MCP1631VT-E/SS [MICROCHIP]

SWITCHING CONTROLLER, 2000 kHz SWITCHING FREQ-MAX, PDSO20, 5.30 MM, LEAD FREE, PLASTIC, SSOP-20;
MCP1631VT-E/SS
型号: MCP1631VT-E/SS
厂家: MICROCHIP    MICROCHIP
描述:

SWITCHING CONTROLLER, 2000 kHz SWITCHING FREQ-MAX, PDSO20, 5.30 MM, LEAD FREE, PLASTIC, SSOP-20

开关 光电二极管
文件: 总34页 (文件大小:565K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1631/HV/MCP1631V/VHV  
High-Speed, Pulse Width Modulator  
Features  
General Description  
• Programmable Switching Battery Charger  
Designs  
The MCP1631/MCP1631V is a high-speed  
analog pulse width modulator (PWM) used to develop  
intelligent power systems. When combined with a  
microcontroller, the MCP1631/MCP1631V will control  
the power system duty cycle providing output voltage  
or current regulation. The microcontroller can be used  
to adjust output voltage or current, switching frequency  
and maximum duty cycle while providing additional  
features making the power system more intelligent,  
robust and adaptable.  
• High-Speed Analog PWM Controller  
(2 MHz Operation)  
• Combine with Microcontroller for “Intelligent”  
Power System Development  
• Peak Current Mode Control (MCP1631)  
• Voltage Mode Control (MCP1631V)  
• High Voltage Options Operate to +16V Input:  
- MCP1631HV Current Mode  
Typical applications for the MCP1631/MCP1631V  
include programmable switch mode battery chargers  
capable of charging multiple chemistries, like Li-Ion,  
NiMH, NiCd and Pb-Acid configured as single or  
multiple cells. By combining with a small  
microcontroller, intelligent LED lighting designs and  
programmable SEPIC topology voltage and current  
sources can also be developed.  
- MCP1631VHV Voltage Mode  
• Regulated Output Voltage Options:  
-
-
+5.0V or +3.3V  
250 mA maximum current  
• External Oscillator Input sets Switching  
Frequency and Maximum Duty Cycle Limit  
• External Reference Input Sets Regulation Voltage  
or Current  
The MCP1631/MCP1631V inputs were developed to  
be attached to the I/O pins of a microcontroller for  
design flexibility. Additional features integrated into the  
MCP1631HV/MCP1631VHV provide signal condition-  
ing and protection features for battery charger or  
constant current source applications.  
• Error Amplifier, Battery Current ISNS Amplifier,  
Battery Voltage VSNS Amplifier Integrated  
• Integrated Overvoltage Comparator  
• Integrated High Current Low Side MOSFET  
Driver (1A Peak)  
For applications that operate from a high voltage input,  
the MCP1631HV and MCP1631VHV device options  
can be used to operate directly from a +3.5V to +16V  
input. For these applications, an additional low drop out  
+5V or +3.3V regulated output is available and can  
provide current up to 250 mA to power a microcontroller  
and auxiliary circuits.  
• Shutdown mode reduces IQ to 2.4 µA (typical)  
• Internal Overtemperature Protection  
• Undervoltage Lockout (UVLO)  
• Package Options:  
- 4 mm x 4 mm 20-Lead QFN  
(MCP1631/MCP1631V only)  
- 20-Lead TSSOP (All Devices)  
- 20-Lead SSOP (All Devices)  
Applications  
• High Input Voltage Programmable Switching  
Battery Chargers  
• Supports Multiple Chemistries Li-Ion, NiMH, NiCd  
Intelligent and Pb-Acid  
• LED Lighting Applications  
• Constant Current SEPIC Power Train Design  
• USB Input Programmable Switching Battery  
Chargers  
© 2008 Microchip Technology Inc.  
DS22063B-page 1  
MCP1631/HV/MCP1631V/VHV  
Package Types  
20-Lead SSOP and TSSOP  
MCP1631/MCP1631V  
20-Lead SSOP and TSSOP  
MCP1631HV/MCP1631VHV  
PGND  
20  
PGND  
VEXT  
19 PVDD  
18  
20  
1
2
1
2
VEXT  
19 PVDD  
18  
17 FB  
SHDN  
OSCIN  
SHDN  
OSCIN  
CS/VRAMP  
17 FB  
3
3
CS/VRAMP  
OSCDIS  
4
OSCDIS  
4
COMP  
COMP  
16  
15  
14  
16  
15  
14  
13  
12  
5
5
OVIN  
VREF  
OVIN  
VREF  
ISOUT  
ISOUT  
VSOUT  
ISIN  
6
6
VSOUT  
7
7
AGND  
NC  
AGND  
NC  
13 ISIN  
8
8
12  
11  
NC  
NC  
VSIN  
9
9
VSIN  
AVDD_IN  
11 AVDD_OUT  
10  
10  
NC  
VIN  
20 19 1 8 17 16  
AGND  
NC  
1
2
15  
PGND  
14  
VEXT  
EP  
21  
AVDD_IN  
3
4
13 PVDD  
NC  
12  
11  
NC  
CS/VRAMP  
VSIN  
5
6
7
8
9
10  
20 Lead 4x4 QFN  
MCP1631/MCP1631V  
DS22063B-page 2  
© 2008 Microchip Technology Inc.  
MCP1631/HV/MCP1631V/VHV  
Typical Application Diagram  
Multi-cell, Multi-Chemistry Charger  
SCHOTTKY  
CC  
VIN Range +5.5V to +16V  
CIN  
DIODE  
L1A  
RTHERM  
COUT  
L1B  
MCP1631HV  
VEXT  
VIN  
CS  
AVDD_OUT  
PVDD  
PGND  
ISIN  
OSCIN  
ISOUT  
NC  
OVIN  
VSIN  
VREF  
FB  
NC  
SHDN  
OSCDIS  
VSOUT  
COMP  
AGND  
C
R
PIC12F683  
GP1/C  
GP3  
VDD  
AVDD_OUT  
CCP1  
GP5  
GP4  
GND  
GP0/C  
© 2008 Microchip Technology Inc.  
DS22063B-page 3  
MCP1631/HV/MCP1631V/VHV  
Functional Block Diagram(1)  
MCP1631HV/VHV High Speed PIC PWM  
Internal Regulator for MCP1631HV and MCP1631VHV  
Options Only; For MCP1631 and MCP1631V AVDD_IN is input  
+3.3V or +5.0V  
LDO  
VDD  
Internal  
1.2V VREF  
VIN  
250 mA  
VDD  
Overvoltage Comp  
w/ Hysteresis  
AVDD_OUT / AVDD_IN  
-
C2  
+
Shutdown Control  
A3 Remains On  
SHDN  
OVIN  
PVDD  
OSCDIS  
VDD  
100 k  
0.1 µA  
OT  
OSCIN  
VEXT  
UVLO  
PGND  
S
R
Q
VDD  
VDD  
100 kΩ  
CS/VRAMP  
COMP  
10R  
VDD  
Q
+
C1  
-
ISIN  
R
R
-
VDD  
A2  
+
FB  
VREF  
-
A1  
+
2R  
ISOUT  
Remove for MCP1631V  
and MCP1631VHV Options  
R
VDD  
A3  
AGND  
2.7V Clamp  
VSIN  
+
-
Note 1: For Shutdown control, amplifier A3 remains functional so  
VSOUT  
battery voltage can be sensed during discharge phase.  
2: For HV options, internal Low Drop Out Regulator provides  
+3.3V or +5.0V bias to VDD  
.
DS22063B-page 4  
© 2008 Microchip Technology Inc.  
MCP1631/HV/MCP1631V/VHV  
Notice: Stresses above those listed under "Maximum  
Ratings" may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational sections of this specification is not intended.  
Exposure to maximum rating conditions for extended periods  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VIN - GND (MCP1631/V)................................................+6.5V  
VIN - GND (MCP1631HV/VHV)....................................+18.0V  
All Other I/O ..............................(GND - 0.3V) to (VDD + 0.3V)  
LX to GND............................................. -0.3V to (VDD + 0.3V)  
VEXT Output Short Circuit Current ........................Continuous  
Storage temperature .....................................-65°C to +150°C  
Maximum Junction Temperature...................-40°C to +150°C  
Operating Junction Temperature...................-40°C to +125°C  
ESD Protection On All Pins:  
may affect device reliability.  
HBM.................................................................................4 kV  
MM..................................................................................400V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, VIN = 3.0V to 5.5V, FOSC = 1 MHz with 10% Duty Cycle, CIN = 0.1 µF,  
DD for typical values = 5.0V, TA for typical values = +25°C, TA = -40°C to +125°C for all minimum and maximums.  
V
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Characteristics  
Input Voltage (MCP1631/V)  
VDD  
VDD  
3.0  
3.5  
5.5  
V
V
Non-HV Options  
HV Options (Note 2)  
Input Voltage  
16.0  
(MCP1631HV/VHV)  
Undervoltage Lockout  
(MCP1631/V)  
UVLO  
2.7  
40  
2.8  
64  
3.0  
100  
5
V
VIN Falling, VEXT low when input  
below UVLO threshold  
Undervoltage Lockout Hysteresis UVLO_HYS  
(MCP1631/MCP1631V)  
mV  
mA  
UVLO Hysteresis  
Input Quiescent Current  
(MCP1631/V, MCP1631HV,VHV)  
I(VIN  
)
3.7  
SHDN = VDD =OSCDIS  
SHDN = GND =OSCDIS,  
Shutdown Current  
IIN_SHDN  
I_AVDD for MCP1631/V  
I_VIN for MCP1631HV/VHV  
2.4  
4.4  
12  
17  
µA  
µA  
Note: Amplifier A3 remains  
powered during Shutdown.  
OSCIN, OSCDIS and SHDN Input Levels  
Low Level Input Voltage  
High Level Input Voltage  
Input Leakage Current  
External Oscillator Range  
VIL  
0.8  
1
V
V
VIH  
2.0  
ILEAK  
FOSC  
0.005  
µA  
2
MHz Maximum operating frequency is  
dependent upon circuit topology  
and duty cycle.  
Minimum Oscillator High Time  
Minimum Oscillator Low Time  
T
T
OH_MIN.  
OL_MIN.  
10  
ns  
Oscillator Rise and Fall Time  
Oscillator Input Capacitance  
TR and TF  
COSC  
0.01  
5
10  
µs  
pf  
Note 1  
Note 1: External Oscillator Input (OSCIN) rise and fall times between 10 ns and 10 µs were determined during device  
characterization testing. Signal levels between 0.8V and 2.0V with rise and fall times measured between 10% and 90%  
of maximum and minimum values. Not production tested. Additional timing specifications were fully characterized and  
specified that are not production tested.  
2: The minimum VIN must meet two conditions: VIN 3.5V and VIN (VOUT(MAX) + VDROPOUT(MAX)).  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured over the  
temperature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with an applied input voltage of VOUT(MAX) + VDROPOUT(MAX) or 3.5V, whichever is greater.  
© 2008 Microchip Technology Inc.  
DS22063B-page 5  
MCP1631/HV/MCP1631V/VHV  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise noted, VIN = 3.0V to 5.5V, FOSC = 1 MHz with 10% Duty Cycle, CIN = 0.1 µF,  
V
DD for typical values = 5.0V, TA for typical values = +25°C, TA = -40°C to +125°C for all minimum and maximums.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
External Reference Input  
Reference Voltage Input  
VREF  
0
AVDD  
V
The reference input is capable of  
rail-to-rail operation.  
Internal Driver)  
RDSON P-channel  
RDSON N-channel  
VEXT Rise Time  
RDSon_P  
RDSon_N  
TRISE  
7.2  
3.8  
2.5  
15  
15  
18  
Ω
Ω
ns  
CL = 100 pF  
Typical for VIN = 5V (Note 1)  
VEXT Fall Time  
TFALL  
2.7  
18  
ns  
CL = 100 pF  
Typical for VIN = 5V (Note 1)  
Error Amplifier (A1)  
Input Offset Voltage  
VOS  
IBIAS  
PSRR  
VCM  
-5  
-0.6  
0.05  
85.4  
+5  
1
mV  
µA  
dB  
V
A1 Input Bias Current  
Error Amplifier PSRR  
GND - 0.3  
VIN  
VIN = 3.0V to 5.0V, VCM = 1.2V  
VIN = 5V, VCM = 0V to 2.5V  
Common Mode Input Range  
Common Mode Rejection Ratio  
Open-loop Voltage Gain  
90  
dB  
dB  
AVOL  
80  
95  
RL = 5 kto VIN/2,  
100 mV < VEAOUT < VIN - 100 mV,  
VCM = 1.2V  
Low-level Output  
VOL  
GBWP  
ISINK  
4
25  
3.5  
12  
GND + 65  
mV  
RL = 5 kto VIN/2  
Gain Bandwidth Product  
Error Amplifier Sink Current  
MHz VIN = 5V  
mA  
VIN = 5V, VREF = 1.2V,  
FB = 1.4V, VCOMP = 2.0V  
VIN = 5V, VREF = 1.2V,  
FB = 1.0V, VCOMP = 2.0V,  
V
Error Amplifier Source Current  
ISOURCE  
-2  
-9.8  
mA  
V
Absolute Value  
Current Sense (CS) Amplifier (A2)  
Input Offset Voltage  
VOS  
IBIAS  
-3.0  
1.2  
0.13  
65  
+3.0  
1
mV  
µA  
dB  
CS Input Bias Current  
CS Amplifier PSRR  
PSRR  
VIN = 3.0V to 5.0V, VCM = 0.12V,  
GAIN = 10  
Closed-loop Voltage Gain  
A2VCL  
10  
V/V  
RL = 5 kto VIN/2,  
100 mV < VOUT < VIN - 100 mV,  
VCM = +0.12V  
Low-level Output  
VOL  
ISINK  
5
5
11  
GND + 50  
mV  
mA  
mA  
RL = 5 kto VIN/2  
CS Sink Current  
17.7  
-19.5  
CS Amplifier Source Current  
Voltage Sense (VS) Amplifier (A3)  
Input Offset Voltage  
ISOURCE  
-5  
VOS  
-5  
0.9  
+5  
1
mV  
µA  
VS Input Bias Current  
IBIAS  
0.001  
Note 1: External Oscillator Input (OSCIN) rise and fall times between 10 ns and 10 µs were determined during device  
characterization testing. Signal levels between 0.8V and 2.0V with rise and fall times measured between 10% and 90%  
of maximum and minimum values. Not production tested. Additional timing specifications were fully characterized and  
specified that are not production tested.  
2: The minimum VIN must meet two conditions: VIN 3.5V and VIN (VOUT(MAX) + VDROPOUT(MAX)).  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured over the  
temperature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with an applied input voltage of VOUT(MAX) + VDROPOUT(MAX) or 3.5V, whichever is greater.  
DS22063B-page 6  
© 2008 Microchip Technology Inc.  
MCP1631/HV/MCP1631V/VHV  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise noted, VIN = 3.0V to 5.5V, FOSC = 1 MHz with 10% Duty Cycle, CIN = 0.1 µF,  
DD for typical values = 5.0V, TA for typical values = +25°C, TA = -40°C to +125°C for all minimum and maximums.  
V
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
VS Amplifier PSRR  
PSRR  
VCM  
GND  
65  
1
AVDD  
dB  
V
VIN = 3.0V to 5.0V, VCM = 1.2V  
Rail to Rail Input  
Common Mode Input Range  
Closed-loop Voltage Gain  
A3VCL  
V/V  
RL = 5 kto VIN/2,  
100 mV < VEAOUT < VIN - 100 mV,  
VCM = 1.2V  
Low-level Output  
VOL  
ISINK  
1
38  
5
GND + 85  
mV  
mA  
mA  
RL = 5 kto VIN/2  
VS Amplifier Sink Current  
VS Amplifier Source Current  
Peak Current Sense Input (C1)  
ISOURCE  
-2  
-5  
Maximum Current Sense Signal  
MCP1631/MCP1631HV  
VCS_MAX  
VRAMP  
0.85  
2.7  
0.9  
0.98  
2.9  
V
V
Maximum Ramp Signal  
2.78  
VIN > 4V  
MCP1631V/MCP1631VHV  
Maximum CS input range limited  
by comparator input common  
mode range. VCS_MAX = VIN-1.4V  
Current Sense Input Bias Current  
ICS_B  
-0.1  
8.5  
µA  
ns  
VIN = 5V  
Delay From CS to VEXT  
MCP1631  
TCS_VEXT  
25  
Note 1  
Minimum Duty Cycle  
DCMIN  
0
%
VFB = VREF + 0.1V,  
VCS = GND  
Overvoltage Sense Comparator (C2)  
OV Reference Voltage High  
OV Reference Voltage Low  
OV Hysteresis  
OV_VREF_H  
1.15  
1.23  
1.18  
50  
1.23  
V
V
OV_VREF_L  
OV_HYS  
mV  
Overvoltage Comparator  
Hysteresis  
OV_IN Bias Current  
OV_IBIAS  
TOV_VEXT  
0.001  
63  
1
µA  
ns  
Delay From OV to VEXT  
150  
Delay from OV detection to PWM  
termination (Note 1)  
OV Input Capacitance  
C_OV  
5
pF  
Internal Regulator HV Options Input / Output Characteristics  
Input Operating Voltage  
Maximum Output Current  
Output Short Circuit Current  
VIN  
3.5  
250  
16.0  
V
Note 2  
IOUT_mA  
IOUT_SC  
mA  
mA  
400  
VIN = VIN(MIN) (Note 2),  
VOUT = GND,  
Current (average current)  
measured 10 ms after short is  
applied.  
Output Voltage Regulation  
VOUT  
VR-3.0%  
VR±0.4% VR+3.0%  
50 150  
V
VR = 3.3V or 5.0V  
VOUT Temperature Coefficient  
TCVOUT  
ppm/ Note 3  
°C  
Note 1: External Oscillator Input (OSCIN) rise and fall times between 10 ns and 10 µs were determined during device  
characterization testing. Signal levels between 0.8V and 2.0V with rise and fall times measured between 10% and 90%  
of maximum and minimum values. Not production tested. Additional timing specifications were fully characterized and  
specified that are not production tested.  
2: The minimum VIN must meet two conditions: VIN 3.5V and VIN (VOUT(MAX) + VDROPOUT(MAX)).  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured over the  
temperature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with an applied input voltage of VOUT(MAX) + VDROPOUT(MAX) or 3.5V, whichever is greater.  
© 2008 Microchip Technology Inc.  
DS22063B-page 7  
MCP1631/HV/MCP1631V/VHV  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise noted, VIN = 3.0V to 5.5V, FOSC = 1 MHz with 10% Duty Cycle, CIN = 0.1 µF,  
V
DD for typical values = 5.0V, TA for typical values = +25°C, TA = -40°C to +125°C for all minimum and maximums.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Line Regulation  
Load Regulation  
ΔVOUT  
/
-0.3  
±0.1  
+0.3  
%/V (VOUT(MAX) + VDROPOUT(MAX)) ≤  
VIN 16V Note 2  
(VOUTXΔ  
VIN  
)
ΔVOUT  
/
-2.5  
±1.0  
+2.5  
%
IL = 1.0 mA to 250 mA, Note 4  
VOUT  
Dropout Voltage  
Note 2, Note 5  
VDROPOUT  
330  
525  
650  
725  
mV  
mV  
µs  
IL = 250 mA, VR = 5.0V  
IL = 250 mA, VR = 3.3V  
Output Delay Time  
TDELAY  
eN  
1000  
VIN = 0V to 6V, VOUT = 90% VR,  
RL = 50resistive  
Output Noise  
8
µV/  
IL = 50 mA, f = 1 kHz, COUT =  
(Hz)1/2 1 µF  
Power Supply Ripple Rejection  
Ratio  
PSRR  
44  
dB  
f = 100 Hz, COUT = 1 µF,  
IL = 100 µA,  
INAC =100 mV pk-pk,  
IN = 0 µF, VR = 1.2V  
V
C
Protection Features  
Thermal Shutdown  
TSHD  
150  
18  
°C  
°C  
Thermal Shutdown Hysteresis  
TSHD_HYS  
Note 1: External Oscillator Input (OSCIN) rise and fall times between 10 ns and 10 µs were determined during device  
characterization testing. Signal levels between 0.8V and 2.0V with rise and fall times measured between 10% and 90%  
of maximum and minimum values. Not production tested. Additional timing specifications were fully characterized and  
specified that are not production tested.  
2: The minimum VIN must meet two conditions: VIN 3.5V and VIN (VOUT(MAX) + VDROPOUT(MAX)).  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured over the  
temperature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with an applied input voltage of VOUT(MAX) + VDROPOUT(MAX) or 3.5V, whichever is greater.  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits are specified for: VIN + 3.0V to 5.5V  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Operating Junction Temperature  
Range  
TJ  
-40  
+125  
°C  
Steady State  
Storage Temperature Range  
TA  
TJ  
-65  
+150  
+150  
°C  
°C  
Maximum Junction Temperature  
Package Thermal Resistances  
Thermal Resistance, 20L-TSSOP  
Transient  
θJA  
θJA  
θJA  
90  
89.3  
43  
°C/W Typical 4 Layer board with  
interconnecting vias  
Thermal Resistance, 20L-SSOP  
Thermal Resistance, 20L-QFN  
°C/W Typical 4 Layer board with  
interconnecting vias  
°C/W Typical 4 Layer board with  
interconnecting vias  
DS22063B-page 8  
© 2008 Microchip Technology Inc.  
MCP1631/HV/MCP1631V/VHV  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise noted, VIN = 3.0V to 5.5V, FOSC = 1 MHz with 10% Duty Cycle, CIN = 0.1 µF, VIN for typical values = 5.0V, TA  
for typical values = +25°C.  
2.89  
2.88  
2.87  
2.86  
2.85  
2.84  
2.83  
2.82  
2.81  
2.8  
4.00  
3.70  
3.40  
3.10  
2.80  
2.50  
2.20  
1.90  
1.60  
1.30  
1.00  
VDD = +5.5V  
Device Turn On  
VDD = +5.0V  
VDD = +3.0V  
VDD = +4.0V  
VDD = +3.3V  
Device Turn Off  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-1:  
Undervoltage Lockout vs.  
FIGURE 2-4:  
Shutdown Current vs.  
Temperature.  
Temperature (MCP1631/MCP1631V).  
0.068  
0.067  
0.066  
0.065  
0.064  
0.063  
0.062  
0.061  
1.60  
VDD = +5.5V  
VDD = +5.0V  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
VDD = +4.0V  
VDD = +3.3V  
VDD = +3.0V  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-2:  
Undervoltage Lockout  
FIGURE 2-5:  
Oscillator Input Threshold  
Hysteresis vs. Temperature.  
vs. Temperature.  
4.00  
1.70  
1.60  
1.50  
1.40  
1.30  
1.20  
1.10  
1.00  
VDD = +5.5V  
VDD = +5.0V  
VDD = +5.5V  
3.80  
3.60  
3.40  
3.20  
3.00  
2.80  
VDD = +5.0V  
VDD = +4.0V  
VDD = +4.0V  
VDD = +3.3V  
VDD = +3.3V  
VDD = +3.0V  
0.90  
0.80  
VDD = +3.0V  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-3:  
Input Quiescent Current vs.  
FIGURE 2-6:  
Oscillator Disable Input  
Temperature.  
Threshold vs. Temperature.  
© 2008 Microchip Technology Inc.  
DS22063B-page 9  
MCP1631/HV/MCP1631V/VHV  
Typical Performance Curves (Continued)  
Note: Unless otherwise noted, VIN = 3.0V to 5.5V, FOSC = 1 MHz with 10% Duty Cycle, CIN = 0.1 µF,  
VIN for typical values = 5.0V, TA for typical values = +25°C.  
14  
12  
10  
8
5.0  
4.7  
4.4  
4.1  
3.8  
3.5  
3.2  
2.9  
2.6  
2.3  
2.0  
CL = 100 pF  
VDD = +3.0V  
VDD = +3.3V  
VDD = +3.3V  
VDD = +3.0V  
VDD = +4.0V  
VDD = +5.0V  
VDD = +4.0V  
VDD = +5.0V  
6
VDD = +5.5V  
VDD = +5.5V  
4
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-7:  
V
P-Channel Driver  
FIGURE 2-10:  
V
Fall Time vs.  
EXT  
EXT  
R
vs. Temperature.  
Temperature.  
DSON  
6.6  
6.2  
5.8  
-0.50  
-0.55  
-0.60  
-0.65  
-0.70  
VDD = +5.0V  
VDD = +3.3V  
VDD = +5.5V  
5.4  
VDD = +3.0V  
5.0  
4.6  
4.2  
3.8  
3.4  
VDD = +3.0V  
VDD = +3.3V  
VDD = +4.0V  
VDD = +4.0V  
VDD = +5.0V  
-0.75  
-0.80  
VDD = +5.5V  
3.0  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-8:  
V
N-Channel Driver  
FIGURE 2-11:  
Amplifier A1 Offset Voltage  
EXT  
R
vs. Temperature.  
vs. Temperature.  
DSON  
40  
35  
30  
25  
20  
15  
10  
4.7  
4.4  
CL = 100 pF  
VDD = +3.3V  
VDD = +5.5V  
4.1  
3.8  
3.5  
3.2  
2.9  
2.6  
2.3  
2.0  
VDD = +5.0V  
VDD = +4.0V  
VDD = +3.0V  
VDD = +4.0V  
VDD = +5.5V  
VDD = +5.0V  
VDD = +3.3V  
5
0
VDD = +3.0V  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-9:  
V
Rise Time vs.  
FIGURE 2-12:  
Amplifier A1 Output Voltage  
EXT  
Temperature.  
Low vs. Temperature.  
DS22063B-page 10  
© 2008 Microchip Technology Inc.  
MCP1631/HV/MCP1631V/VHV  
Typical Performance Curves (Continued)  
Note: Unless otherwise noted, VIN = 3.0V to 5.5V, FOSC = 1 MHz with 10% Duty Cycle, CIN = 0.1 µF,  
VIN for typical values = 5.0V, TA for typical values = +25°C.  
18.8  
17.6  
16.4  
15.2  
14.0  
12.8  
11.6  
10.4  
9.2  
18  
16  
14  
12  
10  
8
VDD = +5.5V  
VDD = +3.0V  
VDD = +3.3V  
VDD = +5.0V  
VDD = +4.0V  
VDD = +4.0V  
VDD = +5.0V  
VDD = +3.3V  
VDD = +5.5V  
6
VDD = +3.0V  
8.0  
4
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-13:  
Amplifier A1 Sink Current  
FIGURE 2-16:  
Amplifier A2 Output Voltage  
vs. Temperature.  
Low vs. Temperature.  
14.0  
40  
35  
VDD = +5.0V  
12.5  
11.0  
9.5  
VDD = +4.0V  
VDD = +3.3V  
VDD = +4.0V  
30  
VDD = +3.0V  
VDD = +5.5V  
25  
8.0  
20  
VDD = +5.0V  
VDD = +3.3V  
6.5  
15  
10  
VDD = +3.0V  
VDD = +5.5V  
5.0  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-14:  
Amplifier A1 Source Current  
FIGURE 2-17:  
Amplifier A2 Sink Current  
vs. Temperature.  
vs. Temperature.  
1.6  
1.4  
1.2  
1.0  
0.8  
26  
24  
22  
20  
VDD = +5.5V  
VDD = +3.3V  
VDD = +5.0V  
VDD = +4.0V  
VDD = +5.0V  
18  
16  
14  
12  
10  
VDD = +5.5V  
VDD = +3.0V  
VDD = +3.3V  
0.6  
VDD = +3.0V  
0.4  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-15:  
Amplifier A2 Offset Voltage  
FIGURE 2-18:  
Amplifier A2 Source Current  
vs. Temperature.  
vs. Temperature.  
© 2008 Microchip Technology Inc.  
DS22063B-page 11  
MCP1631/HV/MCP1631V/VHV  
Typical Performance Curves (Continued)  
Note: Unless otherwise noted, VIN = 3.0V to 5.5V, FOSC = 1 MHz with 10% Duty Cycle, CIN = 0.1 µF,  
VIN for typical values = 5.0V, TA for typical values = +25°C.  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2
VDD = +5.0V  
VDD = +5.5V  
VDD = +5.0V  
1.5  
1
VDD = +5.5V  
VDD = +4.0V  
VDD = +3.0V  
VDD = +3.3V  
0.5  
0
VDD = +4.0V  
VDD = +3.3V  
VDD = +3.0V  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-19:  
Amplifier A3 Offset Voltage  
FIGURE 2-22:  
Amplifier A3 Source Current  
vs. Temperature.  
vs. Temperature.  
0.920  
0.918  
0.916  
0.914  
0.912  
0.910  
0.908  
0.906  
0.904  
70  
60  
50  
VDD = +5.5V  
VDD = +5.0V  
VDD = +5.5V  
VDD = +5.0V  
VDD = +4.0V  
40  
30  
20  
10  
0
VDD = +4.0V  
VDD = +3.3V  
VDD = +3.0V  
VDD = +3.0V  
0.902  
0.900  
VDD = +3.3V  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-20:  
Amplifier A3 Output Voltage  
FIGURE 2-23:  
MCP1631 and MCP1631HV  
Low vs. Temperature.  
CS Maximum Voltage (V) vs. Temperature.  
6.8  
6.3  
5.8  
5.3  
4.8  
4.3  
3.8  
3.3  
2.8  
2.790  
VDD = +5.0V  
2.788  
2.786  
2.784  
2.782  
2.780  
2.778  
2.776  
2.774  
2.772  
2.770  
VDD = +3.0V to +5.5V  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-21:  
vs. Temperature.  
Amplifier A3 Sink Current  
FIGURE 2-24:  
MCP1631VHV V  
MCP1631V and  
Max Voltage (V).  
RAMP  
DS22063B-page 12  
© 2008 Microchip Technology Inc.  
MCP1631/HV/MCP1631V/VHV  
Typical Performance Curves (Continued)  
Note: Unless otherwise noted, VIN = 3.0V to 5.5V, FOSC = 1 MHz with 10% Duty Cycle, CIN = 0.1 µF,  
VIN for typical values = 5.0V, TA for typical values = +25°C.  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.2  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
VDD = +5.5V  
VDD = +5.5V  
VDD = +4.0V  
VDD = +5.0V  
VDD = +5.0V  
VDD = +4.0V  
VDD = +3.3V  
VDD = +3.3V  
VDD = +3.0V  
VDD = +3.0V  
Ambient Temperature (°C)  
Ambinet Temperature (°C)  
FIGURE 2-25:  
Overvoltage Threshold  
FIGURE 2-28:  
Shutdown Input Voltage  
High (V) vs. Temperature.  
Threshold (V) vs. Temperature.  
1.187  
6.00  
VOUT = 5.0V  
IOUT = 0 µA  
5.00  
1.187  
VDD = +3.0V  
1.186  
VDD = +4.0V  
VDD = +3.3V  
1.186  
0°C  
4.00  
1.185  
1.185  
1.184  
1.184  
1.183  
-45°C  
+130°C  
3.00  
+25°C  
+90°C  
2.00  
1.00  
VDD = +5.5V  
1.183  
1.182  
VDD = +5.0V  
6
8
10  
12  
14  
16  
18  
Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-26:  
Overvoltage Threshold  
FIGURE 2-29:  
LDO Quiescent Current vs.  
Low (V) vs. Temperature.  
Input Voltage.  
0.080  
3.00  
IOUT = 0mA  
VOUT = 1.2V  
VIN = 2.7V  
VDD = +5.5V  
VOUT = 2.5V  
VIN = 3.5V  
0.070  
VDD = +3.3V  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
0.060  
0.050  
0.040  
0.030  
0.020  
0.010  
0.000  
VDD = +4.0V  
VOUT = 5.0V  
VDD = +3.0V  
VDD = +5.0V  
VIN = 6.0V  
-45  
-20  
5
30  
55  
80  
105 130  
Ambient Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-27:  
Overvoltage Threshold  
FIGURE 2-30:  
LDO Quiescent Current vs.  
Hysteresis (V) vs. Temperature.  
Junction Temperature.  
© 2008 Microchip Technology Inc.  
DS22063B-page 13  
MCP1631/HV/MCP1631V/VHV  
Typical Performance Curves (Continued)  
Note: Unless otherwise noted, VIN = 3.0V to 5.5V, FOSC = 1 MHz with 10% Duty Cycle, CIN = 0.1 µF,  
VIN for typical values = 5.0V, TA for typical values = +25°C.  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
VIN = 6V  
VOUT = 5.0V  
VOUT = 5.0V  
VIN = 6.0V to 16.0V  
+90°C  
+130°C  
200 mA  
0 mA  
250 mA  
0°C  
-45°C  
+25°C  
100 mA  
80  
0
50  
100  
150  
200  
250  
-45  
-20  
5
30  
55  
105  
130  
Load Current (mA)  
Temperature (°C)  
FIGURE 2-31:  
LDO Output Voltage vs.  
FIGURE 2-34:  
LDO Line Regulation vs.  
Load Current.  
Temperature.  
0.50  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
VOUT = 5.0V  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
+130°C  
+90°C  
+25°C  
VR=5.0V  
VIN=6.0V  
+0°C  
V
C
I
INAC = 100 mV p-p  
IN=0 μF  
OUT=100 µA  
-45°C  
0
25 50 75 100 125 150 175 200 225 250  
Load Current (mA)  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
FIGURE 2-32:  
LDO Dropout Voltage vs.  
FIGURE 2-35:  
LDO PSRR vs. Frequency.  
Load Current.  
1.00  
100  
10  
VOUT = 5.0V  
OUT = 1 to 250 mA  
IOUT = 50 mA  
VR = 5.0V, VIN = 6.0V  
I
0.80  
0.60  
0.40  
0.20  
0.00  
-0.20  
-0.40  
VIN = 16V  
VIN = 6V  
1
VIN = 12V  
0.1  
0.01  
VIN = 8V  
VIN = 14V  
0.001  
0.01  
-45  
-20  
5
30  
55  
80  
105 130  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Temperature (°C)  
FIGURE 2-36:  
LDO Output Noise vs.  
FIGURE 2-33:  
LDO Load Regulation vs.  
Frequency.  
Temperature.  
DS22063B-page 14  
© 2008 Microchip Technology Inc.  
MCP1631/HV/MCP1631V/VHV  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP1631HV/  
MCP1631/MCP1631V  
MCP1631VHV  
Sym  
Description  
4x4  
TSSOP/SSOP  
QFN  
TSSOP/SSOP  
1
2
15  
16  
17  
18  
19  
20  
1
1
2
PGND  
SHDN  
OSCIN  
Power ground return  
Shutdown input  
3
3
External oscillator input  
4
4
OSCDIS Oscillator disable input  
5
5
OVIN  
VREF  
AGND  
NC  
Overvoltage comparator input  
6
6
External voltage reference input  
Quiet or analog ground  
No connection  
7
7
8,9,10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
2,4,12  
3
8,9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VIN  
High voltage input  
AVDD_IN Analog bias voltage input  
AVDD_OUT Regulated VDD output  
5
VSIN  
ISIN  
Voltage sense amplifier (A3) input  
6
Current sense input  
7
VSOUT  
ISOUT  
COMP  
FB  
Voltage sense amplifier output  
Current sense amplifier output  
Error amplifier (A1) output  
Error amplifier inverting input (A1)  
8
9
10  
11  
13  
14  
21  
CS/VRAMP CS - current sense input; VRAMP voltage ramp input  
PVDD  
VEXT  
EP  
Power VDD input  
External driver output  
Exposed Thermal Pad (EP); must be connected to AGND  
3.1  
Power Ground (PGND  
)
3.4  
Oscillator Disable (OSCDIS)  
Connect power ground return pin to power ground  
plane, high peak current flows through the PGND during  
the turn on and turn off the external MOSFET devices.  
Oscillator disable input, used to asycnronously  
terminate the VEXT duty cycle. Commonly used to  
modulate current for LED driver applications.For  
minimum shutdown IQ, connect OSCDIS to SHDN.  
3.2  
Shutdown Input (SHDN)  
3.5  
Overvoltage Input (OVIN)  
Shutdown input logic low disables device and lowers IQ  
to minimum value, amplifier A3 (VS) remains functional  
for battery voltage sense applications.  
Overvoltage Comparator input, connect to voltage  
divider, internal comparator terminates VEXT output in  
50 ns to limit output voltage to predetermined value.  
3.3  
Oscillator Input (OSCIN)  
3.6  
External Reference Voltage Input  
(VREF  
External Oscillator Input, used to set power train  
switching frequency and maximum duty cycle, VEXT  
enabled while low and disabled while high.  
)
External Voltage Reference input, connect fixed or  
variable external reference to VREF, with A1 configured  
as an error amplifier, the power supply output variable  
(voltage or current) will follow this input.  
© 2008 Microchip Technology Inc.  
DS22063B-page 15  
MCP1631/HV/MCP1631V/VHV  
3.7  
Analog Ground (AGND  
)
3.15 Current Sense Output (ISOUT)  
Quiet or analog ground, connect to analog ground  
plane to minimize noise on sensitive MCP1631  
circuitry.  
Current sense amplifier output, connect to error  
amplifier (A1) inverting input (FB) to regulate SEPIC  
output current.  
3.8  
No Connection (NC)  
3.16 Error Amplifier Output (COMP)  
No connection.  
Error amplifier (A1) output, connect control loop  
compensation from FB input to COMP output pin.  
3.9  
Input Voltage (VIN)  
3.17 Feedback (FB)  
High voltage input for MCP1631HV/MCP1631VHV  
devices, operates from 3.5V to 16V input supply.  
Error amplifier input (A1), connect to current sense  
output amplifier (A2) to regulate current.  
3.10 Analog supply Input (AVDD_IN  
)
3.18 Current Sense or Voltage Ramp  
Analog bias input, minimum 3.0V to 5.5V operation for  
MCP1631/MCP1631V devices.  
(CS/VRAMP  
)
For MCP1631/MCP1631HV applications, connect to  
low side current sense of SEPIC switch for current  
mode control and peak current limit. For MCP1631/  
MCP1631HV application, connect artificial ramp  
voltage to VRAMP input for voltage mode PWM control.  
3.11 Analog Supply Output (AVDD_OUT  
)
Regulated VDD output used to power internal  
MCP1631HV/MCP1631VHV and external  
microcontroller, supplies up to 250 ma of bias current at  
3.3V or 5.0V regulated low drop out rail.  
3.19 Power VDD (PVDD  
)
Power VDD input, VEXT gate drive supply input, connect  
to +5.0V or +3.3V supply for driving external MOSFET.  
3.12 Voltage Sense Input (VSIN)  
Voltage sense amplifier (A3) input, connect to high  
impedance battery voltage resistor divider to sense  
battery voltage with minimal loading.  
3.20 External Driver (VEXT  
)
High current driver output used to drive external  
MOSFET at high frequency, capable of 1A peak  
3.13 Current Sense Input (ISIN)  
currents with +5.0V PVDD  
.
Connect to SEPIC secondary side sense resistor to  
develop a regulated current source used to charge  
multi-chemistry batteries.  
3.21 Exposed PAD 4x4 QFN (EP)  
There is an internal electrical connection between the  
Exposed Thermal Pad (EP) and the AGND pin; they  
must be connected to the same potential on the Printed  
Circuit Board (PCB).  
3.14 Voltage Sense Output (VSOUT  
)
Voltage sense amplifier output, connect to  
microcontroller analog to digital converter to measure  
battery voltage.  
DS22063B-page 16  
© 2008 Microchip Technology Inc.  
MCP1631/HV/MCP1631V/VHV  
4.4  
Current Sense Amplifier (A2)  
4.0  
4.1  
DETAILED DESCRIPTION  
Device Overview  
The A2 current sense amplifier is used to sense current  
in the secondary side of a SEPIC converter or  
freewheeling current in a Buck converter. The inverting  
amplifier has a built in voltage gain of ten with low offset  
and high speed.  
The MCP1631/MCP1631V device family combines the  
analog functions to develop high frequency switch  
mode power systems while integrating features for  
battery charger and LED current source applications.  
With the integration of a MOSFET driver, voltage  
sense, current sense and over voltage protection, the  
MCP1631/MCP1631V is a highly integrated, high-  
speed analog pulse width modulator.  
4.5  
Voltage Sense Amplifier (A3)  
The A3 voltage sense amplifier is used to sense battery  
voltage. In battery powered applications, it is important  
to minimize the steady stage load current draw on the  
battery. The voltage sense amplifier (A3) is used to  
buffer a high impedance series divider used to reduce  
the battery pack voltage to a level that can be read  
using an analog to digital converter. The voltage sense  
amplifier draws a very low quiescent current and  
remains functional when the MCP1631/MCP1631V is  
shutdown making it possible to read battery voltage  
without turning on the charger.  
The MCP1631/MCP1631V output (VEXT) is used to  
control the switch of the power system (on and off  
time). By controlling the switch on and off time, the  
power system output can be regulated. With the  
oscillator and reference voltage as inputs, a simple  
interface to a microcontroller is available with the  
MCP1631/MCP1631V to develop intelligent power  
systems. A good example of an intelligent power  
system is a battery charger, programmable LED driver  
current source or programmable power supply.  
4.6  
Overvoltage Comparator(C2)  
The MCP1631/MCP1631V is  
a combination of  
The C2 overvoltage comparator is used to prevent the  
power system from being damaged when the load  
(battery) is disconnected. By comparing the divided  
down power train output voltage with a 1.2V internal  
reference voltage, the MCP1631/MCP1631V VEXT  
output switching is interrupted when the output voltage  
is above a pre-set value. This limits the output voltage  
of the power train, the 0V comparator’s hysteresis will  
operate as a ripple regulator.  
specialty analog blocks consisting of a Pulse Width  
Modulator (PWM), MOSFET Driver, Current Sense  
Amplifier (A2), Voltage Sense Amplifier (A3),  
Overvoltage Comparator (C2) and additional features  
(Shutdown, Undervoltage Lockout, Overtemperature  
Protection). For the HV options, an internal low dropout  
regulator is integrated for operation from high voltage  
inputs (MCP1631HV/MCP1631VHV).  
4.2  
Pulse Width Modulator (PWM)  
4.7  
Shutdown Input  
The internal PWM of the MCP1631/MCP1631V is  
comprised of an error amplifier, high-speed comparator  
and latch. The output of the amplifier is compared to  
either the MCP1631 CS (primary current sense input)  
or the MCP1631V VRAMP (voltage mode ramp input) of  
the high speed comparator. When the CS or VRAMP  
signal reach the level of the error amplifier output, the  
on cycle is terminated and the external switch is  
latched off until the beginning of the next cycle (high to  
low transition of OSCIN).  
The MCP1631/MCP1631V shutdown feature is used to  
disable the device with the exception of the voltage  
sense amplifier A3 to minimize quiescent current draw.  
While shutdown, A3 remains operational while the  
device draws 4.4 µA from the input.  
4.8  
Protection  
The MCP1631/MCP1631V has built in Undervoltage  
Lockout (UVLO) that ensures the output VEXT pin is  
forced to a known state (low) when the input voltage or  
AVDD is below the specified value. This prevents the  
main MOSFET switch from being turned on during a  
power up or down sequence.  
4.3  
VEXT MOSFET Driver  
The MCP1631/MCP1631V output can be used to drive  
the external MOSFET directly for low side topology  
applications. The VEXT is capable of sourcing up to  
700 mA and sinking up to 1A of current from a PVDD  
source of 5V. Typical output power using the VEXT  
output to directly drive the external MOSFET can  
exceed 50W depending upon application and switching  
frequency.  
The MCP1631/MCP1631V provides  
a
thermal  
shutdown protection feature, if the internal junction  
temperature of the device becomes high, the  
overtemperature protection feature will disable (pull the  
VEXT output low) and shut down the power train.  
© 2008 Microchip Technology Inc.  
DS22063B-page 17  
MCP1631/HV/MCP1631V/VHV  
NOTES:  
DS22063B-page 18  
© 2008 Microchip Technology Inc.  
MCP1631/HV/MCP1631V/VHV  
inductors has significant advantages in addition to the  
size and cost benefits of a single core with multiple  
windings.  
5.0  
5.1  
APPLICATION INFORMATION  
Typical Applications  
The MCP1631/MCP1631V can be used to develop  
intelligent power management solutions, typical  
applications include a multi-chemistry battery charger  
used to charge Li-Ion, NiMH or NiCd batteries and  
constant current LED drivers.  
5.4  
Mixed Signal Design  
For intelligent battery charger design, a microcontroller  
is used to generate the proper charge profile, charge  
termination, safety timers and battery charger features.  
When using the MCP1631/MCP1631V for Li-Ion  
battery charger applications, the microcontroller is also  
used to generate the constant voltage regulation phase  
of the charge cycle. This is accomplished by using the  
external reference feature of the MCP1631/MCP1631V  
as a programmable current source. The microcontroller  
is used to vary the VREF input of the MCP1631/  
MCP1631V. The charge current into the battery is  
regulated by the MCP1631/MCP1631V, the level that it  
is regulated to is set by the programmability of the  
microcontroller.  
5.2  
Battery Charger Design Overview  
The design approach for developing high current  
switching battery chargers using the MCP1631 is  
described in this section. Depending on input voltage  
range, there are two versions of the device that can be  
used to accommodate a very wide range of input  
voltages.  
For a regulated input voltage range of 5V, the  
MCP1631/MCP1631V device is used, for this input  
voltage application (regulated ac-dc converter or USB  
input), the MCP1631/MCP1631V is powered directly  
from the 5V dc input.  
The internal MCP1631/MCP1631V analog compo-  
nents are used to regulate the microcontroller  
programmed current. The secondary or battery current  
is sensed using amplifier A2, the output of A2 is feed  
into the input of the error amplifier A1, the output of A1  
sets the peak switch current of the SEPIC converter, it  
increases or decreases the battery current to match its  
(A1) inputs. By increasing the VREF or non-inverting  
input of A1, the battery current is increased.  
For input voltages to +16V steady state with +18V  
transients, the MCP1631HV/MCP1631VHV, or high  
voltage option can be used. The high voltage devices  
integrate a low dropout (LDO) linear regulator with a set  
output voltage of +3.3V or +5.0V that internally powers  
the MCP1631HV/MCP1631VHV and is also capable of  
providing 250 mA of bias current for the attached  
microcontroller and other circuitry. MCP1631HV/  
MCP1631VHV internal power dissipation must be  
considered when loading the internal LDO regulator.  
5.5  
Safety Features  
The MCP1631/MCP1631V integrates a high-speed  
comparator used to protect the charger and battery  
from being exposed to high voltages if the battery is  
removed or opens. Comparator C2 is used to sense the  
SEPIC output voltage. If the divided down output  
voltage becomes higher than the 1.2V internal  
MCP1631/MCP1631V reference, the VEXT PWM  
output is terminated within 50 ns preventing the build  
up of voltage on the SEPIC output.  
For higher input voltages the MCP1631/MCP1631V  
can be biased from an external regulated +3.0V to  
+5.5V supply.  
5.3  
Programmable Single Ended  
Primary Inductive (SEPIC) Current  
Source  
Peak switch current is limited by the MCP1631/  
MCP1631V comparator C1 and error amplifier A1  
output voltage clamp. For the MCP1631, the error  
amplifier output is clamped at 2.7V. The A1 output is  
divided down by 1/3 and compared with CS (current  
sense) input. The VEXT output is turned off if the CS  
input reaches a level of 1/3 of 2.7V or 0.9V in 12 ns,  
preventing the external switch current from becoming  
high enough to damage the SEPIC power train.  
The MCP1631/MCP1631V family integrates features  
that are necessary to develop programmable current  
sources. The SEPIC converter is commonly used in  
battery charger applications. The primary or input  
inductor is used to filter input current and minimize the  
switching noise at the converter input. The primary to  
secondary capacitive isolation blocks any dc path from  
input to output making the SEPIC safer than Buck or  
other non-isolated topologies. The SEPIC rectifier  
blocks the reverse path preventing battery leakage, in  
other topologies an additional diode for blocking is  
necessary adding additional components and  
efficiency loss.  
Internal overtemperature protection limits the device  
junction temperature to 150°C preventing catastrophic  
failure for overtemperature conditions. Once the  
temperature decreases 10°C, the device will resume  
normal operation.  
The input or primary inductor and output or secondary  
inductor are typically constructed from a single  
magnetic device with two windings, this is commonly  
referred to as a coupled inductor. Using coupled  
Safety timers are typically used to limit the amount of  
energy into a faulted battery or pack. This is  
accomplished using the microcontroller and MCP1631/  
MCP1631V shutdown feature.  
© 2008 Microchip Technology Inc.  
DS22063B-page 19  
MCP1631/HV/MCP1631V/VHV  
5.6  
OSC Disable Feature  
The oscillator disable or OSC_DIS input is used to  
asychronously terminate the PWM VEXT output. This  
can be used with a slow PWM input to modulate current  
into an LED for lighting applications.  
Multi-cell Multi-Chemistry Charger  
SCHOTTKY  
DIODE  
C
C
V
Range +4.5V to +5.5V  
CIN  
IN  
L1A  
R
THERM  
C
OUT  
L1B  
MCP1631  
V
NC  
A
EXT  
CS  
VDD_IN  
P
GND  
P
VDD  
IS  
OSC  
IS  
IN  
IN  
OV  
OUT  
IN  
VS  
NC  
FB  
NC  
IN  
V
REF  
SHDN  
OSC  
COMP  
DIS  
VS  
A
OUT  
GND  
C
R
PIC12F683  
V
GP1/C  
GP3  
DD  
A
VDD_OUT  
CCP1  
GP4  
GP5  
GND  
GP0/C  
FIGURE 5-1:  
+5V ac-dc or USB Input Application.  
DS22063B-page 20  
© 2008 Microchip Technology Inc.  
MCP1631/HV/MCP1631V/VHV  
Multi-cell Multi-Chemistry Charger  
SCHOTTKY  
CC  
VIN Range +5.5V to +16V  
CIN  
DIODE  
L1A  
RTHERM  
COUT  
L1B  
MCP1631HV  
VEXT  
VIN  
AVDD_OUT  
CS  
PGND  
ISIN  
PVDD  
OSCIN  
ISOUT  
OVIN  
VSIN  
NC  
FB  
NC  
VREF  
SHDN  
OSCDIS  
VSOUT  
COMP  
AGND  
C
R
PIC12F683  
VDD  
GP1/C  
GP3  
AVDD_OUT  
CCP1  
GP4  
GP5  
GND  
GP0/C  
FIGURE 5-2:  
+5.5V to +16.0V Input.  
© 2008 Microchip Technology Inc.  
DS22063B-page 21  
MCP1631/HV/MCP1631V/VHV  
Multi-cell Multi-Chemistry Charger  
VIN Range +6V to +40V  
SCHOTTKY  
DIODE  
CIN  
CC  
L1A  
+5V  
HV  
RTHERM  
Regulator  
COUT  
COUT  
L1B  
MCP1631  
VEXT  
NC  
AVDD_IN  
CS  
PGND  
PVDD  
OSCIN  
ISOUT  
ISIN  
OVIN  
VSIN  
NC  
VREF  
SHDN  
FB  
NC  
OSCDIS  
VSOUT  
COMP  
AGND  
C
R
PIC12F683  
VDD  
GP1/C  
GP3  
AVDD_OUT  
CCP1  
GP4  
GND  
GP5  
GP0/C  
FIGURE 5-3:  
Wide Range High Voltage Input.  
DS22063B-page 22  
© 2008 Microchip Technology Inc.  
MCP1631/HV/MCP1631V/VHV  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information (Not to Scale)  
20-Lead 4x4 QFN (MCP1631/MCP1631V)  
Example:  
XXXXX  
1631  
XXXXXX  
XXXXXX  
YWWNNN  
e
3
E/ML^^  
0822  
256  
20-Lead SSOP (All Devices)  
Example:  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
1631V  
EST^^  
0822256  
e
3
20-Lead TSSOP (All Devices)  
Example:  
XXXXXXXX  
XXXXXNNN  
YYWW  
1631HV33  
EST^^256  
e
3
0822  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2008 Microchip Technology Inc.  
DS22063B-page 23  
MCP1631/HV/MCP1631V/VHV  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢆꢇꢐꢉꢅꢋꢑꢇꢒꢓꢇꢃꢄꢅꢆꢇꢈꢅꢍꢔꢅꢕꢄꢇꢖꢗꢃꢘꢇMꢇꢙꢚꢙꢚꢁꢛꢜꢇ  ꢇ!ꢓꢆ"ꢇ#ꢎꢐꢒ$  
ꢒꢓꢋꢄ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢒꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢒꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢕꢃꢍꢊꢌꢍꢎꢃꢒꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢔꢒꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢒ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢒꢁꢍꢌ&3ꢒꢇꢍ*ꢇꢐꢃꢄꢐ  
D
D2  
EXPOSED  
PAD  
e
E2  
E
2
1
b
2
1
K
N
N
NOTE 1  
L
BOTTOM VIEW  
TOP VIEW  
A
A1  
A3  
4ꢄꢃ%  
ꢑꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢕꢙ55ꢙꢕ,ꢗ,ꢘꢔ  
67ꢕ  
ꢕꢙ6  
ꢕꢓ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ9ꢉꢃꢐꢎ%  
ꢔ%ꢇꢄ"ꢌ$$ꢅ  
0ꢌꢄ%ꢇꢍ%ꢅꢗꢎꢃꢍ*ꢄꢉ    
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
,#ꢒꢌ ꢉ"ꢅꢂꢇ"ꢅ;ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
,#ꢒꢌ ꢉ"ꢅꢂꢇ"ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ;ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢝ%ꢌꢝ,#ꢒꢌ ꢉ"ꢅꢂꢇ"  
6
ꢓꢀ  
ꢓ+  
,
,ꢏ  
ꢏꢚ  
ꢚꢁ.ꢚꢅ/ꢔ0  
ꢚꢁꢛꢚ  
ꢚꢁ:ꢚ  
ꢚꢁꢚꢚ  
ꢀꢁꢚꢚ  
ꢚꢁꢚ.  
ꢚꢁꢚꢏ  
ꢚꢁꢏꢚꢅꢘ,2  
ꢖꢁꢚꢚꢅ/ꢔ0  
ꢏꢁꢜꢚ  
ꢖꢁꢚꢚꢅ/ꢔ0  
ꢏꢁꢜꢚ  
ꢚꢁꢏ.  
ꢚꢁꢖꢚ  
M
ꢏꢁ<ꢚ  
ꢏꢁ:ꢚ  
ꢑꢏ  
(
5
ꢏꢁ<ꢚ  
ꢚꢁꢀ:  
ꢚꢁ+ꢚ  
ꢚꢁꢏꢚ  
ꢏꢁ:ꢚ  
ꢚꢁ+ꢚ  
ꢚꢁ.ꢚ  
M
=
ꢒꢓꢋꢄꢊ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢂꢇꢍ*ꢇꢐꢉꢅꢃ ꢅ ꢇ)ꢅ ꢃꢄꢐ!ꢈꢇ%ꢉ"ꢁ  
+ꢁ ꢑꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢒꢉꢊꢅꢓꢔꢕ,ꢅ-ꢀꢖꢁ.ꢕꢁ  
/ꢔ01 /ꢇ ꢃꢍꢅꢑꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢑꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢒ!ꢊꢒꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢕꢃꢍꢊꢌꢍꢎꢃꢒ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢑꢊꢇ)ꢃꢄꢐ 0ꢚꢖꢝꢀꢏ</  
DS22063B-page 24  
© 2008 Microchip Technology Inc.  
MCP1631/HV/MCP1631V/VHV  
ꢒꢓꢋꢄ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢒꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢒꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢕꢃꢍꢊꢌꢍꢎꢃꢒꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢔꢒꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢒ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢒꢁꢍꢌ&3ꢒꢇꢍ*ꢇꢐꢃꢄꢐ  
© 2008 Microchip Technology Inc.  
DS22063B-page 25  
MCP1631/HV/MCP1631V/VHV  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ&'(ꢌ)ꢔꢇ& ꢅꢉꢉꢇ*ꢏꢋꢉꢌ)ꢄꢇꢖ&&ꢘꢇMꢇ+ꢛ,ꢁꢇ  ꢇ!ꢓꢆ"ꢇ#&&*ꢈ$ꢇ  
ꢒꢓꢋꢄ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢒꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢒꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢕꢃꢍꢊꢌꢍꢎꢃꢒꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢔꢒꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢒ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢒꢁꢍꢌ&3ꢒꢇꢍ*ꢇꢐꢃꢄꢐ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
A2  
A
φ
A1  
L1  
L
4ꢄꢃ%  
ꢕꢙ55ꢙꢕ,ꢗ,ꢘꢔ  
ꢑꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢕꢙ6  
67ꢕ  
ꢕꢓ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢏꢚ  
ꢚꢁ<.ꢅ/ꢔ0  
7ꢆꢉꢊꢇꢈꢈꢅ9ꢉꢃꢐꢎ%  
ꢕꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢔ%ꢇꢄ"ꢌ$$ꢅ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
ꢕꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ;ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
2ꢌꢌ%ꢒꢊꢃꢄ%  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
2ꢌꢌ%ꢅꢓꢄꢐꢈꢉ  
M
M
ꢀꢁꢜ.  
M
ꢜꢁ:ꢚ  
.ꢁ+ꢚ  
ꢜꢁꢏꢚ  
ꢚꢁꢜ.  
ꢀꢁꢏ.ꢅꢘ,2  
M
ꢏꢁꢚꢚ  
ꢀꢁ:.  
M
:ꢁꢏꢚ  
.ꢁ<ꢚ  
ꢜꢁ.ꢚ  
ꢚꢁꢛ.  
ꢓꢏ  
ꢓꢀ  
,
,ꢀ  
5
5ꢀ  
ꢀꢁ<.  
ꢚꢁꢚ.  
ꢜꢁꢖꢚ  
.ꢁꢚꢚ  
<ꢁꢛꢚ  
ꢚꢁ..  
ꢚꢁꢚꢛ  
ꢚꢞ  
ꢚꢁꢏ.  
:ꢞ  
ꢖꢞ  
5ꢉꢇ"ꢅ;ꢃ"%ꢎ  
(
ꢚꢁꢏꢏ  
M
ꢚꢁ+:  
ꢒꢓꢋꢄꢊ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢑꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢑꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢒꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢕꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢒꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢏꢚꢅ&&ꢅꢒꢉꢊꢅ ꢃ"ꢉꢁ  
+ꢁ ꢑꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢒꢉꢊꢅꢓꢔꢕ,ꢅ-ꢀꢖꢁ.ꢕꢁ  
/ꢔ01 /ꢇ ꢃꢍꢅꢑꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢑꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢒ!ꢊꢒꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢕꢃꢍꢊꢌꢍꢎꢃꢒ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢑꢊꢇ)ꢃꢄꢐ 0ꢚꢖꢝꢚꢜꢏ/  
DS22063B-page 26  
© 2008 Microchip Technology Inc.  
MCP1631/HV/MCP1631V/VHV  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ-'ꢌ)ꢇ&'(ꢌ)ꢔꢇ& ꢅꢉꢉꢇ*ꢏꢋꢉꢌ)ꢄꢇꢖ&-ꢘꢇMꢇꢙꢛꢙꢇ  ꢇ!ꢓꢆ"ꢇ#-&&*ꢈ$  
ꢒꢓꢋꢄ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢒꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢒꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢕꢃꢍꢊꢌꢍꢎꢃꢒꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢔꢒꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢒ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢒꢁꢍꢌ&3ꢒꢇꢍ*ꢇꢐꢃꢄꢐ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
L
A1  
L1  
ꢕꢙ55ꢙꢕ,ꢗ,ꢘꢔ  
4ꢄꢃ%  
ꢑꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢕꢙ6  
67ꢕ  
ꢕꢓ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢏꢚ  
ꢚꢁ<.ꢅ/ꢔ0  
7ꢆꢉꢊꢇꢈꢈꢅ9ꢉꢃꢐꢎ%  
ꢕꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢔ%ꢇꢄ"ꢌ$$ꢅ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
ꢕꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ;ꢃ"%ꢎ  
ꢕꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ5ꢉꢄꢐ%ꢎ  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
M
ꢚꢁ:ꢚ  
ꢚꢁꢚ.  
M
ꢀꢁꢚꢚ  
M
<ꢁꢖꢚꢅ/ꢔ0  
ꢖꢁꢖꢚ  
<ꢁ.ꢚ  
ꢚꢁ<ꢚ  
ꢀꢁꢏꢚ  
ꢀꢁꢚ.  
ꢚꢁꢀ.  
ꢓꢏ  
ꢓꢀ  
,
,ꢀ  
ꢖꢁ+ꢚ  
<ꢁꢖꢚ  
ꢚꢁꢖ.  
ꢖꢁ.ꢚ  
<ꢁ<ꢚ  
ꢚꢁꢜ.  
5
2ꢌꢌ%ꢒꢊꢃꢄ%  
2ꢌꢌ%ꢅꢓꢄꢐꢈꢉ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
5ꢉꢇ"ꢅ;ꢃ"%ꢎ  
5ꢀ  
ꢀꢁꢚꢚꢅꢘ,2  
ꢚꢞ  
ꢚꢁꢚꢛ  
ꢚꢁꢀꢛ  
M
M
M
:ꢞ  
(
ꢚꢁꢏꢚ  
ꢚꢁ+ꢚ  
ꢒꢓꢋꢄꢊ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢑꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢑꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢒꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢕꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢒꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ.ꢅ&&ꢅꢒꢉꢊꢅ ꢃ"ꢉꢁ  
+ꢁ ꢑꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢒꢉꢊꢅꢓꢔꢕ,ꢅ-ꢀꢖꢁ.ꢕꢁ  
/ꢔ01 /ꢇ ꢃꢍꢅꢑꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢑꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢒ!ꢊꢒꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢕꢃꢍꢊꢌꢍꢎꢃꢒ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢑꢊꢇ)ꢃꢄꢐ 0ꢚꢖꢝꢚ::/  
© 2008 Microchip Technology Inc.  
DS22063B-page 27  
MCP1631/HV/MCP1631V/VHV  
NOTES:  
DS22063B-page 28  
© 2008 Microchip Technology Inc.  
MCP1631/HV/MCP1631V/VHV  
APPENDIX A: REVISION HISTORY  
Revision B (October 2008)  
The following is the list of modifications:  
1. Section 2.0 “Typical Performance Curves”,  
Input Offset Voltage: changed minimum, typical,  
maximum from -0.6, -, +0.6 to -5, -0.6, +5,  
respectively;  
2. Updated Section 6.0 “Packaging Informa-  
tion”;  
3. Updated the Product Identification System.  
Revision A (October 2007)  
• Original Release of this Document.  
© 2008 Microchip Technology Inc.  
DS22063B-page 29  
MCP1631/HV/MCP1631V/VHV  
NOTES:  
DS22063B-page 30  
© 2008 Microchip Technology Inc.  
MCP1631/HV/MCP1631V/VHV  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
-XXX  
X
/XX  
Examples:  
Voltage Temperature  
Options  
Package  
a) MCP1631-E/ML:  
High-Speed PWM,  
20LD QFN package.  
High-Speed PWM,  
20LD SSOP package.  
High-Speed PWM,  
20LD TSSOP package.  
Range  
b) MCP1631-E/SS:  
c) MCP1631-E/ST:  
Device  
MCP1631:  
MCP1631T:  
High-Speed PWM  
High-Speed PWM  
Tape and Reel  
MCP1631HV: High-Speed PWM  
MCP1631HVT: High-Speed PWM  
Tape and Reel  
MCP1631HV: High-Speed PWM  
MCP1631HVT: High-Speed PWM  
Tape and Reel  
a) MCP1631HV-330E/SS:High Speed PWM,  
Current Mode Control,  
3.3V Internal Regulator,  
20LD SSOP Package.  
b) MCP1631HV-500E/SS: High Speed PWM,  
Current Mode Control,  
MCP1631VHV: High-Speed PWM  
MCP1631VHVT:High-Speed PWM  
Tape and Reel  
5.0V Internal Regulator,  
20LD SSOP Package.  
c) MCP1631HV-500E/ST:High Speed PWM,  
Current Mode Control,  
Voltage options  
330  
500  
=
=
3.3V  
5.0V  
5.0V Internal Regulator,  
20LD TSSOP Package.  
Temperature Range  
Package  
E
=
-40°C to +125°C  
a) MCP1631VHVT-500E/ST:High Speed PWM,  
Voltage Mode Control,  
ML  
SS  
ST  
=
=
=
Plastic Quad Flat, No Lead (4x4x0.9), 20-lead  
Plastic Shrink Small Outline (5.30 mm), 20-lead  
Plastic Thin Shrink Small Outline (4.4 mm),  
20-Lead  
5.0V Internal Regulator,  
20LD TSSOP Package.  
b) MCP1631VHV-330E/SS: High Speed PWM,  
Voltage Mode Control,  
* All package offerings are Pb Free (Lead Free)  
3.3V Internal Regulator,  
20LD SSOP Package.  
c) MCP1631VHV-330E/ST:High Speed PWM,  
Voltage Mode Control,  
3.3V Internal Regulator,  
20LD TSSOP Package.  
© 2008 Microchip Technology Inc.  
DS22063B-page 31  
MCP1631/HV/MCP1631V/VHV  
NOTES:  
DS22063B-page 32  
© 2008 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2008, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2008 Microchip Technology Inc.  
DS22063B-page 33  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/02/08  
DS22063B-page 34  
© 2008 Microchip Technology Inc.  

相关型号:

MCP1632

High-Speed, Low-Side PWM Controller
MICROCHIP

MCP1632-AAE/MC

High-Speed, Low-Side PWM Controller
MICROCHIP

MCP1632-AAE/MS

SWITCHING CONTROLLER
MICROCHIP

MCP1632-BAE/MC

SWITCHING CONTROLLER
MICROCHIP

MCP1632-BAE/MS

SWITCHING CONTROLLER
MICROCHIP

MCP16321

24V Input, 1A/2A Output, High Efficiency Synchronous Buck Regulator with Power Good Indication
MICROCHIP

MCP16321T-150E

24V Input, 1A/2A Output, High Efficiency Synchronous Buck Regulator with Power Good Indication
MICROCHIP

MCP16321T-150E/NG

24V Input, 1A/2A Output, High Efficiency Synchronous Buck Regulator
MICROCHIP

MCP16321T-150NG

24V Input, 1A/2A Output, High Efficiency Synchronous Buck Regulator with Power Good Indication
MICROCHIP

MCP16321T-180E

24V Input, 1A/2A Output, High Efficiency Synchronous Buck Regulator with Power Good Indication
MICROCHIP

MCP16321T-180E/NG

24V Input, 1A/2A Output, High Efficiency Synchronous Buck Regulator
MICROCHIP

MCP16321T-180NG

24V Input, 1A/2A Output, High Efficiency Synchronous Buck Regulator with Power Good Indication
MICROCHIP