND devices are configured to RMII back-to-back mode after power-up or reset, and software pro-  
gramming, with the following:  
• A common 50 MHz reference clock connected to XI (Pin 8)  
• Register 1Fh, Bit [7] programmed to ‘1’ to select RMII – 50 MHz clock mode for KSZ8081RNA  
KSZ8081RND is set to RMII – 50 MHz clock mode as the default after power up or hardware reset.  
• Register 16h, Bits [6] and [1] programmed to ‘1’ and ‘1’, respectively, to enable RMII back-to-back mode.  
• RMII signals connected as shown in Table 3-2.  
TABLE 3-2:  
RMII SIGNAL CONNECTION FOR RMII BACK-TO-BACK MODE (100BASE-TX  
COPPER REPEATER)  
KSZ8081RNA/RND (100BASE-TX Copper)  
KSZ8081RNA/RND (100BASE-TX Copper)  
[Device 2]  
[Device 1]  
Pin Name  
Pin Number  
Pin Type  
Pin Name  
Pin Number  
Pin Type  
CRS_DV  
RXD1  
RXD0  
TXEN  
TXD1  
15  
12  
13  
19  
21  
20  
Output  
Output  
Output  
Input  
TXEN  
TXD1  
19  
21  
20  
15  
12  
13  
Input  
Input  
TXD0  
Input  
CRS_DV  
RXD1  
Output  
Output  
Output  
Input  
TXD0  
Input  
RXD0  
DS00002199A-page 16  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
3.4  
MII Management (MIIM) Interface  
The KSZ8081RNA/RND supports the IEEE 802.3 MII management interface, also known as the Management Data  
Input/Output (MDIO) interface. This interface allows an upper-layer device, such as a MAC processor, to monitor and  
control the state of the KSZ8081RNA/RND. An external device with MIIM capability is used to read the PHY status and/  
or configure the PHY settings. More details about the MIIM interface can be found in Clause 22.2.4 of the IEEE 802.3  
Specification.  
The MIIM interface consists of the following:  
• A physical connection that incorporates the clock line (MDC) and the data line (MDIO).  
• A specific protocol that operates across the physical connection mentioned earlier, which allows the external con-  
troller to communicate with one or more PHY devices.  
• A set of 16-bit MDIO registers. Registers [0:8] are standard registers, and their functions are defined in the IEEE  
802.3 Specification. The additional registers are provided for expanded functionality. See the Register Map section  
for details.  
The KSZ8081RNA/RND supports only two unique PHY addresses. The PHYAD[1:0] strapping pin is used to select  
either 0h or 3h as the unique PHY address for the KSZ8081RNA/RND device.  
PHY address 0h is defined as the broadcast PHY address according to the IEEE 802.3 Specification, and can be used  
to read/write to a single PHY device, or write to multiple PHY devices simultaneously. For the KSZ8081RNA/RND, PHY  
address 0h defaults to the broadcast PHY address after power-up, but PHY address 0h can be disabled as the broad-  
cast PHY address using software to assign it as a unique PHY address.  
For applications that require two KSZ8081RNA/RND PHYs to share the same MDIO interface with one PHY set to  
address 0h and the other PHY set to address 3h, use PHY address 0h (defaults to broadcast after power-up) to set both  
PHYs’ Register 16h, Bit [9] to ‘1’ to assign PHY address 0h as a unique (non-broadcast) PHY address.  
Table 3-3 shows the MII management frame format for the KSZ8081RNA/RND.  
TABLE 3-3:  
MII MANAGEMENT FRAME FORMAT FOR THE KSZ8081RNA/RND  
Read/  
PHY  
REG  
Start of  
Frame  
Preamble  
Write OP Address Address TA  
Code  
Data Bits[15:0]  
Idle  
Bits[4:0] Bits[4:0]  
Read  
Write  
32 1’s  
32 1’s  
01  
01  
10  
01  
000AA  
000AA  
RRRRR Z0  
RRRRR 10  
DDDDDDDD_DDDDDDDD  
DDDDDDDD_DDDDDDDD  
Z
Z
3.5  
Interrupt (INTRP)  
INTRP (Pin 18) is an optional interrupt signal that is used to inform the external controller that there has been a status  
update to the KSZ8081RNA/RND PHY register. Bits [15:8] of Register 1Bh are the interrupt control bits to enable and  
disable the conditions for asserting the INTRP signal. Bits [7:0] of Register 1Bh are the interrupt status bits to indicate  
which interrupt conditions have occurred. The interrupt status bits are cleared after reading Register 1Bh.  
Bit [9] of Register 1Fh sets the interrupt level to active high or active low. The default is active low.  
The MII management bus option gives the MAC processor complete access to the KSZ8081RNA/RND control and sta-  
tus registers. Additionally, an interrupt pin eliminates the need for the processor to poll the PHY for status change.  
3.6  
HP Auto MDI/MDI-X  
HP Auto MDI/MDI-X configuration eliminates the need to decide whether to use a straight cable or a crossover cable  
between the KSZ8081RNA/RND and its link partner. This feature allows the KSZ8081RNA/RND to use either type of  
cable to connect with a link partner that is in either MDI or MDI-X mode. The auto-sense function detects transmit and  
receive pairs from the link partner and assigns transmit and receive pairs to the KSZ8081RNA/RND accordingly.  
HP Auto MDI/MDI-X is enabled by default. It is disabled by writing a ‘1’ to Register 1Fh, Bit [13]. MDI and MDI-X mode  
is selected by Register 1Fh, Bit [14] if HP Auto MDI/MDI-X is disabled.  
An isolation transformer with symmetrical transmit and receive data paths is recommended to support Auto MDI/MDI-X.  
Table 3-4 shows how the IEEE 802.3 Standard defines MDI and MDI-X.  
2016 Microchip Technology Inc.  
DS00002199A-page 17  
KSZ8081RNA/RND  
TABLE 3-4:  
MDI/MDI-X PIN DESCRIPTION  
MDI  
MDI-X  
RJ-45 Pin  
Signal  
RJ-45 Pin  
Signal  
1
2
3
6
TX+  
TX–  
RX+  
RX–  
1
2
3
6
RX+  
RX–  
TX+  
TX–  
3.6.1  
STRAIGHT CABLE  
A straight cable connects an MDI device to an MDI-X device, or an MDI-X device to an MDI device. Figure 3-5 shows  
a typical straight cable connection between a NIC card (MDI device) and a switch or hub (MDI-X device).  
FIGURE 3-5:  
TYPICAL STRAIGHT CABLE CONNECTION  
10/100 ETHERNET  
MEDIA DEPENDENT INTERFACE  
10/100 ETHERNET  
MEDIA DEPENDENT INTERFACE  
1
1
TRANSMIT PAIR  
RECEIVE PAIR  
2
2
3
STRAIGHT  
CABLE  
3
4
4
RECEIVE PAIR  
5
TRANSMIT PAIR  
5
6
7
8
6
7
8
MODULAR CONNECTOR  
(RJ-45)  
MODULAR CONNECTOR  
(RJ-45)  
NIC  
HUB  
(REPEATER OR SWITCH)  
3.6.2  
CROSSOVER CABLE  
A crossover cable connects an MDI device to another MDI device, or an MDI-X device to another MDI-X device.  
Figure 3-6 shows a typical crossover cable connection between two switches or hubs (two MDI-X devices).  
DS00002199A-page 18  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
FIGURE 3-6:  
TYPICAL CROSSOVER CABLE CONNECTION  
10/100 ETHERNET  
MEDIA DEPENDENT INTERFACE  
10/100 ETHERNET  
MEDIA DEPENDENT INTERFACE  
1
1
CROSSOVER  
CABLE  
RECEIVE PAIR  
2
RECEIVE PAIR  
2
3
3
4
4
TRANSMIT PAIR  
5
TRANSMIT PAIR  
5
6
7
8
6
7
8
MODULAR CONNECTOR  
MODULAR CONNECTOR  
(RJ-45)  
HUB  
(RJ-45)  
HUB  
(REPEATER OR SWITCH)  
(REPEATER OR SWITCH)  
3.7  
Loopback Mode  
The KSZ8081RNA/RND supports the following loopback operations to verify analog and/or digital data paths.  
• Local (digital) loopback  
• Remote (analog) loopback  
3.7.1  
LOCAL (DIGITAL) LOOPBACK  
This loopback mode checks the RMII transmit and receive data paths between the KSZ8081RNA/RND and the external  
MAC, and is supported for both speeds (10/100 Mbps) at full-duplex.  
The loopback data path is shown in Figure 3-7.  
1. The RMII MAC transmits frames to the KSZ8081RNA/RND.  
2. Frames are wrapped around inside the KSZ8081RNA/RND.  
3. The KSZ8081RNA/RND transmits frames back to the RMII MAC.  
4. Except the frames back to the RMII MAC, the transmit frames also go out from the copper port.  
FIGURE 3-7:  
LOCAL (DIGITAL) LOOPBACK  
KSZ8081RNA/RND  
AFE  
PCS  
RMII  
MAC  
RMII  
(ANALOG)  
(DIGITAL)  
2016 Microchip Technology Inc.  
DS00002199A-page 19  
KSZ8081RNA/RND  
The following programming action and register settings are used for local loopback mode:  
For 10/100 Mbps loopback:  
Set Register 0h,  
Bit [14] = 1  
// Enable local loopback mode  
Bit [13] = 0/1 // Select 10 Mbps/100 Mbps speed  
Bit [12] = 0  
Bit [8] = 1  
// Disable auto-negotiation  
// Select full-duplex mode  
Follow the steps below if you don’t want the frames go out from the copper port in the local loopback.  
1. Set register 1Fh bit [3] to ‘1’ to disable the transmitter.  
2. Run local loopback test as above.  
3. Set register 1Fh bit [3] to ‘0’ to enable the transmitter.  
3.7.2  
REMOTE (ANALOG) LOOPBACK  
This loopback mode checks the line (differential pairs, transformer, RJ-45 connector, Ethernet cable) transmit and  
receive data paths between the KSZ8081RNA/RND and its link partner, and is supported for 100BASE-TX full-duplex  
mode only.  
The loopback data path is shown in Figure 3-8.  
1. The Fast Ethernet (100BASE-TX) PHY link partner transmits frames to the KSZ8081RNA/RND.  
2. Frames are wrapped around inside the KSZ8081RNA/RND.  
3. The KSZ8081RNA/RND transmits frames back to the Fast Ethernet (100BASE-TX) PHY link partner.  
FIGURE 3-8:  
REMOTE (ANALOG) LOOPBACK  
KSZ8081RNA/RND  
AFE  
(ANALOG)  
PCS  
(DIGITAL)  
RMII  
RJ-45  
CAT-5  
(UTP)  
100BASE-TX  
LINK PARTNER  
RJ-45  
The following programming steps and register settings are used for remote loopback mode:  
1. Set Register 0h,  
Bits [13] = 1 // Select 100Mbps speed  
Bit [12] = 0 // Disable auto-negotiation  
Bit [8] = 1  
// Select full-duplex mode  
Or just auto-negotiate and link up at 100BASE-TX full-duplex mode with the link partner.  
2. Set Register 1Fh,  
Bit [2] = 1  
// Enable remote loopback mode  
DS00002199A-page 20  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
3.8  
LinkMD® Cable Diagnostic  
The LinkMD function uses time-domain reflectometry (TDR) to analyze the cabling plant for common cabling problems.  
These include open circuits, short circuits, and impedance mismatches.  
LinkMD works by sending a pulse of known amplitude and duration down the MDI or MDI-X pair, then analyzing the  
shape of the reflected signal to determine the type of fault. The time duration for the reflected signal to return provides  
the approximate distance to the cabling fault. The LinkMD function processes this TDR information and presents it as  
a numerical value that can be translated to a cable distance.  
LinkMD is initiated by accessing Register 1Dh, the LinkMD Control/Status register, in conjunction with Register 1Fh, the  
PHY Control 2 register. The latter register is used to disable Auto MDI/MDI-X and to select either MDI or MDI-X as the  
cable differential pair for testing.  
3.8.1  
USAGE  
The following is a sample procedure for using LinkMD with Registers 1Dh and 1Fh:  
1. Disable auto MDI/MDI-X by writing a ‘1’ to Register 1Fh, bit [13].  
2. Start cable diagnostic test by writing a ‘1’ to Register 1Dh, bit [15]. This enable bit is self-clearing.  
3. Wait (poll) for Register 1Dh, bit [15] to return a ‘0’, and indicating cable diagnostic test is completed.  
4. Read cable diagnostic test results in Register 1Dh, bits [14:13]. The results are as follows:  
00 = normal condition (valid test)  
01 = open condition detected in cable (valid test)  
10 = short condition detected in cable (valid test)  
11 = cable diagnostic test failed (invalid test)  
The ‘11’ case, invalid test, occurs when the device is unable to shut down the link partner. In this instance, the test is  
not run, since it would be impossible for the device to determine if the detected signal is a reflection of the signal gen-  
erated or a signal from another source.  
5. Get distance to fault by concatenating Register 1Dh, bits [8:0] and multiplying the result by a constant of 0.38.  
The distance to the cable fault can be determined by the following formula:  
EQUATION 3-1:  
·
DDistance to cable fault in meters= 0.38  Register 1Dh, bits[8:0]  
Concatenated value of Registers 1Dh bits [8:0] should be converted to decimal before multiplying by 0.38.  
The constant (0.38) may be calibrated for different cabling conditions, including cables with a velocity of propagation  
that varies significantly from the norm.  
3.9  
NAND Tree Support  
The KSZ8081RNA/RND provides parametric NAND tree support for fault detection between chip I/Os and board. The  
NAND tree is a chain of nested NAND gates in which each KSZ8081RNA/RND digital I/O (NAND tree input) pin is an  
input to one NAND gate along the chain. At the end of the chain, the TXD1 pin provides the output for the nested NAND  
gates.  
The NAND tree test process includes:  
• Enabling NAND tree mode  
• Pulling all NAND tree input pins high  
• Driving each NAND tree input pin low, sequentially, according to the NAND tree pin order  
• Checking the NAND tree output to make sure there is a toggle high-to-low or low-to-high for each NAND tree input  
driven low  
Table 3-5 lists the NAND tree pin order.  
2016 Microchip Technology Inc.  
DS00002199A-page 21  
KSZ8081RNA/RND  
TABLE 3-5:  
NAND TREE TEST PIN ORDER FOR KSZ8081RNA/RND  
Pin Number  
Pin Name  
NAND Tree Description  
10  
11  
12  
13  
15  
16  
18  
19  
23  
20  
21  
MDIO  
MDC  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
RXD1  
RXD0  
CRS_DV  
REF_CLK  
INTRP  
TXEN  
LED0  
TXD0  
TXD1  
3.9.1  
NAND TREE I/O TESTING  
Use the following procedure to check for faults on the KSZ8081RNA/RND digital I/O pin connections to the board:  
1. Enable NAND tree mode by setting Register 16h, Bit [5] to ‘1’.  
2. Use board logic to drive all KSZ8081RNA/RND NAND tree input pins high.  
3. Use board logic to drive each NAND tree input pin, in KSZ8081RNA/RND tree pin order, as follows:  
a) Toggle the first pin (MDIO) from high to low, and verify that the TDX1 pin switches from high to low to indicate  
that the first pin is connected properly.  
b) Leave the first pin (MDIO) low.  
c) Toggle the second pin (MDC) from high to low, and verify that the TXD1 pin switches from low to high to  
indicate that the second pin is connected properly.  
d) Leave the first pin (MDIO) and the second pin (MDC) low.  
e) Toggle the third pin from high to low, and verify that the TXD1 pin switches from high-to-low to indicate that  
the third pin is connected properly.  
f) Continue with this sequence until all KSZ8081RNA/RND NAND tree input pins have been toggled.  
Each KSZ8081RNA/RND NAND tree input pin must cause the TXD1 output pin to toggle high-to-low or low-to-high to  
indicate a good connection. If the TXD1 pin fails to toggle when the KSZ8081RNA/RND input pin toggles from high to  
low, the input pin has a fault.  
3.10 Power Management  
The KSZ8081RNA/RND incorporates a number of power-management modes and features that provide methods to  
consume less energy. These are discussed in the following sections.  
3.10.1  
POWER-SAVING MODE  
Power-saving mode is used to reduce the transceiver power consumption when the cable is unplugged. It is enabled  
by writing a ‘1’ to Register 1Fh, Bit [10], and is in effect when auto-negotiation mode is enabled and the cable is discon-  
nected (no link).  
In this mode, the KSZ8081RNA/RND shuts down all transceiver blocks except the transmitter, energy detect, and PLL  
circuits.  
By default, power-saving mode is disabled after power-up.  
3.10.2  
ENERGY-DETECT POWER-DOWN MODE  
Energy-detect power-down (EDPD) mode is used to further reduce transceiver power consumption when the cable is  
unplugged. It is enabled by writing a ‘0’ to Register 18h, Bit [11], and is in effect when auto-negotiation mode is enabled  
and the cable is disconnected (no link).  
EDPD mode works with the PLL off (set by writing a ‘1’ to Register 10h, Bit [4] to automatically turn the PLL off in EDPD  
mode) to turn off all KSZ8081RNA/RND transceiver blocks except the transmitter and energy-detect circuits.  
DS00002199A-page 22  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
Power can be reduced further by extending the time interval between transmissions of link pulses to check for the pres-  
ence of a link partner. The periodic transmission of link pulses is needed to ensure two link partners in the same low  
power state and with auto MDI/MDI-X disabled can wake up when the cable is connected between them.  
By default, energy-detect power-down mode is disabled after power-up.  
3.10.3  
POWER-DOWN MODE  
Power-down mode is used to power down the KSZ8081RNA/RND device when it is not in use after power-up. It is  
enabled by writing a ‘1’ to Register 0h, Bit [11].  
In this mode, the KSZ8081RNA/RND disables all internal functions except the MII management interface. The  
KSZ8081RNA/RND exits (disables) power-down mode after Register 0h, Bit [11] is set back to ‘0’.  
3.10.4  
SLOW-OSCILLATOR MODE  
Slow-oscillator mode is used to disconnect the input reference crystal/clock on XI (Pin 8) and select the on-chip slow  
oscillator when the KSZ8081RNA/RND device is not in use after power-up. It is enabled by writing a ‘1’ to Register 11h,  
Bit[5].  
Slow-oscillator mode works in conjunction with power-down mode to put the KSZ8081RNA/RND device in the lowest  
power state, with all internal functions disabled except the MII management interface. To properly exit this mode and  
return to normal PHY operation, use the following programming sequence:  
1. Disable slow-oscillator mode by writing a ‘0’ to Register 11h, Bit [5].  
2. Disable power-down mode by writing a ‘0’ to Register 0h, Bit [11].  
3. Initiate software reset by writing a ‘1’ to Register 0h, Bit [15].  
3.11 Reference Circuit for Power and Ground Connections  
The KSZ8081RNA/RND is a single 3.3V supply device with a built-in regulator to supply the 1.2V core. The power and  
ground connections are shown in Figure 3-9 and Table 3-6 for 3.3V VDDIO.  
FIGURE 3-9:  
KSZ8081RNA/RND POWER AND GROUND CONNECTIONS  
FERRITE  
BEAD  
1
2.2μF  
0.1μF  
VDD_1.2  
2
VDDA_3.3  
22μF  
0.1μF  
KSZ8081RNA/RND  
3.3V  
VDDIO  
14  
22μF  
0.1μF  
GND  
22 PADDLE  
2016 Microchip Technology Inc.  
DS00002199A-page 23  
KSZ8081RNA/RND  
TABLE 3-6:  
Power Pin  
KSZ8081RNA/RND POWER PIN DESCRIPTION  
Pin Number  
Description  
VDD_1.2  
1
2
Decouple with 2.2 µF and 0.1 µF capacitors to ground.  
VDDA_3.3  
Connect to board’s 3.3V supply through a ferrite bead. Decouple with  
22 µF and 0.1 µF capacitors to ground.  
VDDIO  
14  
Connect to board’s 3.3V supply for 3.3V VDDIO. Decouple with 22 µF  
and 0.1 µF capacitors to ground.  
3.12 Typical Current/Power Consumption  
Table 3-7, Table 3-8, and Table 3-9 show typical values for current consumption by the transceiver (VDDA_3.3) and dig-  
ital I/O (VDDIO) power pins and typical values for power consumption by the KSZ8081RNA/RND device for the indi-  
cated nominal operating voltage combinations. These current and power consumption values include the transmit driver  
current and on-chip regulator current for the 1.2V core.  
TABLE 3-7:  
TYPICAL CURRENT/POWER CONSUMPTION (VDDA_3.3 = 3.3V, VDDIO = 3.3V)  
3.3V Transceiver  
(VDDA_3.3)  
3.3V Digital I/Os  
(VDDIO)  
Condition  
Total Chip Power  
100BASE-TX Link-up (no traffic)  
100BASE-TX Full-duplex @ 100% utilization  
10BASE-T Link-up (no traffic)  
34 mA  
34 mA  
14 mA  
30 mA  
14 mA  
10 mA  
3.77 mA  
12 mA  
13 mA  
11 mA  
11 mA  
10 mA  
10 mA  
1.54 mA  
152 mW  
155 mW  
82.5 mW  
135 mW  
79.2 mW  
66 mW  
10BASE-T Full-duplex @ 100% utilization  
Power-saving mode (Reg. 1Fh, Bit [10] = 1)  
EDPD mode (Reg. 18h, Bit [11] = 0)  
EDPD mode (Reg. 18h, Bit [11] = 0) and  
PLL off (Reg. 10h, Bit [4] = 1)  
1.75 mW  
Software power-down mode (Reg. 0h, Bit [11] =1)  
2.59 mA  
1.36 mA  
1.51 mA  
0.45 mA  
13.5 mW  
5.97 mW  
Software power-down mode (Reg. 0h, Bit [11] =1)  
and slow-oscillator mode (Reg. 11h, Bit [5] =1)  
TABLE 3-8:  
TYPICAL CURRENT/POWER CONSUMPTION (VDDA_3.3 = 3.3V, VDDIO = 2.5V)  
3.3V Transceiver  
(VDDA_3.3)  
2.5V Digital I/Os  
(VDDIO)  
Condition  
Total Chip Power  
100BASE-TX Link-up (no traffic)  
100BASE-TX Full-duplex @ 100% utilization  
10BASE-T Link-up (no traffic)  
34 mA  
34 mA  
15 mA  
27 mA  
15 mA  
11 mA  
3.55 mA  
12 mA  
13 mA  
11 mA  
11 mA  
10 mA  
10 mA  
1.35 mA  
142 mW  
145 mW  
77 mW  
10BASE-T Full-duplex @ 100% utilization  
Power-saving mode (Reg. 1Fh, Bit [10] = 1)  
EDPD mode (Reg. 18h, Bit [11] = 0)  
117 mW  
74.5 mW  
61.3 mW  
15.1 mW  
EDPD mode (Reg. 18h, Bit [11] = 0) and  
PLL off (Reg. 10h, Bit [4] = 1)  
Software power-down mode (Reg. 0h, Bit [11] =1)  
2.29 mA  
1.15 mA  
1.34 mA  
0.29 mA  
10.9 mW  
4.52 mW  
Software power-down mode (Reg. 0h, Bit [11] =1)  
and slow-oscillator mode (Reg. 11h, Bit [5] =1)  
DS00002199A-page 24  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
TABLE 3-9:  
TYPICAL CURRENT/POWER CONSUMPTION (VDDA_3.3 = 3.3V, VDDIO = 1.8V)  
3.3V Transceiver  
(VDDA_3.3)  
1.8V Digital I/Os  
(VDDIO)  
Condition  
Total Chip Power  
100BASE-TX Link-up (no traffic)  
100BASE-TX Full-duplex @ 100% utilization  
10BASE-T Link-up (no traffic)  
34 mA  
34 mA  
15 mA  
27 mA  
15 mA  
11 mA  
4.05 mA  
11 mA  
12 mA  
10 mA  
10 mA  
9 mA  
132 mW  
134 mW  
67.5 mW  
107 mW  
65.7 mW  
52.5 mW  
15.5 mW  
10BASE-T Full-duplex @ 100% utilization  
Power-saving mode (Reg. 1Fh, Bit [10] = 1)  
EDPD mode (Reg. 18h, Bit [11] = 0)  
9 mA  
EDPD mode (Reg. 18h, Bit [11] = 0) and  
PLL off (Reg. 10h, Bit [4] = 1)  
1.21 mA  
Software power-down mode (Reg. 0h, Bit [11] =1)  
2.79 mA  
1.65 mA  
1.21 mA  
0.19 mA  
11.4 mW  
5.79 mW  
Software power-down mode (Reg. 0h, Bit [11] =1)  
and slow-oscillator mode (Reg. 11h, Bit [5] =1)  
2016 Microchip Technology Inc.  
DS00002199A-page 25  
KSZ8081RNA/RND  
4.0  
REGISTER DESCRIPTIONS  
This chapter describes the various control and status registers (CSRs).  
4.1  
Register Map  
TABLE 4-1:  
REGISTERS SUPPORTED BY KSZ8081RNA/RND  
Register Number (hex)  
Description  
0h  
1h  
Basic Control  
Basic Status  
2h  
PHY Identifier 1  
3h  
PHY Identifier 2  
4h  
Auto-Negotiation Advertisement  
Auto-Negotiation Link Partner Ability  
Auto-Negotiation Expansion  
Auto-Negotiation Next Page  
Link Partner Next Page Ability  
Reserved  
5h  
6h  
7h  
8h  
9h  
10h  
11h  
12h - 14h  
15h  
16h  
17h  
18h  
19h - 1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
Digital Reserved Control  
AFE Control 1  
Reserved  
RXER Counter  
Operation Mode Strap Override  
Operation Mode Strap Status  
Expanded Control  
Reserved  
Interrupt Control/Status  
Reserved  
LinkMD Control/Status  
PHY Control 1  
PHY Control 2  
4.2  
Register Descriptions  
TABLE 4-2:  
REGISTER DESCRIPTIONS  
Mode  
Note 4-1  
Address Name  
Description  
Default  
Register 0h – Basic Control  
0.15  
Reset  
1 = Software reset  
0 = Normal operation  
This bit is self-cleared after a ‘1’ is written to it.  
RW/SC  
0
0
0.14  
0.13  
Loopback  
1 = Loopback mode  
0 = Normal operation  
RW  
RW  
Speed Select 1 = 100Mbps  
0 = 10Mbps  
Set by the ANEN_-  
SPEED strapping pin.  
See the Strap-In  
Options -  
This bit is ignored if auto-negotiation is enabled  
(Register 0.12 = 1).  
KSZ8081RNA/RND  
section for details.  
DS00002199A-page 26  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
TABLE 4-2:  
REGISTER DESCRIPTIONS (CONTINUED)  
Description  
Mode  
Default  
Note 4-1  
Address Name  
0.12  
0.11  
Auto-Negoti- 1 = Enable auto-negotiation process  
ation Enable 0 = Disable auto-negotiation process  
RW  
Set by the ANEN_-  
SPEED strapping pin.  
See the Strap-In  
Options -  
KSZ8081RNA/RND  
section for details.  
If enabled, the auto-negotiation result overrides the  
settings in Registers 0.13 and 0.8.  
Power-Down 1 = Power-down mode  
RW  
0
0 = Normal operation  
If software reset (Register 0.15) is used to exit  
power-down mode (Register 0.11 = 1), two soft-  
ware reset writes (Register 0.15 = 1) are required.  
The first write clears power-down mode; the sec-  
ond write resets the chip and re-latches the pin  
strapping pin values.  
0.10  
0.9  
Isolate  
1 = Electrical isolation of PHY from MII  
0 = Normal operation  
RW  
0
0
Restart Auto- 1 = Restart auto-negotiation process  
RW/SC  
Negotiation  
0 = Normal operation.  
This bit is self-cleared after a ‘1’ is written to it.  
0.8  
Duplex Mode 1 = Full-duplex  
0 = Half-duplex  
RW  
RW  
RO  
1
0.7  
Collision Test 1 = Enable COL test  
0 = Disable COL test  
0
0.6:0  
Reserved  
Reserved  
000_0000  
Register 1h - Basic Status  
1.15  
1.14  
1.13  
1.12  
1.11  
100Base-T4 1 = T4 capable  
0 = Not T4 capable  
RO  
RO  
RO  
RO  
RO  
0
1
1
1
1
100Base-TX 1 = Capable of 100Mbps full-duplex  
Full-Duplex  
0 = Not capable of 100Mbps full-duplex  
100Base-TX 1 = Capable of 100Mbps half-duplex  
Half-Duplex 0 = Not capable of 100Mbps half-duplex  
10Base-T  
1 = Capable of 10Mbps full-duplex  
Full-Duplex  
0 = Not capable of 10Mbps full-duplex  
10Base-T  
1 = Capable of 10Mbps half-duplex  
Half-Duplex 0 = Not capable of 10Mbps half-duplex  
1.10:7  
1.6  
Reserved Reserved  
RO  
RO  
000_0  
1
No Preamble 1 = Preamble suppression  
0 = Normal preamble  
1.5  
Auto-Negoti- 1 = Auto-negotiation process completed  
RO  
0
ation Com-  
plete  
0 = Auto-negotiation process not completed  
1.4  
1.3  
1.2  
1.1  
Remote Fault 1 = Remote fault  
0 = No remote fault  
RO/LH  
RO  
0
1
0
0
Auto-Negoti- 1 = Can perform auto-negotiation  
ation Ability  
0 = Cannot perform auto-negotiation  
Link Status  
1 = Link is up  
RO/LL  
RO/LH  
0 = Link is down  
Jabber  
Detect  
1 = Jabber detected  
0 = Jabber not detected (default is low)  
2016 Microchip Technology Inc.  
DS00002199A-page 27  
KSZ8081RNA/RND  
TABLE 4-2:  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Note 4-1  
Address Name  
Description  
Default  
1.0  
Extended  
Capability  
Register 2h - PHY Identifier 1  
1 = Supports extended capability registers  
RO  
1
2.15:0  
PHY ID  
Number  
Assigned to the 3rd through 18th bits of the Organi- RO  
zationally Unique Identifier (OUI). KENDIN Com-  
munication’s OUI is 0010A1 (hex).  
0022h  
Register 3h - PHY Identifier 2  
3.15:10  
PHY ID Num- Assigned to the 19th through 24th bits of the Orga- RO  
0001_01  
01_0110  
ber  
nizationally Unique Identifier (OUI). KENDIN Com-  
munication’s OUI is 0010A1 (hex).  
3.9:4  
3.3:0  
Model Num- Six-bit manufacturer’s model number  
ber  
RO  
RO  
Revision  
Number  
Four-bit manufacturer’s revision number  
Indicates silicon revi-  
sion to Rev. A; A2 =  
0x0, A3 = 0x1.  
Register 4h - Auto-Negotiation Advertisement  
4.15  
Next Page  
1 = Next page capable  
RW  
1
0 = No next page capability  
Note: Recommend to set this bit to ‘0’.  
4.14  
4.13  
Reserved  
Reserved  
RO  
RW  
0
0
Remote Fault 1 = Remote fault supported  
0 = No remote fault  
4.12  
Reserved  
Pause  
Reserved  
RO  
RW  
0
4.11:10  
[00] = No pause  
00  
[10] = Asymmetric pause  
[01] = Symmetric pause  
[11] = Asymmetric and symmetric pause  
4.9  
4.8  
100BASE-T4 1 = T4 capable  
0 = No T4 capability  
100BASE-TX 1 = 100Mbps full-duplex capable  
Full-Duplex 0 = No 100Mbps full-duplex capability  
RO  
RW  
0
Set by the ANEN_-  
SPEED strapping pin.  
See the Strap-In  
Options -  
KSZ8081RNA/RND  
section for details.  
4.7  
100BASE-TX 1 = 100Mbps half-duplex capable  
Half-Duplex 0 = No 100Mbps half-duplex capability  
RW  
Set by the ANEN_-  
SPEED strapping pin.  
See the Strap-In  
Options -  
KSZ8081RNA/RND  
section for details.  
4.6  
10BASE-T  
Full-Duplex  
1 = 10Mbps full-duplex capable  
0 = No 10Mbps full-duplex capability  
RW  
RW  
RW  
1
4.5  
10BASE-T  
1 = 10Mbps half-duplex capable  
1
Half-Duplex 0 = No 10Mbps half-duplex capability  
4.4:0  
Selector  
Field  
[00001] = IEEE 802.3  
0_0001  
Register 5h - Auto-Negotiation Link Partner Ability  
5.15  
Next Page  
1 = Next page capable  
RO  
0
0 = No next page capability  
DS00002199A-page 28  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
TABLE 4-2:  
REGISTER DESCRIPTIONS (CONTINUED)  
Description  
Mode  
Default  
Note 4-1  
Address Name  
5.14  
5.13  
Acknowledge 1 = Link code word received from partner  
0 = Link code word not yet received  
RO  
0
Remote Fault 1 = Remote fault detected  
0 = No remote fault  
RO  
0
5.12  
Reserved  
Pause  
Reserved  
RO  
RO  
0
5.11:10  
[00] = No pause  
00  
[10] = Asymmetric pause  
[01] = Symmetric pause  
[11] = Asymmetric and symmetric pause  
5.9  
100Base-T4 1 = T4 capable  
0 = No T4 capability  
100Base-TX 1 = 100Mbps full-duplex capable  
Full-Duplex 0 = No 100Mbps full-duplex capability  
RO  
RO  
RO  
RO  
RO  
RO  
0
5.8  
0
5.7  
100Base-TX 1 = 100Mbps half-duplex capable  
Half-Duplex 0 = No 100Mbps half-duplex capability  
0
5.6  
5.5  
5.4:0  
10Base-T  
1 = 10Mbps full-duplex capable  
0
Full-Duplex  
0 = No 10Mbps full-duplex capability  
10Base-T  
1 = 10Mbps half-duplex capable  
0
Half-Duplex 0 = No 10Mbps half-duplex capability  
Selector  
Field  
[00001] = IEEE 802.3  
0_0001  
Register 6h - Auto-Negotiation Expansion  
6.15:5  
6.4  
Reserved  
Reserved  
RO  
0000_0000_000  
0
Parallel  
Detection  
Fault  
1 = Fault detected by parallel detection  
0 = No fault detected by parallel detection  
RO/LH  
6.3  
6.2  
Link Partner 1 = Link partner has next page capability  
RO  
RO  
0
1
Next Page  
Able  
0 = Link partner does not have next page capability  
Next Page  
Able  
1 = Local device has next page capability  
0 = Local device does not have next page capabil-  
ity  
6.1  
6.0  
Page  
Received  
1 = New page received  
0 = New page not received yet  
RO/LH  
RO  
0
0
Link Partner 1 = Link partner has auto-negotiation capability  
Auto-Negoti- 0 = Link partner does not have auto-negotiation  
ation Able  
capability  
Register 7h - Auto-Negotiation Next Page  
7.15  
Next Page  
Reserved  
1 = Additional next pages will follow  
0 = Last page  
RW  
0
7.14  
7.13  
Reserved  
RO  
RW  
0
1
Message  
Page  
1 = Message page  
0 = Unformatted page  
7.12  
7.11  
Acknowl-  
edge2  
1 = Will comply with message  
0 = Cannot comply with message  
RW  
RO  
0
0
Toggle  
1 = Previous value of the transmitted link code  
word equaled logic 1  
0 = Logic 0  
2016 Microchip Technology Inc.  
DS00002199A-page 29  
KSZ8081RNA/RND  
TABLE 4-2:  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Note 4-1  
Address Name  
Description  
Default  
7.10:0  
Message  
Field  
Register 8h - Link Partner Next Page Ability  
11-bit wide field to encode 2048 messages  
RW  
000_0000_0001  
8.15  
8.14  
8.13  
8.12  
8.11  
Next Page  
1 = Additional next pages will follow  
0 = Last page  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
Acknowledge 1 = Successful receipt of link word  
0 = No successful receipt of link word  
Message  
Page  
1 = Message page  
0 = Unformatted page  
Acknowl-  
edge2  
1 = Can act on the information  
0 = Cannot act on the information  
Toggle  
1 = Previous value of transmitted link code word  
equal to logic 0  
0 = Previous value of transmitted link code word  
equal to logic 1  
8.10:0  
Message  
Field  
11-bit wide field to encode 2048 messages  
RO  
000_0000_0000  
Register 10h – Digital Reserved Control  
10.15:5  
10.4  
Reserved  
PLL Off  
Reserved  
RW  
RW  
0000_0000_000  
0
1 = Turn PLL off automatically in EDPD mode  
0 = Keep PLL on in EDPD mode.  
See also Register 18h, Bit [11] for EDPD mode  
10.3:0  
Reserved  
Reserved  
RW  
0000  
Register 11h – AFE Control 1  
11.15:6  
11.5  
Reserved  
Reserved  
RW  
RW  
0000_0000_00  
0
Slow-Oscilla- Slow-oscillator mode is used to disconnect the  
tor Mode  
Enable  
input reference crystal/clock on the XI pin and  
select the on-chip slow oscillator when the  
KSZ8081RNA/RND device is not in use after  
power-up.  
1 = Enable  
0 = Disable  
This bit automatically sets software power-down to  
the analog side when enabled.  
11.4:0  
Reserved  
Reserved  
RW  
0_0000  
0000h  
Register 15h – RXER Counter  
15.15:0  
RXER  
Receive error counter for symbol error frames  
RO/SC  
Counter  
Register 16h – Operation Mode Strap Override  
16.15  
Reserved  
Factory  
Mode  
0 = Normal operation  
1 = Factory test mode  
If RXER (Pin 17) latches in a pull-up value at the  
de-assertion of reset, write a ‘0’ to this bit to clear  
Reserved Factory Mode.  
RW  
0
Set by the pull-up /  
pull-down value of  
RXER (Pin 17).  
16.14:11  
16.10  
Reserved  
Reserved  
B-  
Reserved  
RW  
RO  
RW  
000_0  
Reserved  
0
0
16.9  
1 = Override strap-in for B-CAST_OFF  
CAST_OFF If bit is ‘1’, PHY Address 0 is non-broadcast.  
Override  
DS00002199A-page 30  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
TABLE 4-2:  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Default  
Note 4-1  
Address Name  
Description  
16.8:7  
16.6  
Reserved  
Reserved  
RW  
0_0  
0
RMII B-to-B 1 = Override strap-in for RMII back-to-back mode RW  
Override  
(also set Bit 1 of this register to ‘1’)  
16.5  
NAND Tree  
Override  
1 = Override strap-in for NAND tree mode  
RW  
0
16.4:2  
16.1  
Reserved  
Reserved  
RW  
RW  
0_00  
1
RMII Over-  
ride  
1 = Override strap-in for RMII mode  
16.0  
Reserved  
Reserved  
RW  
RO  
0
Register 17h - Operation Mode Strap Status  
17.15:13  
PHYAD[2:0] [000] = Strap to PHY Address 0  
Strap-In Sta- [011] = Strap to PHY Address 3  
tus  
The KSZ8081RNA/RND supports only PHY  
addresses 0h and 3h.  
17.12:2  
17.1  
Reserved  
Reserved  
RO  
RO  
RMII Strap-In 1 = Strap to RMII mode  
Status  
17.0  
Reserved  
Reserved  
RO  
Register 18h - Expanded Control  
18.15:12  
18.11  
Reserved  
Reserved  
RW  
RW  
0000  
1
EDPD Dis-  
abled  
Energy-detect power-down mode  
1 = Disable  
0 = Enable  
See also Register 10h, Bit [4] for PLL off.  
18.10:0  
Reserved  
Reserved  
RW  
000_0000_0000  
Register 1Bh – Interrupt Control/Status  
1B.15  
Jabber Inter- 1 = Enable jabber interrupt  
RW  
RW  
0
0
rupt Enable  
0 = Disable jabber interrupt  
1B.14  
Receive  
Error Inter-  
rupt Enable  
1 = Enable receive error interrupt  
0 = Disable receive error interrupt  
1B.13  
1B.12  
1B.11  
Page  
1 = Enable page received interrupt  
0 = Disable page received interrupt  
RW  
RW  
RW  
0
0
0
Received  
Interrupt  
Enable  
Parallel  
1 = Enable parallel detect fault interrupt  
Detect Fault 0 = Disable parallel detect fault interrupt  
Interrupt  
Enable  
Link Partner 1 = Enable link partner acknowledge interrupt  
Acknowl-  
0 = Disable link partner acknowledge interrupt  
edge Inter-  
rupt Enable  
1B.10  
1B.9  
Link-Down  
Interrupt  
Enable  
1= Enable link-down interrupt  
0 = Disable link-down interrupt  
RW  
RW  
0
0
RemoteFault 1 = Enable remote fault interrupt  
Interrupt  
Enable  
0 = Disable remote fault interrupt  
2016 Microchip Technology Inc.  
DS00002199A-page 31  
KSZ8081RNA/RND  
TABLE 4-2:  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Note 4-1  
Address Name  
Description  
Default  
1B.8  
Link-Up  
Interrupt  
Enable  
1 = Enable link-up interrupt  
0 = Disable link-up interrupt  
RW  
0
1B.7  
1B.6  
Jabber Inter- 1 = Jabber occurred  
RO/SC  
RO/SC  
0
0
rupt  
0 = Jabber did not occur  
Receive  
Error Inter-  
rupt  
1 = Receive error occurred  
0 = Receive error did not occur  
1B.5  
1B.4  
1B.3  
Page  
Receive  
Interrupt  
1 = Page receive occurred  
0 = Page receive did not occur  
RO/SC  
RO/SC  
RO/SC  
0
0
0
Parallel  
1 = Parallel detect fault occurred  
Detect Fault 0 = Parallel detect fault did not occur  
Interrupt  
Link Partner 1 = Link partner acknowledge occurred  
Acknowl-  
edge Inter-  
rupt  
0 = Link partner acknowledge did not occur  
1B.2  
1B.1  
1B.0  
Link-Down  
Interrupt  
1 = Link-down occurred  
0 = Link-down did not occur  
RO/SC  
RO/SC  
RO/SC  
0
0
0
RemoteFault 1 = Remote fault occurred  
Interrupt  
0 = Remote fault did not occur  
Link-Up  
Interrupt  
1 = Link-up occurred  
0 = Link-up did not occur  
Register 1Dh – LinkMD Control/Status  
1D.15  
Cable Diag- 1 = Enable cable diagnostic test. After test has  
RW/SC  
RO  
0
nostic Test  
Enable  
completed, this bit is self-cleared.  
0 = Indicates cable diagnostic test (if enabled) has  
completed and the status information is valid for  
read.  
1D.14:13  
1D.12  
Cable Diag- [00] = Normal condition  
00  
nostic Test  
Result  
[01] = Open condition has been detected in cable  
[10] = Short condition has been detected in cable  
[11] = Cable diagnostic test has failed  
Short Cable 1 = Short cable (<10 meter) has been detected by RO  
0
Indicator  
LinkMD  
1D.11:9  
1D.8:0  
Reserved  
Reserved  
RW  
RO  
000  
Cable Fault  
Counter  
Distance to fault  
0_0000_0000  
Register 1Eh – PHY Control 1  
1E.15:10  
1E.9  
Reserved  
Enable  
Reserved  
RO  
RO  
0000_00  
0
1 = Flow control capable  
Pause (Flow 0 = No flow control capability  
Control)  
1E.8  
1E.7  
1E.6  
Link Status  
1 = Link is up  
0 = Link is down  
RO  
RO  
RO  
0
Polarity Sta- 1 = Polarity is reversed  
tus  
0 = Polarity is not reversed  
Reserved  
Reserved  
0
DS00002199A-page 32  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
TABLE 4-2:  
Address Name  
1E.5 MDI/MDI-X  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Default  
Note 4-1  
Description  
1 = MDI-X  
0 = MDI  
RO  
State  
1E.4  
Energy  
Detect  
1 = Signal present on receive differential pair  
0 = No signal detected on receive differential pair  
RO  
RW  
RO  
0
1E.3  
PHY Isolate 1 = PHY in isolate mode  
0 = PHY in normal operation  
0
1E.2:0  
Operation  
[000] = Still in auto-negotiation  
000  
Mode Indica- [001] = 10Base-T half-duplex  
tion  
[010] = 100Base-TX half-duplex  
[011] = Reserved  
[100] = Reserved  
[101] = 10Base-T full-duplex  
[110] = 100Base-TX full-duplex  
[111] = Reserved  
Register 1Fh – PHY Control 2  
1F.15  
HP_MDIX  
1 = HP Auto MDI/MDI-X mode  
0 = Microchip Auto MDI/MDI-X mode  
RW  
RW  
1
0
1F.14  
MDI/MDI-X  
Select  
When Auto MDI/MDI-X is disabled,  
1 = MDI-X mode  
Transmit on RXP,RXM (Pins 4, 3) and Receive on  
TXP,TXM (Pins 6, 5)  
0 = MDI mode  
Transmit on TXP,TXM (Pins 6, 5) and Receive on  
RXP,RXM (Pins 4, 3)  
1F.13  
Pair Swap  
Disable  
1 = Disable Auto MDI/MDI-X  
0 = Enable Auto MDI/MDI-X  
RW  
0
1F.12  
1F.11  
Reserved  
Force Link  
Reserved  
RW  
RW  
0
0
1 = Force link pass  
0 = Normal link operation  
This bit bypasses the control logic and allows the  
transmitter to send a pattern even if there is no link.  
1F.10  
1F.9  
1F.8  
1F.7  
Power Sav-  
ing  
1 = Enable power saving  
0 = Disable power saving  
RW  
RW  
RW  
RW  
0
0
1
0
Interrupt  
Level  
1 = Interrupt pin active high  
0 = Interrupt pin active low  
Enable Jab- 1 = Enable jabber counter  
ber  
0 = Disable jabber counter  
RMII Refer-  
ence Clock  
Select  
1 = For KSZ8081RNA, clock input to XI (Pin 8) is  
50MHz for RMII – 50MHz clock mode.  
For KSZ8081RND, clock input to XI (Pin 8) is  
25MHz for RMII – 25MHz clock code.  
0 = For KSZ8081RNA, clock input to XI (Pin 8) is  
25MHz for RMII – 25MHz clock code.  
For KSZ8081RND, clock input to XI (Pin 8) is  
50MHz for RMII – 50MHz clock mode.  
1F.6  
Reserved  
Reserved  
RW  
RW  
0
1F.5:4  
LED Mode  
[00] = LED0: Link/Activity  
[01] = LED0: Link  
00  
[10], [11] = Reserved  
1F.3  
Disable  
Transmitter  
1 = Disable transmitter  
0 = Enable transmitter  
RW  
0
2016 Microchip Technology Inc.  
DS00002199A-page 33  
KSZ8081RNA/RND  
TABLE 4-2:  
REGISTER DESCRIPTIONS (CONTINUED)  
Mode  
Note 4-1  
Address Name  
Description  
Default  
1F.2  
Remote  
Loopback  
1 = Remote (analog) loopback is enabled  
0 = Normal mode  
RW  
0
1F.1  
1F.0  
Reserved  
Reserved  
RW  
RW  
0
0
Disable Data 1 = Disable scrambler  
Scrambling 0 = Enable scrambler  
RW = Read/Write; RO = Read Only; SC = Self-Cleared; LH = Latch High; LL = Latch Low.  
Note 4-1  
DS00002199A-page 34  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
5.0  
5.1  
OPERATIONAL CHARACTERISTICS  
Absolute Maximum Ratings*  
Supply Voltage (VIN)  
(VDD_1.2).................................................................................................................................................... –0.5V to +1.8V  
(VDDIO, VDDA_3.3)...................................................................................................................................... –0.5V to +5.0V  
Input Voltage (all inputs)............................................................................................................................ –0.5V to +5.0V  
Output Voltage (all outputs)....................................................................................................................... –0.5V to +5.0V  
Lead Temperature (soldering, 10s)....................................................................................................................... +260°C  
Storage Temperature (TS)...................................................................................................................... –55°C to +150°C  
*Exceeding the absolute maximum rating may damage the device. Stresses greater than the absolute maximum rating  
may cause permanent damage to the device. Operation of the device at these or any other conditions above those spec-  
ified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect  
reliability.  
5.2  
Operating Ratings**  
Supply Voltage  
(VDDIO_3.3, VDDA_3.3) ........................................................................................................................ +3.135V to +3.465V  
(VDDIO_2.5) ........................................................................................................................................ +2.375V to +2.625V  
(VDDIO_1.8) ........................................................................................................................................ +1.710V to +1.890V  
Ambient Temperature  
(TA Commercial)...........................................................................................................................................0°C to +70°C  
(TA Industrial) ...........................................................................................................................................40°C to +85°C  
Maximum Junction Temperature (TJ max.)........................................................................................................... +125°C  
Thermal Resistance (ΘJA)..............................................................................................................................+47.84°C/W  
Thermal Resistance (ΘJC) .............................................................................................................................+14.71°C/W  
**The device is not guaranteed to function outside its operating ratings.  
Note:  
Do not drive input signals without power supplied to the device.  
2016 Microchip Technology Inc.  
DS00002199A-page 35  
KSZ8081RNA/RND  
6.0  
ELECTRICAL CHARACTERISTICS  
TA = 25°C. Specification is for packaged product only.  
TABLE 6-1: ELECTRICAL CHARACTERISTICS  
Parameters  
Supply Current (VDDIO, VDDA_3.3 = 3.3V), Note 6-1  
Symbol  
Min.  
Typ.  
Max.  
Units  
Note  
10BASE-T  
IDD1_3.3V  
IDD2_3.3V  
41  
47  
mA  
mA  
Full-duplex traffic @ 100% utilization  
Full-duplex traffic @ 100% utilization  
100BASE-TX  
Ethernet cable disconnected  
(Reg. 18h.11 = 0)  
EDPD Mode  
IDD3_3.3V  
IDD4_3.3V  
20  
4
mA  
mA  
Software power-down  
(Reg. 0h.11 = 1)  
Power-Down Mode  
CMOS Level Inputs  
2.4  
2.0  
1.5  
V
V
VDDIO = 3.3V  
Output High Voltage  
Output Low Voltage  
VOH  
V
V
DDIO = 2.5V  
DDIO = 1.8V  
V
0.4  
0.4  
0.3  
10  
V
VDDIO = 3.3V  
VOL  
|IOZ  
ILED  
V
V
DDIO = 2.5V  
DDIO = 1.8V  
V
V
Output Tri-State Leakage  
LED Output  
|
µA  
Output Drive Current  
8
mA  
LED0 pin  
All Pull-Up/Pull-Down Pins (including Strapping Pins)  
30  
39  
48  
26  
34  
53  
45  
61  
99  
43  
59  
99  
73  
102  
178  
79  
kꢀ  
kꢀ  
kꢀ  
kꢀ  
kꢀ  
kꢀ  
VDDIO = 3.3V  
VDDIO = 2.5V  
Internal Pull-Up Resistance  
pu  
pd  
VDDIO = 1.8V  
VDDIO = 3.3V  
Internal Pull-Down  
Resistance  
113  
200  
VDDIO = 2.5V  
VDDIO = 1.8V  
100BASE-TX Transmit (measured differentially after 1:1 transformer)  
Peak Differential Output  
100termination across differential  
VO  
0.95  
1.05  
2
V
Voltage  
output  
100termination across differential  
Output Voltage Imbalance  
VIMB  
%
output  
Rise/Fall Time  
Rise/Fall Time Imbalance  
Duty Cycle Distortion  
Overshoot  
tr/tf  
3
5
0.5  
±0.25  
5
ns  
ns  
ns  
%
0
Output Jitter  
0.7  
ns  
Peak-to-peak  
10BASE-T Transmit (measured differentially after 1:1 transformer)  
Peak Differential Output  
100termination across differential  
VP  
2.2  
2.8  
V
Voltage  
output  
Jitter Added  
3.5  
ns  
ns  
Peak-to-peak  
Rise/Fall Time  
tr/tf  
25  
10BASE-T Receive  
Squelch Threshold  
Transmitter - Drive Setting  
Reference Voltage of ISET  
VSQ  
400  
mV  
V
5 MHz square wave  
VSET  
0.65  
R(ISET) = 6.49 kꢀ  
DS00002199A-page 36  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
TABLE 6-1:  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Parameters  
Symbol  
Min.  
Typ.  
Max.  
Units  
Note  
REF_CLK Output  
50 MHz RMII Clock Output  
Jitter  
Peak-to-peak. Applies only to RMII -  
25 MHz Clock Mode.  
300  
ps  
100 Mbps Mode - Industrial Applications Parameters  
Link loss detected at receive  
differential inputs to PHY signal  
indication time for each of the  
following:  
Link Loss Reaction  
(Indication) Time  
tllr  
4.4  
µs  
1. For LED mode 01, Link LED output  
changes from low (link-up) to high  
(link-down).  
2. INTRP pin asserts for link-down  
status change.  
Note 6-1  
Current consumption is for the single 3.3V supply KSZ8081RNA/RND device only, and includes the  
transmit driver current and the 1.2V supply voltage (VDD_1.2) that are supplied by the KSZ8081RNA/  
RND.  
2016 Microchip Technology Inc.  
DS00002199A-page 37  
KSZ8081RNA/RND  
7.0  
7.1  
TIMING DIAGRAMS  
RMII Timing  
FIGURE 7-1:  
RMII TIMING - DATA RECEIVED FROM RMII  
tCYC  
TRANSMIT TIMING  
REF_CLK  
t1  
t2  
TXEN  
TXD[1:0]  
FIGURE 7-2:  
RMII TIMING - DATA INPUT TO RMII  
tCYC  
RECEIVE TIMING  
REF_CLK  
CRS_DV  
RXD[1:0]  
RXER  
tOD  
TABLE 7-1:  
Parameter  
RMII TIMING PARAMETERS (25 MHZ INPUT TO XI PIN, 50 MHZ OUTPUT FROM  
REF_CLK PIN)  
Description  
Min.  
Typ.  
Max.  
Units  
tCYC  
t1  
Clock cycle  
Setup time  
Hold time  
4
20  
10  
13  
ns  
ns  
ns  
ns  
t2  
2
tOD  
Output delay  
7
TABLE 7-2:  
Parameter  
RMII TIMING PARAMETERS (50 MHZ INPUT TO XI PIN)  
Description  
Min.  
Typ.  
Max.  
Units  
tCYC  
t1  
Clock cycle  
Setup time  
Hold time  
4
20  
11  
13  
ns  
ns  
ns  
ns  
t2  
2
tOD  
Output delay  
8
DS00002199A-page 38  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
7.2  
Auto-Negotiation Timing  
FIGURE 7-3:  
AUTO-NEGOTIATION FAST LINK PULSE (FLP) TIMING  
AUTO -NEGOTIATION  
FAST LINK PULSE (FLP) TIMING  
FLP  
BURST  
FLP  
BURST  
TX+/TX-  
tFLPW  
tBTB  
CLOCK  
PULSE  
DATA  
PULSE  
CLOCK  
PULSE  
DATA  
PULSE  
TX+/TX-  
tPW  
tPW  
tCTD  
tCTC  
TABLE 7-3:  
Parameter  
AUTO-NEGOTIATION FAST LINK PULSE TIMING PARAMETERS  
Description  
Min.  
Typ.  
Max.  
Units  
tBTB  
tFLPW  
tPW  
FLP burst to FLP burst  
8
16  
2
24  
ms  
ms  
ns  
µs  
µs  
FLP burst width  
Clock/Data pulse width  
100  
64  
tCTD  
tCTC  
Clock pulse to data pulse  
Clock pulse to clock pulse  
Number of clock/data pulses per FLP burst  
55.5  
111  
17  
69.5  
139  
33  
128  
2016 Microchip Technology Inc.  
DS00002199A-page 39  
KSZ8081RNA/RND  
7.3  
MDC/MDIO Timing  
FIGURE 7-4:  
MDC/MDIO TIMING  
tP  
MDC  
tMD1  
tMD2  
MDIO  
(PHY INPUT)  
VALID  
DATA  
VALID  
DATA  
tMD3  
MDIO  
(PHY OUTPUT)  
VALID  
DATA  
TABLE 7-4:  
Parameter  
MDC/MDIO TIMING PARAMETERS  
Description  
Min.  
Typ.  
Max.  
Units  
fc  
MDC Clock Frequency  
MDC period  
10  
4
2.5  
400  
10  
MHz  
ns  
tP  
tMD1  
tMD2  
tMD3  
MDIO (PHY input) setup to rising edge of MDC  
ns  
MDIO (PHY input) hold from rising edge of MDC  
MDIO (PHY output) delay from rising edge of MDC  
ns  
5
222  
ns  
DS00002199A-page 40  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
7.4  
Power-Up/Reset Timing  
The KSZ8081RNA/RND reset timing requirement is summarized in Figure 7-5 and Table 7-5.  
FIGURE 7-5:  
POWER-UP/RESET TIMING  
SUPPLY  
VOLTAGES  
tSR  
tVR  
RST#  
tCS  
tCH  
STRAP-IN  
VALUE  
tRC  
STRAP-IN /  
OUTPUT PIN  
TABLE 7-5:  
POWER-UP/RESET TIMING PARAMETERS  
Description  
Parameter  
Min.  
Typ.  
Max.  
Units  
tVR  
tSR  
Supply voltage (VDDIO, VDDA_3.3) rise time  
300  
10  
µs  
Stable supply voltage (VDDIO, VDDA_3.3) to reset  
high  
ms  
tCS  
tCH  
tRC  
Configuration setup time  
Configuration hold time  
Reset to strap-in pin output  
5
5
6
ns  
ns  
ns  
The supply voltage (VDDIO and VDDA_3.3) power-up waveform should be monotonic. The 300 µs minimum rise time is  
from 10% to 90%.  
For warm reset, the reset (RST#) pin should be asserted low for a minimum of 500 µs. The strap-in pin values are read  
and updated at the de-assertion of reset.  
After the de-assertion of reset, wait a minimum of 100 µs before starting programming on the MIIM (MDC/MDIO) inter-  
face.  
2016 Microchip Technology Inc.  
DS00002199A-page 41  
KSZ8081RNA/RND  
8.0  
RESET CIRCUIT  
Figure 8-1 shows a reset circuit recommended for powering up the KSZ8081RNA/RND if reset is triggered by the power  
supply.  
FIGURE 8-1:  
RECOMMENDED RESET CIRCUIT  
VDDIO  
D1: 1N4148  
D1  
R 10K  
KSZ8081RNA/RND  
RST#  
C 10μF  
Figure 8-2 shows a reset circuit recommended for applications where reset is driven by another device (for example,  
the CPU or an FPGA). The reset out RST_OUT_n from CPU/FPGA provides the warm reset after power up reset. D2  
is used if using different VDDIO between the switch and CPU/FPGA, otherwise, the different VDDIO will fight each other.  
If different VDDIO have to use in a special case, a low VF (<0.3V) diode is required (for example, Vishay’s BAT54,  
MSS1P2L and so on), or a level shifter device can be used too. If Ethernet device and CPU/FPGA use same VDDIO  
voltage, D2 can be removed to connect both devices directly. Usually, Ethernet device and CPU/FPGA should use same  
VDDIO voltage.  
FIGURE 8-2:  
RECOMMENDED RESET CIRCUIT FOR CPU/FPGA RESET OUTPUT  
VDDIO  
R 10K  
D1  
KSZ8081RNA/RND  
RST#  
CPU/FPGA  
RST_OUT_n  
D2  
C 10μF  
D1, D2: 1N4148  
DS00002199A-page 42  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
9.0  
REFERENCE CIRCUITS — LED STRAP-IN PINS  
The pull-up, float, and pull-down reference circuits for the LED0/ANEN_SPEED strapping pin are shown in Figure 9-1  
for 3.3V and 2.5V VDDIO  
.
FIGURE 9-1:  
REFERENCE CIRCUITS FOR LED STRAPPING PINS  
VDDIO = 3.3V, 2.5V  
PULL-UP  
4.7kŸ  
220Ÿ  
KSZ8081RNA/RND  
LED0 PIN  
VDDIO = 3.3V, 2.5V  
FLOAT  
220Ÿ  
KSZ8081RNA/RND  
LED0 PIN  
VDDIO = 3.3V, 2.5V  
PULL-DOWN  
220Ÿ  
KSZ8081RNA/RND  
LED0 PIN  
1kŸ  
For 1.8V VDDIO, LED indication support is not recommended due to the low voltage. Without the LED indicator, the  
ANEN_SPEED strapping pin is functional with a 4.7 kpull-up to 1.8V VDDIO or float for a value of ‘1’, and with a 1.0 kꢀ  
pull-down to ground for a value of ‘0’.  
If using RJ45 jacks with integrated LEDs and 1.8V VDDIO, a level shifting is required from LED 3.3V to 1.8V. For example,  
use a bipolar transistor or a level shift device.  
2016 Microchip Technology Inc.  
DS00002199A-page 43  
KSZ8081RNA/RND  
10.0 REFERENCE CLOCK - CONNECTION AND SELECTION  
A crystal or external clock source, such as an oscillator, is used to provide the reference clock for the KSZ8081RNA/  
RND. For the KSZ8081RNA/RND in RMII – 25 MHz clock mode, the reference clock is 25 MHz. The reference clock  
connections to XI (Pin 8) and XO (Pin 7), and the reference clock selection criteria, are provided in Figure 10-1 and  
Table 10-1.  
FIGURE 10-1:  
25 MHZ CRYSTAL/OSCILLATOR REFERENCE CLOCK CONNECTION  
22pF  
22pF  
XI  
XI  
25MHz OSC  
50ppꢀ  
NC  
XO  
XO  
25MHz XTAL  
50ppꢀ  
TABLE 10-1: 25 MHZ CRYSTAL/REFERENCE CLOCK SELECTION CRITERIA  
Characteristics  
Value  
Frequency  
25 MHz  
±50 ppm  
40ꢀ  
Frequency Tolerance (max.); Note 10-1  
Crystal Series Resistance (typ.)  
Crystal Load Capacitance (typ.)  
16 pF  
Note 10-1  
±60 ppm for overtemperature crystal.  
For the KSZ8081RNA/RND in RMII – 50 MHz clock mode, the reference clock is 50 MHz. The reference clock connec-  
tion to XI (Pin 8), and the reference clock selection criteria are provided in Figure 10-2 and Table 10-2.  
FIGURE 10-2:  
50 MHZ OSCILLATOR/REFERENCE CLOCK CONNECTION  
XI  
50MHz OSC  
50ppꢀ  
NC  
XO  
TABLE 10-2: 50 MHZ OSCILLATOR/REFERENCE CLOCK SELECTION CRITERIA  
Characteristics  
Value  
Frequency  
50 MHz  
Frequency Tolerance (max.)  
±50 ppm  
DS00002199A-page 44  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
11.0 MAGNETIC - CONNECTION AND SELECTION  
A 1:1 isolation transformer is required at the line interface. Use one with integrated common-mode chokes for designs  
exceeding FCC requirements.  
The KSZ8081RNA/RND design incorporates voltage-mode transmit drivers and on-chip terminations.  
With the voltage-mode implementation, the transmit drivers supply the common-mode voltages to the two differential  
pairs. Therefore, the two transformer center tap pins on the KSZ8081RNA/RND side should not be connected to any  
power supply source on the board; instead, the center tap pins should be separated from one another and connected  
through separate 0.1 µF common-mode capacitors to ground. Separation is required because the common-mode volt-  
age is different between transmitting and receiving differential pairs.  
Figure 11-1 shows the typical magnetic interface circuit for the KSZ8081RNA/RND.  
FIGURE 11-1:  
TYPICAL MAGNETIC INTERFACE CIRCUIT  
1
TXP  
2
3
TXM  
RXP  
RXM  
4
5
6
7
8
4 x 75Ÿ  
1000pF/2kV  
(2 x 0.1μF)  
SIGNAL GROUND  
CHASSIS GROUND  
Table 11-1 lists recommended magnetic characteristics.  
TABLE 11-1: MAGNETICS SELECTION CRITERIA  
Parameter  
Value  
Test Conditions  
Turns Ratio  
Open-Circuit Inductance (min.)  
Insertion Loss (max.)  
HIPOT (min.)  
1 CT : 1 CT  
350 µH  
100 mV, 100 kHz, 8 mA  
100 kHz to 100 MHz  
–1.1 dB  
1500 VRMS  
Table 11-2 is a list of compatible single-port magnetics with separated transformer center tap pins on the PHY chip side  
that can be used with the KSZ8081RNA/RND.  
2016 Microchip Technology Inc.  
DS00002199A-page 45  
KSZ8081RNA/RND  
TABLE 11-2: COMPATIBLE SINGLE-PORT 10/100 MAGNETICS  
Manufacturer  
Part Number  
Temperature Range  
Magnetic + RJ-45  
Bel Fuse  
Bel Fuse  
Bel Fuse  
Delta  
S558-5999-U7  
SI-46001-F  
SI-50170-F  
LF8505  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
No  
Yes  
Yes  
No  
HALO  
HFJ11-2450E  
TG110-E055N5  
LF-H41S-1  
H1102  
Yes  
No  
HALO  
LANKom  
Pulse  
No  
No  
Pulse  
H1260  
No  
Pulse  
HX1188  
No  
Pulse  
J00-0014  
Yes  
Yes  
Yes  
No  
Pulse  
JX0011D21NL  
TLA-6T718A  
HB726  
TDK  
Transpower  
Wurth/Midcom  
000-7090-37R-LF1  
No  
DS00002199A-page 46  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
12.0 PACKAGE OUTLINE  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
FIGURE 12-1:  
24-LEAD QFN 4 MM X 4 MM PACKAGE  
2016 Microchip Technology Inc.  
DS00002199A-page 47  
KSZ8081RNA/RND  
APPENDIX A: DATA SHEET REVISION HISTORY  
TABLE A-1:  
REVISION HISTORY  
Section/Figure/Entry  
Revision  
Correction  
Converted Micrel data sheet KSZ8081RNA/RND to  
Microchip DS00002199A. Minor text changes  
throughout.  
DS00002199A (06-14-16)  
DS00002199A-page 48  
2016 Microchip Technology Inc.  
KSZ8081RNA/RND  
THE MICROCHIP WEB SITE  
Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make  
files and information easily available to customers. Accessible by using your favorite Internet browser, the web site con-  
tains the following information:  
Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s  
guides and hardware support documents, latest software releases and archived software  
General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion  
groups, Microchip consultant program member listing  
Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of semi-  
nars and events, listings of Microchip sales offices, distributors and factory representatives  
CUSTOMER CHANGE NOTIFICATION SERVICE  
Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive  
e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or  
development tool of interest.  
To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notifi-  
cation” and follow the registration instructions.  
CUSTOMER SUPPORT  
Users of Microchip products can receive assistance through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales  
offices are also available to help customers. A listing of sales offices and locations is included in the back of this docu-  
ment.  
Technical support is available through the web site at: http://microchip.com/support  
2016 Microchip Technology Inc.  
DS00002199A-page 49  
KSZ8081RNA/RND  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
X
X
Examples:  
X
a)  
b)  
c)  
d)  
KSZ8081RNACA  
RMII Interface  
24-pin QFN  
25 MHz Input/50 MHz Output  
Commercial Temperature  
KSZ8081RNAIA  
RMII Interface  
Interface Package  
Temperature  
Special  
Attribute  
Device:  
KSZ8081  
24-pin QFN  
Interface:  
R = RMII  
25 MHz Input/50 MHz Output  
Industrial Temperature  
KSZ8081RNDCA  
RMII Interface  
24-pin QFN  
50 MHz Input  
Commercial Temperature  
KSZ8081RNDIA  
RMII Interface  
Package:  
N = 24-pin QFN  
Special Attribute:  
A = 25 MHz Input/50 MHz Output Clocks  
D = 50 MHz Input Clock  
24-pin QFN  
50 MHz Input  
Industrial Temperature  
Temperature:  
CA = 0C to +70C (Commercial)  
IA = –40C to +85C (Industrial)  
DS00002199A-page 50  
2016 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device applications and the like is provided only for your convenience and may be  
superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO  
REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Micro-  
chip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold  
harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or  
otherwise, under any Microchip intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo,  
Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC,  
SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other  
countries.  
ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial  
Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless  
DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their respective companies.  
© 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.  
ISBN: 978-1-5224-0855-0  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
QUALITYMANAGEMENTꢀꢀSYSTEMꢀ  
and India. The Company’s quality system processes and procedures  
CERTIFIEDBYDNVꢀ  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS16949==ꢀ  
2016 Microchip Technology Inc.  
DS00002199A-page 51  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Karlsruhe  
Tel: 49-721-625370  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Dongguan  
Tel: 86-769-8702-9880  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Cleveland  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Poland - Warsaw  
Tel: 48-22-3325737  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Novi, MI  
Tel: 248-848-4000  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Houston, TX  
Tel: 281-894-5983  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
San Jose, CA  
Tel: 408-735-9110  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
06/23/16  
DS00002199A-page 52  
2016 Microchip Technology Inc.  

相关型号:

KSZ8081RNA-EVAL

10Base-T/100Base-TX PHY with RMII Support
MICREL

KSZ8081RNACA

10Base-T/100Base-TX PHY with RMII Support
MICREL

KSZ8081RNACA

10BASE-T/100BASE-TX PHY with RMII Support
MICROCHIP

KSZ8081RNACA-TR

10Base-T/100Base-TX PHY with RMII Support
MICREL

KSZ8081RNAIA

10Base-T/100Base-TX PHY with RMII Support
MICREL

KSZ8081RNAIA

10BASE-T/100BASE-TX PHY with RMII Support
MICROCHIP

KSZ8081RNB

10BASE-T/100BASE-TX Physical Layer Transceiver
MICROCHIP

KSZ8081RNB-EVAL

10Base-T/100Base-TX Physical Layer Transceiver
MICREL

KSZ8081RNBCA

10Base-T/100Base-TX Physical Layer Transceiver
MICREL

KSZ8081RNBCA

10BASE-T/100BASE-TX Physical Layer Transceiver
MICROCHIP

KSZ8081RNBIA

10Base-T/100Base-TX Physical Layer Transceiver
MICREL

KSZ8081RNBIA

10BASE-T/100BASE-TX Physical Layer Transceiver
MICROCHIP