KSZ9131RNXI [MICROCHIP]

Gigabit Ethernet Transceiver with RGMII Support;
KSZ9131RNXI
型号: KSZ9131RNXI
厂家: MICROCHIP    MICROCHIP
描述:

Gigabit Ethernet Transceiver with RGMII Support

文件: 总154页 (文件大小:3089K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KSZ9131RNX  
Gigabit Ethernet Transceiver with RGMII  
Support  
• Operating Voltages  
Features  
- Core (DVDDL, AVDDL, AVDDL_PLL): 1.2V  
(External FET or Regulator)  
• Single-Chip 10/100/1000 Mbps Ethernet Trans-  
ceiver Suitable for IEEE 802.3 Applications  
- VDD I/O (DVDDH): 3.3V, 2.5V, or 1.8V  
- Transceiver (AVDDH): 3.3V or 2.5V  
• RGMII Timing Supports On-Chip Delay According  
to RGMII Version 2.0, with Programming Options  
for External Delay and Making Adjustments and  
Corrections to TX and RX Timing Paths  
• AEC-Q100 Grade 3 (KSZ9131RNXU) and Grade  
2 (KSZ9131RNXV) Qualified for Automotive  
Applications  
• RGMII with 3.3V/2.5V/1.8V Tolerant I/Os  
• 48-pin VQFN (7 mm × 7 mm) Package  
• Auto-Negotiation to Automatically Select the  
Highest Link-Up Speed (10/100/1000 Mbps) and  
Duplex (Half/Full)  
Target Applications  
• On-Chip Termination Resistors for the Differential  
Pairs  
• Laser/Network Printer  
• Network Attached Storage (NAS)  
• Network Server  
• On-Chip LDO Controller to Support Single 3.3V  
Supply Operation – Requires Only One External  
FET to Generate 1.2V for the Core  
• Gigabit LAN on Motherboard (GLOM)  
• Broadband Gateway  
• Jumbo Frame Support Up to 16 KB  
• 125 MHz Reference Clock Output  
• Gigabit SOHO/SMB Router  
• IPTV  
• Energy-Detect Power-Down Mode for Reduced  
Power Consumption When Cable is Not Attached  
• IP Set-Top Box  
• Game Console  
• Energy Efficient Ethernet (EEE) Support with  
Low-Power Idle (LPI) Mode and Clock Stoppable  
for 100BASE-TX/1000BASE-T and Transmit  
Amplitude Reduction with 10BASE-Te Option  
• Triple-Play (Data, Voice, Video) Media Center  
• Industrial Control  
• Automotive In-Vehicle Networking  
• Wake-On-LAN (WOL) Support with Robust  
Custom-Packet Detection  
• Programmable LED Outputs for Link, Activity, and  
Speed  
• Baseline Wander Correction  
• Quiet-WIRE® EMI Reduction (100BASE-TX)  
• LinkMD® TDR-based Cable Diagnostic to Identify  
Faulty Copper Cabling  
• Signal Quality Indication  
• Parametric NAND Tree Support to Detect Faults  
Between Chip I/Os and Board  
• Loopback Modes for Diagnostics  
• Automatic MDI/MDI-X Crossover to Detect and  
Correct Pair Swap at All Speeds of Operation  
• Automatic Detection and Correction of Pair  
Swaps, Pair Skew, and Pair Polarity  
• MDC/MDIO Management Interface for PHY Reg-  
ister Configuration  
• Interrupt Pin Option  
• Power-Down and Power-Saving Modes  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 1  
KSZ9131RNX  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com. We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for cur-  
rent devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the  
revision of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include -literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS00002841C-page 2  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
Table of Contents  
1.0 Preface ............................................................................................................................................................................................ 4  
2.0 Introduction ..................................................................................................................................................................................... 8  
3.0 Pin Descriptions and Configuration ................................................................................................................................................. 9  
4.0 Functional Description .................................................................................................................................................................. 18  
5.0 Register Descriptions .................................................................................................................................................................... 50  
6.0 Operational Characteristics ......................................................................................................................................................... 121  
7.0 Package Outline .......................................................................................................................................................................... 143  
Appendix A: Data Sheet Revision History ......................................................................................................................................... 149  
The Microchip Web Site .................................................................................................................................................................... 151  
Customer Change Notification Service ............................................................................................................................................. 151  
Customer Support ............................................................................................................................................................................. 151  
Product Identification System ........................................................................................................................................................... 152  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 3  
KSZ9131RNX  
1.0  
1.1  
PREFACE  
General Terms  
TABLE 1-1:  
GENERAL TERMS  
Term  
Description  
1000BASE-T  
100BASE-TX  
10BASE-T  
ADC  
1 Gbps Ethernet over twisted pair, IEEE 802.3 compliant  
100 Mbps Ethernet over twisted pair, IEEE 802.3 compliant  
10 Mbps Ethernet over twisted pair, IEEE 802.3 compliant  
Analog-to-Digital Converter  
AFE  
Analog Front End  
AN, ANEG  
AOAC  
ARP  
Auto-Negotiation  
Always on Always Connected  
Address Resolution Protocol  
Best Effort Latency Tolerance  
8-bits  
BELT  
BYTE  
CSMA/CD  
CSR  
Carrier Sense Multiple Access/Collision Detect  
Control and Status Register  
Destination Address  
DA  
DCQ  
Dynamic Channel Quality  
DWORD  
EC  
32-bits  
Embedded Controller  
EEE  
Energy Efficient Ethernet  
FCS  
Frame Check Sequence  
FIFO  
First In First Out buffer  
FSM  
Finite State Machine  
FW  
Firmware  
GPIO  
General Purpose I/O  
HOST  
HW  
External system (Includes processor, application software, etc.)  
Hardware. Refers to function implemented by digital logic.  
Internet Group Management Protocol  
Linear Drop-Out Regulator  
IGMP  
LDO  
Level-Triggered Sticky Bit This type of status bit is set whenever the condition that it represents is asserted.  
The bit remains set until the condition is no longer true, and the status bit is cleared  
by writing a zero.  
LFSR  
LPM  
lsb  
Linear Feedback Shift Register  
Link Power Management  
Least Significant Bit  
LSB  
Least Significant Byte  
DS00002841C-page 4  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
TABLE 1-1:  
GENERAL TERMS (CONTINUED)  
Term  
Description  
LTM  
MAC  
MDI  
Latency Tolerance Messaging  
Media Access Controller  
Medium Dependent Interface  
MDIX  
MEF  
MII  
Media Independent Interface with Crossover  
Multiple Ethernet Frames  
Media Independent Interface  
MLT-3  
Multi-Level Transmission Encoding (3-Levels). A tri-level encoding method where a  
change in the logic level represents a code bit “1” and the logic output remaining at  
the same level represents a code bit “0”.  
MSI / MSI-X  
N/A  
Message Signaled Interrupt  
Not Applicable  
OTP  
One Time Programmable  
Physical Coding Sublayer  
Phase Locked Loop  
Power Management IC  
Power on Reset.  
PCS  
PLL  
PMIC  
POR  
PTP  
Precision Time Protocol  
64-bits  
QWORD  
RESERVED  
Refers to a reserved bit field or address. Unless otherwise noted, reserved bits must  
always be zero for write operations. Unless otherwise noted, values are not guaran-  
teed when reading reserved bits. Unless otherwise noted, do not read or write to  
reserved addresses.  
RGMII  
RMON  
SA  
Reduced Gigabit Media Independent Interface  
Remote Monitoring  
Source Address  
SCSR  
SEF  
System Control and Status Registers  
Single Ethernet Frame  
SFD  
Start of Frame Delimiter - The 8-bit value indicating the end of the preamble of an  
Ethernet frame  
SMNP  
SQI  
Simple Network Management Protocol  
Signal Quality Indicator  
UDP  
User Datagram Protocol - A connectionless protocol run on top of IP networks  
16-bits  
WORD  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 5  
KSZ9131RNX  
1.2  
Buffer Types  
TABLE 1-2:  
BUFFER  
BUFFER TYPE DESCRIPTIONS  
DESCRIPTION  
AI  
AO  
AI Analog input  
AI Analog output  
AIO  
AIO Analog bidirectional  
ICLK Crystal oscillator input pin  
OCLK Crystal oscillator output pin  
Variable voltage input  
ICLK  
OCLK  
VI  
VIS  
Variable voltage Schmitt-triggered input  
VO8  
VOD8  
VO24  
PU  
Variable voltage output with 8 mA sink and 8 mA source  
Variable voltage open-drain output with 8 mA sink  
Variable voltage output with 24 mA sink and 24 mA source  
44/59/96 KΩ (typical @3.3/2.5/1.8V) internal pull-up. Unless otherwise noted in the pin  
description, internal pull-ups are always enabled.  
Note:  
Internal pull-up resistors prevent unconnected inputs from floating. Do not rely on  
internal resistors to drive signals external to the device. When connected to a load  
that must be pulled high, an external resistor must be added.  
PD  
47/58/86 KΩ (typical @3.3/2.5/1.8V) internal pull-down. Unless otherwise noted in the pin  
description, internal pull-downs are always enabled.  
Note:  
Internal pull-down resistors prevent unconnected inputs from floating. Do not rely on  
internal resistors to drive signals external to the device. When connected to a load  
that must be pulled low, an external resistor must be added.  
P
Power pin  
Note:  
Note:  
Digital signals are not 5V tolerant unless specified.  
Sink and source capabilities are dependent on the supplied voltage.  
DS00002841C-page 6  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
1.3  
Register Bit Types  
Table 1-3 describes the register but attributes used throughout this document.  
TABLE 1-3:  
REGISTER BIT TYPES  
Register Bit Type Notation  
Register Bit Description  
R
W
Read: A register or bit with this attribute can be read.  
Write: A register or bit with this attribute can be written.  
Read only: Read only. Writes have no effect.  
RO  
WO  
W1S  
W1C  
WAC  
RC  
Write only: If a register or bit is write-only, reads will return unspecified data.  
Write One to Set: Writing a one sets the value. Writing a zero has no effect.  
Write One to Clear: Writing a one clears the value. Writing a zero has no effect.  
Write Anything to Clear: Writing anything clears the value.  
Read to Clear: Contents is cleared after the read. Writes have no effect.  
Latch Low: Clear on read of register.  
LL  
LH  
Latch High: Clear on read of register.  
SC  
Self-Clearing: Contents is self-cleared after being set. Writes of zero have no effect.  
Contents can be read.  
SS  
Self-Setting: Contents is self-setting after being cleared. Writes of one have no effect.  
Contents can be read.  
RO/LH  
Read Only, Latch High: This mode is used by the Ethernet PHY registers. Bits with this  
attribute will stay high until the bit is read. After it a read, the bit will remain high, but will  
change to low if the condition that caused the bit to go high is removed. If the bit has not  
been read the bit will remain high regardless of if its cause has been removed.  
NASR  
STKY  
Not Affected by Software Reset. The state of NASR bits does not change on asser-  
tion of a software reset.  
This field is “Sticky” in that it is neither initialized nor modified by hot reset or Function  
Level Reset.  
RESERVED  
Reserved Field: Reserved fields must be written with zeros, unless otherwise indi-  
cated, to ensure future compatibility. The value of reserved bits is not guaranteed on a  
read.  
Many of these register bit notations can be combined. Come examples of this are:  
R/W: Can be written. Will return current setting on a read.  
R/WAC: Will return current setting on a read. Writing anything clears the bit.  
1.4  
Reference Documents  
1. IEEE 802.3TM-2015 IEEE Standard for Ethernet,  
http://standards.ieee.org/about/get/802/802.3.html  
2. IEEE 802.3bwTM-2015 IEEE Standard for Ethernet Amendment 1,  
https://standards.ieee.org/findstds/standard/802.3bw-2015.html  
3. Reduced Gigabit Media Independent Interface (RGMII) Specification Version 2.0,  
https://web.archive.org/web/20160303171328/http://www.hp.com/rnd/pdfs/RGMIIv2_0_final_hp.pdf  
4. OPEN Alliance TC1 - Advanced diagnostics features for 100BASE-T1 automotive Ethernet PHYs Version 1.0  
http://www.opensig.org/download/document/218/Advanced_PHY_features_for_automotive_Ethernet_V1.0.pdf  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 7  
KSZ9131RNX  
2.0  
2.1  
INTRODUCTION  
General Description  
The KSZ9131RNX is a completely integrated triple-speed (10BASE-T/100BASE-TX/1000BASE-T) Ethernet physical-  
layer transceiver for transmission and reception of data on standard CAT-5 as well as CAT-5e and CAT-6 unshielded  
twisted pair (UTP) cables.  
The KSZ9131RNX provides the Reduced Gigabit Media Independent Interface (RGMII) for direct connection to RGMII  
MACs in Gigabit Ethernet processors and switches for data transfer at 10/100/1000 Mbps.  
The KSZ9131RNX reduces board cost and simplifies board layout by using on-chip termination resistors for the four  
differential pairs and by integrating an LDO controller to drive a low-cost MOSFET to supply the 1.2V core.  
The KSZ9131RNX offers diagnostic features to facilitate system bring-up and debugging in production testing and in  
product deployment. Parametric NAND tree support enables fault detection between KSZ9131RNX I/Os and the board.  
The LinkMD® TDR-based cable diagnostic identifies faulty copper cabling. Remote, external, and local loopback func-  
tions verify analog and digital data paths.  
The KSZ9131RNX is available in a 48-pin, RoHS Compliant VQFN package. The AEC-Q100 automotive qualified parts,  
KSZ9131RNXU and KSZ9131RNXV, are available in a 48-pin RoHS compliant VQFN (wettable) package.  
FIGURE 2-1:  
SYSTEM BLOCK DIAGRAM  
CRYSTAL  
RGMII  
MEDIA TYPES  
10BASE-T  
100BASE-TX  
1000BASE-T  
10/100/1000Mbps  
RGMII  
Ethernet MAC  
RJ-45  
CONNECTOR  
KSZ9131RNX  
MDC/MDIO  
MANAGEMENT  
INT_N /  
PME_N  
LDO  
/ LEDs  
CONTROLLER  
SYSTEM POWER CIRCUIT /  
INTERUPT CONTROLLER /  
LEDs  
VIN 3.3V,  
2.5V  
VOUT 1.2V  
DS00002841C-page 8  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
3.0  
3.1  
PIN DESCRIPTIONS AND CONFIGURATION  
Pin Assignments  
FIGURE 3-1:  
PIN ASSIGNMENTS (TOP VIEW)  
1
2
36  
AVDDH  
TXRXP_A  
TXRXM_A  
AVDDL  
MDC  
35  
RXC/PHYAD2  
3
34  
DVDDH  
4
33  
RX_CTL/CLK125_EN  
5
32  
TXRXP_B  
TXRXM_B  
TXRXP_C  
TXRXM_C  
AVDDL  
RXD0/MODE0  
6
31  
RXD1/MODE1  
KSZ9131RNX  
48-VQFN  
30  
7
DVDDL  
(Top View )  
8
29  
VSS  
9
28  
RXD2/MODE2  
10  
11  
12  
27  
TXRXP_D  
TXRXM_D  
AVDDH  
RXD3/MODE3  
P_VSS  
(Connect exposed pad to ground with a via field)  
26  
DVDDL  
25  
TX_CTL  
Note: Exposed pad (P_VSS) on bottom of package must be connected to ground with a via field.  
Note: Configuration strap inputs are indicated with an underline .  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 9  
KSZ9131RNX  
TABLE 3-1:  
KSZ9131RNX PIN ASSIGNMENTS  
Pin  
Num  
Pin  
Num  
Pin Name  
Pin Name  
1
2
AVDDH  
TXRXP_A  
TXRXM_A  
AVDDL  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
TX_CTL  
DVDDL  
RXD3/MODE3  
RXD2/MODE2  
VSS  
3
4
5
TXRXP_B  
TXRXM_B  
TXRXP_C  
TXRXM_C  
AVDDL  
6
DVDDL  
7
RXD1/MODE1  
RXD0/MODE0  
RX_CTL/CLK125_EN  
DVDDH  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
TXRXP_D  
TXRXM_D  
AVDDH  
RXC/PHYAD2  
MDC  
NC  
MDIO  
NC  
INT_N/PME_N2/ALLPHYAD  
DVDDL  
LED2/PHYAD1  
DVDDH  
DVDDH  
CLK125_NDO/LED_MODE  
RESET_N  
LED1/PME_N1/PHYAD0  
DVDDL  
TXD0  
LDO_O  
TXD1  
AVDDL_PLL  
XO  
TXD2  
TXD3  
XI  
DVDDL  
NC  
TXC  
ISET  
Exposed Pad (P_VSS) must be connected to ground.  
DS00002841C-page 10  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
3.2  
Pin Descriptions  
This section contains descriptions of the various KSZ9131RNX pins. The “_N” symbol in the signal name indicates that  
the active, or asserted, state occurs when the signal is at a low voltage level. For example, RESET_N indicates that the  
reset signal is active low. When “_N” is not present after the signal name, the signal is asserted when at the high voltage  
level.  
The pin function descriptions have been broken into functional groups as follows:  
Analog Front End  
RGMII Interface  
Crystal  
Miscellaneous  
Strap Inputs  
I/O Power, Core Power and Ground  
TABLE 3-2:  
Name  
ANALOG FRONT END  
BUFFER  
Symbol  
DESCRIPTION  
TYPE  
Ethernet TX/RX  
Positive Channel  
A
TXRXP_A  
AIO  
Media Dependent Interface[0], positive signal of differential  
pair  
1000BT mode: TXRXP_A corresponds to BI_DA+.  
10BT/100BT mode: TXRXP_A is the positive transmit signal  
(TX+) for MDI configuration and the positive receive signal  
(RX+) for MDI-X configuration, respectively.  
Ethernet TX/RX  
Negative Channel  
A
TXRXM_A  
TXRXP_B  
TXRXM_B  
TXRXP_C  
AIO  
AIO  
AIO  
AIO  
Media Dependent Interface[0], negative signal of differential  
pair  
1000BT mode: TXRXM_A corresponds to BI_DA-.  
10BT/100BT-TX mode: TXRXM_A is the negative transmit sig-  
nal (TX-) for MDI configuration and the negative receive signal  
(RX-) for MDI-X configuration, respectively.  
Ethernet TX/RX  
Positive Channel  
B
Media Dependent Interface[1], positive signal of differential  
pair  
1000BT mode: TXRXP_B corresponds to BI_DB+.  
10BT/100BT mode: TXRXP_B is the positive receive signal  
(RX+) for MDI configuration and the positive transmit signal  
(TX+) for MDI-X configuration, respectively.  
Ethernet TX/RX  
Negative Channel  
B
Media Dependent Interface[1], negative signal of differential  
pair  
1000BT mode: TXRXM_B corresponds to BI_DB-.  
10BT/100BT mode: TXRXP_B is the negative receive signal  
(RX-) for MDI configuration and the negative transmit signal  
(TX-) for MDI-X configuration, respectively.  
Ethernet TX/RX  
Positive Channel  
C
Media Dependent Interface[2], positive signal of differential  
pair  
1000BT mode: TXRXP_C corresponds to BI_DC+.  
10BT/100BT mode: TXRXP_C is not used.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 11  
KSZ9131RNX  
TABLE 3-2:  
Name  
ANALOG FRONT END (CONTINUED)  
BUFFER  
TYPE  
Symbol  
DESCRIPTION  
Ethernet TX/RX  
Negative Channel  
C
TXRXM_C  
AIO  
AIO  
AIO  
Media Dependent Interface[2], negative signal of differential  
pair  
1000BT mode: TXRXM_C corresponds to BI_DC-.  
10BT/100BT mode: TXRXM_C is not used.  
Ethernet TX/RX  
Positive Channel  
D
TXRXP_D  
TXRXM_D  
Media Dependent Interface[3], positive signal of differential  
pair  
1000BT mode: TXRXP_D corresponds to BI_DD+.  
10BT/100BT mode: TXRXP_D is not used.  
Ethernet TX/RX  
Negative Channel  
D
Media Dependent Interface[3], negative signal of differential  
pair  
1000BT mode: TXRXM_D corresponds to BI_DD-.  
10BT/100BT mode: TXRXM_D is not used.  
TABLE 3-3:  
RGMII INTERFACE  
Symbol  
BUFFER  
TYPE  
Name  
DESCRIPTION  
Transmit Data  
TXD3  
TXD2  
TXD1  
TXD0  
VI  
The MAC transmits data to the PHY using these signals.  
Transmit Control  
TX_CTL  
VI  
VI  
Indicates both the transmit data enable (TXEN) and transmit error  
(TXER) functions per the RGMII specification.  
RGMII Transmit  
Clock  
TXC  
Used to latch data from the MAC into the PHY in RGMII mode.  
1000BASE-T: 125MHz  
100BASE-TX: 25MHz  
10BASE-T: 2.5MHz  
Receive Data  
RXD3  
RXD2  
RXD1  
RXD0  
VO24  
The PHY transfers data to the MAC using these signals.  
The PHY’s link status (speed, duplex and link) are indicated on  
these signals whenever Normal Data, Data Error, Carrier Extend,  
Carrier Sense, False Carrier or Lower Power Idle are not present.  
Receive Control  
RX_CTL  
RXC  
VO24  
VO24  
Indicates both the receive data valid (RXDV) and receive error  
(RXER) functions per the RGMII specification.  
RGMII Receive  
Clock  
Used to transfer data from the PHY to the MAC in RGMII mode.  
1000BASE-T: 125MHz  
100BASE-TX: 25MHz  
10BASE-T: 2.5MHz  
DS00002841C-page 12  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
TABLE 3-4:  
CRYSTAL  
BUFFER  
TYPE  
Name  
Symbol  
DESCRIPTION  
Crystal Input  
XI  
ICLK  
When using a 25MHz crystal, this input is connected to one  
lead of the crystal.  
When using an clock source, this is the input from the oscilla-  
tor.  
Note:  
The crystal or oscillator should have a tolerance of  
±50ppm.  
Crystal Output  
XO  
OCLK  
When using a 25MHz crystal, this output is connected to one  
lead of the crystal.  
When using an external oscillator, this pin is not connected.  
TABLE 3-5:  
MISCELLANEOUS  
Symbol  
BUFFER  
TYPE  
Name  
DESCRIPTION  
Indicator LEDs  
LED2  
LED1  
VO8  
Programmable LED outputs.  
Management  
Interface Data  
MDIO  
VIS/  
VO8  
VOD8  
(PU)  
This is the management data from/to the MAC.  
Note:  
An external pull-up resistor to DVDDH in the range  
of 1.0 kΩ to 4.7 kΩ is required.  
Management  
Interface Clock  
MDC  
VIS  
(PU)  
This is the management clock input from the MAC.  
Programmable PME_N output.  
Power Manage-  
ment Event  
PME_N2  
PME_N1  
VO8  
When asserted low, this pin signals that a WOL event has  
occurred.  
PME_N can be mapped to either (or both) pins.  
Programmable interrupt output.  
PHY Interrupt  
CLK125 MHz  
INT_N  
VO8  
CLK125_NDO  
VO24  
125 MHz clock output.  
This pin provides a 125 MHz reference clock output option for  
use by the MAC.  
This pin may also provide a 125 MHz clock output synchro-  
nous to the receive data for use in Synchronous Ethernet  
(SyncE) applications.  
System Reset  
RESET_N  
VIS  
Chip reset (active low).  
(PU)  
Hardware pin configurations are strapped-in at the de-asser-  
tion (rising edge) of RESET_N. See the Strap Inputs section  
for details.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 13  
KSZ9131RNX  
TABLE 3-5:  
Name  
MISCELLANEOUS (CONTINUED)  
BUFFER  
TYPE  
Symbol  
DESCRIPTION  
LDO Controller  
Output  
LDO_O  
AO  
On-chip 1.2V LDO controller output.  
This pin drives the input gate of a P-channel MOSFET to gen-  
erate 1.2V for the chip’s core voltages.  
Note:  
If the system provides 1.2V, this pin is not used and  
can be left unconnected.  
PHY Bias Resistor  
No Connect  
ISET  
NC  
AI  
-
This pin should be connect to ground through a 6.04KΩ 1%  
resistor.  
APPLICATION NOTE: The resistor value is different from  
the 12.1KΩ used on the KSZ9031.  
For normal operation, these pins should be left unconnected.  
Note:  
Note:  
Note:  
Pin 13 is not bonded and can be connected to  
ground for footprint compatibility with older genera-  
tion devices.  
Pin 14 is not bonded and can be connected to  
DVDDL power for footprint compatibility with older  
generation devices.  
Pin 47 is not bonded and can be connected to  
AVDDH power for footprint compatibility with older  
generation devices.  
TABLE 3-6:  
STRAP INPUTS  
Symbol  
BUFFER  
TYPE  
Name  
DESCRIPTION  
PHY Address  
PHYAD2  
PHYAD1  
PHYAD0  
VI  
The PHY address, PHYAD[2:0], is sampled and latched at  
power-up/reset and is configurable to any value from 0 to 7.  
Each PHY address bit is configured as follows:  
Pulled-up = 1  
Pulled-down = 0  
PHY Address Bits [4:3] are always set to ‘00’.  
All PHY Address  
Enable  
ALLPHYAD  
VI  
The ALLPHYAD strap-in pin is sampled and latched at power-  
up/reset and are defined as follows:  
0 = PHY will respond to PHY address 0 as well as it’s assigned  
PHY address  
1= PHY will respond to only it’s assigned PHY address  
Note:  
This strap input is inverted compared to the All-  
PHYAD Enable register bit.  
Device Mode  
MODE3  
MODE2  
MODE1  
MODE0  
VI  
Note:  
The MODE[3:0] strap-in pins are sampled and  
latched at power-up/reset and are defined in Section  
3.3.1, "Device Mode Select"  
DS00002841C-page 14  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
TABLE 3-6:  
Name  
STRAP INPUTS (CONTINUED)  
BUFFER  
Symbol  
TYPE  
DESCRIPTION  
125MHz Output  
Clock Enable  
CLK125_EN  
VI  
CLK125_EN is sampled and latched at power-up/reset and is  
defined as follows:  
Pulled-up (1) = Enable 125 MHz clock output  
Pulled-down (0) = Disable 125 MHz clock output  
CLK125_NDO provides the 125 MHz reference clock output  
option for use by the MAC.  
LED Mode  
LED_MODE  
VI  
LED_MODE is sampled and latched at power-up/reset and is  
defined as follows:  
Pulled-up (1) = Individual-LED mode  
Pulled-down (0) = Tri-color-LED mode  
TABLE 3-7:  
Name  
I/O POWER, CORE POWER AND GROUND  
BUFFER  
Symbol  
TYPE  
DESCRIPTION  
+2.5/3.3V  
Analog Power  
Supply  
AVDDH  
P
+2.5/3.3V analog power supply VDD  
APPLICATION NOTE: Automotive Grade 2 temperature  
range requires +2.5V.  
+1.2V Analog  
Power Supply  
AVDDL  
P
P
+1.2V analog power supply VDD  
+1.2V Analog  
PLL Power  
Supply  
AVDDL_PLL  
+1.2V analog PLL power supply VDD  
+3.3/2.5/1.8V  
Variable I/O  
Power Supply  
Input  
DVDDH  
DVDDL  
P
P
+3.3/2.5/1.8V variable I/O digital power supply VDD_IO  
APPLICATION NOTE: Automotive Grade 2 temperature  
range requires +1.8V or +2.5V.  
+1.2V Digital  
Core Power  
Supply Input  
+1.2V digital core power supply input  
Paddle Ground  
P_VSS  
VSS  
GND  
GND  
Common ground. This exposed paddle must be connected to  
the ground plane with a via array.  
Digital Ground  
Digital ground  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 15  
KSZ9131RNX  
3.3  
Configuration Straps  
Configuration straps allow various features of the device to be automatically configured to user defined values. Config-  
uration straps are latched upon the release of pin reset (RESET_N). Configuration straps do not include internal resis-  
tors and require the use of external resistors.  
Note:  
• The system designer must ensure that configuration strap pins meet the timing requirements specified in Section  
6.6.3, "Reset Pin Configuration Strap Timing". If configuration strap pins are not at the correct voltage level prior  
to being latched, the device may capture incorrect strap values.  
• When externally pulling configuration straps high, the strap should be tied to DVDDH.  
APPLICATION NOTE: All straps should be pulled-up or pulled-down externally on the PCB to enable the desired  
operational state.  
3.3.1  
DEVICE MODE SELECT  
The MODE[3:0] configuration straps selects the device mode as follows:  
TABLE 3-8:  
DEVICE MODE SELECTIONS  
Functional Modes  
Auto-negotiation Advertisement  
Pin 17  
Function Function  
Pin 38  
MODE[3:0]  
Mode  
1000BT Full 1000BT Half 10/100BT Full 10/100BT Half  
Duplex  
Duplex  
Duplex  
Duplex  
0000  
0001  
1000  
RESERVED  
RESERVED  
RGMII  
-
-
-
-
-
-
-
-
LED1  
no  
no  
yes  
yes  
(PME_N1)  
1001  
1010  
1011  
RESERVED  
RGMII  
-
-
-
-
INT_N  
(PME_N2)  
no  
-
no  
-
yes  
-
yes  
-
RESERVED  
1100  
1101  
1110  
1111  
RGMII  
yes  
-
no  
-
no  
-
no  
-
RESERVED  
RGMII  
yes  
-
no  
-
yes  
-
yes  
-
RESERVED  
Test Modes  
Mode  
MODE[3:0]  
0010  
0011  
0100  
0101  
0110  
0111  
RESERVED  
RESERVED  
NAND tree mode  
RESERVED  
RESERVED  
Device power down mode  
DS00002841C-page 16  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
3.3.2  
PHY ADDRESS  
The PHYAD2:0 configuration straps set the value of the PHY’s management address. PHYAddress Bits [4:3] are always  
set to ‘00’.  
3.3.3  
ALL PHYs ADDRESS  
The ALLPHYAD configuration strap sets the default of the All-PHYAD Enable bit in the Common Control Register which  
enables or disables the PHY’s ability to respond to PHY address 0 as well as it’s assigned PHY address.  
Note:  
This strap input is inverted compared to the register bit.  
3.3.4  
125MHZ OUTPUT CLOCK ENABLE  
The CLK125_EN configuration strap enables the 125 MHz clock output onto the CLK125_NDO pin.  
The output clock defaults to a locally generated 125MHz clock. The recovered 125MHz RX clock can be selected for  
use in Synchronous Ethernet (SyncE) applications.  
3.3.5  
LED MODE SELECT  
The LED_MODE configuration strap selects between Individual-LED (1) or Tri-color-LED (0) modes. LED operation is  
described in Section 4.12, "LED Support".  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 17  
KSZ9131RNX  
4.0  
FUNCTIONAL DESCRIPTION  
The KSZ9131RNX is a completely integrated triple-speed (10BASE-T/100BASE-TX/1000BASE-T) Ethernet physical  
layer transceiver solution for transmission and reception of data over a standard CAT-5 unshielded twisted pair (UTP)  
cable.  
The KSZ9131RNX reduces board cost and simplifies board layout by using on-chip termination resistors for the four  
differential pairs and by integrating an LDO controller to drive a low-cost MOSFET to supply the 1.2V core.  
On the copper media interface, the KSZ9131RNX can automatically detect and correct for differential pair misplace-  
ments and polarity reversals, and correct propagation delays and re-sync timing between the four differential pairs, as  
specified in the IEEE 802.3 standard for 1000BASE-T operation.  
The KSZ9131RNX provides the RGMII interface for connection to RGMII MACs in Gigabit Ethernet processors and  
switches for data transfer at 10/100/1000 Mbps.  
Figure 4-1 shows a high-level block diagram of the KSZ9131RNX.  
FIGURE 4-1:  
KSZ9131RNX BLOCK DIAGRAM  
PMA  
TX10/100/1000  
CLOCK  
RESET  
CONFIGURATIONS  
PMA  
RX1000  
PCS1000  
MEDIA  
INTERFACE  
PMA  
RX100  
RGMII  
INTERFACE  
PCS100  
PCS10  
PMA  
RX10  
LED  
DRIVERS  
AUTO-  
NEGOTIATION  
4.1  
10BASE-T/100BASE-TX Transceiver  
4.1.1  
100BASE-TX TRANSMIT  
The 100BASE-TX transmit function performs parallel-to-serial conversion, 4B/5B coding, scrambling, NRZ-to-NRZI con-  
version, and MLT-3 encoding and transmission.  
The circuitry starts with a parallel-to-serial conversion, which converts the MII data from the MAC into a 125 MHz serial  
bit stream. The data and control stream is then converted into 4B/5B coding, followed by a scrambler. The serialized  
data is further converted from NRZ-to-NRZI format, and then transmitted in MLT-3 current output. The output current is  
set by an external 6.04 kΩ 1% resistor for the 1:1 transformer ratio.  
The output signal has a typical rise/fall time of 4 ns and complies with the ANSI TP-PMD standard regarding amplitude  
balance, and overshoot. The wave-shaped 10BASE-T output is also incorporated into the 100BASE-TX transmitter.  
4.1.2  
100BASE-TX RECEIVE  
The 100BASE-TX receiver function performs adaptive equalization, DC restoration, MLT-3-to-NRZI conversion, data  
and clock recovery, NRZI-to-NRZ conversion, de-scrambling, 4B/5B decoding, and serial-to-parallel conversion.  
DS00002841C-page 18  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
The receiving side starts with the equalization filter to compensate for inter-symbol interference (ISI) over the twisted  
pair cable. Because the amplitude loss and phase distortion are a function of the cable length, the equalizer must adjust  
its characteristics to optimize performance. In this design, the variable equalizer makes an initial estimation based on  
comparisons of incoming signal strength against some known cable characteristics, then tunes itself for optimization.  
This is an ongoing process and self-adjusts against environmental changes such as temperature variations.  
Next, the equalized signal goes through a DC-restoration and data-conversion block. The DC-restoration circuit com-  
pensates for the effect of baseline wander and improves the dynamic range. The differential data conversion circuit con-  
verts the MLT-3 format back to NRZI. The slicing threshold is also adaptive.  
The clock-recovery circuit extracts the 125 MHz clock from the edges of the NRZI signal. This recovered clock is then  
used to convert the NRZI signal into the NRZ format. This signal is sent through the de-scrambler followed by the 4B/  
5B decoder. Finally, the NRZ serial data is converted to the RGMII format and provided as the input data to the MAC.  
4.1.3  
SCRAMBLER/DE-SCRAMBLER (100BASE-TX ONLY)  
The purpose of the scrambler is to spread the power spectrum of the signal to reduce electromagnetic interference (EMI)  
and baseline wander. Transmitted data is scrambled using an 11-bit wide linear feedback shift register (LFSR). The  
scrambler generates a 2047-bit non-repetitive sequence, then the receiver de-scrambles the incoming data stream  
using the same sequence as at the transmitter.  
4.1.4  
10BASE-T TRANSMIT  
The 10BASE-T output drivers are incorporated into the 100BASE-TX drivers to allow for transmission with the same  
magnetic. The drivers perform internal wave-shaping and pre-emphasis, and output signals with typical amplitude of  
2.5V peak for standard 10BASE-T mode and 1.75V peak for energy-efficient 10BASE-Te mode. The 10BASE-T/  
10BASE-Te signals have harmonic contents that are at least 31 dB below the fundamental frequency when driven by  
an all-ones Manchester-encoded signal.  
4.1.5  
10BASE-T RECEIVE  
On the receive side, input buffer and level-detecting squelch circuits are used. A differential input receiver circuit and a  
phase-locked loop (PLL) perform the decoding function. The Manchester-encoded data stream is separated into clock  
signal and NRZ data. A squelch circuit rejects signals with levels less than 300 mV or with short pulse widths to prevent  
noises at the receive inputs from falsely triggering the decoder. When the input exceeds the squelch limit, the PLL locks  
onto the incoming signal and the KSZ9131RNX decodes a data frame. The receiver clock is maintained active during  
idle periods between receiving data frames.  
The KSZ9131RNX removes all 7 bytes of the preamble and presents the received frame starting with the SFD (start of  
frame delimiter) to the MAC.  
Auto-polarity correction is provided for the receiving differential pair to automatically swap and fix the incorrect +/– polar-  
ity wiring in the cabling.  
4.2  
1000BASE-T Transceiver  
The 1000BASE-T transceiver is based-on a mixed-signal/digital-signal processing (DSP) architecture, which includes  
the analog front-end, digital channel equalizers, trellis encoders/decoders, echo cancelers, cross-talk cancelers, preci-  
sion clock recovery scheme, and power-efficient line drivers.  
Figure 4-2 shows a high-level block diagram of a single channel of the 1000BASE-T transceiver for one of the four dif-  
ferential pairs.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 19  
KSZ9131RNX  
FIGURE 4-2:  
KSZ9131 1000BASE-T BLOCK DIAGRAM - SINGLE CHANNEL  
OTHER  
CHANNELS  
XTAL  
CLOCK  
GENERATION  
SIDE-STREAM  
SCRAMBLER  
&
TX  
SYMBOL ENCODER  
SIGNAL  
TRANSMIT  
BLOCK  
PCS STATE  
MACHINES  
LED DRIVER  
PAIR SWAP  
&
NEXT  
ECHO  
CANCELLER  
ANALOG  
HYBRID  
DESCRAMBLER  
ALIGN UNIT  
CANCELLER  
+
DECODER  
BASELINE  
WANDER  
COMPENSATION  
RX-  
ADC  
FFE  
SLICER  
+
RX  
SIGNAL  
CLOCK  
& PHASE  
DFE  
RECOVERY  
MII  
AUTO -  
NEGOTIATION  
MII  
MANAGEMENT  
CONTROL  
REGISTERS  
PMA STATE  
MACHINES  
4.2.1  
ANALOG ECHO-CANCELLATION CIRCUIT  
In 1000BASE-T mode, the analog echo-cancellation circuit helps to reduce the near-end echo. This analog hybrid circuit  
relieves the burden of the ADC and the adaptive equalizer.  
This circuit is disabled in 10BASE-T/100BASE-TX mode.  
4.2.2  
AUTOMATIC GAIN CONTROL (AGC)  
In 1000BASE-T mode, the automatic gain control (AGC) circuit provides initial gain adjustment to boost up the signal  
level. This pre-conditioning circuit is used to improve the signal-to-noise ratio of the receive signal.  
4.2.3  
ANALOG-TO-DIGITAL CONVERTER (ADC)  
In 1000BASE-T mode, the analog-to-digital converter (ADC) digitizes the incoming signal. ADC performance is essen-  
tial to the overall performance of the transceiver.  
This circuit is disabled in 10BASE-T/100BASE-TX mode.  
4.2.4  
TIMING RECOVERY CIRCUIT  
In 1000BASE-T mode, the mixed-signal clock recovery circuit together with the digital phase-locked loop is used to  
recover and track the incoming timing information from the received data. The digital phase-locked loop has very low  
long-term jitter to maximize the signal-to-noise ratio of the receive signal.  
The 1000BASE-T slave PHY must transmit the exact receive clock frequency recovered from the received data back to  
the 1000BASE-T master PHY. Otherwise, the master and slave will not be synchronized after long transmission. This  
also helps to facilitate echo cancellation and NEXT removal.  
4.2.5  
ADAPTIVE EQUALIZER  
In 1000BASE-T mode, the adaptive equalizer provides the following functions:  
• Detection for partial response signaling  
• Removal of NEXT and ECHO noise  
• Channel equalization  
Signal quality is degraded by residual echo that is not removed by the analog hybrid because of impedance mismatch.  
The KSZ9131RNX uses a digital echo canceler to further reduce echo components on the receive signal.  
In 1000BASE-T mode, data transmission and reception occurs simultaneously on all four pairs of wires (four channels).  
This results in high-frequency cross-talk coming from adjacent wires. The KSZ9131RNX uses three NEXT cancelers on  
each receive channel to minimize the cross-talk induced by the other three channels.  
DS00002841C-page 20  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
In 10BASE-T/100BASE-TX mode, the adaptive equalizer needs only to remove the inter-symbol interference and  
recover the channel loss from the incoming data.  
4.2.6  
TRELLIS ENCODER AND DECODER  
In 1000BASE-T mode, the transmitted 8-bit data is scrambled into 9-bit symbols and further encoded into 4D-PAM5  
symbols. The initial scrambler seed is determined by the specific PHY address to reduce EMI when more than one  
KSZ9131 is used on the same board. On the receiving side, the idle stream is examined first. The scrambler seed, pair  
skew, pair order, and polarity must be resolved through the logic. The incoming 4D-PAM5 data is then converted into 9-  
bit symbols and de-scrambled into 8-bit data.  
4.3  
Auto MDI/MDI-X  
The Automatic MDI/MDI-X feature eliminates the need to determine whether to use a straight cable or a crossover cable  
between the KSZ9131RNX and its link partner. This auto-sense function detects the MDI/MDI-X pair mapping from the  
link partner, and assigns the MDI/MDI-X pair mapping of the KSZ9131RNX accordingly.  
Table 4-1 shows the KSZ9131RNX 10/100/1000 pin configuration assignments for MDI/MDI-X pin mapping.  
TABLE 4-1:  
MDI/MDI-X PIN MAPPING  
MDI  
MDI-X  
Pin  
(RJ-45 Pair)  
1000BASE-T  
100BASE-T  
10BASE-T  
1000BASE-T  
100BASE-T  
10BASE-T  
TXRXP/M_A  
(1, 2)  
A+/–  
TX+/–  
TX+/–  
A+/–  
RX+/–  
TX+/–  
RX+/–  
TXRXP/M_B  
(3, 6)  
B+/–  
C+/–  
D+/–  
RX+/–  
RX+/–  
B+/–  
C+/–  
D+/–  
TX+/–  
TXRXP/M_C  
(4, 5)  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
TXRXP/M_D  
(7, 8)  
Auto MDI/MDI-X is enabled by default. It is disabled by writing a one to the Swap-Off bit in the Auto-MDI/MDI-X Register.  
MDI and MDI-X mode is set by the MDI Set bit in the Auto-MDI/MDI-X Register if Auto MDI/MDI-X is disabled.  
An isolation transformer with symmetrical transmit and receive data paths is recommended to support Auto MDI/MDI-X.  
4.4  
Pair-Swap, Alignment, and Polarity Check  
In 1000BASE-T mode, the KSZ9131RNX  
• Detects incorrect channel order and automatically restores the pair order for the A, B, C, D pairs (four channels).  
• Supports 50 ns ±10 ns difference in propagation delay between pairs of channels in accordance with the IEEE  
802.3 standard, and automatically corrects the data skew so the corrected four pairs of data symbols are synchro-  
nized.  
Incorrect pair polarities of the differential signals are automatically corrected for all speeds.  
4.5  
Wave Shaping, Slew-Rate Control, and Partial Response  
In communication systems, signal transmission encoding methods are used to provide the noise-shaping feature and  
to minimize distortion and error in the transmission channel.  
• For 1000BASE-T, a special partial-response signaling method is used to provide the band-limiting feature for the  
transmission path.  
• For 100BASE-TX, a simple slew-rate control method is used to minimize EMI.  
• For 10BASE-T, pre-emphasis is used to extend the signal quality through the cable.  
4.6  
PLL Clock Synthesizer  
The KSZ9131RNX generates 125 MHz, 25 MHz, and 10 MHz clocks for system timing. Internal clocks are generated  
from the external 25 MHz crystal or reference clock.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 21  
KSZ9131RNX  
4.7  
Auto-Negotiation  
The KSZ9131RNX conforms to the auto-negotiation protocol, defined in Clause 28 of the IEEE 802.3 Specification.  
Auto-negotiation allows UTP (unshielded twisted pair) link partners to select the highest common mode of operation.  
During auto-negotiation, link partners advertise capabilities across the UTP link to each other, and then compare their  
own capabilities with those they received from their link partners. The highest speed and duplex setting that is common  
to the two link partners is selected as the operating mode.  
The following list shows the speed and duplex operation mode from highest-to-lowest:  
• Priority 1: 1000BASE-T, full-duplex  
• Priority 2: 1000BASE-T, half-duplex  
Note:  
The device does not support 1000BASE-T, half-duplex and should not be enabled to advertise such.  
• Priority 3: 100BASE-TX, full-duplex  
• Priority 4: 100BASE-TX, half-duplex  
• Priority 5: 10BASE-T, full-duplex  
• Priority 6: 10BASE-T, half-duplex  
If auto-negotiation is not supported or the KSZ9131RNX link partner is forced to bypass auto-negotiation for 10BASE-  
T and 100BASE-TX modes, the KSZ9131RNX sets its operating mode by observing the input signal at its receiver. This  
is known as parallel detection, and allows the KSZ9131RNX to establish a link by listening for a fixed signal protocol in  
the absence of the auto-negotiation advertisement protocol.  
The auto-negotiation link-up process is shown in Figure 4-3.  
FIGURE 4-3:  
AUTO-NEGOTIATION FLOW CHART  
START AUTO-NEGOTIATION  
PARALLEL  
OPERATION  
FORCE LINK SETTING  
YES  
NO  
ATTEMPT AUTO-  
NEGOTIATION  
LISTEN FOR 100BASE-TX  
IDLES  
LISTEN FOR 10BASE-T  
LINK PULSES  
BYPASS AUTO-NEGOTIATION  
AND SET LINK MODE  
NO  
JOIN FLOW  
LINK MODE SET?  
YES  
LINK MODE SET  
For 1000BASE-T mode, auto-negotiation is required and always used to establish a link. During 1000BASE-T auto-  
negotiation, the master and slave configuration is first resolved between link partners. Then the link is established with  
the highest common capabilities between link partners.  
Auto-negotiation is enabled by default after power-up or hardware reset. After that, auto-negotiation can be enabled or  
disabled through the Auto-Negotiation Enable bit in the Basic Control Register. If auto-negotiation is disabled, the speed  
is set by the Speed Select[0] and Speed Select[1] bits and the duplex is set by the Duplex Mode, all in the Basic Control  
Register.  
If the speed is changed on the fly, the link goes down and either auto-negotiation or parallel detection initiates until a  
common speed between KSZ9131RNX and its link partner is re-established for a link.  
DS00002841C-page 22  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
If the link is already established and there is no change of speed on the fly, the changes (for example, duplex and pause  
capabilities) will not take effect unless either auto-negotiation is restarted through the Restart Auto-Negotiation  
(PHY_RST_AN) bit in the Basic Control Register, or a link-down to link-up transition occurs (that is, disconnecting and  
reconnecting the cable).  
After auto-negotiation is completed, the link status is updated in the Link Status bit of the Basic Status Register and the  
link partner capabilities are updated in the Auto-Negotiation Link Partner Base Page Ability Register, Auto-Negotiation  
Expansion Register, and Auto-Negotiation Master Slave Status Register.  
The auto-negotiation finite state machines use interval timers to manage the auto-negotiation process. The duration of  
these timers under normal operating conditions is summarized in Table 4-2.  
TABLE 4-2:  
AUTO-NEGOTIATION TIMERS  
Auto-Negotiation Interval Timers  
Time Duration  
Transmit Burst Interval  
16 ms  
68 µs  
Transmit Pulse Interval  
FLP Detect Minimum Time  
FLP Detect Maximum Time  
Receive Minimum Burst Interval  
Receive Maximum Burst Interval  
Data Detect Minimum Interval  
Data Detect Maximum Interval  
NLP Test Minimum Interval  
NLP Test Maximum Interval  
Link Loss Time  
17.2 µs  
185 µs  
6.8 ms  
112 ms  
35.4 µs  
95 µs  
4.5 ms  
30 ms  
52 ms  
Break Link Time  
1480 ms  
830 ms  
1000 ms  
Parallel Detection Wait Time  
Link Enable Wait Time  
4.7.1  
AUTO-NEGOTIATION NEXT PAGE USAGE  
The device supports “Next Page” capability which is used to negotiate Gigabit Ethernet and Energy Efficient Ethernet  
functionality as well as to support software controlled pages.  
As described in IEEE 802.3 Annex 40C “Add-on interface for additional Next Pages”, the device will autonomously send  
and receive the Gigabit Ethernet and Energy Efficient Ethernet next pages and then optionally send and receive soft-  
ware controlled next pages.  
Gigabit Ethernet next pages consist of one message and two unformatted pages. The message page contains an 8 as  
the message code. The first unformatted page contains the information from the Auto-Negotiation Master Slave Control  
Register. The second unformatted page contains the Master-Slave Seed value used to resolve the Master-Slave selec-  
tion. The result of the Gigabit Ethernet next pages exchange is stored in Auto-Negotiation Master Slave Status Register.  
Gigabit Ethernet next pages are always transmitted, regardless of the advertised settings in the Auto-Negotiation Master  
Slave Control Register.  
Energy Efficient Ethernet (EEE) next pages consist of one message and one unformatted page. The message page  
contains a 10 as the message code (this value can be overridden in the EEE Message Code Register). The unformatted  
page contains the information from the EEE Advertisement Register. The result of the Gigabit Ethernet next pages  
exchange is stored in EEE Link Partner Ability Register.  
EEE next pages are transmitted only if the advertised setting in the EEE Advertisement Register is not zero.  
APPLICATION NOTE: The Gigabit Ethernet and EEE next pages may be viewed in Auto-Negotiation Next Page  
RX Register as they are exchanged.  
Following the EEE next page exchange, software controlled next pages are exchanged when the Next Page bit in the  
Auto-Negotiation Advertisement Register is set. Software controlled next page status is monitored via the Auto-Negoti-  
ation Expansion Register and Auto-Negotiation Next Page RX Register.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 23  
KSZ9131RNX  
4.8  
10/100 Mbps Speeds Only  
Some applications require link-up to be limited to 10/100 Mbps speeds only.  
After power-up/reset, the KSZ9131RNX can be restricted to auto-negotiate and link-up to 10/100 Mbps speeds only by  
programming the following register settings:  
1. Configure the Speed Select[1] bit in the Basic Control Register to ‘0’ to disable the 1000 Mbps speed.  
2. Configure the 1000BASE-T Full Duplex and 1000BASE-T Half Duplex bits in the Auto-Negotiation Master Slave  
Control Register to ‘00’ to remove Auto-Negotiation advertisements for 1000 Mbps full/half duplex.  
3. Write a ‘1’ to the Restart Auto-Negotiation (PHY_RST_AN) bit in the Basic Control Register, a self-clearing bit,  
to force a restart of Auto-Negotiation.  
Auto-Negotiation and 10BASE-T/100BASE-TX speeds use only differential pairs A and B. Differential pairs C and D can  
be left as no connects.  
4.9  
RGMII Interface  
The Reduced Gigabit Media Independent Interface (RGMII) supports on-chip data-to-clock delay timing according to  
the RGMII Version 2.0 Specification, with programming options for external delay timing and to adjust and correct TX  
and RX timing paths.  
RGMII provides a common interface between RGMII PHYs and MACs, and has the following key characteristics:  
• Pin count is reduced from 24 pins for the IEEE Gigabit Media Independent Interface (GMII) to 12 pins for RGMII.  
• All speeds (10 Mbps, 100 Mbps, and 1000 Mbps) are supported at both half- and full-duplex.  
Note:  
The device does not support 1000BASE-T, half-duplex and should not be enabled to advertise such.  
• Data transmission and reception are independent and belong to separate signal groups.  
• Transmit data and receive data are each four bits wide, a nibble.  
In RGMII operation, the RGMII pins function as follows:  
• The MAC sources the transmit reference clock, TXC, at 125 MHz for 1000 Mbps, 25 MHz for 100 Mbps, and  
2.5 MHz for 10 Mbps.  
• The PHY recovers and sources the receive reference clock, RXC, at 125 MHz for 1000 Mbps, 25 MHz for  
100 Mbps, and 2.5 MHz for 10 Mbps.  
• For 1000BASE-T, the transmit data, TXD[3:0], is presented on both edges of TXC, and the received data,  
RXD[3:0], is clocked out on both edges of the recovered 125 MHz clock, RXC.  
• For 10BASE-T/100BASE-TX, the MAC holds TX_CTL low until both PHY and MAC operate at the same speed.  
During the speed transition, the receive clock is stretched on either a positive or negative pulse to ensure that no  
clock glitch is presented to the MAC.  
• TX_ER and RX_ER are combined with TX_EN and RX_DV, respectively, to form TX_CTL and RX_CTL. These  
two RGMII control signals are valid at the falling clock edge.  
After power-up or reset, the KSZ9131 is configured to RGMII mode if the MODE[3:0] strap-in pins are set to one of the  
RGMII mode capability options. See Section 3.3, "Configuration Straps" for additional information.  
The KSZ9131RNX has the option to output a 125 MHz reference clock on the CLK125_NDO pin. This clock provides a  
lower-cost reference clock alternative for RGMII MACs that require a 125 MHz crystal or oscillator. The 125 MHz clock  
output is enabled after power-up or reset if the CLK125_EN strap-in pin is pulled high or the clk125 Enable bit is set in  
the Common Control Register.  
DS00002841C-page 24  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
4.9.1  
RGMII SIGNAL DEFINITION  
Table 4-3 describes the RGMII signals. Refer to the RGMII Version 2.0 Specification for more detailed information.  
TABLE 4-3:  
RGMII Signal Name  
TXC  
RGMII SIGNAL DEFINITION  
Pin Type (with  
Pin Type (with  
Description  
respect to PHY) respect to MAC)  
Input  
Output  
Transmit Reference Clock  
(125MHz for 1000Mbps, 25MHz for 100Mbps, 2.5MHz  
for 10Mbps)  
TX_CTL  
TXD[3:0]  
RXC  
Input  
Input  
Output  
Output  
Input  
Transmit Control  
Transmit Data[3:0]  
Output  
Receive Reference Clock  
(125 MHz for 1000 Mbps, 25 MHz for 100 Mbps, 2.5  
MHz for 10 Mbps)  
RX_CTL  
RXD[3:0]  
Output  
Output  
Input  
Input  
Receive Control  
Receive Data[3:0]  
4.9.2  
RGMII SIGNAL DIAGRAM  
The KSZ9131RNX RGMII pin connections to the MAC are shown in Figure 4-4.  
FIGURE 4-4:  
KSZ9131RNX RGMII INTERFACE  
RGMII  
Ethernet MAC  
KSZ9131RNX  
TXC  
TX_CTL  
TXC  
TX_CTL  
TXD[3:0]  
TXD[3:0]  
RXC  
RX_CTL  
RXC  
RX_CTL  
RXD[3:0]  
RXD[3:0]  
4.9.3  
RGMII TIMING  
As the default, after power-up or reset, the RGMII timing conforms to the timing requirements in the RGMII Version 2.0  
Specification for internal PHY chip delay.  
For the transmit path (MAC to PHY), the device does not add any delay locally at its TXC, TX_CTL and TXD[3:0] input  
pins, and expects the TXC delay to be provided on-chip by the MAC. If MAC does not provide any delay or insufficient  
delay for the TXC, the device has two options. The device may add a fixed 2ns, DLL based delay to the TXC input. In  
addition to this fixed delay, pad skew registers that can provide up to ~1.9 ns n-chip delay (~1.4 ns additional can be  
added to TXC, ~0.5 ns can be subtracted from TX_CTL and TXD[3:0]).  
For the receive path (PHY to MAC), the device adds a fixed 2ns, DLL based delay to the RXC output pin with respect  
to RX_CTL and RXD[3:0] output pins. If necessary, the device has pad skew registers that can adjust the RXC on-chip  
delay by up to an additional ~1.9 ns (~1.4 ns additional can be added to RXC, ~0.5 ns can be subtracted from RX_CTL  
and TXD[3:0]).  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 25  
KSZ9131RNX  
The default RGMII timings imply:  
• RXC clock skew is set by the default register settings.  
• TXC clock skew is provided by the MAC.  
• No PCB delay is required for TXC and RXC clocks.  
Figure 4-5 illustrates the RGMII Version 2.0 Specification Internal Delay operation.  
FIGURE 4-5:  
RGMII VERSION 2.0 INTERNAL DELAY OPERATION  
ID Mode (RGMII Specification)  
TXC  
ID  
TXD[3:0], TX_CTL  
MAC  
Gigabit PHY  
RXD[3:0], RX_CTL  
RXC  
ID  
When computing the RGMII timing relationships, delays along the entire data path must be aggregated to determine the  
total delay to be used for comparison between RGMII pins within their respective timing group. For the transmit data  
path, total delay includes MAC output delay, MAC-to-PHY PCB routing delay, and PHY input delay and skew setting (if  
any). For the receive data path, the total delay includes PHY output delay, PHY-to-MAC PCB routing delay, and MAC  
input delay and skew setting (if any).  
Figure 4-6 and Figure 4-7, from the RGMII v2.0 Specification, are provided as references to understanding RGMII v1.3  
external delay and RGMII v2.0 on-chip delay timings.  
FIGURE 4-6:  
RGMII V2.0 SPEC (MULTIPLEXING AND TIMING DIAGRAM - ORIGINAL RGMII  
(V1.3) WITH EXTERNAL DELAY  
DS00002841C-page 26  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
FIGURE 4-7:  
RGMII V2.0 SPEC (MULTIPLEXING AND TIMING DIAGRAM - ORIGINAL RGMII  
(V2.0) WITH INTERNAL DELAY  
The following notes provide clarification for Figure 4-7.  
TXC (SOURCE DATA), solid line, is the MAC GTX_CLK clock output timing per RGMII v1.3 Specification (PCB delay  
line required or PHY internal delay required)  
TXC (SOURCE DATA) WITH INTERNAL DELAY ADDED, dotted line, is the MAC GTX_CLK clock output timing per  
RGMII v2.0 Specification (no PCB delay required and no PHY internal delay required)  
RXC (SOURCE DATA), solid line, is the PHY RX_CLK clock output timing per RGMII v1.3 Specification (PCB delay line  
required or MAC internal delay required)  
RXC (SOURCE DATA) WITH INTERNAL DELAY ADDED, dotted line, is the PHY RX_CLK clock output timing per  
RGMII v2.0 Specification (no PCB delay required and no MAC internal delay required)  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 27  
KSZ9131RNX  
TABLE 4-4:  
RGMII V2.0 SPECIFICATION  
Parameter  
Description  
Min.  
Typ. Max.  
Units  
Tskew  
T
Data-to-clock output skew (at transmitter) per  
RGMII v1.3 (external delay)  
-500  
500  
2.6  
ps  
TskewR  
Data-to-clock input skew (at receiver) per RGMII  
v1.3 (external delay)  
1.0  
1.2  
1.2  
1.0  
1.0  
ns  
ns  
ns  
ns  
ns  
Tsetup  
T
Data-to-clock output setup (at transmitter – inte-  
grated delay)  
2.0  
2.0  
2.0  
2.0  
TholdT  
Clock-to-data output hold (at transmitter – inte-  
grated delay)  
Tsetup  
R
Data-to-clock input setup (at receiver – integrated  
delay)  
TholdR  
Clock-to-data input hold (at receiver – integrated  
delay)  
tcyc (1000BASE-T)  
tcyc (100BASE-TX)  
tcyc (10BASE-T)  
Clock cycle duration for 1000BASE-T  
Clock cycle duration for 100BASE-TX  
Clock cycle duration for 10BASE-T  
7.2  
36  
8.0  
40  
8.8  
44  
ns  
ns  
ns  
360  
400  
440  
The RGMII Version 2.0 Specification defines the RGMII data-to-clock skews only for 1000 Mbps operation, which uses  
both clock edges for sampling the data and control signals at the 125 MHz clock frequency (8 ns period). For 10/100  
Mbps operations, the data signals are sampled on the rising clock edge and the control signals are sampled on both  
clock edges. With slower clock frequencies, 2.5 MHz (400 ns period) for 10 Mbps and 25 MHz (40 ns period) for 100  
Mbps, the RGMII data-to-clock skews for 10/100 Mbps operations will have greater timing margins than for 1000 Mbps  
operation, and therefore can be relaxed from 2.6 ns (maximum) for 1000 Mbps to 160 ns (maximum) for 10 Mbps and  
16 ns (maximum) for 100 Mbps.  
4.9.3.1  
RGMII DLL Based Clock Skew  
The delays on RXC (enabled by default) and optionally on TXC (disabled by default) are provided by internal DLLs.  
When the RGMII delay is bypassed, the delay chain is completely omitted and the DLL output clock is the same as the  
DLL input clock. DLL bypass is controlled by the bypass rxdll and bypass txdll bits of the RX DLL Control Register and  
the TX DLL Control Register for RXC and TXC respectively.  
When DLL tuning is enabled (normal operation) the DLL is dynamically tuned. The txdll_tap_adj and rxdll_tap_adj fields  
in the TX DLL Control Register and the RX DLL Control Register are used to statically account for the output multiplexer  
stage in the delay chain. The DLL tap select value is dynamically calculated and adjusts the delay chain.  
When DLL tuning is disabled, by setting the rxdll_tune_disable or txdll_tune_disable bits in the RX DLL Control Register  
or TX DLL Control Register respectively, the DLL is not dynamically tuned but is still used to provide a fixed delay. The  
txdll_tap_sel and rxdll_tap_sel settings are used as fixed delay values. The txdll_tap_adj and rxdll_tap_adj fields are not  
used.  
The DLL must be reset whenever a new value is programmed into the txdll_tap_sel or rxdll_tap_sel field. This is accom-  
plished by the respective rxdll_reset or rxdll_reset bit.  
Note:  
These bits are not self-clearing and must be set then reset by software.  
4.9.3.2  
RGMII Pad Skew Registers  
It is common to implement RGMII PHY-to-MAC designs that either PHY, MAC, or both PHY and MAC are not fully RGMII  
v2.0 compliant with on-chip clock delay. These combinations of mixed RGMII v1.3/v2.0 designs and plus sometimes  
non-matching RGMII PCB trace routings require a review of the entire RGMII system timings (PHY on-chip, PCB trace  
delay, MAC on-chip) to compute the aggregate clock delay and determine if the clock delay timing is met.  
If timing adjustment is needed, pad skew registers are available for all RGMII pins (clocks, control signals, and data bits)  
to provide programming options to adjust or correct the timing relationship for each RGMII pin. Because RGMII is a  
source-synchronous bus interface, the timing relationship needs to be maintained only within the RGMII pin’s respective  
timing group.  
DS00002841C-page 28  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
• RGMII transmit timing group pins: TXC, TX_CTL, TXD[3:0]  
• RGMII receive timing group pins: RXC, RX_CTL, RXD[3:0]  
The following four registers located at MMD Address 2h are provided for pad skew programming:  
Clock Invert and Control Signal Pad Skew Register  
RGMII RX Data Pad Skew Register  
RGMII TX Data Pad Skew Register  
Clock Pad Skew Register  
The RGMII control signals and data bits have 4-bit skew settings, while the RGMII clocks have 5-bit skew settings.  
Each register value increment is approximately:  
• Data and control: 28ps (min) to 73ps (max)  
• RXC and TXC: 24ps (min) to 58ps (max)  
A lower value decreases the delay, while a higher value increases the delay.  
Table 4-5 and Table 4-6 list the approximate delay for each pad skew (value) setting.  
TABLE 4-5:  
DELAY FOR 5-BIT PAD SKEW SETTING  
Pad Skew Value  
Delay (ns)  
0_0000  
0_0001  
0_0010  
0_0011  
0_0100  
0_0101  
0_0110  
0_0111  
0_1000  
0_1001  
0_1010  
0_1011  
0_1100  
0_1101  
0_1110  
0_1111  
1_0000  
1_0001  
1_0010  
1_0011  
1_0100  
1_0101  
1_0110  
1_0111  
1_1000  
1_1001  
1_1010  
1_1011  
1_1100  
1_1101  
-0.17(min) / -0.41(max)  
-0.14(min) / -0.35(max)  
-0.12(min) / -0.29(max)  
-0.1(min) / -0.23(max)  
-0.07(min) / -0.17(max)  
-0.05(min) / -0.12(max)  
-0.02(min) / -0.06(max)  
No delay adjustment (default value)  
0.02(min) / 0.06(max)  
0.05(min) / 0.12(max)  
0.07(min) / 0.17(max)  
0.1(min) / 0.23(max)  
0.12(min) / 0.29(max)  
0.14(min) / 0.35(max)  
0.17(min) / 0.41(max)  
0.19(min) / 0.46(max)  
0.22(min) / 0.52(max)  
0.24(min) / 0.58(max)  
0.26(min) / 0.64(max)  
0.29(min) / 0.7(max)  
0.31(min) / 0.75(max)  
0.34(min) / 0.81(max)  
0.36(min) / 0.87(max)  
0.38(min) / 0.93(max)  
0.41(min) / 0.99(max)  
0.43(min) / 1.04(max)  
0.46(min) / 1.1(max)  
0.48(min) / 1.16(max)  
0.5(min) / 1.22(max)  
0.53(min) / 1.28(max)  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 29  
KSZ9131RNX  
TABLE 4-5:  
DELAY FOR 5-BIT PAD SKEW SETTING (CONTINUED)  
Pad Skew Value  
Delay (ns)  
1_1110  
1_1111  
0.55(min) / 1.33(max)  
0.58(min) / 1.39(max)  
TABLE 4-6:  
DELAY FOR 4-BIT PAD SKEW SETTING  
Pad Skew Value  
Delay (ns)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
-0.20(min) / -0.51(max)  
-0.17(min) / -0.44(max)  
-0.14(min) / -0.37(max)  
-0.11(min) / -0.29(max)  
-0.08(min) / -0.22(max)  
-0.06(min) / -0.15(max)  
-0.03(min) / -0.07(max)  
No delay adjustment (default value)  
0.03(min) / 0.07(max)  
0.06(min) / 0.15(max)  
0.08(min) / 0.22(max)  
0.11(min) / 0.29(max)  
0.14(min) / 0.37(max)  
0.17(min) / 0.44(max)  
0.20(min) / 0.51(max)  
0.22(min) / 0.58(max)  
The following examples show how to read/write to the Clock Pad Skew Register for the RGMII TXC and RXC skew set-  
tings. MMD register access is through the direct portal MMD Access Control Register and MMD Access Address/Data  
Register. For more programming details, refer to Section 5.3, "MDIO Manageable Device (MMD) Registers".  
• Example: Read back the value of the Clock Pad Skew Register.  
- Write MMD Access Control Register = 0x0002 /  
/ Select MMD Device Address 2h  
- Write MMD Access Address/Data Register = 0x0008 / / Select Clock Pad Skew Register  
- Write MMD Access Control Register = 0x4002 /  
- Read MMD Access Address/Data Register /  
/ Select register data for Clock Pad Skew Register  
/ Read value of Clock Pad Skew Register  
• Example: Write a value of 0x03FF (delay TXC and RXC pad skews to their maximum values) to the Clock Pad  
Skew Register  
- Write MMD Access Control Register = 0x0002 /  
/ Select MMD Device Address 2h  
- Write MMD Access Address/Data Register = 0x0008 / / Select Clock Pad Skew Register  
- Write MMD Access Control Register = 0x4002 /  
/ Select register data for Clock Pad Skew Register  
- Write MMD Access Address/Data Register = 0x03FF / / Write value 0x03FF to Clock Pad Skew Register  
DS00002841C-page 30  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
4.9.4  
RGMII IN-BAND STATUS  
The KSZ9131RNX provides in-band status to the MAC during the inter-frame gap when RX_DV is de-asserted. RGMII  
in-band status is always enabled after power-up.  
The in-band status is sent to the MAC using the RXD[3:0] data pins, and is described in Table 4-7.  
TABLE 4-7:  
RX_CTL  
RGMII IN-BAND STATUS  
RXD3  
RXD[2:1]  
RXD0  
0 / 0  
Duplex Status  
0 = Half-duplex  
1 = Full-duplex  
RX_CLK clock speed  
Link Status  
0 = Link down  
1 = Link up  
2.5 MHz (10 Mbps)  
25 MHz (100 Mbps)  
125 MHz (1000 Mbps)  
(equivalent to RX_DV = 0 /  
RX_ER = 0)  
00 =  
01 =  
10 =  
11 = Reserved  
4.9.5  
RGMII EEE LOW POWER IDLE  
The KSZ9131RNX supports EEE Low Power Idle on the RGMII interface. This is encoded as RX_CTL = 0/1 (equivalent  
to RX_DV = 0 / RX_ER = 1) and RXD[3:0] = 0x1 / 0x0 (equivalent to RXD[7:0] = 0x01) for receive and as TX_CTL = 0/  
1 (equivalent to TX_EN = 0 / TX_ER = 1) and TXD[3:0] = 0x1 / 0x0 (equivalent to TXD[7:0] = 0x01) for transmit.  
4.10 MII Management (MIIM) Interface  
The KSZ9131RNX supports the IEEE 802.3 MII management interface, also known as the Management Data Input/  
Output (MDIO) interface. This interface allows upper-layer devices to monitor and control the state of the KSZ9131RNX.  
An external device with MIIM capability is used to read the PHY status and/or configure the PHY settings. More details  
about the MIIM interface can be found in Clause 22.2.4 of the IEEE 802.3 Specification.  
The MIIM interface consists of the following:  
• A physical connection that incorporates the clock line (MDC) and the data line (MDIO).  
• A specific protocol that operates across the physical connection mentioned earlier, which allows an external con-  
troller to communicate with one or more KSZ9131RNX devices. Each KSZ9131RNX device is assigned a unique  
PHY address between 0h and 7h by the PHYAD[2:0] strapping pins.  
• A 32-register address space for direct access to IEEE-defined registers and vendor-specific registers, and for indi-  
rect access to MMD addresses and registers. See the Register Map section.  
Table 4-8 shows the MII management frame format for the KSZ9131RNX.  
TABLE 4-8:  
MII MANAGEMENT FRAME FORMAT FOR THE KSZ9131MNX  
PHY  
Address  
Bits [4:0] Bits [4:0]  
REG  
Address  
Start of Read/Write  
Preamble  
TA  
Data Bits [15:0]  
Idle  
Frame  
OP Code  
Read  
Write  
32 1’s  
32 1’s  
01  
01  
10  
01  
00AAA  
00AAA  
RRRRR  
RRRRR  
Z0 DDDDDDDD_DDDDDDDD  
10 DDDDDDDD_DDDDDDDD  
Z
Z
4.10.1  
ALL PHYS ADDRESS  
Normally, the Ethernet PHY is accessed at the PHY address set by the PHYAD[2:0] strapping pins.  
PHY Address 0h is optionally supported as the broadcast PHY address, which allows for a single write command to  
simultaneously program an identical PHY register for two or more PHY devices (for example, using PHY Address 0h to  
set the Basic Control Register to a value of 0x1940 to set Bit [11] to a value of one to enable software power-down).  
PHY address 0 is enabled (in addition to the PHY address set by the PHYAD[2:0] strapping pins) when the All-PHYAD  
Enable bit in the Common Control Register is a 1.  
4.10.2  
MDIO OUTPUT DRIVE MODE  
The MDIO output pin drive mode is controlled by the MDIO Drive bit in MDIO Drive Register. When set to a 0, the MDIO  
output is open-drain. When set to a 1, the MDIO output is push-pull.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 31  
KSZ9131RNX  
4.11 Interrupt (INT_N)  
The INT_N pin is an optional interrupt signal that is used to inform the external controller that there has been a status  
update in the KSZ9131RNX PHY register. Bits [15:8] of the Interrupt Control/Status Register are the interrupt control  
bits that enable and disable the conditions for asserting the INT_N signal. Bits [7:0] of the Interrupt Control/Status Reg-  
ister are the interrupt status bits that indicate which interrupt conditions have occurred. The interrupt status bits are  
cleared after reading the Interrupt Control/Status Register.  
The Interrupt Polarity Invert bit of the Control Register sets the interrupt level to active high or active low. The default is  
active low.  
The MII management bus option gives the MAC processor complete access to the KSZ9131RNX control and status  
registers. Additionally, an interrupt pin eliminates the need for the processor to poll the PHY for status change.  
4.12 LED Support  
The KSZ9131RNX provides two programmable LED output pins, LED2 and LED1, which are configurable to support  
three LED modes. The LED mode is configured by the LED_MODE strap-in as well as the KSZ9031 LED Mode bit in  
the KSZ9031 LED Mode Register. It is latched at power-up/reset and is defined as follows:  
KSZ9031 LED Mode = 1, LED_MODE strap input high (pulled up): Individual-LED Mode  
KSZ9031 LED Mode = 1, LED_MODE strap input low (pulled down): Tri-Color-LED Mode  
KSZ9031 LED Mode = 0, LED_MODE strap is unused: Enhanced LED Mode  
Each LED output pin can directly drive an LED with a series resistor (typically 220Ω to 470Ω).  
4.12.1  
INDIVIDUAL-LED MODE  
In individual-LED mode, the LED2 pin indicates the link status while the LED1 pin indicates the activity status, as shown  
in Table 4-9.  
Note:  
• The LEDs are forced OFF when the Isolate (PHY_ISO) bit in the Basic Control Register is set.  
• The LEDs are forced OFF when the Power Down bit in the Basic Control Register is set.  
TABLE 4-9:  
INDIVIDUAL-LED MODE - PIN DEFINITION  
LED Pin  
LED2  
Pin State  
LED Definition  
Link/Activity  
H
L
OFF  
ON  
Link Off  
Link On (any speed)  
No Activity  
LED1  
H
OFF  
Toggle  
Blinking  
Activity (RX, TX)  
4.12.2  
TRI-COLOR-LED MODE  
In tri-color-LED mode, the link and activity status are indicated by the LED2 pin for 1000BASE-T; by the LED1 pin for  
100BASE-TX; and by both LED2 and LED1 pins, working in conjunction, for 10BASE-T. This is summarized in Table 4-  
10.  
Note:  
• The LEDs are forced OFF when the Isolate (PHY_ISO) bit in the Basic Control Register is set.  
• The LEDs are forced OFF when the Power Down bit in the Basic Control Register is set.  
TABLE 4-10: TRI-COLOR-LED MODE - PIN DEFINITION  
LED Pin (State)  
LED Pin (Definition)  
Link/Activity  
LED2  
LED1  
LED2  
LED1  
H
L
H
H
OFF  
ON  
OFF  
OFF  
Link Off  
1000 Link/No Activity  
DS00002841C-page 32  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
TABLE 4-10: TRI-COLOR-LED MODE - PIN DEFINITION (CONTINUED)  
LED Pin (State)  
LED Pin (Definition)  
Link/Activity  
LED2  
LED1  
LED2  
LED1  
Toggle  
H
L
Blinking  
OFF  
OFF  
ON  
1000 Link/Activity (RX, TX)  
100 Link/No Activity  
H
H
Toggle  
L
OFF  
Blinking  
ON  
100 Link/Activity (RX, TX)  
10 Link/No Activity  
L
ON  
Toggle  
Toggle  
Blinking  
Blinking  
10 Link/Activity (RX, TX)  
4.12.3  
ENHANCED LED MODE  
Enhanced LED mode is enabled when the KSZ9031 LED Mode bit in the KSZ9031 LED Mode Register is cleared. In  
Enhanced LED mode, each LED can be configured to display different status information that can be selected by setting  
the corresponding LED Configuration field of the LED Mode Select Register. The modes are shown in Table 4-11. The  
blink/pulse-stretch and other LED settings can be configured via the LED Behavior Register.  
Note:  
The LEDs are forced OFF when the Power Down bit in the Basic Control Register is set.  
TABLE 4-11: LED MODE AND FUNCTION SUMMARY  
Mode  
Name  
Description  
0
Link/Activity  
1 (led off) = No link in any speed on any media interface.  
0 (led on) = Valid link at any speed on any media interface.  
Blink or pulse stretch (led turns off) = Valid link at any speed on any  
media interface with activity present.  
1
2
3
4
5
6
Link1000/Activity  
Link100/Activity  
1 (led off) = No link at 1000BASE-T.  
0 (led on) = Valid link at 1000BASE-T.  
Blink or pulse stretch (led turns off) = Valid link at 1000BASE-T with activ-  
ity present.  
1 (led off) = No link at 100BASE-TX.  
0 (led on) = Valid link at 100BASE-TX.  
Blink or pulse stretch (led turns off) = Valid link at 100BASE-TX with  
activity present.  
Link10/Activity  
1 (led off) = No link at 10BASE-T.  
0 (led on) = Valid link at 10BASE-T.  
Blink or pulse stretch (led turns off) = Valid link at 10BASE-T with activity  
present.  
Link100/1000/Activity  
Link10/1000/Activity  
Link10/100/Activity  
1 (led off) = No link at 100BASE-TX or 1000BASE-T.  
0 (led on) = Valid link at 100BASE-TX or 1000BASE-T.  
Blink or pulse stretch (led turns off) = Valid link at 100BASE-TX or  
1000BASE-T, with activity present.  
1 (led off) = No link at 10BASE-T or 1000BASE-T.  
0 (led on) = Valid link at 10BASE-T or 1000BASE-T.  
Blink or pulse stretch (led turns off) = Valid link at 10BASE-T or  
1000BASE-T, with activity present.  
1 (led off) = No link at 10BASE-T or 100BASE-TX.  
0 (led on) = Valid link at 10BASE-T or 100BASE-TX.  
Blink or pulse stretch (led turns off) = Valid link at 10BASE-T or  
100BASE-TX, with activity present.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 33  
KSZ9131RNX  
TABLE 4-11: LED MODE AND FUNCTION SUMMARY (CONTINUED)  
Mode  
Name  
RESERVED  
Description  
7
8
RESERVED  
Duplex/Collision  
1 (led off) = Link established in half-duplex mode, or no link established.  
0 (led on) = Link established in full-duplex mode.  
Blink or pulse stretch (led turns on) = Link established in half-duplex  
mode but collisions are present.  
9
Collision  
Activity  
1 (led off) = No collisions detected.  
Blink or pulse stretch (led turns on) = Collision detected.  
1 (led off) = No activity present.  
10  
Blink or pulse stretch (led turns on) = Activity present. (becomes TX  
activity present if the LED Activity Output Select bit in the LED Behavior  
Register is set to 1.)  
11  
12  
RESERVED  
RESERVED  
Auto-Negotiation Fault  
1 (led off) = No Auto-Negotiation fault present.  
0 (led on) = Auto-Negotiation fault occurred.  
13  
14  
15  
RESERVED  
RESERVED  
Force LED Off  
Force LED On  
1 (led off) = De-asserts the LED.  
0 (led on) = Asserts the LED.  
4.12.3.1  
LED Behavior  
Using the LED Behavior Register, the following LED behaviors can be configured.:  
LED Combine  
LED Blink or Pulse-Stretch  
Rate of LED Blink or Pulse-Stretch  
LED Pulsing Enable  
4.12.3.1.1  
LED Combine  
Enables an LED to display the status for a combination of primary and secondary modes. This can be enabled or dis-  
abled for each LED pin via the LED Combination Disables field of the LED Behavior Register. For example, a copper  
link running in 1000BASE-T mode with activity present can be displayed with one LED by configuring an LED pin to  
Link1000/Activity mode. The LED asserts when linked to a 1000BASE-T partner and also blinks or performs pulse-  
stretch when activity is either transmitted by the PHY or received by the Link Partner. When disabled, the combine fea-  
ture only provides status of the selected primary function. In this example, only Link1000 asserts the LED, and the sec-  
ondary mode, activity, does not display if the combine feature is disabled.  
Note:  
LED Behavior Register, Bit 15 = 1 (Default is 0) to set the LED Link/Activity to the desired value. This can  
be done in the same LED Behavior Register write to set the LED Combine Disables field.  
4.12.3.1.2  
LED Blink or Pulse-Stretch  
This behavior is used for activity and collision indication. This can be uniquely configured for each LED pin via the LED  
Pulse Stretch Enables field of the LED Behavior Register. Activity and collision events can occur randomly and intermit-  
tently throughout the link-up period.  
Blink is a 50% duty cycle oscillation of asserting and de-asserting an LED pin.  
DS00002841C-page 34  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
As shown in Figure 4-8, for a single event, the LED will blink (either on or off depending on the LED function) for half of  
the blink period. For continual events, the LED will oscillate at the blink rate.  
FIGURE 4-8:  
LED BLINK PATTERN  
event  
LED (blink on)  
LED (blink off)  
active low LED shown  
(up to ½ blink LED blinks  
LED  
oscillates at  
blink rate  
period delay)  
for ½ blink  
period  
Not to any scale  
Pulse-stretch ensures that an LED is asserted and de-asserted for a specific period of time when activity is either pres-  
ent or not present.  
As shown in Figure 4-9, for a single event, the LED will pulse (either on or off depending on the LED function) for the  
full pulse period. For continual events, the LED will remain on (or off) and will extend from a half to one and a half pulse  
periods once the events terminate. Once off (or on), the LED will remain in that state for at least a half pulse period.  
FIGURE 4-9:  
LED PULSE PATTERN  
event  
LED (pulse on)  
LED (pulse off)  
active low LED shown  
(up to ½ pulse  
period delay)  
(½ to 1-½ pulse period  
stretch)  
LED pulses for  
pulse period  
LED remains on (or off)  
LED remains  
off (or on) for ½  
pulse period  
Not to any scale  
The blink / pulse stretch rate can be configured, as detailed in Section 4.12.3.1.3, "Rate of LED Blink or Pulse-Stretch".  
4.12.3.1.3 Rate of LED Blink or Pulse-Stretch  
This behavior controls the LED blink rate or pulse-stretch length when the blink/pulse-stretch is enabled (LED Pulse  
Stretch Enables) on an LED pin. This can be uniquely configured for each LED pin via the LED Blink / Pulse-Stretch  
Rate field of the LED Behavior Register. The blink rate, which alternates between a high and low voltage level at a 50%  
duty cycle, can be set to 2.5 Hz, 5 Hz, 10 Hz, or 20 Hz. For pulse-stretch, the rate can be set to 50 ms, 100 ms, 200 ms,  
or 400 ms.  
4.12.3.1.4  
LED Pulsing Enable  
To provide additional power savings, the LEDs (when asserted) can be modulated at 5 kHz, 20% duty cycle, by setting  
the LED Pulsing Enable bit of the LED Behavior Register.  
4.13 Loopback Modes  
The KSZ9131RNX supports the following loopback operations to verify analog and/or digital data paths.  
• Digital (near-end) loopback  
• Remote (far-end) loopback  
• External connector loopback  
4.13.1  
DIGITAL (NEAR-END) LOOPBACK  
This loopback mode checks the RGMII transmit and receive data paths between the KSZ9131RNX and the external  
MAC, and is supported for all three speeds (10/100/1000 Mbps) at full-duplex.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 35  
KSZ9131RNX  
The loopback data path is shown in Figure 4-10.  
1. RGMII MAC transmits frames to KSZ9131RNX.  
2. Frames are wrapped around inside KSZ9131RNX.  
3. KSZ9131RNX transmits frames back to RGMII MAC.  
FIGURE 4-10:  
DIGITAL (NEAR-END) LOOPBACK  
KSZ9131RNX  
AFE  
PCS  
RGMII  
MAC  
RGMII  
(ANALOG)  
(DIGITAL)  
The following programming steps and register settings are used for local loopback mode.  
For 1000 Mbps loopback,  
1. Configure the following registers:  
- MMD 1C, Register 15 = EEEE  
- MMD 1C, Register 16 = EEEE  
- MMD 1C, Register 18 = EEEE  
- MMD 1C, Register 1B = EEEE  
2. Configure the Basic Control Register:  
- Bit [14] = 1  
- Bits [6, 13] = 10  
- Bit [12] = 0  
- Bit [8] = 1  
// Enable local loopback mode  
// Select 1000 Mbps speed  
// Disable auto-negotiation  
// Select full-duplex mode  
3. Configure the Auto-Negotiation Master Slave Control Register:  
- Bit [12] = 1  
- Bit [11] = 0  
// Enable master-slave manual configuration  
// Select slave configuration (required for loopback mode)  
For 10/100 Mbps loopback,  
1. Configure the following registers:  
- MMD 1C, Register 15 = EEEE  
- MMD 1C, Register 16 = EEEE  
- MMD 1C, Register 18 = EEEE  
- MMD 1C, Register 1B = EEEE  
2. Configure the Basic Control Register:  
- Bit [14] = 1  
// Enable local loopback mode  
- Bits [6, 13] = 00 / 01  
- Bit [12] = 0  
// Select 10 Mbps/100 Mbps speed  
// Disable auto-negotiation  
// Select full-duplex mode  
- Bit [8] = 1  
DS00002841C-page 36  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
4.13.2  
REMOTE (FAR-END) LOOPBACK  
This loopback mode checks the line (differential pairs, transformer, RJ-45 connector, Ethernet cable) transmit and  
receive data paths between the KSZ9131RNX and its link partner, and is supported for 1000BASE-T full-duplex mode  
only.  
The loopback data path is shown in Figure 4-11.  
1. The Gigabit PHY link partner transmits frames to KSZ9131RNX.  
2. Frames are wrapped around inside KSZ9131RNX.  
3. KSZ9131RNX transmits frames back to the Gigabit PHY link partner.  
FIGURE 4-11:  
REMOTE (FAR-END) LOOPBACK  
KSZ9131RNX  
PCS  
(DIGITAL)  
AFE  
(ANALOG)  
RGMII  
RJ-45  
CAT-5  
(UTP)  
1000BASE-T  
LINK PARTNER  
RJ-45  
The following programming steps and register settings are used for remote loopback mode.  
1. Configure the Basic Control Register:  
- Bits [6, 13] = 10 // Select 1000 Mbps speed  
- Bit [12] = 0  
- Bit [8] = 1  
// Disable auto-negotiation  
// Select full-duplex mode  
Or just auto-negotiate and link up at 1000BASE-T full-duplex mode with the link partner.  
2. Configure the Remote Loopback Register:  
- Bit [8] = 1  
// Enable remote loopback mode  
3. Connect RX_CLK to TX_CLK  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 37  
KSZ9131RNX  
4.13.3  
EXTERNAL CONNECTOR LOOPBACK  
The connector loopback testing feature allows the twisted pair interface to be looped back externally. When using this  
feature, the PHY must be connected to a loopback connector or a loopback cable. Pair A should be connected to pair  
B, and pair C to pair D, as shown in Figure 4-12. The connector loopback feature functions at all available interface  
speeds.  
This loopback tests the PHY digital and MAC connectivity.  
When using the connector loopback testing feature, the device Auto-Negotiation, speed, and duplex configuration is set  
using the Basic Control Register, Auto-Negotiation Advertisement Register, and Auto-Negotiation Master Slave Control  
Register.  
For 1000BASE-T connector loopback, the following additional writes are required to be executed in the following order:  
• Disable Auto-Negotiation and set the speed to 1000Mbps and the duplex to full by setting the Basic Control Reg-  
ister to a value of 0140h.  
• Set the Master-Slave configuration to master by setting the Master/Slave Manual Configuration Enable and Mas-  
ter/Slave Manual Configuration Value bits in the Auto-Negotiation Master Slave Control Register.  
• Enable the 1000BASE-T connector loopback by setting the Ext_lpbk bit in the External Loopback Register.  
FIGURE 4-12:  
EXTERNAL CONNECTOR LOOPBACK  
A
B
RXD  
TXD  
Cat‐5  
PHY  
MAC  
C
D
4.14 LinkMD® Cable Diagnostic  
The LinkMD function uses time domain reflectometry (TDR) to analyze the cabling plant for common cabling problems,  
such as open circuits, short circuits, and impedance mismatches as well as the distance to the fault. Each of the four  
twisted pairs is tested separately.  
LinkMD operates by sending a pulse of known amplitude and duration down the selected differential pair, then analyzing  
the polarity and shape of the reflected signal to determine the type of fault: open circuit for a positive/non-inverted ampli-  
tude reflection and short circuit for a negative/inverted amplitude reflection. The time duration for the reflected signal to  
return provides the approximate distance to the cabling fault. The LinkMD function processes this TDR information and  
presents it as a numerical value that can be translated to a cable distance.  
LinkMD is initiated by accessing the LinkMD Cable Diagnostic Register in conjunction with the Auto-MDI/MDI-X Regis-  
ter. The latter register is needed to disable the Auto MDI/MDI-X function before running the LinkMD test. Additionally, a  
software reset (PHY Soft Reset (RESET) bit in the Basic Control Register = 1) should be performed before and after  
running the LinkMD test. The reset helps to ensure the KSZ9131RNX is in the normal operating state before and after  
the test.  
Prior to running the cable diagnostics, Auto-negotiation should be disabled, full duplex set and the link speed set to  
1000Mbps via the Basic Control Register. The Master-Slave configuration should be set to Slave by writing a value of  
0x1000 to the Auto-Negotiation Master Slave Control Register.  
To test each individual cable pair, set the cable pair in the Cable Diagnostics Test Pair (VCT_PAIR[1:0]) field of the  
LinkMD Cable Diagnostic Register, along with setting the Cable Diagnostics Test Enable (VCT_EN) bit. The Cable Diag-  
nostics Test Enable (VCT_EN) bit will self clear when the test is concluded.  
The test results (for the pair just tested) are available in the LinkMD Cable Diagnostic Register. The Cable Diagnostics  
Status (VCT_ST[1:0]) field will indicate a Normal (properly terminated), Open or Short condition.  
DS00002841C-page 38  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
If the test result was Open or Short, the Cable Diagnostics Data or Threshold (VCT_DATA[7:0]) field indicates the dis-  
tance to the fault in meters as approximately:  
• distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity  
With an accuracy of +/- 2% to 3% for short and medium cables and +/- 5% to 6% for long cables.  
APPLICATION NOTE: If the Cable Diagnostics Status (VCT_ST[1:0]) field indicates Failed, it is possible the link  
partner is forced to 100BASE-TX or 1000BASE-T mode.  
4.15 Self-Test Frame Generation and Checking  
The device is capable of generating and checking frames. The device must be connected to a loopback connector or a  
loopback cable. Pair A should be connected to pair B, and pair C to pair D, as shown in Figure 4-12.  
Normally, the device does not require a 125MHz clock to be supplied into the TXC input pin. An external clock may be  
used when the Self_test_external_clk_sel bit in the Self-Test Enable Register is set high.  
Auto-negotiation should be disabled, full duplex set and the desired link speed set via the Basic Control Register.  
For 10BASE-T and 100BASE-TX:  
• Auto-MDIX should be disabled and the desired configuration (MDI vs. MDIX) selected via the Swap-Off and MDI  
Set bits in the Auto-MDI/MDI-X Register. Selecting MDI vs. MDIX will test different sections of the PHY.  
For 1000BASE-T:  
• Set the Master-Slave configuration to master by setting the Master/Slave Manual Configuration Enable and Mas-  
ter/Slave Manual Configuration Value bits in the Auto-Negotiation Master Slave Control Register.  
• Enable the 1000BASE-T connector loopback by setting the Ext_lpbk bit in the External Loopback Register.  
• Set the Ethernet MAC to 1000 Mbps operation (this is necessary so that a 125MHz clock is provided to the TXC  
input pin).  
The Self-Test mode is enabled by setting a frame count into the Self-Test Packet Count LO Register and Self-Test  
Packet Count HI Register and then setting the following in order:  
Self_test_frame_cnt_en bit in the Self-Test Frame Count Enable Register  
Self_test_en bit in the Self-Test Enable Register  
Self_test_pgen_en bit in the Self-Test PGEN Enable Register  
Once the Self_test_done bit in the Self-Test Status Register is set, the results can be determined through the following:  
Self-Test Correct Count HI Register / Self-Test Correct Count LO Register  
Self-Test Error Count HI Register / Self-Test Error Count LO Register  
Self-Test Bad SFD Count HI Register / Self-Test Bad SFD Count LO Register  
4.16 NAND Tree Support  
The KSZ9131RNX provides parametric NAND tree support for fault detection between chip I/Os and board. NAND tree  
mode is enabled at power-up/reset with the MODE[3:0] strap-in pins set to ‘0100’. Table 4-12 lists the NAND tree pin  
order. To test any given pin, the pin is toggled while holding the lower ranked pins low and the higher ranked pins high,  
causing a toggle on the output of the tree.  
APPLICATION NOTE: Since the NAND tree output is on the CLK125_NDO pin, the pin must be enabled for output  
by using the CLK125_EN strap input.  
TABLE 4-12: NAND TREE TEST PIN ORDER FOR KSZ9131  
Pin  
Description  
LED2  
LED1/PME_N1  
TXD0  
Input  
Input  
Input  
Input  
Input  
TXD1  
TXD2  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 39  
KSZ9131RNX  
TABLE 4-12: NAND TREE TEST PIN ORDER FOR KSZ9131 (CONTINUED)  
Pin  
Description  
TXD3  
TXC  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
TX_CTL  
RXD3  
RXD2  
RXD1  
RXD0  
RX_CTL  
RXC  
INT_N/PME_N2  
MDC  
MDIO  
CLK125_NDO  
4.17 Power Management  
The KSZ9131RNX incorporates a number of power-management modes and features that provide methods to consume  
less energy. These are discussed in the following sections.  
4.17.1  
SMART POWER SAVING  
For shorter cable lengths (< ~70 meters) the signal to noise ratio is sufficiently high to allow the reduction of ADC reso-  
lution as well as DPS taps, Based on the detected cable length, the device automatically reduces power consumption  
by approximately 20mW.  
4.17.2  
ENERGY-DETECT POWER-DOWN MODE (EDPD)  
Energy-detect power-down (EDPD) mode is used to further reduce the transceiver power consumption when the cable  
is unplugged. It is enabled by writing a one to the EDPD Mode Enable bit in the EDPD Control Register, and is in effect  
when auto-negotiation mode is enabled and the cable is disconnected (no link).  
In EDPD Mode, the KSZ9131RNX shuts down all transceiver blocks, except for the transmitter and energy detect cir-  
cuits. Power can be reduced further by extending the time interval between the transmissions of link pulses to check for  
the presence of a link partner. The periodic transmission of link pulses is needed to ensure the KSZ9131RNX and its  
link partner, when operating in the same low-power state and with Auto MDI/MDI-X disabled, can wake up when the  
cable is connected between them. By default, EDPD mode is disabled after power-up. Previous register setting are  
maintained when EDPD mode is cleared. EDPD operation may be adjusted via the p_edpd_mask_timer[1:0], p_edpd_-  
timer[1:0] and p_EDPD_random_dis fields in the EDPD Control Register within the MMD address space.  
4.17.3  
SOFTWARE POWER-DOWN MODE (SPD)  
The KSZ9131RNX supports a software power down (SPD) mode. This mode is used to power down the device when it  
is not in use after power-up. Software power-down mode is enabled by writing a one to the Power Down bit in the Basic  
Control Register. The device exits the SPD state after a zero is written to the Power Down bit.  
In the SPD state, the device disables most internal functions.  
During SPD, the crystal oscillator and PLL are enabled and the internal (125MHz and 250MHz) clocks are gated, The  
standard registers (0 through 31) and the MII Management Interface operate using the crystal clock.  
Previous register settings are maintained during and following the removal of SPD.  
APPLICATION NOTE: The internal (125MHz and 250MHz) clock gating maybe overridden by setting the  
spd_clock_gate_override bit in the Software Power Down Control Register at the cost of  
increased power.  
The following remain operational during SPD:  
DS00002841C-page 40  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
• MII Management Interface  
- Only access to the standard registers (0 through 31) is supported.  
- Access to MMD address spaces other than MMD address space 1 is possible if the spd_clock_gate_override  
bit is set.  
- Access to MMD address space 1 is not possible.  
• Voltage Regulator Controller (LDO)  
- The LDO controller can be disabled by setting the active low LDO enable bit in LDO Control Register. An  
external source of 1.2V is necessary for operation in this case.  
• PLL  
- Normally the PLL is enabled during SPD. It may be disabled by setting the spd_pll_disable bit described in  
Section 4.17.3.1, "SPD Extra Power Savings".  
• Crystal Oscillator  
- Normally the Crystal Oscillator is enabled during SPD. It may be disabled by setting the XTAL Disable bit  
described in Section 4.17.3.1, "SPD Extra Power Savings".  
The following are normally disabled during SPD:  
• TX and RX clocks  
- If the above mentioned spd_clock_gate_override bit is set, TX and RX clocks would be enabled. They may  
alternately be stopped by setting the Isolate (PHY_ISO) bit in the Basic Control Register.  
• CLK125_NDO pin  
- If the above mentioned spd_clock_gate_override bit is set, CLK125_NDO would be enabled (if previously  
enabled for clock output). It may alternately be disabled by clearing the clk125 Enable bit in Common Control  
Register  
4.17.3.1  
SPD Extra Power Savings  
To achieve a lower power usage, the PLL maybe disable during SPD by setting the spd_pll_disable bit in the Software  
Power Down Control Register prior to entering SPD.  
APPLICATION NOTE: A full device reset occurs following the removal of SPD, therefore previous register settings  
are not maintained for this option.  
To further reduce power usage, the crystal oscillator maybe disable by setting the XTAL Disable bit in the XTAL Control  
Register after setting the spd_pll_disable bit and entering SPD.  
Since the MII Management Interface operates using the crystal clock, once this bit is set, the device will become inac-  
cessible. A pin reset or power cycle is required to resume operation.  
4.17.4  
CHIP POWER-DOWN MODE (CPD)  
This mode provides the lowest power state for the KSZ9131RNX device when it is mounted on the board but not in use.  
Chip power-down (CPD) mode is enabled after power-up/reset with the MODE[3:0] strap-in pins set to ‘0111’. Chip  
power-down mode can only be exited by removing device power.  
4.18 Energy Efficient Ethernet  
The KSZ9131RNXimplements Energy Efficient Ethernet (EEE) as described in IEEE Standard 802.3az for line signaling  
by the four differential pairs (analog side) and according to the multi-source agreement (MSA) of collaborating Gigabit  
Ethernet chip vendors for the RGMII (digital side). This agreement is based on the IEEE Standard’s EEE implementation  
for GMII (1000 Mbps) and MII (100 Mbps). The specification is defined around an EEE-compliant MAC on the host side  
and an EEE-compliant link partner on the line side that support the special signaling associated with EEE. EEE saves  
power by keeping the AC signal on the copper Ethernet cable at approximately 0V peak-to-peak as often as possible  
during periods of no traffic activity, while maintaining the link-up status. This is referred to as low-power idle (LPI) mode  
or state.  
The KSZ9131RNX has the EEE function enabled as the power-up default setting. The EEE function can be disabled by  
configuring the following EEE advertisement bits in the EEE Advertisement Register, followed by restarting auto-nego-  
tiation (writing a ‘1’ to the Restart Auto-Negotiation (PHY_RST_AN) bit in the Basic Control Register:  
1000BASE-T EEE bit = 0  
100BASE-TX EEE bit = 0  
// Disable 1000 Mbps EEE mode  
// Disable 100 Mbps EEE mode  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 41  
KSZ9131RNX  
During LPI mode, the copper link responds automatically when it receives traffic and resumes normal PHY operation  
immediately, without blockage of traffic or loss of packet. This involves exiting LPI mode and returning to normal 100/  
1000 Mbps operating mode. The LPI state is controlled independently for transmit and receive paths, allowing the LPI  
state to be active (enabled) for:  
• Transmit cable path only  
• Receive cable path only  
• Both transmit and receive cable paths  
During LPI mode, refresh transmissions are used to maintain the link; power savings occur in quiet periods. Approxi-  
mately every 20 to 22 milliseconds, a refresh transmission of 200 to 220 microseconds is sent to the link partner. The  
refresh transmissions and quiet periods are shown in Figure 4-13.  
FIGURE 4-13:  
LPI MODE (REFRESH TRANSMISSIONS AND QUIET PERIODS)  
ACTIVE  
LOW-POWER  
ACTIVE  
QUIET  
TQ  
QUIET  
QUIET  
TS  
TR  
TW_PHY  
TW_SYSTEM  
4.18.1  
TRANSMIT DIRECTION CONTROL (MAC-TO-PHY)  
RGMII 1000 Mbps transmission from MAC-to-PHY uses both rising and falling edges of the TXC clock. The  
KSZ9131RNX uses the TX_CTL pin to clock in the TX_EN signal on the rising edge and the TX_ER signal on the falling  
edge. It also uses the TXD[3:0] pins to clock in the TX data low nibble bits [3:0] on the rising edge and the TX data high  
nibble Bits [7:4] on the falling edge.  
The KSZ9131RNX enters LPI mode for the transmit direction when its attached EEE-compliant MAC de-asserts the  
TX_EN signal (the TX_CTL pin outputs low on the rising edge), asserts the TX_ER signal (the TX_CTL pin outputs high  
on the falling edge), and sets TX data Bits [7:0] to 0000_0001 (TXD[3:0] pins output 0001 on the rising edge and 0000  
on the falling edge). The KSZ9131RNX remains in the 1000Mbps transmit LPI state while the MAC maintains the states  
of these signals. When the MAC changes any of the TX_EN, TX_ER, or TX data signals from their LPI state values, the  
KSZ9131RNX exits the LPI transmit state.  
To save more power, as indicated by the Clock stop capable bit in the PCS Status 1 Register, the MAC can stop the  
TXC clock after the RGMII signals for the LPI state have been asserted for 10 or more TXC clock cycles.  
Figure 4-14 shows the LPI transition for RGMII transmit in 1000 Mbps mode.  
FIGURE 4-14:  
LPI TRANSITION - RGMII (1000 MBPS) TRANSMIT  
TXC  
TX_CTL  
DS00002841C-page 42  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
RGMII 100 Mbps transmission from MAC-to-PHY uses both rising and falling edges of the TXC clock. The  
KSZ9131RNX uses the TX_CTL pin to clock in the TX_EN signal on the rising edge and the TX_ER signal on the falling  
edge. It also uses the TXD[3:0] pins to clock in the TX data Bits [3:0] on the rising edge.  
The KSZ9131RNX enters LPI mode for the transmit direction when its attached EEE-compliant MAC de-asserts the  
TX_EN signal (the TX_CTL pin outputs low on the rising edge), asserts the TX_ER signal (the TX_CTL pin outputs high  
on the falling edge), and sets TX data Bits [3:0] to 0001 (the TXD[3:0] pins output 0001). The KSZ9131 remains in the  
100 Mbps transmit LPI state while the MAC maintains the states of these signals. When the MAC changes any of the  
TX_EN, TX_ER, or TX data signals from their LPI state values, the KSZ9131RNX exits the LPI transmit state.  
To save more power, as indicated by the Clock-stop enable bit in the PCS Control 1 Register, the MAC can stop the  
TXC clock after the RGMII signals for the LPI state have been asserted for 10 or more TXC clock cycles.  
Figure 4-15 shows the LPI transition for RGMII transmit in 100 Mbps mode.  
FIGURE 4-15:  
LPI TRANSITION - RGMII (100 MBPS) TRANSMIT  
TXC  
TX_CTL  
4.18.2  
RECEIVE DIRECTION CONTROL (PHY-TO-MAC)  
RGMII 1000 Mbps reception from PHY-to-MAC uses both rising and falling edges of the RXC clock. The KSZ9131RNX  
uses the RX_CTL pin to clock out the RX_DV signal on the rising edge and the RX_ER signal on the falling edge. It also  
uses the RXD[3:0] pins to clock out the RX data low nibble Bits [3:0] on the rising edge and the RX data high nibble Bits  
[7:4] on the falling edge.  
The KSZ9131RNX enters LPI mode for the receive direction when it receives the /P/ code bit pattern (sleep/refresh)  
from its EEE-compliant link partner. It then drives the RX_CTL pin low on the rising clock edge and high on the falling  
clock edge to de-assert the RX_DV signal and assert the RX_ER signal, respectively, to the MAC. Also, the RXD[3:0]  
pins are driven to 0001 on the rising clock edge and 0000 on the falling clock edge to set the RX data Bits [7:0] to  
0000_0001. The KSZ9131RNX remains in the 1000 Mbps receive LPI state while it continues to receive the refresh from  
its link partner, so it will continue to maintain and drive the LPI output states for the RGMII receive output pins to inform  
the attached EEE-compliant MAC that it is in the receive LPI state. When the KSZ9131 receives a non /P/ code bit pat-  
tern (non-refresh), it exits the receive LPI state and sets the RX_CTL and RXD[3:0] output pins accordingly for a normal  
frame or normal idle.  
To save more power, the KSZ9131RNX stops the RXC clock output to the MAC after 10 or more RXC clock cycles have  
occurred in the receive LPI state. The Clock-stop enable bit in the PCS Control 1 Register controls if the device stops  
the RXC clock output.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 43  
KSZ9131RNX  
Figure 4-16 shows the LPI transition for RGMII receive in 1000 Mbps mode.  
FIGURE 4-16:  
LPI TRANSITION - RGMII (1000 MBPS) RECEIVE  
RXC  
RX_CTL  
RGMII 100 Mbps reception from PHY-to-MAC uses both rising and falling edges of the RXC clock. The KSZ9131RNX  
uses the RX_CTL pin to clock out the RX_DV signal on the rising edge and the RX_ER signal on the falling edge. It also  
uses the RXD[3:0] pins to clock out the RX data Bits [3:0] on the rising edge.  
The KSZ9131RNX enters LPI mode for the receive direction when it receives the /P/ code bit pattern (sleep/refresh)  
from its EEE-compliant link partner. It then drives the RX_CTL pin low on the rising clock edge and high on the falling  
clock edge to de-assert the RX_DV signal and assert the RX_ER signal, respectively, to the MAC. Also, the RXD[3:0]  
pins are driven to 0001. The KSZ9131RNX remains in the 100 Mbps receive LPI state while it continues to receive the  
refresh from its link partner, so it will continue to maintain and drive the LPI output states for the RGMII receive output  
pins to inform the attached EEE-compliant MAC that it is in the receive LPI state. When the KSZ9131RNX receives a  
non /P/ code bit pattern (non-refresh), it exits the receive LPI state and sets the RX_CTL and RXD[3:0] output pins  
accordingly for a normal frame or normal idle.  
The KSZ9131RNX stops the RX_CLK clock output to the MAC after 10 or more RX_CLK clock cycles have occurred in  
the receive LPI state to save more power. The Clock-stop enable bit in the PCS Control 1 Register controls if the device  
stops the RXC clock output.  
Figure 4-17 shows the LPI transition for RGMII receive in 100 Mbps mode.  
FIGURE 4-17:  
LPI TRANSITION - RGMII (100 MBPS) RECEIVE  
RXC  
RX_CTL  
DS00002841C-page 44  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
4.18.3  
10BASE-Te MODE  
For standard (non-EEE) 10BASE-T mode, normal link pulses (NLPs) with long periods of no AC signal transmission are  
used to maintain the link during the idle period when there is no traffic activity. To save more power, the device provides  
the option to enable 10BASE-Te mode, which saves additional power by reducing the transmitted signal amplitude from  
2.5V to 1.75V. 10BASE-Te mode is enabled by default and can be disabled by setting the p_cat3 bit in the AFED Control  
Register in MMD space.  
4.18.4  
REGISTERS ASSOCIATED WITH EEE  
The following MMD registers are provided for EEE configuration and management:  
• MMD Address 3h, Register 0h — PCS Control 1 Register  
• MMD Address 3h, Register 1h — PCS Status 1 Register  
• MMD Address 7h, Register 3Ch — EEE Advertisement Register  
• MMD Address 7h, Register 3Dh — EEE Link Partner Ability Register  
4.19 Dynamic Channel Quality (DCQ) (TC1)  
The KSZ9131RNX provides dynamic channel quality features that include Mean Square Error (MSE), Signal Quality  
Indicator (SQI), and peak Mean Square Error (pMSE) values. These features are designed to be compliant with Sec-  
tions 6.1.1, 6.1.2, and 6.1.3 of the OPEN Alliance TC1 - Advanced diagnostics features for 100BASE-T1 automotive  
Ethernet PHYs Version 1.0 specification, respectively. These DCQ features are detailed in the following sections:  
Mean Square Error (MSE)  
Signal Quality Indicator (SQI)  
Peak Mean Square Error (pMSE)  
MLT-3 modulation is used for data transmission in 100BASE-TX and PAM5 modulation is used for data transmission in  
1000BASE-T.  
Logically, 100BASE-TX (MLT-3) and 1000BASE-T (PAM5) have signal values of {-1, 0, +1} and {-2, -1, 0, +1, +2},  
respectively. These logic levels are mapped to slicer reference levels of {-128, 0, 128} for 100BASE-TX and {-128, -64,  
0, 64, 128} for 1000BASE-T. The middle points (the compare thresholds) are {-64, 64} for 100BASE-TX and are {-96, -  
32, 32, 96} for 1000BASE-T.  
Ideally, each receive data sample would be the maximum distance from the compare thresholds, with error values of 0.  
But because of noise and imperfection in real applications, the sampled data may be off from its ideal. The closer to the  
compare threshold, the worse the signal quality.  
The slicer error is a measurement of how far the processed data off from its ideal location. The largest instantaneous  
slicer error for 1000BASE-T is +/-32. The largest instantaneous slicer error for 100BASE-TX is +/-64. A higher absolute  
slicer error means a degraded signal receiving condition.  
4.19.1  
MEAN SQUARE ERROR (MSE)  
This section defines the implementation of section 6.1.1 of the TC1 specification. The KSZ9131RNX can provide  
detailed information of the dynamic signal quality by means of a MSE value. This mode is enabled by setting the sqi_en-  
able bit in the DCQ Configuration Register. This bit must be set for all DCQ measurements.  
With this method, the slicer error is converted into a squared value and then filtered by a programmable low pass filter.  
This is similar to taking the average of absolute slicer error over a long moving time window. For each data sample, the  
difference between the absolute slicer error (scaled by x2 (before squaring) for 1000BASE-T) and the current filtered  
value is added back into the current filtered value.  
Note:  
The sqi_squ_mode_en bit in the DCQ Configuration Register must be set to choose square mode.  
The sqi_kp field in the DCQ Configuration Register sets the weighting of the add back as a divide by 2^sqi_kp, effectively  
setting the filter bandwidth. As the sqi_kp value is increased, the weighing is decreased, and the mean slicer error value  
takes a longer time to settle to a stable value. Also as the sqi_kp value is increased, there will be less variation in the  
mean slicer error value reported.  
The scale611 field in the DCQ Configuration Register is used to set a divide by factor (divide by 2^scale611) such that the  
MSE value is linearly scaled to the range of 0 to 511. If the divide by factor is too small, the MSE value is capped at a  
maximum of 511.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 45  
KSZ9131RNX  
In order to capture the MSE Value, the DCQ Read Capture bit in the DCQ Configuration Register needs to be written  
as a high with the desired cable pair specified in the DCQ Channel Number field of the same register. The DCQ Read  
Capture bit will immediately self-clear and the result will be available in the DCQ Mean Square Error Register. The fil-  
tered error value is saved every 1.0 ms (125,000 symbols).  
In addition to the current MSE Value, the worst case MSE value since the last read of DCQ Mean Square Error Register  
is stored in DCQ Mean Square Error Worst Case Register.  
4.19.2  
SIGNAL QUALITY INDICATOR (SQI)  
The KSZ9131RNX provides two SQI methods:  
SQI Method A: TC1 Section 6.1.2 compliant  
SQI Method B: Proprietary method  
4.19.2.1  
SQI Method A  
This section defines the implementation of section 6.1.2 of the TC1 specification. This mode builds upon the Mean  
Square Error (MSE) method by mapping the MSE value onto a simple quality index. This mode is enabled by setting  
the sqi_enable bit, in the DCQ Configuration Register.  
Note:  
As in the Mean Square Error (MSE) method, the sqi_squ_mode_en bit in the DCQ Configuration Register  
must be set to choose square mode and the scale611 field in the DCQ Configuration Register is used to  
set the divide by factor (divide by 2^scale611) such that the MSE value is linearly scaled to the range of 0 to  
511.  
The MSE value is compared to the thresholds set in the DCQ SQI Table Registers to provide a SQI value between 0  
(worst value) and 7 (best value) as follows:  
TABLE 4-13: MSE TO SQI MAPPING  
MSE Value  
SQI Value  
Greater Than  
Less Than or Equal To  
SQI_TBL7.SQI_VALUE  
SQI_TBL6.SQI_VALUE  
SQI_TBL5.SQI_VALUE  
SQI_TBL4.SQI_VALUE  
SQI_TBL3.SQI_VALUE  
SQI_TBL2.SQI_VALUE  
SQI_TBL1.SQI_VALUE  
7
6
5
4
3
2
1
0
SQI_TBL7.SQI_VALUE  
SQI_TBL6.SQI_VALUE  
SQI_TBL5.SQI_VALUE  
SQI_TBL4.SQI_VALUE  
SQI_TBL3.SQI_VALUE  
SQI_TBL2.SQI_VALUE  
SQI_TBL1.SQI_VALUE  
In order to capture the SQI value, the DCQ Read Capture bit in the DCQ Configuration Register needs to be written as  
a high with the desired cable pair specified in the DCQ Channel Number field of the same register. The DCQ Read Cap-  
ture bit will immediately self-clear and the result will be available in the DCQ SQI Register.  
In addition to the current SQI the worst case (lowest) SQI since the last read is available in the SQI Worst Case field.  
The correlation between the SQI values stored in the DCQ SQI Register and an according signal to noise ratio (SNR)  
based on AWG noise (bandwidth of 80MHz) is shown in Table 4-14. The bit error rates to be expected in the case of  
white noise as interference signal is shown in the table as well for information purposes.  
A link loss only occurs if the SQI value is 0.  
TABLE 4-14: SQI VALUE CORRELATION  
SQI Value  
SNR Value @ MDI - AWG Noise  
Recommended BER for AWG Noise Model  
0
1
2
< 18 dB  
18 dB <= SNR < 19 dB  
19 dB <= SNR < 20 dB  
BER>10^-10  
DS00002841C-page 46  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
TABLE 4-14: SQI VALUE CORRELATION  
SQI Value  
SNR Value @ MDI - AWG Noise  
Recommended BER for AWG Noise Model  
3
4
5
6
7
20 dB <= SNR < 21 dB  
21 dB <= SNR < 22 dB  
22 dB <= SNR < 23 dB  
23 dB <= SNR < 24 dB  
SNR <= 24 dB  
BER<10^-10  
4.19.2.2  
SQI Method B  
With the SQI Method B, the slicer error is converted into an absolute value and then filtered by a programmable low  
pass filter. This is similar to taking the average of absolute slicer error over a long moving time window. This mode is  
enabled by setting the sqi_enable bit, in the DCQ Configuration Register.  
For each data sample, the difference between the absolute slicer error (scaled by x2 (before squaring) for 1000BASE-  
T) and the current filtered value is added back into the current filtered value. The sqi_squ_mode_en bit in the DCQ Con-  
figuration Register is used to square the (scaled) slicer error.  
The sqi_kp field in the DCQ Configuration Register sets the weighting of the add back as a divide by 2^sqi_kp, effectively  
setting the filter bandwidth. As the sqi_kp value is increased, the weighing is decreased, and the mean slicer error value  
takes a longer time to settle to a stable value. Also as the sqi_kp value is increased, there will be less variation in the  
mean slicer error value reported.  
In order to capture the current error value, the DCQ Read Capture bit in the DCQ Configuration Register needs to be  
written as a high with the desired cable pair specified in the DCQ Channel Number field of the same register. The DCQ  
Read Capture bit immediately self-clears and the result is available in the Mean Slicer Error Register. The filtered error  
value is saved every 1.0 ms (125,000 symbols).  
A software based lookup table (derived empirically in lab conditions) may be used to report a SQI number.  
4.19.3  
PEAK MEAN SQUARE ERROR (PMSE)  
This section defines the implementation of section 6.1.3 of the TC1 specification. The peak MSE value is intended to  
identify transient disturbances which are typically in the microsecond range. This mode is enabled by setting the sqi_en-  
able bit, in the DCQ Configuration Register.  
With this method, the slicer error is converted into a squared value and then filtered by a programmable low pass filter.  
This is similar to taking the average of absolute slicer error over a moving time window.  
For each data sample, the difference between the absolute slicer error (scaled by x2 (before squaring) for 1000BASE-  
T) and the current filtered value is added back into the current filtered value.  
Note:  
The sqi_squ_mode_en bit in the DCQ Configuration Register must be set to choose square mode.  
The sqi_kp3 field in the DCQ Configuration Register sets the weighting of the add back as a divide by 2^(sqi_kp3), effec-  
tively setting the filter bandwidth. As the sqi_kp3 value is increased, the weighing is decreased, and the mean slicer  
error value takes a longer time to settle to a stable value.  
Every 1.0ms (125,000 symbols), the highest filtered value over that previous 1.0ms period is saved.  
The scale613 field in the DCQ Configuration Register is used to set a divide by factor (divide by 2^scale613+3) such that  
the peak MSE value is linearly scaled to the range of 0 to 63. If the divided by factor is too small, the peak MSE value  
is capped at a maximum of 63.  
In order to capture the Peak MSE Value, the DCQ Read Capture bit in the DCQ Configuration Register needs to be  
written as a high with the desired cable pair specified in the DCQ Channel Number field of the same register. The DCQ  
Read Capture bit will immediately self-clear and the result will be available in the DCQ Peak MSE Register.  
In addition to the current Peak MSE Value the worst case Peak MSE value since the last read of DCQ Peak MSE Reg-  
ister is stored in the same register.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 47  
KSZ9131RNX  
4.20 Quiet-WIRE® EMI Reduction  
Quiet-WIRE® patented technology, delivers fully programmable, integrated noise filtering to reduce Ethernet line emis-  
sions without need for additional external BoM components.  
Quiet-WIRE® is enabled by setting the Quiet-WIRE Enable bit in MMD31 Register 19. Once the Quiet-WIRE Enable bit  
is set, the transmit parameters must be configured through the EMITX Control Register and EMITX Coefficient Registers  
in MMD address space. The values must be set as shown in the default column.  
Quiet-WIRE® applies only to 100BASE-TX.  
4.21 Wake-On-LAN  
Wake-On-LAN (WOL) is normally a MAC-based function to wake up a host system (for example, an Ethernet end  
device, such as a PC) that is in standby power mode. Wake-up is triggered by receiving and detecting a special packet  
(commonly referred to as the “magic packet”) that is sent by the remote link partner. The KSZ9131RNX can perform the  
same WOL function if the MAC address of its associated MAC device is entered into the KSZ9131RNX PHY registers  
for magic-packet detection. When the KSZ9131RNX detects the magic packet, it wakes up the host by driving its power  
management event (PME) output pin low.  
By default, the WOLfunction is disabled. It is enabled by setting the enabling bit and configuring the associated registers  
for the selected PME wake-up detection method.  
The KSZ9131RNX provides three methods to trigger a PME wake-up:  
• Magic-packet detection  
• Customized-packet detection  
• Link status change detection  
4.21.1  
MAGIC-PACKET DETECTION  
The magic packet’s frame format starts with 6 bytes of 0xFFh and is followed by 16 repetitions of the MAC address of  
its associated MAC device (local MAC device).  
When the magic packet is detected from its link partner, the KSZ9131RNX asserts its PME output pin low.  
The following MMD registers are provided for magic-packet detection:  
• Magic-packet detection is enabled by writing a ‘1’ to the Enable Magic Packet Detection Wake Event bit of the  
Wake-On-LAN Control Register  
• The MAC address (for the local MAC device) is written to and stored in the Wake-On-LAN-MAC-LO Register,  
Wake-On-LAN-MAC-MI Register, and Wake-On-LAN-MAC-HI Register  
The KSZ9131RNX does not generate the magic packet. The magic packet must be provided by the external system.  
Magic packet detection status can be read from the Wake-on-LAN Magic Packet Receive Status Register.  
4.21.2  
CUSTOMIZED-PACKET DETECTION  
The customized packet has associated register/bit masks to select which byte, or bytes, of the first 64 bytes of the packet  
to use in the CRC calculation. After the KSZ9131RNX receives the packet from its link partner, the selected bytes for  
the received packet are used to calculate the CRC. The calculated CRC is compared to the expected CRC value that  
was previously written to and stored in the KSZ9131RNX PHY registers. If there is a match, the KSZ9131RNX asserts  
its PME output pin low.  
Four customized packets are provided to support four types of wake-up scenarios. A dedicated set of registers is used  
to configure and enable each customized packet.  
The following MMD registers are provided for customized-packet detection:  
• Each of the four customized packets is enabled via the Enable Customized Frame Filter Wake Event field of the  
Wake-On-LAN Control Register,  
- Bit [2]  
- Bit [3]  
- Bit [4]  
- Bit [5]  
// For customized packets, type 0  
// For customized packets, type 1  
// For customized packets, type 2  
// For customized packets, type 3  
• 32-bit expected CRCs are written to and stored in:  
- Customized-Pkt-0-CRC-LO Register and Customized-Pkt-0-CRC-HI Register (Type 0 customized packets)  
DS00002841C-page 48  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
- Customized-Pkt-1-CRC-LO Register and Customized-Pkt-1-CRC-HI Register (Type 1 customized packets)  
- Customized-Pkt-2-CRC-LO Register and Customized-Pkt-2-CRC-HI Register (Type 2 customized packets)  
- Customized-Pkt-3-CRC-LO Register and Customized-Pkt-3-CRC-HI Register (Type 3 customized packets)  
• Masks to indicate which of the first 64-bytes to use in the CRC calculation are set in:  
- Customized-Pkt-0-MASK_LL Register, Customized-Pkt-0-MASK_LH Register, Customized-Pkt-0-MASK_HL  
Register, and Customized-Pkt-0-MASK_HH Register (Type 0 customized packets)  
- Customized-Pkt-1-MASK_LL Register, Customized-Pkt-1-MASK_LH Register, Customized-Pkt-1-MASK_HL  
Register, and Customized-Pkt-1-MASK_HH Register (Type 1 customized packets)  
- Customized-Pkt-2-MASK_LL Register, Customized-Pkt-2-MASK_LH Register, Customized-Pkt-2-MASK_HL  
Register, and Customized-Pkt-2-MASK_HH Register (Type 2 customized packets)  
- Customized-Pkt-3-MASK_LL Register, Customized-Pkt-3-MASK_LH Register, Customized-Pkt-3-MASK_HL  
Register, and Customized-Pkt-3-MASK_HH Register (Type 3 customized packets)  
4.21.3  
LINK STATUS CHANGE DETECTION  
If link status change detection is enabled, the KSZ9131RNX asserts its PME output pin low whenever there is a link  
status change using the following bits in the Wake-On-LAN Control Register:  
Enable Link Up Wake Event  
Enable Link Down Wake Event  
// For link-up detection  
// For link-down detection  
The link change status can be read from the Interrupt Control/Status Register.  
4.21.4  
PME OUTPUT SIGNAL  
The PME output signal is available on either LED1 as PME_N1 or INT_N as PME_N2, and is selected and enabled  
using the rgmii_pme_on_led1_mode and rgmii_pme_on_int_mode fields in the Operation Mode Strap Override Regis-  
ter.  
Additionally, the PME Output Select field in the Wake-On-LAN Control Register defines the output functions for PME_N1  
and PME_N2.  
When asserted, the PME output is cleared by disabling the register bit that enabled the PME trigger source (magic  
packet, customized packet, link status change).  
The PME output is active low.  
Note:  
When mapped to INT_N, the polarity can be inverted by use of the Interrupt Polarity Invert bit in the Control  
Register.  
APPLICATION NOTE: When mapped to LED1, Enhanced LED mode must be disabled.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 49  
KSZ9131RNX  
5.0  
REGISTER DESCRIPTIONS  
This chapter describes the various control and status registers (CSRs).  
Note:  
RESERVED address space must not be written under any circumstances. Failure to heed this warn-  
ing may result in untoward operation and unexpected results.  
5.1  
Register Map  
The register space within the KSZ9131RNX consists of two distinct areas.  
Standard Registers (Direct register access)  
MDIO Manageable Device (MMD) Registers (Indirect register access)  
The KSZ9131RNX supports the following standard registers. These registers are accessed through the SMI (MDIO/  
MDC) interface.  
TABLE 5-1:  
Index  
STANDARD REGISTERS  
Index  
Register Name  
(in decimal) (in hex)  
IEEE-Defined Registers  
Basic Control Register  
0
1
0
1
Basic Status Register  
2
2
Device Identifier 1 Register  
Device Identifier 2 Register  
3
3
4
4
Auto-Negotiation Advertisement Register  
Auto-Negotiation Link Partner Base Page Ability Register  
Auto-Negotiation Expansion Register  
Auto-Negotiation Next Page TX Register  
Auto-Negotiation Next Page RX Register  
Auto-Negotiation Master Slave Control Register  
Auto-Negotiation Master Slave Status Register  
RESERVED  
5
5
6
6
7
7
8
8
9
9
10  
11-12  
13  
14  
15  
Ah  
Bh-Ch  
Dh  
Eh  
Fh  
MMD Access Control Register  
MMD Access Address/Data Register  
Extended Status Register  
Vendor-Specific Registers  
RESERVED  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
Remote Loopback Register  
LinkMD Cable Diagnostic Register  
Digital PMA/PCS Status Register  
RESERVED  
RXER Counter Register  
LED Mode Select Register  
LED Behavior Register  
RESERVED  
MDIO Drive Register  
KSZ9031 LED Mode Register  
Interrupt Control/Status Register  
Auto-MDI/MDI-X Register  
Software Power Down Control Register  
External Loopback Register  
Control Register  
DS00002841C-page 50  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
The device supports the following MMD device addresses and their associated register addresses, which make up the  
indirect MMD registers.  
TABLE 5-2:  
MMD CONTROL AND STATUS REGISTERS MAP  
MMD  
Device  
Address  
(in decimal)  
Index  
(in  
decimal)  
Index  
(in hex)  
Register Name  
225  
226  
227  
228  
229  
230  
231  
E1h  
E2h  
E3h  
E4h  
E5h  
E6h  
E7h  
Mean Slicer Error Register  
DCQ Mean Square Error Register  
DCQ Mean Square Error Worst Case Register  
DCQ SQI Register  
1
DCQ Peak MSE Register  
DCQ Control Register  
DCQ Configuration Register  
232-238 E8h-EEh DCQ SQI Table Registers  
0
0h  
1h  
Common Control Register  
1
Strap Status Register  
2
2h  
Operation Mode Strap Override Register  
Operation Mode Strap Register  
Clock Invert and Control Signal Pad Skew Register  
RGMII RX Data Pad Skew Register  
RGMII TX Data Pad Skew Register  
RESERVED  
3
3h  
4
4h  
5
5h  
6
6h  
7
7h  
8
8
Clock Pad Skew Register  
9
9
Self-Test Packet Count LO Register  
Self-Test Packet Count HI Register  
Self-Test Status Register  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
Ah  
Bh  
Ch  
Self-Test Frame Count Enable Register  
Self-Test PGEN Enable Register  
Self-Test Enable Register  
Dh  
Eh  
Fh  
RESERVED  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
Wake-On-LAN Control Register  
Wake-On-LAN-MAC-LO Register  
Wake-On-LAN-MAC-MI Register  
Wake-On-LAN-MAC-HI Register  
Customized-Pkt-0-CRC-LO Register  
Customized-Pkt-0-CRC-HI Register  
Customized-Pkt-1-CRC-LO Register  
Customized-Pkt-1-CRC-HI Register  
Customized-Pkt-2-CRC-LO Register  
Customized-Pkt-2-CRC-HI Register  
Customized-Pkt-3-CRC-LO Register  
Customized-Pkt-3-CRC-HI Register  
Customized-Pkt-0-MASK_LL Register  
Customized-Pkt-0-MASK_LH Register  
Customized-Pkt-0-MASK_HL Register  
Customized-Pkt-0-MASK_HH Register  
Customized-Pkt-1-MASK_LL Register  
Customized-Pkt-1-MASK_LH Register  
2
2018-2021 Microchip Technology Inc.  
DS00002841C-page 51  
KSZ9131RNX  
TABLE 5-2:  
MMD CONTROL AND STATUS REGISTERS MAP (CONTINUED)  
MMD  
Device  
Address  
(in decimal)  
Index  
(in  
decimal)  
Index  
(in hex)  
Register Name  
34  
35  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
Customized-Pkt-1-MASK_HL Register  
Customized-Pkt-1-MASK_HH Register  
Customized-Pkt-2-MASK_LL Register  
36  
37  
Customized-Pkt-2-MASK_LH Register  
38  
Customized-Pkt-2-MASK_HL Register  
39  
Customized-Pkt-2-MASK_HH Register  
Customized-Pkt-3-MASK_LL Register  
40  
41  
Customized-Pkt-3-MASK_LH Register  
42  
Customized-Pkt-3-MASK_HL Register  
43  
Customized-Pkt-3-MASK_HH Register  
Wake-on-LAN Control Status Register  
44  
45  
Wake-on-LAN Custom Packet Receive Status Register  
Wake-on-LAN Magic Packet Receive Status Register  
Wake-on-LAN Data Module Status Register  
Customized Pkt-0 Received CRC-L Register  
Customized Pkt-0 Received CRC-H Register  
Customized Pkt-1 Received CRC-L Register  
Customized Pkt-1 Received CRC-H Register  
Customized Pkt-2 Received CRC-L Register  
Customized Pkt-2 Received CRC-H Register  
Customized Pkt-3 Received CRC-L Register  
Customized Pkt-3 Received CRC-H Register  
46  
47  
48  
49  
2 (cont.)  
50  
51  
52  
53  
54  
55  
56-59  
60  
38h-3B RESERVED  
3Ch  
3Dh  
3Eh  
3Fh  
40h  
41h  
Self-Test Correct Count LO Register  
61  
Self-Test Correct Count HI Register  
Self-Test Error Count LO Register  
Self-Test Error Count HI Register  
Self-Test Bad SFD Count LO Register  
Self-Test Bad SFD Count HI Register  
62  
63  
64  
65  
66-75  
76  
42h-4Bh RESERVED  
4Ch  
4Dh  
RX DLL Control Register  
TX DLL Control Register  
77  
DS00002841C-page 52  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
TABLE 5-2:  
MMD CONTROL AND STATUS REGISTERS MAP (CONTINUED)  
MMD  
Device  
Address  
(in decimal)  
Index  
(in  
decimal)  
Index  
(in hex)  
Register Name  
0
1
0
PCS Control 1 Register  
1
PCS Status 1 Register  
8
8
EEE Quiet Timer Register  
EEE Update Timer Register  
EEE Link-Fail Timer Register  
EEE Post-Update Timer Register  
EEE WaitWQ Timer Register  
EEE Wake Timer Register  
EEE WakeTX Timer Register  
EEE WakeMz Timer Register  
RESERVED  
9
9
10  
11  
Ah  
Bh  
12  
13  
14  
15  
16  
20  
22  
24  
25  
26  
27  
60  
61  
62  
63  
1
Ch  
Dh  
Eh  
3
Fh  
10h  
14h  
16h  
18h  
19h  
1Ah  
1Bh  
3Ch  
3Dh  
3Eh  
3Fh  
1h  
EEE Control and Capability Register  
EEE Wake Error Counter Register  
EEE 100 Timer-0 Register  
EEE 100 Timer-1 Register  
EEE 100 Timer-2 Register  
EEE 100 Timer-3 Register  
EEE Advertisement Register  
EEE Link Partner Ability Register  
EEE Link Partner Ability Override Register  
EEE Message Code Register  
XTAL Control Register  
7
2-8  
9
2h-8h RESERVED  
9h  
AFED Control Register  
10-13  
14  
15-35  
36  
37  
38-52  
19  
Ah-Dh RESERVED  
28  
(1Ch)  
Eh  
LDO Control Register  
Fh-23h RESERVED  
24h  
25h  
EDPD Control Register  
EMITX Control Register  
26h-34h EMITX Coefficient Registers  
13h MMD31 Register 19  
31  
(1Fh)  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 53  
KSZ9131RNX  
5.2  
Standard Registers  
Standard registers provide direct read/write access to a 32-register address space, as defined in Clause 22 of the IEEE  
802.3 Specification. Within this address space, the first 16 registers (Registers 0 to 15 (Fh)) are defined according to  
the IEEE specification, while the remaining 16 registers (Registers 16 (10h) to 31 (1Fh)) are defined specific to the PHY  
vendor.  
5.2.1  
BASIC CONTROL REGISTER  
Index (In Decimal):  
0
Size:  
16 bits  
This read/write register is used to configure the PHY.  
Bits  
Description  
Type  
Default  
15  
PHY Soft Reset (RESET)  
When set, this bit resets all the PHY and all its registers to their default state.  
This bit is self clearing.  
R/W1S/  
SC  
0b  
1 = PHY software reset.  
14  
13  
Loopback (PHY_LOOPBACK)  
R/W  
R/W  
0b  
0b  
This bit enables/disables the loopback mode. When enabled, transmissions  
are not sent to network. Instead, they are looped back into the PHY.  
0 = Loopback mode disabled (normal operation)  
1 = Loopback mode enabled  
Speed Select[0]  
Together with Speed Select[1], sets speed per the following table:  
[Speed Select1][Speed Select0]  
00 = 10Mbps  
01 = 100Mbps  
10 = 1000Mbps  
11 = Reserved  
Note:  
Ignored if the Auto-Negotiation Enable bit of this register is 1.  
12  
Auto-Negotiation Enable  
This bit enables/disables Auto-Negotiation.  
R/W  
1b  
0 = disable auto-negotiate process  
1 = enable auto-negotiate process (overrides the Speed Select[0], Speed  
Select[1] and Duplex Mode bits of this register)  
11  
10  
Power Down  
R/W  
R/W  
0b  
0b  
This bit controls the power down mode of the PHY.  
0 = Normal operation  
1 = General power down mode  
Isolate (PHY_ISO)  
This bit controls the isolation of the PHY from the MII interface.  
0 = Non-Isolated (Normal operation)  
1 = Isolated  
DS00002841C-page 54  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
Bits  
Description  
Type  
Default  
9
Restart Auto-Negotiation (PHY_RST_AN)  
R/W1S/  
SC  
0b  
When set, this bit restarts the Auto-Negotiation process.  
This bit is self clearing.  
1 = Auto-Negotiation restarted  
8
7
Duplex Mode  
R/W  
R/W  
1b  
0b  
This bit is used to set the duplex.  
0 = Half Duplex  
1 = Full Duplex  
Note:  
Ignored if the Auto-Negotiation Enable bit of this register is 1.  
Collision Test Mode (PHY_COL_TEST)  
This bit enables/disables the collision test mode of the PHY. When set, the  
collision signal is active during transmission. It is recommended that this fea-  
ture be used only in loopback mode.  
0 = Collision test mode disabled  
1 = Collision test mode enabled  
6
Speed Select[1]  
R/W  
R/W  
1b  
-
See description for Speed Select[0] for details.  
RESERVED  
5:0  
5.2.2  
BASIC STATUS REGISTER  
Index (In Decimal):  
1
Size:  
16 bits  
This register is used to monitor the status of the PHY.  
Bits  
Description  
Type  
Default  
15  
100BASE-T4  
RO  
0b  
This bit displays the status of 100BASE-T4 compatibility.  
0 = PHY not able to perform 100BASE-T4  
1 = PHY able to perform 100BASE-T4  
14  
13  
100BASE-X Full Duplex  
RO  
RO  
1b  
1b  
This bit displays the status of 100BASE-X full duplex compatibility.  
0 = PHY not able to perform 100BASE-X full duplex  
1 = PHY able to perform 100BASE-X full duplex  
100BASE-X Half Duplex  
This bit displays the status of 100BASE-X half duplex compatibility.  
0 = PHY not able to perform 100BASE-X half duplex  
1 = PHY able to perform 100BASE-X half duplex  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 55  
KSZ9131RNX  
Bits  
Description  
Type  
Default  
12  
11  
10  
9
10BASE-T Full Duplex  
RO  
1b  
This bit displays the status of 10BASE-T full duplex compatibility.  
0 = PHY not able to perform 10BASE-T full duplex  
1 = PHY able to perform 10BASE-T full duplex  
10BASE-T Half Duplex  
This bit displays the status of 10BASE-T half duplex compatibility.  
RO  
RO  
RO  
RO  
1b  
0b  
0b  
1b  
0 = PHY not able to perform 10BASE-T half duplex  
1 = PHY able to perform 10BASE-T half duplex  
100BASE-T2 Full Duplex  
This bit displays the status of 100BASE-T2 full duplex compatibility.  
0 = PHY not able to perform 100BASE-T2 full duplex  
1 = PHY able to perform 100BASE-T2 full duplex  
100BASE-T2 Half Duplex  
This bit displays the status of 100BASE-T2 half duplex compatibility.  
0 = PHY not able to perform 100BASE-T2 half duplex  
1 = PHY able to perform 100BASE-T2 half duplex  
8
Extended Status  
This bit displays whether extended status information is in register 15 (per  
IEEE 802.3 clause 22.2.4).  
0 = No extended status information in Register 15  
1 = Extended status information in Register 15  
7
6
Unidirectional Ability  
RO  
RO  
0b  
1b  
This bit indicates whether the PHY is able to transmit regardless of whether  
the PHY has determined that a valid link has been established.  
0 = Can only transmit when a valid link has been established  
1 = Can transmit regardless  
MF Preamble Suppression  
This bit indicates whether the PHY accepts management frames with the pre-  
amble suppressed.  
0 = Management frames with preamble suppressed not accepted  
1 = Management frames with preamble suppressed accepted  
5
4
Auto-Negotiation Complete  
RO  
0b  
0b  
This bit indicates the status of the Auto-Negotiation process.  
0 = Auto-Negotiation process not completed  
1 = Auto-Negotiation process completed  
Remote Fault  
RO/LH  
This bit indicates if a remote fault condition has been detected.  
0 = No remote fault condition detected  
1 = Remote fault condition detected  
DS00002841C-page 56  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
Bits  
Description  
Type  
Default  
3
Auto-Negotiation Ability  
This bit indicates the PHY’s Auto-Negotiation ability.  
RO  
1b  
0 = PHY is unable to perform Auto-Negotiation  
1 = PHY is able to perform Auto-Negotiation  
2
1
0
Link Status  
RO/LL  
RO/LH  
RO  
0b  
0b  
1b  
This bit indicates the status of the link.  
0 = Link is down  
1 = Link is up  
Jabber Detect  
This bit indicates the status of the jabber condition.  
0 = No jabber condition detected  
1 = Jabber condition detected  
Extended Capability  
This bit indicates whether extended register capability is supported.  
0 = Basic register set capabilities only  
1 = Extended register set capabilities  
5.2.3  
DEVICE IDENTIFIER 1 REGISTER  
Index (In Decimal):  
2
Size:  
16 bits  
This register contains the MSB of the Organizationally Unique Identifier (OUI) for the PHY. The LSB of the PHY OUI is  
contained in the Device Identifier 2 Register.  
Bits  
Description  
Type  
Default  
15:0  
PHY ID Number  
RO  
0022h  
Assigned to the 3rd through 18th bits of the Organizationally Unique Identifier  
(OUI), respectively.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 57  
KSZ9131RNX  
5.2.4  
DEVICE IDENTIFIER 2 REGISTER  
Index (In Decimal):  
3
Size:  
16 bits  
This register contains the LSB of the Organizationally Unique Identifier (OUI) for the PHY. The MSB of the PHY OUI is  
contained in the Device Identifier 1 Register.  
Bits  
Description  
Type  
Default  
15:10  
PHY ID Number  
RO  
000101b  
Assigned to the 19th through 24th bits of the Organizationally Unique Identi-  
fier (OUI), respectively.  
9:4  
3:0  
Model Number  
RO  
RO  
100100b  
Note 5-1  
Six-bit manufacturer’s model number.  
Revision Number  
Four-bit manufacturer’s revision number.  
Note 5-1  
Note:  
The default value of the Revision Number field varies dependent on the silicon revision number.  
The hexadecimal equivalent of this register is 1640h (A0) or 1641h (B0).  
DS00002841C-page 58  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.2.5  
AUTO-NEGOTIATION ADVERTISEMENT REGISTER  
Index (In Decimal):  
4
Size:  
16 bits  
This read/write register contains the advertised ability of the PHY and is used in the Auto-Negotiation process with the  
link partner.  
Bits  
Description  
Type  
Default  
15  
Next Page  
0 = No next page ability  
R/W  
0b  
1 = Next page capable  
14  
13  
RESERVED  
RO  
-
Remote Fault  
R/W  
0b  
This bit determines if remote fault indication will be advertised to the link part-  
ner.  
0 = Remote fault indication not advertised  
1 = Remote fault indication advertised  
12  
11  
Extended Next Page  
R/W  
R/W  
0b  
1b  
Note:  
This bit should be written as 0.  
Asymmetric Pause  
This bit determines the advertised asymmetric pause capability.  
0 = No Asymmetric PAUSE toward link partner advertised  
1 = Asymmetric PAUSE toward link partner advertised  
10  
Symmetric Pause  
R/W  
R/W  
1b  
This bit determines the advertised symmetric pause capability.  
0 = No Symmetric PAUSE toward link partner advertised  
1 = Symmetric PAUSE toward link partner advertised  
9
100BASE-T4  
0 = no T4 ability  
0
1 = T4 able  
Note:  
The device does not support this mode and this bit should always  
be written as a 0.  
8
7
100BASE-X Full Duplex  
R/W  
R/W  
Note 5-2  
Note 5-2  
This bit determines the advertised 100BASE-X full duplex capability.  
0 = 100BASE-X full duplex ability not advertised  
1 = 100BASE-X full duplex ability advertised  
100BASE-X Half Duplex  
This bit determines the advertised 100BASE-X half duplex capability.  
0 = 100BASE-X half duplex ability not advertised  
1 = 100BASE-X half duplex ability advertised  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 59  
KSZ9131RNX  
Bits  
Description  
Type  
Default  
6
10BASE-T Full Duplex  
This bit determines the advertised 10BASE-T full duplex capability.  
R/W  
Note 5-2  
0 = 10BASE-T full duplex ability not advertised  
1 = 10BASE-T full duplex ability advertised  
5
10BASE-T Half Duplex  
R/W  
R/W  
Note 5-2  
00001b  
This bit determines the advertised 10BASE-T half duplex capability.  
0 = 10BASE-T half duplex ability not advertised  
1 = 10BASE-T half duplex ability advertised  
4:0  
Selector Field  
This field identifies the type of message being sent by Auto-Negotiation.  
00001 = IEEE 802.3  
Note 5-2  
Set by the MODE[3:0] strapping pins. Refer to Section 3.3, "Configuration Straps" for details.  
5.2.6  
AUTO-NEGOTIATION LINK PARTNER BASE PAGE ABILITY REGISTER  
Index (In Decimal):  
5
Size:  
16 bits  
This read-only register contains the advertised ability of the link partner’s PHY and is used in the Auto-Negotiation pro-  
cess between the link partner and the PHY.  
Bits  
Description  
Type  
Default  
15  
Next Page  
RO  
0b  
This bit indicates the link partner PHY page capability.  
0 = Link partner PHY does not advertise next page capability  
1 = Link partner PHY advertises next page capability  
14  
Acknowledge  
RO  
0b  
This bit indicates whether the link code word has been received from the part-  
ner.  
0 = Link code word not yet received from partner  
1 = Link code word received from partner  
13  
12  
Remote Fault  
RO  
RO  
0b  
0b  
This bit indicates whether a remote fault has been detected.  
0 = No remote fault  
1 = Remote fault detected  
Extended Next Page  
0 = Link partner PHY does not advertise extended next page capability  
1 = Link partner PHY advertises extended next page capability  
DS00002841C-page 60  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
Bits  
Description  
Type  
Default  
11  
Asymmetric Pause  
This bit indicates the link partner PHY asymmetric pause capability.  
RO  
0b  
0 = No Asymmetric PAUSE toward link partner  
1 = Asymmetric PAUSE toward link partner  
10  
9
Pause  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0b  
0b  
This bit indicates the link partner PHY symmetric pause capability.  
0 = No Symmetric PAUSE toward link partner  
1 = Symmetric PAUSE toward link partner  
100BASE-T4  
This bit indicates the link partner PHY 100BASE-T4 capability.  
0 = 100BASE-T4 ability not supported  
1 = 100BASE-T4 ability supported  
8
100BASE-X Full Duplex  
This bit indicates the link partner PHY 100BASE-X full duplex capability.  
0b  
0 = 100BASE-X full duplex ability not supported  
1 = 100BASE-X full duplex ability supported  
7
100BASE-X Half Duplex  
This bit indicates the link partner PHY 100BASE-X half duplex capability.  
0b  
0 = 100BASE-X half duplex ability not supported  
1 = 100BASE-X half duplex ability supported  
6
10BASE-T Full Duplex  
This bit indicates the link partner PHY 10BASE-T full duplex capability.  
0b  
0 = 10BASE-T full duplex ability not supported  
1 = 10BASE-T full duplex ability supported  
5
10BASE-T Half Duplex  
This bit indicates the link partner PHY 10BASE-T half duplex capability.  
0b  
0 = 10BASE-T half duplex ability not supported  
1 = 10BASE-T half duplex ability supported  
4:0  
Selector Field  
00000b  
This field identifies the type of message being sent by Auto-Negotiation.  
00001 = IEEE 802.3  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 61  
KSZ9131RNX  
5.2.7  
AUTO-NEGOTIATION EXPANSION REGISTER  
Index (In Decimal):  
6
Size:  
16 bits  
This read/write register is used in the Auto-Negotiation process between the link partner and the PHY.  
Bits  
Description  
Type  
Default  
15:7  
6
RESERVED  
RO  
RO  
-
Receive Next Page Location Able  
1b  
0 = Received next page storage location is not specified by bit 6.5  
1 = Received next page storage location is specified by bit 6.5  
5
Received Next Page Storage Location  
RO  
1b  
0 = Link partner next pages are stored in the Auto-Negotiation Link Partner  
Base Page Ability Register (PHY register 5)  
1 = Link partner next pages are stored in the Auto-Negotiation Next Page RX  
Register (PHY register 8)  
4
3
2
1
0
Parallel Detection Fault  
RO/LH  
RO  
0b  
0b  
1b  
0b  
0b  
This bit indicates whether a Parallel Detection Fault has been detected.  
0 = A fault hasn’t been detected via the Parallel Detection function  
1 = A fault has been detected via the Parallel Detection function  
Link Partner Next Page Able  
This bit indicates whether the link partner has next page ability.  
0 = Link partner does not contain next page capability  
1 = Link partner contains next page capability  
Next Page Able  
This bit indicates whether the local device has next page ability.  
RO  
0 = Local device does not contain next page capability  
1 = Local device contains next page capability  
Page Received  
This bit indicates the reception of a new page.  
RO/LH  
RO  
0 = A new page has not been received  
1 = A new page has been received  
Link Partner Auto-Negotiation Able  
This bit indicates the Auto-Negotiation ability of the link partner.  
0 = Link partner is not Auto-Negotiation able  
1 = Link partner is Auto-Negotiation able  
DS00002841C-page 62  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.2.8  
AUTO-NEGOTIATION NEXT PAGE TX REGISTER  
Index (In Decimal):  
7
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15  
Next Page  
0 = No next page ability  
1 = Next page capable  
R/W  
0b  
14  
13  
RESERVED  
RO  
-
Message Page  
0 = Unformatted page  
R/W  
1b  
1 = Message page  
12  
11  
Acknowledge 2  
R/W  
RO  
0b  
0b  
0 = Device cannot comply with message.  
1 = Device will comply with message.  
Toggle  
0 = Previous value was HIGH.  
1 = Previous value was LOW.  
10:0  
Message Code  
Message/Unformatted Code Field  
R/W  
000  
0000  
0001b  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 63  
KSZ9131RNX  
5.2.9  
AUTO-NEGOTIATION NEXT PAGE RX REGISTER  
Index (In Decimal):  
8
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15  
Next Page  
0 = No next page ability  
1 = Next page capable  
RO  
0b  
14  
Acknowledge  
RO  
0
This bit indicates whether the link code word has been received from the part-  
ner.  
0 = Link code word not yet received from partner  
1 = Link code word received from partner  
13  
12  
Message Page  
RO  
RO  
RO  
RO  
0b  
0b  
0b  
0 = Unformatted page  
1 = Message page  
Acknowledge 2  
0 = Device cannot comply with message.  
1 = Device will comply with message.  
11  
Toggle  
0 = Previous value was HIGH.  
1 = Previous value was LOW.  
10:0  
Message Code  
Message/Unformatted Code Field  
000  
0000  
0000b  
DS00002841C-page 64  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.2.10  
AUTO-NEGOTIATION MASTER SLAVE CONTROL REGISTER  
Index (In Decimal):  
9
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:13  
Test Mode  
R/W  
000b  
IEEE 802.3 clause 40.6.1.1.2 transmitter test mode.  
000 = Normal mode  
001 = Test Mode 1 - Transmit waveform test  
010 = Test Mode 2 - Transmit jitter test in Master mode  
011 = Test Mode 3 - Transmit jitter test in Slave mode  
100 = Test Mode 4 - Transmitter distortion test  
101 = Reserved  
110 = Reserved  
111 = Reserved  
12  
11  
Master/Slave Manual Configuration Enable  
R/W  
R/W  
0b  
0b  
0 = disable MASTER-SLAVE manual configuration value  
1 = enable MASTER-SLAVE manual configuration value  
Master/Slave Manual Configuration Value  
Active only when the Master/Slave Manual Configuration Enable bit of this  
register is 1.  
0 = Configure PHY as slave  
1 = Configure PHY as master  
10  
9
Port Type  
R/W  
R/W  
R/W  
0b  
1b  
0b  
0 = single-port device  
1 = multi-port device  
1000BASE-T Full Duplex  
0 = advertise PHY is not 1000BASE-T full duplex capable  
1 = advertise PHY is 1000BASE-T full duplex capable  
8
1000BASE-T Half Duplex  
0 = advertise PHY is not 1000BASE-T half duplex capable  
1 = advertise PHY is 1000BASE-T half duplex capable  
Note:  
The device does not support this mode and this bit should always  
be written as a 0.  
7:0  
RESERVED  
RO  
-
2018-2021 Microchip Technology Inc.  
DS00002841C-page 65  
KSZ9131RNX  
5.2.11  
AUTO-NEGOTIATION MASTER SLAVE STATUS REGISTER  
Index (In Decimal): 10  
Size:  
16 bits  
Bits  
Description  
Master/Slave Configuration Fault  
0 = No MASTER-SLAVE configuration fault detected  
1 = MASTER-SLAVE configuration fault detected  
Type  
Default  
15  
RO/LH  
0b  
14  
13  
12  
11  
10  
Master/Slave Configuration Resolution  
RO  
RO  
RO  
RO  
RO  
0b  
0b  
0b  
0b  
0b  
0 = Local PHY configuration resolved to SLAVE  
1 = Local PHY configuration resolved to MASTER  
Local 1000BASE-T Receiver Status  
0 = Local Receiver not OK  
1 = Local Receiver OK  
Remote (Link Partner) Receiver Status  
0 = Remote Receiver not OK  
1 = Remote Receiver OK  
Link Partner Advertised 1000BASE-T Full Duplex Capability  
0 = Link Partner is not capable of 1000BASE-T full duplex  
1 = Link Partner is capable of 1000BASE-T full duplex  
Link Partner Advertised 1000BASE-T Half Duplex Capability  
0 = Link Partner is not capable of 1000BASE-T half duplex  
1 = Link Partner is capable of 1000BASE-T half duplex  
9:8  
7:0  
RESERVED  
RO  
-
1000BASE-T Idle Error Count  
Cumulative count of the errors detected when the receiver is receiving idles.  
RO/RC  
00h  
Note:  
This counter halts at a value of 0xFF.  
DS00002841C-page 66  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.2.12  
MMD ACCESS CONTROL REGISTER  
Index (In Decimal): 13  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:14  
MMD Function  
This field is used to select the desired MMD function:  
00 = Address  
R/W  
00b  
01 = Data, no post increment  
10 = Data, post increment on reads and writes  
11 = Data, post increment on writes only  
13:5  
4:0  
RESERVED  
RO  
-
MMD Device Address (DEVAD)  
This field is used to select the desired MMD device address.  
R/W  
00000b  
5.2.13  
MMD ACCESS ADDRESS/DATA REGISTER  
Index (In Decimal): 14  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
MMD Register Address/Data  
R/W  
0000h  
If the MMD Function field of the MMD Access Control Register is “00”, this  
field is used to indicate the MMD register address to read/write of the device  
specified in the MMD Device Address (DEVAD) field. Otherwise, this register  
is used to read/write data from/to the previously specified MMD address.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 67  
KSZ9131RNX  
5.2.14  
EXTENDED STATUS REGISTER  
Index (In Decimal): 15  
This register is used to monitor the status of the PHY.  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15  
1000BASE-X Full Duplex  
This bit displays the status of 1000BASE-X full duplex compatibility.  
RO  
0b  
0 = PHY not able to perform 1000BASE-X full duplex  
1 = PHY able to perform 1000BASE-X full duplex  
14  
13  
12  
1000BASE-X Half Duplex  
RO  
RO  
RO  
RO  
0b  
1b  
0b  
-
This bit displays the status of 1000BASE-X half duplex compatibility.  
0 = PHY not able to perform 1000BASE-X half duplex  
1 = PHY able to perform 1000BASE-X half duplex  
1000BASE-T Full Duplex  
This bit displays the status of 1000BASE-T full duplex compatibility.  
0 = PHY not able to perform 1000BASE-T full duplex  
1 = PHY able to perform 1000BASE-T full duplex  
1000BASE-T Half Duplex  
This bit displays the status of 1000BASE-T half duplex compatibility.  
0 = PHY not able to perform 1000BASE-T half duplex  
1 = PHY able to perform 1000BASE-T half duplex  
11:0  
RESERVED  
5.2.15  
REMOTE LOOPBACK REGISTER  
Index (In Decimal): 17  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:9  
8
RESERVED  
RO  
-
Remote Loopback  
1 = Enable remote loopback  
R/W  
0b  
0 = Disable remote loopback  
7:0  
RESERVED  
RO  
-
DS00002841C-page 68  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.2.16  
LINKMD CABLE DIAGNOSTIC REGISTER  
Index (In Decimal): 18  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15  
Cable Diagnostics Test Enable (VCT_EN)  
Writing a 1 enables the test.  
R/W/SC  
0b  
This bit is self-cleared when the test is complete.  
Writing a 0 will disable the test.  
Reading a 0 indicates the cable diagnostic test is completed and the status  
information is valid.  
Reading a 1 indicates the cable diagnostic test is in progress and the status  
information is NOT valid.  
14  
Cable Diagnostic Disable Transmitter (VCT_DIS_TX)  
R/W  
R/W  
0b  
[0] = The transmitter is enabled to start cable diagnostic.  
[1] = The transmitter is disabled and cable diagnostic is on hold to break  
down the link.  
13:12  
Cable Diagnostics Test Pair (VCT_PAIR[1:0])  
This field defines which channel to be tested.  
00b  
00 = Pair A  
01 = Pair B  
10 = Pair C  
11 = Pair D  
11:10  
9:8  
RESERVED  
R/W  
RO  
00b  
00b  
Cable Diagnostics Status (VCT_ST[1:0])  
Valid only when VCT_EN = 0.  
00 = Normal, no fault has been detected  
01 = Open Fault has been detected  
10 = Short Fault has been detected  
11 = Cable diagnostic test failed  
7:0  
Cable Diagnostics Data or Threshold (VCT_DATA[7:0])  
This is the data of cable diagnostics. Valid only when VCT_EN = 0.  
RO  
00h  
(1) If cable is normal, i.e., VCT_ST = 00, VCT_DATA don’t care.  
(2) If cable is open or short, i.e., VCT_ST = 01 or 10, the distance to fault is  
approximately 0.8 * (VCT_DATA - 22) (Meters) (see Section 4.14)  
(3) If cable diagnostics failed, i.e., VCT_ST = 11,  
Bit[7] = 1 means invalid reflected pulse width, i.e. equal or greater than  
152ns, equal or less than 48ns.  
Bit[6] = 1 means cable has signal for too long time during WAIT state. It’s  
unusual and for debug only.  
Bit[5] = 1 means mask100 detected and no silent time window can be found  
for diagnostics. It means high frequency signal is found on the line. The link  
partner probably is in forced 100BT or 1000BT mode.  
Bit[4] = 1 means signals faster than NLP and FLP exists and no silent time  
window can be found for diagnostics. It’s unusual and for debug only.  
Bit[3:2] = number of low pulses detected. If more than 3, stay at 3.  
Bit[1:0] = number of high pulses detected. If more than 3, stay at 3.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 69  
KSZ9131RNX  
5.2.17  
DIGITAL PMA/PCS STATUS REGISTER  
Index (In Decimal): 19  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:2  
1
RESERVED  
RO  
RO  
-
1000BT link status  
1000 BT link status  
0b  
1 = link status OK  
0 = link status not OK  
0
100BT link status  
100 BT link status  
RO  
0b  
1 = link status OK  
0 = link status not OK  
5.2.18  
RXER COUNTER REGISTER  
Index (In Decimal): 21  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
RXER Counter  
RX Error counter for the RX_ER signal  
RC  
0000h  
Note:  
This counter halts at a value of 0xFFFF.  
5.2.19  
LED MODE SELECT REGISTER  
Index (In Decimal): 22  
Size:  
16 bits  
This register selects the operating mode of the PHY LEDs when in extended mode. This register is only used when the  
KSZ9031 LED Mode bit in the KSZ9031 LED Mode Register is clear.  
Bits  
15:8  
7:4  
Description  
Type  
R/W  
R/W  
Default  
-
RESERVED  
LED2 Configuration  
0010b  
This field configures the LED2 pin function. Refer to Table 4-11 for definitions.  
3:0  
LED1 Configuration  
This field configures the LED1 pin function. Refer to Table 4-11 for definitions.  
R/W  
0001b  
DS00002841C-page 70  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.2.20  
LED BEHAVIOR REGISTER  
Index (In Decimal): 23  
Size:  
16 bits  
This register selects the operating parameters of the PHY LEDs when in extended mode. This register is only used when  
the KSZ9031 LED Mode bit in the KSZ9031 LED Mode Register is clear.  
Bits  
Description  
Type  
Default  
15  
RESERVED  
R/W  
-
14  
13  
LED Activity Output Select  
RESERVED  
R/W  
R/W  
R/W  
R/W  
0b  
-
12  
LED Pulsing Enable  
1b  
00b  
11:10  
LED Blink / Pulse-Stretch Rate  
00 = 2.5 Hz Blink Rate / 400 ms pulse-stretch  
01 = 5 Hz Blink Rate / 200 ms pulse-stretch  
10 = 10 Hz Blink Rate / 100 ms pulse-stretch  
11 = 20 Hz Blink Rate / 50 ms pulse-stretch  
9:7  
6:5  
RESERVED  
R/W  
R/W  
-
LED Pulse Stretch Enables  
Configures LED2 (bit 6) and LED1 (bit 5) to either pulse-stretch when 1, or  
00b  
blink when 0.  
4:2  
1:0  
RESERVED  
R/W  
R/W  
-
LED Combination Disables  
Configures LED2 (bit 1) and LED1 (bit 0) to either combine link/activity and  
00b  
duplex/collision when 0, or disable combination, providing link-only and  
duplex-only when 1.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 71  
KSZ9131RNX  
5.2.21  
MDIO DRIVE REGISTER  
Index (In Decimal): 25  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:2  
1
RESERVED  
R/W  
R/W  
-
MDIO Drive  
When set to a 0, the MDIO output is open-drain  
0b  
When set to a 1, the MDIO output is push-pull  
0
RESERVED  
R/W  
-
5.2.22  
KSZ9031 LED MODE REGISTER  
Index (In Decimal): 26  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15  
14  
RESERVED  
R/W  
R/W  
-
KSZ9031 LED Mode  
1 = KSZ9031 LED mode  
1b  
0 = Extended LED mode  
Note:  
For normal LED operation, this bit should always be written as a 1.  
13:0  
RESERVED  
R/W  
-
DS00002841C-page 72  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.2.23  
INTERRUPT CONTROL/STATUS REGISTER  
Index (In Decimal): 27  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15  
Jabber Interrupt Enable  
1 = Enable jabber interrupt  
R/W  
0b  
0 = Disable jabber interrupt  
14  
13  
12  
11  
10  
9
Receive Error Interrupt Enable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RC  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
1 = Enable receive error interrupt  
0 = Disable receive error interrupt  
Page Received Interrupt Enable  
1 = Enable page received interrupt  
0 = Disable page received interrupt  
Parallel Detect Fault Interrupt Enable  
1 = Enable parallel detection fault interrupt  
0 = Disable parallel detection fault interrupt  
Link Partner Acknowledge Interrupt Enable  
1 = Enable link partner acknowledge interrupt  
0 = Disable link partner acknowledge interrupt  
Link Down Interrupt Enable  
1 = Enable link down interrupt  
0 = Disable link down interrupt  
Remote Fault Interrupt Enable  
1 = Enable remote fault interrupt  
0 = Disable remote fault interrupt  
8
Link Up Interrupt Enable  
1 = Enable link up interrupt  
0 = Disable link up interrupt  
7
Jabber Interrupt  
1 = Jabber interrupt  
0 = No jabber interrupt  
6
Receive Error Interrupt  
1 = Receive error interrupt  
0 = No receive error interrupt  
RC  
5
Page Receive Interrupt  
1 = Page receive interrupt  
0 = No page receive interrupt  
RC  
4
Parallel Detect Fault Interrupt  
1 = Parallel detection fault interrupt  
0 = No parallel detection fault interrupt  
RC  
3
Link Partner Acknowledge Interrupt  
1 = Link partner acknowledge interrupt  
0 = No link partner acknowledge interrupt  
RC  
2
Link Down Interrupt  
1 = Link down interrupt  
RC  
0 = No link down interrupt  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 73  
KSZ9131RNX  
Bits  
Description  
Type  
Default  
1
0
Remote Fault Interrupt  
RC  
0b  
1 = Remote fault interrupt  
0 = No remote fault interrupt  
Link Up Interrupt  
RC  
0b  
1 = Link up interrupt  
0 = No link up interrupt  
5.2.24  
AUTO-MDI/MDI-X REGISTER  
Index (In Decimal): 28  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:8  
7
RESERVED  
MDI Set  
RO  
-
R/W  
0b  
When the Swap-Off bit of this register is asserted (1),  
1 = PHY is set to operate in MDI mode  
0 = PHY is set to operate in MDI-X mode  
6
Swap-Off  
R/W  
RO  
0b  
-
1 = Disable Auto-MDI/MDI-X function  
0 = Enable Auto-MDI/MDI-X function  
5:0  
RESERVED  
DS00002841C-page 74  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.2.25  
SOFTWARE POWER DOWN CONTROL REGISTER  
Index (In Decimal): 29  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:12  
11  
RESERVED  
spd_clock_gate_override  
0 = internal clocks are gated during the Software Power Down (SPD) mode.  
1 = internal clock gating is overridden during the SPD mode.  
R/W  
R/W  
-
0b  
10  
spd_pll_disable  
0 = PLL is enabled during the Software Power Down (SPD) mode.  
R/W  
0b  
1 = PLL is disabled during the SPD mode.  
9:8  
7
RESERVED  
R/W  
R/W  
-
IO_DC_test_en  
1 = enable IO test  
0b  
6
VOH  
R/W  
0b  
1 = “VDD” to output IO  
0 = “GND” to IO  
5.2.26  
EXTERNAL LOOPBACK REGISTER  
Index (In Decimal): 30  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:4  
3
RESERVED  
R/W  
R/W  
-
Ext_lpbk  
External loopback enable  
0b  
2:0  
RESERVED  
R/W  
-
2018-2021 Microchip Technology Inc.  
DS00002841C-page 75  
KSZ9131RNX  
5.2.27  
CONTROL REGISTER  
Index (In Decimal): 31  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15  
14  
RESERVED  
RO  
-
Interrupt Polarity Invert  
1 = invert  
R/W  
0b  
0 = normal  
13:10  
9
RESERVED  
RO  
-
Enable Jabber  
1 = Enable jabber counter  
R/W  
1b  
0 = Disable  
8
Enable SQE Test  
1 = Enable SQE test  
R/W  
1b  
0 = Disable  
7
6
RESERVED  
RO  
RO  
-
Speed status 1000T  
Indicates speed is 1000T  
0b  
5
4
3
2
Speed status 100TX  
RO  
RO  
RO  
RO  
0b  
0b  
0b  
0b  
Indicates speed is 100TX  
Speed status 10BT  
Indicates speed is 10BT  
Duplex status  
Indicates duplex status  
1000BASE-T Mater/Slave status  
1 = Indicates 1000BASE-T Master mode  
0 = Indicates 1000BASE-T Slave mode  
1
0
Software Reset  
W1S/RC  
RC  
0b  
0b  
1 = Reset PHY except all registers  
0 = Disable reset  
Link Status Check Fail  
1 = Fail  
0 = Not Failing  
DS00002841C-page 76  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.3  
MDIO Manageable Device (MMD) Registers  
MMD registers provide indirect read/write access to up to 32 MMD device addresses with each device supporting up to  
65,536 16-bit registers, as defined in Clause 22 of the IEEE 802.3 Specification. This device, however, uses only a small  
fraction of the available registers. See Table 5-2 for a list of supported MMD device addresses and their associated reg-  
ister addresses. These registers are accessed through the SMI (MDIO/MDC) interface.  
The following two standard registers serve as the portal registers to access the indirect MMD registers.  
MMD Access Control Register  
MMD Access Address/Data Register  
Example: MMD Register Write  
Write MMD - Device Address 2h, Register 10h = 0001h to enable link-up detection to trigger PME for WOL.  
1. Write the MMD Access Control Register with 0002h // Select address register for MMD – Device Address 2h.  
2. Write the MMD Access Address/Data Register with 0010h // Set address register = 10h.  
3. Write the MMD Access Control Register with 4002h // Select data register for MMD – Device Address 2h.  
4. Write the MMD Access Address/Data Register with 0001h // Write value 0001h to MMD – Device Address 2h,  
Register 10h.  
Example: MMD Register Read  
Read MMD - Device Address 3h, Register 14h EEE Control and Capability.  
1. Write the MMD Access Control Register with 0003h // Select address register for MMD – Device Address 3h.  
2. Write the MMD Access Address/Data Register with 0014h // Set address register = 14h.  
3. Write the MMD Access Control Register with 4003h // Select data register for MMD – Device Address 3h.  
4. Read the MMD Access Address/Data Register // Read data in MMD – Device Address 3h, Register 14h.  
It is also possible to automatically increment the register address for reads and/or writes  
Example: MMD Register Writes with Post Increment  
Write MMD - Device Address 2h, Register 11h – 13h = 0123_4567_89ABh for the magic packet’s MAC address.  
1. Write the MMD Access Control Register with 0002h // Select address register for MMD – Device Address 2h.  
2. Write the MMD Access Address/Data Register with 0011h // Set address register = 11h.  
3. Write the MMD Access Control Register with 8002h or C002h // Select data register with post increment for MMD  
– Device Address 2h.  
4. Write the MMD Access Address/Data Register with 0123h // Write value 0123h to MMD – Device Address 2h,  
Register 11h.  
5. Write the MMD Access Address/Data Register with 4567h // Write value 4567h to MMD – Device Address 2h,  
Register 12h.  
6. Write the MMD Access Address/Data Register with 89ABh // Write value 89ABh to MMD – Device Address 2h,  
Register 13h.  
Example: MMD Register Reads with Post Increment  
Read MMD - Device Address 2h, Register 11h – 13h for the magic packet’s MAC address.  
1. Write the MMD Access Control Register with 0002h // Select address register for MMD – Device Address 2h.  
2. Write the MMD Access Address/Data Register with 0011h // Set address register = 11h.  
3. Write the MMD Access Control Register with 8002h // Select data register with post increment for MMD – Device  
Address 2h.  
4. Read the MMD Access Address/Data Register // Read data in MMD – Device Address 2h, Register 11h.  
5. Read the MMD Access Address/Data Register // Read data in MMD – Device Address 2h, Register 12h.  
6. Read the MMD Access Address/Data Register // Read data in MMD – Device Address 2h, Register 13h.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 77  
KSZ9131RNX  
5.3.1  
MEAN SLICER ERROR REGISTER  
Index (In Decimal): 1.225  
Size:  
16 bits  
Bits  
15:0  
Description  
Type  
Default  
Mean Slicer Error  
RO  
0000h  
This field provides the current mean error value. Either absolute or square  
mode values can be provided.  
Note:  
This field is updated when the DCQ Read Capture bit in the DCQ  
Control Register is written as a 1.  
Note:  
The DCQ Channel Number field specifies which channel is  
captured.  
5.3.2  
DCQ MEAN SQUARE ERROR REGISTER  
Index (In Decimal): 1.226  
Size:  
16 bits  
Bits  
15:10  
9
Description  
Type  
RO  
Default  
RESERVED  
-
MSE Value Valid  
RO  
0b  
This field provides the mean square error valid indication.  
1 = invalid  
0 = valid  
Note:  
This field is updated when the DCQ Read Capture bit in the DCQ  
Control Register is written as a 1.  
Note:  
The DCQ Channel Number field specifies which channel is  
captured.  
8:0  
MSE Value  
RO  
000h  
This field provides the current mean square error value.  
Note:  
Note:  
This field is updated when the DCQ Read Capture bit in the DCQ  
Control Register is written as a 1.  
The DCQ Channel Number field specifies which channel is  
captured.  
DS00002841C-page 78  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.3.3  
DCQ MEAN SQUARE ERROR WORST CASE REGISTER  
Index (In Decimal): 1.227  
Size:  
16 bits  
Bits  
Description  
Type  
RO  
Default  
15:10  
9
RESERVED  
MSE Worst Case Value Valid  
-
RO  
0b  
This field provides the worst case mean square error valid indication.  
1 = invalid  
0 = valid  
Note:  
This field is updated when the DCQ Read Capture bit in the DCQ  
Control Register is written as a 1.  
Note:  
The DCQ Channel Number field specifies which channel is  
captured.  
8:0  
MSE Worst Case Value  
This field provides the worst case mean square error value since the last time  
RO  
000h  
the channel was captured for reading.  
Note:  
This field is updated when the DCQ Read Capture bit in the DCQ  
Control Register is written as a 1.  
Note:  
The DCQ Channel Number field specifies which channel is  
captured.  
5.3.4  
DCQ SQI REGISTER  
Index (In Decimal): 1.228  
Size:  
16 bits  
Bits  
15:8  
7:5  
Description  
Type  
RO  
Default  
-
RESERVED  
SQI Worst Case  
RO  
000b  
This field indicates the worst case SQI value since the last time the channel  
was captured for reading.  
Note:  
This field is updated when the DCQ Read Capture bit in the DCQ  
Control Register is written as a 1.  
Note:  
The DCQ Channel Number field specifies which channel is  
captured.  
4
RESERVED  
RO  
-
2018-2021 Microchip Technology Inc.  
DS00002841C-page 79  
KSZ9131RNX  
Bits  
Description  
Type  
Default  
3:1  
SQI  
This field indicates the current SQI value.  
RO  
000b  
Note:  
This field is updated when the DCQ Read Capture bit in the DCQ  
Control Register is written as a 1.  
Note:  
The DCQ Channel Number field specifies which channel is  
captured.  
0
RESERVED  
RO  
-
5.3.5  
DCQ PEAK MSE REGISTER  
Index (In Decimal): 1.229  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:8  
Peak MSE Worst Case  
RO  
00h  
This field indicates the worst case peak MSE value since the last time the  
channel was captured for reading.  
0-63 = Peak MSE  
64-254 = Invalid  
255 = measurement not ready  
Note:  
This field is updated when the DCQ Read Capture bit in the DCQ  
Control Register is written as a 1.  
Note:  
The DCQ Channel Number field specifies which channel is  
captured.  
7:0  
Peak MSE Value  
This field provides the current peak MSE value.  
RO  
00h  
0-63 = Peak MSE  
64-254 = Invalid  
255 = measurement not ready  
Note:  
Note:  
This field is updated when the DCQ Read Capture bit in the DCQ  
Control Register is written as a 1.  
The DCQ Channel Number field specifies which channel is  
captured.  
DS00002841C-page 80  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.3.6  
DCQ CONTROL REGISTER  
Index (In Decimal): 1.230  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15  
DCQ Read Capture  
When this bit is set the DCQ values are captured.  
R/W/SC  
0b  
14:2  
1:0  
RESERVED  
R/W  
R/W  
-
DCQ Channel Number  
This field specifies which channel’s (wire pair) values are captured into the  
00b  
DCQ registers.  
00 = Channel A  
01 = Channel B  
10 = Channel C  
11 = Channel D  
Note:  
Channel A is used for both 100BASE-TX and 1000BASE-T.  
Channels B-D are only used for 1000BASE-T.  
5.3.7  
DCQ CONFIGURATION REGISTER  
Index (In Decimal): 1.231  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:14  
scale613  
R/W  
00b  
Scaling factor for SQI method 5 (TC1 peak MSE).  
13:10  
9:8  
7
sqi_kp3  
R/W  
R/W  
R/W  
101b  
00b  
0b  
LPF bandwidth control.for SQI method 5 (TC1 peak MSE).  
scale611  
Scaling factor for SQI methods 3 (TC1 MSE) and 4 (TC1 SQI).  
sqi_reset  
When set the SQI logic is reset.  
Note:  
This bit does not self-clear.  
6
sqi_squ_mode_en  
0 = Absolute mode  
R/W  
1b  
1 = Square mode  
5
sqi_enable  
R/W  
R/W  
1b  
When set SQI measurements are enabled.  
4:0  
sqi_kp  
0Dh  
LPF bandwidth control.for SQI methods 2 (non TC1 LPF mean), 3 (TC1 MSE)  
and 4 (TC1 SQI).  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 81  
KSZ9131RNX  
5.3.8  
DCQ SQI TABLE REGISTERS  
Index (In Decimal): 1.232-238  
Size:  
16 bits  
Bits  
Description  
Type  
RO  
Default  
-
15:9  
8:0  
RESERVED  
SQI_VALUE  
R/W  
Table 5-3  
Lookup table utilized for implement of SQI method 4 (TC1 SQI). These regis-  
ters set the thresholds to map the error value to a SQI level.  
TABLE 5-3:  
SQI VALUE DEFAULTS  
Default  
(Hexadecimal)  
Register  
SQI_TBL1.SQI_VALUE  
SQI_TBL2.SQI_VALUE  
SQI_TBL3.SQI_VALUE  
SQI_TBL4.SQI_VALUE  
SQI_TBL5.SQI_VALUE  
SQI_TBL6.SQI_VALUE  
SQI_TBL7.SQI_VALUE  
A3h  
82h  
67h  
52h  
41h  
34h  
29h  
5.3.9  
COMMON CONTROL REGISTER  
Index (In Decimal): 2.0  
Size:  
16 bits  
Bits  
Description  
Type  
RO  
Default  
-
15:5  
4
RESERVED  
Single LED  
1 = Individual-LED mode  
R/W  
Note 5-3  
0 = Tri-color-LED mode  
By default, this bit reflects the value of the LED_MODE strapping pin.  
If written as a 1, the value of the LED_MODE strapping pin is overridden and  
Single-LED mode is selected.  
3:2  
1
RESERVED  
R/W  
R/W  
-
clk125 Enable  
Note 5-4  
A 1 enables the 125 MHz clock output onto the CLK125_NDO pin.  
0
All-PHYAD Enable  
When this bit is set, the PHY will respond to PHY address 0 as well as it’s  
assigned PHY address.  
R/W  
Note 5-5  
DS00002841C-page 82  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
Note 5-3  
Note 5-4  
Note 5-5  
Set by the LED_MODE strapping pin. See Section 3.3, "Configuration Straps" for details.  
Set by the CLK125_EN strapping pin. See Section 3.3, "Configuration Straps" for details.  
Set by the inverse of the ALLPHYAD strapping pin. See Section 3.3, "Configuration Straps" for  
details.  
5.3.10  
STRAP STATUS REGISTER  
Index (In Decimal): 2.1  
Size:  
16 bits  
Bits  
15:8  
7
Description  
Type  
RO  
Default  
-
RESERVED  
LED_MODE Strap-In Status  
1 = Individual LED mode  
RO  
Note 5-6  
0 = Tri-color LED mode  
6
5
RESERVED  
RO  
RO  
-
CLK125_EN Strap-In Status  
1 = CLK125_EN strap-in is enabled  
Note 5-7  
0 = CLK125_EN strap-in is disabled  
4:0  
PHYAD[2:0] Strap-In Status  
Strap-in value for PHY address  
RO  
Note 5-8  
Note:  
Bits [4:3] of PHY address are always set to ‘00’.  
Note 5-6  
Note 5-7  
Note 5-8  
Set by the LED_MODE strapping pin. See Section 3.3, "Configuration Straps" for details.  
Set by the CLK125_EN strapping pin. See Section 3.3, "Configuration Straps" for details  
Set by the PHYAD[2:0] strapping pins. See Section 3.3, "Configuration Straps" for details.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 83  
KSZ9131RNX  
5.3.11  
OPERATION MODE STRAP OVERRIDE REGISTER  
Index (In Decimal): 2.2  
Size:  
16 bits  
This register may be used to override the value of the MODE[3:0] configuration straps.  
Bits  
15  
Description  
Type  
RO  
Default  
-
RESERVED  
14  
an_all_ng_h_cap  
R/W  
Note 5-9  
1 = RGMII mode. Advertise all capabilities except 1000BASE-T half duplex  
13  
12  
RESERVED  
RO  
-
an_g_f_cap  
R/W  
Note 5-9  
1 = RGMII mode. Advertise 1000BASE-T full duplex only  
11  
10  
RESERVED  
RO  
-
rgmii_pme_on_int_mode  
1 = RGMII mode with PME_N2 mapped onto INT_N  
R/W  
Note 5-9  
9
8
RESERVED  
RO  
-
rgmii_pme_on_led1_mode  
1 = RGMII mode with PME_N1 mapped onto LED1  
R/W  
Note 5-9  
7
iddq_mode  
Chip IDDQ Power-Down  
RO  
Note 5-9  
1 = Chip power-down mode  
6:5  
4
RESERVED  
RO  
-
ntree_mode  
NAND Tree mode  
R/W  
Note 5-9  
1 = NAND Tree mode  
3:2  
1
RESERVED  
RO  
RO  
RO  
-
-
-
RESERVED  
RESERVED  
0
Note 5-9  
Set by the MODE[3:0] strapping pins. See Section 3.3, "Configuration Straps" for details.  
DS00002841C-page 84  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.3.12  
OPERATION MODE STRAP REGISTER  
Index (In Decimal): 2.3  
Size:  
16 bits  
This register indicates the value of the MODE[3:0] configuration straps that were latched into the device at reset.  
Bits  
15  
Description  
Type  
RO  
Default  
-
RESERVED  
14  
Strap_an_all_ng_h_cap  
1 = RGMII mode. Advertise all capabilities except 1000BASE-T half duplex  
RO  
Note 5-10  
13  
12  
RESERVED  
RO  
RO  
-
Strap_an_g_f_cap  
1 = RGMII mode. Advertise 1000BASE-T full duplex only  
Note 5-10  
11  
10  
RESERVED  
RO  
RO  
-
Strap_rgmii_pme_on_int_mode  
1 = RGMII mode with PME_N2 mapped onto INT_N  
Note 5-10  
9
8
RESERVED  
RO  
RO  
-
Strap_rgmii_pme_on_led1_mode  
1 = RGMII mode with PME_N1 mapped onto LED1  
Note 5-10  
7
Strap_iddq_mode  
Chip IDDQ Power-Down Strap-In Status  
RO  
Note 5-10  
1 = Chip power-down mode  
6:5  
4
RESERVED  
RO  
RO  
-
Strap_ntree_mode  
NAND Tree Strap-In Status  
Note 5-10  
1 = NAND Tree mode  
3:2  
1
RESERVED  
RO  
RO  
RO  
-
-
-
RESERVED  
RESERVED  
0
Note 5-10  
Set by the MODE[3:0] strapping pins. See Section 3.3, "Configuration Straps" for details.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 85  
KSZ9131RNX  
5.3.13  
CLOCK INVERT AND CONTROL SIGNAL PAD SKEW REGISTER  
Index (In Decimal): 2.4  
Size:  
16 bits  
Bits  
15:10  
9
Description  
Type  
R/W  
R/W  
Default  
0h  
RESERVED  
Inverse RGMII RXC Output  
0 = no change  
0b  
1 = inverse on RXC for RGMII  
8
Inverse RGMII TXC Input  
0 = no change  
R/W  
0b  
1 = inverse on TXC for RGMII  
7:4  
3:0  
RX_CTL Skew  
R/W  
R/W  
7h  
7h  
RX_CTL output skew Control (~28 min to ~73 max ps/step)  
TX_CTL Skew  
TX_CTL input skew Control (~28 min to ~73 max ps/step)  
5.3.14  
RGMII RX DATA PAD SKEW REGISTER  
Index (In Decimal): 2.5  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:12  
RXD3 Pad Skew  
RGMII RXD3 output pad skew control (~28 min to ~73 max ps/step)  
R/W  
7h  
11:8  
7:4  
RXD2 Pad Skew  
R/W  
R/W  
R/W  
7h  
7h  
7h  
RGMII RXD2 output pad skew control (~28 min to ~73 max ps/step)  
RXD1 Pad Skew  
RGMII RXD1 output pad skew control (~28 min to ~73 max ps/step)  
3:0  
RXD0 Pad Skew  
RGMII RXD0 output pad skew control (~28 min to ~73 max ps/step)  
DS00002841C-page 86  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.3.15  
RGMII TX DATA PAD SKEW REGISTER  
Index (In Decimal): 2.6  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:12  
TXD3 Pad Skew  
RGMII TXD3 output pad skew control (~28 min to ~73 max ps/step)  
R/W  
7h  
11:8  
7:4  
TXD2 Pad Skew  
R/W  
R/W  
R/W  
7h  
7h  
7h  
RGMII TXD2 output pad skew control (~28 min to ~73 max ps/step)  
TXD1 Pad Skew  
RGMII TXD1 output pad skew control (~28 min to ~73 max ps/step)  
3:0  
TXD0 Pad Skew  
RGMII TXD0 output pad skew control (~28 min to ~73 max ps/step)  
5.3.16  
CLOCK PAD SKEW REGISTER  
Index (In Decimal): 2.8  
Size:  
16 bits  
Bits  
15:10  
9:5  
Description  
Type  
RO  
Default  
RESERVED  
TXC Pad Input Skew  
-
R/W  
07h  
TXC input Skew Control (~24 min to ~58 max ps/step)  
4:0  
RXC_pad_oskew  
RXC output Skew Control (~24 min to ~58 max ps/step)  
R/W  
07h  
5.3.17  
SELF-TEST PACKET COUNT LO REGISTER  
Index (In Decimal): 2.9  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
Self_test_frame_cnt[15:0]  
R/W  
0000h  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 87  
KSZ9131RNX  
5.3.18  
SELF-TEST PACKET COUNT HI REGISTER  
Index (In Decimal): 2.10  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
Self_test_frame_cnt[31:16]  
R/W  
0001h  
5.3.19  
SELF-TEST STATUS REGISTER  
Index (In Decimal): 2.11  
Size:  
16 bits  
Bits  
15:1  
0
Description  
Type  
RO  
Default  
RESERVED  
-
Self_test_done  
0 = Self test running  
RO  
0b  
1 = Self test finished  
5.3.20  
SELF-TEST FRAME COUNT ENABLE REGISTER  
Index (In Decimal): 2.12  
Size:  
16 bits  
Bits  
15:1  
0
Description  
Type  
RO  
Default  
RESERVED  
-
Self_test_frame_cnt_en  
0 = disabled  
R/W  
0b  
1 = enabled  
DS00002841C-page 88  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.3.21  
SELF-TEST PGEN ENABLE REGISTER  
Index (In Decimal): 2.13  
Size:  
16 bits  
Bits  
15:1  
0
Description  
Type  
RO  
Default  
RESERVED  
-
Self_test_pgen_en  
0 = disabled  
R/W  
0b  
1 = enabled  
5.3.22  
SELF-TEST ENABLE REGISTER  
Index (In Decimal): 2.14  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15  
Self_test_external_clk_sel  
When this bit is high, the self-test function requires a clock to be supplied onto  
R/W  
0b  
the GTX_CLK input pin.  
When this bit is low, the self-test function does not require a clock to be sup-  
plied.  
14:1  
0
RESERVED  
RO  
-
Self_test_en  
0 = disabled  
R/W  
0b  
1 = enabled  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 89  
KSZ9131RNX  
5.3.23  
WAKE-ON-LAN CONTROL REGISTER  
Index (In Decimal): 2.16  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:14  
PME Output Select  
Controls definition of PME signal when assigned to INT_N.  
R/W  
00b  
00 = PME  
01 = Interrupt  
10 = Interrupt ORed with PME  
11 = always 0  
Controls definition of PME signal when assigned to LED1.  
00 = PME  
01 = LED  
10 = LED ORed with PME  
11 = always 1  
13:8  
7
RESERVED  
R/W  
R/W  
-
Wake-on-LAN Reset (Wol_reset)  
Write a 1 then a 0 to reset the WoL module.  
0b  
6
5:2  
1
Enable Magic Packet Detection Wake Event  
R/W  
R/W  
R/W  
R/W  
0b  
0h  
0b  
0b  
Enables magic packet detection as a wake event  
Enable Customized Frame Filter Wake Event  
Enables customized frame filters as wake events  
Enable Link Down Wake Event  
Enables link down as a wake event  
0
Enable Link Up Wake Event  
Enables link up as a wake event  
5.3.24  
WAKE-ON-LAN-MAC-LO REGISTER  
Index (In Decimal): 2.17  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
m-pkt-mac-lo  
MAC-Address[15:0] of magic packet  
R/W  
0000h  
DS00002841C-page 90  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.3.25  
WAKE-ON-LAN-MAC-MI REGISTER  
Index (In Decimal): 2.18  
Size:  
Size:  
Size:  
Size:  
16 bits  
16 bits  
16 bits  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
m-pkt-mac-mi  
MAC-Address[31:16] of magic packet  
R/W  
0000h  
5.3.26  
WAKE-ON-LAN-MAC-HI REGISTER  
Index (In Decimal): 2.19  
Bits  
Description  
Type  
Default  
15:0  
m-pkt-mac-hi  
MAC-Address[47:32] of magic packet  
R/W  
0000h  
5.3.27  
CUSTOMIZED-PKT-0-CRC-LO REGISTER  
Index (In Decimal): 2.20  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-0-crc-lo  
Customized frame filter 0 CRC[15:0]  
R/W  
0000h  
5.3.28  
CUSTOMIZED-PKT-0-CRC-HI REGISTER  
Index (In Decimal): 2.21  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-0-crc-hi  
Customized frame filter 0 CRC[31:16]  
R/W  
0000h  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 91  
KSZ9131RNX  
5.3.29  
CUSTOMIZED-PKT-1-CRC-LO REGISTER  
Index (In Decimal): 2.22  
Size:  
Size:  
Size:  
Size:  
16 bits  
16 bits  
16 bits  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-1-crc-lo  
Customized frame filter 1 CRC[15:0]  
R/W  
0000h  
5.3.30  
CUSTOMIZED-PKT-1-CRC-HI REGISTER  
Index (In Decimal): 2.23  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-1-crc-hi  
Customized frame filter 1 CRC[31:16]  
R/W  
0000h  
5.3.31  
CUSTOMIZED-PKT-2-CRC-LO REGISTER  
Index (In Decimal): 2.24  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-2-crc-lo  
Customized frame filter 2 CRC[15:0]  
R/W  
0000h  
5.3.32  
CUSTOMIZED-PKT-2-CRC-HI REGISTER  
Index (In Decimal): 2.25  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-2-crc-hi  
Customized frame filter 2 CRC[31:16]  
R/W  
0000h  
DS00002841C-page 92  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.3.33  
CUSTOMIZED-PKT-3-CRC-LO REGISTER  
Index (In Decimal): 2.26  
Size:  
Size:  
Size:  
Size:  
16 bits  
16 bits  
16 bits  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-3-crc-lo  
Customized frame filter 3 CRC[15:0]  
R/W  
0000h  
5.3.34  
CUSTOMIZED-PKT-3-CRC-HI REGISTER  
Index (In Decimal): 2.27  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-3-crc-hi  
Customized frame filter 3 CRC[31:16]  
R/W  
0000h  
5.3.35  
CUSTOMIZED-PKT-0-MASK_LL REGISTER  
Index (In Decimal): 2.28  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-0-mask-ll  
Customized frame filter 0 mask[15:0]  
R/W  
0000h  
5.3.36  
CUSTOMIZED-PKT-0-MASK_LH REGISTER  
Index (In Decimal): 2.29  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-0-mask-lh  
Customized frame filter 0 mask[31:16]  
R/W  
0000h  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 93  
KSZ9131RNX  
5.3.37  
CUSTOMIZED-PKT-0-MASK_HL REGISTER  
Index (In Decimal): 2.30  
Size:  
Size:  
Size:  
Size:  
16 bits  
16 bits  
16 bits  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-0-mask-hl  
Customized frame filter 0 mask[47:32]  
R/W  
0000h  
5.3.38  
CUSTOMIZED-PKT-0-MASK_HH REGISTER  
Index (In Decimal): 2.31  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-0-mask-hh  
Customized frame filter 0 mask[63:48]  
R/W  
0000h  
5.3.39  
CUSTOMIZED-PKT-1-MASK_LL REGISTER  
Index (In Decimal): 2.32  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-1-mask-ll  
Customized frame filter 1 mask[15:0]  
R/W  
0000h  
5.3.40  
CUSTOMIZED-PKT-1-MASK_LH REGISTER  
Index (In Decimal): 2.33  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-1-mask-lh  
Customized frame filter 1 mask[31:16]  
R/W  
0000h  
DS00002841C-page 94  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.3.41  
CUSTOMIZED-PKT-1-MASK_HL REGISTER  
Index (In Decimal): 2.34  
Size:  
Size:  
Size:  
Size:  
16 bits  
16 bits  
16 bits  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-1-mask-hl  
Customized frame filter 1 mask[47:32]  
R/W  
0000h  
5.3.42  
CUSTOMIZED-PKT-1-MASK_HH REGISTER  
Index (In Decimal): 2.35  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-1-mask-hh  
Customized frame filter 1 mask[63:48]  
R/W  
0000h  
5.3.43  
CUSTOMIZED-PKT-2-MASK_LL REGISTER  
Index (In Decimal): 2.36  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-2-mask-ll  
Customized frame filter 2 mask[15:0]  
R/W  
0000h  
5.3.44  
CUSTOMIZED-PKT-2-MASK_LH REGISTER  
Index (In Decimal): 2.37  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-2-mask-lh  
Customized frame filter 2 mask[31:16]  
R/W  
0000h  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 95  
KSZ9131RNX  
5.3.45  
CUSTOMIZED-PKT-2-MASK_HL REGISTER  
Index (In Decimal): 2.38  
Size:  
Size:  
Size:  
Size:  
16 bits  
16 bits  
16 bits  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-2-mask-hl  
Customized frame filter 2 mask[47:32]  
R/W  
0000h  
5.3.46  
CUSTOMIZED-PKT-2-MASK_HH REGISTER  
Index (In Decimal): 2.39  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-2-mask-hh  
Customized frame filter 2 mask[63:48]  
R/W  
0000h  
5.3.47  
CUSTOMIZED-PKT-3-MASK_LL REGISTER  
Index (In Decimal): 2.40  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-3-mask-ll  
Customized frame filter 3 mask[15:0]  
R/W  
0000h  
5.3.48  
CUSTOMIZED-PKT-3-MASK_LH REGISTER  
Index (In Decimal): 2.41  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-3-mask-lh  
Customized frame filter 3 mask[31:16]  
R/W  
0000h  
DS00002841C-page 96  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.3.49  
CUSTOMIZED-PKT-3-MASK_HL REGISTER  
Index (In Decimal): 2.42  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-3-mask-hl  
Customized frame filter 3 mask[47:32]  
R/W  
0000h  
5.3.50  
CUSTOMIZED-PKT-3-MASK_HH REGISTER  
Index (In Decimal): 2.43  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
c-pkt-3-mask-hh  
Customized frame filter 3 mask[63:48]  
R/W  
0000h  
5.3.51  
WAKE-ON-LAN CONTROL STATUS REGISTER  
Index (In Decimal): 2.44  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
Wol_ctrl_status  
Wake-on-LAN Control module status  
RO  
0000h  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 97  
KSZ9131RNX  
5.3.52  
WAKE-ON-LAN CUSTOM PACKET RECEIVE STATUS REGISTER  
Index (In Decimal): 2.45  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15  
cpkt_pmen  
RO  
0b  
custom packet 0 enabled and custom packet 0 found  
14:12  
11  
mismatch code  
RO  
RO  
RO  
000b  
0b  
good_pkt_crc  
10:7  
crc_match  
crc matched  
0000b  
bit 10 = custom packet 3  
bit 9 = custom packet 2  
bit 8 = custom packet 1  
bit 7 = custom packet 0  
6:3  
cpkt_found  
RO  
RO  
0000b  
000b  
custom packet found  
bit 6 = custom packet 3  
bit 5 = custom packet 2  
bit 4 = custom packet 1  
bit 3 = custom packet 0  
2:0  
cpkt_state  
custom packet detection state  
5.3.53  
WAKE-ON-LAN MAGIC PACKET RECEIVE STATUS REGISTER  
Index (In Decimal): 2.46  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15  
mpkt_pmen  
magic packet enabled and magic packet found  
RO  
0b  
14:12  
11:9  
8:5  
4
byte count  
RO  
RO  
RO  
RO  
RO  
000b  
000b  
0h  
mismatch code  
macda_match_count  
good_pkt_crc  
0b  
3
mpkt_found  
magic packet found  
0b  
2:0  
mpkt_state  
magic packet detection state  
RO  
000b  
DS00002841C-page 98  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.3.54  
WAKE-ON-LAN DATA MODULE STATUS REGISTER  
Index (In Decimal): 2.47  
Size:  
16 bits  
16 bits  
16 bits  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
Wol_data_status  
Wake-on-LAN Data module status  
RO  
0000h  
5.3.55  
CUSTOMIZED PKT-0 RECEIVED CRC-L REGISTER  
Index (In Decimal): 2.48  
Size:  
Bits  
Description  
Type  
Default  
15:0  
Wol_crc_rcv_0 [15:0]  
Wake-on-LAN CRC [15:0] calculated on Customized frame filter 0  
RO  
0000h  
5.3.56  
CUSTOMIZED PKT-0 RECEIVED CRC-H REGISTER  
Index (In Decimal): 2.49  
Size:  
Bits  
Description  
Type  
Default  
15:0  
Wol_crc_rcv_0 [31:16]  
Wake-on-LAN CRC [31:16] calculated on Customized frame filter 0  
RO  
0000h  
5.3.57  
CUSTOMIZED PKT-1 RECEIVED CRC-L REGISTER  
Index (In Decimal): 2.50  
Size:  
Bits  
Description  
Type  
Default  
15:0  
Wol_crc_rcv_1 [15:0]  
Wake-on-LAN CRC [15:0] calculated on Customized frame filter 1  
RO  
0000h  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 99  
KSZ9131RNX  
5.3.58  
CUSTOMIZED PKT-1 RECEIVED CRC-H REGISTER  
Index (In Decimal): 2.51  
Size:  
16 bits  
16 bits  
16 bits  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
Wol_crc_rcv_1 [31:16]  
Wake-on-LAN CRC [31:16] calculated on Customized frame filter 1  
RO  
0000h  
5.3.59  
CUSTOMIZED PKT-2 RECEIVED CRC-L REGISTER  
Index (In Decimal): 2.52  
Size:  
Bits  
Description  
Type  
Default  
15:0  
Wol_crc_rcv_2 [15:0]  
Wake-on-LAN CRC [15:0] calculated on Customized frame filter 2  
RO  
0000h  
5.3.60  
CUSTOMIZED PKT-2 RECEIVED CRC-H REGISTER  
Index (In Decimal): 2.53  
Size:  
Bits  
Description  
Type  
Default  
15:0  
Wol_crc_rcv_2 [31:16]  
Wake-on-LAN CRC [31:16] calculated on Customized frame filter 2  
RO  
0000h  
5.3.61  
CUSTOMIZED PKT-3 RECEIVED CRC-L REGISTER  
Index (In Decimal): 2.54  
Size:  
Bits  
Description  
Type  
Default  
15:0  
Wol_crc_rcv_3 [15:0]  
Wake-on-LAN CRC [15:0] calculated on Customized frame filter 3  
RO  
0000h  
DS00002841C-page 100  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.3.62  
CUSTOMIZED PKT-3 RECEIVED CRC-H REGISTER  
Index (In Decimal): 2.55  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
Wol_crc_rcv_3 [31:16]  
Wake-on-LAN CRC [31:16] calculated on Customized frame filter 3  
RO  
0000h  
5.3.63  
SELF-TEST CORRECT COUNT LO REGISTER  
Index (In Decimal): 2.60  
Size:  
16 bits  
Following a self-test, this register along with Self-Test Correct Count HI Register indicate the count of frames with a cor-  
rect FCS.  
Bits  
Description  
Type  
Default  
15:0  
Self_test_correct_cnt[15:0]  
RO  
-
5.3.64  
SELF-TEST CORRECT COUNT HI REGISTER  
Index (In Decimal): 2.61  
Size:  
16 bits  
Following a self-test, this register along with Self-Test Correct Count LO Register indicate the count of frames with a  
correct FCS.  
Bits  
Description  
Type  
Default  
15:0  
Self_test_correct_cnt[31:16]  
RO  
-
5.3.65  
SELF-TEST ERROR COUNT LO REGISTER  
Index (In Decimal): 2.62  
Size:  
16 bits  
Following a self-test, this register along with Self-Test Error Count HI Register indicate the count of frames with an incor-  
rect FCS.  
Bits  
Description  
Type  
Default  
15:0  
Self_test_error_cnt[15:0]  
RO  
-
2018-2021 Microchip Technology Inc.  
DS00002841C-page 101  
KSZ9131RNX  
5.3.66  
SELF-TEST ERROR COUNT HI REGISTER  
Index (In Decimal): 2.63  
Size:  
16 bits  
Following a self-test, this register along with Self-Test Error Count LO Register indicate the count of frames with an incor-  
rect FCS.  
Bits  
Description  
Type  
Default  
15:0  
Self_test_error_cnt[31:16]  
RO  
-
5.3.67  
SELF-TEST BAD SFD COUNT LO REGISTER  
Index (In Decimal): 2.64  
Size:  
16 bits  
Following a self-test, this register along with Self-Test Bad SFD Count HI Register indicate the count of frames with a  
bad SFD.  
Bits  
Description  
Type  
Default  
15:0  
Self_test_bad_sfd_cnt[15:0]  
RO  
-
5.3.68  
SELF-TEST BAD SFD COUNT HI REGISTER  
Index (In Decimal): 2.65  
Size:  
16 bits  
Following a self-test, this register along with Self-Test Bad SFD Count LO Register indicate the count of frames with a  
bad SFD.  
Bits  
Description  
Type  
Default  
15:0  
Self_test_bad_sfd_cnt[31:16]  
RO  
-
DS00002841C-page 102  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.3.69  
RX DLL CONTROL REGISTER  
Index (In Decimal): 2.76  
Size:  
16 bits  
Bits  
15  
Description  
Type  
RO  
Default  
RESERVED  
-
14  
rxdll_tune_disable  
When this bit is set the DLL is not dynamically tuned. It is, however, still used  
to provide a fixed delay as set by rxdll_tap_sel.  
R/W  
0b  
13  
rxdll_reset  
When this bit is set the DLL is reset.  
R/W  
0b  
Note:  
This bit does not self-clear and must be written back to a 0  
12  
bypass rxdll  
R/W  
R/W  
0b  
1 = RXC DLL delay is not used  
11:6  
rxdll_tap_sel  
1Bh  
Used as the initial DLL tap setting before the first tuning cycle. Also used to  
set the delay value during manual tuning mode.  
Note:  
The rxdll_reset bit must be set following a change to this field.  
5:0  
rxdll_tap_adj  
R/W  
11h  
Used to statically account for the output multiplexer stage in the delay chain  
when DLL tuning is enabled.  
5.3.70  
TX DLL CONTROL REGISTER  
Index (In Decimal): 2.77  
Size:  
16 bits  
Bits  
15  
Description  
Type  
RO  
Default  
RESERVED  
txdll_tune_disable  
-
14  
R/W  
0b  
When this bit is set the DLL is not dynamically tuned. It is, however, still used  
to provide a fixed delay as set by txdll_tap_sel.  
13  
txdll_reset  
When this bit is set the DLL is reset.  
R/W  
0b  
Note:  
This bit does not self-clear and must be written back to a 0  
12  
bypass txdll  
R/W  
R/W  
1b  
1 = TXC DLL delay is not used  
11:6  
txdll_tap_sel  
1Bh  
Used as the initial DLL tap setting before the first tuning cycle. Also used to  
set the delay value during manual tuning mode.  
Note:  
The txdll_reset bit must be set following a change to this field.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 103  
KSZ9131RNX  
Bits  
Description  
Type  
Default  
5:0  
txdll_tap_adj  
R/W  
11h  
Used to statically account for the output multiplexer stage in the delay chain  
when DLL tuning is enabled.  
5.3.71  
PCS CONTROL 1 REGISTER  
Index (In Decimal): 3.0  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15  
RESET  
1=PCS reset  
R/W  
0b  
0=Normal Operation  
This bit is not used  
14  
13  
Loop Back  
R/W  
R/W  
0b  
0b  
1 = enable loop-back mode  
0 = Normal Operation  
This bit is not used  
Speed Selection  
(bit13 / bit6)  
11 = bit 5:2 select speed  
0x = unspecified  
x0 = unspecified  
This bit is not used  
12  
11  
10  
EEE100_idle_sel  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0 = 9031  
1 = 8050  
Low power  
1 = low-power-mode  
0 = normal operation  
Clock-stop enable  
1 = the PHY may stop the clock during LPI  
0 = clock not stoppable  
9:7  
6
TX FIFO threshold  
R/W  
R/W  
111b  
0b  
Speed Selection  
(bit13 / bit6)  
11 = bit 5:2 select speed  
0x = unspecified  
x0 = unspecified  
This bit is not used  
DS00002841C-page 104  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
Bits  
Description  
Type  
Default  
5:2  
Speed Selection  
(bits [5:2])  
R/W  
0000b  
1 x x x = Reserved  
0 1 1 x = Reserved  
0 1 0 1 = Reserved  
0 1 0 0 = 100Gb/s  
0 0 1 1 = 40Gb/s  
0 0 1 0 = 10/1Gb/s  
0 0 0 1 = 10PASS-TS/2BASE-TL  
0 0 0 0 = 10Gb/s  
These bits are not used  
1
0
RESERVED  
R/W  
R/W  
-
Dbg_pcs100_sel  
1 = select eee100 RX signals  
0b  
0 = original  
5.3.72  
PCS STATUS 1 REGISTER  
Index (In Decimal): 3.1  
Size:  
16 bits  
Bits  
15:12  
11  
Description  
Type  
RO  
Default  
RESERVED  
-
TX LPI received  
1 = TX PCS has received LPI  
RO/LH  
0b  
0 = LPI not received  
10  
9
RX LPI received  
RO/LH  
RO  
0b  
0b  
0b  
0b  
1b  
-
1 = RX PCS has received LPI  
0 = LPI not received  
TX LPI indication  
1 = TX PCS is currently receiving LPI  
0 = PCS is not currently receiving LPI  
8
RX LPI indication  
1 = RX PCS is currently receiving LPI  
0 = PCS is not currently receiving LPI  
RO  
7
Fault  
RO  
1 = Fault condition detected  
0 = No fault condition detected  
6
Clock stop capable  
1 = The MAC may stop the clock during LPI  
0 = Clock not stoppable  
RO  
5:3  
RESERVED  
RO  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 105  
KSZ9131RNX  
Bits  
Description  
Type  
Default  
2
1
PCS receive link status  
RO  
0b  
1 = PCS receive link up  
0 = PCS receive link down  
Low-power ability  
1 = PCS supports low-power mode  
0 = PCS does not support low-power mode  
RO  
RO  
Note 5-11  
-
0
RESERVED  
Note 5-11  
This bit is a 1 if either the 1000BASE-T EEE or 100BASE-TX EEE bit in the EEE Advertisement  
Register is set. Otherwise it is a 0.  
5.3.73  
EEE QUIET TIMER REGISTER  
Index (In Decimal): 3.8  
Size:  
Size:  
Size:  
16 bits  
16 bits  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
Quiet-Timer  
1G-EEE quieter Timer Max Value  
R/W  
006Eh  
5.3.74  
EEE UPDATE TIMER REGISTER  
Index (In Decimal): 3.9  
Bits  
Description  
Type  
Default  
15:0  
Update-Timer  
1G-EEE Update Timer Max Value  
R/W  
005Fh  
5.3.75  
EEE LINK-FAIL TIMER REGISTER  
Index (In Decimal): 3.10  
Bits  
15:8  
7:0  
Description  
Type  
R/W  
R/W  
Default  
RESERVED  
-
Link-Fail-Timer  
5Ah  
1G-EEE Link-Fail Timer Max Value  
DS00002841C-page 106  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.3.76  
EEE POST-UPDATE TIMER REGISTER  
Index (In Decimal): 3.11  
Size:  
Size:  
Size:  
16 bits  
16 bits  
16 bits  
Bits  
15:8  
7:0  
Description  
Type  
R/W  
R/W  
Default  
RESERVED  
-
Post-Update-Timer  
1G-EEE Post-Update Timer Max Value  
50h  
5.3.77  
EEE WAITWQ TIMER REGISTER  
Index (In Decimal): 3.12  
Bits  
15:8  
7:0  
Description  
Type  
R/W  
R/W  
Default  
RESERVED  
-
WaitWQ-Timer  
1G-EEE WaitWQ Timer Max Value  
5Bh  
5.3.78  
EEE WAKE TIMER REGISTER  
Index (In Decimal): 3.13  
Bits  
15:8  
7:0  
Description  
Type  
R/W  
R/W  
Default  
RESERVED  
-
Wake-Timer  
1G-EEE Wake Timer Max Value  
89h  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 107  
KSZ9131RNX  
5.3.79  
EEE WAKETX TIMER REGISTER  
Index (In Decimal): 3.14  
Size:  
16 bits  
16 bits  
16 bits  
Bits  
15:8  
7:0  
Description  
Type  
R/W  
R/W  
Default  
RESERVED  
WakeTX-Timer  
-
21h  
1G-EEE WakeTX Timer Max Value  
5.3.80  
EEE WAKEMZ TIMER REGISTER  
Index (In Decimal): 3.15  
Size:  
Bits  
15:8  
7:0  
Description  
Type  
R/W  
R/W  
Default  
RESERVED  
-
WakeMz-Timer  
1G-EEE WakeMz Timer Max Value  
6Eh  
5.3.81  
EEE CONTROL AND CAPABILITY REGISTER  
Index (In Decimal): 3.20  
Size:  
Bits  
Description  
Type  
Default  
15:14  
13  
RESERVED  
100GBASE-R deep sleep  
1 = EEE deep sleep is supported for 100GBASE-R  
0 = EEE deep sleep is not supported for 100GBASE-R  
RO  
RO  
-
0b  
Note:  
The device does not support this mode.  
12  
100GBASE-R fast wake  
1 = EEE fast wake is supported for 100GBASE-R  
RO  
0b  
0 = EEE fast wake is not supported for 100GBASE-R  
Note:  
The device does not support this mode.  
11:10  
9
RESERVED  
RO  
RO  
-
40GBASE-R deep sleep  
1 = EEE deep sleep is supported for 40GBASE-R  
0b  
0 = EEE deep sleep is not supported for 40GBASE-R  
Note:  
The device does not support this mode.  
DS00002841C-page 108  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
Bits  
Description  
Type  
Default  
8
40GBASE-R fast wake  
1 = EEE fast wake is supported for 40GBASE-R  
0 = EEE fast wake is not supported for 40GBASE-R  
RO  
0b  
Note:  
The device does not support this mode.  
7
6
RESERVED  
RO  
RO  
-
10GBASE-KR EEE  
0 = EEE is not supported for 10GBASE-KR.  
0b  
1 = EEE is supported for 10GBASE-KR.  
Note:  
The device does not support this mode.  
5
4
3
10GBASE-KX4 EEE  
RO  
RO  
RO  
0b  
0b  
0b  
0 = EEE is not supported for 10GBASE-KX4.  
1 = EEE is supported for 10GBASE-KX4.  
Note:  
The device does not support this mode.  
10GBASE-KX EEE  
0 = EEE is not supported for 10GBASE-KX.  
1 = EEE is supported for 10GBASE-KX.  
Note:  
The device does not support this mode.  
10GBASE-T EEE  
0 = EEE is not supported for 10GBASE-T.  
1 = EEE is supported for 10GBASE-T.  
Note:  
The device does not support this mode.  
2
1
0
1000BASE-T EEE  
RO  
RO  
RO  
0b  
0b  
-
0 = EEE is not supported for 1000BASE-T.  
1 = EEE is supported for 1000BASE-T.  
100BASE-TX EEE  
0 = EEE is not supported for 100BASE-TX.  
1 = EEE is supported for 100BASE-TX.  
RESERVED  
5.3.82  
EEE WAKE ERROR COUNTER REGISTER  
Index (In Decimal): 3.22  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:0  
EEE Wake Error Counter  
This counter is cleared to zeros on read and is held to all ones on overflow.  
RC  
0000h  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 109  
KSZ9131RNX  
5.3.83  
EEE 100 TIMER-0 REGISTER  
Index (In Decimal): 3.24  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:8  
TX_SLEEP_TIMER_ADD  
tx_sleep_time = (5250 + TX_SLEEP_TIMER_ADD * 32) * 40ns  
R/W  
00h  
7:1  
0
TX_WAKE_TIMER_ADD  
R/W  
R/W  
00h  
0b  
tx_wake_time = (512 + TX_WAKE_TIMER_ADD * 32) * 40ns  
RESERVED  
5.3.84  
EEE 100 TIMER-1 REGISTER  
Index (In Decimal): 3.25  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:8  
RX_SLEEP_TIMER_ADD  
rx_sleep_time = (6250 + RX_SLEEP_TIMER_ADD * 32) * 40ns  
R/W  
00h  
7:1  
0
TX_QUIET_TIMER_ADD  
R/W  
R/W  
00h  
0b  
tx_quiet_time = (525000 + TX_QUIET_TIMER_ADD * 8192) * 40ns  
eee_100_test  
1 = force TX LPI  
5.3.85  
EEE 100 TIMER-2 REGISTER  
Index (In Decimal): 3.26  
Size:  
16 bits  
Bits  
Description  
RX_WAIT_IDLE_EXIT_TIMER_ADD  
rx_wait_idle_exit_time = (16 + RX_WAIT_IDLE_EXIT_TIMER_ADD * 2) *  
40ns  
Type  
Default  
15:12  
R/W  
0h  
11:8  
7:0  
RX_IDLE_WAIT_TIMER_ADD  
R/W  
R/W  
0h  
rx_idle_wait_time = (20 + RX_IDLE_WAIT_TIMER_ADD * 2) * 40ns  
RX_QUIET_TIMER_ADD  
rx_quiet_time = (625000 + RX_QUIET_TIMER_ADD * 4096) * 40ns  
00h  
DS00002841C-page 110  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.3.86  
EEE 100 TIMER-3 REGISTER  
Index (In Decimal): 3.27  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:8  
RX_WAKE_TIMER_ADD  
rx_wake_time = (512 + RX_WAKE_TIMER_ADD * 4) * 40ns  
R/W  
00h  
7:0  
RX_LINK_FAIL_TIMER_ADD  
rx_link_fail_time = (2500 + RX_LINK_FAIL_TIMER_ADD * 16) * 40ns  
R/W  
00h  
5.3.87  
EEE ADVERTISEMENT REGISTER  
Index (In Decimal): 7.60  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:14  
13  
RESERVED  
100GBASE-CR4 EEE  
0 = Do not advertise EEE capability for 100GBASE-CR4 deep sleep  
1 = Advertise EEE capability for 100GBASE-CR4 deep sleep  
R/W  
R/W  
-
0b  
Note:  
The device does not support this mode.  
This bit is not used.  
12  
11  
10  
100GBASE-KR4 EEE  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0 = Do not advertise EEE capability for 100GBASE-KR4 deep sleep  
1 = Advertise EEE capability for 100GBASE-KR4 deep sleep  
Note:  
The device does not support this mode.  
This bit is not used.  
100GBASE-KP4 EEE  
0 = Do not advertise EEE capability for 100GBASE-KP4 deep sleep  
1 = Advertise EEE capability for 100GBASE-KP4 deep sleep  
Note:  
The device does not support this mode.  
This bit is not used.  
100GBASE-CR10 EEE  
0 = Do not advertise EEE capability for 100GBASE-CR10 deep sleep  
1 = Advertise EEE capability for 100GBASE-CR10 deep sleep  
Note:  
The device does not support this mode.  
9
8
RESERVED  
R/W  
R/W  
-
40GBASE-CR4 EEE  
0 = Do not advertise EEE capability for 40GBASE-CR4 deep sleep  
0b  
1 = Advertise EEE capability for 40GBASE-CR4 deep sleep  
Note:  
The device does not support this mode.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 111  
KSZ9131RNX  
Bits  
Description  
Type  
Default  
7
6
5
4
3
40GBASE-KR4 EEE  
R/W  
0b  
0 = Do not advertise EEE capability for 40GBASE-KR4 deep sleep  
1 = Advertise EEE capability for 40GBASE-KR4 deep sleep  
Note:  
The device does not support this mode.  
10GBASE-KR EEE  
0 = Do not advertise EEE capability for 10GBASE-KR  
1 = Advertise EEE capability for 10GBASE-KR  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
Note:  
The device does not support this mode.  
10GBASE-KX4 EEE  
0 = Do not advertise EEE capability for 10GBASE-KX4  
1 = Advertise EEE capability for 10GBASE-KX4  
Note:  
The device does not support this mode.  
10GBASE-KX EEE  
0 = Do not advertise EEE capability for 10GBASE-KX  
1 = Advertise EEE capability for 10GBASE-KX  
Note:  
The device does not support this mode.  
10GBASE-T EEE  
0 = Do not advertise EEE capability for 10GBASE-T  
1 = Advertise EEE capability for 10GBASE-T  
Note:  
The device does not support this mode.  
2
1
0
1000BASE-T EEE  
R/W  
R/W  
R/W  
1b  
1b  
-
0 = Do not advertise EEE capability for 1000BASE-T  
1 = Advertise EEE capability for 1000BASE-T  
100BASE-TX EEE  
0 = Do not advertise EEE capability for 100BASE-TX.  
1 = Advertise EEE capability for 100BASE-TX.  
RESERVED  
DS00002841C-page 112  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
5.3.88  
EEE LINK PARTNER ABILITY REGISTER  
Index (In Decimal): 7.61  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:11  
10  
RESERVED  
R/W  
RO  
-
100GBASE-CR10 EEE  
0 = Link partner does not advertise EEE deep sleep capability for  
100GBASE-CR10.  
0b  
1 = Link partner advertises EEE deep sleep capability for 100GBASE-CR10.  
Note: This device does not support this mode.  
9
8
RESERVED  
RO  
RO  
0b  
0b  
40GBASE-CR4 EEE  
0 = Link partner does not advertise EEE deep sleep capability for 40GBASE-  
CR4.  
1 = Link partner advertises EEE deep sleep capability for 40GBASE-CR4.  
Note:  
This device does not support this mode.  
7
40GBASE-KR4 EEE  
0 = Link partner does not advertise EEE deep sleep capability for 40GBASE-  
RO  
0b  
KR4.  
1 = Link partner advertises EEE deep sleep capability for 40GBASE-KR4.  
Note:  
This device does not support this mode.  
6
5
4
3
10GBASE-KR EEE  
RO  
RO  
RO  
RO  
0b  
0b  
0b  
0b  
0 = Link partner does not advertise EEE capability for 10GBASE-KR.  
1 = Link partner advertises EEE capability for 10GBASE-KR.  
Note:  
This device does not support this mode.  
10GBASE-KX4 EEE  
0 = Link partner does not advertise EEE capability for 10GBASE-KX4.  
1 = Link partner advertises EEE capability for 10GBASE-KX4.  
Note:  
This device does not support this mode.  
10GBASE-KX EEE  
0 = Link partner does not advertise EEE capability for 10GBASE-KX.  
1 = Link partner advertises EEE capability for 10GBASE-KX.  
Note:  
This device does not support this mode.  
10GBASE-T EEE  
0 = Link partner does not advertise EEE capability for 10GBASE-T.  
1 = Link partner advertises EEE capability for 10GBASE-T.  
Note:  
This device does not support this mode.  
2
1
0
1000BASE-T EEE  
RO  
RO  
RO  
0b  
0b  
-
0 = Link partner does not advertise EEE capability for 1000BASE-T.  
1 = Link partner advertises EEE capability for 1000BASE-T.  
100BASE-TX EEE  
0 = Link partner does not advertise EEE capability for 100BASE-TX.  
1 = Link partner advertises EEE capability for 100BASE-TX.  
RESERVED  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 113  
KSZ9131RNX  
5.3.89  
EEE LINK PARTNER ABILITY OVERRIDE REGISTER  
Index (In Decimal): 7.62  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15  
LP AN Override  
0 = Use Link partner AN results  
R/W  
0b  
1 = Use bits 10:0 as Link partner results  
14:11  
10  
RESERVED  
R/W  
R/W  
-
100GBASE-CR10 EEE  
0 = Link partner does not advertise EEE deep sleep capability for  
100GBASE-CR10.  
0b  
1 = Link partner advertises EEE deep sleep capability for 100GBASE-CR10.  
Note: This device does not support this mode.  
9
8
RESERVED  
R/W  
R/W  
-
40GBASE-CR4 EEE  
0 = Link partner does not advertise EEE deep sleep capability for 40GBASE-  
0b  
CR4.  
1 = Link partner advertises EEE deep sleep capability for 40GBASE-CR4.  
Note:  
This device does not support this mode.  
7
40GBASE-KR4 EEE  
0 = Link partner does not advertise EEE deep sleep capability for 40GBASE-  
R/W  
0b  
KR4.  
1 = Link partner advertises EEE deep sleep capability for 40GBASE-KR4.  
Note:  
This device does not support this mode.  
6
5
4
3
2
10GBASE-KR EEE  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0 = Link partner does not advertise EEE capability for 10GBASE-KR.  
1 = Link partner advertises EEE capability for 10GBASE-KR.  
Note:  
This device does not support this mode.  
10GBASE-KX4 EEE  
0 = Link partner does not advertise EEE capability for 10GBASE-KX4.  
1 = Link partner advertises EEE capability for 10GBASE-KX4.  
Note:  
This device does not support this mode.  
10GBASE-KX EEE  
0 = Link partner does not advertise EEE capability for 10GBASE-KX.  
1 = Link partner advertises EEE capability for 10GBASE-KX.  
Note:  
This device does not support this mode.  
10GBASE-T EEE  
0 = Link partner does not advertise EEE capability for 10GBASE-T.  
1 = Link partner advertises EEE capability for 10GBASE-T.  
Note:  
This device does not support this mode.  
1000BASE-T EEE  
0 = Link partner does not advertise EEE capability for 1000BASE-T.  
1 = Link partner advertises EEE capability for 1000BASE-T.  
DS00002841C-page 114  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
Bits  
Description  
Type  
Default  
1
100BASE-TX EEE  
0 = Link partner does not advertise EEE capability for 100BASE-TX.  
1 = Link partner advertises EEE capability for 100BASE-TX.  
R/W  
0b  
0
RESERVED  
R/W  
-
5.3.90  
EEE MESSAGE CODE REGISTER  
Index (In Decimal): 7.63  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:11  
10:0  
RESERVED  
EEE_message_code  
R/W  
R/W  
-
00Ah  
Programmable EEE specific message code for AN  
5.3.91  
XTAL CONTROL REGISTER  
Index (In Decimal): 28.1  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:14  
13  
RESERVED  
R/W  
R/W  
-
XTAL Disable  
Crystal oscillator disable  
0b  
0 = XTAL enabled  
1 = XTAL disabled  
12:0  
RESERVED  
R/W  
-
2018-2021 Microchip Technology Inc.  
DS00002841C-page 115  
KSZ9131RNX  
5.3.92  
AFED CONTROL REGISTER  
Index (In Decimal): 28.9  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:10  
9
RESERVED  
p_cat3  
0 = cat5 parameter for 10 Base-T TX  
1 = cat3 parameter for 10 Base-T TX  
RO  
-
R/W  
0b  
8:0  
RESERVED  
RO  
-
5.3.93  
LDO CONTROL REGISTER  
Index (In Decimal): 28.14  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15  
LDO enable  
turn off VDD regulator by software  
R/W  
0b  
1 = off  
0 = on  
14:0  
RESERVED  
R/W  
-
5.3.94  
EDPD CONTROL REGISTER  
Index (In Decimal): 28.36  
Size:  
16 bits  
Bits  
Description  
Type  
Default  
15:6  
5:4  
RESERVED  
RO  
-
p_edpd_mask_timer[1:0]  
00 = EDPD mask for 2.6us  
R/W  
00b  
01 = 3.2us  
10 = 4.0us  
11 = 5.0us  
3:2  
p_edpd_timer[1:0]  
00 = EDPD pulse separation for 1s  
01 = 1.3s  
R/W  
00b  
10 = 1.6s  
11 = 1.9s  
DS00002841C-page 116  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
Bits  
Description  
Type  
Default  
1
p_EDPD_random_dis  
1 = use edpd_timer value as EDPD pulse separation selection  
0 = use random seed value as EDPD pulse separation selection  
R/W  
0b  
0
EDPD Mode Enable  
0 = EDPD mode disabled  
R/W  
0b  
1 = EDPD mode enabled  
5.3.95  
EMITX CONTROL REGISTER  
Index (In Decimal): 28.37  
Size:  
16 bits  
Type  
Note 5-12  
Default  
Note 5-12  
Bits  
Description  
15:2  
1:0  
RESERVED  
p_scale  
RO  
-
RO / R/W  
00b / 01b  
Note 5-12  
The type and default value depends on the Quiet-WIRE Enable bit in MMD31 Register 19. The values  
are listed as Quiet-WIRE Enable = 0 / Quiet-WIRE Enable = 1.  
5.3.96  
EMITX COEFFICIENT REGISTERS  
Index (In Decimal): 28.38-52  
Size:  
16 bits  
Type  
Note 5-13  
Default  
Note 5-13  
Register  
Bits  
Description  
15  
14:8  
7
RESERVED  
p_coeff1  
RO  
RO / R/W  
RO  
-
31d / 14d  
38  
RESERVED  
p_coeff0  
-
6:0  
15  
RO / R/W  
RO  
15d / 3d  
RESERVED  
p_coeff3  
-
14:8  
7
RO / R/W  
RO  
31d / 48d  
-
39  
RESERVED  
p_coeff2  
6:0  
RO / R/W  
31d / 32d  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 117  
KSZ9131RNX  
Type  
Note 5-13  
Default  
Note 5-13  
Register  
Bits  
Description  
15  
14:8  
7
RESERVED  
p_coeff5  
RO  
RO / R/W  
RO  
-
0d / 46d  
40  
RESERVED  
p_coeff4  
-
6:0  
15  
RO / R/W  
RO  
16d / 54d  
RESERVED  
p_coeff7  
-
14:8  
7
RO / R/W  
RO  
0d / 11d  
41  
42  
RESERVED  
p_coeff6  
-
6:0  
15  
RO / R/W  
RO  
0d / 28d  
-
RESERVED  
p_coeff9  
14:8  
RO / R/W  
0d /  
126d (-2d)  
7
RESERVED  
p_coeff8  
RO  
-
6:0  
15  
RO / R/W  
RO  
0d / 1d  
-
RESERVED  
p_coeff11  
14:8  
RO / R/W  
0d /  
127d (-1d)  
43  
7
RESERVED  
p_coeff10  
RO  
-
6:0  
RO / R/W  
0d /  
126d (-2d)  
15  
14:8  
7
RESERVED  
p_coeff13  
RESERVED  
p_coeff12  
RESERVED  
p_coeff15  
RESERVED  
p_coeff14  
RESERVED  
p_coeff17  
RESERVED  
p_coeff16  
RO  
R/W / R/W  
RO  
-
0d / 0d  
44  
45  
46  
-
6:0  
15  
R/W / R/W  
RO  
0d / 0d  
-
14:8  
7
R/W / R/W  
RO  
0d / 0d  
-
6:0  
15  
R/W / R/W  
RO  
0d / 0d  
-
14:8  
7
R/W / R/W  
RO  
0d / 0d  
-
6:0  
R/W / R/W  
0d / 0d  
DS00002841C-page 118  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
Type  
Note 5-13  
Default  
Note 5-13  
Register  
Bits  
Description  
15  
14:8  
7
RESERVED  
p_coeff19  
RESERVED  
p_coeff18  
RESERVED  
p_coeff21  
RESERVED  
p_coeff20  
RESERVED  
p_coeff23  
RESERVED  
p_coeff22  
RESERVED  
p_coeff25  
RESERVED  
p_coeff24  
RESERVED  
p_coeff27  
RESERVED  
p_coeff26  
RESERVED  
p_coeff29  
RESERVED  
p_coeff28  
RO  
R/W / R/W  
RO  
-
0d / 0d  
47  
-
6:0  
15  
R/W / R/W  
RO  
0d / 0d  
-
14:8  
7
R/W / R/W  
RO  
0d / 0d  
48  
49  
50  
51  
-
6:0  
15  
R/W / R/W  
RO  
0d / 0d  
-
14:8  
7
R/W / R/W  
RO  
0d / 0d  
-
6:0  
15  
R/W / R/W  
RO  
0d / 0d  
-
14:8  
7
R/W / R/W  
RO  
0d / 0d  
-
6:0  
15  
R/W / R/W  
RO  
0d / 0d  
-
14:8  
7
R/W / R/W  
RO  
0d / 0d  
-
6:0  
15  
R/W / R/W  
RO  
0d / 0d  
-
14:8  
7
R/W / R/W  
RO  
0d / 0d  
-
52  
6:0  
R/W / R/W  
0d / 0d  
Note 5-13  
The type and default value depends on the Quiet-WIRE Enable bit in MMD31 Register 19. The values  
are listed as Quiet-WIRE Enable = 0 / Quiet-WIRE Enable = 1.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 119  
KSZ9131RNX  
5.3.97  
MMD31 REGISTER 19  
Index (In Decimal): 31.19  
Size:  
16 bits  
Bits  
15:11  
10  
Description  
Type  
RO  
Default  
RESERVED  
-
Quiet-WIRE Enable  
1 = Enable Quiet-WIRE®  
R/W  
0b  
0 = Disable Quiet-WIRE®  
9:0  
RESERVED  
RO  
-
DS00002841C-page 120  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
6.0  
6.1  
OPERATIONAL CHARACTERISTICS  
Absolute Maximum Ratings*  
Supply Voltage (VIN)  
(DVDDL, AVDDL, AVDDL_PLL)................................................................................................................ –0.5V to +1.8V  
(AVDDH) ................................................................................................................................................... –0.5V to +5.0V  
(DVDDH)................................................................................................................................................... –0.5V to +5.0V  
Input Voltage (all inputs) ........................................................................................................................... –0.5V to +5.0V  
Output Voltage (all outputs) ...................................................................................................................... –0.5V to +5.0V  
Lead Temperature (soldering, 10s) ....................................................................................................................... +260°C  
Storage Temperature (TS)......................................................................................................................55°C to +150°C  
HBM ESD Performance..........................................................................................................................................+/-5kV  
*Exceeding the absolute maximum rating may damage the device. Stresses greater than the absolute maximum rating  
may cause permanent damage to the device. Operation of the device at these or any other conditions above those spec-  
ified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect  
reliability.  
6.2  
Operating Ratings**  
Supply Voltage  
(DVDDL, AVDDL, AVDDL_PLL)........................................................................................................ +1.140V to +1.320V  
(AVDDH @ 3.3V) (Note 6-1) ............................................................................................................ +3.135V to +3.630V  
(AVDDH @ 2.5V) .............................................................................................................................. +2.375V to +2.750V  
(DVDDH @ 3.3V) (Note 6-2) ............................................................................................................ +3.135V to +3.630V  
(DVDDH @ 2.5V).............................................................................................................................. +2.375V to +2.750V  
(DVDDH @ 1.8V).............................................................................................................................. +1.710V to +1.980V  
Input voltage (all inputs) ........................................................................................................................ -0.3 V to +3.63 V  
Output voltage (all outputs) ................................................................................................................... -0.3 V to +3.63 V  
Ambient Temperature  
(TA Commercial: KSZ9131RNXC) ...............................................................................................................0°C to +70°C  
(TA Industrial: KSZ9131RNXI) .................................................................................................................40°C to +85°C  
(TA Automotive: KSZ9131RNXU)............................................................................................................. –40°C to +85°C  
(TA Automotive: KSZ9131RNXV)........................................................................................................... –40°C to +105°C  
Maximum Junction Temperature (TJ max.) ........................................................................................................... +125°C  
**The device is not guaranteed to function outside its operating ratings.  
Note 6-1  
Note 6-2  
Automotive Grade 2 temperature range requires +2.5V.  
Automotive Grade 2 temperature range requires +1.8V or +2.5V.  
Note:  
Do not drive input signals without power supplied to the device.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 121  
KSZ9131RNX  
6.3  
Package Thermal Specifications  
Thermal parameters are measured or estimated for devices with the ground soldered to thermal vias in a multilayer  
2S2P PCB per JESD51. Thermal resistance is measured from the die to the ambient air. The values provided are based  
on the package body, die size, maximum power consumption.  
TABLE 6-1:  
PACKAGE THERMAL PARAMETERS  
Parameter  
Symbol  
Value  
Units  
Notes  
31  
27  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
mW  
0 Meters/second  
1 Meters/second  
2.5 Meters/second  
0 Meters/second  
0 Meters/second  
-
Junction-to-Ambient  
JA  
24  
Junction-to-Top-of-Package  
Junction-to-Board  
JT  
JB  
JC  
JB  
0.3  
16  
Junction-to-Case  
3.5  
17  
Junction-to-Board  
-
Maximum Power Dissipation  
PMAX  
663  
1000BASE-T Traffic, 3.3V I/O  
Use the following formulas to calculate the junction temperature:  
TJ = P x JA + TA  
TJ = P x JT + TT  
TJ = P x JC + TC  
TABLE 6-2:  
Symbol  
PACKAGE THERMALS LEGEND  
Description  
TJ  
P
Junction temperature  
Power dissipated  
JA  
JC  
JT  
TA  
Junction-to-ambient-temperature  
Junction-to-top-of-package  
Junction-to-bottom-of-case  
Ambient temperature  
TC  
Temperature of the bottom of the case  
Temperature of the top of the case  
TT  
DS00002841C-page 122  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
6.4  
Power Consumption  
This section details the device power measurements taken over various operating conditions. Unless otherwise noted,  
all measurements were taken with power supplies at nominal values. Refer to Section 4.17, Power Management for a  
description of the power down modes.  
TABLE 6-3:  
POWER CONSUMPTION  
Mode  
Typical Power (mW)  
Typical Power (mW)  
DVDDH=3.3V, AVDDH=3.3V DVDDH=2.5V, AVDDH=2.5V  
1000BASE-T Traffic (RGMII)  
100BASE-TX Traffic (RGMII)  
10BASE-T Traffic (RGMII)  
10BASE-Te Traffic (RGMII)  
Chip Power-Down (CPD)  
623.7  
270.9  
144.9  
141.6  
3.4  
489.1  
199.1  
105.3  
95.3  
3.4  
Energy-Detect Power-Down (EDPD)  
EEE 1000BASE-T Idle  
63.9  
21.2  
280.5  
119.1  
175.8  
61.2  
175.3  
81.3  
EEE 100BASE-TX Idle  
Normal Operation (No Link)  
RESET  
128.6  
40.9  
Software Power-Down (SPD)  
Max Power (85°C w/AVDDH/DVDDH +10°)  
Max Power (105°C w/AVDDH/DVDDH +10°)  
26.4  
12.5  
908  
672.2  
691.0  
911  
TABLE 6-4:  
TYPICAL CURRENT/POWER CONSUMPTION  
TRANSCEIVER (3.3V), DIGITAL I/O (3.3V)  
1.2V Core  
(DVDDL, AVDDL,  
AVDDL_PLL)  
3.3V Transceiver  
(AVDDH)  
3.3V Digital I/O  
Condition  
Total Power  
(DVDDH)  
1000BT Idle  
207.0 mA  
220.0 mA  
68.0 mA  
69.0 mA  
19.0 mA  
19.0 mA  
19.0 mA  
19.0 mA  
1.0 mA  
90.0 mA  
89.0 mA  
45.0 mA  
45.0 mA  
27.0 mA  
34.0 mA  
29.0 mA  
33.0 mA  
8.0 mA  
15.0 mA  
20.0 mA  
5.0 mA  
12.0 mA  
3.0 mA  
3.0 mA  
3.0 mA  
3.0 mA  
0.0 mA  
32.0 mA  
10.0 mA  
0.0 mA  
0.0 mA  
0.0 mA  
594.9 mW  
623.7 mW  
246.6 mW  
270.9 mW  
121.8 mW  
144.9 mW  
128.4 mW  
141.6 mW  
27.6 mW  
1000BT Traffic (RGMII 3V3 IO)  
100BTX Idle  
100BTX Traffic (RGMII 3V3 IO)  
10BT Idle  
10BT Traffic (RGMII 3V3 IO)  
10BTe Idle  
10BTe Traffic (RGMII 3V3 IO)  
EDPD  
EEE 1000BT Idle  
EEE 100BTX Idle  
Normal Op (No Link)  
RESET  
44.0 mA  
25.0 mA  
53.0 mA  
7.0 mA  
37.0 mA  
17.0 mA  
34.0 mA  
15.0 mA  
8.0 mA  
280.5 mW  
119.1 mW  
175.8 mW  
57.9 mW  
SFPD  
0.0 mA  
26.4 mW  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 123  
KSZ9131RNX  
TABLE 6-5:  
TYPICAL CURRENT/POWER CONSUMPTION  
TRANSCEIVER (2.5V), DIGITAL I/O (2.5V)  
1.2V Core  
(DVDDL, AVDDL,  
AVDDL_PLL)  
2.5V Transceiver  
2.5V Digital I/O  
(DVDDH)  
Condition  
Total Power  
(AVDDH)  
1000BT Idle  
207.0 mA  
218.0 mA  
68.0 mA  
68.0 mA  
19.0 mA  
19.0 mA  
19.0 mA  
19.0 mA  
1.0 mA  
80.0 mA  
78.0 mA  
40.0 mA  
40.0 mA  
22.0 mA  
31.0 mA  
22.0 mA  
27.0 mA  
8.0 mA  
11.0 mA  
13.0 mA  
4.0 mA  
7.0 mA  
2.0 mA  
2.0 mA  
2.0 mA  
2.0 mA  
0.0 mA  
20.0 mA  
7.0 mA  
0.0 mA  
0.0 mA  
0.0 mA  
475.9 mW  
489.1 mW  
191.6 mW  
199.1 mW  
82.8 mW  
105.3 mW  
82.8 mW  
95.3 mW  
21.2 mW  
175.3 mW  
81.3 mW  
128.6 mW  
40.9 mW  
12.5 mW  
1000BT Traffic (RGMII 2V5 IO)  
100BTX Idle  
100BTX Traffic (RGMII 2V5 IO)  
10BT Idle  
10BT Traffic (RGMII 2V5 IO)  
10BTe Idle  
10BTe Traffic (RGMII 2V5 IO)  
EDPD  
EEE 1000BT Idle  
EEE 100BTX Idle  
Normal Op (No Link)  
RESET  
44.0 mA  
24.0 mA  
53.0 mA  
7.0 mA  
29.0 mA  
14.0 mA  
26.0 mA  
13.0 mA  
5.0 mA  
SFPD  
0.0 mA  
TABLE 6-6:  
TYPICAL CURRENT/POWER CONSUMPTION  
TRANSCEIVER (2.5V), DIGITAL I/O (1.8V)  
1.2V Core  
(DVDDL, AVDDL,  
AVDDL_PLL)  
2.5V Transceiver  
1.8V Digital I/O  
(DVDDH)  
Condition  
Total Power  
(AVDDH)  
1000BT Idle  
207.0 mA  
220.0 mA  
68.0 mA  
68.0 mA  
19.0 mA  
19.0 mA  
19.0 mA  
19.0 mA  
2.0 mA  
80.0 mA  
78.0 mA  
40.0 mA  
40.0 mA  
23.0 mA  
30.0 mA  
23.0 mA  
27.0 mA  
13.0 mA  
29.0 mA  
14.0 mA  
13.0 mA  
5.0 mA  
5.0 mA  
16.0 mA  
2.0 mA  
4.0 mA  
1.0 mA  
1.0 mA  
1.0 mA  
1.0 mA  
0.0 mA  
16.0 mA  
4.0 mA  
0.0 mA  
0.0 mA  
457.4 mW  
487.8 mW  
185.2 mW  
188.8 mW  
82.1 mW  
99.6 mW  
82.1 mW  
92.1 mW  
34.9 mW  
152.9 mW  
71.0 mW  
40.9 mW  
12.5 mW  
1000BT Traffic (RGMII 1V8 IO)  
100BTX Idle  
100BTX Traffic (RGMII 1V8 IO)  
10BT Idle  
10BT Traffic (RGMII 1V8 IO)  
10BTe Idle  
10BTe Traffic (RGMII 1V8 IO)  
EDPD  
EEE 1000BT Idle  
EEE 100BTX Idle  
RESET  
43.0 mA  
24.0 mA  
7.0 mA  
SFPD  
0.0 mA  
DS00002841C-page 124  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
TABLE 6-7:  
TYPICAL CURRENT/POWER CONSUMPTION  
TRANSCEIVER (3.3V), DIGITAL I/O (2.5V)  
1.2V Core  
(DVDDL, AVDDL,  
AVDDL_PLL)  
3.3V Transceiver  
2.5V Digital I/O  
Total Power  
(DVDDH)  
Condition  
(AVDDH)  
1000BT Idle  
207.0 mA  
220.0 mA  
68.0 mA  
69.0 mA  
19.0 mA  
19.0 mA  
19.0 mA  
19.0 mA  
1.0 mA  
80.0 mA  
78.0 mA  
40.0 mA  
40.0 mA  
22.0 mA  
31.0 mA  
22.0 mA  
27.0 mA  
8.0 mA  
15.0 mA  
20.0 mA  
5.0 mA  
12.0 mA  
3.0 mA  
3.0 mA  
3.0 mA  
3.0 mA  
0.0 mA  
32.0 mA  
10.0 mA  
1.0 mA  
0.0 mA  
549.9 mW  
571.4 mW  
226.1 mW  
244.8 mW  
102.9 mW  
132.6 mW  
102.9 mW  
119.4 mW  
27.6 mW  
1000BT Traffic (RGMII 2V5 IO)  
100BTX Idle  
100BTX Traffic (RGMII 2V5 IO)  
10BT Idle  
10BT Traffic (RGMII 2V5 IO)  
10BTe Idle  
10BTe Traffic (RGMII 2V5 IO)  
EDPD  
EEE 1000BT Idle  
EEE 100BTX Idle  
RESET  
44.0 mA  
25.0 mA  
7.0 mA  
29.0 mA  
14.0 mA  
13.0 mA  
5.0 mA  
228.5 mW  
101.2 mW  
53.8 mW  
SFPD  
0.0 mA  
16.5 mW  
6.5  
DC Specifications  
TABLE 6-8:  
NON-VARIABLE I/O DC ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Min  
Typ  
Max  
0.5  
10  
Units  
Notes  
Note 6-3  
ICLK Type Input Buffer  
Low Input Level  
VIL  
VIH  
IIH  
V
V
High Input Level  
Input Leakage  
2.0  
-10  
µA  
Note 6-3  
XI can optionally be driven from a 25 MHz single-ended clock oscillator to which these specifications  
apply.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 125  
KSZ9131RNX  
TABLE 6-9:  
VARIABLE I/O DC ELECTRICAL CHARACTERISTICS DVDDH = 3.3/2.5/1.8V  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Notes  
VI Type Input Buffer  
Low Input Level  
VIL  
VIH  
IIH  
0.9/0.9/0.6  
V
V
High Input Level  
2.1/1.7/1.3  
-10  
Input Leakage  
(VIN = VSS or DVDDH)  
10  
3
µA  
Note 6-4  
Input Capacitance  
(generic guess)  
CIN  
RPU  
RPD  
pF  
KΩ  
KΩ  
Effective Pull-Up Resistance  
(VIN = VSS)  
44/59/96  
47/58/86  
Effective Pull-Down Resis-  
tance  
(VIN = DVDDH)  
VIS Type Input Buffer  
Low Input Level  
VIL  
VIH  
0.9/0.9/0.6  
V
V
V
V
V
High Input Level  
2.1/1.7/1.3  
Schmitt Falling Trip Point  
Schmitt Rising Trip Point  
Schmitt Trigger Hysteresis  
VT-  
1.0/0.8/0.6 1.2/1.0/0.7 1.5/1.1/0.8  
1.5/1.2/0.9 1.7/1.4/1.1 1.9/1.6/1.3  
0.4/0.3/0.3 0.5/0.4/0.4 0.6/0.5/0.5  
VT+  
VHYS  
(VIHT - VILT  
)
Input Leakage  
(VIN = VSS or DVDDH)  
IIH  
-10  
10  
3
µA  
pF  
Note 6-4  
Input Capacitance  
(generic guess)  
CIN  
Effective Pull-Up Resistance  
(VIN = VSS)  
RPU  
44/59/96  
47/58/86  
KΩ  
Effective Pull-Down Resis-  
tance  
RPD  
KΩ  
(VIN = DVDDH)  
VO8 Type Buffer  
Low Output Level  
VOL  
VOH  
IOZ  
0.4/0.4/0.2  
10  
V
V
I
OL = -8/-8/-6 mA  
I
OH = -8/-8/-6 mA  
High Output Level  
Output Tri-State Leakage  
2.4/1.9/1.5  
-10  
Note 6-4  
µA  
DS00002841C-page 126  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
TABLE 6-9:  
VARIABLE I/O DC ELECTRICAL CHARACTERISTICS DVDDH = 3.3/2.5/1.8V  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Notes  
VOD8 Type Buffer  
Low Output Level  
VOL  
IOZ  
0.4/0.4/0.2  
10  
V
IOL = -8/-8/-6 mA  
Note 6-4  
Output Tri-State Leakage  
-10  
µA  
VO24 Type Buffer  
Low Output Level  
VOL  
VOH  
IOZ  
0.4/0.4/0.2  
V
V
I
OL = -24/-24/-14 mA  
High Output Level  
2.4/1.9/1.5  
-10  
I
OH = 24/-24/-14 mA  
Output Tri-State Leakage  
10  
µA  
Note 6-4  
Note 6-4  
This specification applies to all inputs without pull-ups or pull-downs and three-stated bi-directional  
pins.  
TABLE 6-10: 1000BASE-T TRANSCEIVER CHARACTERISTICS  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Notes  
Peak Differential Output Voltage  
IEEE 802.3 clause 40.6.1.2.1  
VOP  
670  
820  
mV  
Note 6-5  
Signal Amplitude Symmetry  
IEEE 802.3 clause 40.6.1.2.1  
VSS  
VSC  
VOD  
1
2
%
%
Note 6-5  
Note 6-6  
Note 6-5  
Note 6-7  
Signal Scaling  
IEEE 802.3 clause 40.6.1.2.1  
Output Droop  
IEEE 802.3 clause 40.6.1.2.2  
73.1  
%
Transmission Distortion  
10  
mV  
IEEE 802.3 clause 40.6.1.2.4  
Note 6-5  
Note 6-6  
Note 6-7  
IEEE 802.ab Test Mode 1  
From 1/2 of average VOP, Test Mode 1  
IEEE 802.ab distortion processing  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 127  
KSZ9131RNX  
TABLE 6-11: 100BASE-TX TRANSCEIVER CHARACTERISTICS  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Notes  
Peak Differential Output Voltage  
ANSI X3.263 clause 9.1.2.2  
VOUT  
±0.95  
±1.05  
V
Note 6-8  
Signal Amplitude Symmetry  
ANSI X3.263 clause 9.1.4  
VSS  
2
5
%
ns  
ns  
ns  
%
ns  
V
Note 6-8  
Note 6-8  
Note 6-8  
Note 6-9  
Signal Rise and Fall Time  
ANSI X3.263 clause 9.1.6  
TRF  
3
0
Rise and Fall Symmetry  
ANSI X3.263 clause 9.1.6  
TRFS  
DCD  
VOS  
0.5  
±0.25  
5
Duty Cycle Distortion  
ANSI X3.263 clause 9.1.8  
Overshoot and Undershoot  
ANSI X3.263 clause 9.1.3  
Output Jitter  
ANSI X3.263 clause 9.1.9  
0.7  
1.4  
Note 6-10  
Reference Voltage of ISET  
(using 6.04kΩ - 1% resistor)  
VSET  
1.20  
Note 6-8  
Note 6-9  
Note 6-10  
Measured at line side of transformer, line replaced by 100(+/- 1%) resistor.  
Offset from 16ns pulse width at 50% of pulse peak.  
Peak to Peak, measured differentially.  
TABLE 6-12: 10BASE-T/10BASE-Te TRANSCEIVER CHARACTERISTICS  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Notes  
Transmitter Peak Differential Output  
Voltage  
VOUT  
10BASE-T  
2.2  
2.5  
2.8  
V
Note 6-11  
IEEE 802.3 clause 14.3.1.2.1  
VOUT  
10BASE-Te  
1.54  
300  
1.96  
3.5  
V
Note 6-11  
Note 6-12  
Output Jitter  
IEEE 802.3 clause 14.3.1.2.3  
1.8  
ns  
Signal Rise and Fall Time  
TRF  
VDS  
25  
ns  
Receiver Differential Squelch Threshold  
IEEE 802.3 clause 14.3.1.3.2  
400  
mV  
Note 6-13  
Note 6-11  
Note 6-12  
Note 6-13  
Measured with 100resistive load.  
Measured differentially following the twisted-pair model with a 100resistive load.  
5MHz square wave.  
DS00002841C-page 128  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
TABLE 6-13: LDO CONTROLLER  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Notes  
1.2  
3.11  
V
AVDDH = 3.3V  
for MOSFET source voltage  
Output drive range for  
LDO_O to gate input of P-  
channel MOSFET  
VLDO_O  
1.2  
2.0  
V
V
AVDDH = 2.5V  
for MOSFET source voltage  
Output of P-channel  
MOSFET  
1.23  
1.25  
1.32  
TABLE 6-14: POR THRESHOLDS  
Rising threshold  
volts  
Falling threshold  
volts  
Hysteresis  
millivolts  
POR  
Conditions  
min  
typ  
max  
min  
typ  
max  
min  
typ  
max  
AVDDH =  
2.5V  
0.73  
0.73  
1.9  
0.76  
0.80  
0.82  
2.2  
0.64  
0.63  
1.9  
0.68  
0.80  
0.82  
2.1  
0
80  
114  
1.2V Ethernet  
PHY Analog  
(AVDDL)  
AVDDH =  
3.3V  
0.76  
2.1  
0.70  
2.0  
0
65  
120  
145  
2.5V / 3.3V  
Ethernet PHY  
Analog (AVDDH)  
65  
110  
3.3V / 2.5V /  
1.8V VariableI/O  
(DVDDH)  
1.40  
1.48  
1.57  
1.35  
1.42  
1.51  
45  
58  
73  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 129  
KSZ9131RNX  
6.6  
AC Specifications  
This section details the various AC timing specifications of the device.  
Note:  
The RGMII timing adheres to or exceeds the HP RGMII Specification Version 2.0. Refer to this specification  
for additional RGMII timing information.  
6.6.1  
EQUIVALENT TEST LOAD  
Output timing specifications assume a 5pF equivalent test load, unless otherwise noted, as illustrated in Figure 6-1.  
FIGURE 6-1:  
OUTPUT EQUIVALENT TEST LOAD  
OUTPUT  
5 pF  
DS00002841C-page 130  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
6.6.2  
POWER SEQUENCE TIMING  
These diagrams illustrates the device power sequencing requirements.  
FIGURE 6-2:  
POWER SEQUENCE TIMING INTERNAL REGULATORS  
tvr  
tpc  
DVDDL, VDDAL,  
VDDAL_PLL  
VDDAH, DVDDH  
trstia  
tsr  
RESET_N  
The recommended power-up sequence is to have the transceiver (AVDDH) and digital I/O (DVDDH) voltages power up  
before the 1.2V core (DVDDL, AVDDL, AVDDL_PLL) voltage. If the 1.2V core must power up first, the maximum lead  
time for the 1.2V core voltage with respect to the transceiver and digital I/O voltages should be 200 μs.  
There is no power sequence requirement between transceiver (AVDDH) and digital I/O (DVDDH) power rails.  
The power-up waveforms must be monotonic for all supply voltages to the device.  
RESET_N must be held asserted following stable voltages for the minimum period specified and if re-asserted, for the  
minimum period specified.  
The recommended power-down sequence is to have the 1.2V core voltage power-down before powering down the  
transceiver and digital I/O voltages.  
Before the next power-up cycle, all supply voltages to the device should reach less than 0.4V and there should be a  
minimum wait time of 150 ms from power-off to power-on.  
TABLE 6-15: POWER SEQUENCING TIMING VALUES  
Symbol  
Description  
Min  
Typ  
Max  
Units  
tvr  
tsr  
Supply voltages rise time (must be monotonic)  
Stable supply voltages to de-assertion of reset  
RESET_N input assertion time  
200  
µs  
ms  
µs  
10  
1
trstia  
tpc  
Supply voltages cycle off-to-on time  
150  
ms  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 131  
KSZ9131RNX  
6.6.3  
RESET PIN CONFIGURATION STRAP TIMING  
Figure 6-3 illustrates the RESET_N timing requirements and its relation to the configuration straps. RESET_N must be  
asserted for the minimum period specified.  
FIGURE 6-3:  
RESET_N CONFIGURATION STRAP TIMING  
trstia  
RESET_N  
tcsh  
Configuration  
Strap Pins  
Output Drive  
  
TABLE 6-16: RESET_N CONFIGURATION STRAP TIMING  
Symbol  
Description  
RESET_N input assertion time  
Min  
Typ  
Max  
Units  
trstia  
tcss  
1
5
5
1
µs  
ns  
ns  
us  
Configuration strap setup before RESET_N de-assertion  
Configuration strap hold after RESET_N de-assertion  
Output drive after RESET_N de-assertion  
tcsh  
todad  
DS00002841C-page 132  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
6.6.4  
RGMII TIMING  
This section specifies the RGMII interface transmit and receive timing. By default the device supports the Internal Delay  
mode specified by version 2.0 of the RGMII specification.  
Note:  
• All RGMII timing specifications assume a point-to-point test circuit as defined in Figure 3 of the RGMII specifica-  
tion 2.0.  
• The below timing parameters assume default values for the following registers:  
Clock Invert and Control Signal Pad Skew Register  
RGMII RX Data Pad Skew Register  
RGMII TX Data Pad Skew Register  
Clock Pad Skew Register  
RX DLL Control Register  
TX DLL Control Register  
6.6.4.1  
TXC Internal Delay Disabled Timing (RGMII ID Mode - MAC provides delayed clock)  
FIGURE 6-4:  
TXC INTERNAL DELAY DISABLED (RGMII ID MODE) TIMING  
ttxc  
tclkh tclkl  
TXC  
tsetup  
thold  
tsetup  
thold  
TXD  
[3:0]  
TXD  
[7:4]  
TXD[3:0]  
TX_CTL  
tsetup  
thold  
tsetup  
thold  
TXEN  
TXER  
TABLE 6-17: RGMII TXC INTERNAL DELAY DISABLED (RGMII ID MODE) TIMING VALUES  
Symbol  
Description  
Min  
Typ  
Max  
Units  
ttxc  
tclkh  
tclkl  
TXC period  
Note 6-14  
Note 6-17  
Note 6-17  
0.8  
Note 6-15  
Note 6-16  
Note 6-18  
Note 6-18  
ns  
%
%
ns  
TXC high time  
TXC low time  
50  
50  
tsetup  
TXD[3:0], TX_CTL setup time to edge of TXC  
(at inputs)  
2.0  
thold  
TXD[3:0], TX_CTL hold time after edge of TXC  
(at inputs)  
0.8  
2.0  
ns  
Note 6-14  
7.2ns for 1000BASE-T operation, 36ns for 100BASE-TX operation, 360ns for 10BASE-T operation.  
Minimum limits are non-sustainable long term.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 133  
KSZ9131RNX  
Note 6-15  
Note 6-16  
8ns for 1000BASE-T operation, 40ns for 100BASE-TX operation, 400ns for 10BASE-T operation.  
8.8ns for 1000BASE-T operation, 44ns for 100BASE-TX operation, 440ns for 10BASE-T operation.  
Maximum limits are non-sustainable long term.  
Note 6-17  
Note 6-18  
45% for 1000BASE-T operation, 40% for 100BASE-TX or 10BASE-T operation.  
55% for 1000BASE-T operation, 60% for 100BASE-TX or 10BASE-T operation.  
6.6.4.2  
RXC Internal Delay Enabled Timing (RGMII ID Mode - PHY provides delayed clock)  
FIGURE 6-5:  
RXC INTERNAL DELAY ENABLED (RGMII ID MODE) TIMING  
trxc  
tclkh tclkl  
RXC  
tsetup  
thold  
tsetup  
thold  
RXD  
[3:0]  
RXD  
[7:4]  
RXD[3:0]  
RX_CTL  
tsetup  
thold  
tsetup  
thold  
RXDV  
RXER  
TABLE 6-18: RGMII RXC INTERNAL DELAY ENABLED (RGMII ID MODE) TIMING VALUES  
Symbol  
Description  
Min  
Typ  
Max  
Units  
trxc  
tclkh  
tclkl  
RXC period  
Note 6-19  
Note 6-22  
Note 6-22  
1.2  
Note 6-20  
Note 6-21  
Note 6-23  
Note 6-23  
ns  
%
%
ns  
RXC high time  
RXC low time  
50  
50  
tsetup  
RXD[3:0], RX_CTL setup to edge of RXC  
(at outputs)  
2.0  
thold  
RXD[3:0], RX_CTL hold from edge of RXC  
(at outputs)  
1.2  
2.0  
ns  
Note 6-19  
7.2ns for 1000BASE-T operation, 36ns for 100BASE-TX operation, 360ns for 10BASE-T operation.  
Minimum limits are non-sustainable long term.  
Note 6-20  
Note 6-21  
8ns for 1000BASE-T operation, 40ns for 100BASE-TX operation, 400ns for 10BASE-T operation.  
8.8ns for 1000BASE-T operation, 44ns for 100BASE-TX operation, 440ns for 10BASE-T operation.  
Maximum limits are non-sustainable long term.  
Note 6-22  
Note 6-23  
45% for 1000BASE-T operation, 40% for 100BASE-TX or 10BASE-T operation.  
55% for 1000BASE-T operation, 60% for 100BASE-TX or 10BASE-T operation.  
DS00002841C-page 134  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
6.6.5  
AUTO-NEGOTIATION FAST LINK PULSE (FLP) TIMING  
AUTO-NEGOTIATION FAST LINK PULSE (FLP) TIMING  
FIGURE 6-6:  
TABLE 6-19: AUTO-NEGOTIATION FAST LINK PULSE (FLP) TIMING PARAMETERS  
Symbol  
Description  
FLP burst to FLP burst  
Min  
Typ  
Max  
Units  
tBTB  
tFLPW  
tPW  
8
16  
2
24  
ms  
ms  
ns  
FLP burst width  
Clock/Data pulse width  
100  
64  
tCTD  
tCTC  
Clock pulse to data pulse  
Clock pulse to clock pulse  
Number of clock/data pulses per FLP burst  
55.5  
111  
17  
69.5  
139  
33  
µs  
µs  
128  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 135  
KSZ9131RNX  
6.6.6  
MDC/MDIO TIMING  
This section specifies the MDC/MDIO timing of the device.  
FIGURE 6-7:  
MDC/MDIO TIMING  
tclkp  
tclkh tclkl  
MDC  
tohold  
MDIO  
(Data-Out)  
tsu tihold  
MDIO  
(Data-In)  
TABLE 6-20: MDC/MDIO TIMING VALUES  
Symbol  
Description  
Min  
Typ  
Max  
Units  
tclkp  
MDC period  
120  
400  
Note 6-25  
ns  
Note 6-24  
tclkh  
tclkl  
tval  
MDC high time  
MDC low time  
40  
40  
ns  
ns  
ns  
MDIO (read from PHY) output valid from rising  
MDIO of MDC  
80  
tohold  
MDIO (read from PHY) output hold from rising  
edge of MDC  
0
8
8
ns  
ns  
ns  
tsu  
MDIO (write to PHY) input setup time to rising  
edge of MDC  
tihold  
MDIO (write to PHY) input hold time after rising  
edge of MDC  
Note 6-24  
Note 6-25  
Test condition for 8.33 MHz (120 ns) is for one device PHY on the MDIO line with a 1.0 kΩ pull-up  
to the DVDDH supply rail.  
The device can operate with MDC clock frequencies generated from bit banging with GPIO pin in the  
10s/100s of Hertz.  
DS00002841C-page 136  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
6.7  
Clock Circuit  
The device can accept either a 25MHz crystal (preferred) or a 25 MHz single-ended clock oscillator (+/- 50ppm) input.  
If the single-ended clock oscillator method is implemented, XO should be left unconnected and XI should be driven with  
either a nominal 0-2.5V or a nominal 0-3.3V clock signal, dependent on the supply level of AVDDH (2.5V and 3.3V,  
respectively). The input clock duty cycle is 40% minimum, 50% typical and 60% maximum.  
It is recommended that a crystal utilizing matching parallel load capacitors be used for the crystal input/output signals  
(XI/XO). See Table 6-21 for the recommended crystal specifications.  
TABLE 6-21: CRYSTAL SPECIFICATIONS  
Parameter  
Crystal Cut  
Symbol  
Min  
Nom  
AT, typ  
Fundamental Mode  
Parallel Resonant Mode  
Max  
Units  
Notes  
Crystal Oscillation Mode  
Crystal Calibration Mode  
Frequency  
Ffund  
Ftol  
-
25.000  
-
MHz  
PPM  
PPM  
PPM  
PPM  
pF  
Frequency Tolerance @ 25oC  
Frequency Stability Over Temp  
Frequency Deviation Over Time  
Total Allowable PPM Budget  
Shunt Capacitance  
-
-
-
-
-
-
-
+/-50  
Note 6-26  
Note 6-26  
Note 6-27  
Note 6-28  
Ftemp  
Fage  
-
+/-50  
+/-3 to 5  
-
-
-
-
+/-50  
CO  
CL  
6
Load Capacitance  
25  
pF  
Motional Inductance  
LM  
PW  
R1  
10  
mH  
µW  
Ohm  
oC  
Drive Level  
-
-
100  
Equivalent Series Resistance  
Operating Temperature Range  
XI Pin Capacitance  
-
-
50  
Note 6-29  
-
Note 6-30  
-
-
2 typ  
2 typ  
-
-
pF  
Note 6-31  
Note 6-31  
XO Pin Capacitance  
pF  
Note 6-26  
The maximum allowable values for Frequency Tolerance and Frequency Stability are application  
dependent. Since any particular application must meet the IEEE +/-50 PPM Total PPM Budget, the  
combination of these two values must be approximately +/-45 PPM (allowing for aging).  
Note 6-27  
Note 6-28  
Note 6-29  
Note 6-30  
Frequency Deviation Over Time is also referred to as Aging.  
The total deviation for the Transmitter Clock Frequency is specified by IEEE 802.3u as +/- 50 PPM.  
0oC for commercial version, -40oC for industrial and automotive.  
+70oC for commercial version, +85oC for industrial/ automotive grade 3 versions, +105oC for  
automotive grade 2 version.  
Note 6-31  
This number includes the pad, the bond wire and the lead frame. PCB capacitance is not included  
in this value. The XO/XI pin and PCB capacitance values are required to accurately calculate the  
value of the two external load capacitors. These two external load capacitors determine the accuracy  
of the 25.000 MHz frequency.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 137  
KSZ9131RNX  
6.8  
Reset Circuit  
The following are some reset circuit suggestions.  
Figure 6-8 illustrates the reset circuit for powering up the KSZ9131RNX if reset is triggered by the power supply.  
FIGURE 6-8:  
RESET CIRCUIT IF TRIGGERED BY THE POWER SUPPLY  
DVDDH  
D1: 1N4148  
D1  
R 10K  
KSZ9131RNX  
RESET_N  
C 10µF  
Figure 6-9 illustrates the reset circuit for applications where reset is driven by another device (for example, the CPU or  
an FPGA). At power-on-reset, R, C, and D1 provide the monotonic rise time to reset the KSZ9131RNX device. The  
RST_OUT_N from the CPU/FPGA provides the warm reset after power-up.  
The KSZ9131RNX and CPU/FPGA references the same digital I/O voltage (DVDDH).  
FIGURE 6-9:  
RECOMMENDED RESET CIRCUIT FOR CPU/FPGA RESET OUTPUT  
DVDDH  
R 10K  
D1  
KSZ9131RNX  
RESET_N  
CPU/FPGA  
RST_OUT_N  
D2  
C 10µF  
D1, D2: 1N4148  
DS00002841C-page 138  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
Figure 6-10 illustrates the reset circuit with an MIC826 voltage supervisor driving the KSZ9131RNX reset input.  
FIGURE 6-10:  
RESET CIRCUIT WITH MIC826 VOLTAGE SUPERVISOR  
DVDDH  
DVDDH  
MIC826  
Reset  
Threshold  
Part  
Number  
KSZ9131RNX  
MIC826TYMT / 3.075V  
MIC826ZYMT / 2.315V  
MIC826WYMT / 1.665V  
RESET_N  
RESET#  
DVDDH = 3.3V, 2.5V, or 1.8V  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 139  
KSZ9131RNX  
6.9  
Reference Circuits — LED Strap-In Pins  
The pull-up and pull-down reference circuits for the LED2/PHYAD1 and LED1/PHYAD0 strapping pins are shown in  
Figure 6-11 for 3.3V and 2.5V DVDDH.  
FIGURE 6-11:  
REFERENCE CIRCUITS FOR LED STRAPPING PINS  
DVDDH = 3.3V, 2.5V  
470Ω  
PULL‐UP  
10kΩ  
KSZ9131RNX  
LED PIN  
DVDDH = 3.3V, 2.5V  
PULL‐DOWN  
470Ω  
KSZ9131RNX  
LED PIN  
1kΩ  
For 1.8V DVDDH, LED indication support requires voltage level shifters between LED[2:1] pins and LED indicator  
diodes to ensure the multiplexed PHYAD[1:0] strapping pins are latched in high/low correctly. If LED indicator diodes  
are not implemented, the PHYAD[1:0] strapping pins just need 10 kΩ pull-up to 1.8V DVDDH for a value of 1, and 1.0 kΩ  
pull-down to ground for a value of 0.  
DS00002841C-page 140  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
6.10 On-Chip LDO Controller - MOSFET Selection  
If the optional LDO controller is used to generate 1.2V for the core voltage, the selected MOSFET should exceed the  
following minimum requirements:  
• P-channel  
• 500 mA (continuous current)  
• 3.3V or 2.5V (source – input voltage)  
• 1.2V (drain – output voltage)  
• VGS in the range of:  
- (–1.2V to –1.5V) @ 500 mA for 3.3V source voltage  
- (–1.0V to –1.1V) @ 500 mA for 2.5V source voltage  
The VGS for the MOSFET needs to be operating in the constant current saturated region, and not towards the VGS(th)  
the threshold voltage for the cut-off region of the MOSFET.  
,
6.11 Magnetic - Connection and Selection  
A 1:1 isolation transformer is required at the line interface. Use one with integrated common-mode chokes for designs  
exceeding FCC requirements. An optional auto-transformer stage following the chokes provides additional common-  
mode noise and signal attenuation.  
The KSZ9131RNX design incorporates voltage-mode transmit drivers and on-chip terminations.  
With the voltage-mode implementation, the transmit drivers supply the common-mode voltages to the four differential  
pairs. Therefore, the four transformer center tap pins on the KSZ9131RNX side should not be connected to any power  
supply source on the board; rather, the center tap pins should be separated from one another and connected through  
separate 0.1 µF common-mode capacitors to ground. Separation is required because the common-mode voltage could  
be different between the four differential pairs, depending on the connected speed mode.  
Figure 6-12 shows the typical Gigabit magnetic interface circuit for the KSZ9131RNX.  
FIGURE 6-12:  
TYPICAL GIGABIT MAGNETIC INTERFACE CIRCUIT  
1
2
TXRXP_A  
TXRXM_A  
3
TXRXP_B  
TXRXM_B  
4
5
TXRXP_C  
TXRXM_C  
6
7
8
TXRXP_D  
TXRXM_D  
4 x75  
(4x 0.1µF)  
1000pF / 2kV  
CHASSIS GROUND  
SIGNAL GROUND  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 141  
KSZ9131RNX  
Table 6-22 lists recommended magnetic characteristics.  
TABLE 6-22: MAGNETICS SELECTION CRITERIA  
Parameter  
Value  
Test Conditions  
Turns Ratio  
Open-Circuit Inductance (min.)  
Insertion Loss (max.)  
HIPOT (min.)  
1 CT : 1 CT  
350 µH  
100 mV, 100 kHz, 8 mA  
0 MHz to 100 MHz  
1.0 dB  
1500 VRMS  
Table 6-23 is a list of compatible single-port magnetics with separated transformer center tap pins on the G-PHY chip  
side that can be used with the KSZ9131RNX.  
TABLE 6-23: COMPATIBLE SINGLE-PORT 10/100/1000 MAGNETICS  
Manufacturer  
Part Number  
Auto-Transformer  
Temperature Range  
Magnetic + RJ-45  
Bel Fuse  
HALO  
0826-1G1T-23-F  
TG1G-E001NZRL  
TG1G-S001NZRL  
TG1G-S002NZRL  
H5007NL  
Yes  
No  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
Yes  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
No  
No  
HALO  
No  
HALO  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Pulse  
Pulse  
H5062NL  
Pulse  
HX5008NL  
Pulse  
JK0654219NL  
JK0-0136NL  
Pulse  
TDK  
TLA-7T101LF  
000-7093-37R-LF1  
No  
Wurth/Midcom  
Yes  
DS00002841C-page 142  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
7.0  
PACKAGE OUTLINE  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
FIGURE 7-1:  
48-LEAD VERY THIN PLASTIC QUAD FLAT NO LEAD PACKAGE (PSA) 7X7 MM  
BODY (VQFN) WITH 5.05X5.05 MM EXPOSED PAD SHEET 1  
ꢛꢚꢗ  
ꢂꢃꢂꢚ   
ꢂꢃꢆꢂ   
ꢑꢕꢉꢏꢌꢆ  
ꢇꢈꢁꢉꢊꢋꢌꢀꢍ  
ꢇꢈꢁꢉꢊꢋꢌꢁꢍ  
ꢖꢗ  
ꢂꢃꢂꢄ   
ꢖꢗ  
ꢁꢆ  
ꢉꢕꢓꢌꢘꢐꢏꢙ  
ꢂꢃꢂꢄ   
ꢇꢁ8ꢍ  
ꢂꢃꢆꢂ  
    
ꢂꢃꢆꢂ  
ꢈꢖ  
ꢎꢏꢁꢉꢐꢑꢒ  
ꢓꢔꢁꢑꢏ  
ꢎꢐꢈꢏꢌꢘꢐꢏꢙ  
    
ꢏꢖ  
#
ꢑꢕꢉꢏꢌꢆ  
7
ꢛꢚꢗꢌ9  
ꢂꢃꢆꢂ  
ꢂꢃꢂꢄ  
    
#
ꢀꢕꢉꢉꢕꢋꢌꢘꢐꢏꢙ  
ꢋ/& ꢜ&"/)ꢌꢉ#&"(ꢜ1ꢜ,6ꢌꢈ *./(,ꢌꢌꢅꢂꢛ:ꢆꢆꢖꢛꢌ;#<ꢌꢀꢌꢎ"##!ꢌꢆꢌꢜ2ꢌꢖ  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 143  
KSZ9131RNX  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
FIGURE 7-2:  
48-LEAD VERY THIN PLASTIC QUAD FLAT NO LEAD PACKAGE (PSA) 7X7 MM  
BODY (VQFN) WITH 5.05X5.05 MM EXPOSED PAD SHEET 2  
ꢊ(/!%  
ꢈ/$#(%/ꢜ(ꢌꢔ/$/!%  
ꢋꢐꢔꢔꢐꢋꢏꢉꢏ;ꢎ  
ꢑꢕꢋ  
ꢋꢐꢑ  
ꢋꢁꢗ  
ꢑ'$9# ꢌꢜ2ꢌꢉ# $/(*1%  
ꢓ/!&"  
ꢕ<# *11ꢌ?#/,"!  
ꢎ!*(-ꢜ22  
ꢉ# $/(*1ꢌꢉ"/&+(#%%  
ꢕ<# *11ꢌꢔ#(,!"  
ꢏ=)ꢜ%#-ꢌꢓ*-ꢌꢔ#(,!"  
ꢕ<# *11ꢌꢙ/-!"  
ꢏ=)ꢜ%#-ꢌꢓ*-ꢌꢙ/-!"  
ꢉ# $/(*1ꢌꢙ/-!"  
ꢉ# $/(*1ꢌꢔ#(,!"  
ꢛꢚ  
ꢂꢃꢄꢂꢌꢀꢎꢅ  
ꢂꢃꢚꢄ  
#
ꢁꢆ  
ꢁ8  
ꢈꢖ  
ꢏꢖ  
9
7
ꢂꢃꢚꢂ  
ꢂꢃꢂꢂ  
ꢂꢃAꢂ  
ꢂꢃꢂꢄ  
ꢂꢃꢂꢖ  
ꢂꢃꢖꢄ8ꢌ;ꢏꢝ  
@ꢃꢂꢂꢌꢀꢎꢅ  
ꢄꢃꢂꢄ  
@ꢃꢂꢂꢌꢀꢎꢅ  
ꢄꢃꢂꢄ  
ꢛꢃAꢂ  
ꢄꢃꢖꢂ  
ꢛꢃAꢂ  
ꢂꢃꢖꢂ  
ꢂꢃ8ꢄ  
ꢂꢃꢖꢂ  
ꢄꢃꢖꢂ  
ꢂꢃ8ꢂ  
ꢂꢃꢛꢄ  
:
ꢂꢃꢖꢄ  
ꢂꢃꢛꢂ  
:
ꢉ# $/(*1:!ꢜ:ꢏ=)ꢜ%#-:ꢓ*-  
ꢀꢁꢂꢃꢄꢅ  
ꢆꢃ ꢓ/(ꢌꢆꢌ</%'*1ꢌ/(-#=ꢌ2#*!' #ꢌ$*6ꢌ<* 60ꢌ9'!ꢌ$'%!ꢌ9#ꢌ1ꢜ&*!#-ꢌ./!"/(ꢌ!"#ꢌ"*!&"#-ꢌ* #*ꢃ  
ꢖꢃ ꢓ*&+*,#ꢌ/%ꢌ%*.ꢌ%/(,'1*!#-  
8ꢃ ꢈ/$#(%/ꢜ(/(,ꢌ*(-ꢌ!ꢜ1# *(&/(,ꢌ)# ꢌꢁꢎꢋꢏꢌ>ꢆꢛꢃꢄꢋ  
ꢀꢎꢅ3ꢌꢀ*%/&ꢌꢈ/$#(%/ꢜ(ꢃꢌꢉ"#ꢜ #!/&*116ꢌ#=*&!ꢌ<*1'#ꢌ%"ꢜ.(ꢌ./!"ꢜ'!ꢌ!ꢜ1# *(&#%ꢃ  
;ꢏꢝ3ꢌ;#2# #(&#ꢌꢈ/$#(%/ꢜ(0ꢌ'%'*116ꢌ./!"ꢜ'!ꢌ!ꢜ1# *(&#0ꢌ2ꢜ ꢌ/(2ꢜ $*!/ꢜ(ꢌ)' )ꢜ%#%ꢌꢜ(16ꢃ  
ꢋ/& ꢜ&"/)ꢌꢉ#&"(ꢜ1ꢜ,6ꢌꢈ *./(,ꢌꢌꢅꢂꢛ:ꢆꢆꢖꢛꢌ;#<ꢌꢀꢌꢎ"##!ꢌꢖꢌꢜ2ꢌꢖ  
DS00002841C-page 144  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
FIGURE 7-3:  
48-LEAD VERY THIN PLASTIC QUAD FLAT NO LEAD PACKAGE (PSA) 7X7 MM  
BODY (VQFN) WITH 5.05X5.05 MM EXPOSED PAD LAND PATTERN  
ꢅꢆ  
ꢗꢖ  
ꢏꢘ  
ꢛꢚ  
ꢞꢘ  
ꢅꢖ  
>ꢖ  
ꢒꢖ  
>ꢆ  
ꢏꢘ  
ꢒꢆ  
ꢎꢐꢔ7ꢌꢎꢅ;ꢏꢏꢑ  
ꢗꢆ  
;ꢏꢅꢕꢋꢋꢏꢑꢈꢏꢈꢌꢔꢁꢑꢈꢌꢓꢁꢉꢉꢏ;ꢑ  
ꢊ(/!%  
ꢈ/$#(%/ꢜ(ꢌꢔ/$/!%  
ꢋꢐꢔꢔꢐꢋꢏꢉꢏ;ꢎ  
ꢑꢕꢋ  
ꢂꢃꢄꢂꢌꢀꢎꢅ  
ꢋꢐꢑ  
ꢋꢁꢗ  
ꢅꢜ(!*&!ꢌꢓ/!&"  
ꢕ)!/ꢜ(*1ꢌꢅ#(!# ꢌꢓ*-ꢌꢙ/-!"  
ꢕ)!/ꢜ(*1ꢌꢅ#(!# ꢌꢓ*-ꢌꢔ#(,!"  
ꢅꢜ(!*&!ꢌꢓ*-ꢌꢎ)*&/(,  
ꢗꢖ  
>ꢖ  
ꢅꢆ  
ꢅꢖ  
ꢗꢆ  
>ꢆ  
ꢒꢆ  
ꢒꢖ  
ꢄꢃꢖꢂ  
ꢄꢃꢖꢂ  
BꢃAꢂ  
BꢃAꢂ  
ꢅꢜ(!*&!ꢌꢓ*-ꢌꢎ)*&/(,  
ꢅꢜ(!*&!ꢌꢓ*-ꢌꢙ/-!"ꢌꢇꢗꢛꢚꢍ  
ꢅꢜ(!*&!ꢌꢓ*-ꢌꢔ#(,!"ꢌꢇꢗꢛꢚꢍ  
ꢅꢜ(!*&!ꢌꢓ*-ꢌ!ꢜꢌꢅ#(!# ꢌꢓ*-ꢌꢇꢗꢛꢚꢍ  
ꢅꢜ(!*&!ꢌꢓ*-ꢌ!ꢜꢌꢅꢜ(!*&!ꢌꢓ*-ꢌꢇꢗꢛꢛꢍ  
ꢉ"# $*1ꢌꢘ/*ꢌꢈ/*$#!#  
ꢂꢃ8ꢂ  
ꢂꢃAꢂ  
ꢂꢃꢛ8  
ꢂꢃꢖꢂ  
ꢂꢃ8ꢂ  
ꢆꢃꢂꢂ  
ꢉ"# $*1ꢌꢘ/*ꢌꢓ/!&"  
ꢏꢘ  
ꢑꢜ!#%3  
ꢆꢃ ꢈ/$#(%/ꢜ(/(,ꢌ*(-ꢌ!ꢜ1# *(&/(,ꢌ)# ꢌꢁꢎꢋꢏꢌ>ꢆꢛꢃꢄꢋ  
ꢀꢎꢅ3ꢌꢀ*%/&ꢌꢈ/$#(%/ꢜ(ꢃꢌꢉ"#ꢜ #!/&*116ꢌ#=*&!ꢌ<*1'#ꢌ%"ꢜ.(ꢌ./!"ꢜ'!ꢌ!ꢜ1# *(&#%ꢃ  
ꢖꢃ ꢝꢜ ꢌ9#%!ꢌ%ꢜ1-# /(,ꢌ #%'1!%0ꢌ!"# $*1ꢌ</*%0ꢌ/2ꢌ'%#-0ꢌ%"ꢜ'1-ꢌ9#ꢌ2/11#-ꢌꢜ ꢌ!#(!#-ꢌ!ꢜꢌ*<ꢜ/-ꢌ%ꢜ1-# ꢌ1ꢜ%%ꢌ-' /(,  
 #21ꢜ.ꢌ) ꢜ&#%%  
ꢋ/& ꢜ&"/)ꢌꢉ#&"(ꢜ1ꢜ,6ꢌꢈ *./(,ꢌꢌꢅꢂꢛ:8ꢆꢖꢛꢌ;#<ꢌꢀ  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 145  
KSZ9131RNX  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
FIGURE 7-4:  
48-LEAD VERY THIN PLASTIC QUAD FLAT NO LEAD PACKAGE (PUA) - 7X7 MM  
BODY (VQFN) WITH 5.05X5.05 MM EXPOSED PAD AND STEPPED WETTABLE  
FLANKS SHEET 1  
ꢛꢚꢗ  
ꢂꢃꢂꢚ   
ꢂꢃꢆꢂ   
ꢑꢕꢉꢏꢌꢆ  
ꢇꢈꢁꢉꢊꢋꢌꢀꢍ  
ꢇꢈꢁꢉꢊꢋꢌꢁꢍ  
ꢖꢗ  
ꢂꢃꢆꢄ   
ꢖꢗ  
ꢁꢆ  
ꢉꢕꢓꢌꢘꢐꢏꢙ  
ꢂꢃꢆꢄ   
ꢇꢁ8ꢍ  
ꢂꢃꢆꢂ  
    
ꢂꢃꢆꢂ  
ꢈꢖ  
ꢎꢏꢁꢉꢐꢑꢒ  
ꢓꢔꢁꢑꢏ  
    
ꢎꢐꢈꢏꢌꢘꢐꢏꢙ  
ꢏꢖ  
ꢁꢛ  
#
ꢑꢕꢉꢏꢌꢆ  
7
ꢔꢖ  
ꢎꢏꢅꢉꢐꢕꢑꢌꢁ:ꢁ  
ꢛꢚꢗꢌ9  
ꢂꢃꢆꢂ  
ꢂꢃꢂꢄ  
    
#
ꢀꢕꢉꢉꢕꢋꢌꢘꢐꢏꢙ  
ꢋ/& ꢜ&"/)ꢌꢉ#&"(ꢜ1ꢜ,6ꢌꢈ *./(,ꢌꢅꢂꢛ:ꢆꢖB8ꢌ;#<ꢌꢏꢌꢎ"##!ꢌꢆꢌꢜ2ꢌꢖ  
DS00002841C-page 146  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
FIGURE 7-5:  
48-LEAD VERY THIN PLASTIC QUAD FLAT NO LEAD PACKAGE (PUA) - 7X7 MM  
BODY (VQFN) WITH 5.05X5.05 MM EXPOSED PAD AND STEPPED WETTABLE  
FLANKS SHEET 2  
ꢊ(/!%  
ꢈ/$#(%/ꢜ(ꢌꢔ/$/!%  
ꢋꢐꢔꢔꢐꢋꢏꢉꢏ;ꢎ  
ꢋꢐꢑ  
ꢑꢕꢋ  
ꢛꢚ  
ꢂꢃꢄꢂꢌꢀꢎꢅ  
ꢋꢁꢗ  
ꢑ'$9# ꢌꢜ2ꢌꢉ# $/(*1%  
ꢓ/!&"  
ꢕ<# *11ꢌ?#/,"!  
ꢎ!*(-ꢜ22  
ꢉ# $/(*1ꢌꢉ"/&+(#%%  
ꢕ<# *11ꢌꢔ#(,!"  
ꢏ=)ꢜ%#-ꢌꢓ*-ꢌꢔ#(,!"  
ꢕ<# *11ꢌꢙ/-!"  
ꢏ=)ꢜ%#-ꢌꢓ*-ꢌꢙ/-!"  
ꢉ# $/(*1ꢌꢙ/-!"  
ꢉ# $/(*1ꢌꢔ#(,!"  
#
ꢁꢆ  
ꢁ8  
ꢈꢖ  
ꢏꢖ  
9
7
ꢁꢛ  
ꢔꢖ  
ꢂꢃꢚꢂ  
ꢂꢃꢂꢂ  
ꢂꢃꢚꢄ  
ꢂꢃAꢂ  
ꢂꢃꢂꢄ  
ꢂꢃꢂ8ꢄ  
ꢂꢃꢖꢂ8ꢌ;ꢏꢝ  
@ꢃꢂꢂꢌꢀꢎꢅ  
ꢄꢃꢂꢄ  
@ꢃꢂꢂꢌꢀꢎꢅ  
ꢄꢃꢂꢄ  
ꢛꢃAꢂ  
ꢄꢃꢖꢂ  
ꢛꢃAꢂ  
ꢂꢃꢖꢂ  
ꢂꢃ8ꢄ  
ꢂꢃꢖꢂ  
ꢂꢃꢂ@ꢄ  
:
ꢄꢃꢖꢂ  
ꢂꢃ8ꢂ  
ꢂꢃꢛꢄ  
:
ꢂꢃꢖꢄ  
ꢂꢃꢛꢂ  
:
:
ꢉ# $/(*1:!ꢜ:ꢏ=)ꢜ%#-:ꢓ*-  
ꢎ!#)ꢌꢅ'!ꢌ?#/,"!  
ꢎ!#)ꢌꢅ'!ꢌꢔ#(,!"  
:
:
ꢂꢃꢂ@ꢄ  
ꢁ1!# (*!#ꢌꢎ!#))#-ꢌꢙ#!!*91#ꢌꢝ1*(+ꢌꢈ/$#(%/ꢜ(%  
ꢎ!#)ꢌꢅ'!ꢌ?#/,"!  
ꢎ!#)ꢌꢅ'!ꢌꢔ#(,!"  
ꢁꢛ  
ꢔꢖ  
ꢂꢃꢆꢂ  
:
:
:
ꢂꢃꢆA  
ꢂꢃꢂꢚꢄ  
ꢀꢁꢂꢃꢄꢅ  
ꢆꢃ ꢓ/(ꢌꢆꢌ</%'*1ꢌ/(-#=ꢌ2#*!' #ꢌ$*6ꢌ<* 60ꢌ9'!ꢌ$'%!ꢌ9#ꢌ1ꢜ&*!#-ꢌ./!"/(ꢌ!"#ꢌ"*!&"#-ꢌ* #*ꢃ  
ꢖꢃ ꢓ*&+*,#ꢌ/%ꢌ%*.ꢌ%/(,'1*!#-  
8ꢃ ꢈ/$#(%/ꢜ(/(,ꢌ*(-ꢌ!ꢜ1# *(&/(,ꢌ)# ꢌꢁꢎꢋꢏꢌ>ꢆꢛꢃꢄꢋ  
ꢀꢎꢅ3ꢌꢀ*%/&ꢌꢈ/$#(%/ꢜ(ꢃꢌꢉ"#ꢜ #!/&*116ꢌ#=*&!ꢌ<*1'#ꢌ%"ꢜ.(ꢌ./!"ꢜ'!ꢌ!ꢜ1# *(&#%ꢃ  
;ꢏꢝ3ꢌ;#2# #(&#ꢌꢈ/$#(%/ꢜ(0ꢌ'%'*116ꢌ./!"ꢜ'!ꢌ!ꢜ1# *(&#0ꢌ2ꢜ ꢌ/(2ꢜ $*!/ꢜ(ꢌ)' )ꢜ%#%ꢌꢜ(16ꢃ  
ꢋ/& ꢜ&"/)ꢌꢉ#&"(ꢜ1ꢜ,6ꢌꢈ *./(,ꢌꢅꢂꢛ:ꢆꢖB8ꢌ;#<ꢌꢏꢌꢎ"##!ꢌꢖꢌꢜ2ꢌꢖ  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 147  
KSZ9131RNX  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
FIGURE 7-6:  
48-LEAD VERY THIN PLASTIC QUAD FLAT NO LEAD PACKAGE (PUA) - 7X7 MM  
BODY (VQFN) WITH 5.05X5.05 MM EXPOSED PAD AND STEPPED WETTABLE  
FLANKS RECOMMENDED LAND PATTERN  
ꢅꢆ  
ꢗꢖ  
ꢏꢘ  
ꢛꢚ  
ꢞꢘ  
ꢅꢖ  
>ꢖ  
ꢒꢖ  
>ꢆ  
ꢏꢘ  
ꢒꢆ  
ꢎꢐꢔ7ꢌꢎꢅ;ꢏꢏꢑ  
ꢗꢆ  
;ꢏꢅꢕꢋꢋꢏꢑꢈꢏꢈꢌꢔꢁꢑꢈꢌꢓꢁꢉꢉꢏ;ꢑ  
ꢊ(/!%  
ꢈ/$#(%/ꢜ(ꢌꢔ/$/!%  
ꢋꢐꢔꢔꢐꢋꢏꢉꢏ;ꢎ  
ꢑꢕꢋ  
ꢂꢃꢄꢂꢌꢀꢎꢅ  
ꢋꢐꢑ  
ꢋꢁꢗ  
ꢅꢜ(!*&!ꢌꢓ/!&"  
ꢕ)!/ꢜ(*1ꢌꢅ#(!# ꢌꢓ*-ꢌꢙ/-!"  
ꢕ)!/ꢜ(*1ꢌꢅ#(!# ꢌꢓ*-ꢌꢔ#(,!"  
ꢅꢜ(!*&!ꢌꢓ*-ꢌꢎ)*&/(,  
ꢗꢖ  
>ꢖ  
ꢅꢆ  
ꢅꢖ  
ꢗꢆ  
>ꢆ  
ꢒꢆ  
ꢒꢖ  
ꢄꢃꢖꢂ  
ꢄꢃꢖꢂ  
BꢃAꢂ  
BꢃAꢂ  
ꢅꢜ(!*&!ꢌꢓ*-ꢌꢎ)*&/(,  
ꢅꢜ(!*&!ꢌꢓ*-ꢌꢙ/-!"ꢌꢇꢗꢛꢚꢍ  
ꢅꢜ(!*&!ꢌꢓ*-ꢌꢔ#(,!"ꢌꢇꢗꢛꢚꢍ  
ꢅꢜ(!*&!ꢌꢓ*-ꢌ!ꢜꢌꢅ#(!# ꢌꢓ*-ꢌꢇꢗꢛꢚꢍ  
ꢅꢜ(!*&!ꢌꢓ*-ꢌ!ꢜꢌꢅꢜ(!*&!ꢌꢓ*-ꢌꢇꢗꢛꢛꢍ  
ꢉ"# $*1ꢌꢘ/*ꢌꢈ/*$#!#  
ꢂꢃ8ꢂ  
ꢂꢃAꢂ  
ꢂꢃꢛ8  
ꢂꢃꢖꢂ  
ꢂꢃ8ꢂ  
ꢆꢃꢂꢂ  
ꢉ"# $*1ꢌꢘ/*ꢌꢓ/!&"  
ꢏꢘ  
ꢑꢜ!#%3  
ꢆꢃ ꢈ/$#(%/ꢜ(/(,ꢌ*(-ꢌ!ꢜ1# *(&/(,ꢌ)# ꢌꢁꢎꢋꢏꢌ>ꢆꢛꢃꢄꢋ  
ꢀꢎꢅ3ꢌꢀ*%/&ꢌꢈ/$#(%/ꢜ(ꢃꢌꢉ"#ꢜ #!/&*116ꢌ#=*&!ꢌ<*1'#ꢌ%"ꢜ.(ꢌ./!"ꢜ'!ꢌ!ꢜ1# *(&#%ꢃ  
ꢖꢃ ꢝꢜ ꢌ9#%!ꢌ%ꢜ1-# /(,ꢌ #%'1!%0ꢌ!"# $*1ꢌ</*%0ꢌ/2ꢌ'%#-0ꢌ%"ꢜ'1-ꢌ9#ꢌ2/11#-ꢌꢜ ꢌ!#(!#-ꢌ!ꢜꢌ*<ꢜ/-ꢌ%ꢜ1-# ꢌ1ꢜ%%ꢌ-' /(,  
 #21ꢜ.ꢌ) ꢜ&#%%  
ꢋ/& ꢜ&"/)ꢌꢉ#&"(ꢜ1ꢜ,6ꢌꢈ *./(,ꢌꢅꢂꢛ:8ꢖB8ꢌ;#<ꢌꢏ  
DS00002841C-page 148  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
APPENDIX A: DATA SHEET REVISION HISTORY  
TABLE A-1:  
REVISION HISTORY  
Revision  
Section/Figure/Entry  
Correction  
DS00002841C (04-27-21) Cover sheet  
Section 2.1 “General Descrip-  
Features: QFN -> VQFN  
QFN -> VQFN  
tion”  
Figure 3-1, "Pin Assignments (TOP  
VIEW)"  
Eliminate "QFN" reference as KSZ9131RNX is  
VQFN.  
Table 3-8, "Device Mode Selec-  
tions"  
1000BT Full Duplex need to change to 'no' for  
modes 1000 (8) and 1010 (10).  
Replace one column "PME Pin Enable" with  
two columns: "Pin 17 Function" (PME_N1) and  
"Pin 38 Function" (PME_N2).  
Section 4.9.3.2 “RGMII Pad Skew  
Registers”  
The word "absolute" in title of Table 4-5, "Delay  
for 5-Bit Pad Skew Setting", Table 4-6, "Delay  
for 4-Bit Pad Skew Setting" and referencing  
text have been removed. The values in the  
table are relative to the default, not absolute.  
Section 4.12.3.1.1 “LED Com-  
bine”  
Note added at end of the paragraph: LED  
Behavior Register, Bit 15 = 1 (Default is 0) to  
set the LED Link/Activity to the desired value.  
This can be done in the same LED Behavior  
Register write to set the LED Combine Dis-  
ables field.  
Section 4.14 “LinkMD® Cable  
Diagnostic”  
6th paragraph: Removed "With the Bit[9:0]  
Definition (VCT_SEL[1:0]) field set to 0,"  
Section 5.1 “Register Map”  
"These registers are accessed through the SMI  
(MDIO/MDC) interface." added before the reg-  
isters.  
Section 5.2.16 “LinkMD Cable  
Diagnostic Register”  
Register bits [11:10]: Reserved.  
Register bits [9:8]: Sentences removed with  
"VCT_SEL".  
Register bits [7:0]: Sentence removed about  
"VCT_SEL!=00". "When VCT_SEL = 0,"  
removed in the next sentence.  
Section 5.3 “MDIO Manageable  
Device (MMD) Registers”  
"These registers are accessed through the SMI  
(MDIO/MDC) interface." added before the reg-  
isters.  
Table 6-3, "Power Consumption"  
Right column, 85°C max power: 780 changed  
to 672.2 mW.  
Right column, 105°C max power: 801.9  
changed to 691.0 mW.  
Section 6.4 “Power Consump-  
tion”  
Added new tables after Table 6-3, "Power Con-  
sumption": Table 6-4, Table 6-5, Table 6-6,  
Table 6-7  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 149  
KSZ9131RNX  
TABLE A-1:  
REVISION HISTORY (CONTINUED)  
Revision  
Section/Figure/Entry  
Correction  
Table 6-11, "100BASE-TX Trans-  
ceiver Characteristics"  
Last row: Typical Reference voltage of ISET  
changed from "0.61 V" to "1.20 V".  
Figure 6-2, "Power Sequence Tim-  
VDDIO to DVDDH changed in the graphic.  
ing Internal Regulators"  
Section 6.7 “Clock Circuit”  
Second sentence changed to "If the single-  
ended clock oscillator method is implemented,  
XO should be left unconnected and XI should  
be driven with either a nominal 0-2.5V or a  
nominal 0-3.3V clock signal, dependent on the  
supply level of AVDDH (2.5V and 3.3V, respec-  
tively)."  
Section 7.0 “Package Outline”  
All packages updated.  
Section “Product Identification  
System”  
Bond Wire removed in PIS overview. Change  
"QFN" to "VQFN" in the examples a, b, c, d. In  
addition these examples reference to 5.05 mm  
x 5.05 mm pad.  
Section 4.13.1, "Digital (near-end)  
Loopback"  
Revised loopback steps  
DS00002841B (10-09-19)  
Section 4.13.2, "Remote (far-end)  
Loopback"  
Added step 3  
Table 6-3, "Power Consumption"  
Updated values  
Modified figure  
Figure 6-11, "Reference Circuits  
For LED Strapping Pins"  
DS00002841A (11-08-18) All  
Initial release.  
DS00002841C-page 150  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
THE MICROCHIP WEB SITE  
Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make  
files and information easily available to customers. Accessible by using your favorite Internet browser, the web site  
contains the following information:  
Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s  
guides and hardware support documents, latest software releases and archived software  
General Technical Support – Frequently Asked Questions (FAQ), technical support requests, online discussion  
groups, Microchip consultant program member listing  
Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of  
seminars and events, listings of Microchip sales offices, distributors and factory representatives  
CUSTOMER CHANGE NOTIFICATION SERVICE  
Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive  
e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or  
development tool of interest.  
To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notifi-  
cation” and follow the registration instructions.  
CUSTOMER SUPPORT  
Users of Microchip products can receive assistance through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales  
offices are also available to help customers. A listing of sales offices and locations is included in the back of this  
document.  
Technical support is available through the web site at: http://microchip.com/support  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 151  
KSZ9131RNX  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
XX  
X
-
XX  
XXX  
Examples:  
a)  
b)  
c)  
d)  
e)  
f)  
KSZ9131RNXC  
RGMII Interface  
48-pin VQFN (Pb-Free, 5.05 mm x 5.05 mm  
ePad)  
Commercial Temperature  
Tray  
KSZ9131RNXC-TR  
RGMII Interface  
48-pin VQFN (Pb-Free, 5.05 mm x 5.05 mm  
ePad)  
Commercial Temperature  
Tape and reel  
KSZ9131RNXI  
RGMII Interface  
48-pin VQFN (Pb-Free, 5.05 mm x 5.05 mm  
ePad)  
Industrial Temperature  
Tray  
KSZ9131RNXI-TR  
RGMII Interface  
48-pin VQFN (Pb-Free, 5.05 mm x 5.05 mm  
ePad)  
Industrial Temperature  
Tape and reel  
Interface Package Temp.  
Media Automotive  
Type  
Option  
Device:  
KSZ9131  
Interface:  
Package:  
Temperature:  
R
=
RGMII  
NX  
= 48-pin VQFN  
C
I
U
V
=
=
=
=
0C to +70C (Commercial)  
-40C to +85C (Industrial)  
-40C to +85C (Automotive Grade 3)  
-40C to +105C (Automotive Grade 2)  
Media Type:  
Blank = Standard packaging (tray)  
TR  
= Tape and Reel(Note 1)  
Automotive  
Option:  
VAO  
= Automotive Option  
KSZ9131RNXU-VAO  
RGMII Interface  
48-pin VQFN wettable flank lead frame  
(Pb-Free, 5.05 mm x 5.05 mm ePad)  
Automotive Grade 3 Temperature  
Tray  
KSZ9131RNXU-TRVAO  
RGMII Interface  
48-pin VQFN wettable flank lead frame  
(Pb-Free, 5.05 mm x 5.05 mm ePad)  
Automotive Grade 3 Temperature  
Tape and reel  
g)  
h)  
KSZ9131RNXV-VAO  
RGMII Interface  
48-pin VQFN wettable flank lead frame  
(Pb-Free, 5.05 mm x 5.05 mm ePad)  
Automotive Grade 2 Temperature  
Tray  
KSZ9131RNXV-TRVAO  
RGMII Interface  
48-pin VQFN wettable flank lead frame  
(Pb-Free, 5.05 mm x 5.05 mm ePad)  
Automotive Grade 2 Temperature  
Tape and reel  
Note 1:  
Tape and Reel identifier only appears in  
the catalog part number description. This  
identifier is used for ordering purposes and  
is not printed on the device package.  
Check with your Microchip Sales Office  
for package availability with the Tape and  
Reel option.  
DS00002841C-page 152  
2018-2021 Microchip Technology Inc.  
KSZ9131RNX  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are  
committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection  
feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or  
other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication is provided for the sole purpose of designing with and using Microchip products. Information regarding device  
applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application  
meets with your specifications.  
THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND  
WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT  
NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE  
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.  
IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE,  
COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP  
HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,  
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT  
OF FEES, IFANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION. Use of Microchip devices in life support and/or safety  
applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless  
otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo,  
CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch,  
MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo,  
PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other  
countries.  
AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,  
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion,  
SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, WinPath, and ZL are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom,  
CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, Espresso T1S, EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip  
Connectivity, JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK,  
NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker,  
RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II,  
Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and  
ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in  
other countries.  
GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other  
countries.  
All other trademarks mentioned herein are property of their respective companies.  
© 2018-2021, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 9781522478881  
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 153  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4485-5910  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
2018-2021 Microchip Technology Inc.  
DS00002841C-page 154  
02/28/20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY