MCP16415-I/UN [MICROCHIP]

Low IQ Boost Converter with Programmable Low Battery, UVLO and Automatic Input-to-Output Bypass Operation;
MCP16415-I/UN
型号: MCP16415-I/UN
厂家: MICROCHIP    MICROCHIP
描述:

Low IQ Boost Converter with Programmable Low Battery, UVLO and Automatic Input-to-Output Bypass Operation

电池
文件: 总44页 (文件大小:1474K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1641X  
Low I Boost Converter with Programmable Low Battery, UVLO and  
Q
Automatic Input-to-Output Bypass Operation  
Features  
Description  
• Input Voltage Range: 0.8V (after Start-up)  
to 5.25V  
The MCP1641X Step-up DC-DC Converters family  
provides an automatic input-to-output voltage bypass  
operation, which helps optimize battery utilization and  
achieve high efficiency, while the nominal voltage of  
fresh batteries remains in the same range with the con-  
verter’s output value. The MCP1641X can be powered  
by either single-cell, two-cell alkaline/NiMH batteries or  
single-cell Li-Ion/Li-Polymer batteries.  
• Low Device Quiescent Current: 5 µA (typical),  
PFM Mode (not switching)  
• Up to 96% Efficiency  
• 1A Typical Inductor Peak Current Limit:  
- IOUT > 170 mA at 2V VOUT, 1.2V VIN  
- IOUT > 200 mA at 3.3V VOUT, 1.5V VIN  
- IOUT > 600 mA at 5.0V VOUT, 3.6V VIN  
• Adjustable Output Voltage Range  
• Automatic Input-to-Output Bypass Operation  
• Selectable Switching Mode:  
A
low-voltage designed architecture allows the  
regulator to start up without high inrush current or  
output voltage overshoot from a low input voltage. The  
start-up voltage is easily programmed by a resistive  
divider connected to the UVLO pin. If the resistive  
divider is not used, the default start-up voltage is 0.85V.  
The 0.8V built-in UVLOSTOP helps prevent deep dis-  
charge of the alkaline battery, which can cause battery  
leakage. An open-drain Low Battery Output (LBO) pin  
warns the user to replace the battery if the input voltage  
ramps down to the programmed UVLOSTART value.  
- PWM operation: 500 kHz (MCP16412/4/6/8)  
- Automatic PFM/PWM operation  
(MCP16411/3/5/7)  
• Programmable Undervoltage Lockout (UVLO)  
• Programmable Low Battery Output (LBO)  
• Selectable Status Indicator:  
The MCP1641X family introduces an additional safety  
- Power Good and Die Overtemperature   
feature to a low-voltage boost converter: Over-  
output (MCP16411/2/3/4)  
temperature Output. Devices, such as personal care  
products, Bluetooth headsets or toys, will benefit from  
the combined Power Good and Die Overtemperature  
(PGT) output, which flags a warning signal when the out-  
- Power Good output (MCP16415/6/7/8)  
• Internal Synchronous Rectifier  
• Internal Compensation  
put voltage level drops within 10% or the die temperature  
(1)  
• Inrush Current Limiting and Internal Soft Start  
• Low Noise, Anti-Ringing Control  
• Thermal Shutdown  
exceeds the +75°C (typical).  
Both functions are  
implemented in the MCP16411/2/3/4 devices (on the  
same pin, PGT), while the MCP16415/6/7/8 devices  
have only the Power Good option.  
• Selectable Shutdown States:  
- Output discharge option (MCP16411/2/5/6)  
Note 1: Factory programmable from +55C to  
+85C, at +10C increments, by customer  
request.  
- Input-to-output bypass option  
(MCP16413/4/7/8)  
• Shutdown Current: 2.3 µA (typical)  
• Available Packages:  
Package Types  
MCP1641X  
10-Lead MSOP  
MCP1641X  
3x3 TDFN*  
- 10-Lead MSOP  
- 10-Lead 3 mm x 3 mm TDFN  
EN  
1
2
3
4
5
10  
9
UVLO  
UVLO  
LBO  
1
2
3
4
5
10  
9
EN  
VIN  
VIN  
LBO  
PGT**  
VFB  
Applications  
SGND  
EP  
11  
SGND  
PGND  
8
PGT**  
VFB  
8
PGND  
SW  
• Personal and Health Care Products  
• Single-Cell or Two-Cell Powered IoT Devices  
• Bluetooth® Headsets  
7
7
VOUT  
6
VOUT  
6
SW  
*Includes Exposed Thermal Pad (EP), see Table 4-1.  
**See Table 3-1 for device options – PGT or PG pin.  
• Remote Controllers, Portable Instruments  
• Wireless Sensors, Data Loggers  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 1  
MCP1641X  
Typical Applications  
L1  
UVLOSTART = 0.85V  
UVLOSTOP = 0.8V  
4.7 µH  
MCP16415/6/7/8  
VOUT  
3.3V  
VIN  
0.8V to 1.6V  
SW  
VOUT  
VIN  
866 k  
360 k  
COUT  
CIN  
+
10 µF  
10 µF  
VFB  
UVLO  
EN  
PG  
Power Good  
Low Battery Output  
GND  
LBO  
L1  
UVLOSTART = 2.4V  
UVLOSTOP = 0.8V  
4.7 µH  
MCP16411/2/3/4  
VOUT  
3V  
VIN  
SW  
1.6V to 3.2V  
VOUT  
VIN  
768 k  
COUT  
10 µF  
CIN  
1.69 M  
430 k  
+
VFB  
10 µF  
485 mV VREF  
UVLO  
EN  
360 k  
1 M  
1 M  
ENABLE  
ON  
+
PGT  
LBO  
GND  
OFF  
LBO Low if VIN < 2.4V  
2 x &ƌĞƐŚꢀ  
ꢁůŬĂůŝŶĞꢀꢂĂƚƚĞƌŝĞƐ  
V/E  
3.2V  
Batteries  
ǁŝƚŚꢀLow Voltage  
3.0V  
2.7V  
Prograŵmed  
UVLOSTART  
2.4V  
0.8V  
UVLOSTOP  
LBO  
0V  
VOUT  
3.2V  
2.7V  
3.0V  
Auto IN-OUT  
BYPASS area  
REGULATION area  
Time  
DS20006394C-page 2  
2020-2021 Microchip Technology Inc.  
MCP1641X  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings  
EN, VFB, VIN, VSW, VOUT – GND .............................................................................................................................+5.5V  
EN, VFB.............................................................................................. < Maximum between VOUT or VIN > (GND – 0.3V)  
Output Short-Circuit Current ..........................................................................................................................Continuous  
Output Current Bypass Mode ...............................................................................................................................600 mA  
Power Dissipation ..................................................................................................................................Internally Limited  
Storage Temperature ............................................................................................................................. -65°C to +150°C  
Ambient Temperature with Power Applied ................................................................................................-40°C to +85°C  
Operating Junction Temperature, TJ .......................................................................................................-40°C to +125°C  
ESD Protection on All Pins:  
Human Body Model ............................................................................................................................................... 4 kV  
Charged Device Model ...........................................................................................................................................2 kV  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above  
those indicated in the operational listings of this specification is not intended. Exposure to maximum rating  
conditions for extended periods may affect device reliability.  
AC/DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, VIN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V,  
IOUT = 10 mA, TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C.  
Parameters  
Sym.  
Min.  
0.82  
Typ.  
Max.  
5.25  
Units  
Conditions  
Input Voltage Range  
VIN  
V
Values apply for the entire VOUT  
range  
Minimum Input Voltage  
for Start-up  
VIN  
0.88  
V
Undervoltage Lockout  
(UVLO)  
UVLOSTART  
UVLOSTOP  
UVLOHYS  
VOUT  
0.83  
0.74  
0.85  
0.8  
50  
0.87  
0.81  
V
V
Resistive load; UVLO pin  
connected to VIN pin  
mV  
V
Output Voltage Adjust  
Range  
1.8  
5.25  
Note 1  
Maximum Output Current  
IOUT  
170  
200  
600  
0.95  
mA  
mA  
mA  
V
1.2V VIN, 2.0V VOUT (Note 4)  
1.5V VIN, 3.3V VOUT (Note 4)  
3.6V VIN, 5.0V VOUT (Note 4)  
Note 3  
Feedback Voltage  
VFB  
IVFB  
0.97  
1
0.985  
Feedback Input   
nA  
Note 4  
Bias Current  
Quiescent Current at  
VOUT  
IQOUT  
5.0  
6.0  
µA  
EN = VIN, does not include FB  
divider current, PFM mode  
(MCP16411/3/5/7) (Note 2)  
Note 1: For VIN > VOUT, the device enters Automatic Input-to-Output Bypass mode,   
VOUT = VIN – RDS(ON)P * IOUT, maximum VIN is 5.25V.  
2:  
VOUT pin is forced biased with a voltage higher than the nominal VOUT (device is not switching) at  
IOUT = 0 mA. IQIN and IQOUT are the device’s current consumption at VIN and VOUT pins during Sleep  
periods. The device selects its bias from VIN and/or VOUT  
.
3: 330resistive load, 3.3V VOUT (10 mA).  
4: Determined by characterization, not production tested.  
5: This is ensured by design.  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 3  
MCP1641X  
AC/DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise noted, VIN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V,  
IOUT = 10 mA, TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Quiescent Current at VIN  
IQIN  
4.5  
5
µA  
EN = VIN,  
PFM mode (MCP16411/3/5/7)  
(Notes 2, 4)  
Quiescent Current –   
IQSHDN  
2.3  
3.1  
µA  
VOUT = EN = GND,   
Shutdown Mode  
includes N-Channel and   
P-Channel switch leakage  
NMOS Switch Leakage  
PMOS Switch Leakage  
INLK  
IPLK  
85  
1
nA  
nA  
Note 5  
Note 5  
NMOS Switch   
RDS(ON)N  
0.4  
ISW = 100 mA (Note 4)  
On-Resistance  
PMOS Switch   
On-Resistance  
RDS(ON)P  
IN(MAX)  
VOUT  
0.8  
0.5  
1
+1  
A
ISW = 100 mA (Note 4)  
NMOS Peak Switch   
Current Limit  
Note 4  
VOUT Accuracy  
%
%
Includes line and load  
regulation, VIN = 1.5V, PWM  
Only options  
Line Regulation  
Load Regulation  
(VOUT/VOUT  
/VDD  
)
0.1  
0.1  
0.5  
0.2  
%/V VIN = 1.5V to 2.7V, IOUT = 25 mA,  
PWM Only options  
VOUT/VOUT  
%
IOUT = 10 mA to 100 mA,  
VIN = 1.5V, PWM Only options  
Maximum Duty Cycle  
Switching Frequency  
EN Input Logic High  
EN Input Logic Low  
DCMAX  
fSW  
425  
82  
90  
500  
575  
%
Note 4  
kHz IOUT = 100 mA  
% of VIN IOUT = 10 mA  
% of VIN IOUT = 10 mA  
VIH  
VIL  
25  
EN Input Leakage  
Current  
IENLK  
1
nA  
Note 4  
Power Good Threshold  
PGTH  
90  
%
% of VOUT (part of PGT signal)  
for MCP16411/2/3/4  
Power Good Hysteresis  
Power Good Delay  
PGHYS  
5
%
µs  
µs  
V
% of VOUT  
Note 4  
PGDELAY  
250  
250  
0.4  
Power Good Response  
PGRESPONSE  
PGTLOW  
Note 4  
PGT Pin Low-Level  
Output  
ISINK = 2 mA (Note 4)  
Low Battery Output Delay  
LBODELAY  
150  
150  
µs  
µs  
Note 4  
Note 4  
Low Battery Output  
Response  
LBIRESPONSE  
Low Battery Input  
Hysteresis  
LBIHYS  
20  
40  
mV  
UVLO pin  
Note 1: For VIN > VOUT, the device enters Automatic Input-to-Output Bypass mode,   
VOUT = VIN – RDS(ON)P * IOUT, maximum VIN is 5.25V.  
2:  
V
OUT pin is forced biased with a voltage higher than the nominal VOUT (device is not switching) at  
IOUT = 0 mA. IQIN and IQOUT are the device’s current consumption at VIN and VOUT pins during Sleep  
periods. The device selects its bias from VIN and/or VOUT  
.
3: 330resistive load, 3.3V VOUT (10 mA).  
4: Determined by characterization, not production tested.  
5: This is ensured by design.  
DS20006394C-page 4  
2020-2021 Microchip Technology Inc.  
MCP1641X  
AC/DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise noted, VIN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V,  
OUT = 10 mA, TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C.  
I
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Low Battery Output Low  
Level  
LBILOW  
0.4  
V
ISINK = 2 mA (Note 4)  
Start-up Time  
tS  
1
ms  
C  
C  
C  
EN low-to-high, 90% of VOUT  
(Notes 3, 4)  
Thermal Shutdown   
Die Temperature  
TSHDN  
140  
10  
Thermal Shutdown  
Temperature Hysteresis  
TSHDNHYS  
PGTOT  
Internal Overtemperature  
Output  
75  
PGT signal switch from  
high-to-low level,  
MCP16411/2/3/4 only  
Note 1: For VIN > VOUT, the device enters Automatic Input-to-Output Bypass mode,   
VOUT = VIN – RDS(ON)P * IOUT, maximum VIN is 5.25V.  
2:  
VOUT pin is forced biased with a voltage higher than the nominal VOUT (device is not switching) at  
IOUT = 0 mA. IQIN and IQOUT are the device’s current consumption at VIN and VOUT pins during Sleep  
periods. The device selects its bias from VIN and/or VOUT  
.
3: 330resistive load, 3.3V VOUT (10 mA).  
4: Determined by characterization, not production tested.  
5: This is ensured by design.  
TEMPERATURE SPECIFICATIONS  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Temperature Ranges  
Operating Temperature Range  
Storage Temperature Range  
TJ  
TA  
TJ  
-40  
-65  
+125  
+150  
+150  
°C  
°C  
°C  
Steady state  
Transient  
Maximum Junction Temperature  
Package Thermal Resistances  
Thermal Resistance, 10-Lead MSOP  
JA  
JA  
71  
54  
°C/W  
°C/W  
Thermal Resistance, 10-Lead   
3 mm x 3 mm TDFN  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 5  
MCP1641X  
NOTES:  
DS20006394C-page 6  
2020-2021 Microchip Technology Inc.  
MCP1641X  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 10 mA,  
TA = +25°C, 10-Lead MSOP Package, PFM/PWM Options = MCP16411/3/5/7, PWM Only Options = MCP16412/4/6/8.  
20  
18  
16  
14  
12  
10  
8
6
4
2
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
-40 -25 -10  
5
20  
35  
50  
65  
80  
-40 -25 -10  
5
20  
35  
50  
65  
80  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-1:  
IQOUT vs. Ambient  
FIGURE 2-4:  
IQOUT vs. Ambient  
Temperature, PFM/PWM Options.  
Temperature, PWM Only Options.  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
10  
9
8
7
6
5
4
3
2
1
0
0
0.8  
1
1.2 1.4 1.6 1.8  
2 2.2 2.4 2.6 2.8 3  
0.8  
1
1.2 1.4 1.6 1.8  
2 2.2 2.4 2.6 2.8 3  
Input Voltage (V)  
Input Voltage (V)  
FIGURE 2-2:  
IQOUT vs. VIN, PFM/PWM  
FIGURE 2-5:  
IQOUT vs. VIN, PWM Only  
Options.  
Options.  
10  
9
8
7
6
5
4
3
2
1
0
1300  
1200  
1100  
1000  
900  
VOUT = 3.3V  
800  
700  
600  
VOUT = 2.0V  
500  
400  
300  
200  
100  
0
VOUT = 5.0V  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
4.4 4.8  
0.8  
1.2  
1.6  
2
2.4  
2.8  
3.2  
3.6  
Input Voltage V)  
Input Voltage (V)  
FIGURE 2-3:  
Shutdown Current vs. VIN.  
FIGURE 2-6:  
Maximum IOUT vs. VIN, after  
Start-up, VOUT Maximum 5% below Regulation  
Point.  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 7  
MCP1641X  
Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 10 mA,  
TA = +25°C, 10-Lead MSOP Package, PFM/PWM Options = MCP16411/3/5/7, PWM Only Options = MCP16412/4/6/8.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
VIN = 1.2V  
VIN = 1.6V  
VIN = 1.2V  
VIN = 3V  
VIN = 1.6V  
VIN = 3V  
0.5  
0
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-7:  
No Load Input Current vs.  
FIGURE 2-10:  
No Load Input Current vs.  
Ambient Temperature, PFM/PWM Options.  
Ambient Temperature, PWM Only Options.  
1000  
100  
10  
1000  
100  
10  
1
VOUT = 3.3V  
VOUT = 5V  
VOUT = 2V  
0.1  
1
0.1  
VOUT = 2V  
VOUT = 3.3V  
VOUT = 5V  
0.01  
0.001  
0.0001  
0.01  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Input Voltage (V)  
Input Voltage (V)  
FIGURE 2-8:  
No Load Input Current vs.  
FIGURE 2-11:  
No Load Input Current vs.  
VIN, PFM/PWM Options.  
VIN, PWM Only Options.  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
40  
35  
VOUT = 5.0V  
VOUT = 3.3V  
VOUT = 2V  
30  
25  
20  
15  
10  
5
0
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
4.4 4.8  
-40 -30 -20 -10  
0 10 20 30 40 50 60 70 80  
Ambient Temperature (°C)  
Input Voltage (V)  
FIGURE 2-9:  
Automatic Bypass Mode –  
FIGURE 2-12:  
Average of PFM/PWM  
No Load Input Current vs. Ambient Temperature.  
Threshold Current vs.VIN.  
DS20006394C-page 8  
2020-2021 Microchip Technology Inc.  
MCP1641X  
Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 10 mA,  
TA = +25°C, 10-Lead MSOP Package, PFM/PWM Options = MCP16411/3/5/7, PWM Only Options = MCP16412/4/6/8.  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 1V  
VIN = 1.2V  
VIN = 1.6V  
VIN = 1V  
VIN = 1.2V  
VIN = 1.6V  
0.01  
0.1  
1
10  
100  
1000  
0.1  
1
10  
IOUT (mA)  
100  
1000  
IOUT (mA)  
FIGURE 2-13:  
2.0V VOUT, Efficiency vs.  
FIGURE 2-16:  
2.0V VOUT, Efficiency vs.  
IOUT, PFM/PWM Options.  
IOUT, PWM Only Options.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 1.2V  
VIN = 1.6V  
VIN = 3V  
VIN = 1.2V  
VIN = 1.6V  
VIN = 3V  
0.1  
1
10  
IOUT (mA)  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
IOUT (mA)  
FIGURE 2-14:  
3.3V VOUT, Efficiency vs.  
FIGURE 2-17:  
3.3V VOUT, Efficiency vs.  
IOUT, PFM/PWM Options.  
IOUT, PWM Only Options.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = 5.0V  
VOUT = 5.0V  
VIN = 1.2V  
VIN = 3V  
VIN = 4.2V  
VIN = 1.2V  
VIN = 3V  
VIN = 4.2V  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
IOUT (mA)  
IOUT (mA)  
FIGURE 2-15:  
5.0V VOUT, Efficiency vs.  
FIGURE 2-18:  
5.0V VOUT, Efficiency vs.  
IOUT, PFM/PWM Options.  
IOUT, PWM Only Options.  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 9  
MCP1641X  
Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 10 mA,  
TA = +25°C, 10-Lead MSOP Package, PFM/PWM Options = MCP16411/3/5/7, PWM Only Options = MCP16412/4/6/8.  
510  
505  
500  
495  
490  
485  
480  
475  
470  
3.34  
3.33  
3.32  
3.31  
3.3  
ILOAD = 100 mA  
ILOAD = 100 mA  
3.29  
3.28  
3.27  
3.26  
ILOAD = 10 mA  
-40 -25 -10  
5
20  
35  
50  
65  
80  
-40 -25 -10  
5
20  
35  
50  
65  
80  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-19:  
3.3V VOUT vs. Ambient  
FIGURE 2-22:  
Normalized Switching  
Temperature.  
Frequency vs. Ambient Temperature.  
3.34  
3.33  
3.32  
3.31  
3.3  
2
1.8  
1.6  
VIN = 3V  
1.4  
Start-Up  
1.2  
3.29  
3.28  
3.27  
3.26  
Shutdown  
VIN = 2.5V  
VIN = 1.2V  
1
0.8  
0.6  
ILOAD = 25 mA  
-40 -25 -10  
5
20  
35  
50  
65  
80  
0
10 20 30 40 50 60 70 80 90 100  
Load Current (mA)  
Ambient Temperature (°C)  
FIGURE 2-20:  
3.3V VOUT vs. Ambient  
FIGURE 2-23:  
3.3V VOUT, Minimum  
Temperature.  
Start-up and Shutdown VIN vs. Resistive Load.  
3.34  
3.33  
3.32  
3.31  
3.3  
3
2.8  
2.6  
2.4  
2.2  
TA = -40°C  
2
Start-Up  
1.8  
1.6  
3.29  
3.28  
1.4  
Shutdown  
1.2  
TA = +25°C  
TA = +85°C  
1
0.8  
0.6  
3.27  
3.26  
ILOAD = 50 mA  
0.8 1.1 1.4 1.7  
2
2.3 2.6 2.9 3.2  
0
10 20 30 40 50 60 70 80 90 100  
Load Current (mA)  
Input Voltage (V)  
FIGURE 2-21:  
3.3V VOUT vs. VIN.  
FIGURE 2-24:  
5.0V VOUT, Minimum  
Start-up and Shutdown VIN vs. Resistive Load.  
DS20006394C-page 10  
2020-2021 Microchip Technology Inc.  
MCP1641X  
Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 10 mA,  
TA = +25°C, 10-Lead MSOP Package, PFM/PWM Options = MCP16411/3/5/7, PWM Only Options = MCP16412/4/6/8.  
2
2.4  
1.8  
1.6  
1.4  
1.2  
1
2.2  
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
L = 2.2 µH  
L = 4.7 µH  
TA= +25°C  
TA= +85°C  
TA= -40°C  
TA = +25°C  
TA = +85°C  
TA = -40°C  
0.8  
0.6  
0.4  
0.8 0.9  
1
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9  
Input Voltage (V)  
0.8  
1
1.2 1.4 1.6 1.8  
2
2.2 2.4 2.6 2.8  
3
Input Voltage (V)  
FIGURE 2-25:  
3.3V VOUT, Inductor Peak  
FIGURE 2-28:  
2.0V VOUT, Inductor Peak  
Current Limit vs.VIN.  
Current Limit vs. VIN.  
2.4  
2.2  
0.89  
0.87  
0.85  
0.83  
0.81  
0.79  
0.77  
L = 4.7 µH  
2
UVLOSTART  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
UVLOSTOP  
TA = +25°C  
TA = +85°C  
TA = -40°C  
ILOAD = 10 mA  
0.75  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
4.4 4.8  
-40 -25 -10  
5
20  
35  
50  
65  
80  
Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-26:  
5.0V VOUT, Inductor Peak  
FIGURE 2-29:  
UVLOSTART and UVLOSTOP  
Current Limit vs.VIN.  
vs. Ambient Temperature.  
5
4
3.34  
3.33  
3.32  
VIN =2.5V  
P - Channel  
3
3.31  
3.3  
3.29  
2
N - Channel  
3.28  
VIN =1.5V  
3.27  
1
0
3.26  
10 20 30 40 50 60 70 80 90 100  
Load Current (mA)  
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
> VIN or VOUT  
4
4.4 4.8 5.2  
FIGURE 2-27:  
Options.  
Load Regulation, PWM Only  
FIGURE 2-30:  
RDSON vs. > VIN or VOUT  
N-Channel and P-Channel,  
.
2020-2021 Microchip Technology Inc.  
DS20006394C-page 11  
MCP1641X  
Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 10 mA,  
TA = +25°C, 10-Lead MSOP Package, PFM/PWM Options = MCP16411/3/5/7, PWM Only Options = MCP16412/4/6/8.  
,
 ꢁꢃꢁP$  
,
 ꢅꢁP$  
9
ꢂꢃꢃꢁP9ꢄGLY  
/2$'  
/2$'ꢀ  
287ꢁ  
$&ꢁ&RXSOHG  
9
ꢂꢃꢃꢁP9ꢄGLYꢁ  
287  
$&ꢁ&RXSOHG  
9
6:ꢁ  
ꢂ9ꢄGLY  
,
/
,
/ꢁ  
ꢅꢃꢃꢁP$ꢄGLY  
ꢆꢃꢃꢁȝVꢄGLY  
ꢂꢃꢁP$ꢄGLY  
ꢅꢃꢃꢁPVꢄGLY  
FIGURE 2-31:  
3.3V VOUT, PFM Mode  
FIGURE 2-34:  
3.3V VOUT, No Load, PFM  
Waveforms.  
Mode Output Ripple.  
9
ꢂꢃꢁP9ꢄGLY  
287ꢁ  
$&ꢁ&RXSOHG  
9
ꢂꢃꢁP9GLYꢁ  
287  
$&ꢁ&RXSOHG  
,
 ꢁꢃꢁP$  
,
 ꢅꢃꢃꢁP$  
/2$'ꢀ  
/2$'  
9
6:  
ꢂ9ꢄGLY  
9
6:  
ꢂ9ꢄGLY  
,
/
,
/
ꢇꢃꢁP$ꢄGLY  
ꢂꢃꢃꢁP$ꢄGLY  
ꢅꢁȝVꢄGLY  
ꢅꢁȝVꢄGLY  
FIGURE 2-32:  
3.3V VOUT, No Load, PWM  
FIGURE 2-35:  
3.3V VOUT, PWM Mode  
Waveforms.  
Mode Waveforms.  
,
 ꢀꢄꢀP$ꢀWRꢀꢄꢃꢃP$  
67(3ꢀ  
,
 ꢀꢄꢀP$ꢀWRꢀꢄꢃꢃꢀP$  
67(3ꢀ  
9
ꢂꢃꢃꢀP9ꢁGLY  
287ꢀ  
$&ꢀ&RXSOHG  
9
ꢂꢃꢃꢀP9ꢁGLY  
287ꢀ  
$&ꢀ&RXSOHG  
3:0ꢀ0RGH  
3)0ꢀ0RGH  
,
ꢅꢃꢀP$ꢁGLY  
/2$'ꢀ  
,
ꢅꢃꢀP$ꢁGLY  
ꢄꢀPVꢁGLY  
/2$'ꢀ  
ꢂꢀPVꢁGLY  
FIGURE 2-36:  
Waveforms, PWM Only Options.  
3.3V VOUT, Load Transient  
FIGURE 2-33:  
Waveforms, PFM/PWM Options.  
3.3V VOUT, Load Transient  
DS20006394C-page 12  
2020-2021 Microchip Technology Inc.  
MCP1641X  
Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 10 mA,  
TA = +25°C, 10-Lead MSOP Package, PFM/PWM Options = MCP16411/3/5/7, PWM Only Options = MCP16412/4/6/8.  
ILOAD = 1 mA  
9
287ꢀ  
ꢂ9ꢁGLY  
9
287ꢀ  
ꢂ9ꢁGLY  
9,1 9  
(1  
ꢄ9ꢁGLY  
9
 ꢀ9  
(1ꢀ  
,1ꢀ  
ꢄ9ꢁGLY  
,   
/ꢀ  
,
/ꢀ  
ꢂꢃꢃꢀP$ꢁGLY  
ꢂꢃꢃꢀP$ꢁGLY  
ꢆꢃꢃꢀȝVꢁGLY  
ꢆꢃꢃꢀȝVꢁGLY  
FIGURE 2-37:  
3.3V VOUT, Start-up from  
FIGURE 2-40:  
3.3V VOUT, Start-up from  
VIN, PFM/PWM Options.  
VIN, PWM Only Options.  
9
287ꢀ  
ꢂ9ꢁGLY  
9
ꢀꢄꢃꢃꢀP9ꢁGLYꢀ  
287  
$&ꢀ&RXSOHG  
9
IURPꢀꢃ9ꢀWRꢀꢂ9  
,1ꢀ  
9
,1  
ꢄ9ꢁGLY  
3*ꢀ6LJQDO  
ꢂ9ꢁGLY  
9
,1ꢀ  
VWHSꢀIURPꢀꢄ9ꢀWRꢀꢂꢇꢅ9  
ꢄꢀPVꢁGLY  
9
,1  
ꢄ9ꢁGLY  
/%2ꢀ6LJQDO  
ꢂ9ꢁGLY  
ꢂꢃꢃꢀPVꢁGLY  
FIGURE 2-38:  
3.3V VOUT, Line Transient  
FIGURE 2-41:  
3.3V VOUT, UVLO  
Waveforms.  
Connected to VIN.  
9
287ꢀ  
ꢂ9ꢁGLY  
9
IURPꢀꢃ9ꢀWRꢀꢂ9  
,1ꢀ  
9
9
,1  
(1ꢀ  
ꢄ9ꢁGLY  
3*ꢀ6LJQDO  
ꢄ9ꢁGLY  
ꢀꢂ9ꢁGLY  
9
/%2ꢀ6LJQDO  
ꢂ9ꢁGLY  
287ꢀ  
ꢂ9ꢁGLY  
ꢂꢃꢃꢀPVꢁGLY  
ꢆꢃꢃꢀȝVꢁGLY  
FIGURE 2-39:  
3.3V VOUT, Start-up after  
FIGURE 2-42:  
3.3V VOUT, UVLO Set for  
Enable.  
1.1V.  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 13  
MCP1641X  
Note: Unless otherwise indicated, VIN = EN = 1.2V, COUT = CIN = 10 µF, L = 4.7 µH, VOUT = 3.3V, ILOAD = 10 mA,  
TA = +25°C, 10-Lead MSOP Package, PFM/PWM Options = MCP16411/3/5/7, PWM Only Options = MCP16412/4/6/8.  
,
 ꢀꢄꢀP$  
/2$'ꢀ  
9
287ꢀ  
ꢄ9ꢁGLY  
/%2ꢀ6LJQDOꢀ  
ꢂ9GLY  
89/2ꢀVWHSꢀIURPꢀꢃ9ꢀWRꢀꢄ9  
9
ꢀIURPꢀꢃ9ꢀWRꢀꢉꢇꢊ9  
ꢂꢃꢃꢀPVꢁGLY  
,1ꢀ  
9
,1  
89/2ꢀ6LJQDOꢀ  
ꢄ9ꢁGLY  
ꢄ9ꢁGLY  
3*  
ꢂ9ꢁGLY  
ꢈꢃꢀȝVꢁGLY  
FIGURE 2-43:  
3.3V VOUT, LBO Delay and  
FIGURE 2-45:  
3.3V VOUT, Boost to  
Response Time.  
Automatic Bypass Transitions, PWM Only  
Options.  
,
 ꢀꢄꢀP$  
/2$'ꢀ  
9
287ꢀ  
ꢄ9ꢁGLY  
9
,1ꢀ  
IURP ꢃ9ꢀWRꢀꢉꢇꢊ9  
9
,1  
ꢅ9ꢄGLY  
3*  
ꢂ9ꢄGLY  
ꢂꢃꢃꢀPVꢁGLY  
FIGURE 2-44:  
3.3V VOUT, Boost to  
Automatic Bypass Transitions, PFM/PWM  
Options.  
DS20006394C-page 14  
2020-2021 Microchip Technology Inc.  
MCP1641X  
3.0  
PART NUMBER SELECTION  
TABLE 3-1:  
Part Number  
DEVICE OPTIONS  
EN Pin Shutdown  
Option  
Switching Mode  
Option  
PGT/PG Pin Option  
MCP16411  
MCP16412  
MCP16413  
MCP16414  
MCP16415  
MCP16416  
MCP16417  
MCP16418  
Output Discharge  
Output Discharge  
In-Out Bypass  
PFM/PWM  
PWM Only  
PFM/PWM  
PWM Only  
PFM/PWM  
PWM Only  
PFM/PWM  
PWM Only  
Power Good and Die Overtemperature Output  
Power Good and Die Overtemperature Output  
Power Good and Die Overtemperature Output  
Power Good and Die Overtemperature Output  
Power Good Output  
In-Out Bypass  
Output Discharge  
Output Discharge  
In-Out Bypass  
Power Good Output  
Power Good Output  
In-Out Bypass  
Power Good Output  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 15  
MCP1641X  
NOTES:  
DS20006394C-page 16  
2020-2021 Microchip Technology Inc.  
MCP1641X  
4.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 4-1.  
TABLE 4-1:  
MCP1641X  
PIN FUNCTION TABLE  
MCP1641X  
Symbol  
Description  
10-Lead MSOP 10-Lead 3 mm x 3 mm TDFN  
1
1
UVLO  
Undervoltage Lockout (0.485V internal reference)  
and Input Pin for Low Battery Output (LBO) Voltage  
Comparator  
2
3
2
3
LBO  
Open-Drain Low Battery Comparator Output Pin  
PGT, PG  
Open-Drain Power Good and Die Overtemperature  
Comparators Output Pin. Only MCP16411/2/3/4  
devices have both functions implemented on the  
same pin, PGT. See Table 3-1 for device options.  
4
5
4
5
VFB  
VOUT  
SW  
Feedback Voltage Pin, 0.97V Reference Voltage  
Output Voltage Pin  
6
6
Switch Node, Boost Inductor Pin  
Power Ground Pin  
7
7
PGND  
SGND  
VIN  
8
8
Signal Ground Pin  
9
9
Input Voltage Pin  
10  
10  
EN  
Enable Control Input Pin. The device is in shutdown  
if EN is pulled to GND.  
11  
EP  
Exposed Thermal Pad (3 x 3 TDFN only); must be  
connected to PGND and SGND  
.
4.1  
Undervoltage Lockout Input Pin  
(UVLO), Input for Low-Voltage  
Output Comparator  
4.3  
Power Good and Die  
Overtemperature Pin (PGT)  
The Power Good and Die Overtemperature (PGT) pin is  
an open-drain output, which can be connected to VOUT  
through a pull-up resistor. The pin switches to a low level  
when VOUT drops below 10% of its nominal value or  
when the internal die’s temperature sensor detects a  
value higher than +75C (typical).  
The UVLO and low battery comparator input use an  
internal 485 mV reference. Connect the UVLO pin to  
the VIN pin for a default start-up threshold of 0.85V. The  
device stops switching at 0.8V typical input voltage.  
Connect an external resistive divider to this pin to  
increase the UVLOSTART threshold. When the battery  
voltage or VIN is ramping down to the programmed  
threshold, the LBO output pin will be asserted low.  
The MCP16415/6/7/8 devices have only the Power  
Good function implemented – PG pin (see Table 3-1 for  
the device options).  
4.2  
Low Battery Output Pin (LBO)  
4.4  
Feedback Voltage Pin (V  
)
FB  
The open-drain output shows a low-level warning  
signal if the UVLO pin detects a battery level below the  
485 mV threshold. If no external divider on the UVLO  
pin is used (UVLO = VIN), low battery detection is  
ineffective.  
The VFB pin is used to provide output voltage regulation  
by using a resistive divider network. The feedback  
voltage is typically 0.97V.  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 17  
MCP1641X  
4.5  
Output Voltage Pin (V  
)
4.9  
Power Supply Input Voltage Pin  
(V )  
OUT  
IN  
The Output Voltage pin connects the synchronous  
integrated P-Channel MOSFET to the output capacitor.  
The resistive divider network from FB is also connected  
to the VOUT pin for voltage regulation.  
Connect the input voltage source to VIN. A local bypass  
capacitor is required. The input source should be  
decoupled to GND with a 10 µF minimum capacitor.  
4.6  
Switch Node Pin (SW)  
4.10 Enable Pin (EN)  
Connect the inductor from the input voltage to the SW  
pin. The SW pin carries inductor current which can be  
as high as 1A (typical). The integrated N-Channel  
switch drain and integrated P-Channel switch source  
are internally connected at the SW node.  
The EN pin is an input of a Schmitt Trigger circuit used  
to enable or disable the device’s switching. While the  
EN pin is low (EN = GND), the device is in Shutdown  
mode – output discharge or input-to-output bypass  
(see Table 3-1) and consumes low quiescent current,  
2.3 µA (typical). A logic high (> 82% of VIN) enables the  
boost converter output. A logic low (< 25% of VIN)  
ensures that the boost converter is disabled. Do not  
allow this pin to float.  
4.7  
Power Ground Pin (P  
)
GND  
The Power Ground pin is used as a return for the  
high-current N-Channel switch. The PGND and SGND  
pins are connected externally.  
4.11 Exposed Thermal Pad (EP)  
4.8  
Signal Ground Pin (S  
)
GND  
There is no internal electrical connection between the  
Exposed Thermal Pad (EP) and the SGND and PGND  
pins. They must be connected to the same electric  
potential on the Printed Circuit Board (PCB).  
The Signal Ground pin is used as a return for the  
integrated VREF and error amplifier. The SGND and  
power ground (PGND) pins are connected externally.  
DS20006394C-page 18  
2020-2021 Microchip Technology Inc.  
MCP1641X  
5.2.2  
PWM ONLY OPERATION  
5.0  
5.1  
DEVICE OVERVIEW  
Introduction  
During periods of light load operation, the MCP1641X  
devices continue to operate at a fixed 500 kHz  
switching frequency, allowing pulse-skipping.  
The MCP1641X is a low-voltage, step-up converter with  
battery monitoring features. The MCP1641X delivers  
high efficiency over a wide range of inputs: single-cell,  
two-cell, alkaline/NiMH batteries or single-cell  
Li-Ion/Li-Polymer batteries can be used.  
The MCP16412/4/6/8 devices disable PFM mode  
switching and operate only in PWM mode over the  
entire load range.  
5.2.3  
OUTPUT DISCHARGE SHUTDOWN  
OPTION  
A high level of integration lowers total system cost,  
eases implementation and reduces the Bill of Materials  
(BOM) and board area.  
The MCP16411/2/5/6 devices incorporate an output  
auto-discharge feature. While in Shutdown mode, the  
MCP16411/2/5/6 devices automatically discharge the  
output capacitor by using an internal N-Channel  
MOSFET switch.  
This family of devices features low quiescent current, a  
programmable start-up voltage (UVLOSTART), low battery  
indication, adjustable output voltage, dual modes of  
operation (PFM/PWM and PWM Only), integrated syn-  
chronous switch, internal compensation, low noise  
anti-ringing control, inrush current limit and soft start.  
The capacitors connected to the output are discharged  
by an integrated switch of 150-200Ω. The discharge  
time depends on the total output capacitance.  
Anew battery-friendly feature for the Microchip’s step-up  
converters family is the Automatic Input-to-Output  
Voltage Bypass. This function helps optimize the capacity  
usage of the battery, and keeps the efficiency high and  
the noise low for a narrow step-up conversion ratio (e.g.,  
two fresh alkaline cells powering a boost converter for a  
3.0V or 3.3V output voltage). With automatic transition  
from Input-to-Output Bypass to Boost mode operation  
and low noise anti-ringing control circuitry, in addition to  
the PWM Only switching, the MCP1641X devices offer a  
good low noise DC-DC solution for compact  
battery-powered systems.  
During the Output Discharge Shutdown mode, the out-  
put of the MCP16411/2/5/6 is completely disconnected  
from the input by turning off the integrated P-Channel  
switch and removing the switch bulk diode connection.  
This removes the DC path, which is typically present in  
boost converters and which allows the output to be  
disconnected from the input. While in this mode, a low  
quiescent current (2.3 µA, typical) is consumed from  
the input (battery).  
5.2.4  
INPUT-TO-OUTPUT BYPASS  
SHUTDOWN OPTION  
The monitoring of its internal temperature, while power-  
ing the converter from batteries, is an additional safety  
feature of the MCP1641X family. An output pin (PGT)  
provides an error signal if the temperature of the die  
exceeds +75C.  
The MCP16413/4/7/8 devices incorporate the  
Input-to-Output Bypass Shutdown option. With the EN  
input pulled low, the output is connected to the input  
using the internal P-Channel MOSFET.  
In this mode, the current drawn from the input (battery)  
is 2.3 μA, typically, with no load. The Input-to-Output  
Bypass mode is used when the input voltage range is  
high enough for the load to operate in Standby or Low  
IQ mode (e.g., a microcontroller). When a higher,  
regulated output voltage is necessary to operate the  
application, the EN input is pulled high, boosting the  
output to the regulated value.  
There are two shutdown options for the MCP1641X  
family: Output Discharge and Input-to-Output Bypass.  
5.2  
MCP1641X Options  
A summary of the device options is presented in  
Table 3-1.  
5.2.1  
PFM/PWM OPERATION  
The MCP16411/3/5/7 devices use an automatic  
switchover from PWM to PFM mode, for light load  
conditions, to maximize efficiency over a wide range of  
output current.  
The PFM mode operation has a higher output voltage  
ripple and variable frequency as compared to the PWM  
mode.  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 19  
MCP1641X  
5.2.5  
POWER GOOD AND DIE  
5.3  
Functional Description  
OVERTEMPERATURE (PGT PIN  
OPTION)  
The MCP1641X is a compact, high-efficiency, fixed  
frequency, synchronous step-up DC-DC converter with  
programmable UVLO start-up, low battery detection and  
output discharge that provides an easy-to-use power  
supply solution for applications powered from batteries.  
Figure 5-1 depicts the functional block diagram of the  
MCP1641X. It incorporates a Current-mode control  
scheme, in which the PWM ramp signal is derived from  
the NMOS Power Switch Current (ISENSE).  
The MCP16411/2/3/4 devices offer a combined output  
Power Good and Die Overtemperature signal to the  
PGT pin.  
Pin switches to low level when either:  
• The output voltage drops below 10% of its  
nominal value, with 5% hysteresis;  
• The IC works at a temperature which is higher  
than +75C.  
This ramp signal adds to the slope compensation signal  
and is compared to the output of the Error Amplifier  
(VERR) to control the on-time of the power switch. In  
addition, several voltage comparators (PG, UVLO inter-  
nal overtemperature and LBO) protect the converter  
from heretical operation and overheating, as well as the  
battery from overdischarging and risk of leakage.  
5.2.6  
POWER GOOD (PG PIN OPTION)  
The MCP16415/6/7/8 devices offer only a Power Good  
output signal to the PG pin, which switches low when the  
output voltage drops below 10% of the VOUT nominal  
value and resumes at 95% of the VOUT nominal value.  
DS20006394C-page 20  
2020-2021 Microchip Technology Inc.  
MCP1641X  
INTERNAL  
SUPPLY  
VMax  
V
V
OUT  
IN  
IZERO  
+
VIN  
VOUT  
DIRECTION  
CONTROL  
VMAX  
EN  
SW  
EN  
V
Overcurrent Comp.  
OUT  
Thermal  
SHDN  
Auto-Discharge*  
OCRef  
ILIMIT  
GATE DRIVE  
AND  
SHUTDOWN  
CONTROL  
LOGIC  
EN  
+
START  
ISENSE  
+
SLOPE  
COMP.  
OSCILLATOR  
GND  
PWM Modulator  
PWM  
+
PWM/PFM  
LOGIC  
VPWM  
VERR  
Error Amp.  
+
VREF = 0.97V  
EA  
V
FB  
+
0.9 x V  
REF  
Thermal SHDN  
V
Logic Block  
for Temp. and  
Voltage Warnings  
FB  
Temp. Sensor  
PG Comp.  
Temp. Error,  
> 75°C  
SHDN  
PGT  
LBO  
EN  
PGT  
Error  
PGT Error  
LBI  
Error  
485 mV  
UVLO and LBI  
Comparators  
START  
UVLO  
LBI  
Error  
Note: The auto-discharge transistor is applicable only to MCP16411/2/5/6.  
FIGURE 5-1:  
MCP1641X Functional Block Diagram.  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 21  
MCP1641X  
5.3.1  
INTERNAL BIAS  
5.3.4  
PFM/PWM OPERATION  
The MCP1641X devices get their start-up bias from  
VIN. The VIN bias is used to power the device and  
drive circuits over the entire operating range. During  
normal operation, the internal VMAX comparator  
The MCP16411/3/5/7 devices use an automatic  
switchover from PWM to PFM mode, for light load  
conditions, to maximize efficiency over a wide range of  
output current. During PFM mode, a controlled peak  
current limit is used to pump the output up to the thresh-  
old. While operating in PFM or PWM mode, the  
P-Channel switch is used as a synchronous rectifier,  
turning off when the inductor current reaches 0 mA, in  
order to maximize efficiency.  
selects the highest voltage rail between VIN and VOUT  
,
in order to optimize operation and reduce power con-  
sumption. Once the output exceeds the input, bias  
comes from the output. The internal voltage reference  
of 485 mV is powered from the input voltage at all  
times. A voltage amplifier buffers and multiplies the  
reference to 0.97V for the FB input of the error ampli-  
fier. Once the UVLO comparator triggers the start-up,  
the internal control loop keeps the output in regulation,  
while VIN ramps down to 0.8V (UVLOSTOP).  
In PFM mode, a voltage comparator is used to terminate  
switching when the output voltage reaches an upper  
threshold limit. Once switching has terminated, the out-  
put voltage decays or coasts down. During this Sleep  
period, a very low current is consumed from the input  
source, which keeps power efficiency high at light load.  
5.3.2  
LOW-VOLTAGE START-UP  
The PFM mode frequency is a function of input voltage,  
output voltage and load. While in PFM mode, the boost  
converter periodically pumps the output with a fixed  
switching frequency of 500 kHz. The value of the out-  
put capacitor changes the low-frequency component  
ripple. The device itself is powered from the output and  
consumes 5 µA (typical).  
The MCP1641X is capable of starting from a low input  
voltage. Start-up voltage is well-controlled by the UVLO  
circuitry, which uses the 485 mV voltage reference.  
The default start-up value is 0.85V (typical). The  
UVLOSTART threshold can be programmed by using an  
external resistive divider connected to the UVLO pin.  
This input also serves as a low battery input.  
PFM operation is initiated if the output load current falls  
below an internally programmed threshold. The output  
voltage is continuously monitored; when the output  
voltage drops below its nominal value, PFM operation  
pulses one or several times to bring the output back  
into regulation. If the output load current rises above  
the upper threshold, the MCP16411/3/5/7 enters  
smoothly into the PWM mode.  
When the device is enabled (EN set high) and the input  
voltage is higher than 0.85V (typical), the internal  
start-up logic turns on the rectifying P-Channel switch  
until the output capacitor is charged to a value close to  
the input voltage. This is commonly called the output  
precharging phase and the rectifying switch limits the  
current during this time. Precharge current varies and  
increases with VIN. Precharge current starts from  
25 mA for low input voltage and increases up to  
250 mA or more near the maximum limit of VIN.  
Figure 2-12 represents the input voltage versus load  
current for the PFM to PWM threshold.  
After the output capacitor is charged to the input volt-  
age, the device starts switching and runs in open loop,  
with limited inductor peak current, at approximately  
30-40% of its nominal value. Once the output voltage  
ramps up to 60-70% of the nominal value, the normal  
closed-loop operation is initiated.  
5.3.5  
PWM ONLY OPERATION  
In normal PWM Operation mode, the MCP16412/4/6/8  
devices operate as a fixed frequency, synchronous  
boost converter. The switching frequency is internally  
maintained with a precision oscillator, which is typically  
set to 500 kHz.  
5.3.3  
UNDERVOLTAGE LOCKOUT (UVLO)  
At light loads, the MCP16412/4/6/8 devices begin to  
skip pulses. By operating in PWM Only mode, the  
output ripple remains low and the frequency is  
constant. Operating in Fixed PWM mode results in low  
efficiency during light load operation, but with the  
advantage of low output ripple and noise for the  
supplied load. Lossless current sensing converts the  
peak current signal to voltage in order to sum it with the  
internal slope compensation. This summed signal is  
compared with the voltage error amplifier output to  
provide a peak current control command for the PWM  
signal. The converter provides the proper amount of  
slope compensation to ensure stability. The peak  
current limit is typically set to 1A.  
The internal UVLO comparator input uses the 485 mV  
voltage reference to compare it with the battery input  
voltage. If the UVLO input is tied to VIN, the comparator  
enables the converter at 0.85V typical input voltage. If  
a different UVLOSTART voltage is desired, a resistive  
divider must be connected to the UVLO pin.  
The UVLOSTOP threshold is set internally to 0.8V.  
DS20006394C-page 22  
2020-2021 Microchip Technology Inc.  
MCP1641X  
5.3.6  
LOW NOISE OPERATION  
The MCP1641X integrates a low noise anti-ringing  
switch that damps the oscillations observed at the  
switch node of the boost converter. This method  
reduces the noise spread when operating at light loads  
in Discontinuous Inductor Current (DCM) mode.  
UVLO START  
0.85V  
0.8V  
VIN  
0V  
485 mV  
LBI HYST.  
5.3.7  
INTERNAL COMPENSATION  
UVLO  
The error amplifier (a transconductance type), with its  
associated compensation network, completes the  
closed-loop system; it compares the output voltage  
(VFB pin) to a reference at the input of the error ampli-  
fier, and feeds the amplified and inverted signal to the  
control input of the inner current loop. The  
compensation network provides phase leads and lags  
at appropriate frequencies to cancel the excessive  
phase lags and leads of the power circuit. All necessary  
compensation components and slope compensation  
are integrated.  
EN  
LBO  
VOUT  
PGT  
FIGURE 5-3:  
UVLO and LBO Behavior  
(UVLO pin connected to a resistive divider to  
program the UVLOSTART value).  
5.3.8  
LOW BATTERY DETECTION  
The LBO pin is connected to the output of the Low  
Battery Input (LBI) comparator to warn if the input volt-  
age is low or the UVLO pin level is below the 485 mV  
trip point. The LBI comparator is active only when the  
device is active (EN is high), after the start-up  
sequence ends. The LBI comparator acts only during  
the VIN down slope (e.g., battery is discharging). There  
is a hysteresis of 20 mV (typical) between the  
UVLOSTART and LBI thresholds. After the LBO output  
pin is asserted low for low battery, the boost converter  
continues to operate down to 0.8V (UVLOSTOP). In  
order to get a valid LBO signal, the input voltage must  
be lower for more than 150 µs (see Figure 5-2). This  
blanking time eliminates false triggering of the LBI  
comparator due to voltage transients.  
5.3.9  
POWER GOOD AND DIE  
OVERTEMPERATURE SYSTEM  
RESPONSE  
The PGT is an open-drain output pin, a mixed Power  
Good and Die Overtemperature function, which works  
as a general error pin if one of the following events  
occurs:  
• VOUT is below 90% of regulated value; there is a  
5% hysteresis. It resumes when VOUT gets back  
to 95% of its nominal value. A 250 µs delay is  
needed for a valid signal (see Figure 5-4).  
• The device’s temperature is higher than +75C  
(only for MCP16411/2/3/4 devices; see Table 3-1).  
This feature can be preprogrammed by customer  
request (in the +55C to +85C range with +10C  
increments).  
UVLO = V  
IN  
0.85V  
0.8V  
Note:  
Contact the regional sales office for more  
details.  
V
IN  
0V  
The open-drain transistor allows interfacing the PGT  
pin with an MCU I/O port. It can sink up to 2 mA from  
the power line with the pull-up resistor connected. The  
PGT signal is generated (comparator active) only if the  
device is active (EN is high).  
EN  
LBO  
V
OUT  
The device’s overtemperature protection feature helps  
in any case of overload, or other Fault conditions that  
generate the heating of the device or its proximity (e.g.,  
PCB area), preventing the end equipment from  
overheating or melting.  
PGT  
FIGURE 5-2:  
UVLO and LBO Behavior  
(UVLO pin connected to VIN pin).  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 23  
MCP1641X  
5.3.11  
ENABLE  
250 µs <150 µs  
250 µs  
The MCP1641X devices are enabled when the EN pin  
is set high and are disabled when the EN pin is set low  
(Shutdown mode). The enable threshold voltage varies  
with the input voltage. To enable the boost converter,  
the EN voltage level must be greater than 82% of the  
VIN voltage. To disable the boost converter, the EN  
voltage must be less than 25% of the VIN voltage.  
VOUT  
PGT  
RESPONSE  
PGT  
DELAY  
PGT  
In Shutdown mode, a low quiescent current, 2.3 µA  
(typical), is consumed from the input (battery).  
5.3.12  
SHORT-CIRCUIT PROTECTION  
FIGURE 5-4:  
5.3.10  
PGT Output Response.  
Unlike most boost converters, the MCP1641X allows its  
output to be shorted during normal operation. The 1A  
(typical) internal current limit and thermal shutdown  
reduce excessive stress and protect the device during  
periods of short-circuit, overcurrent and overtemperature.  
AUTOMATIC INPUT-TO-OUTPUT  
BYPASS MODE  
The MCP1641X features Automatic Input-to-Output  
Bypass mode if VIN is close to the selected VOUT or  
higher. In this situation, VOUT tracks VIN, which is  
“bypassed” to the output through the synchronous  
P-Channel MOSFET. The device resumes Boost mode  
if VOUT decreases down to approximately 90% of the  
target regulation voltage.  
5.3.13  
INPUT OVERCURRENT LIMIT  
1A (typical)  
The MCP1641X devices use  
a
cycle-by-cycle inductor peak current limit to protect the  
N-Channel switch. The overcurrent comparator resets  
the driving latch when the peak of the inductor current  
reaches the limit. In current limitation, the output volt-  
age starts dropping. To assure highest load current  
operation, by design, the current limit is higher than  
typical for an input voltage close to the output voltage  
value.  
This function has the advantage of offering a highly  
efficient Conversion mode while the battery is fresh,  
which translates into better battery utilization. This mode  
of operation also removes the high output ripple and  
noise, which is usually present in boost converters  
during operation when the value of the input is very close  
to the desired output voltage (where the switching duty  
cycle is minimum and limited). This mode is recom-  
mended for noise-sensitive power rail applications (e.g.,  
audio, LCD displays). The disadvantage is that the  
output is not regulated in this range, but equal with  
battery voltage minus a drop on the synchronous  
P-MOS (IOUT * RDSON) rectifier.  
5.3.14  
THERMAL SHUTDOWN  
Thermal shutdown circuitry is integrated in the  
MCP1641X devices. This circuitry monitors the  
device’s junction temperature and shuts off the output  
if the junction temperature exceeds the typical +140°C  
value. If this threshold is exceeded, the device auto-  
matically restarts once the junction temperature drops  
by 10°C (typical).  
VOUT  
VIN  
V
VOUT = (VIN IOUT * RDSON  
)
VOUT (BOOST)  
VOUT = VIN  
90% VOUT  
0.85V  
Time  
FIGURE 5-5:  
Automatic Boost-Bypass  
Transition.  
DS20006394C-page 24  
2020-2021 Microchip Technology Inc.  
MCP1641X  
The internal error amplifier of the Peak Current mode  
control loop is a transconductance error amplifier; its  
gain is not related to the resistor’s value. There are  
some potential issues with higher value resistors. For  
small surface-mount resistors, environment contami-  
nation can create leakage paths that significantly  
change the resistive divider ratio and the output voltage  
tolerance. Smaller feedback resistor values increase  
the quiescent current drained from the battery by a  
few µA, but result in good regulation over the entire  
temperature range.  
6.0  
APPLICATION INFORMATION  
The MCP1641X synchronous boost converter operates  
over a wide input and output voltage range. The power  
efficiency is high for several decades of load range. The  
output current capability increases with the input voltage  
and decreases with the output voltage. The maximum  
output current is based on the N-Channel peak current  
limit. Section 2.0 “Typical Performance Curves”  
displays the typical output current capability.  
6.1  
Adjustable Output Voltage  
Calculations  
When RTOP and RBOT are higher, the efficiency of the  
DC-DC conversion is optimized at very light loads.  
For boost converters, the removal of the feedback  
resistors during operation must be avoided. If feedback  
resistors are removed during operation, the output  
voltage increases above the absolute maximum output  
limits of the MCP1641X and damages the device (for  
additional information, see Application Note AN1337,  
Optimizing Battery Life in DC Boost Converters Using  
MCP1640”, DS00001337).  
To calculate the resistive divider values for the  
MCP1641X, use Equation 6-1, where RTOP is connected  
to VOUT, RBOT is connected to GND, and both RTOP and  
RBOT are connected to the VFB input pin.  
EQUATION 6-1:  
VOUT  
RTOP = RBOT ------------ 1  
VFB  
6.2  
Programmable UVLO and LBO  
Calculations  
EXAMPLE 1:  
This feature is used to increase the UVLOSTART  
threshold. To calculate the resistive divider values for a  
new UVLO threshold, use Equation 6-2, where RH is  
connected to VIN, RL is connected to GND, and both RH  
and RL are connected to the UVLO input pin.  
VOUT = 1.8V  
VFB = 0.97V  
RBOT = 360 k  
RTOP = 309 k  
The programmable UVLO resistors’ calculations result  
in changing the low battery input detection level on the  
down slope of the input voltage, as detailed in  
Section 5.3.8 “Low Battery Detection”.  
EXAMPLE 2:  
VOUT  
VFB  
=
=
=
=
2.0V  
0.97V  
360 k  
383 k  
EQUATION 6-2:  
RBOT  
RTOP  
UVLOSTART  
RH = RL ------------------------------ 1  
VrefUVLO  
EXAMPLE 3:  
VOUT  
VFB  
=
=
=
=
3.3V  
EXAMPLE 5:  
0.97V  
360 k  
866 k  
UVLOSTART = 1.1V  
RBOT  
RTOP  
VrefUVLO = 485 mV  
RL = 430 k  
RH = 549 k  
EXAMPLE 4:  
VOUT  
VFB  
=
=
=
=
5.0V  
EXAMPLE 6:  
0.97V  
360 k  
1.5 M  
UVLOSTART = 1.8V  
VrefUVLO = 485 mV  
RL = 430 k  
RBOT  
RTOP  
RH = 1.165 Mwith a standard value  
of 1.15 M, UVLOSTART is  
1.782V)  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 25  
MCP1641X  
6.3  
Input Capacitor Selection  
6.5  
Inductor Selection  
The boost input current is smoothed by the boost  
inductor, reducing the amount of filtering necessary at  
the input. Some capacitance is recommended to  
provide decoupling from the source. Low-ESR X5R or  
X7R ceramic capacitors are well-suited, due to their  
low-temperature coefficient and small size. For most  
applications, 10 µF of capacitance is sufficient at the  
input. For high-power applications that have high  
source impedance or long leads, connecting additional  
input capacitance to the battery provides a stable input  
voltage. Table 6-1 shows the recommended input  
capacitor value range.  
The MCP1641X is designed to be used with small  
surface-mount inductors; the inductance value can  
range from 2.2 µH to 4.7 µH. An inductance value of  
4.7 µH is recommended to achieve a good balance  
between inductor size, converter load transient  
response and minimized noise. For an output below  
2.0V, the inductor value must be reduced to 2.2 µH.  
Several parameters should be considered when  
selecting the correct inductor: maximum rated current,  
saturation current and copper resistance (DCR). For  
boost converters, the inductor current can be much  
higher than the output current. The lower the inductor’s  
DCR, the higher the efficiency of the converter; a  
common trade-off in size versus efficiency. See  
Table 6-2 for the recommended inductors.  
6.4  
Output Capacitor Selection  
The output capacitor helps to provide a stable output  
voltage during sudden load transients and reduces the  
output voltage ripple. As with the input capacitor, X5R  
and X7R ceramic capacitors are well-suited for this  
application. While COUT provides load current, a volt-  
age drop also appears across its internal ESR that  
results in ripple voltage. Using other capacitor types  
(e.g., aluminum) with large ESR has a detrimental  
impact on the converter’s efficiency and maximum  
TABLE 6-2:  
MCP1641X RECOMMENDED  
INDUCTORS  
Size  
WxLxH  
(mm)  
Part  
Number  
Value  
(µH)  
DCR  
(typ.) (A)  
ISAT  
Würth Elektronik  
WE-MAIA  
2.2  
2.2  
4.7  
4.7  
0.147  
0.252  
0.356  
0.300  
2.5  
2.2  
2.4  
2.1  
2.5x2x1  
2.5x2x0.8  
3x3x1  
output power. For  
a proper value, the output  
capacitance can be estimated by Equation 6-3.  
2.5x2x1.2  
The MCP1641X is internally compensated, therefore,  
the output capacitance range is limited to 20 µF.  
WE-MAPI  
2.2  
2.2  
4.7  
4.7  
0.123  
0.150  
0.300  
0.267  
2.9  
3.9  
2.1  
3.8  
2.5x2x1.2  
3x3x1  
2.5x2x1.2  
3x3x1.2  
An output capacitance higher than 10 µF adds a better  
load step response and high-frequency noise  
attenuation, especially while stepping from light loads  
(PFM mode) to heavy loads (PWM mode).  
WE-SPC  
WE-LQS  
4.7  
0.086  
2.9  
4.8x4.8x2.8  
2.2  
4.7  
0.08  
0.091  
1.95  
1.9  
2.5x2x1.2  
4x4x1.2  
For output voltages below 2V, 20 µF capacitance is  
recommended.  
Coilcraft  
XAL4020  
XAL4030  
XEL4030  
See Table 6-1 for the recommended output capacitor  
range.  
2.2  
4.7  
0.035  
0.040  
5.6  
4.5  
4x4x2.1  
4x4x3.1  
2.2  
4.7  
0.020  
0.040  
6.1  
4.6  
4x4x3.1  
4x4x3.1  
EQUATION 6-3:  
dV  
dt  
XFL4020  
XGL4020  
2.2  
4.7  
0.0235  
0.057  
3.7  
2.7  
4x4x2.1  
4x4x2.1  
IOUT = COUT ------  
2.2  
4.7  
0.019  
0.043  
6.2  
4.1  
4x4x2.1  
4x4x2.1  
Where:  
dV = Ripple voltage  
LPS4018  
LPS4012  
4.7  
2.2  
0.125  
0.1  
1.9  
2.5  
3.9x3.9x1.7  
3.9x3.9x1.1  
dt = On-time of the N-Channel switch  
TDK Corporation  
(D x 1/fSW, D is duty cycle)  
VLS3012HBX 2.2  
4.7  
0.088  
0.175  
3.76  
2.79  
3x3x1.2  
3x3x1.2  
TABLE 6-1:  
CAPACITOR VALUE RANGE  
Eaton Electronics Division (Coiltronics)  
SD3118  
2.2  
0.074  
2.00  
3.1x3.1x1.8  
CIN  
COUT  
MPI25-V2  
2.2  
4.7  
0.087  
0.235  
3.5  
1.9  
2.5x2x1.25  
2.5x2x1.25  
Minimum  
Maximum  
10 µF  
None  
10 µF  
20 µF  
DS20006394C-page 26  
2020-2021 Microchip Technology Inc.  
MCP1641X  
The MCP1641X limits the inductor peak current to 1A;  
for proper operation, an inductor with a saturation  
current higher than this limit should be chosen. The  
saturation current typically specifies a point at which  
the inductance has rolled off a percentage of the rated  
value. This can range from a 20% to 40% reduction in  
inductance. As the inductance rolls off, the inductor cur-  
rent ripple increases, so does the peak switch current.  
It is important to keep the inductance from rolling off too  
much as it can cause switch current to reach the peak  
limit.  
The difference between the first term, input power and  
the second term, power delivered, is the internal  
MCP1641X device’s power dissipation. This is an esti-  
mate, assuming that most of the power lost is internal to  
the MCP1641X and not by the CIN, COUT or the inductor.  
However, there is some percentage of power lost in the  
boost inductor with very little loss in the input and output  
capacitors. For a more accurate estimation of the  
2
internal power dissipation, subtract the ILRMS x LDCR  
power dissipation.  
6.7  
PCB Layout Information  
6.6  
Thermal Calculations  
Good Printed Circuit Board layout techniques are  
important to any switching circuitry and switching  
power supplies is no different. When wiring the switch-  
ing high-current paths, short and wide traces should be  
used. Therefore, it is important that the input and output  
capacitors should be placed as close as possible to the  
MCP1641X to minimize the loop area.  
The MCP1641X devices are available in two different  
packages, 10-lead MSOP and 3 mm x 3 mm 10-lead  
TDFN. The junction temperature is estimated by calcu-  
lating the power dissipation and applying the package  
thermal resistance (JA). The maximum operating  
junction temperature rating for the MCP1641X family of  
devices is +125°C.  
The feedback resistors and feedback signal should be  
routed away from the switching node and the switching  
current loop. When possible, ground planes and traces  
should be used to help shield the feedback signal and  
minimize noise and magnetic interference.  
To quickly estimate the internal power dissipation for  
the switching boost regulator, an empirical calculation  
using measured efficiency can be applied, as  
presented in Equation 6-4.  
EQUATION 6-4:  
V
I  
OUT OUT  
------------------------------------- V  
I  
OUT OUT  
= P  
Dis  
Efficiency  
+V  
Enable  
IN  
CIN  
L
GND  
GND  
MCP1641Xx  
.
COUT  
1
RTOP  
RBOT  
+V  
OUT  
UVLO LBO PGT  
Via to GND Plane  
MCP1641X Recommended Layout, Applicable to Both Packages.  
FIGURE 6-1:  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 27  
MCP1641X  
NOTES:  
DS20006394C-page 28  
2020-2021 Microchip Technology Inc.  
MCP1641X  
7.0  
APPLICATION CIRCUIT EXAMPLES  
VOUT  
5V  
L1  
USB  
4.7 µH  
SW  
VOUT  
VBATT  
1.5 M  
VOUT or VIN  
VIN  
COUT  
10 µF  
CIN  
RH  
+
VOUT or VIN  
10 µF  
VFB  
0.485V VREF  
UVLO  
EN  
360 k  
1 M  
430 k  
ENABLE  
1 M  
PGT  
LBO  
ON  
OFF  
GND  
VDD  
RA2  
RA1  
RA3  
VSS  
EN  
PIC10F320  
Note:  
The PIC® microcontroller detects when the battery is depleted (using the LBO signal) and keeps the  
switching regulator in Shutdown mode to avoid overdischarging. This kind of application uses  
MCP16413/4/7/8 options (Input-to-Output Bypass in Shutdown mode).  
FIGURE 7-1:  
Single Cell for USB Application Using Bypass Mode.  
L1  
VIN  
4.7 µH  
0.8V to 4.5V  
VOUT  
SW  
3.3V or VIN  
VOUT  
+
VIN  
COUT  
RH  
866 k  
360 k  
10 µF  
VOUT  
CIN  
10 µF  
VOUT  
VFB  
VREF  
0.485V  
+
UVLO  
EN  
1-3 Cells  
1 M  
430 k  
1 M  
ENABLE  
ON  
OFF  
PGT  
LBO  
To PIC® MCU  
GND  
Note:  
For VIN < VOUT, the device operates in Boost mode; otherwise, for VIN > VOUT, VIN is bypassed to VOUT.  
FIGURE 7-2:  
Multiple Cell Operation with Automatic Input-to-Output Bypass Mode.  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 29  
MCP1641X  
L1  
UVLO START = 3.3V  
LBO = 2.8V  
4.7 µH  
VOUT  
5V  
SW  
RH1  
1.5 M  
VOUT  
CIN  
10 µF  
VIN  
RH  
226 k  
1.5 M  
360 k  
COUT  
+
PGT  
10 µF  
VFB  
NMOS  
UVLO  
1 M  
1 M  
RL  
39.2 k  
EN  
PGT  
LBO  
GND  
ENABLE  
LOW BATTERY (2.8V)  
Note:  
RH and RL set the UVLOSTART to 3.3V. For battery voltage higher than 3.3V, the switching is enabled and  
the device regulates to 5V. After start-up, the PGT signal turns on the NMOS switch and puts in parallel  
RH and RH1, and UVLOSTART changes to 2.8V. As a result, when the battery gets discharged to 2.8V, the  
LBO switches to a low level to indicate the low battery warning.  
VINIURPꢀꢁ9ꢀWRꢀꢂꢃꢄ9  
I/2$'= 10 mA  
VIN  
1V/div  
LBO Signal  
2V/div  
VOUT  
2V/div  
1s/div  
FIGURE 7-3:  
Dynamic LBO Threshold to Help Optimize Li-Ion Battery Life.  
DS20006394C-page 30  
2020-2021 Microchip Technology Inc.  
MCP1641X  
L1  
4.7 µH  
UVLO START = 3.3V  
UVLOSTOP = 3.3V – LBIHYS  
VOUT  
5V  
SW  
VOUT  
CIN  
10 µF  
RH  
560 k  
VIN  
1.5 M  
COUT  
10 µF  
+
VFB  
REN  
10 k  
UVLO  
1 M  
1 M  
360 k  
RL  
100 k  
EN  
PGT  
LBO  
GND  
ENABLE  
PGT  
Q1  
LBO  
9,1ꢀIURPꢀꢁ9ꢀWRꢀꢂꢃꢄ9  
9,1  
,/2$'ꢀ ꢀꢅꢁꢀP$  
ꢅ9ꢆGLY  
/%2ꢀ6LJQDO  
ꢄ9ꢆGLY  
9287  
ꢄ9ꢆGLY  
FIGURE 7-4:  
Simple Method for Increased UVLOSTOP for Li-Ion Battery Applications to the  
UVLOSTART Value (minus internal LBI comparator’s hysteresis of 20 mV, typically).  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 31  
MCP1641X  
L1  
4.7 µH  
UVLO START = 3.3V  
UVLO STOP = 2.8V  
VOUT  
5V  
SW  
RH1  
1.5 M  
VOUT  
CIN  
10 µF  
VIN  
RH  
1.5 M  
360 k  
226 k  
COUT  
+
PGT  
10 µF  
VFB  
REN  
10 k  
NMOS  
UVLO  
1 M  
1 M  
RL  
39.2 k  
EN  
PGT  
LBO  
GND  
ENABLE  
PGT  
Q1  
LOW BATTERY (2.8V)  
Note:  
RH and RL set the UVLOSTART to 3.3V. For battery voltage higher than 3.3V, the switching is enabled  
and the device regulates to 5V. After start-up, the PGT signal turns on the N-MOS switch and puts in  
parallel RH and RH1 and UVLOSTART changes dynamically from 3.3V to 2.8V. As a result, when the  
battery gets discharged to 2.8V, the LBO switches to low level, turns on the NPN transistor (Q1) and  
asserts to low the enable input, turning off the output of the converter.  
VINIURPꢀꢁ9ꢀWRꢀꢂꢃꢄ9  
VIN  
1V/div  
I/2$'= 10 mA  
LBO Signal  
2V/div  
VOUT  
2V/div  
1s/div  
FIGURE 7-5:  
Dynamic Changing Method for UVLOs’ Thresholds with Output Shutdown at 2.8V to  
Protect Li-Ion Batteries from Overdischarging.  
DS20006394C-page 32  
2020-2021 Microchip Technology Inc.  
MCP1641X  
8.0  
8.1  
PACKAGING INFORMATION  
Package Marking Information  
Example  
10-Lead MSOP (3x3 mm)  
16411  
XXXXXX  
01256  
YWWNNN  
10-Lead TDFN (3x3 mm)  
Example  
XXXX  
YYWW  
NNN  
PIN 1  
6411  
2015  
256  
PIN 1  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator ( )  
e
3
can be found on the outer packaging for this package.  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 33  
MCP1641X  
UN  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20006394C-page 34  
2020-2021 Microchip Technology Inc.  
MCP1641X  
UN  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 35  
MCP1641X  
10-Lead Plastic Micro Small Outline Package (UN) [MSOP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20006394C-page 36  
2020-2021 Microchip Technology Inc.  
MCP1641X  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 37  
MCP1641X  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20006394C-page 38  
2020-2021 Microchip Technology Inc.  
MCP1641X  
APPENDIX A: REVISION HISTORY  
Revision C (April 2021)  
• Updated the AC/DC Characteristics table.  
• Updated Table 6-2, Figure 7-3, Figure 7-4 and  
Figure 7-5.  
• Editorial changes and updates.  
Revision B (September 2020)  
• Updated the AC/DC Characteristics table.  
Revision A (September 2020)  
• Initial release of this document.  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 39  
MCP1641X  
NOTES:  
DS20006394C-page 40  
2020-2021 Microchip Technology Inc.  
MCP1641X  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
(1)  
X
-X  
/XX  
PART NO.  
Device  
a) MCP16411-I/MN:  
Industrial Temperature,  
10-LD TDFN package  
Package  
Type  
Tape and  
Reel  
Temperature  
Range  
b) MCP16411T-I/MN: Tape and Reel, Industrial Temperature,  
10-LD TDFN package  
c) MCP16412-I/MN:  
Industrial Temperature,  
10-LD TDFN package  
d) MCP16412T-I/MN: Tape and Reel, Industrial Temperature,  
10-LD TDFN package  
Device:  
MCP1641X:  
Low IQ Boost Converter with  
Programmable Low Battery, UVLO and  
Automatic Input-to-Output Bypass  
Operation  
e) MCP16413-I/MN:  
Industrial Temperature,  
10-LD TDFN package  
MCP16413T-I/MN: Tape and Reel, Industrial Temperature,  
10-LD TDFN package  
f)  
X = Device Option Number  
g) MCP16414-I/MN:  
Industrial Temperature,  
10-LD TDFN package  
Options:  
MCP16411:  
MCP16412:  
MCP16413:  
MCP16414:  
MCP16415:  
MCP16416:  
MCP16417:  
MCP16418:  
PFM/PWM, Output Discharge and PGT  
h) MCP16414T-I/MN: Tape and Reel, Industrial Temperature,  
10-LD TDFN package  
PFM Only, Output Discharge and PGT  
PFM/PWM, In-Out Bypass and PGT  
PWM Only, In-Out Bypass and PGT  
PFM/PWM, Output Discharge and PG  
PWM Only, Output Discharge and PG  
PFM/PWM, In-Out Bypass and PG  
PWM Only, In-Out Bypass and PG  
i)  
MCP16415-I/MN:  
Industrial Temperature,  
10-LD TDFN package  
j)  
MCP16415T-I/MN: Tape and Reel, Industrial Temperature,  
10-LD TDFN package  
k) MCP16416-I/MN:  
Industrial Temperature,  
10-LD TDFN package  
MCP16416T-I/MN: Tape and Reel, Industrial Temperature,  
10-LD TDFN package  
l)  
m) MCP16417-I/MN:  
Industrial Temperature,  
10-LD TDFN package  
n) MCP16417T-I/MN: Tape and Reel, Industrial Temperature,  
10-LD TDFN package  
Tape and Reel Blank= Standard Packaging (tube)  
Option  
T
=
Tape and Reel  
o) MCP16418-I/MN:  
Industrial Temperature,  
10-LD TDFN package  
Temperature  
Range  
I
=
-40C to +85C (Industrial)  
p) MCP16418T-I/MN: Tape and Reel, Industrial Temperature,  
10-LD TDFN package  
Package Type MN  
=
=
10-Lead Thin Plastic Dual Flat, TDFN  
10-Lead Plastic Micro Small Outline, MSOP  
q) MCP16411-I/UN:  
Industrial Temperature,  
UN  
10-LD MSOP package  
r) MCP16411T-I/UN: Tape and Reel, Industrial Temperature,  
10-LD MSOP package  
s) MCP16412-I/UN:  
Industrial Temperature,  
10-LD MSOP package  
MCP16412T-I/UN: Tape and Reel, Industrial Temperature,  
10-LD MSOP package  
Industrial Temperature,  
10-LD MSOP package  
t)  
u) MCP16413-I/UN:  
v) MCP16413T-I/UN: Tape and Reel, Industrial Temperature,  
10-LD MSOP package  
w) MCP16414-I/UN:  
Industrial Temperature,  
10-LD MSOP package  
x) MCP16414T-I/UN: Tape and Reel, Industrial Temperature,  
10-LD MSOP package  
y) MCP16415-I/UN:  
Industrial Temperature,  
10-LD MSOP package  
z) MCP16415T-I/UN: Tape and Reel, Industrial Temperature,  
10-LD MSOP package  
Industrial Temperature,  
10-LD MSOP package  
aa) MCP16416-I/UN:  
ab) MCP16416T-I/UN: Tape and Reel, Industrial Temperature,  
10-LD MSOP package  
ac) MCP16417-I/UN:  
Industrial Temperature,  
10-LD MSOP package  
ad) MCP16417T-I/UN: Tape and Reel, Industrial Temperature,  
10-LD MSOP package  
ae) MCP16418-I/UN:  
Industrial Temperature,  
10-LD MSOP package  
af) MCP16418T-I/UN: Tape and Reel, Industrial Temperature,  
10-LD MSOP package  
Note 1:  
Tape and Reel identifier only appears in the catalog  
part number description. This identifier is used for  
ordering purposes and is not printed on the device  
package. Check with your Microchip Sales Office for  
package availability with the Tape and Reel option.  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 41  
MCP1641X  
NOTES:  
DS20006394C-page 42  
2020-2021 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specifications contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip  
devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications  
contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished  
without violating Microchip's intellectual property rights.  
Microchip is willing to work with any customer who is concerned about the integrity of its code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not  
mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are  
committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection  
feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or  
other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication is provided for the sole  
purpose of designing with and using Microchip products. Infor-  
mation regarding device applications and the like is provided  
only for your convenience and may be superseded by updates.  
It is your responsibility to ensure that your application meets  
with your specifications.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,  
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,  
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,  
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,  
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,  
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,  
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,  
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A. and  
other countries.  
THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION INCLUDING BUT NOT  
LIMITED TO ANY IMPLIED WARRANTIES OF NON-  
INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A  
PARTICULAR PURPOSE OR WARRANTIES RELATED TO  
ITS CONDITION, QUALITY, OR PERFORMANCE.  
AgileSwitch, APT, ClockWorks, The Embedded Control Solutions  
Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight  
Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3,  
Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-  
Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, WinPath, and ZL are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-  
RECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUEN-  
TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND  
WHATSOEVER RELATED TO THE INFORMATION OR ITS  
USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS  
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES  
ARE FORESEEABLE. TO THE FULLEST EXTENT  
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON  
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION  
OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF  
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP  
FOR THE INFORMATION. Use of Microchip devices in life sup-  
port and/or safety applications is entirely at the buyer's risk, and  
the buyer agrees to defend, indemnify and hold harmless  
Microchip from any and all damages, claims, suits, or expenses  
resulting from such use. No licenses are conveyed, implicitly or  
otherwise, under any Microchip intellectual property rights  
unless otherwise stated.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky,  
BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive,  
CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net,  
Dynamic Average Matching, DAM, ECAN, Espresso T1S,  
EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP,  
INICnet, Intelligent Paralleling, Inter-Chip Connectivity,  
JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi,  
MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK,  
NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net,  
PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,  
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O,  
simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI,  
SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total  
Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,  
ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks  
of Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, and Symmcom are registered trademarks of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2020-2021, Microchip Technology Incorporated, All Rights  
Reserved.  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
ISBN: 978-1-5224-8043-3  
2020-2021 Microchip Technology Inc.  
DS20006394C-page 43  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4485-5910  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20006394C-page 44  
2020-2021 Microchip Technology Inc.  
02/28/20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY