MCP1407T-E/PA [MICROCHIP]

6A High-Speed Power MOSFET Drivers; 6A高速功率MOSFET驱动器
MCP1407T-E/PA
型号: MCP1407T-E/PA
厂家: MICROCHIP    MICROCHIP
描述:

6A High-Speed Power MOSFET Drivers
6A高速功率MOSFET驱动器

驱动器 MOSFET驱动器 驱动程序和接口 接口集成电路 光电二极管
文件: 总22页 (文件大小:889K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1406/07  
6A High-Speed Power MOSFET Drivers  
Features  
General Description  
• High Peak Output Current: 6.0A (typ.)  
The MCP1406/07 devices are  
a
family of  
buffers/MOSFET drivers that feature a single-output  
with 6A peak drive current capability, low shoot-through  
current, matched rise/fall times and propagation delay  
times. These devices are pin-compatible and are  
improved versions of the TC4420/TC4429 MOSFET  
drivers.  
• Low Shoot-Through/Cross-Conduction Current in  
Output Stage  
• Wide Input Supply Voltage Operating Range:  
- 4.5V to 18V  
• High Capacitive Load Drive Capability:  
- 2500 pF in 20 ns  
The MCP1406/07 MOSFET drivers can easily charge  
and discharge 2500 pF gate capacitance in under  
20 ns, provide low enough impedances in both the on  
and off states to ensure the MOSFETs intended state  
will not be affected, even by large transients. The input  
to the MCP1406/07 may be driven directly from either  
TTL or CMOS (3V to 18V).  
- 6800 pF in 40 ns  
• Short Delay Times: 40 ns (typ.)  
• Matched Rise/Fall Times  
• Low Supply Current:  
- With Logic ‘1’ Input – 130 µA (typ.)  
- With Logic ‘0’ Input – 35 µA (typ.)  
These devices are highly latch-up resistant under any  
conditions within their power and voltage ratings. They  
are not subject to damage when up to 5V of noise  
spiking (of either polarity) occurs on the ground pin. All  
terminals are fully protect against Electrostatic  
Discharge (ESD) up to 4 kV.  
• Latch-Up Protected: Will Withstand 1.5A Reverse  
Current  
• Logic Input Will Withstand Negative Swing Up To  
5V  
• Pin compatible with the TC4420/TC4429 devices  
• Space-saving 8-Pin SOIC, PDIP and 8-Pin 6x5  
DFN Packages  
The MCP1406/07 single-output 6A MOSFET driver  
family is offered in both surface-mount and pin-  
through-hole packages with a -40°C to +125°C  
temperature rating, making it useful in any wide  
temperature range application.  
Applications  
• Switch Mode Power Supplies  
• Pulse Transformer Drive  
• Line Drivers  
• Motor and Solenoid Drive  
Package Types  
5-Pin TO-220  
Tab is  
Common  
to VDD  
8-Pin PDIP/SOIC  
8-Pin 6x5 DFN  
VDD  
INPUT  
NC  
1
2
3
VDD  
8 VDD  
VDD  
INPUT  
NC  
VDD VDD  
OUT  
OUT  
OUT  
OUT  
GND  
7
6
OUT OUT  
OUT OUT  
GND GND  
4
5
1
2
3
GND  
GND  
4
5
GND  
Note 1: Duplicate pins must both be connected for proper operation.  
2: Exposed pad of the DFN package is electrically isolated.  
© 2006 Microchip Technology Inc.  
DS22019A-page 1  
MCP1406/07  
Functional Block Diagram(1)  
VDD  
Inverting  
130 µA  
300 mV  
Output  
Output  
Non-inverting  
Input  
Effective  
Input C = 25 pF  
4.7V  
MCP1406 Inverting  
MCP1407 Non-inverting  
GND  
Note 1: Unused inputs should be grounded.  
DS22019A-page 2  
© 2006 Microchip Technology Inc.  
MCP1406/07  
Notice: Stresses above those listed under "Maximum  
Ratings" may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational sections of this specification is not intended.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Supply Voltage ................................................................+20V  
Input Voltage ...............................(VDD + 0.3V) to (GND – 5V)  
Input Current (VIN>VDD)................................................50 mA  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, TA = +25°C, with 4.5V VDD 18V.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input  
Logic ‘1’, High Input Voltage  
Logic ‘0’, Low Input Voltage  
Input Current  
VIH  
VIL  
IIN  
2.4  
1.8  
1.3  
0.8  
V
V
–10  
-5  
10  
µA 0V VIN VDD  
Input Voltage  
VIN  
VDD+0.3  
V
Output  
High Output Voltage  
Low Output Voltage  
Output Resistance, High  
Output Resistance, Low  
Peak Output Current  
Continuous Output Current  
VOH  
VOL  
ROH  
ROL  
IPK  
VDD – 0.025  
0.025  
2.8  
V
V
Ω
Ω
A
A
A
DC Test  
1.3  
DC Test  
2.1  
1.5  
6
IOUT = 10 mA, VDD = 18V  
IOUT = 10 mA, VDD = 18V  
VDD = 18V (Note 2)  
Note 2, Note 3  
2.5  
IDC  
Latch-Up Protection With-  
stand Reverse Current  
IREV  
1.5  
Duty cycle 2%, t 300 µsec.  
Switching Time (Note 1)  
Rise Time  
tR  
tF  
20  
20  
30  
30  
ns  
ns  
Figure 4-1, Figure 4-2  
CL = 2500 pF  
Fall Time  
Figure 4-1, Figure 4-2  
CL = 2500 pF  
Delay Time  
tD1  
tD2  
40  
40  
55  
55  
ns  
ns  
Figure 4-1, Figure 4-2  
Figure 4-1, Figure 4-2  
Delay Time  
Power Supply  
Supply Voltage  
Power Supply Current  
VDD  
IS  
4.5  
130  
35  
18.0  
250  
100  
V
µA VIN = 3V  
µA VIN = 0V  
IS  
Note 1: Switching times ensured by design.  
2: Tested during characterization, not production tested.  
3: Valid for AT and MF packages only. TA = +25°C  
© 2006 Microchip Technology Inc.  
DS22019A-page 3  
MCP1406/07  
DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE)  
Electrical Specifications: Unless otherwise indicated, operating temperature range with 4.5V VDD 18V.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input  
Logic ‘1’, High Input Voltage VIH  
2.4  
0.8  
V
V
Logic ‘0’, Low Input Voltage  
Input Current  
VIL  
IIN  
–10  
-5  
+10  
µA  
V
0V VIN VDD  
Input Voltage  
VIN  
VDD+0.3  
Output  
High Output Voltage  
Low Output Voltage  
Output Resistance, High  
Output Resistance, Low  
Switching Time (Note 1)  
Rise Time  
VOH VDD – 0.025  
0.025  
5.0  
V
V
Ω
Ω
DC TEST  
VOL  
ROH  
ROL  
DC TEST  
3.0  
2.3  
IOUT = 10 mA, VDD = 18V  
IOUT = 10 mA, VDD = 18V  
5.0  
tR  
tF  
25  
25  
40  
40  
ns  
ns  
Figure 4-1, Figure 4-2  
CL = 2500 pF  
Fall Time  
Figure 4-1, Figure 4-2  
CL = 2500 pF  
Delay Time  
tD1  
tD2  
50  
50  
65  
65  
ns  
ns  
Figure 4-1, Figure 4-2  
Figure 4-1, Figure 4-2  
Delay Time  
Power Supply  
Supply Voltage  
Power Supply Current  
VDD  
IS  
4.5  
200  
50  
18.0  
500  
150  
V
µA  
VIN = 3V  
VIN = 0V  
Note 1: Switching times ensured by design.  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, all parameters apply with 4.5V VDD 18V.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
Package Thermal Resistances  
Thermal Resistance, 8L-6x5 DFN  
TA  
TJ  
TA  
–40  
+125  
+150  
+150  
°C  
°C  
°C  
–65  
θJA  
33.2  
°C/W Typical four-layer board with  
vias to ground plane  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 5L-TO-220  
θJA  
θJA  
θJA  
125  
155  
71  
°C/W  
°C/W  
°C/W  
DS22019A-page 4  
© 2006 Microchip Technology Inc.  
MCP1406/07  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C with 4.5V <= VDD <= 18V.  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
10,000 pF  
10,000 pF  
8,200 pF  
8,200 pF  
1,000 pF  
4,700 pF  
2,500 pF  
4,700 pF  
1,000 pF  
2,500 pF  
6,800 pF  
6,800 pF  
100 pF  
100 pF  
4
6
8
10  
12  
14  
16  
18  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-1:  
Rise Time vs. Supply  
FIGURE 2-4:  
Fall Time vs. Supply  
Voltage.  
Voltage.  
80  
70  
60  
50  
40  
30  
70  
60  
50  
40  
30  
20  
10  
5V  
10V  
10V  
15V  
5V  
15V  
20  
10  
0
0
100  
1000  
10000  
100  
1000  
10000  
Capacitive Load (pF)  
Capacitive Load (pF)  
FIGURE 2-2:  
Rise Time vs. Capacitive  
FIGURE 2-5:  
Fall Time vs. Capacitive  
Load.  
Load.  
30  
85  
VDD = 18V  
VIN = 5V  
tRISE  
tD1  
25  
20  
15  
10  
5
75  
tFALL  
65  
tD2  
55  
45  
0
35  
4
6
8
10  
12  
14  
16  
18  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
Supply Voltage (V)  
FIGURE 2-3:  
Rise and Fall Times vs.  
FIGURE 2-6:  
Propagation Delay vs.  
Temperature.  
Supply Voltage.  
© 2006 Microchip Technology Inc.  
DS22019A-page 5  
MCP1406/07  
Typical Performance Curves (Continued)  
Note: Unless otherwise indicated, TA = +25°C with 4.5V <= VDD <= 18V.  
200  
175  
150  
125  
100  
75  
250  
200  
150  
100  
50  
VDD = 12V  
VDD = 18V  
Input = High  
Input = Low  
tD1  
50  
tD2  
0
25  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
2
3
4
5
6
7
8
9
10  
Input Amplitude (V)  
FIGURE 2-7:  
Propagation Delay Time vs.  
FIGURE 2-10:  
Quiescent Current vs.  
Input Amplitude.  
Temperature.  
55  
2
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
VDD = 18V  
VIN = 5V  
50  
VHI  
45  
40  
35  
tD2  
VLO  
tD1  
30  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
FIGURE 2-8:  
Propagation Delay Time vs.  
FIGURE 2-11:  
Input Threshold vs. Supply  
Temperature.  
Voltage.  
2
180  
160  
140  
120  
100  
80  
VDD = 12V  
VHI  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1
INPUT = 1  
VLO  
60  
40  
INPUT = 0  
20  
0
4
6
8
10  
12  
14  
16  
18  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (oC)  
Supply Voltage (V)  
FIGURE 2-9:  
Quiescent Current vs.  
FIGURE 2-12:  
Input Threshold vs.  
Supply Voltage.  
Temperature.  
DS22019A-page 6  
© 2006 Microchip Technology Inc.  
MCP1406/07  
Typical Performance Curves (Continued)  
Note: Unless otherwise indicated, TA = +25°C with 4.5V <= VDD <= 18V.  
150  
125  
100  
75  
120  
100  
80  
60  
40  
20  
0
VDD = 18V  
VDD = 18V  
10,000 pF  
1 MHz  
6,800 pF  
1,000 pF  
50 kHz  
100 kHz  
2,500 pF  
200 kHz  
50  
500 kHz  
4,700 pF  
25  
100 pF  
0
10  
100  
1000  
100  
1000  
Capacitive Load (pF)  
10000  
Frequency (kHz)  
FIGURE 2-13:  
Supply Current vs.  
FIGURE 2-16:  
Supply Current vs.  
Capacitive Load.  
Frequency.  
150  
80  
VDD = 12V  
VDD = 12V  
70  
10,000 pF  
6,800 pF  
2 MHz  
1 MHz  
125  
100  
75  
60  
50  
40  
30  
20  
10  
1,000 pF  
4,700 pF  
50 kHz  
100 kHz  
200 kHz  
50  
25  
0
500 kHz  
2,500 pF  
100 pF  
0
10  
100  
1000  
100  
1000  
10000  
Frequency (kHz)  
Capacitive Load (pF)  
FIGURE 2-14:  
Supply Current vs.  
FIGURE 2-17:  
Supply Current vs.  
Capacitive Load.  
Frequency.  
100  
90  
40  
VDD = 6V  
35  
10,000 pF  
6,800 pF  
2 MHz  
VDD = 6V  
80  
70  
60  
50  
40  
100 kHz  
30  
25  
20  
15  
10  
5
1 MHz  
4,700 pF  
1,000 pF  
50 kHz  
200 kHz  
30  
500 kHz  
2,500 pF  
20  
10  
0
100 pF  
0
100  
1000  
10000  
10  
100  
1000  
Capacitive Load (pF)  
Frequency (kHz)  
FIGURE 2-15:  
Supply Current vs.  
FIGURE 2-18:  
Supply Current vs.  
Capacitive Load.  
Frequency.  
© 2006 Microchip Technology Inc.  
DS22019A-page 7  
MCP1406/07  
Typical Performance Curves (Continued)  
Note: Unless otherwise indicated, TA = +25°C with 4.5V <= VDD <= 18V.  
-8  
10  
7
6
5
4
3
2
1
VIN = 2.5V (MCP1407)  
IN = 0V (MCP1406)  
TJ = +125oC  
V
-9  
10  
TJ = +25oC  
-10  
10  
4
6
8
10  
12  
14  
16  
18  
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-19:  
Output Resistance (Output  
FIGURE 2-21:  
Crossover Energy vs.  
High) vs. Supply Voltage.  
Supply Voltage.  
7
6
VIN = 0V (MCP1407)  
IN = 2.5V (MCP1406)  
V
5
TJ = +125oC  
4
3
TJ = +25oC  
2
1
4
6
8
10  
12  
14  
16  
18  
Supply Voltage (V)  
FIGURE 2-20:  
Output Resistance (Output  
Low) vs. Supply Voltage.  
DS22019A-page 8  
© 2006 Microchip Technology Inc.  
MCP1406/07  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
(1)  
TABLE 3-1:  
PIN FUNCTION TABLE  
8-Pin  
PDIP, SOIC  
8-Pin  
DFN  
5-Pin  
TO-220  
Symbol  
Description  
1
2
1
2
1
VDD  
INPUT  
NC  
Supply Input  
Control Input  
3
3
2
No Connection  
Ground  
4
4
GND  
5
5
4
GND  
Ground  
6
6
5
OUTPUT  
OUTPUT  
VDD  
CMOS Push-Pull Output  
CMOS Push-Pull Output  
Supply Input  
7
7
3
8
8
PAD  
TAB  
NC  
Exposed Metal Pad  
VDD  
Metal Tab at V Potential  
DD  
Note 1: Duplicate pins must be connected for proper operation.  
3.1  
Supply Input (VDD  
)
3.5  
Exposed Metal Pad  
VDD is the bias supply input for the MOSFET driver and  
has a voltage range of 4.5V to 18V. This input must be  
decoupled to ground with local capacitors. The  
The exposed metal pad of the DFN package is not  
internally connected to any potential. Therefore, this  
pad can be connected to a ground plane or other  
copper plane on a printed circuit board to aid in heat  
removal from the package.  
bypass capacitors provide  
a
localized low-  
impedance path for the peak currents that are to be  
provided to the load.  
3.6  
TO-220 Metal Tab  
3.2  
Control Input (INPUT)  
The metal tab on the TO-220 package is at VDD  
potentail. This metal tab is not intended to be the VDD  
connection to MCP1406/07. VDD should be supplied  
using the Supply Input pin of the TO-220.  
The MOSFET driver input is a high-impedance,  
TTL/CMOS-compatible input. The input also has  
hysteresis between the high and low input levels,  
allowing them to be driven from slow rising and falling  
signals, and to provide noise immunity.  
3.3  
Ground (GND)  
Ground is the device return pin. The ground pin should  
have a low impedance connection to the bias supply  
source return. High peak currents will flow out the  
ground pin when the capacitive load is being  
discharged.  
3.4  
CMOS Push-Pull Output  
(OUTPUT)  
The output is a CMOS push-pull output that is capable  
of sourcing peak currents of 6A (VDD = 18V). The low  
output impedance ensures the gate of the external  
MOSFET will stay in the intended state even during  
large transients. These output also has a reverse  
current latch-up rating of 1.5A.  
© 2006 Microchip Technology Inc.  
DS22019A-page 9  
MCP1406/07  
4.0  
4.1  
APPLICATION INFORMATION  
General Information  
VDD = 18V  
1 µF  
MOSFET drivers are high-speed, high current devices  
which are intended to provide high peak currents to  
charge the gate capacitance of external MOSFETs or  
IGBTs. In high frequency switching power supplies, the  
PWM controller may not have the drive capability to  
directly drive the power MOSFET. A MOSFET driver  
like the MCP1406/07 family can be used to provide  
additional drive current capability.  
0.1 µF  
Ceramic  
Input  
Output  
CL = 2500 pF  
MCP1407  
4.2  
MOSFET Driver Timing  
The ability of a MOSFET driver to transition from a fully  
off state to a fully on state are characterized by the  
drivers rise time (tR), fall time (tF), and propagation  
delays (tD1 and tD2). The MCP1406/07 family of  
devices is able to make this transition very quickly.  
Figure 4-1 and Figure 4-2 show the test circuits and  
timing waveforms used to verify the MCP1406/07 tim-  
ing.  
+5V  
90%  
Input  
10%  
0V  
18V  
90%  
90%  
tD1  
tD2  
tF  
tR  
Output  
0V  
10%  
10%  
VDD = 18V  
0.1 µF  
1 µF  
FIGURE 4-2:  
Waveform.  
Non-Inverting Driver Timing  
Ceramic  
Input  
Output  
4.3  
Decoupling Capacitors  
CL = 2500 pF  
Careful layout and decoupling capacitors are highly  
recommended when using MOSFET drivers. Large  
currents are required to charge and discharge  
capacitive loads quickly. For example, 2.25A are  
needed to charge a 2500 pF load with 18V in 20 ns.  
MCP1406  
+5V  
90%  
To operate the MOSFET driver over a wide frequency  
range with low supply impedance, a ceramic and low  
ESR film capacitor are recommended to be placed in  
parallel between the driver VDD and GND. A 1.0 µF low  
ESR film capacitor and a 0.1 µF ceramic capacitor  
placed between pins 1, 8 and 4, 5 should be used.  
These capacitors should be placed close to the driver  
to minimized circuit board parasitics and provide a local  
source for the required current.  
Input  
0V  
10%  
tD1  
90%  
10%  
tD2  
tF  
tR  
18V  
90%  
Output  
10%  
0V  
FIGURE 4-1:  
Waveform.  
Inverting Driver Timing  
4.4  
PCB Layout Considerations  
Proper PCB layout is important in a high current, fast  
switching circuit to provide proper device operation and  
robustness of design. PCB trace loop area and  
inductance should be minimized by the use of a ground  
plane or ground trace located under the MOSFET gate  
drive signals, separate analog and power grounds, and  
local driver decoupling.  
DS22019A-page 10  
© 2006 Microchip Technology Inc.  
MCP1406/07  
The MCP1406/07 devices have two pins each for VDD  
,
4.5.2  
QUIESCENT POWER DISSIPATION  
OUTPUT, and GND. Both pins must be used for proper  
operation. This also lowers path inductance which will,  
along with proper decoupling, help minimize ringing in  
the circuit.  
The power dissipation associated with the quiescent  
current draw depends upon the state of the input pin.  
The MCP1406/07 devices have a quiescent current  
draw when the input is high of 0.13 mA (typ) and  
0.035 mA (typ) when the input is low. The quiescent  
power dissipation is:  
Placing a ground plane beneath the MCP1406/07 will  
help as a radiated noise shield as well as providing  
some heat sinking for power dissipated within the  
device.  
PQ = (IQH × D + IQL × (1 – D)) × VDD  
4.5  
Power Dissipation  
Where:  
The total internal power dissipation in a MOSFET driver  
is the summation of three separate power dissipation  
elements.  
IQH = Quiescent current in the high state  
D = Duty cycle  
IQL = Quiescent current in the low state  
VDD = MOSFET driver supply voltage  
PT = PL + PQ + PCC  
Where:  
4.5.3  
OPERATING POWER DISSIPATION  
PT = Total power dissipation  
PL = Load power dissipation  
PQ = Quiescent power dissipation  
PCC = Operating power dissipation  
The operating power dissipation occurs each time the  
MOSFET driver output transitions because for a very  
short period of time both MOSFETs in the output stage  
are on simultaneously. This cross-conduction current  
leads to a power dissipation describes as:  
4.5.1  
CAPACITIVE LOAD DISSIPATION  
PCC = CC × f × VDD  
The power dissipation caused by a capacitive load is a  
direct function of frequency, total capacitive load, and  
supply voltage. The power lost in the MOSFET driver  
for a complete charging and discharging cycle of a  
MOSFET is:  
Where:  
CC = Cross-conduction constant (A*sec)  
f = Switching frequency  
VDD = MOSFET driver supply voltage  
2
PL = f × CT × VDD  
Where:  
f = Switching frequency  
CT = Total load capacitance  
VDD = MOSFET driver supply voltage  
© 2006 Microchip Technology Inc.  
DS22019A-page 11  
MCP1406/07  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information (Not to Scale)  
5-Lead TO-220  
Example  
MCP1406  
XXXXXXXXX  
XXXXXXXXX  
YYWWNNN  
e
3
EAT^^  
0644256  
8-Lead DFN  
Example:  
XXXXXXX  
XXXXXXX  
XXYYWW  
NNN  
MCP1406  
e
3
E/MF^
0644  
256  
8-Lead PDIP (300 mil)  
Example:  
MCP1407  
XXXXXXXX  
XXXXXNNN  
e
3
E/P^^256  
0644  
YYWW  
8-Lead SOIC (150 mil)  
Example:  
MCP1406E  
XXXXXXXX  
XXXXYYWW  
NNN  
SN^  
e
3
0644  
256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS22019A-page 12  
© 2006 Microchip Technology Inc.  
MCP1406/07  
5-Lead Plastic Transistor Outline (AT) (TO-220)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
L
H1  
Q
β
e3  
e1  
E
e
EJECTOR PIN  
ØP  
(5°)  
α
C1  
A
J1  
F
D
Units  
e
INCHES  
MIN  
.060  
.263  
.030  
.160  
.385  
.560  
.234  
.045  
.103  
.146  
.540  
.090  
.014  
.025  
3°  
*
MILLIMETERS  
MIN  
Dimension Limits  
MAX  
.072  
.273  
.040  
.190  
.415  
.590  
.258  
.055  
.113  
.156  
.560  
.115  
.022  
.040  
7°  
MAX  
1.83  
6.93  
1.02  
4.83  
10.54  
14.99  
6.55  
1.40  
2.87  
3.96  
14.22  
2.92  
0.56  
1.02  
7°  
Lead Pitch  
1.52  
Overall Lead Centers  
Space Between Leads  
Overall Height  
e1  
e3  
A
6.68  
0.76  
4.06  
Overall Width  
E
9.78  
Overall Length  
D
14.22  
5.94  
Flag Length  
H1  
F
Flag Thickness  
Through Hole Center  
Through Hole Diameter  
Lead Length  
1.14  
Q
P
2.62  
3.71  
L
J1  
C1  
β
13.72  
2.29  
Base to Bottom of Lead  
Lead Thickness  
Lead Width  
0.36  
0.64  
α
Mold Draft Angle  
3°  
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254 mm) per side.  
JEDEC equivalent: TO-220  
Drawing No. C04-036  
Revised 08-01-05  
© 2006 Microchip Technology Inc.  
DS22019A-page 13  
MCP1406/07  
8-Lead Plastic Dual Flat, No Lead Package (MF) - 6x5 mm Body [DFN-S]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
e
D
L
b
N
N
K
E2  
E
EXPOSED PAD  
NOTE 1  
NOTE 1  
1
2
2
1
D2  
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
NOTE 2  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
8
MIN  
MAX  
Number of Pins  
Pitch  
N
e
1.27 BSC  
0.85  
Overall Height  
Standoff  
A
1.00  
0.05  
0.80  
0.00  
0.01  
A1  
0.20 REF  
5.00 BSC  
6.00 BSC  
4.00  
Contact Thickness  
Overall Length  
A3  
D
Overall Width  
E
Exposed Pad Length  
Exposed Pad Width  
Contact Width  
D2  
E2  
b
4.10  
2.40  
0.48  
0.75  
3.90  
2.20  
0.35  
0.50  
0.20  
2.30  
0.40  
0.60  
Contact Length §  
Contact-to-Exposed Pad §  
L
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package may have one or more exposed tie bars at ends.  
3. § Significant Characteristic  
4. Package is saw singulated  
5. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing No. C04–122, Sept. 8, 2006  
DS22019A-page 14  
© 2006 Microchip Technology Inc.  
MCP1406/07  
8-Lead Plastic Dual In-line (PA) – 300 mil Body (PDIP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
INCHES*  
NOM  
8
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
.100  
2.54  
Top to Seating Plane  
A
.140  
.155  
.130  
.170  
3.56  
2.92  
3.94  
3.30  
4.32  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
.145  
3.68  
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
© 2006 Microchip Technology Inc.  
DS22019A-page 15  
MCP1406/07  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil Body (SOIC)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
8
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
.050  
1.27  
Overall Height  
A
.053  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
0
12  
15  
0
12  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
DS22019A-page 16  
© 2006 Microchip Technology Inc.  
MCP1406/07  
APPENDIX A: REVISION HISTORY  
Revision A (December 2006)  
• Original Release of this Document.  
© 2006 Microchip Technology Inc.  
DS22019A-page 17  
MCP1406/07  
NOTES:  
DS22019A-page 18  
© 2006 Microchip Technology Inc.  
MCP1406/07  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
XX  
XXX  
Examples:  
a) MCP1406-E/MF: 6A High-Speed MOSFET  
Driver, Inverting  
Temperature Package Tape & Reel  
Range  
8LD DFN package.  
b) MCP1406-E/AT: 6A High-Speed MOSFET  
Driver, Inverting  
Device:  
MCP1406: 6A High-Speed MOSFET Driver, Inverting  
MCP1406T: 6A High-Speed MOSFET Driver, Inverting  
(Tape and Reel)  
MCP1407: 6A High-Speed MOSFET Driver,  
Non-Inverting  
5LD TO-220 package.  
c) MCP1406-E/SN: 6A High-Speed MOSFET  
Driver, Inverting  
8LD SOIC package.  
MCP1407T: 6A High-Speed MOSFET Driver,  
Non-Inverting (Tape and Reel)  
d) MCP1406-E/P:  
6A High-Speed MOSFET  
Driver, Inverting  
8LD PDIP package.  
Temperature Range:  
Package: *  
E
=
-40°C to +125°C  
e) MCP1406T-E/MF: Tape and Reel,  
6A High-Speed MOSFET  
AT  
MF  
PA  
SN  
=
=
=
=
TO-220, 5-Lead  
Driver, Inverting,  
8LD DFN pkg.  
Dual, Flat, No-Lead (6x5 mm Body), 8-lead  
Plastic DIP, (300 mil body), 8-lead  
Plastic SOIC (150 mil Body), 8-Lead  
f)  
MCP1406T-E/SN: Tape and Reel,  
6A High-Speed MOSFET  
Driver, Inverting,  
8LD SOIC pkg.  
* All package offerings are Pb Free (Lead Free)  
a) MCP1407-E/MF: 6A High-Speed MOSFET  
Driver, Non-Inverting  
8LD DFN package.  
b) MCP1407-E/AT: 6A High-Speed MOSFET  
Driver, Non-Inverting  
5LD TO-220 package.  
c) MCP1407-E/SN: 6A High-Speed MOSFET  
Driver, Non-Inverting  
8LD SOIC package.  
d) MCP1407-E/P:  
6A High-Speed MOSFET  
Driver, Non-Inverting  
8LD PDIP package.  
e) MCP1407T-E/MF: Tape and Reel,  
6A High-Speed MOSFET  
Driver, Non-Inverting,  
8LD DFN pkg.  
f)  
MCP1407T-E/SN: Tape and Reel,  
6A High-Speed MOSFET  
Driver, Non-Inverting,  
8LD SOIC pkg.  
© 2006 Microchip Technology Inc.  
DS22019A-page 19  
MCP1406/07  
NOTES:  
DS22019A-page 20  
© 2006 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active  
Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs,  
microperipherals, nonvolatile memory and analog products. In addition,  
Microchip’s quality system for the design and manufacture of  
development systems is ISO 9001:2000 certified.  
© 2006 Microchip Technology Inc.  
DS22019A-page 21  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS22019A-page 22  
© 2006 Microchip Technology Inc.  

相关型号:

MCP1407T-E/SN

6A High-Speed Power MOSFET Drivers
MICROCHIP

MCP1407T-E/SNVAO

Buffer/Inverter Based MOSFET Driver, 6A, PDSO8
MICROCHIP

MCP1415

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415R

The MCP1415R/16R (different pin configuration of MCP1415/16) devices are small(Tiny) footprint Low
MICROCHIP

MCP1415RT

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415RT-E

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415RT-E/OT

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415RT-OT

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415T

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415T-E

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415T-E/OT

Tiny 1.5A, High-Speed Power MOSFET Driver
MICROCHIP

MCP1415T-E/OTVAO

Buffer/Inverter Based MOSFET Driver, 1.5A, PDSO5
MICROCHIP