KSZ9692XPB [MICROCHIP]

SPECIALTY MICROPROCESSOR CIRCUIT, PBGA400;
KSZ9692XPB
型号: KSZ9692XPB
厂家: MICROCHIP    MICROCHIP
描述:

SPECIALTY MICROPROCESSOR CIRCUIT, PBGA400

时钟 外围集成电路
文件: 总44页 (文件大小:806K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
KSZ9692MPB/KSZ9692XPB  
Integrated Gigabit Networking and  
Communications Controller  
Rev. 4.0  
SDIO/SD Host Controller (for KSZ9692MPB only)  
General Description  
Meets SD Host Controller Standard Specification  
The KSZ9692MPB/KSZ9692XPB is a highly-integrated  
System-on-Chip (SoC) containing an ARM 922T 32-bit  
processor and a rich set of peripherals to address the cost-  
sensitive, high-performance needs of a wide variety of  
Version 1.0  
Meets SDIO card specification Version 1.0  
DMA Controllers  
high-bandwidth  
applications.  
networking  
and  
communications  
Dedicated DMA channels for PCI, USB, SDIO and  
Ethernet ports.  
Features  
Peripherals  
Four high-speed UART ports up to 5 Mbps  
ARM 922T High-Performance Processor Core  
250 MHz ARM 922T RISC processor core  
8KB I-cache and 8KB D-cache  
Two programmable 32-bit timers with watchdog timer  
capability  
Interrupt Controller  
Twenty GPIO ports  
One shared SPI/I2C interface  
One I2S port  
Configurable Memory Management Unit (MMU) for  
Linux and WinCE  
Memory Controller  
8/16-bit external bus interface for FLASH, ROM, SRAM,  
Debugging  
and external I/O  
NAND FLASH controller with boot option  
200MHz 32-bit DDR controller  
ARM9 JTAG debug interface  
JTAG Boundary Scan Support  
Two JEDEC Specification JESD82-1-compliant  
differential clock drivers for a glueless DDR interface  
solution  
Power Management  
CPU and system clock speed step-down options  
Ethernet port Wake-on-LAN  
DDR and PCI power down  
Ethernet Interfaces  
Two Gb (10/100/1000 Mbps) MACs  
MII or RGMII interface  
Fully compliant with IEEE 802.3 Ethernet standards  
Operating Voltage  
1.3V power for core  
3.3V power for I/O  
2.5V or 2.6V power for DDR memory interface  
PCI Interface  
Version PCI 2.3  
32-bit 33/66 MHz  
Integrated PCI Arbiter supports three external masters  
for KSZ9692MPB and one external master for  
KSZ9692XPB  
Reference Hardware and Software Evaluation Kit  
Hardware Evaluation Kit  
Software Evaluation Kit includes WinCE BSP, Open  
WRT BSP, Linux based SOHO Router packages  
Configurable as Host bridge or Guest device  
Glueless Support for mini-PCI or CardBus devices  
Dual High-Speed USB 2.0 Interfaces  
Two USB2.0 ports with integrated PHY  
Can be configured as 2-port host, or host + device  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-031810-4.0  
March 2010  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Block Diagram  
Note: SDIO block for KSZ9692MPB only.  
Figure 1. KSZ9692MPB/XPB Block Diagram  
M9999-031810-4.0  
March 2010  
2
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Applications  
Ordering Information  
Enhanced residential gateways  
High-end printer servers  
USB device servers  
IP-based multimedia systems  
Voice-over-Internet Protocol (VoIP) systems  
Set-top box  
Temp.  
Part Number  
Lead  
Package  
Range  
Finish  
KSZ9692MPB  
0°C to 70°C  
400-Pin PBGA  
400-Pin PBGA  
400-Pin PBGA  
Pb-Free  
Pb-Free  
Pb-Free  
KSZ9692MPBI(1) -40°C to 85°C  
KSZ9692XPB(2)  
0°C to 70°C  
Notes:  
1. Industrial version of KSZ9692MPB.  
2. support for one PCI Master. No SDIO.  
Industrial control  
Wireless Access Points or Mesh Nodes  
Revision History  
Revision  
1.0  
Date  
Summary of Changes  
10/14/08  
3/10/09  
8/10/09  
01/28/10  
Initial Release  
2.0  
Power Sequencing, Added A1 (PMEN) to pin list, 1.3V Supply for Core, Power Consumption table  
DDR Data Width Changed to 16-bit  
3.0  
4.0  
DDR Data Width Changed to 32-bit  
M9999-031810-4.0  
March 2010  
3
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Contents  
System Level Applications ......................................................................................................................................................6  
Functional Description.............................................................................................................................................................7  
ARM High-Performance Processor ..................................................................................................................................10  
FLASH/ROM/SRAM Memory and External I/O Interface .................................................................................................10  
NAND Flash Memory Interface.........................................................................................................................................12  
DDR Controller..................................................................................................................................................................13  
SDIO/SD Host Controller (for KSZ9692MPB only)...........................................................................................................17  
PCI Interface.....................................................................................................................................................................19  
Ethernet MAC Ports (Port 0 = WAN, Port 1 = LAN) .........................................................................................................19  
Wake-on-LAN...............................................................................................................................................................20  
Link Change..................................................................................................................................................................20  
Wake-up Packet ...........................................................................................................................................................20  
Magic Packet................................................................................................................................................................20  
IPv6 Support.................................................................................................................................................................21  
DMA Controller .................................................................................................................................................................21  
UART Interface .................................................................................................................................................................21  
Timers and Watchdog.......................................................................................................................................................21  
GPIO.................................................................................................................................................................................22  
I2C ....................................................................................................................................................................................22  
SPI ....................................................................................................................................................................................22  
I2S.....................................................................................................................................................................................22  
Interrupt Controller............................................................................................................................................................22  
Absolute Maximum Ratings ..................................................................................................................................................39  
Operating Ratings .................................................................................................................................................................39  
Electrical Characteristics ......................................................................................................................................................39  
Timing Specifications ............................................................................................................................................................40  
Signal Location Information...................................................................................................................................................43  
Package Information .............................................................................................................................................................44  
M9999-031810-4.0  
March 2010  
4
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
List of Figures  
Note: SDIO block for KSZ9692MPB only................................................................................................................................2  
Figure 1. KSZ9692MPB/XPB Block Diagram ........................................................................................................................2  
Figure 2. Peripheral Options and Examples ...........................................................................................................................6  
Figure 3. KSZ9692MPB Functional Block Diagram...............................................................................................................8  
Figure 4. KSZ9692XPB Functional Block Diagram................................................................................................................9  
Figure 4. Static Memory Interface Examples........................................................................................................................11  
Figure 5. External I/O Interface Examples............................................................................................................................11  
Figure 7. 16-bit NAND Interface Examples...........................................................................................................................13  
Figure 8. Single 16-bit DDR Memory Device Interface Example..........................................................................................14  
Figure 10. Burst DDR Read Timing ......................................................................................................................................16  
Figure 11. Burst DDR Write Timing.......................................................................................................................................16  
Figure 12. USB 2.0 Configuration as Two-Port Host............................................................................................................18  
Figure 13. USB 2.0 Configuration as Host + Device.............................................................................................................18  
Figure 14. Reset Circuit ........................................................................................................................................................23  
Figure 15. Power and Clocks................................................................................................................................................23  
Figure 16. Reset Timing........................................................................................................................................................40  
Figure 17. Static Memory Read Cycle ..................................................................................................................................40  
Figure 18. Static Memory Write Cycle ..................................................................................................................................41  
Figure 19. External I/O Read and Write Cycles....................................................................................................................41  
Figure 20. Ball Grid Array Map..............................................................................................................................................43  
Figure 21. 400-Pin PBGA......................................................................................................................................................44  
List of Tables  
Table 1. Reset Timing Parameters .......................................................................................................................................40  
Table 2. Programmable Static Memory Timing Parameters.................................................................................................41  
Table 3. External I/O Memory Timing Parameters................................................................................................................42  
Table 4. Programmable External I/O Timing Parameters.....................................................................................................42  
M9999-031810-4.0  
March 2010  
5
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
System Level Applications  
Figure 2. Peripheral Options and Examples  
M9999-031810-4.0  
March 2010  
6
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Functional Description  
The KSZ9692MPB/KSZ9692XPB is a highly-integrated embedded application controller that is designed to provide a  
single-chip solution for a wide range of applications that require high-speed networking, multiple I/O controllers and  
interface to standard peripherals. It features a powerful 32-bit ARM RISC processor, DDR memory controller,  
FLASH/ROM/SRAM/External I/O interface, NAND memory controller, two Gb Ethernet MACs, two USB 2.0 ports, PCI 2.3  
bus interface, SDIO interface (for KSZ9692MPB only), and a large number of standard peripherals including UARTs, I2C,  
I2S, SPI, MIB counters, Station Manager, timers, interrupt controller and GPIOs.  
M9999-031810-4.0  
March 2010  
7
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Figure 3. KSZ9692MPB Functional Block Diagram  
M9999-031810-4.0  
March 2010  
8
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Figure 4. KSZ9692XPB Functional Block Diagram  
M9999-031810-4.0  
March 2010  
9
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
ARM High-Performance Processor  
The KSZ9692MPB/KSZ9692XPB is built around the 16/32-bit ARM922T RISC processor designed by Advanced RISC  
Machines. The ARM922T is a scalable, high-performance processor that was developed for highly integrated SoC  
applications. Its simple, elegant, and fully static design is particularly suited to cost-effective and power-sensitive  
embedded systems. It also offers a separate 8KB D-cache and 8KB I-cache that reduces memory access latency.16-bit  
thumb instruction sets are supported to minimize memory footprint. The ARM processor core can be programmed to  
maximum of 250 MHz for highest possible performance.  
The Advanced Microprocessor Bus Architecture/Advanced High Performance Bus (AMBA AHB) is a 32-bit wide ARM  
system bus to which is connected the processor, the register ports of the DDR memory controller, the  
FLASH/ROM/SRAM/External I/O controller, the NAND memory controller, the Ethernet MACs, the PCI bridge, the USB  
ports and the SDIO controller (for KSZ9692MPB only). The ARM processor is the master of AHB and responsible for  
configuring the operational characteristics of each AHB device via their individual register port. The AHB is programmable  
up to 166MHz for maximum system bus performance. AHB interfaces to devices are shown in functional block diagram.  
Also connected to AHB is ARM Advanced Peripheral Bus or APB bridge which is attached the standard peripherals. The  
APB Bridge transparently converts the AHB accesses into slower APB accesses. The ARM processor is the master of  
APB bridge and responsible for configuring the operational characteristics and transfer of data for each APB attached  
peripheral. APB interfaces to standard peripherals are shown in the functional block diagrams on page 8 and 9.  
250MHz ARM922T RISC processor core  
166MHz AMBA Bus 2.0  
16-bit thumb instruction sets  
8KB D-cache and 8KB I-cache  
Supports Little-Endian mode  
Configurable MMU  
Power saving options include clock down of both processor core and AMBA AHB  
FLASH/ROM/SRAM Memory and External I/O Interface  
The KSZ9692MPB/KSZ9692XPB memory controller provides glueless interface for static memory, i.e., ROM, SRAM, and  
NOR Flash and three banks of external I/O. NOR Flash bank0 can be configured by power-up strap option to operate as  
boot bank from a 8 or 16 bit device.  
Glueless connection to two banks of FLASH/ROM/SRAM memory with programmable 8 or 16 bit data width and  
programmable access timing  
Support for AMD/Intel like Flash  
Automatic address line mapping for 8 or 16-bit accesses on Flash, ROM, and SRAM interfaces  
Supports three external I/O banks with programmable 8 or 16 bit data width and programmable access timing  
Total 64MB address space for two banks of FLASH/ROM/SRAM and and three banks of external I/O  
The memory interface for the static memory has a special automatic address mapping feature. This allows the designer to  
connect address bit 0 on the memory to ADDR[0] on the KSZ9692MPB/KSZ9692XPB and address bit 1 on the memory to  
ADDR[1] on the KSZ9692MPB/KSZ9692XPB, regardless of whether the designer is trying to achieve half word or byte  
addressing. The KSZ9692MPB/KSZ9692XPB memory controller performs the address mapping internally. This gives the  
designer the flexibilty to use 8 or 16 bit data width devices interchangeably on the same PCB (see Figure 4). For external  
I/O, however, the designer still needs to resolve the address mapping (see Figure 5).  
M9999-031810-4.0  
March 2010  
10  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Figure 4. Static Memory Interface Examples  
Figure 5. External I/O Interface Examples  
M9999-031810-4.0  
March 2010  
11  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
NAND Flash Memory Interface  
The KSZ9692MPB/KSZ9692XPB NAND controller provides interface to external NAND Flash memory. A total of two  
banks are supported. NAND Flash bank0 can be configured by power-up strap option to operate as boot bank. Both  
NAND Flash banks share data bus with FLASH/ROM/SRAM memory banks.  
Glueless connection to two banks with programmable 8 or 16 bit data width and programmable access timing  
Hardware ECC not supported  
Small page size 512 + 16 bytes  
Large page size 2048 + 64 bytes  
Large and small block size  
Boot option with automatic page crossing where pages are automatically opened sequentially by hardware  
Boot option with two 8-bit device in parallel to form a 16-bit bank  
Boot option with bank0 and bank1 as active banks in cascade  
Support for following device densities:  
64Mbit  
128Mbit  
256Mbit  
512Mbit  
1Gbit  
2Gbit  
4Gbit  
8Gbit  
The following figures illustrate examples of NAND Flash bank configuration:  
Figure 6. 8-bit NAND Interface Examples  
M9999-031810-4.0  
March 2010  
12  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Figure 7. 16-bit NAND Interface Examples  
DDR Controller  
The KSZ9692MPB/KSZ9692XPB DDR memory controller provides interface for accessing external Double Data Rate  
Synchronous DRAM. In addition, the KSZ9692MPB/KSZ9692XPB provides two integrated DDR differential clock drivers  
for a complete glueless DDR interface solution.  
Up to 200 MHz clock frequency (400 MHz data rate)  
Supports one 32-bit data width bank (16-bit optional)  
Up to 128 MB of addressable space is available with 12 columns and 14 row address lines  
Supports all DDR device densities up to 1Gb  
Supports all DDR device data width x8 and x16  
Configurable DDR RAS and CAS timing parameters  
Two integrated JEDEC Specification JESD82-1 compliant differential clock drivers for a glueless DDR interface solution  
JEDEC Specification SSTL_2 I/Os  
M9999-031810-4.0  
March 2010  
13  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
A dedicated internal PLL provides clocking to the DDR memory controller and the two differential clock drivers. This PLL  
is programmable up to 200 MHz and independent of AHB and ARM processor core clocks.  
Figures 8 and 9 illustrate examples of bank configurations.  
Figure 8. Two 16-bit DDR Memory Device Interface Example  
M9999-031810-4.0  
March 2010  
14  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Figure 9. Four8-bit DDR Memory Devices Interface Example  
M9999-031810-4.0  
March 2010  
15  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
DDR memory controller access to memory bank is typically of the burst type. Figures 10 and 11 are examples of burst  
read and write cycles.  
Figure 10. Burst DDR Read Timing  
Figure 11. Burst DDR Write Timing  
M9999-031810-4.0  
March 2010  
16  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
SDIO/SD Host Controller (for KSZ9692MPB only)  
Integrated SDIO/SD host controller provides interface for removable mass storage memory card and I/O devices.  
Meets SD Host Controller Standard Specification Version 1.0  
Meets SD memory card spec 1.01. MMC spec 3.31  
Meets SDIO card specification version 1.0  
1or 4 bit mode supported  
Card detection-insertion/removal  
Line Status LED driver  
Password protection of cards  
Supports read wait control, suspend/resume operation  
Support multi block read and write  
Up to 12.5 Mbytes per second read and write rates using 4 parallel line for full speed card.  
Dedicated DMA or programmed I/O data transfer  
M9999-031810-4.0  
March 2010  
17  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
USB 2.0 Interface  
Integrated dual USB 2.0 interface can be configured as 2-port host, or host + device. Figures 12 and 13 illustrate  
examples of USB 2.0 interface applications.  
Compliant with USB Specification Revision 2.0  
Compliant with Open Host Controller Interface (OHCI) Specification Rev 1.0a  
Compliant with Enhanced Host Controller Interface (EHCI) Specification Rev 1.0  
Root hub with 2 (max) downstream facing ports which are shared by OHCI and EHCI host controller cores  
All downstream facing ports can handle High-Speed (480Mbps), Full-Speed (12Mbps), and Low-Speed (1.5Mbps)  
transaction  
OTG not supported  
Integrated 45-ohm termination, 1.5K pull-up and 15K pull-down resistors  
Support endpoint zero, and up to 6 configurable endpoints (IN/OUT, isochronous/ control/ interrupt/ bulk)  
One isochronous endpoint (IN or OUT)  
Dedicated DMA Channel for each port  
Figure 12. USB 2.0 Configuration as Two-Port Host  
Figure 13. USB 2.0 Configuration as Host + Device  
M9999-031810-4.0  
March 2010  
18  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
PCI Interface  
The KSZ9692MPB/KSZ9692XPB integrates a PCI-to-AHB bridge solution for interfacing with 32-bit PCI, including  
miniPCI, and cardbus devices where it is common for 802.11x-based Wireless products. The PCI-AHB bridge supports  
two modes of operation in the PCI bus environment: host bridge mode and guest bridge mode. In the host bridge mode,  
the ARM processor acts as the host of the entire system. It configures other PCI devices and coordinates their  
transactions, including initiating transactions between the PCI devices and AHB bus subsystem. An on-chip PCI arbiter is  
included to determine the PCI bus ownership among up to three PCI master devices.  
In guest bridge mode, all of the I/O registers are programmed by either the external host CPU on the PCI bus or the local  
ARM host processor through the AHB bus and the KSZ9692MPB/KSZ9692XPB can be configured by either the ARM or  
the PCI host CPU. In guest bridge mode, the on-chip PCI arbiter is disabled. In both cases, the  
KSZ9692MPB/KSZ9692XPB memory subsystem is accessible from either the PCI host or the ARM processor.  
Communications between the external host CPU and the ARM processor is accomplished through message passing or  
through shared memory.  
Compliant to PCI revision 2.3  
Support 33 and 66MHz, 32-bit data PCI bus  
Support 32-bit miniPCI or cardbus devices  
Supports both regular and memory-mapped I/O on the PCI interface  
AHB bus and PCI bus operate at independent clock domains  
Supports big endian and little endian on AHB  
PCI bus Round Robin arbiter for three external masters (for KSZ9692MPB only)  
PCI bus arbiter for one external master (for KSZ9692XPB only)  
Supports high speed bus request and bus parking  
Dedicated DMA channel for bulk data transfer to/from DDR memory  
Ethernet MAC Ports (Port 0 = WAN, Port 1 = LAN)  
The KSZ9692MPB/KSZ9692XPB integrates two Gigabit Ethernet controllers that operate at 10, 100, and 1000 Mbps.  
Each controller has an interface that can operate as MII or RGMII to an external 10/100 or 10/100/1000 PHY to complete  
Ethernet network connectivity. An integrated 25 MHz clock eliminates external crystal or oscillator requirement for PHY to  
reduce cost. Integrated 2-pin (MDC & MDIO) Station Manager allows ARM processor to access PHY registers and pass  
control and status parameters. Wake-on-LAN is supported as part of the power management mechanism. Each port has a  
dedicated MIB counter to accumulate statistics for received and transmitted traffic.  
IEEE 802.3 compliant MAC layer function  
Configurable as MII or RGMII interface  
RGMII interface compliant to Reduced Gigabit Media Independent Interface(RGMII) Version 1.3  
MII interface compliant to Clause 22.2.4.5 of the IEEE 802.3u Specification  
10/100/1000 Mbps half and full-duplex operation  
Automatic CRC generation and checking  
Automatic error packet discard  
Supports IPv4 Header and IPv4/IPv6 TCP/UDP checksum generation to offload host CPU  
Supports IPv4 Header and IPv4/IPv6 TCP/UDP checksum error detection  
Supports 32 rules ACL filtering  
Maximum frame length support is 2000 Byte at WAN port and 9K-byte at LAN port  
Contains large independent receive and transmit FIFOs (8KB receive / 8KB transmit at WAN and 24KB receive / 22KB  
transmit at LAN) for back-to-back packet receive, and guaranteed no-under run packet transmit  
Data alignment logic and scatter gather capability  
Configurable as MAC or PHY mode  
Separate transmit and receive DMA channels for each port  
M9999-031810-4.0  
March 2010  
19  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Wake-on-LAN  
Wake-up frame events are used to wake the system whenever meaningful data is presented to the system over the  
network. Examples of meaningful data include the reception of a Magic Packet, a management request from a remote  
administrator, or simply network traffic directly targeted to the local system. In all of these instances, the network device is  
pre-programmed by the policy owner or other software with information on how to identify wake frames from other network  
traffic.  
A wake-up event is a request for hardware and/or software external to the network device to put the system into a  
powered state.  
A wake-up signal is caused by:  
1. Detection of a change in the network link state  
2. Receipt of a network wake-up frame  
3. Receipt of a Magic Packet  
There are also other types of wake-up events that are not listed here as manufacturers may choose to implement these in  
their own way.  
Link Change  
Link status wake events are useful to indicate a change in the network’s availability, especially when this change may  
impact the level at which the system should re-enter the sleeping state. For example, a change from link off to link on may  
trigger the system to re-enter sleep at a higher level (D2 versus D31) so that wake frames can be detected. Conversely, a  
transition from link on to link off may trigger the system to re-enter sleep at a deeper level (D3 versus D2) since the  
network is not currently available.  
Wake-up Packet  
Wake-up packets are certain types of packets with specific CRC values that a system recognizes to as a ‘wake up’ frame.  
The KSZ9692MPB/KSZ9692XPB supports up to four user defined wake-up frameon each network control port:  
Magic Packet  
Magic Packet technology is used to remotely wake up a sleeping or powered off PC or device on anetwork. This is  
accomplished by sending a specific packet of information, called a Magic Packet frame, to a node on the network. When a  
PC or device capable of receiving the specific frame goes to sleep, it enables the Magic Packet RX mode in the  
networkcontroller, and when the networkcontroller receives a Magic Packet frame, it will alerts the system to wake up.  
Magic Packet is a standard feature integrated into the KSZ9692MPB/KSZ9692XPB. The controller implements multiple  
advanced power-down modes including Magic Packet to conserve power and operate more efficiently.  
Once the KSZ9692MPB/KSZ9692XPB has been put into Magic Packet Enable mode, it scans all incoming frames  
addressed to the node for a specific data sequence, which indicates to the controller this is a Magic Packet (MP) frame.  
A Magic Packet frame must also meet the basic requirements for the networktechnology chosen, such as Source Address  
(SA), or Destination Address (DA), which may be the receiving station’s IEEE address or a multicast or broadcast address  
and CRC.  
The specific sequence consists of 16 duplications of the IEEE address of this node, with no breaks or interruptions. This  
sequence can be located anywhere within the packet, but must be preceded by a synchronization stream. The  
synchronization stream allows the scanning state machine to be much simpler. The synchronization stream is defined as  
6 bytes of XoffFFh. The device will also accept a broadcast frame, as long as the 16 duplications of the IEEE address  
match the address of the machine to be awakened.  
1 References to D0, D1, D2, and D3 are power management states defined in a similar fashion to the way they are defined for PCI. For  
more information, refer to the PCI specification at www.pcisig.com/specifications/conventional/pcipm1.2.pdf.  
M9999-031810-4.0  
March 2010  
20  
 
 
Micrel, Inc.  
Example:  
KSZ9692MPB/KSZ9692XPB  
If the IEEE address for a particular node on a network is 11h 22h, 33h, 44h, 55h, 66h, the networkcontroller would be  
scanning for the data sequence (assuming an Ethernet frame):  
DESTINATION SOURCE – MISC - .: FF FF FF FF FF FF - 11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 -  
11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 -  
11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 - 11 22 33 44 55 66 -  
11 22 33 44 55 66 - MISC - CIRC.  
There are no further restrictions on a Magic Packet frame. For instance, the sequence could be in a TCP/IP packet or an  
IPX packet. The frame may be bridged or routed across the network without affecting its ability to wake-up a node at the  
frame’s destination.  
If the networkcontroller scans a frame and does not find the specific sequence shown above, it discards the frame and  
takes no further action. If the KSZ9692MPB/KSZ9692XPB controller detects the data sequence, however, it then alerts  
the device’s power management circuitry to wake up the system.  
IPv6 Support  
The KSZ9692MPB/KSZ9692XPB provides the following IPv6 support in the hardware:  
Generates the checksum for IPv6 TCP/UDP packets based on register configuration (LAN MAC DMA Transmit  
Control Register and WAN MAC DMA Transmit Control Register) or Transmit Descriptor 1 (TDES1). The register  
setting is static configuration and the TDES1 setting is packet-based configuration.  
Filters IPv6 packets with TCP/UDP errors (LAN MAC DMA Receive Control Register and WAN MAC DMA Receive  
Control Register).  
Supports up to 8 Source IP or Destination IP based-filtering (LAN/WAN Access Control List)  
Refer to the Register Description Document for more details.  
DMA Controller  
Integrated DMA controller connects data port of two Gb Ethernet MACs, two USB 2.0 ports, PCI 2.3 bus interface, and  
SDIO interface (for KSZ9692MPB only) via dedicated channels to DDR memory controller for moving large amounts of  
data without significant ARM processor intervention. A typical DMA channel usage is to move data from these interfaces  
into DDR memory. The data in the memory is processed by the ARM processor and driven back by the DMA channel to  
the external interface. Additionally, the ARM processor itself has a dedicated DMA channel to access the DDR memory  
controller. Flash/ROM/SRAM, NAND controller, and peripherals do not have dedicated DMA channel and therefore  
depend on the ARM processor for transfer of data to DDR memory. DMA channel interfaces are shown in functional block  
diagrams on page 8 and 9.  
The arbitration of all requests from DMA channels are handled by the DDR memory controller and pipelined for best  
performance. The memory controller supports programmable bandwidth allocation for each DMA channel, thus enabling  
the designer to optimize I/O resource utilization of memory.  
UART Interface  
The KSZ9692MPB/KSZ9692XPB support four independent high-speed UARTs; UART1, UART2, UART3 and UART4.  
The UART ports enhance the system availability for legacy serial communication application and console port display.  
UART1, UART2, UART3 and UART4 support maximum baud rate of 5 Mbps including standard rates. The higher rates  
allow for Bluetooth and GSM applications.  
UART1 supports CTSN, DSRN, DCDN modem control pins in addition to RXD and TXD data pins. For UART2, UART3,  
UART4 only CTSN and RTSN control pins in addition to RXD and TXD data pins are supported.  
Timers and Watchdog  
Two programmable 32-bit timers with one capable of watchdog timer function. These timers can operate in a very flexible  
way. The host can control the timeout period as well as the pulse duration. Both timers can be enabled with interrupt  
capability. When the watchdog timer is programmed and the timer setting expires, the KSZ9692MPB/KSZ9692XPB resets  
itself and also asserts WRSTO to reset other devices in the system.  
M9999-031810-4.0  
March 2010  
21  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
GPIO  
Twenty general purpose I/O (GPIO) are individually programmable as input or output. Some GPIO ports are  
programmable for alternate function as listed below:  
Four GPIO programmable as inputs for external interrupts  
Two GPIO programmable as 32-bit timers output  
Six GPIO programmable as CTSN and RTSN control pins for UART2, UART3, UART4  
One GPIO programmable as SDIO Line Status LED driver (for KSZ9692MPB only)  
One GPIO programmable as ARM CPU interrupt line activity.  
See Signal Description list for detailed GPIO map.  
I2C  
The I2C interface is a 2-pin (SCL & SDA) generic serial bus interface for both control and data. The  
KSZ9692MPB/KSZ9692XPB supports master mode I2C interface. To increase the firmware efficiency,  
KSZ9692MPB/KSZ9692XPB is equipped with hardware assisted logic to take care I2C bus sequence and protocol.  
Supports one master (KSZ9692MPB/KSZ9692XPB) in the system  
8-bit or 10-bit addressing  
Up to 8 byte burst for read and write  
Programmable SCL clock rate for up to 400kHz  
The I2C interface shares the same pins with the SPI interface.  
SPI  
The Serial Peripheral Interface (SPI) is a synchronous serial data link that provides communication with external devices.  
8- to 16-bit Programmable Data Length  
Programmable Serial Clock Phase and Polarity  
Programmable Active Level of Chip Select (CS)  
Programmable Delays between Two Active CS  
Programmable Delays between Consecutive Transfers without Removing CS  
Programmable Delays between Assertion CS and 1st SPCK  
Programmable SPI clock (SPCK) rate in the range of AMBA System Clock (SYSCLK) divided by a value between  
16 and 65536  
The SPI interface shares the same pins with the I2C interface.  
I2S  
I2S provides programmable 16-, 18-, 20-, 24-bit resolution audio for two (stereo) channels playback and recording.  
Interrupt Controller  
Interrupt controller handles external and internal interrupt sources.  
Normal or fast interrupt mode (IRQ, FIQ) supported  
Prioritized interrupt handling  
M9999-031810-4.0  
March 2010  
22  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
System Level Interfaces  
The following figures illustrate the high-level system connections to the KSZ9692MPB/KSZ9692XPB. Note that these  
figures are for illustration purpose only. The system designer must refer to Evaluation Design Kit for actual circuit  
implementation.  
Figure 14. Reset Circuit  
Figure 15. Power and Clocks  
According to some DDR device manufacturer’s electrical specification, DDR400 devices operating at 200 MHz require a  
2.6V power supply. DDR333 and DDR266 devices require 2.5V power supply. Power to the SoC DDR Memory Controller  
must be based on DDR device power requirement specification.  
M9999-031810-4.0  
March 2010  
23  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Signal Descriptions by Group  
Pin Number  
Pin Name  
Pin Type  
Pin Description  
System Interface  
R5  
RESETN  
I
Reset, asserted Low.  
RESETN will force the KSZ9692MPB/KSZ9692XPB to reset ARM9 CPU and  
all functional blocks. Once asserted, RESETN must remain asserted for a  
minimum duration of 256 system clock cycles. When in the reset state, all the  
output pins are put into Tri-state and all open drain signals are floated.  
N5  
W1  
Y1  
WRSTO  
XCLK2  
O
I
Watchdog Timer Reset Output  
When the Watchdog Timer expires, this signal will be asserted for at least 200  
msec.  
System Clock Input 2.  
External crystal or clock input 2. The clock frequency should be 25MHz ±  
100ppm.  
XCLK1  
I
System Clock Input 1.  
Used with XCLK1 pin when other polarity of crystal is needed. This is unused  
for a normal clock input.  
H19  
CLK25MHz  
O
O
25MHz output to external PHY  
DDR Clock Out [1:0].  
Y15, Y14  
DDCLKO[1:0]  
Output of the internal system clock, it is also used as the clock signal for DDR  
interface.  
W15, W14  
DDCLKON[1:0]  
O
The negative of differential pair of DDR Clock Out [1:0].  
Output of the internal system clock, it is also used as the clock signal for DDR  
interface.  
U13  
SDCLKEO  
VREF  
O
I
Clock Enable output for SDRAM (for Power Down Mode)  
Reference Voltage for SSTL interface.  
T7, U7  
Must be half of the voltage for the DDR VDD supply. See EIA/JEDEC standard  
EIA/JESD8-9 (Stub series terminated logic for 2.5V, SSTL_2)  
W3  
Y3  
SDOCLK  
SDICLK  
O
I
DDR Clock Out for loopback from De-skew PLL  
DDR Clock In from loopback to De-skew PLL. This pin must connect to  
SDOCLK with appropriate de-skew length. See Engineering Evaluation Design  
Kit for detailed implementation.  
Y17, Y16  
DDCLKO[3:2]  
DDCLKON[3:2]  
O
O
Factory Reserved  
W17, W16  
Factory Reserved  
NAND/SRAM/ROM/EXIO Interface  
L2, K1, K2,  
J3, H5, H4,  
J2, H3, J1,  
H2, G5, H1,  
G3, G4, G2,  
F1, G1, F2,  
F3, F5, F4,  
E1, E2, E3  
SADDR[23..0]  
O
SRAM Address Bus.  
The 24-bit address bus covers 16M word memory space of  
ROM/SRAM/FLASH, and 16M byte external I/O banks.  
This address bus is shared between ROM/SRAM/FLASH/EXTIO devices.  
M9999-031810-4.0  
March 2010  
24  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Pin Number  
Pin Name  
Pin Type  
Pin Description  
T2, U1, L5,  
N4, P3, R2,  
T1, M4, K5,  
N3, P2, R1,  
L4, M3, P1,  
K4  
SDATA[15..0]  
Ipu/O  
SRAM DATA Bus.  
Bidirectional Bus for 16-bit DATA In and DATA Out. The  
KSZ9692MPB/KSZ9692XPB also supports 8-bit data bus for  
ROM/SRAM/FLASH/EXTIO cycles.  
This data bus is shared between NAND, ROM/SRAM/FLASH/EXTIO devices.  
External I/O Chip Select 2, asserted Low.  
L3  
N1  
M2  
K3  
L1  
ECS2  
ECS1  
O
O
O
O
O
Three External I/O banks are provided for external memory-mapped I/O  
operations. Each I/O bank stores up to 16Kbytes. ECSN signals indicate which  
of the three I/O banks is selected.  
External I/O Chip Select 1, asserted Low.  
Three External I/O banks are provided for external memory-mapped I/O  
operations. Each I/O bank stores up to 16Kbytes. ECSN signals indicate which  
of the three I/O banks is selected.  
ECS0  
External I/O Chip Select 0, asserted Low.  
Three External I/O banks are provided for external memory-mapped I/O  
operations. Each I/O bank stores up to 16Kbytes. ECSN signals indicate which  
of the three I/O banks is selected.  
RCSN1  
RCSN0  
ROM/SRAM/FLASH(NOR) Chip select 1, asserted Low.  
The KSZ9692MPB/KSZ9692XPB can access up to two external  
ROM/SRAM/FLASH memory banks. The RCSN pins can be controlled to map  
the CPU addresses into physical memory banks.  
ROM/SRAM/FLASH(NOR) Chip select 0, asserted Low.  
The KSZ9692MPB/KSZ9692XPB can access up to two external  
ROM/SRAM/FLASH memory banks. The RCSN pins can be controlled to map  
the CPU addresses into physical memory banks.  
This bank is configurable as boot option  
External Wait asserted Low.  
N2  
EWAITN  
I
This signal is asserted when an external I/O device or  
ROM/SRAM/FLASH(NOR) bank needs more access cycles than those defined  
in the corresponding control register.  
M1  
J5  
EROEN  
Ipd/O  
O
ROM/SRAM/FLASH(NOR) and EXTIO Output Enable, asserted Low.  
(WRSTPLS)  
When asserted, this signal controls the output enable port of the specified  
ROM/SRAM/FLASH memory and EXTIO device.  
ERWEN1  
ERWEN0  
ROM/SRAM/FLASH(NOR) and EXTIO Write Byte Enable, asserted Low.  
When asserted, this signal controls the byte write enable of the memory device  
SDATA[15..8] for ROM/SRAM/FLASH and EXTIO access.  
J4  
Ipd/O  
ROM/SRAM/FLASH(NOR) and EXTIO Write Byte Enable, asserted Low.  
When asserted, this signal controls the byte write enable of the memory device  
SDATA[7..0 or 15..0] for ROM/SRAM/FLASH and EXTIO access.  
R3  
U2  
T3  
V3  
NCLE  
NALE  
Ipd/O  
Ipd/O  
O
NAND command Latch Enable  
NCLE controls the activating path for command sent to NAND flash.  
NAND Address Latch Enable  
NALE controls the activating path for address sent to NAND flash.  
NAND Bank Chip Enable 1, asserted low  
NAND device bank 1 selection control.  
NCEN1  
NCEN0  
O
NAND Bank Chip Enable 0, asserted low  
NAND device bank 0 selection control.  
This bank is configurable as boot option  
M9999-031810-4.0  
March 2010  
25  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Pin Number  
Pin Name  
NREN  
Pin Type  
Ipu/O  
Ipu/O  
Ipu/O  
I
Pin Description  
R4  
T4  
NAND Read Enable, asserted low.  
NAND Write Enable, asserted low.  
NAND Write Protection, asserted low.  
NAND Ready/Busy, asserted low for busy.  
NWEN  
U3  
NWPN  
P4, U4  
DDR Interface  
NRBN[1:0]  
T17, V18,  
U17, T16,  
W20, W19,  
Y20, Y19,  
W18, V17,  
U16, T15,  
Y18, V16  
DADD[13..0]  
O
DDR Address Bus.  
V13, U11,  
V12, W13,  
Y13, W12,  
V11, U10,  
V10, Y11,  
DDATA[31..0]  
I/O  
DDR Data Bus.  
W10, U9,  
Y10, V9, W9,  
Y9, W8, Y8,  
Y7, W7, V7,  
Y6, W6, V6,  
Y5, V5, W5,  
U5, T5, Y4,  
V4, W4  
T13, V14  
U14  
BA[1:0]  
CSN  
O
O
DDR Bank Address.  
DDR Chip Select, asserted Low.  
Chip select pins for DDR, the KSZ9692MPB/KSZ9692XPB supports only one  
DDR bank.  
T14  
U15  
RASN  
CASN  
WEN  
O
O
O
O
DDR Row Address Strobe, asserted Low.  
The Row Address Strobe pin for DDR.  
DDR Column Address Strobe, asserted Low.  
The Column Address Strobe pin for DDR.  
DDR Write Enable, asserted Low.  
V15  
The write enable signal for DDR.  
U8, T6  
DM[1:0]  
DDR Data Input/Output Mask  
Data Input/Output mask signals for DDR. DM is sampled High and is an output  
mask signal for write accesses and an output enable signal for read accesses.  
Input data is masked during a Write cycle. DM0 corresponds to DDATA[7:0],  
DM1 corresponds to DDATA[15:8].  
V8, U6  
DQS[1:0]  
I/O  
DDR only Data Strobe  
Input with read data, output with write data. DQS0 corresponds to DDATA[7:0],  
DQS1 corresponds to DDATA[15:8].  
M9999-031810-4.0  
March 2010  
26  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Pin Number  
Ethernet Port 0  
M16  
Pin Name  
Pin Type  
Pin Description  
P0_RXC  
Ipd/O  
MAC mode MII: input RX clock / PHY mode MII: output RX clock  
RGMII mode: input RX clock  
P18, N17,  
P17, N16  
P0_RXD[3:0]  
P0_RXDV  
I
I
RX data[3:0]  
N18  
MII mode: RX data valid  
RGMII mode: as RX_CTL. RXDV on rising edge of RXC, logic derivative of  
RXDV and RXER on falling edge of RXC  
P19  
M17  
P20  
M18  
P0_RXER  
P0_CRS  
P0_COL  
P0_TXC  
I
MII mode: RX error  
RGMII mode: input SEL  
I
I
MAC mode MII: input carrier sense  
RGMII mode: not used  
MAC mode MII: input collision  
RGMII mode: not used  
Ipd/O  
MAC mode MII: input TX clock / PHY mode MII: output TX clock  
RGMII mode: output TX clock  
TX data[3:0]  
L17, M19,  
N20, N19  
P0_TXD[3:0]  
P0_TXEN  
O
O
L16  
MII: TX enable  
RGMII: as TX_CTL input. TXEN on rising edge of TXC, logic derivative of  
TXEN and TXER on falling edge of TXC.  
Ethernet Port 1  
K19  
P1_RXC  
Ipd/O  
MAC mode MII: input RX clock / PHY mode MII: output RX clock  
RGMII mode: input RX clock  
L20, L19,  
L18, M20  
P1_RXD[3:0]  
P1_RXDV  
I
I
RX data[3:0]  
MII mode: RX data valid  
K16  
RGMII mode: as RX_CTL. RXDV on rising edge of RXC, logic derivative of  
RXDV and RXER on falling edge of RXC  
K17  
K18  
K20  
J17  
P1_RXER  
P1_CRS  
P1_COL  
P1_TXC  
I
MII mode: RX error  
RGMII mode: input SEL  
I
I
MAC mode MII: input carrier sense  
RGMII mode: not used  
MAC mode MII: input collision  
RGMII mode: not used  
Ipd/O  
MAC mode MII: input TX clock / PHY mode MII: output TX clock  
RGMII mode: output TX clock  
TX data[3:0] output.  
H20, J19,  
J18, J20  
P1_TXD[3:0]  
P1_TXEN  
O
O
J16  
MII: TX enable  
RGMII: as TX_CTL input. TXEN on rising edge of TXC, logic derivative of  
TXEN and TXER on falling edge of TXC.  
M9999-031810-4.0  
March 2010  
27  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Pin Number  
USB Interface  
G19  
Pin Name  
Pin Type  
Pin Description  
U1P  
U1M  
I/O (analog)  
I/O (analog)  
I/O (analog)  
I/O (analog)  
I (analog)  
O (analog)  
I (analog)  
O (Analog)  
I
USB port 1 differential + signal  
USB port 1 differential - signal  
USB port 2 differential + signal  
USB port 2 differential - signal  
Crystal in for USB PLL  
G20  
F19  
U2P  
F20  
U2M  
G17  
USBXI  
USBXO  
USBREXT  
USBTEST  
USBCFG  
G18  
Crystal out for USB PLL  
H16  
Connect to an external resistor 3.4K ohm to GND  
USB analog test output (factory reserved)  
USB port 2 configuration  
G16  
G15  
“1” = port 2 is host  
“0” = port 2 is device  
( port 1 is always host)  
F18  
F15  
F17  
USBHOVC0  
USBHOVC1  
USBHPWR0  
I
I
Over current sensing input for Host Controller downstream port 1  
Over current sensing input for Host Controller downstream port 2  
Power switching control output for downstream port 1; open drain output  
Ipu/O  
(open drain)  
F16  
USBHPWR1  
Ipu/O  
Power switching control output for downstream port 2; open drain output  
(open drain)  
SDIO Interface (for KSZ9692MPB only)  
D14  
KCMD  
Ipd/O  
SD 4-bit mode: Command line  
SD 1-bit mode: Command line  
SDIO/SD Clock  
C18  
C15  
KCLK  
Ipd/O  
I/O  
KDATA3  
SD 4-bit mode : data line 3  
SD 1-bit mode : not used  
C16  
E13  
C17  
KDATA2  
KDATA1  
KDATA0  
I/O  
I/O  
I/O  
SD 4-bit mode : data line 2 or read wait (optional)  
SD 1-bit mode : read wait (optional)  
SD 4-bit mode : data line 1 or interrupt (optional)  
SD 1-bit mode : interrupt  
SD 4-bit mode : data line 0  
SD 1-bit mode : data line  
C14  
D13  
KSDCDN  
KSDWP  
I
I
Active low used for Card Detection  
Active high used for Card write protection  
General Purpose I/O  
B14  
SLED/GPIO[19]  
I/O  
I/O  
SDIO Line Status LED output (for KSZ9692MPB only) or General Purpose I/O  
Pin[19]  
B15  
CPUINTN/  
GPIO[18]  
Internal CPU interrupt request or General Purpose I/O Pin[18]  
As CPUINTN, any interrupt generated to ARM CPU asserts logic low on this  
pin. Useful for software development.  
B16, B17,  
B18, D18,  
E15, D19  
GPIO[17:12]  
I/O  
I/O  
General Purpose I/O Pin[17:12]  
F14  
UART 4 RTSN  
/GPIO[11]  
UART 4 RTS or general purpose I/O Pin[11]  
M9999-031810-4.0  
March 2010  
28  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Pin Number  
Pin Name  
Pin Type  
Pin Description  
E16  
UART 4 CTSN  
/GPIO[10]  
I/O  
UART 4 CTS or general purpose I/O Pin[10]  
E17  
E19  
UART 3 RTSN  
/GPIO[9]  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
UART 3 RTS or general purpose I/O Pin[9]  
UART 3 CTS or general purpose I/O Pin[8]  
UART 2 RTS or general purpose I/O Pin[7]  
UART 2 CTS or general purpose I/O Pin[6]  
Timer 1/0 out or General Purpose I/O Pin[5:4]  
UART 3 CTSN  
/GPIO[8]  
E20  
UART 2 RTSN  
/GPIO[7]  
E18  
UART 2 CTSN  
/GPIO[6]  
U20, U19  
TOUT[1:0]/  
GPIO[5:4]  
V20, T18,  
V19, U18  
EINT[3:0]/  
GPIO[3:0]  
External Interrupt Request or General Purpose I/O Pin[3:0]  
I2S Interface  
C20  
SCKIN  
I
External crystal or clock input for I2S clock  
The maximum supported frequency is 49.2 MHz  
D20  
C19  
SCKOUT  
O
O
External Crystal out for I2S clock  
I2S_MCLK  
I2S master clock out  
This clock is of same frequency as SCKIN  
B20  
B19  
A19  
I2S_BCLK  
I2S_LRCLK  
I2S_SDO  
O
O
O
I2S bit clock out  
Left/right select  
Serial data out  
A20  
I2S_SDI  
I
Serial data in  
MDIO/MDC Interface  
H18  
MDC  
Ipu/O  
Ipu/O  
Clock for station management  
H17  
MDIO  
Serial data for station management  
I2C/SPI Interface  
E14  
SPCK_SCL  
Ipu/O  
Ipu/O  
SPI mode: master clock output  
I2C mode: serial clock output  
D17  
SPMOSI_SDA  
SPI mode: master data out,slave data in  
I2C mode: serial data  
D16  
D15  
F13  
SPMISO  
SPICS  
I
SPI master data in, slave data out  
SPI chip select  
Ipu/O  
I
SPI_RDY  
Micrel SPI mode ready signal  
PCI Interface Signals  
C3  
PRSTN  
I
I
PCI Reset, asserted Low  
In Host Bridge Mode, the PCI Reset pin is an input. This pin as well as the  
reset pin of all the devices on the PCI bus could be driven by WRSTO.  
In Guest Bridge Mode, this pin is input. The system reset to drive this pin.  
B2  
PCLK  
PCI Bus Clock input.  
This signal provides the timing for the PCI bus transactions. This signal is used to  
drive the PCI bus interface and the internal PCI logic. All PCI bus signals are sampled  
on the rising edges of the PCLK. PCLK can operate from 20MHz to 33MHz, or  
66MHz.  
M9999-031810-4.0  
March 2010  
29  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Pin Number  
Pin Name  
Pin Type  
Pin Description  
E4  
GNT3N  
O
PCI Bus Grant 3  
Assert Low.  
In Host Bridge Mode, this is an output signal from the internal PCI arbiter to grant  
PCI bus access to the master driving REQ3N.  
In Guest Bridge Mode, this is unused.  
(No connect for KSZ9692XPB)  
D4  
B1  
GNT2N  
GNT1N  
O
O
PCI Bus Grant 2  
Assert Low.  
In Host Bridge Mode, this is an output signal from the internal PCI arbiter to grant  
PCI bus access to the master driving REQ2N.  
In Guest Bridge Mode, this is unused.  
(No connect for KSZ9692XPB)  
PCI Bus Grant 1  
Assert Low.  
In Host Bridge Mode, this is an output signal from the internal PCI arbiter to grant  
PCI bus access to the master driving REQ1N.  
In Guest Bridge Mode, this is an output signal to indicate to the external PCI bus  
arbiter that KSZ9692MPB/KSZ9692XPB is requesting access to the PCI bus.  
D3  
E6  
C1  
REQ3N  
REQ2N  
I
I
PCI Bus Request 3  
Assert Low.  
In Host Bridge Mode, this is an input signal from the external PCI device to  
request for PCI bus access  
In Guest Bridge Mode, this is unused.  
(No connect for KSZ9692XPB)  
PCI Bus Request 2  
Assert Low.  
In Host Bridge Mode, this is an input signal from the external PCI device to  
request for PCI bus access  
In Guest Bridge Mode, this is unused.  
(No connect for KSZ9692XPB)  
PCI Bus Request 1  
REQ1N  
I
Assert Low.  
In Host Bridge Mode, this is an input signal from the external PCI device to  
request for PCI bus access  
In Guest Bridge Mode, this signal comes from the external arbiter to indicate that  
the bus is granted to KSZ9692MPB/KSZ9692XPB.  
B3, E7, D6,  
A2, B4, A3,  
D7, C5, C6,  
B5, A4, A5,  
B6, E8, C7,  
D8, D10, B10,  
A11, B11,  
C11, A12,  
E11, D11,  
B12, A13,  
PAD[31..0]  
I/O  
32-bit PCI address and data lines  
Addresses and data bits are multiplexed on the same pins. During the first clock  
cycle of a PCI transaction, the PAD bus contains the first clock cycle of a PCI  
transaction, the PAD bus contains the physical address. During subsequent clock  
cycles, these lines contain the 32-bit data to be transferred. Depending on the  
type of the transaction, the source of the data will be the  
KSZ9692MPB/KSZ9692XPB if it initiates a PCI write transaction, or the data  
source will be the target if it is a PCI Read transaction. The  
KSZ9692MPB/KSZ9692XPB bus transaction consists of an address phase  
followed by one or more data phases. The KSZ9692MPB/KSZ9692XPB supports  
both Read and Write burst transactions. In case of a Read transaction, a special  
data turn around cycle is needed between the address phase and the data phase.  
C12, B13,  
F12, C13,  
D12, E12  
M9999-031810-4.0  
March 2010  
30  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Pin Number  
Pin Name  
Pin Type  
Pin Description  
A6, A7, E10,  
C10  
CBEN[3..0]  
I/O  
PCI Commands and Byte Enable, asserted Low.  
The PCI command and byte enable signals are multiplexed on the same pins.  
During the first clock cycle of a PCI transaction, the CBEN bus contains the  
command for the transaction. The PCI transaction consists of the address  
phases and one or more data phases. During the data phases of the  
transaction, the bus carries the byte enable for the current data phases.  
C8  
PAR  
I/O  
Parity  
PCI Bus parity is even across PAD[31:0] and CBEN[3:0].  
The KSZ9692MPB/KSZ9692XPB generates PAR during the address phase  
and write data phases as a bus master, and during read data phases as a  
target. It checks for correct PAR during read data phase as a bus master,  
during every address phase as a bus slave, and during write data phases as a  
target.  
D9  
B8  
FRAMEN  
IRDYN  
I/O  
I/O  
PCI Bus Frame signal, asserted Low.  
FRAMEN is an indication of an active PCI bus cycle. It is asserted at the  
beginning of a PCI transaction, i.e. the address phase, and de-asserted before  
the final transfer of the data phase of the transaction.  
PCI Initiator Ready signal, asserted Low.  
This signal is asserted by a PCI master to indicate a valid data phase on the  
PAD bus during data phases of a write transaction. In a read transaction, it  
indicates that the master is ready to accept data from the target. A target will  
monitor the IRDYN signal when a data phase is completed on any rising edge  
of the PCI clock when both IRDYN and TRDYN are asserted. Wait cycles are  
inserted until both IRDYN and TRDYN are asserted together.  
E9  
A9  
TRDYN  
I/O  
I/O  
PCI Target Ready signal, asserted Low.  
This signal is asserted by a PCI slave to indicate a valid data phase on the  
PAD bus during data phases of a read transaction. In a write transaction, it  
indicates that the slave is ready to accept data from the target. A PCI initiator  
will monitor the TRDYN signal when a data phase is completed on any rising  
edge of the PCI clock when both IRDYN and TRDYN are asserted. Wait cycles  
are inserted until both IRDYN and TRDYN are asserted together.  
DEVSELN  
PCI Device Select signal, asserted Low.  
This signal is asserted when the KSZ9692MPB/KSZ9692XPB is selected as a  
target during a bus transaction. When the KSZ9692MPB/KSZ9692XPB is the  
initiator of the current bus access, it expects the target to assert DEVSELN  
within 5 PCI bus cycles, confirming the access. If the target does not assert  
DEVSELN within the required bus cycles, the KSZ9692MPB/KSZ9692XPB  
aborts the bus cycle. As a target, the KSZ9692MPB/KSZ9692XPB asserts this  
signal in a medium speed decode timing. (2 bus cycle)  
B7  
B9  
IDSEL  
I
Initialization Device Select. It is used as a chip select during configuration read  
and write transactions.  
STOPN  
I/O  
PCI Stop signal, asserted Low.  
This signal is asserted by the PCI target to indicate to the bus master that it is  
terminating the current transaction. The KSZ9692MPB/KSZ9692XPB responds  
to the assertion of STOPN when it is the bus master, either to disconnect, retry,  
or abort.  
M9999-031810-4.0  
March 2010  
31  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Pin Number  
Pin Name  
Pin Type  
Pin Description  
A10  
PERRN  
I/O  
PCI Parity Error signal, asserted Low.  
The KSZ9692MPB/KSZ9692XPB asserts PERRN when it checks and detects a  
bus parity error. When it generates the PAR output, the  
KSZ9692MPB/KSZ9692XPB monitors for any reported parity error on PERRN.  
When the KSZ9692MPB/KSZ9692XPB is the bus master and a parity error is  
detected, the KSZ9692MPB/KSZ9692XPB sets error bits on the control status  
registers. It completes the current data burst transaction, then stop the  
operation. After the Host clears the system error, the  
KSZ9692MPB/KSZ9692XPB continues its operation.  
C9  
C4  
SERRN  
M66EN  
O(open  
drain)  
PCI System Error signal, asserted Low.  
If an address parity error is detected, the KSZ9692MPB/KSZ9692XPB asserts  
the SERRN signal two clocks after the failing address.  
I
PCI 66MHz Enable  
When asserted, this signal indicates the PCI Bus segment is operating at 66  
MHz.  
This pin is mainly used in Guest bridge mode when the PCLK is driven by the  
Host bridge.  
F6  
D1  
PCLKOUT3  
PCLKOUT2  
O
O
PCI Clock output 3  
(No connect for KSZ9692XPB)  
PCI Clock output 2  
(No connect for KSZ9692XPB)  
PCI Clock output 1  
D2  
E5  
PCLKOUT1  
PCLKOUT0  
O
O
PCI Clock output 0.  
This signal provides the timing for the PCI bus transactions. This signal is used  
to drive the PCI bus interface and the internal PCI logic. All PCI bus signals are  
sampled on the rising edges of the PCLK. PCLK can operate from 20MHz to  
33MHz, or 66MHz.  
In Host Bridge Mode, this is an output signal for all the devices on the PCI bus  
to sample data and control signals. Connect this clock to drive PCLK input.  
In Guest Bridge Mode, this is not used.  
A8  
C2  
D5  
CLKRUNN  
MPCIACTN  
PBMS  
I/O  
I/O  
I
This is a CardBus only signal. The CLKRUNN signal is used by portable  
CardBus devices to request the system to turn on the bus clock. Output is not  
generated.  
Mini-PCI active. This signal is asserted by the PCI device to indicate that its  
current function requires full system performance. MPCIACTN is an open drain  
output signal.  
PCI Bridge Mode Select  
Select the operating mode of the PCI Bridge.  
When PBMS is High, the Host Bridge Mode is selected and on chip PCI bus  
arbiter is enabled.  
When PBMS is Low, the Guest Bridge Mode is selected and the on-chip arbiter  
is disabled.  
A1  
PMEN  
O (open  
drain)  
PCI Power Management Enable (active low)  
This pin is to inform the external PCI host that KSZ9692MPB/KSZ9692XPB has  
detected a wake-up event.  
M9999-031810-4.0  
March 2010  
32  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Pin Number  
UART Signals  
P16  
Pin Name  
Pin Type  
Pin Description  
U1RXD  
U1TXD  
Ipd  
UART 1 Receive Data  
UART 1Transmit Data  
R16  
O (Tri-  
State)  
Must be enabled as output by software, otherwise tri-stated upon power-up.  
External pull-up recommended.  
R19  
R20  
P15  
R15  
R17  
U1CTSN  
U1DCDN  
U1DSRN  
U2RXD  
Ipd  
Ipd  
Ipd  
Ipd  
UART 1Clear to Send  
UART 1 Data Carrier Detect  
UART 1 Data Set Ready  
UART 2 Receive Data  
UART 2 Transmit Data  
U2TXD  
O (Tri-  
State)  
Must be enabled as output by software, otherwise tri-stated upon power-up.  
External pull-up recommended.  
R18  
N15  
U3RXD  
U3TXD  
Ipd  
UART 3 Receive Data  
UART 3 Transmit Data  
O (Tri-  
State)  
Must be enabled as output by software, otherwise tri-stated upon power-up.  
External pull-up recommended.  
T19  
T20  
U4RXD  
U4TXD  
Ipd  
UART 4 Receive Data  
UART 4 Transmit Data  
O (Tri-  
State)  
Must be enabled as output by software, otherwise tri-stated upon power-up.  
External pull-up recommended.  
TAP Control Signals  
A18  
A17  
A16  
A15  
TCK  
TMS  
TDI  
I
I
JTAG Test Clock  
JTAG Test Mode Select  
JTAG Test Data In  
I
TDO  
O
I
JTAG Test Data Out  
JTAG Test Reset, asserted Low  
A14  
Test Signals  
P5  
TRSTN  
SCANEN  
TESTEN  
TESTEN1  
Ipd  
Ipd  
Ipd  
1 = Scan Enable (Factory reserved)  
0 = Normal Operation  
V2  
V1  
1 = Test Enable (Factory reserved)  
0 = Normal Operation  
1 = Test Enable1 (Factory reserved)  
0 = Normal Operation  
Y2  
TEST1  
TEST2  
O (analog)  
O (analog)  
Factory reserved  
W2  
Factory reserved  
Power and Ground (96)  
N6, M6,  
M7, G7,  
G8, G9,  
M14,  
VDD1.2  
P
Digital power supply 1.3V (13)  
M15, N14,  
P11, P12,  
P13, P14  
M9999-031810-4.0  
March 2010  
33  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Pin Number  
Pin Name  
Pin Type  
Pin Description  
G6, H6,  
J6, K6,  
VDD3.3  
P
Digital power supply 3.3V (16)  
F7, F8,  
F9, F10,  
F11, G10,  
G11, H14,  
J14, K14,  
K15, L15  
R6, R7, R8,  
R9, R10,  
R11, R12,  
R13, R14,  
T8, T9, T10,  
T11  
VDD2.5  
GND  
P
DDR Pad Driver 2.5V or 2.6V Power Supply. (13)  
H7, H8, H9,  
H10, H11, J7,  
J8, J9, J10,  
J11, K7, K8,  
K9, K10, K11,  
K12, L7, L9,  
L10, L11,  
GROUND  
Digital Ground. (37)  
L12, L13,  
L14, M9,  
M10, M11,  
M12, M13,  
N9, N10, N11,  
N12, N13, P7,  
P8, P9, P10  
L6  
M8  
PLLVDDA3.3  
PLLVSSA3.3  
PLLDVDD1.2  
PLLSVDD1.2  
PLLVSS1.2  
P
Band Gap Reference Analog Power. (1)  
Band Gap Reference Analog Ground. (1)  
De-skew PLL Analog and Digital Power. (1)  
System PLL Analog and Digital Power. (1)  
De-skew PLL and System PLL Ground. (2)  
Ground Isolation PLL and other circuit. (1)  
Analog Power for USB Channel 1. (1)  
GROUND  
P6  
P
M5  
P
N7, N8  
L8  
GROUND  
PLLVSSISO  
GROUND  
G12  
G13  
G14  
USB1VDDA3.3  
USBCVDDA3.3  
USB2VDDA3.3  
USBVSSA3.3  
P
P
P
Analog Power for Common Circuit of USB Channel 1 and 2. (1)  
Analog Power for USB Channel 2. (1)  
H13, J13,  
K13  
GROUND  
Analog Ground for both USB Channels Analog Circuit. (3)  
J15  
H15  
J12  
H12  
USB1VDD1.2  
USB2VDD1.2  
USBVSS1  
P
Digital Power for USB Channel 1 Controller. (1)  
Digital Power for USB Channel 2 Controller. (1)  
Digital Ground for USB Channel 1 Controller. (1)  
Digital Ground for USB Channel 2 Controller. (1)  
P
GROUND  
GROUND  
USBVSS2  
Notes:  
1. P = Power supply.  
I = Input.  
O = Output.  
O/I = Output in normal mode; input pin during reset.  
Ipu = Internal 55kpull-up resistor.  
Ipd = Internal 55kpull-down resistor.  
M9999-031810-4.0  
March 2010  
34  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Power-up Strapping Options  
Certain pins are sampled upon power up or reset to initialize KSZ9692MPB/KSZ9692XPB system registers per system  
configuration requirements.  
Pin Number  
Pin Name  
Pin Type  
Pin Description  
E3  
SADDR[0]  
Ipd/O  
During reset, this pin is the input strap option for NAND Boot small page size  
0 = 512 Bytes (default)  
1 = 528 Bytes  
E1, E2  
SADDR[2:1]  
SADDR[3]  
SADDR[4]  
Ipd/O  
Ipd/O  
Ipd/O  
During reset, this pin is the input strap option for NAND Flash configuration  
register (0x8054) bit [7:6]. These pins are used to specify number of active banks  
(CE#) in cascade.  
00 = 1 bank (default)  
01 = 2 banks  
F4  
During reset, this pin is the input strap option for NAND Flash configuration  
register (0x8054) bit [8], NAND Flash type. This pin is used to specify using large  
or small block NAND Flash as a boot bank as follows:  
“0” = small block (default)  
“1” = large block  
F5  
During reset, this pin is the input strap option for NAND Flash configuration  
register (0x8054) bit [4], NAND Flash type. This pin is used to specify number of  
NAND Flash in parallel for combined data width as follows:  
“0” = 1 NAND Flash (default)  
“1” = 2 NAND Flash  
F3  
F2  
SADDR[5]  
SADDR[6]  
Ipu/O  
Ipd/O  
During reset, this is the input strap option to enter ARM9 tic test mode  
0: ARM tic test mode (factory reserved)  
1: Normal mode (default)  
During reset, this pin is the input strap option for NAND FLASH device support  
automatic page crossing  
0: NAND FLASH device does not support automatic page crossing (default)  
1: NAND FLASH device supports automatic page crossing  
G1  
SADDR[7]  
Ipd/O  
During reset, this pin is a strapping option for B0SIZE, Bank 0 Data Access Size.  
This is applicable to ROM/SRAM/FLASH and NAND boot bank.  
Bank 0 is used for boot program. This pin is used to specify the size of the bank 0  
data bus width as follow:  
“0” = one byte (default)  
“1” = half word  
F1  
G2  
G4  
SADDR[8]  
SADDR[9]  
SADDR[10]  
Ipd/O  
Ipd/O  
Ipd/O  
During reset, this pin is a strapping option for BTSEL:  
“0” = Boot select from NOR flash (default)  
“1” = Boot select from NAND flash  
During reset this pin is a strapping option for BYP_SYSPLL:  
“0” = Use systems PLL (default)  
“1” = Bypass systems PLL, use external clock (factory reserved)  
During reset this pin is a strapping option for BYP_CLKSEL:  
“0” = Select 200MHz external clock (default)  
“1” = Select 250MHz external clock (factory reserved)  
M9999-031810-4.0  
March 2010  
35  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Pin Number  
Pin Name  
Pin Type  
Pin Description  
During reset, this pin is the input strap option to enable either MII or RGMII mode  
at port1 (LAN port)  
G3  
SADDR[11]  
Ipd/O  
0: MII mode (default)  
1: RGMII mode  
M1  
EROEN  
Ipd/O  
ROM/SRAM/FLASH(NOR) and EXTIO Output Enable, asserted Low.  
(WRSTPLS)  
When asserted, this signal controls the output enable port of the specified  
ROM/SRAM/FLASH memory and EXTIO device.  
During reset, this pin is used for Watchdog Timer Reset Polarity Select.  
This is a power strapping option pin for watchdog reset output polarity.  
“0” = WRSTO is selected as active high (default)  
“1” = WRSTO is selected as active low.  
This pin is shared with the EROEN pin.  
J4  
ERWEN0  
Ipd/O  
ROM/SRAM/FLASH(NOR) and EXTIO Write Byte Enable, asserted Low.  
When asserted, these signals control the byte write enable of the memory device  
for ROM/SRAM/FLASH and EXTIO access.  
During ARM tic test mode, this pin is TESTACK.  
During reset, this pin is the input strap option to enable either MII or RGMII mode  
at port0 (WAN port)  
0: MII mode (default)  
1: RGMII mode  
R3  
NCLE  
Ipd/O  
NAND command Latch Enable  
NCLE controls the activating path for command sent to NAND flash.  
During reset, this pin is the input strap option for NAND Flash configuration  
register (0x8054) bit [2]. This bit along with configuration register bits [1:0] is used  
for boot program. This pin along with NALE and NWEN is used to specify NAND  
Flash size.  
[NCLE, NALE, NWEN]  
000 = 64Mbit  
001 = 128Mbit (default)  
010 = 256Mbit  
011 = 512Mbit  
100 = 1Gbit  
101 = 2Gbit  
110 = 4Gbit  
111 = 8Gbit  
M9999-031810-4.0  
March 2010  
36  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Pin Number  
Pin Name  
Pin Type  
Pin Description  
U2  
NALE  
Ipd/O  
NAND Address Latch Enable  
NALE controls the activating path for address sent to NAND flash.  
During reset, this pin is the input strap option for NAND Flash configuration  
register (0x8054) bit [1]. This bit along with configuration register bits [2], [0] is  
used for boot program. This pin along with NCLE and NWEN is used to specify  
NAND Flash size.  
[NCLE, NALE, NWEN]  
000 = 64Mbit  
001 = 128Mbit (default)  
010 = 256Mbit  
011 = 512Mbit  
100 = 1Gbit  
101 = 2Gbit  
110 = 4Gbit  
111 = 8Gbit  
T4  
NWEN  
Ipu/O  
NAND Write Enable, asserted low  
During reset, this pin is the input strap option for NAND Flash configuration  
register (0x8054) bit [0]. This bit along with configuration register bits [2:1] is used  
for boot program. This pin along with NCLE and NALE is used to specify NAND  
Flash size.  
[NCLE, NALE, NWEN]  
000 = 64Mbit  
001 = 128Mbit (default)  
010 = 256Mbit  
011 = 512Mbit  
100 = 1Gbit  
101 = 2Gbit  
110 = 4Gbit  
111 = 8Gbit  
U3  
NWPN  
Ipu/O  
NAND Write Protection, asserted low  
During reset, this pin is the input strap option to enable test modes. This pin along  
with TESTEN, TESTEN1 form different test modes.  
{TESTEN, TESTEN1, NWPN} =  
011: ARM Scan test mode  
010: USB Analog Bits test mode  
others: refer to TESTEN and TESTEN1 pin description  
(factory reserved)  
G15  
USBCFG  
I
USB port 2 configuration  
“1” = port 2 is host  
“0” = port 2 is device  
( port 1 is always host)  
M9999-031810-4.0  
March 2010  
37  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Pin Number  
Pin Name  
Pin Type  
Ipd  
Pin Description  
Test Pins Strapping Options  
P5  
V2  
V1  
SCANEN  
TESTEN  
TESTEN1  
1 = Scan Enable (Factory reserved)  
0 = Normal Operation  
Ipd  
1 = Test Enable (Factory reserved)  
0 = Normal Operation  
Ipd  
1 = Test Enable1 (Factory reserved)  
0 = Normal Operation  
Notes:  
1. P = Power supply.  
I = Input. O = Output.  
O/I = Output in normal mode; input pin during reset.  
Ipu = Internal 55kpull-up resistor.  
Ipd = Internal 55kpull-down resistor.  
M9999-031810-4.0  
March 2010  
38  
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage  
Supply Voltage  
(VDD1.2, PLLDVDD1.2, PLLSVDD1.2,  
USB1VDD1.2, USB2VDD1.2 ) ........+1.235V to +1.365V  
(VDD1.2, PLLDVDD1.2, PLLSVDD1.2,  
USB1VDD1.2, USB2VDD1.2 ) ..................–0.5V to +1.6V  
VDD2.5  
.............................................+2.3V to +2.7V  
VDD2.5…......……… …………………..–0.5V to +3.0V  
(VDD3.3, PLLVDDA3.3, PLLDVDD3.3,  
USB1VDDA3.3, USB2VDDA3.3,  
(VDD3.3, PLLVDDA3.3, PLLDVDD3.3,  
USB1VDDA3.3, USB2VDDA3.3,  
USBCVDDA3.3).....................................+3.0V to +3.6V  
Ambient Temperature (TA)  
Commercial.............................................0°C to +70°C  
Industrial .............................................-40°C to +85°C  
Junction Temperature (TJ) .....................................150°C  
Package Thermal Resistance(3)  
USBCVDDA3.3).......................................–0.5V to +4.0V  
Input Voltage (all inputs) ...........................–0.5V to +4.0V  
Output Voltage (all outputs) ......................–0.5V to +4.0V  
Pb-Free Temperature (soldering, 10sec.)...............260°C  
Storage Temperature (Ts) ..................... –55°C to +150°C  
(θJA) No Air Flow ...................................23.4°C/W  
1m/s..............................................21.1°C/W  
2m/s..............................................20.2°C/W  
(θJC) No Air Flow .....................................9.5°C/W  
Electrical Characteristics (4)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
Total Supply Current with WAN and LAN ports under 1000 Mbps Data Traffic, DDR clock = 200MHz  
I1.3V  
VDD1.2, PLLDVDD1.2,  
PLLSVDD1.2, USB1VDD1.2,  
USB2VDD1.2  
Single supply at 1.3V  
595  
mA  
I2.6V  
I3.3v  
VDD2.5  
Single supply at 2.6V  
Single supply at 3.3V  
160  
116  
mA  
mA  
VDD3.3, PLLVDDA3.3,  
PLLDVDD3.3, USB1VDDA3.3,  
USB2VDDA3.3, USBCVDDA3.3  
TTL Inputs ( SDIO, Static Memory, UART, SPI, I2C, I2S, MDC/MDIO, GPIO)  
VIH  
VIL  
IIN  
Input High Voltage  
Input Low Voltage  
2.0  
V
V
0.8  
10  
Input Current  
(Excluding pull-up/pull-down)  
VIN = GND ~ VDD3.3  
–10  
2.4  
µA  
TTL Outputs (SDIO, Static Memory, UART, SPI, I2C, I2S, MDC/MDIO, GPIO)  
VOH  
VOL  
IOZ  
Output High Voltage  
Output Low Voltage  
Output Tri-state Leakage  
IOH = –8mA  
IOL = 8mA  
V
V
0.4  
10  
µA  
PCI Electrical: Compliant to PCI version 2.3 Standard  
DDR Electrical: Compliant to EIA/JEDEC standard EIA/JESD8-9 (Stub series terminated logic for 2.5V, SSTL_2)  
USB 2.0 Electrical: Compliant to USB 2.0 Standard  
RGMII Electrical: Compliant to Reduced Gigabit Media Independent Interface(RGMII) Version 1.3 (5)  
MII Electrical: compliant to IEEE 802.3u Specification  
Notes:  
1. Exceeding the absolute maximum rating may damage the device.  
2. The device is not guaranteed to function outside its operating rating. Unused inputs must always be tied to an appropriate logic voltage level (Ground  
to VDD).  
3. No heat spreader in package.  
4. TA = 25°C. The specification is for the packaged product only.  
5. RGMII interface is standard 3.3V CMOS VIO. However “Reduced Gigabit Media Independent Interface(RGMII) Version 1.3” specification is based on  
2.5V CMOS VIO. Therefore any chosen RGMII based PHY must be evaluated based upon standard 3.3V CMOS VIO compatibility.  
M9999-031810-4.0  
March 2010  
39  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Timing Specifications  
Figure 16 provides power sequencing requirement with respect to system reset.  
Figure 16. Reset Timing  
Note: Power sequencing of supply voltages must be in order of 3.3V first, 2.5V/2.6V next and 1.3V last  
Symbol  
tSR  
Parameter  
Min  
10  
Typ  
Max  
Units  
ms  
ns  
Stable supply voltages to reset high  
Conguration set-up time  
Conguration hold time  
Reset to strap-in pin output  
tCS  
50  
tCH  
50  
ns  
tRC  
50  
ns  
Table 1. Reset Timing Parameters  
Figure 17 and Figure 18 provide NOR FLASH, ROM and SRAM interface timing.  
Figure 17. Static Memory Read Cycle  
M9999-031810-4.0  
March 2010  
40  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Figure 18. Static Memory Write Cycle  
Symbol  
RBiTACC  
RBiTPA  
Parameter(1)  
Registers  
Programmable bank i access time  
0x5010, 0x5014  
0x5010, 0x5014  
Programmable bank i page access time  
Table 2. Programmable Static Memory Timing Parameters  
Note:  
1. "i" Refers to chip select parameters 0 and 1.  
Figure 19 provides external I/O ports interface timing.  
Figure 19. External I/O Read and Write Cycles  
M9999-031810-4.0  
March 2010  
41  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Symbol  
Parameter  
Min(1)  
Typ(1)  
Max(1)  
Units  
Tcta  
Valid address to CS setup time  
EBiTACS  
+0.8  
EBiTACS  
+1.1  
EBiTACS  
+1.3  
ns  
Tcos  
OE valid to CS setup time  
EBiTCOS  
+0.6  
EBiTCOS  
+0.6  
EBiTCOS  
+1.0  
ns  
Tdsu  
Tcws  
Valid read data to OE setup time  
WE valid to CS setup time  
2.0  
ns  
ns  
EBiTCOS  
+0.6  
EBiTCOS  
+0.6  
EBiTCOS  
+1.0  
Tdh  
Write data to CS hold time  
Address to CS hold time  
0
ns  
ns  
Tcah  
EBiTCOH  
+1.0  
EBiTCOH  
+1.0  
EBiTCOH  
+1.4  
Toew  
OE/WE pulsewidth  
EBiTACT  
0
EBiTACT  
ns  
ns  
Tocs, Tcsw  
Rising edge CS to OE/WE hold time  
Table 3. External I/O Memory Timing Parameters  
Note:  
1. Measurements for minimum were taken at 0°C, typical at 25°C, and maximum at 100°C.  
Symbol  
Parameter(1)  
Registers  
EBiTACS  
EBiTACT  
EBiTCOS  
EBiTCOH  
Programmable bank i address setup time before chip select  
Programmable bank i write enable/output enable access time  
Programmable bank i chip select setup time before OEN  
Programmable bank i chip select hold time  
0x5000, 0x5004, 0x5008  
0x5000, 0x5004, 0x5008  
0x5000, 0x5004, 0x5008  
0x5000, 0x5004, 0x5008  
Table 4. Programmable External I/O Timing Parameters  
Note:  
1. "i" Refers to chip select parameters 0, 1, or 2.  
M9999-031810-4.0  
March 2010  
42  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Signal Location Information  
1
2
3
4
5
6
7
8
CLKRUN  
N
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PMEN  
PAD28  
PAD26  
PAD21  
PAD20  
CBEN3  
CBEN2  
DEVSELN PERRN  
PAD13  
PAD10  
PAD6  
TDI  
TMS  
TCK  
I2S_SDO I2S_SDI  
A
B
C
D
E
TRSTN  
TDO  
I2S_LRCL  
K
GNT1N  
REQ1N  
PCLK  
PAD31  
PRSTN  
REQ3N  
PAD27  
M66EN  
GNT2N  
PAD22  
PAD24  
PMBS  
PAD19  
PAD23  
PAD29  
REQ2N  
IDSEL  
PAD17  
PAD25  
PAD30  
IRDYN  
PAR  
STOPN  
SERRN  
PAD14  
CBEN0  
PAD12  
PAD11  
PAD8  
PAD7  
PAD5  
PAD1  
PAD0  
PAD4  
PAD2  
GPIO19 GPIO18 GPIO17 GPIO16 GPIO15  
I2S_BCLK  
SCKIN  
MPCIACT  
N
I2S_MCL  
K
KSDCDN KDATA3 KDATA2 KDATA0 KCLK  
SPMOSI_  
PCLKOUT PCLKOUT  
2
1
PAD16  
PAD18  
FRAMEN PAD15  
TRDYN CBEN1  
KSDWP KCMD  
SPICS  
SPMISO SDA  
GPIO14 GPIO12 SCKOUT  
PCLKOUT  
0
SPCK_SC  
SADDR2 SADDR1 SADDR0 GNT3N  
PAD9  
KDATA1  
L
GPIO13 GPIO10 GPIO9  
GPIO6  
GPIO8  
U2P  
GPIO7  
U2M  
PCLKOUT  
3
USBHOV USBHPW USBHPW USBHOV  
SADDR8 SADDR6 SADDR5 SADDR3 SADDR4  
VDD3.3 VDD3.3 VDD3.3 VDD3.3 VDD3.3 PAD3  
USB1  
SPIRDY GPIO11 C1  
R1  
R0  
C0  
F
USBC  
USB2  
SADDR7 SADDR9 SADDR11 SADDR10 SADDR13  
SADDR12 SADDR14 SADDR16 SADDR18 SADDR19  
SADDR15 SADDR17 SADDR20 ERWEN0 ERWEN1  
VDD3.3 VDD3.3 VDDA3.3 VDDA3.3 VDDA3.3 USBCFG USBTEST USBXI  
USBXO  
MDC  
U1P  
U1M  
VDD3.3 VDD1.2 VDD1.2 VDD1.2  
G
H
J
USB2  
USBVSSA  
USBVSS2 3.3  
CLK25MH  
Z_1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDD1.2 USBREXT MDIO  
P1_TXD3  
VDD3.3  
VDD3.3  
VDD3.3  
USB1  
USBVSSA  
USBVSS1 3.3  
VDD1.2 P1_TXEN P1_TXC P1_TXD1 P1_TXD2 P1_TXD0  
VDD3.3  
USBVSSA  
3.3  
SADDR22 SADDR21 RCSN1  
SDATA0 SDATA7  
GND  
P1_RXDV P1_RXER P1_CRS P1_RXC P1_COL  
VDD3.3  
PLL  
VDD3.3 VDD3.3  
K
PLLVSSI  
SO  
RCSN0  
EROEN  
ECS1  
SADDR23 ECS2  
SDATA3 SDATA13 VDDA3.3 GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
P0_TXEN P0_TXD3 P1_RXD1 P1_RXD2 P1_RXD3  
P0_RXC P0_CRS P0_TXC P0_TXD2 P1_RXD0  
P0_RXD0 P0_RXD2 P0_RXDV P0_TXD0 P0_TXD1  
VDD3.3  
L
M
N
PLLS  
PLLVSSA  
3.3  
ECS0  
SDATA2 SDATA8 VDD1.2  
VDD1.2 VDD1.2  
VDD1.2 VDD1.2  
PLLVSS1. PLLVSS1.  
2
EWAITN SDATA6 SDATA12 WRSTO  
2
U3TXD  
VDD1.2  
VDD1.2  
PLLD  
SDATA1 SDATA5 SDATA11 NRBN1  
SCANEN VDD1.2 GND  
GND  
U1DSRN U1RXD  
P0_RXD1 P0_RXD3 P0_RXER P0_COL  
VDD1.2 VDD1.2 VDD1.2 VDD1.2  
P
R
SDATA4 SDATA10 NCLE  
SDATA9 SDATA15 NCEN1  
NREN  
RESETN VDD2.5 VDD2.5 VDD2.5 VDD2.5 VDD2.5 VDD2.5 VDD2.5 VDD2.5 VDD2.5 U2RXD  
U1TXD  
U2TXD  
U3RXD  
U1CTSN U1DCDN  
GPIO2/EI  
NWEN  
NRBN0  
DATA1  
DATA3  
DATA4  
DM0  
VREF  
VREF  
VDD2.5 VDD2.5 VDD2.5 VDD2.5 RSVD  
BA1  
CKE  
RASN  
CSN  
ADDR2  
CASN  
ADDR10 ADDR13 NT2  
GPIO0/EI GPIO4/TO GPIO5/TO  
ADDR11 NT0 UT0 UT1  
U4RXD  
U4TXD  
T
SDATA14 NALE  
NWPN  
DQS0  
DM1  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
ADDR3  
U
GPIO1/EI GPIO3/EI  
ADDR12 NT1 NT3  
TESTEN1 TESTEN NCEN0  
DATA6  
DATA5  
DATA7  
DATA8  
DATA9  
DATA11 DQS1  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
BA0  
WEN  
ADDR0  
RSVD  
RSVD  
ADDR4  
RSVD  
RSVD  
V
W
Y
XCLK2  
XCLK1  
TEST2  
TEST1  
SDOCLK DATA0  
SDICLK DATA2  
DATA12 DATA15 RSVD  
CLK0N  
CLK0  
CLK1N  
CLK1  
ADDR5  
ADDR1  
ADDR8  
ADDR6  
ADDR9  
ADDR7  
DATA10 DATA13 DATA14 RSVD  
Power - 1.2V (digital & analog)  
PCI  
Power - 3.3V (digital & analog)  
VDD2.5  
UART  
I2S  
JTAG  
Test  
USB  
Strap/Reset/XTAL Signals  
ROM/SRAM/NAND  
DDR  
GPIO  
GND  
Ethernet  
I2C/SPI  
SDIO  
Note: for KSZ9692XPB SDIO balls (D14, C18, C15, C16, E13, C17, C14, D13) and PCI balls (E4, D4, D3, E6, F6, D1) are no connect.  
Figure 20. Ball Grid Array Map  
M9999-031810-4.0  
March 2010  
43  
 
Micrel, Inc.  
KSZ9692MPB/KSZ9692XPB  
Package Information  
Figure 21. 400-Pin PBGA  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com  
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its  
use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant  
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2008 Micrel, Incorporated.  
M9999-031810-4.0  
March 2010  
44  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY