MCP1702T-3602E/MB [MICROCHIP]

MCP1702T-3602E/MB;
MCP1702T-3602E/MB
型号: MCP1702T-3602E/MB
厂家: MICROCHIP    MICROCHIP
描述:

MCP1702T-3602E/MB

输出元件 调节器
文件: 总26页 (文件大小:427K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1702  
250 mA Low Quiescent Current LDO Regulator  
Features:  
Description:  
• 2.0 µA Quiescent Current (typical)  
The MCP1702 is a family of CMOS low dropout (LDO)  
voltage regulators that can deliver up to 250 mA of  
current while consuming only 2.0 µA of quiescent  
current (typical). The input operating range is specified  
from 2.7V to 13.2V, making it an ideal choice for two to  
six primary cell battery-powered applications, 9V  
alkaline and one or two cell Li-Ion-powered  
applications.  
• Input Operating Voltage Range: 2.7V to 13.2V  
• 250 mA Output Current for Output Voltages 2.5V  
• 200 mA Output Current for Output Voltages < 2.5V  
• Low Dropout (LDO) Voltage  
- 625 mV typical @ 250 mA (VOUT = 2.8V)  
• 0.4% Typical Output Voltage Tolerance  
• Standard Output Voltage Options:  
The MCP1702 is capable of delivering 250 mA with  
only 625 mV (typical) of input to output voltage  
differential (VOUT = 2.8V). The output voltage tolerance  
of the MCP1702 is typically ±0.4% at +25°C and ±3%  
maximum over the operating junction temperature  
range of -40°C to +125°C. Line regulation is ±0.1%  
typical at +25°C.  
- 1.2V, 1.5V, 1.8V, 2.5V, 2.8V,  
3.0V, 3.3V, 4.0V, 5.0V  
• Output Voltage Range 1.2V to 5.5V in 0.1V  
Increments (50 mV increments available upon  
request)  
• Stable with 1.0 µF to 22 µF Output Capacitor  
• Short-Circuit Protection  
Output voltages available for the MCP1702 range from  
1.2V to 5.0V. The LDO output is stable when using only  
1 µF of output capacitance. Ceramic, tantalum or  
aluminum electrolytic capacitors can all be used for  
• Overtemperature Protection  
Applications:  
input  
and  
output.  
Overcurrent  
limit  
and  
overtemperature shutdown provide a robust solution  
for any application.  
• Battery-powered Devices  
• Battery-powered Alarm Circuits  
• Smoke Detectors  
Package options include the SOT-23A, SOT-89-3, and  
TO-92.  
• CO2 Detectors  
• Pagers and Cellular Phones  
• Smart Battery Packs  
Package Types  
3-Pin SOT-23A  
3-Pin SOT-89  
• Low Quiescent Current Voltage Reference  
• PDAs  
VIN  
3
VIN  
• Digital Cameras  
• Microcontroller Power  
• Solar-Powered Instruments  
• Consumer Products  
MCP1702  
MCP1702  
2
1
3
1
2
• Battery Powered Data Loggers  
GNDVIN VOUT  
GND VOUT  
Related Literature:  
3-Pin TO-92  
1 2 3  
• AN765, “Using Microchip’s Micropower LDOs”,  
DS00765, Microchip Technology Inc., 2002  
• AN766, “Pin-Compatible CMOS Upgrades to  
Bipolar LDOs”, DS00766,  
Microchip Technology Inc., 2002  
Bottom  
View  
• AN792, “A Method to Determine How Much  
Power a SOT-23 Can Dissipate in an Application”,  
DS00792, Microchip Technology Inc., 2001  
GND VIN VOUT  
2010 Microchip Technology Inc.  
DS22008E-page 1  
MCP1702  
Functional Block Diagrams  
MCP1702  
VOUT  
VIN  
Error Amplifier  
+VIN  
Voltage  
Reference  
-
+
Overcurrent  
Overtemperature  
GND  
Typical Application Circuits  
MCP1702  
VOUT  
3.3V  
VOUT  
GND  
VIN  
IOUT  
50 mA  
VIN  
COUT  
1 µF Ceramic  
+
9V  
Battery  
CIN  
1 µF Ceramic  
DS22008E-page 2  
2010 Microchip Technology Inc.  
MCP1702  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
...............................................................................+14.5V  
DD  
All inputs and outputs w.r.t. .............(V -0.3V) to (V +0.3V)  
SS  
IN  
Peak Output Current ...................................................500 mA  
Storage temperature .....................................-65°C to +150°C  
Maximum Junction Temperature................................... 150°C  
ESD protection on all pins (HBM;MM) 4 kV; 400V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all limits are established for V = V  
+ V  
, Note 1,  
IN  
OUT(MAX)  
DROPOUT(MAX)  
I
= 100 µA, C  
= 1 µF (X7R), C = 1 µF (X7R), T = +25°C.  
LOAD  
OUT IN A  
Boldface type applies for junction temperatures, T of -40°C to +125°C. (Note 7)  
J
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input / Output Characteristics  
Input Operating Voltage  
V
I
2.7  
13.2  
5
V
Note 1  
I = 0 mA  
IN  
Input Quiescent Current  
Maximum Output Current  
2.0  
µA  
q
L
I
250  
50  
mA  
mA  
mA  
mA  
mA  
mA  
For V 2.5V  
OUT_mA  
R
100  
130  
200  
250  
400  
For V < 2.5V, V 2.7V  
R
IN  
100  
150  
200  
For V < 2.5V, V 2.95V  
R IN  
For V < 2.5V, V 3.2V  
R
IN  
For V < 2.5V, V 3.45V  
R
IN  
Output Short Circuit Current  
Output Voltage Regulation  
I
V
= V  
(Note 1), V  
= GND,  
OUT_SC  
IN  
IN(MIN)  
OUT  
Current (average current) measured  
10 ms after short is applied.  
V
V -3.0% V ±0.4% V +3.0%  
V
Note 2  
OUT  
R
R
R
V -2.0% V ±0.4% V +2.0%  
V
V
R
R
R
V -1.0% V ±0.4% V +1.0%  
1% Custom  
R
R
R
V
Temperature  
TCV  
50  
ppm/°C  
Note 3  
OUT  
OUT  
Coefficient  
Line Regulation  
V  
/
-0.3  
-2.5  
±0.1  
±1.0  
+0.3  
+2.5  
%/V  
%
(V  
+ V  
)
OUT  
OUT(MAX)  
DROPOUT(MAX)  
(V  
XV  
)
V 13.2V, (Note 1)  
IN  
OUT  
IN  
Load Regulation  
V  
/V  
I = 1.0 mA to 250 mA for V 2.5V  
L R  
OUT OUT  
I = 1.0 mA to 200 mA for V 2.5V,  
L
R
V
= 3.45V (Note 4)  
IN  
Note 1: The minimum V must meet two conditions: V 2.7V and V V  
+ V  
.
IN  
IN  
IN  
OUT(MAX)  
DROPOUT(MAX)  
2:  
V is the nominal regulator output voltage. For example: V = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, or 5.0V. The  
R
R
input voltage V = V  
+ V  
or V = 2.7V (whichever is greater); I  
= 100 µA.  
IN  
OUT(MAX)  
DROPOUT(MAX)  
6
IN  
OUT  
3: TCV  
= (V  
- V  
) *10 / (V * Temperature), V  
= highest voltage measured over the  
OUT-HIGH  
OUT  
OUT-HIGH  
OUT-LOW  
R
temperature range. V  
= lowest voltage measured over the temperature range.  
OUT-LOW  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCV  
.
OUT  
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with an applied input voltage of V + V or 2.7V, whichever is greater.  
OUT(MAX)  
DROPOUT(MAX)  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., T , T , ). Exceeding the maximum allowable power  
A
J
JA  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
ambient temperature is not significant.  
2010 Microchip Technology Inc.  
DS22008E-page 3  
MCP1702  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits are established for V = V  
+ V  
, Note 1,  
IN  
OUT(MAX)  
DROPOUT(MAX)  
I
= 100 µA, C  
= 1 µF (X7R), C = 1 µF (X7R), T = +25°C.  
LOAD  
OUT IN A  
Boldface type applies for junction temperatures, T of -40°C to +125°C. (Note 7)  
J
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
I = 250 mA, V = 5.0V  
Dropout Voltage  
(Note 1, Note 5)  
V
330  
525  
625  
750  
650  
725  
975  
1100  
mV  
mV  
mV  
mV  
mV  
DROPOUT  
L
R
I = 250 mA, 3.3V V < 5.0V  
L
R
I = 250 mA, 2.8V V < 3.3V  
L
R
I = 250 mA, 2.5V V < 2.8V  
L
R
V
< 2.5V, See Maximum Output  
R
Current Parameter  
Output Delay Time  
Output Noise  
T
1000  
µs  
V
= 0V to 6V, V  
= 90% V  
OUT R  
DELAY  
IN  
R = 50resistive  
L
1/2  
e
8
µV/(Hz)  
dB  
I = 50 mA, f = 1 kHz, C  
= 1 µF  
OUT  
N
L
Power Supply Ripple  
Rejection Ratio  
PSRR  
44  
f = 100 Hz, C  
V
V
= 1 µF, I = 50 mA,  
OUT L  
= 100 mV pk-pk, C = 0 µF,  
INAC  
IN  
= 1.2V  
R
Thermal Shutdown  
Protection  
T
150  
°C  
SD  
Note 1: The minimum V must meet two conditions: V 2.7V and V V  
+ V  
.
IN  
IN  
IN  
OUT(MAX)  
DROPOUT(MAX)  
2:  
V is the nominal regulator output voltage. For example: V = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, or 5.0V. The  
R
R
input voltage V = V  
+ V  
or V = 2.7V (whichever is greater); I  
= 100 µA.  
IN  
OUT(MAX)  
DROPOUT(MAX)  
6
IN  
OUT  
3: TCV  
= (V  
- V  
) *10 / (V * Temperature), V  
= highest voltage measured over the  
OUT-HIGH  
OUT  
OUT-HIGH  
OUT-LOW  
R
temperature range. V  
= lowest voltage measured over the temperature range.  
OUT-LOW  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output  
voltage due to heating effects are determined using thermal regulation specification TCV  
.
OUT  
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured  
value with an applied input voltage of V + V or 2.7V, whichever is greater.  
OUT(MAX)  
DROPOUT(MAX)  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., T , T , ). Exceeding the maximum allowable power  
A
J
JA  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the  
ambient temperature is not significant.  
DS22008E-page 4  
2010 Microchip Technology Inc.  
MCP1702  
TEMPERATURE SPECIFICATIONS (Note 1)  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Operating Junction Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
T
T
-40  
+125  
+150  
+150  
°C  
°C  
°C  
Steady State  
J
J
Transient  
T
-65  
A
Thermal Package Resistance (Note 2)  
Thermal Resistance, 3L-SOT-23A  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
336  
110  
°C/W  
°C/W  
°C/W  
JA  
JC  
JA  
Thermal Resistance, 3L-SOT-89  
Thermal Resistance, 3L-TO-92  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
153.3  
100  
131.9  
66.3  
°C/W  
°C/W  
°C/W  
JC  
JA  
JC  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air (i.e., T , T , ). Exceeding the maximum allowable power  
A
J
JA  
dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained  
junction temperatures above 150°C can impact the device reliability.  
2: Thermal Resistance values are subject to change. Please visit the Microchip web site for the latest packaging  
information.  
2010 Microchip Technology Inc.  
DS22008E-page 5  
MCP1702  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated: VR = 2.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX)  
.
Note: Junction Temperature (T ) is approximated by soaking the device under test to an ambient temperature equal to the desired junction  
J
temperature. The test time is small enough such that the rise in Junction temperature over the Ambient temperature is not significant.  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
120.00  
100.00  
80.00  
60.00  
40.00  
20.00  
0.00  
VOUT = 1.2V  
Temperature = +25°C  
VOUT = 1.2V  
+130°C  
0°C  
V
IN = 2.7V  
+90°C  
-45°C  
+25°C  
2
4
6
8
10  
12  
14  
0
40  
80  
120  
160  
200  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-1:  
Quiescent Current vs. Input  
FIGURE 2-4:  
Ground Current vs. Load  
Voltage.  
Current.  
5.00  
4.00  
120.00  
100.00  
80.00  
60.00  
40.00  
20.00  
VOUT = 2.8V  
Temperature = +25°C  
VOUT = 5.0V  
+130°C  
V
IN = 6.0V  
+90°C  
-45°C  
3.00  
+25°C  
2.00  
1.00  
0°C  
VOUT = 2.8V  
V
IN = 3.8V  
0.00  
3
0.00  
0
5
7
9
11  
13  
50  
100  
150  
200  
250  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-2:  
Quiescent Current vs.Input  
FIGURE 2-5:  
Ground Current vs. Load  
Voltage.  
Current.  
5.00  
4.00  
3.00  
2.00  
3.00  
VOUT = 5.0V  
IOUT = 0 mA  
VOUT = 5.0V  
VOUT = 2.8V  
VIN = 3.8V  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
V
IN = 6.0V  
+130°C  
VOUT = 1.2V  
VIN = 2.7V  
+90°C  
0°C  
+25°C  
-45°C  
1.00  
-45  
-20  
5
30  
55  
80  
105  
130  
6
7
8
9
10  
11  
12  
13  
14  
Junction Temperature (°C)  
Input Voltage (V)  
FIGURE 2-3:  
Quiescent Current vs.Input  
FIGURE 2-6:  
Quiescent Current vs.  
Voltage.  
Junction Temperature.  
DS22008E-page 6  
2010 Microchip Technology Inc.  
MCP1702  
Note: Unless otherwise indicated: VR = 2.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX)  
.
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
VOUT = 1.2V  
ILOAD = 0.1 mA  
VOUT = 1.2V  
0°C  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
-45°C  
-45°C  
0°C  
+25°C  
+90°C  
+130°C  
+130°C  
+90°C  
10  
+25°C  
2
4
6
8
12  
14  
0
20  
50  
50  
40  
60  
80  
100  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-7:  
Voltage.  
Output Voltage vs. Input  
FIGURE 2-10:  
Current.  
Output Voltage vs. Load  
2.85  
2.83  
2.82  
2.81  
2.80  
2.79  
2.78  
VOUT = 2.8V  
LOAD = 0.1 mA  
VOUT = 2.8V  
2.84  
2.83  
2.82  
2.81  
2.80  
2.79  
2.78  
2.77  
I
+130°C  
+130°C  
+90°C  
+90°C  
0°C  
0°C  
-45°C  
+25°C  
+25°C  
8
-45°C  
2.77  
3
4
5
6
7
9
10 11 12 13 14  
0
100  
150  
200  
250  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-8:  
Voltage.  
Output Voltage vs. Input  
FIGURE 2-11:  
Current.  
Output Voltage vs. Load  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
VOUT = 5.0V  
LOAD = 0.1 mA  
VOUT = 5.0V  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
I
+130°C  
+130°C  
+90°C  
+90°C  
0°C  
-45°C  
0°C  
+25°C  
+25°C  
-45°C  
4.97  
4.96  
6
7
8
9
10  
11  
12  
13  
14  
0
100  
150  
200  
250  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-9:  
Output Voltage vs. Input  
FIGURE 2-12:  
Output Voltage vs. Load  
Voltage.  
Current.  
2010 Microchip Technology Inc.  
DS22008E-page 7  
MCP1702  
Note: Unless otherwise indicated: VR = 2.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX)  
.
1.40  
VOUT = 1.8V  
+130°C  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
+90°C  
+25°C  
0°C  
-45°C  
100  
120  
140  
160  
180  
200  
Load Current (mA)  
FIGURE 2-13:  
Dropout Voltage vs. Load  
FIGURE 2-16:  
Dynamic Line Response.  
Current.  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
VOUT = 2.8V  
+130°C  
+90°C  
+25°C  
+0°C  
-45°C  
0
25 50 75 100 125 150 175 200 225 250  
Load Current (mA)  
FIGURE 2-17:  
Dynamic Line Response.  
FIGURE 2-14:  
Dropout Voltage vs. Load  
Current.  
600.00  
500.00  
400.00  
300.00  
200.00  
100.00  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
VOUT = 2.8V  
VOUT = 5.0V  
ROUT < 0.1ꢀ  
+130°C  
+90°C  
+25°C  
+0°C  
-45°C  
0.00  
4
6
8
10  
12  
14  
0
25 50 75 100 125 150 175 200 225 250  
Load Current (mA)  
Input Voltage (V)  
FIGURE 2-18:  
Input Voltage.  
Short Circuit Current vs.  
FIGURE 2-15:  
Current.  
Dropout Voltage vs. Load  
DS22008E-page 8  
2010 Microchip Technology Inc.  
MCP1702  
Note: Unless otherwise indicated: VR = 2.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX)  
.
0.20  
0.15  
0.10  
0.05  
0.00  
0.20  
0.16  
0.12  
0.08  
0.04  
0.00  
VIN = 6V  
VOUT = 1.2V  
IN = 2.7V to 13.2V  
V
1 mA  
-0.05  
VIN = 4V  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
VIN = 10V  
VIN = 12V  
0 mA  
VIN = 13.2V  
100 mA  
80  
VOUT = 1.2V  
LOAD = 0.1 mA to 200 mA  
I
-45  
-20  
5
30  
55  
80  
105  
130  
-45  
-20  
5
30  
55  
105  
130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-19:  
Load Regulation vs.  
FIGURE 2-22:  
Line Regulation vs.  
Temperature.  
Temperature.  
0.40  
0.30  
0.20  
0.20  
VOUT = 2.8V  
LOAD = 1 mA to 250 mA  
VOUT = 2.8V  
VIN = 3.8V to 13.2V  
I
0.16  
0.12  
0.08  
0.04  
0.00  
250 mA  
0.10  
0.00  
200 mA  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
-0.60  
VIN = 6V  
VIN = 10V  
VIN = 3.8V  
0 mA  
100 mA  
VIN = 13.2V  
-45  
-20  
5
30  
55  
80  
105  
130  
-45  
-20  
5
30  
55  
80  
105  
130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-20:  
Load Regulation vs.  
FIGURE 2-23:  
Line Regulation vs.  
Temperature.  
Temperature.  
0.40  
0.30  
0.20  
0.10  
0.16  
VOUT = 5.0V  
LOAD = 1 mA to 250 mA  
VOUT = 5.0V  
VIN = 6.0V to 13.2V  
I
0.14  
0.12  
0.10  
0.08  
0.06  
VIN = 6V  
200 mA  
250 mA  
0 mA  
VIN = 10V  
VIN = 8V  
0.00  
100 mA  
VIN = 13.2V  
105  
-0.10  
-45  
-20  
5
30  
55  
80  
130  
-45  
-20  
5
30  
55  
80  
105  
130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-21:  
Load Regulation vs.  
FIGURE 2-24:  
Line Regulation vs.  
Temperature.  
Temperature.  
2010 Microchip Technology Inc.  
DS22008E-page 9  
MCP1702  
Note: Unless otherwise indicated: VR = 2.8V, COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), IL = 100 µA,  
TA = +25°C, VIN = VOUT(MAX) + VDROPOUT(MAX)  
.
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
VR=1.2V  
COUT=1.0 μF ceramic X7R  
VIN=2.7V  
CIN=0 μF  
IOUT=1.0 mA  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
FIGURE 2-25:  
Rejection vs. Frequency.  
Power Supply Ripple  
FIGURE 2-28:  
FIGURE 2-29:  
FIGURE 2-30:  
Power Up Timing.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
VR=5.0V  
OUT=1.0 μF ceramic X7R  
VIN=6.0V  
IN=0 μF  
OUT=1.0 mA  
C
C
I
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Dynamic Load Response.  
FIGURE 2-26:  
Rejection vs. Frequency.  
Power Supply Ripple  
100  
IOUT=50 mA  
VR=5.0V, VIN=6.0V  
10  
1
VR=2,8V, VIN=3.8V  
VR=1.2V, VIN=2.7V  
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Dynamic Load Response.  
FIGURE 2-27:  
Output Noise vs. Frequency.  
DS22008E-page 10  
2010 Microchip Technology Inc.  
MCP1702  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin No.  
SOT-23A  
Pin No.  
SOT-89  
Pin No.  
TO-92  
Symbol  
Function  
1
2
3
1
1
3
2
GND  
VOUT  
VIN  
Ground Terminal  
3
2, Tab  
Regulated Voltage Output  
Unregulated Supply Voltage  
No connection  
NC  
3.1  
Ground Terminal (GND)  
3.3  
Unregulated Input Voltage Pin  
(V )  
IN  
Regulator ground. Tie GND to the negative side of the  
output and the negative side of the input capacitor.  
Only the LDO bias current (2.0 µA typical) flows out of  
this pin; there is no high current. The LDO output  
regulation is referenced to this pin. Minimize voltage  
drops between this pin and the negative side of the  
load.  
Connect VIN to the input unregulated source voltage.  
Like all LDO linear regulators, low source impedance is  
necessary for the stable operation of the LDO. The  
amount of capacitance required to ensure low source  
impedance will depend on the proximity of the input  
source capacitors or battery type. For most  
applications, 1 µF of capacitance will ensure stable  
operation of the LDO circuit. For applications that have  
load currents below 100 mA, the input capacitance  
requirement can be lowered. The type of capacitor  
used can be ceramic, tantalum or aluminum  
electrolytic. The low ESR characteristics of the ceramic  
will yield better noise and PSRR performance at  
high-frequency.  
3.2  
Regulated Output Voltage (V  
)
OUT  
Connect VOUT to the positive side of the load and the  
positive terminal of the output capacitor. The positive  
side of the output capacitor should be physically  
located as close to the LDO VOUT pin as is practical.  
The current flowing out of this pin is equal to the DC  
load current.  
2010 Microchip Technology Inc.  
DS22008E-page 11  
MCP1702  
4.0  
4.1  
DETAILED DESCRIPTION  
Output Regulation  
4.3  
Overtemperature  
A portion of the LDO output voltage is fed back to the  
internal error amplifier and compared with the precision  
internal band gap reference. The error amplifier output  
will adjust the amount of current that flows through the  
P-Channel pass transistor, thus regulating the output  
voltage to the desired value. Any changes in input  
voltage or output current will cause the error amplifier  
to respond and adjust the output voltage to the target  
voltage (refer to Figure 4-1).  
The internal power dissipation within the LDO is a  
function of input-to-output voltage differential and load  
current. If the power dissipation within the LDO is  
excessive, the internal junction temperature will rise  
above the typical shutdown threshold of 150°C. At that  
point, the LDO will shut down and begin to cool to the  
typical turn-on junction temperature of 130°C. If the  
power dissipation is low enough, the device will  
continue to cool and operate normally. If the power  
dissipation remains high, the thermal shutdown  
protection circuitry will again turn off the LDO,  
protecting it from catastrophic failure.  
4.2  
Overcurrent  
The MCP1702 internal circuitry monitors the amount of  
current flowing through the P-Channel pass transistor.  
In the event of a short-circuit or excessive output  
current, the MCP1702 will turn off the P-Channel  
device for a short period, after which the LDO will  
attempt to restart. If the excessive current remains, the  
cycle will repeat itself.  
MCP1702  
VOUT  
VIN  
Error Amplifier  
+VIN  
Voltage  
Reference  
-
+
Overcurrent  
Overtemperature  
GND  
FIGURE 4-1:  
Block Diagram.  
DS22008E-page 12  
2010 Microchip Technology Inc.  
MCP1702  
5.2  
Output  
5.0  
FUNCTIONAL DESCRIPTION  
The maximum rated continuous output current for the  
MCP1702 is 250 mA (VR 2.5V). For applications  
where VR < 2.5V, the maximum output current is  
200 mA.  
The MCP1702 CMOS LDO linear regulator is intended  
for applications that need the lowest current  
consumption while maintaining output voltage  
regulation. The operating continuous load range of the  
MCP1702 is from 0 mA to 250 mA (VR 2.5V). The  
input operating voltage range is from 2.7V to 13.2V,  
making it capable of operating from two or more  
alkaline cells or single and multiple Li-Ion cell batteries.  
A minimum output capacitance of 1.0 µF is required for  
small signal stability in applications that have up to  
250 mA output current capability. The capacitor type  
can be ceramic, tantalum or aluminum electrolytic. The  
esr range on the output capacitor can range from 0to  
2.0.  
5.1  
Input  
The output capacitor range for ceramic capacitors is  
1 µF to 22 µF. Higher output capacitance values may  
be used for tantalum and electrolytic capacitors. Higher  
output capacitor values pull the pole of the LDO  
transfer function inward that results in higher phase  
shifts which in turn cause a lower crossover frequency.  
The circuit designer should verify the stability by  
applying line step and load step testing to their system  
when using capacitance values greater than 22 µF.  
The input of the MCP1702 is connected to the source  
of the P-Channel PMOS pass transistor. As with all  
LDO circuits, a relatively low source impedance (10)  
is needed to prevent the input impedance from causing  
the LDO to become unstable. The size and type of the  
capacitor needed depends heavily on the input source  
type (battery, power supply) and the output current  
range of the application. For most applications (up to  
100 mA), a 1 µF ceramic capacitor will be sufficient to  
ensure circuit stability. Larger values can be used to  
improve circuit AC performance.  
5.3  
Output Rise Time  
When powering up the internal reference output, the  
typical output rise time of 500 µs is controlled to  
prevent overshoot of the output voltage. There is also a  
start-up delay time that ranges from 300 µs to 800 µs  
based on loading. The start-up time is separate from  
and precedes the Output Rise Time. The total output  
delay is the Start-up Delay plus the Output Rise time.  
2010 Microchip Technology Inc.  
DS22008E-page 13  
MCP1702  
EQUATION 6-2:  
TJMAX= PTOTAL RJA + TAMAX  
6.0  
APPLICATION CIRCUITS AND  
ISSUES  
Where:  
6.1  
Typical Application  
TJ(MAX)  
=
=
Maximum continuous junction  
temperature  
The MCP1702 is most commonly used as a voltage  
regulator. Its low quiescent current and low dropout  
voltage makes it ideal for many battery-powered  
applications.  
PTOTAL  
Total device power dissipation  
RJA  
Thermal resistance from  
junction to ambient  
TAMAX  
=
Maximum ambient temperature  
MCP1702  
V
IN  
The maximum power dissipation capability for a  
package can be calculated given the junction-to-  
ambient thermal resistance and the maximum ambient  
temperature for the application. The following equation  
can be used to determine the package maximum  
internal power dissipation.  
GND  
(2.8V to 3.2V)  
V
OUT  
V
IN  
1.8V  
C
IN  
V
OUT  
1 µF Ceramic  
I
OUT  
C
OUT  
150 mA  
1 µF Ceramic  
EQUATION 6-3:  
FIGURE 6-1:  
Typical Application Circuit.  
TJMAXTAMAX  
6.1.1  
APPLICATION INPUT CONDITIONS  
Package Type = SOT-23A  
PDMAX= ---------------------------------------------------  
RJA  
Where:  
Input Voltage Range = 2.8V to 3.2V  
VIN maximum = 3.2V  
PD(MAX)  
=
=
Maximum device power  
dissipation  
VOUT typical = 1.8V  
TJ(MAX)  
Maximum continuous junction  
temperature  
IOUT = 150 mA maximum  
TA(MAX)  
Maximum ambient temperature  
6.2  
6.2.1  
Power Calculations  
RJA  
=
Thermal resistance from  
junction to ambient  
POWER DISSIPATION  
The internal power dissipation of the MCP1702 is a  
function of input voltage, output voltage and output  
current. The power dissipation, as a result of the  
quiescent current draw, is so low, it is insignificant  
(2.0 µA x VIN). The following equation can be used to  
calculate the internal power dissipation of the LDO.  
EQUATION 6-4:  
TJRISE= PDMAXRJA  
Where:  
TJ(RISE)  
=
=
Rise in device junction  
temperature over the ambient  
temperature  
EQUATION 6-1:  
PLDO = VINMAX VOUTMIN  IOUTMAX   
PTOTAL  
Maximum device power  
dissipation  
Where:  
RJA  
Thermal resistance from  
junction to ambient  
PLDO  
=
LDO Pass device internal  
power dissipation  
VIN(MAX)  
=
=
Maximum input voltage  
EQUATION 6-5:  
VOUT(MIN)  
LDO minimum output voltage  
TJ = TJRISE+ TA  
The maximum continuous operating junction  
temperature specified for the MCP1702 is +125°C. To  
estimate the internal junction temperature of the  
MCP1702, the total internal power dissipation is  
multiplied by the thermal resistance from junction to  
ambient (RJA). The thermal resistance from junction to  
ambient for the SOT-23A pin package is estimated at  
336°C/W.  
Where:  
TJ  
=
=
Junction Temperature  
TJ(RISE)  
Rise in device junction  
temperature over the ambient  
temperature  
TA  
Ambient temperature  
DS22008E-page 14  
2010 Microchip Technology Inc.  
MCP1702  
6.3  
Voltage Regulator  
Junction Temperature Estimate  
Internal power dissipation, junction temperature rise,  
junction temperature and maximum power dissipation  
are calculated in the following example. The power  
dissipation, as a result of ground current, is small  
enough to be neglected.  
To estimate the internal junction temperature, the  
calculated temperature rise is added to the ambient or  
offset temperature. For this example, the worst-case  
junction temperature is estimated below.  
TJ  
TJ  
=
=
TJRISE + TA(MAX)  
113.3°C  
6.3.1  
POWER DISSIPATION EXAMPLE  
Package  
Maximum Package Power Dissipation at +40°C  
Ambient Temperature Assuming Minimal Copper  
Usage.  
Package Type  
Input Voltage  
VIN  
=
=
SOT-23A  
2.8V to 3.2V  
SOT-23 (336.0°C/Watt = RJA  
)
LDO Output Voltages and Currents  
PD(MAX)  
PD(MAX)  
=
=
(+125°C - 40°C) / 336°C/W  
253 milli-Watts  
VOUT  
IOUT  
=
=
1.8V  
150 mA  
SOT-89 (153.3°C/Watt = RJA  
)
Maximum Ambient Temperature  
TA(MAX) +40°C  
PD(MAX)  
PD(MAX)  
=
=
(+125°C - 40°C) / 153.3°C/W  
0.554 Watts  
=
Internal Power Dissipation  
TO92 (131.9°C/Watt = RJA  
)
Internal Power dissipation is the product of the LDO  
output current times the voltage across the LDO  
(VIN to VOUT).  
PD(MAX)  
PD(MAX)  
=
=
(+125°C - 40°C) / 131.9°C/W  
644 milli-Watts  
PLDO(MAX)  
=
(VIN(MAX) - VOUT(MIN)) x  
IOUT(MAX)  
6.4  
Voltage Reference  
The MCP1702 can be used not only as a regulator, but  
also as a low quiescent current voltage reference. In  
many microcontroller applications, the initial accuracy  
of the reference can be calibrated using production test  
equipment or by using a ratio measurement. When the  
initial accuracy is calibrated, the thermal stability and  
line regulation tolerance are the only errors introduced  
by the MCP1702 LDO. The low-cost, low quiescent  
current and small ceramic output capacitor are all  
advantages when using the MCP1702 as a voltage  
reference.  
PLDO  
PLDO  
=
=
(3.2V - (0.97 x 1.8V)) x 150 mA  
218.1 milli-Watts  
Device Junction Temperature Rise  
The internal junction temperature rise is a function of  
internal power dissipation and the thermal resistance  
from junction to ambient for the application. The  
thermal resistance from junction to ambient (RJA) is  
derived from an EIA/JEDEC standard for measuring  
thermal resistance for small surface mount packages.  
The EIA/JEDEC specification is JESD51-7, “High  
Effective Thermal Conductivity Test Board for Leaded  
Surface Mount Packages”. The standard describes the  
test method and board specifications for measuring the  
thermal resistance from junction to ambient. The actual  
thermal resistance for a particular application can vary  
depending on many factors, such as copper area and  
thickness. Refer to AN792, “A Method to Determine  
How Much Power a SOT-23 Can Dissipate in an  
Application”, (DS00792), for more information  
regarding this subject.  
Ratio Metric Reference  
®
2 µA Bias  
MCP1702  
PIC  
Microcontroller  
V
IN  
C
1 µF  
IN  
V
REF  
V
OUT  
C
1 µF  
OUT  
GND  
ADO  
AD1  
Bridge Sensor  
TJ(RISE)  
TJRISE  
TJRISE  
=
=
=
PTOTAL x RqJA  
218.1 milli-Watts x 336.0°C/Watt  
73.3°C  
FIGURE 6-2:  
Voltage Reference.  
Using the MCP1702 as a  
2010 Microchip Technology Inc.  
DS22008E-page 15  
MCP1702  
6.5  
Pulsed Load Applications  
For some applications, there are pulsed load current  
events that may exceed the specified 250 mA  
maximum specification of the MCP1702. The internal  
current limit of the MCP1702 will prevent high peak  
load demands from causing non-recoverable damage.  
The 250 mA rating is a maximum average continuous  
rating. As long as the average current does not exceed  
250 mA, pulsed higher load currents can be applied to  
the MCP1702. The typical current limit for the  
MCP1702 is 500 mA (TA +25°C).  
DS22008E-page 16  
2010 Microchip Technology Inc.  
MCP1702  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
3-Pin SOT-23A  
Example:  
Standard  
Extended Temp  
Symbol  
Voltage *  
Symbol  
Voltage *  
HA  
HB  
HC  
HD  
HE  
1.2  
1.5  
1.8  
2.5  
2.8  
HF  
HG  
HH  
HJ  
3.0  
3.3  
4.0  
5.0  
HANN  
XXNN  
Custom  
GA  
GB  
4.5  
2.2  
GC  
GD  
2.1  
4.1  
* Custom output voltages available upon request.  
Contact your local Microchip sales office for more information.  
Standard  
3-Lead SOT-89  
Example:  
Extended Temp  
Symbol  
Voltage *  
Symbol  
Voltage *  
HA  
HB  
HC  
HD  
HE  
1.2  
1.5  
1.8  
2.5  
2.8  
HF  
HG  
HK  
HH  
HJ  
3.0  
3.3  
3.6  
4.0  
5.0  
XXXYYWW  
NNN  
HA1014  
256  
Custom  
LA  
LB  
2.1  
3.2  
H9  
4.2  
3-Lead TO-92  
Example:  
* Custom output voltages available upon request.  
Contact your local Microchip sales office for more information.  
1702  
XXXXXX  
XXXXXX  
XXXXXX  
YWWNNN  
1202E  
e
3
TO^  
014256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2010 Microchip Technology Inc.  
DS22008E-page 17  
MCP1702  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢖꢗꢘꢆꢙꢍꢏꢒꢁꢚꢀꢛꢜ  
ꢝꢔꢊꢃ  .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
e1  
e
2
1
E
E1  
N
b
c
A
φ
A2  
L
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
ꢐꢁꢜ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢜꢐꢈ)ꢕ*  
ꢐꢁ:ꢜ  
ꢐꢁꢜꢐ  
ꢐꢁꢐꢐ  
ꢑꢁꢀꢐ  
ꢀꢁꢑꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀ(  
ꢐꢝ  
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢛꢐ  
ꢐꢁꢀ(  
ꢛꢁꢐꢐ  
ꢀꢁ:ꢐ  
ꢛꢁꢀꢐ  
ꢐꢁ=ꢐ  
ꢛꢐꢝ  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
8
ꢐꢁꢐꢜ  
ꢐꢁꢛꢐ  
ꢐꢁꢑ=  
ꢐꢁ(ꢀ  
ꢝꢔꢊꢃꢉ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢀꢛꢐ)  
DS22008E-page 18  
2010 Microchip Technology Inc.  
MCP1702  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010 Microchip Technology Inc.  
DS22008E-page 19  
MCP1702  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆ!ꢃꢄꢅꢃꢓꢆꢕ"ꢗꢘꢆꢙꢍꢏꢒꢁ#$ꢜ  
ꢝꢔꢊꢃ  .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
D1  
E
H
L
N
1
2
b
b1  
b1  
e
E1  
e1  
A
C
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ4ꢅꢉ!  
1ꢃ#ꢊꢌ  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌꢈꢉ#ꢈ)ꢉ ꢅ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌꢈꢉ#ꢈ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
8ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈꢑꢈ<ꢃ!#ꢌ  
5
ꢅꢀ  
9
"
"ꢀ  
ꢂꢀ  
4
8
ꢀꢁ(ꢐꢈ)ꢕ*  
ꢛꢁꢐꢐꢈ)ꢕ*  
ꢀꢁꢖꢐ  
ꢛꢁꢜꢖ  
ꢑꢁꢑꢜ  
ꢑꢁꢀꢛ  
ꢖꢁꢛꢜ  
ꢀꢁꢖꢐ  
ꢐꢁꢒꢜ  
ꢐꢁꢛ(  
ꢐꢁꢖꢀ  
ꢐꢁꢛ=  
ꢀꢁ=ꢐ  
ꢖꢁꢑ(  
ꢑꢁ=ꢐ  
ꢑꢁꢑꢜ  
ꢖꢁ=ꢐ  
ꢀꢁ:ꢛ  
ꢀꢁꢑꢐ  
ꢐꢁꢖꢖ  
ꢐꢁ(=  
ꢐꢁꢖ:  
4ꢅꢉ! ꢈꢀꢈ?ꢈꢛꢈ<ꢃ!#ꢌ  
8ꢀ  
ꢝꢔꢊꢃꢉ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢑꢜ)  
DS22008E-page 20  
2010 Microchip Technology Inc.  
MCP1702  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010 Microchip Technology Inc.  
DS22008E-page 21  
MCP1702  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢒꢏꢘꢆꢙꢒꢏꢁ$ꢚꢜ  
ꢝꢔꢊꢃ  .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
E
A
N
1
L
1
2
3
b
e
c
D
R
3ꢆꢃ#  
ꢙ5*9"ꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢁꢐ(ꢐꢈ)ꢕ*  
)ꢇ##ꢇꢄꢈ#ꢇꢈ1ꢉꢊ/ꢉꢓꢅꢈ.ꢋꢉ#  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢚꢉ!ꢃ$  
ꢗꢃꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
"
4
ꢁꢀꢑ(  
ꢁꢀꢒ(  
ꢁꢀꢒꢐ  
ꢁꢐ:ꢐ  
ꢁ(ꢐꢐ  
ꢁꢐꢀꢖ  
ꢁꢐꢀꢖ  
ꢁꢀ=(  
ꢁꢑꢐ(  
ꢁꢑꢀꢐ  
ꢁꢀꢐ(  
M
8
ꢁꢐꢑꢀ  
ꢁꢐꢑꢑ  
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢝꢔꢊꢃꢉ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢔꢈꢉꢆ!ꢈ"ꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢁꢐꢐ(@ꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢀꢐꢀ)  
DS22008E-page 22  
2010 Microchip Technology Inc.  
MCP1702  
APPENDIX A: REVISION HISTORY  
Revision E (November 2010)  
The following is the list of modifications:  
1. Updated the Thermal Resistance Typical value  
for the SOT-89 package in the Junction  
Temperature Estimate section.  
Revision D (June 2009)  
The following is the list of modifications:  
1. DC Characteristics table: Updated the VOUT  
Temperature Coefficient’s maximum value.  
2. Section 7.0  
“Packaging  
Information”:  
Updated package outline drawings.  
Revision C (November 2008)  
The following is the list of modifications:  
1. DC Characteristics table: Added row to Output  
Voltage Regulation for 1% custom part.  
2. Temperature Specifications table: Numerous  
changes to table.  
3. Added Note 2 to Temperature Specifications  
table.  
4. Section 5.0  
Section 5.2  
paragraph.  
“Functional  
“Output”:  
Description”,  
Added second  
5. Section 7.0 “Packaging Information”: Added  
1% custom part information to this section. Also,  
updated package outline drawings.  
6. Product Identification System: Added 1%  
custom part information to this page.  
Revision B (May 2007)  
The following is the list of modifications:  
1. All Pages: Corrected minor errors in document.  
2. Page 4: Added junction-to-case information to  
Temperature Specifications table.  
3. Page 16: Updated Package Outline Drawings in  
Section 7.0 “Packaging Information”.  
4. Page 21: Updated Revision History.  
5. Page 23: Corrected examples in Product  
Identification System.  
Revision A (September 2006)  
• Original Release of this Document.  
2010 Microchip Technology Inc.  
DS22008E-page 23  
MCP1702  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X-  
XX  
X
X
X/  
XX  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1702T-1202E/CB: 1.2V LDO Positive  
Tape  
and Reel Voltage  
Output Feature Tolerance Temp. Package  
Voltage Regulator,  
SOT-23A-3 pkg.  
Code  
MCP1702T-1802E/MB: 1.8V LDO Positive  
Voltage Regulator,  
Device:  
MCP1702: 2 µA Low Dropout Positive Voltage Regulator  
SOT-89-3 pkg.  
MCP1702T-2502E/CB: 2.5V LDO Positive  
Voltage Regulator,  
Tape and Reel:  
Output Voltage *:  
T
=
Tape and Reel  
SOT-23A-3 pkg.  
MCP1702T-3002E/CB: 3.0V LDO Positive  
Voltage Regulator,  
12  
15  
18  
25  
28  
30  
33  
40  
50  
=
=
=
=
=
=
=
=
=
1.2V “Standard”  
1.5V “Standard”  
1.8V “Standard”  
2.5V “Standard”  
2.8V “Standard”  
3.0V “Standard”  
3.3V “Standard”  
4.0V “Standard”  
5.0V “Standard”  
SOT-23A-3 pkg.  
MCP1702T-3002E/MB: 3.0V LDO Positive  
Voltage Regulator,  
SOT-89-3 pkg.  
MCP1702T-3302E/CB: 3.3V LDO Positive  
Voltage Regulator,  
*Contact factory for other output voltage options.  
SOT-23A-3 pkg.  
g)  
h)  
i)  
MCP1702T-3302E/MB: 3.3V LDO Positive  
Voltage Regulator,  
Extra Feature Code:  
Tolerance:  
0
=
Fixed  
SOT-89-3 pkg.  
2
1
=
=
2.0% (Standard)  
1.0% (Custom)  
MCP1702T-4002E/CB: 4.0V LDO Positive  
Voltage Regulator,  
SOT-23A-3 pkg.  
MCP1702-5002E/TO: 5.0V LDO Positive  
Voltage Regulator,  
Temperature:  
Package Type:  
E
=
-40C to +125C  
TO-92 pkg.  
CB  
MB  
TO  
=
=
=
Plastic Small Outline Transistor (SOT-23A)  
(equivalent to EIAJ SC-59), 3-lead,  
Plastic Small Outline Transistor Header, (SOT-89),  
3-lead  
j)  
MCP1702T-5002E/CB: 5.0V LDO Positive  
Voltage Regulator,  
SOT-23A-3 pkg.  
Plastic Transistor Outline (TO-92), 3-lead  
k)  
MCP1702T-5002E/MB: 5.0V LDO Positive  
Voltage Regulator,  
SOT-89-3 pkg.  
DS22008E-page 24  
2010 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-690-6  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2010 Microchip Technology Inc.  
DS22008E-page 25  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Fax: 886-7-330-9305  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/04/10  
DS22008E-page 26  
2010 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY