MCP16321T-250E [MICROCHIP]

24V Input, 1A/2A Output, High Efficiency Synchronous Buck Regulator with Power Good Indication; 24V输入, 1A / 2A输出,高效率同步降压型稳压器具有电源状态良好指示
MCP16321T-250E
型号: MCP16321T-250E
厂家: MICROCHIP    MICROCHIP
描述:

24V Input, 1A/2A Output, High Efficiency Synchronous Buck Regulator with Power Good Indication
24V输入, 1A / 2A输出,高效率同步降压型稳压器具有电源状态良好指示

稳压器
文件: 总34页 (文件大小:1064K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP16321/2  
24V Input, 1A/2A Output, High Efficiency Synchronous Buck Regulator  
with Power Good Indication  
Features  
Description  
• Up to 95% Typical Efficiency  
• Input Voltage Range: 6.0V to 24V  
• 1A Output Current (MCP16321)  
• 2A Output Current (MCP16322)  
The MCP16321/2 is a highly integrated, high-efficiency,  
fixed frequency, synchronous step-down DC-DC  
converter in a 16-pin QFN package that operates from  
input voltages up to 24V. Integrated features include a  
high-side and low-side N-Channel switch, fixed  
frequency Peak Current Mode Control, internal  
compensation, peak current limit, VOUT overvoltage  
protection and overtemperature protection. Minimal  
external components are necessary to develop a  
complete synchronous step-down DC-DC converter  
power supply.  
• Fixed Output Voltages: 0.9V, 1.5V, 1.8V, 2.5V,  
3.3V, 5V with 2% Output Voltage Accuracy  
• Adjustable Version Output Voltage Range:  
0.9V to 5V with 1.5% Reference Voltage Accuracy  
• Integrated N-Channel High-Side Switch: 180 m  
• Integrated N-Channel Low-Side Switch: 120 mΩ  
• 1 MHz Fixed Frequency  
High converter efficiency is achieved by integrating a  
high-speed, current limited, low resistance, high-side  
N-Channel MOSFET, as well as a high-speed, low  
resistance, low-side N-Channel MOSFET and  
associated drive circuitry. High switching frequency  
minimizes the size of the inductor and output capacitor,  
resulting in a small solution size.  
• Low Device Shutdown Current  
• Peak Current Mode Control  
• Internal Compensation  
• Stable with Ceramic Capacitors  
• Internal Soft-Start  
• Cycle-by-Cycle Peak Current Limit  
• Undervoltage Lockout (UVLO): 5.75V  
• Overtemperature Protection  
The MCP16321/2 device can supply 1A/2A of  
continuous current while regulating the output voltage  
from 0.9V to 5V. A high-performance peak current  
mode architecture keeps the output voltage tightly  
regulated, even during input voltage steps and output  
current transient conditions that are common in power  
supplies.  
• VOUT Overvoltage Protection  
• VOUT Voltage Supervisor Reported at the PG Pin  
• Available Package: QFN-16 (3x3 mm)  
The regulator can be turned on and off with a logic level  
signal applied to the EN input. The EN input is internally  
pulled up to a 4.2V reference and is rated for a  
maximum of 6V. With EN low, typically 5 µA of current  
is consumed from the input, making the part ideal for  
power shedding and load distribution applications. The  
PG output is an open drain output pin used to interface  
with other components of the system, and can be  
pulled up to a maximum of 6V.  
Applications  
• PIC®/dsPIC® Microcontroller Bias Supply  
• 12V Industrial Input DC-DC Conversion  
• Set-Top Boxes  
• DSL Cable Modems  
• Automotive  
• Wall Cube Regulation  
• SLA Battery Powered Devices  
• AC-DC Digital Control Power Source  
• Power Meters  
The output voltage can either be fixed at output  
voltages of 0.9V, 1.5V, 1.8V, 2.5V, 3.3V, 5V or  
adjustable using an external resistor divider. The  
MCP16321/2 is offered in a 3x3 QFN-16 surface mount  
package.  
• Consumer  
• Medical and Health Care  
• Distributed Power Supplies  
© 2011 Microchip Technology Inc.  
DS22285A-page 1  
MCP16321/2  
Package Type  
MCP16321/2  
3x3 QFN*  
16 15 14 13  
SW  
SW  
1
12  
11  
10  
9
V
V
2
3
4
IN  
IN  
EP  
17  
BOOST  
EN  
V
IN  
S
GND  
5
6
7
8
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
Typical Applications  
Typical Application with Adjustable Output Voltage  
CBOOST  
22 nF  
L1  
BOOST  
VOUT  
4.7 μH  
4.2V @ 1A/2A  
VIN  
SW  
VFB  
6.0V to 24V  
VIN  
EN  
36.5 kꢀ  
COUT  
2x22 μF  
VOUT  
10 kꢀ  
10 kꢀ  
CIN  
2x10 μF  
PG  
SGND  
PGND  
Typical Application with Fixed Output Voltage  
CBOOST  
22 nF  
L1  
4.7 μH  
VOUT  
BOOST  
3.3V @ 1A/2A  
VIN  
SW  
VFB  
6.0V to 24V  
VIN  
EN  
COUT  
2x22 μF  
VOUT  
10 kꢁ  
CIN  
2x10 μF  
PG  
SGND  
PGND  
DS22285A-page 2  
© 2011 Microchip Technology Inc.  
MCP16321/2  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to  
the device. This is a stress rating only and functional  
operation of the device at those or any other conditions  
above those indicated in the operational sections of this  
specification is not intended. Exposure to maximum  
rating conditions for extended periods may affect  
device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
V
.................................................................... -0.3V to 26.4V  
IN  
SW ...................................................................... -1V to 26.4V  
BOOST – GND ........................................... -0.3V to (V +6V)  
IN  
EN,V , PG Voltage.............................................. -0.3V to 6V  
FB  
Continuous Total Power Dissipation .......................................  
...................................................See Thermal Characteristics  
Storage Temperature ....................................-65°C to +150°C  
Operating Junction Temperature...................-40°C to +125°C  
ESD Protection On All Pins:  
HBM .........................................................................3 kV  
MM ..........................................................................200V  
DC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VIN = 12V, VOUT = 3.3V, IOUT = 300 mA,  
L = 4.7 µH, COUT = 2x22 µF, CIN = 2x10 µF. Boldface specifications apply over the TJ range of -40°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
VIN Supply Voltage  
Input Voltage  
VIN  
IQ  
6.0  
24  
V
Quiescent Current  
(Switching)  
5.2  
mA IOUT = 0 mA  
Quiescent Current  
(Non-Switching)  
IQ  
2.3  
5
mA Closed Loop in  
Overvoltage  
IOUT = 0 mA  
Quiescent Current -  
Shutdown  
IQ  
10  
µA EN = 0  
VIN Undervoltage Lockout  
Undervoltage Lockout Start  
UVLOSTRT  
UVLOHYS  
5.5  
5.75  
0.65  
6.0  
V
V
VIN Rising  
Undervoltage Lockout  
Hysteresis  
Non-Switching  
Output Characteristics  
Maximum Output Current  
MCP16321  
IOUT  
IOUT  
1
2
A
A
VIN = 6V to 24V  
VIN = 6V to 24V  
Maximum Output Current  
MCP16322  
Output Voltage Adjust Range  
VOUT  
0.9  
5.0  
V
V
Output Voltage Tolerance  
in PWM Mode  
VOUT-PWM  
VOUT - 2%  
VOUT  
VOUT + 2%  
IOUT = 1A  
IOUT = 0A  
Output Voltage Tolerance  
in PFM Mode  
VOUT-PFM  
VOUT - 1% VOUT + 1% VOUT + 3.5%  
V
Feedback Voltage  
VFB  
0.886  
-1.5  
0.9  
0.914  
1.5  
V
Feedback Reference  
Tolerance  
VFB-TOL  
%
PFM Mode Feedback  
Comparator Threshold  
VFB-PFM  
IFB  
VOUT + 1%  
100  
V
Feedback Input Bias  
Current  
nA  
Note 1: Regulator SW pin is forced off for 240 ns every 8 cycles to ensure the BOOST cap is replenished.  
© 2011 Microchip Technology Inc.  
DS22285A-page 3  
MCP16321/2  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VIN = 12V, VOUT = 3.3V, IOUT = 300 mA,  
L = 4.7 µH, COUT = 2x22 µF, CIN = 2x10 µF. Boldface specifications apply over the TJ range of -40°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
PFM Mode Feedback  
EN Input Characteristics  
EN Input Logic High  
VFB-PFM  
VOUT + 1%  
V
VIH  
VIL  
2.2  
0.8  
V
V
EN Input Logic Low  
EN Input Hysteresis  
VEN-HYST  
IENLK  
480  
3.5  
-1.5  
4
mV  
EN Input Leakage Current  
µA VEN = 5V  
µA VEN = 0V  
ms  
Soft-Start Time  
tSS  
Switching Characteristics  
Switching Frequency  
fSW  
0.9  
95  
1
1.1  
99  
MHz Open Loop VFB  
Low  
Maximum Duty Cycle  
DCMAX  
97  
%
Open Loop VFB  
Low  
Note 1  
Minimum Duty Cycle  
7
%
NMOS Low-Side  
Low-Side RDS(ON)  
120  
mΩ  
Switch On Resistance  
NMOS High-Side  
Switch On Resistance  
High-Side  
RDS(ON)  
180  
mΩ  
NMOS High-Side  
Switch Current Limit  
IN(MAX)  
1.4  
2.4  
1.8  
2.8  
2.4  
3.4  
A
A
MCP16321  
MCP16322  
PG Output Characteristics  
PG Low-level  
Output Voltage  
PGIL  
0.5  
10  
0.01  
V
IPG = -0.3 mA  
PG High-Level Output Leak-  
age Current  
IPGLK  
µA VPG = 5V  
ms  
PG Release Timer  
tPG  
95% VOUT  
VOUT Undervoltage Threshold  
VOUT-UV  
91% VOUT 93% VOUT  
VOUT Undervoltage  
Hysteresis  
VOUT-UV_HYST  
1.5% VOUT  
103% VOUT  
1% VOUT  
V
OUT Overvoltage  
Threshold  
OUT Overvoltage  
VOUT-OV  
V
VOUT-OV_HYST  
Hysteresis  
Thermal Characteristics  
Thermal Shutdown  
Die Temperature  
TSD  
170  
10  
°C  
°C  
Die Temperature  
Hysteresis  
TSDHYS  
Note 1: Regulator SW pin is forced off for 240 ns every 8 cycles to ensure the BOOST cap is replenished.  
DS22285A-page 4  
© 2011 Microchip Technology Inc.  
MCP16321/2  
TABLE 1-1:  
TEMPERATURE CHARACTERISTICS  
Electrical Characteristics  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Operating Junction Temperature  
Range  
TJ  
-40  
125  
°C  
Steady State  
Storage Temperature Range  
TA  
TJ  
-65  
150  
150  
°C  
°C  
Maximum Junction Temperature  
Package Thermal Resistances  
Thermal Resistance, 16L 3x3-QFN  
Transient  
θJA  
38.5  
°C/W Note 1  
Note 1: Measured using a 4-layer FR4 Printed Circuit Board with a 13.5 in2, 1 oz internal copper ground plane.  
© 2011 Microchip Technology Inc.  
DS22285A-page 5  
MCP16321/2  
NOTES:  
DS22285A-page 6  
© 2011 Microchip Technology Inc.  
MCP16321/2  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VIN = 12V, EN = Floating (Internally pulled up), CIN = 20 µF, COUT = 2x22 µF,  
L = 4.7 µH (XAL6060-472MEB), ILOAD = 200 mA, TA = +25°C. MCP16321 maximum output current = 1A.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
90  
80  
70  
60  
50  
40  
VIN = 6V  
VIN = 6V  
VIN = 12V  
VIN = 18V  
VIN = 24V  
VIN = 12V  
VIN = 18V  
VOUT = 5V  
VOUT = 1.8V  
0.0  
0.4  
0.8  
1.2  
IOUT (A)  
1.6  
2.0  
0
0.4  
0.8  
1.2  
IOUT (A)  
1.6  
2
FIGURE 2-1:  
5V VOUT Efficiency vs. IOUT  
.
FIGURE 2-4:  
IOUT  
1.8V VOUT Efficiency vs.  
.
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
95  
VIN = 6V  
VIN = 6V  
90  
85  
80  
75  
70  
65  
60  
VIN = 12V  
VIN = 12V  
VIN = 18V  
VIN = 18V  
VOUT = 3.3V  
VOUT = 1.5V  
VIN = 24V  
55  
50  
0
0.4  
0.8  
1.2  
IOUT (A)  
1.6  
2
0
0.4  
0.8  
1.2  
IOUT (A)  
1.6  
2
FIGURE 2-2:  
3.3V VOUT Efficiency vs.  
FIGURE 2-5:  
1.5V VOUT Efficiency vs.  
IOUT.  
IOUT.  
100  
90  
100  
VIN = 6V  
90  
80  
70  
60  
50  
40  
VIN = 6V  
80  
70  
60  
50  
40  
VIN = 12V  
VIN = 8V  
VIN = 18V  
VOUT = 0.9V  
VOUT = 2.5V  
VIN = 24V  
VIN = 10V  
0.4  
0
0.4  
0.8  
1.2  
IOUT (A)  
1.6  
2
0
0.8  
1.2  
IOUT (A)  
1.6  
2
FIGURE 2-3:  
2.5V VOUT Efficiency vs.  
FIGURE 2-6:  
0.9V VOUT Efficiency vs.  
IOUT.  
IOUT.  
© 2011 Microchip Technology Inc.  
DS22285A-page 7  
MCP16321/2  
Note: Unless otherwise indicated, VIN = 12V, EN = Floating (Internally pulled up), CIN = 20 µF, COUT = 2x22 µF,  
L = 4.7 µH (XAL6060-472MEB), ILOAD = 200 mA, TA = +25°C. MCP16321 maximum output current = 1A.  
5.04  
5.03  
5.02  
5.01  
5
1.808  
1.807  
1.806  
1.805  
1.804  
1.803  
1.802  
1.801  
1.8  
VOUT = 5V  
VOUT =1.8V  
VIN = 6V  
VIN = 6V  
VIN = 12V  
VIN = 12V  
VIN = 18V  
1.6  
VIN = 24V  
4.99  
4.98  
VIN = 18V  
1.799  
1.798  
0
0.4  
0.8  
1.2  
IOUT (A)  
2
2
2
0
0.4  
0.8  
IOUT (A)  
1.2  
1.6  
2
FIGURE 2-7:  
5V VOUT vs. IOUT.  
FIGURE 2-10:  
1.8V VOUT vs. IOUT.  
3.32  
3.315  
3.31  
1.505  
1.504  
1.503  
1.502  
1.501  
1.5  
VOUT =1.5V  
VOUT =3.3V  
VIN = 6V  
VIN = 6V  
3.305  
3.3  
VIN = 12V  
VIN = 12V  
VIN = 16V  
1.499  
VIN = 18V  
VIN = 24V  
1.2  
3.295  
0
1.498  
0
0.4  
0.8  
IOUT (A)  
1.6  
0.4  
0.8  
IOUT (A)  
1.2  
1.6  
2
FIGURE 2-8:  
3.3V VOUT vs. IOUT.  
FIGURE 2-11:  
1.5V VOUT vs. IOUT.  
2.515  
2.513  
2.511  
2.509  
2.507  
2.505  
2.503  
2.501  
2.499  
2.497  
2.495  
0
0.904  
0.903  
0.902  
0.901  
0.9  
VOUT =0.9V  
VOUT =2.5V  
VIN = 6V  
VIN = 6V  
VIN = 12V  
VIN = 8V  
0.899  
0.898  
VIN = 10V  
1.2  
VIN = 24V  
VIN = 18V  
1.6  
0.897  
0
0.4  
0.8  
IOUT (A)  
1.2  
0.4  
0.8  
1.6  
2
IOUT (A)  
FIGURE 2-9:  
2.5V VOUT vs. IOUT.  
FIGURE 2-12:  
0.9V VOUT vs. IOUT.  
DS22285A-page 8  
© 2011 Microchip Technology Inc.  
MCP16321/2  
Note: Unless otherwise indicated, VIN = 12V, EN = Floating (Internally pulled up), CIN = 20 µF, COUT = 2x22 µF,  
L = 4.7 µH (XAL6060-472MEB), ILOAD = 200 mA, TA = +25°C. MCP16321 maximum output current = 1A.  
5.02  
5.015  
5.01  
5.005  
5
1.804  
1.803  
1.802  
1.801  
1.8  
VOUT = 1.8V  
VOUT = 5V  
IOUT = 1A  
IOUT = 1A  
4.995  
4.99  
4.985  
IOUT = 2A  
1.799  
1.798  
IOUT = 2A  
6
8
10  
12  
VIN (V)  
14  
16  
18  
6
8
10 12 14 16 18 20 22 24  
VIN (V)  
FIGURE 2-13:  
5V VOUT vs VIN.  
FIGURE 2-16:  
1.8V VOUT vs VIN.  
1.503  
1.5025  
1.502  
1.5015  
1.501  
1.5005  
1.5  
3.31  
3.308  
3.306  
3.304  
3.302  
3.3  
VOUT = 3.3V  
VOUT = 1.5V  
IOUT = 2A  
IOUT = 1A  
IOUT = 1A  
3.298  
3.296  
3.294  
1.4995  
1.499  
IOUT = 2A  
1.4985  
6
8
10  
VOUT (V)  
12  
14  
16  
6
8
10 12 14 16 18 20 22 24  
VIN (V)  
FIGURE 2-14:  
3.3V VOUT vs VIN.  
FIGURE 2-17:  
1.5V VOUT vs VIN.  
0.9012  
0.901  
2.506  
2.505  
2.504  
2.503  
2.502  
2.501  
2.5  
2.499  
2.498  
2.497  
2.496  
6
VOUT = 2.5V  
VOUT = 0.9V  
0.9008  
0.9006  
0.9004  
0.9002  
0.9  
IOUT = 1A  
IOUT = 1A  
0.8998  
0.8996  
IOUT = 2A  
IOUT = 2A  
0.8994  
6
8
10 12 14 16 18 20 22 24  
VIN (V)  
7
8
9
10  
VIN (V)  
FIGURE 2-15:  
2.5V VOUT vs VIN.  
FIGURE 2-18:  
0.9V VOUT vs VIN.  
© 2011 Microchip Technology Inc.  
DS22285A-page 9  
MCP16321/2  
Note: Unless otherwise indicated, VIN = 12V, EN = Floating (Internally pulled up), CIN = 20 µF, COUT = 2x22 µF,  
L = 4.7 µH (XAL6060-472MEB), ILOAD = 200 mA, TA = +25°C. MCP16321 maximum output current = 1A.  
8
7
6
5
4
3
2
1
0
1020  
1015  
1010  
1005  
1000  
995  
990  
985  
980  
6
10  
14  
VIN (V)  
18  
22  
-40  
-10  
20  
50  
80  
110  
Ambient Temperature (°C)  
FIGURE 2-19:  
Shutdown Current vs. Input  
FIGURE 2-22:  
Oscillator Frequency vs.  
Voltage.  
Temperature (IOUT = 300 mA).  
5.50  
5.45  
4.90  
4.85  
4.80  
4.75  
4.70  
4.65  
4.60  
4.55  
4.50  
4.45  
-40  
IOUT = 0A  
5.40  
5.35  
5.30  
5.25  
5.20  
-10  
20  
50  
80  
110  
-40  
-10  
20  
50  
80  
110  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-20:  
Shutdown Current vs.  
FIGURE 2-23:  
Input Quiescent Current vs.  
Temperature.  
Temperature (No Load, Switching).  
2.42  
2.40  
3.300  
3.298  
3.296  
3.294  
3.292  
3.290  
3.288  
3.286  
IOUT = 0.1A  
IOUT = 0A  
2.38  
IOUT = 1A  
2.36  
2.34  
2.32  
2.30  
2.28  
3.284  
-40  
-10  
20  
50  
80  
110  
-40  
-10  
20  
50  
80  
110  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-21:  
Output Voltage vs.  
FIGURE 2-24:  
Input Current vs.  
Temperature.  
Temperature (No Load, No Switching).  
DS22285A-page 10  
© 2011 Microchip Technology Inc.  
MCP16321/2  
Note: Unless otherwise indicated, VIN = 12V, EN = Floating (Internally pulled up), CIN = 20 µF, COUT = 2x22 µF,  
L = 4.7 µH (XAL6060-472MEB), ILOAD = 200 mA, TA = +25°C. MCP16321 maximum output current = 1A.  
VOUT = 3.3V  
OUT = 200 mA  
VIN = 12V  
30  
25  
20  
15  
10  
5
Typical Mininimum Duty Cycle = 7%  
I
0
0.9  
1.2  
1.5  
VOUT (V)  
1.8  
2.1  
FIGURE 2-25:  
Maximum VIN to VOUT Ratio  
FIGURE 2-28:  
Startup From Enable.  
for Continuous Switching.  
VOUT = 3.3V  
IOUT = 50 mA  
VIN = 12V  
VOUT = 3.3V  
IOUT = 200 mA  
VIN = 12V  
FIGURE 2-26:  
Light Load Switching  
FIGURE 2-29:  
Startup From VIN.  
Waveforms.  
VOUT = 3.3V  
VOUT = 3.3V  
IOUT = 500 mA  
VIN = 12V  
IOUT = 100 mA to 600 mA  
VIN = 12V  
FIGURE 2-27:  
Heavy Load Switching  
FIGURE 2-30:  
Load Transient Response.  
Waveforms.  
© 2011 Microchip Technology Inc.  
DS22285A-page 11  
MCP16321/2  
Note: Unless otherwise indicated, VIN = 12V, EN = Floating (Internally pulled up), CIN = 20 µF, COUT = 2x22 µF,  
L = 4.7 µH (XAL6060-472MEB), ILOAD = 200 mA, TA = +25°C. MCP16321 maximum output current = 1A.  
VOUT = 3.3V  
IOUT = 200 mA  
VIN = 6V to 10V  
FIGURE 2-31:  
Line Transient Response.  
DS22285A-page 12  
© 2011 Microchip Technology Inc.  
MCP16321/2  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Symbol  
MCP16321/2  
3x3 QFN  
Description  
1
2
3
4
5
SW  
VIN  
Output switch node, connects to the inductor and the bootstrap capacitor  
Input supply voltage pin for power and internal biasing  
Input supply voltage pin for power and internal biasing  
Primary signal ground  
VIN  
SGND  
VFB  
Output voltage feedback pin. Connect VFB to VOUT for fixed version and output  
resistor divider for adjustable version.  
6
7
8
9
NC  
NC  
PG  
EN  
No Connection  
No Connection  
Power Good open-drain output, pulled up to a maximum of 6V  
Enable input pin. Logic high enables the operation. Internally pulled up, pull EN pin  
low to disable regulator’s output. Maximum voltage on EN input is 6V.  
10  
BOOST  
Boost voltage that drives the internal NMOS control switch. A bootstrap capacitor  
is connected between the BOOST and SW pins.  
11  
12  
13  
14  
15  
16  
17  
VIN  
SW  
Input supply voltage pin for power and internal biasing  
Output switch node, connects to the inductor and the bootstrap capacitor  
Output switch node, connects to the inductor and the bootstrap capacitor  
GND supply for the internal low-side NMOS/integrated diode  
GND supply for the internal low-side NMOS/integrated diode  
Output switch node, connects to the inductor and the bootstrap capacitor  
Exposed Thermal Pad (EP); must be connected to GND  
SW  
PGND  
PGND  
SW  
EP  
3.1  
Switch Pin (SW)  
3.3  
Signal Ground Pin (S  
)
GND  
The drain of the low-side N-Channel switch is  
connected internally to the source of the high-side  
N-Channel switch, and externally to the SW node,  
consisting of the inductor and bootstrap capacitor. The  
SW node can rise very fast as a result of the internal  
high-side switch turning on. It should be connected  
directly to the 4.7 µH inductor with a wide, short trace.  
This ground is used for the majority of the device,  
including the analog reference, control loop, and other  
circuits.  
3.4  
Feedback Voltage Pin (V  
)
FB  
The VFB input pin is used to provide output voltage  
regulation by either using a resistor divider or VOUT  
directly. For the adjustable version, the VFB will be 0.9V  
typical with the output voltage in regulation. For the  
fixed version, the VFB will be equal to the  
corresponding VOUT value.  
3.2  
Power Supply Input Voltage Pin  
(V )  
IN  
Connect the input voltage source to VIN. The input  
source should be decoupled to GND using 2 x 10 µF  
capacitors. The amount of the capacitance depends on  
the impedance of the source and output current. The  
input capacitors provide AC current for the high-side  
power switch and a stable voltage source for the  
internal device power. This capacitor should be  
connected as close as possible to the VIN and GND  
pins.  
3.5  
Power Good Pin (PG)  
PG is an open drain, active low output. The regulator  
output voltage is monitored and the PG line will remain  
low until the output voltage reaches the VOUT-UV  
threshold. Once the internal comparator detects that  
the output voltage is above the VOUT-UV threshold, an  
internal delay timer is activated. After a 10 ms delay,  
the PG open drain output pin can be pulled high,  
indicating that the output voltage is in regulation. The  
maximum voltage applied to the PG output pin should  
not exceed 6V.  
© 2011 Microchip Technology Inc.  
DS22285A-page 13  
MCP16321/2  
3.6  
Enable Pin (EN)  
The EN input pin is a logic-level input used to enable or  
disable the device. A logic high (> 2.2V) will enable the  
regulator output, while a logic low (< 0.8V) will ensure  
that the regulator is disabled. This pin is internally  
pulled up to an internal reference and will be enabled  
when VIN > UVLO, unless the EN pin is pulled low. The  
maximum input voltage applied to the EN pin should  
not exceed 6V.  
3.7  
BOOST Pin (BOOST)  
This pin will provide the bootstrap voltage required for  
driving the upper internal NMOS switch of the buck  
regulator. An external ceramic capacitor placed  
between the BOOST input pin and the SW pin will  
provide the necessary drive voltage for the upper  
switch. During steady state operation, the capacitor is  
recharged on every low-side, synchronous switching  
cycle. If the Switch mode approaches 100% duty cycle  
for the high-side MOSFET, the device will automatically  
reduce the duty cycle switch to a minimum off time of  
240 ns on every 8th cycle to recharge the boost  
capacitor.  
3.8  
Power Ground Pin (P  
)
GND  
This is a separate ground connection used for the low-  
side synchronous switch to isolate switching noise from  
the rest of the device.  
3.9  
Exposed Thermal Pad (EP)  
There is no internal electrical connection between the  
Exposed Thermal Pad (EP) and the PGND and SGND  
pins. The EP must be connected to GND on the Printed  
Circuit Board (PCB).  
DS22285A-page 14  
© 2011 Microchip Technology Inc.  
MCP16321/2  
4.1.4  
ENABLE INPUT  
4.0  
4.1  
DETAILED DESCRIPTION  
Device Overview  
The enable input (EN) is used to disable the device. If  
disabled, the device consumes a minimal current from  
the input. Once enabled, the internal soft start controls  
the output voltage rate of rise, preventing high-inrush  
current and output voltage overshoot. The EN is  
internally pulled up or enabled; to disable the converter,  
it must be pulled low.  
The MCP16321/2 is a high-input voltage, step-down  
regulator, capable of supplying 1A/2A to a regulated  
output voltage from 0.9V to 5V. Internally, the 1 MHz  
oscillator provides a fixed frequency, while the Peak  
Current Mode Control architecture varies the duty cycle  
for output voltage regulation. An internal floating driver  
is used to turn the high-side integrated N-Channel  
MOSFET on and off. The power for this driver is  
derived from an external boost capacitor whose energy  
is replenished when the low-side N-Channel MOSFET  
is turned on. When the maximum duty cycle  
approaches 100%, the boost capacitor is replenished  
for 240 ns after every 8 cycles.  
4.1.5  
SOFT START  
The internal reference voltage rate of rise is controlled  
during startup, minimizing the output voltage overshoot  
and the inrush current.  
4.1.6  
OUTPUT OVER VOLTAGE  
PROTECTION  
If the output of the regulator exceeds 103% of the  
regulation voltage, the SW outputs will tri-state to  
protect the device from damage. This check occurs at  
the start of each switching cycle.  
4.1.1  
INTERNAL REFERENCE VOLTAGE  
VREF  
For the adjustable version, an integrated precise 0.9V  
reference combined with an external resistor divider  
sets the desired converter output voltage. The resistor  
divider can vary without affecting the control system  
gain. High-value resistors consume less current, but  
are more susceptible to noise. For the fixed version, an  
integrated precise voltage reference is set to the  
4.1.7  
INPUT UNDER VOLTAGE LOCKOUT  
An integrated Under Voltage Lockout (UVLO) prevents  
the converter from starting until the input voltage is high  
enough for normal operation. The converter will  
typically start at 5.75V (typical) and operate down to  
5.25V (typical). Hysteresis of 500 mV (typical) is added  
to prevent starting and stopping during startup, as a  
result of loading the input voltage source.  
desired VOUT value and is directly connected to VOUT  
.
4.1.2 INTERNAL COMPENSATION  
All control system components necessary for stable  
operation over the entire device operating range are  
integrated, including the error amplifier and inductor  
current slope compensation.  
4.1.8  
MINIMUM DUTY CYCLE  
A minimum duty cycle of 70 ns typical prevents the  
device from constant switching for high step-down  
voltage ratios. Duty cycles less than this minimum will  
initiate pulse skipping to maintain output voltage  
regulation, resulting in higher output voltage ripple.  
Duty cycle for continuous inductor current operation is  
approximated by VOUT/VIN. For a 1 MHz switching  
frequency or 1 µs period, this results in a 7% duty cycle  
minimum. Maximum VIN for continuous switching can  
be approximated dividing VOUT by the minimum duty  
cycle or 7%. For example, the maximum input voltage  
for continuous switching for a 1.5V output is equal to  
approximately 21V.  
4.1.3  
EXTERNAL COMPONENTS  
External components consist of:  
• Input capacitor  
• Output filter (inductor and capacitor)  
• Boost capacitor  
• Resistor divider (adjustable version only)  
The selection of the external inductor, output capacitor,  
input capacitor and boost capacitor is dependent upon  
the output voltage and the maximum output current.  
© 2011 Microchip Technology Inc.  
DS22285A-page 15  
MCP16321/2  
4.1.9  
OVERTEMPERATURE  
PROTECTION  
Overtemperature protection limits the silicon die  
temperature to +170°C by turning the converter off. The  
normal switching resumes at +160°C.  
VIN  
CIN  
UV  
Protection  
VOUT  
EN  
OTEMP  
Protection  
Monitor and  
Control  
BOOST  
Voltage  
4.2V  
PG  
Current  
Limit  
VOUT  
RTOP  
Slope  
Comp  
BOOST  
OV  
Protection  
FB  
+
+
CS  
RBOT  
CBOOST  
VREF and  
Softstart  
+
+
COMP  
HS  
Drive  
Amp  
-
-
PWM  
Comparator  
L
VOUT  
SW  
Gate Drive  
Control  
Internal Bias  
Compensation  
1 MHz  
Oscillator  
LS  
COUT  
Drive  
-
COMP  
+
VREF  
PFM  
Comparator  
SGND  
PGND  
FIGURE 4-1:  
MCP16321/2 Block Diagram.  
DS22285A-page 16  
© 2011 Microchip Technology Inc.  
MCP16321/2  
4.2  
Functional Description  
L
VOUT  
4.2.1  
STEP-DOWN OR BUCK  
CONVERTER  
S1  
IL  
The MCP16321/2 is a synchronous, step-down or buck  
converter capable of stepping input voltages ranging  
from 6V to 24V down to 0.9V to 5V.  
COUT  
VIN  
S2  
The integrated high-side switch is used to chop or  
modulate the input voltage using a controlled duty cycle  
for output voltage regulation. The integrated low-side  
switch is used to freewheel current when the high-side  
switch is turned off. High efficiency is achieved by using  
low-resistance switches and low equivalent series  
resistance (ESR), inductor and capacitors. When the  
high-side switch is turned on, a DC voltage is applied to  
the inductor (VIN – VOUT), resulting in a positive linear  
ramp of inductor current. When the high-side switch  
turns off and the low-side switch turns on, the applied  
inductor voltage is equal to –VOUT, resulting in a  
negative linear ramp of inductor current. In order to  
ensure there is no shoot-through current, a dead time  
where both switches are off is implemented between  
the high-side switch turning off and the low-side switch  
turning on, and the low-side switch turning off and the  
high-side switch turning on.  
IL  
IOUT  
VIN  
SW  
VOUT  
S1 ON  
S2 ON  
Continuous Inductor Current Mode  
For steady-state, continuous inductor current  
operation, the positive inductor current ramp must  
equal the negative current ramp in magnitude. While  
operating in steady state, the switch duty cycle must be  
equal to the relationship of VOUT/VIN for constant  
output voltage regulation, under the condition that the  
inductor current is continuous, or never reaches zero.  
For discontinuous inductor current operation, the  
steady-state duty cycle will be less than VOUT/VIN to  
maintain voltage regulation. When the inductor current  
reaches zero, the low-side switch is turned off so that  
current does not flow in the reverse direction, keeping  
the efficiency high. The average of the chopped input  
voltage or SW node voltage is equal to the output  
voltage, while the average inductor current is equal to  
the output current.  
IL  
IOUT  
VIN  
SW  
S2 Both  
ON OFF  
S1 ON  
Discontinuous Inductor Current Mode  
FIGURE 4-2:  
Converter.  
Synchronous Step-Down  
© 2011 Microchip Technology Inc.  
DS22285A-page 17  
MCP16321/2  
4.2.2  
PEAK CURRENT MODE CONTROL  
4.2.4  
HIGH-SIDE DRIVE  
The MCP16321/2 integrates a Peak Current Mode  
Control architecture, resulting in superior AC regulation  
while minimizing the number of voltage loop  
compensation components, and their size, for  
integration. Peak Current Mode Control takes a small  
portion of the inductor current, replicates it and  
compares this replicated current sense signal with the  
output of the integrated error voltage. In practice, the  
inductor current and the internal switch current are  
equal during the switch-on time. By adding this peak  
current sense to the system control, the step-down  
power train system can be approximated by a 1st order  
system rather than a 2nd order system. This reduces  
the system complexity and increases its dynamic  
performance.  
The MCP16321/2 features an integrated high-side  
N-Channel MOSFET for high efficiency step-down  
power conversion. An N-Channel MOSFET is used for  
its low resistance and size (instead of a P-Channel  
MOSFET). The N-Channel MOSFET gate must be  
driven above its source to fully turn on the device,  
resulting in a gate-drive voltage above the input to turn  
on the high-side N-Channel. The high-side N-Channel  
source is connected to the inductor and boost cap or  
switch node. When the high-side switch is off and the  
low-side is on, the inductor current flows through the  
low-side switch, providing a path to recharge the boost  
cap from the boost voltage source. An internal boost-  
blocking diode is used to prevent current flow from the  
boost cap back into the output during the internal  
switch-on time. Prior to startup, the boost cap has no  
stored charge to drive the switch. An internal regulator  
is used to “pre-charge” the boost cap. Once pre-  
charged, the switch is turned on and the inductor  
current flows. When the high-side switch turns off and  
the low-side turns on, current freewheels through the  
inductor and low-side switch, providing a path to  
recharge the boost cap. When the duty cycle  
approaches its maximum value, there is very little time  
for the boost cap to be recharged due to the short  
amount time that the low-side switch is on. Therefore,  
when the maximum duty cycle approaches, the switch  
node is forced off for 240 ns every 8 cycles to ensure  
that the boost cap gets replenished.  
For Pulse-Width Modulation (PWM) duty cycles that  
exceed 50%, the control system can become bimodal,  
where a wide pulse followed by a short pulse repeats  
instead of the desired fixed pulse width. To prevent this  
mode of operation, an internal compensating ramp is  
summed into the current sense signal.  
4.2.3  
PULSE WIDTH MODULATION  
(PWM)  
The internal oscillator periodically starts the switching  
period, which in the MCP16321/2’s case occurs every  
1 µs or 1 MHz. With the high-side integrated  
N-Channel MOSFET turned on, the inductor current  
ramps up until the sum of the current sense and slope  
compensation ramp exceeds the integrated error  
amplifier output. Once this occurs, the high-side switch  
turns off and the low-side switch turns on. The error  
amplifier output slews up or down to increase or  
decrease the inductor peak current feeding into the  
output LC filter. If the regulated output voltage is lower  
than its target, the inverting error amplifier output rises.  
This results in an increase in the inductor current to  
correct for errors in the output voltage. The fixed  
frequency duty cycle is terminated when the sensed  
inductor peak current, summed with the internal slope  
compensation, exceeds the output voltage of the error  
amplifier. The PWM latch is set by turning off the high-  
side internal switch and preventing it from turning on  
until the beginning of the next cycle.  
DS22285A-page 18  
© 2011 Microchip Technology Inc.  
MCP16321/2  
5.0.3  
GENERAL DESIGN EQUATIONS  
5.0  
APPLICATION INFORMATION  
The step-down converter duty cycle can be estimated  
using Equation 5-2 while operating in Continuous  
Inductor Current Mode. This equation accounts for the  
forward drop of two internal N-Channel MOSFETS. As  
load current increases, the voltage drop in both internal  
switches will increase, requiring a larger PWM duty  
cycle to maintain the output voltage regulation. Switch  
voltage drop is estimated by multiplying the switch  
5.0.1  
TYPICAL APPLICATIONS  
The MCP16321/2 synchronous step-down converter  
operates over a wide input range, up to 24V maximum.  
Typical applications include generating a bias or VDD  
voltage for PIC® microcontrollers, digital control system  
bias supply for AC-DC converters and 12V industrial  
input and similar applications.  
current times the switch resistance or RDSON  
.
5.0.2  
ADJUSTABLE OUTPUT VOLTAGE  
CALCULATIONS  
EQUATION 5-2:  
CONTINUOUS INDUCTOR  
CURRENT DUTY CYCLE  
To calculate the resistor divider values for the  
MCP16321/2 adjustable version, use Equation 5-1.  
RTOP is connected to VOUT, RBOT is connected to  
SGND, and both are connected to the VFB input pin.  
VOUT + (ILSW × RDSONL  
D = ------------------------------------------------------------  
IN (IHSW × RDSONH  
)
)
V
5.0.4  
INPUT CAPACITOR SELECTION  
EQUATION 5-1:  
RESISTOR DIVIDER  
CALCULATION  
The step-down converter input capacitor must filter the  
high-input ripple current, as a result of pulsing or  
chopping the input voltage. The MCP16321/2 input  
voltage pin is used to supply voltage for the power train  
and as a source for internal bias. A low equivalent  
RTOP  
VOUT = VFB × 1 +------------  
RBOT  
series resistance (ESR), preferably  
capacitor, is recommended. The  
a
ceramic  
necessary  
EXAMPLE 5-1:  
2.0V RESISTOR DIVIDER  
capacitance is dependent upon the maximum load  
current and source impedance. Three capacitor  
parameters to keep in mind are the voltage rating,  
equivalent series resistance and the temperature  
rating. For wide temperature range applications, a  
multilayer X7R dielectric is recommended, while for  
VOUT = 2.0V  
VFB = 0.9V  
RBOT = 10 kΩ  
RTOP = 12.2 kΩ (standard value = 12.3 kΩ)  
VOUT = 2.007V (using standard values)  
applications with limited temperature range,  
a
multilayer X5R dielectric is acceptable. The input  
capacitor voltage rating must be VIN plus margin.  
EXAMPLE 5-2:  
4.2V RESISTOR DIVIDER  
VOUT = 4.2V  
VFB = 0.9V  
5.0.5  
OUTPUT CAPACITOR SELECTION  
The output capacitor provides a stable output voltage  
during sudden load transients, and reduces the output  
voltage ripple. As with the input capacitor, X5R and  
X7R ceramic capacitors are well suited for this applica-  
tion.  
RBOT = 10 kΩ  
RTOP = 36.7 kΩ (standard value = 36.5 kΩ)  
VOUT = 4.185V (using standard values)  
The error amplifier is internally compensated to ensure  
loop stability. External resistor dividers, inductance and  
output capacitance, all have an impact on the control  
system and should be selected carefully and evaluated  
for stability. A 10 kresistor is recommended as a  
good trade-off for quiescent current and noise  
immunity.  
The MCP16321/2 is internally compensated, so the  
output capacitance range is limited. See TABLE 5-1:  
“Capacitor Value Range” for the recommended out-  
put capacitor range.  
The amount and type of output capacitance and  
equivalent series resistance will have a significant  
effect on the output ripple voltage and system stability.  
The range of the output capacitance is limited due to  
the integrated compensation of the MCP16321/2.  
The output voltage capacitor rating should be a  
minimum of VOUT plus margin.  
TABLE 5-1:  
Parameter  
CIN  
CAPACITOR VALUE RANGE  
Min  
Max  
8 µF  
None  
© 2011 Microchip Technology Inc.  
DS22285A-page 19  
MCP16321/2  
TABLE 5-1:  
Parameter  
COUT  
CAPACITOR VALUE RANGE  
TABLE 5-2:  
MCP16321 RECOMMENDED  
INDUCTORS  
Min  
Max  
33 µF  
None  
Size  
Part  
Number  
Value DCR  
ISAT  
(A)  
WxLxH  
(mm)  
(µH)  
(Ω)  
5.0.6  
INDUCTOR SELECTION  
Coilcraft®  
1008PS  
The MCP16321/2 is designed to be used with small  
surface mount inductors. Several specifications should  
be considered prior to selecting an inductor. To  
optimize system performance, low ESR inductors  
should be used.  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
0.35  
0.175  
0.125  
0.15  
1.7 3.81x3.78x2.74  
LPS4012  
LPS4018  
LPS5015  
MSS5121  
LPS5030  
MSS6122  
MOS6020  
1.8  
1.9  
1.8  
4.1x4.1x1.2  
4.1x4.1x1.8  
5x5x1.5  
EQUATION 5-3:  
INDUCTOR CURRENT  
RIPPLE  
0.095 1.66  
0.083  
0.065 1.82  
5.1x5.1x2.2  
5x5x3  
2
VL  
6.1x6.1x2.2  
6.8x6x2.4  
ΔIL= ----- × tON  
0.05  
1.94  
L
Wurth Elektronik®  
744042  
4.7  
4.7  
4.7  
0.07  
1.65  
4.8x4.8x1.8  
8x8x1.1  
EXAMPLE 5-3:  
MCP16321 PEAK  
INDUCTOR CURRENT – 1A  
744068  
0.072 1.55  
0.0545 4.2  
7448944  
EPCOS®  
LTF5022T  
VLC5020T  
VLC6020T  
8x8x3.8  
VIN = 12V  
VOUT = 3.3V  
IOUT = 1A  
4.7  
4.7  
4.7  
0.073  
0.097  
0.079  
0.122  
0.12  
2
5.2x5x2.2  
5x5x2  
2
L = 4.7 µH  
1.8  
1.7  
1.7  
6x6x2  
VLCF5020T 4.7  
5x5x2  
ΔI  
L
I
= --------- + I  
VLF5014ST  
4.7  
4.8x4.6x1.4  
LPK  
OUT  
2
Inductor ripple current = 509 mA  
Inductor peak current = 1.255A  
TABLE 5-3:  
MCP16322 RECOMMENDED  
INDUCTORS  
An inductor saturation rating minimum of 1.255A is  
recommended. A trade-off between size, cost and  
efficiency is made to achieve the desired results.  
Size  
Value DCR ISAT  
WxLxH  
Part Number  
(µH)  
(Ω)  
(A)  
(mm)  
Coilcraft®  
EXAMPLE 5-4:  
MCP16322 PEAK  
INDUCTOR CURRENT – 2A  
MSS6132-472  
LPS6225-472  
MSS7341-502  
4.7  
4.7  
4.7  
0.056 2.84  
0.065 3.2  
0.024 3.16  
6.1x6.1x3.2  
6.2x6.2x2.5  
7.3x7.3x4.1  
8.89x6.1x5.0  
VIN = 12V  
VOUT = 3.3V  
IOUT = 2A  
DO1813H-472 4.7  
Wurth Elektronik®  
0.054  
2.6  
L = 4.7 µH  
7447785004  
7447786004  
7447789004  
EPCOS®  
4.7  
4.7  
4.7  
0.06  
0.057  
0.033  
2.5  
2.8  
3.9  
5.9x6.2x3.3  
5.9x6.2x5.1  
7.3x3.2x1.5  
ΔI  
L
I
= --------- + I  
LPK  
OUT  
2
Inductor ripple current = 509 mA  
Inductor peak current = 2.255A  
B82464G2  
B82464A2  
4.7  
4.7  
0.033  
0.03  
3.1 10.4x10.4x3.0  
4.5 10.4x10.4x3.0  
An inductor saturation rating minimum of 2.255A is  
recommended. A trade-off between size, cost and  
efficiency is made to achieve the desired results.  
DS22285A-page 20  
© 2011 Microchip Technology Inc.  
MCP16321/2  
5.0.7  
BOOST CAPACITOR  
EXAMPLE 5-5:  
POWER DISSIPATION –  
MCP16321  
The boost capacitor is used to supply current for the  
internal high-side drive circuitry that is above the input  
voltage. The boost capacitor must store enough energy  
to completely drive the high-side switch on and off. A  
22 nF X5R or X7R capacitor is recommended for all  
applications. The boost capacitor maximum voltage is  
VIN  
VOUT  
IOUT  
=
=
=
=
=
=
=
12V  
5.0V  
1A  
Efficiency  
92.5%  
405 mW  
0.04 Ω  
40 mW  
5.5V, so  
recommended.  
a
6.3V or 10V rated capacitor is  
Total System Dissipation  
LESR  
PL  
5.0.8  
THERMAL CALCULATIONS  
The MCP16321/2 is available in a 3x3 QFN-16  
package. By calculating the power dissipation and  
applying the package thermal resistance (θJA), the  
junction temperature is estimated. The maximum  
continuous junction temperature rating for the  
MCP16321/2 is +125°C.  
MCP16321 internal power dissipation estimate:  
PDIS – PL  
θJA  
=
=
=
365 mW  
38.5°C/W  
+14.052°C  
Estimated Junction  
Note 1:  
θJA = 38.5°C/W for a 4-layer FR4 Printed  
Circuit Board with a 13.5 in2, 1 oz internal  
copper ground plane.  
To quickly estimate the internal power dissipation for  
the switching step-down regulator, an empirical  
calculation using measured efficiency can be used.  
Given the measured efficiency, the internal power  
dissipation is estimated in Equation 5-4. This power  
dissipation includes all internal and external  
component losses. For a quick internal estimate,  
subtract the estimated inductor ESR loss from the PDIS  
calculation in Equation 5-4.  
2: A smaller ground plane will result in a  
larger θJA temperature rise.  
EXAMPLE 5-6:  
POWER DISSIPATION –  
MCP16322  
VIN  
=
=
=
=
=
=
=
12V  
VOUT  
3.3V  
EQUATION 5-4:  
TOTAL POWER  
IOUT  
2A  
DISSIPATION ESTIMATE  
Efficiency  
87.5%  
943 mW  
0.04 Ω  
160 mW  
VOUT × IOUT  
PDIS = ------------------------------ (VOUT × IOUT  
Efficency  
Total System Dissipation  
)
LESR  
PL  
The difference between the first term, input power, and  
the second term, power delivered, is the total system  
power dissipation. The inductor losses are estimated  
MCP16322 internal power dissipation estimate:  
PDIS – PL  
θJA  
=
=
=
783 mW  
38.5°C/W  
+30.14°C  
by PL = IOUT2 x LESR  
.
Estimated Junction  
© 2011 Microchip Technology Inc.  
DS22285A-page 21  
MCP16321/2  
frequency switch current, CIN also provides a stable  
voltage source for the internal MCP16321/2 circuitry.  
Unstable PWM operation can result if there are  
excessive transients or ringing on the VIN pin of the  
MCP16321/2 device. In Figure 5-1, CIN is placed close  
to the VIN pins. A ground plane on the bottom of the  
board provides a low resistive and low inductive path  
for the return current. The next priority in placement is  
the freewheeling current loop formed by COUT and L  
while strategically placing the COUT return close to CIN  
return. Next, CBOOST should be placed between the  
boost pin and the switch node pin. This leaves space  
close to the MCP16321/2 VFB pin to place RTOP and  
RBOT. RTOP and RBOT are routed away from the switch  
node so noise is not coupled into the high-impedance  
VFB input.  
5.0.9  
PCB LAYOUT INFORMATION  
Good printed circuit board layout techniques are  
important to any switching circuitry, and switching  
power supplies are no different. When wiring the  
switching high-current paths, short and wide traces  
should be used. Therefore, it is important that the input  
and output capacitors be placed as close as possible to  
the MCP16321/2 to minimize the loop area.  
The feedback resistors and feedback signal should be  
routed away from the switching node and the switching  
current loop. When possible, ground planes and traces  
should be used to help shield the feedback signal and  
minimize noise and magnetic interference.  
A good MCP16321/2 layout starts with CIN placement.  
CIN supplies current to the input of the circuit when the  
switch is turned on. In addition to supplying high-  
Bottom layer is ground plane  
VOUT  
L
COUT  
COUT  
RPG 10Ω  
CBOOST  
GND  
MCP16321/2  
R
BOT RTOP  
Trace on  
bottom layer  
CIN  
CIN  
VIN  
GND  
FIGURE 5-1:  
Recommended Layout.  
DS22285A-page 22  
© 2011 Microchip Technology Inc.  
MCP16321/2  
CBOOST  
VOUT  
0.9V to 5V  
L
BOOST  
VIN  
SW  
6.0V to 24V  
VIN  
EN  
10Ω  
RTOP  
COUT  
VFB  
VOUT  
RPG  
RBOT  
CIN  
PG  
SGND  
PGND  
FIGURE 5-2:  
TABLE 5-4:  
Recommended Layout – Schematic.  
RECOMMENDED LAYOUT  
COMPONENTS  
Component  
CIN  
Value  
2 x 10 µF  
2 x 22 µF  
4.7 µH  
36.5 kΩ  
10 kΩ  
COUT  
L
RTOP  
RBOT  
RPG  
10 kΩ  
CBOOST  
22 nF  
© 2011 Microchip Technology Inc.  
DS22285A-page 23  
MCP16321/2  
NOTES:  
DS22285A-page 24  
© 2011 Microchip Technology Inc.  
MCP16321/2  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
16-Lead QFN (3x3x0.9 mm)  
Example  
Part Number  
Code  
MCP16321T-150E/NG  
MCP16321T-180E/NG  
MCP16321T-250E/NG  
MCP16321T-330E/NG  
MCP16321T-500E/NG  
MCP16321T-ADJE/NG  
MCP16322T-150E/NG  
MCP16322T-180E/NG  
MCP16322T-250E/NG  
MCP16322T-330E/NG  
MCP16322T-500E/NG  
MCP16322T-ADJE/NG  
AAA  
AAB  
AAC  
AAD  
AAE  
AAF  
ABA  
ABB  
ABC  
ABD  
ABE  
ABF  
AAA  
E114  
5256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2011 Microchip Technology Inc.  
DS22285A-page 25  
MCP16321/2  
DS22285A-page 26  
© 2011 Microchip Technology Inc.  
MCP16321/2  
© 2011 Microchip Technology Inc.  
DS22285A-page 27  
MCP16321/2  
DS22285A-page 28  
© 2011 Microchip Technology Inc.  
MCP16321/2  
APPENDIX A: REVISION HISTORY  
Revision A (December 2011)  
• Original Release of this Document.  
© 2011 Microchip Technology Inc.  
DS22285A-page 29  
MCP16321/2  
NOTES:  
DS22285A-page 30  
© 2011 Microchip Technology Inc.  
MCP16321/2  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
T
X
/XX  
-XXX  
Examples:  
a) MCP16321T-150E/NG:  
Tape and Reel,  
Tape and Reel  
Temperature Package  
Range  
Output  
Voltage  
1.5V Output Voltage,  
Extended Temperature  
16LD QFN Package  
b) MCP16321T-ADJE/NG: Tape and Reel,  
Adjustable Output Voltage,  
Device:  
MCP16321T:  
MCP16322T:  
High-Efficiency Synchronous Buck  
Regulator (Tape and Reel) (QFN)  
High-Efficiency Synchronous Buck  
Regulator (Tape and Reel) (QFN)  
Extended Temperature  
16LD QFN Package  
Tape and Reel,  
c) MCP16322T-150E/NG:  
1.5V Output Voltage,  
Extended Temperature  
16LD QFN Package  
Output Voltage  
150  
180  
250  
330  
500  
ADJ  
=
=
=
=
=
=
1.5V  
1.8V  
2.5V  
3.3V  
5.0V  
d) MCP16322T-ADJE/NG: Tape and Reel,  
Adjustable Output Voltage,  
Extended Temperature  
16LD QFN Package  
Adjustable  
Temperature Range:  
Package:  
E
= -40°C to +125°C  
NG = Plastic Quad Flat, No Lead Package  
(3x3x0.9 mm Body) (QFN), 16-lead  
© 2011 Microchip Technology Inc.  
DS22285A-page 31  
MCP16321/2  
NOTES:  
DS22285A-page 32  
© 2011 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, chipKIT,  
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,  
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,  
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,  
MPLINK, mTouch, Omniscient Code Generation, PICC,  
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,  
rfLAB, Select Mode, Total Endurance, TSHARC,  
UniWinDriver, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2011, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-61341-865-9  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2011 Microchip Technology Inc.  
DS22285A-page 33  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-66-152-7160  
Fax: 81-66-152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/11  
DS22285A-page 34  
© 2011 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY