MCP1824-0802EOT [MICROCHIP]

300 mA, Low Voltage, Low Quiescent Current LDO Regulator;
MCP1824-0802EOT
型号: MCP1824-0802EOT
厂家: MICROCHIP    MICROCHIP
描述:

300 mA, Low Voltage, Low Quiescent Current LDO Regulator

文件: 总34页 (文件大小:421K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1824/MCP1824S  
300 mA, Low Voltage, Low Quiescent Current LDO Regulator  
Features  
Description  
• 300 mA Output Current Capability  
The MCP1824/MCP1824S is a 300 mA Low Dropout  
(LDO) linear regulator that provides high current and  
low output voltages. The MCP1824 comes in a fixed or  
adjustable output voltage version, with an output  
voltage range of 0.8V to 5.0V. The 300 mA output  
current capability, combined with the low output voltage  
capability, make the MCP1824 a good choice for new  
sub-1.8V output voltage LDO applications that have  
high current demands. The MCP1824S is a 3-pin fixed  
voltage version.  
• Input Operating Voltage Range: 2.1V to 6.0V  
• Adjustable Output Voltage Range: 0.8V to 5.0V  
(MCP1824 only)  
• Standard Fixed Output Voltages:  
- 0.8V, 1.2V, 1.8V, 2.5V, 3.0V, 3.3V, 5.0V  
• Other Fixed Output Voltage Options Available  
Upon Request  
• Low Dropout Voltage: 200 mV Typical at 300 mA  
• Typical Output Voltage Tolerance: 0.4%  
• Stable with 1.0 µF Ceramic Output Capacitor  
• Fast Response to Load Transients  
The MCP1824/MCP1824S is stable using ceramic  
output capacitors that inherently provide lower output  
noise and reduce the size and cost of the entire  
regulator solution. Only 1 µF of output capacitance is  
needed to stabilize the LDO.  
• Low Supply Current: 120 µA (typical)  
• Low Shutdown Supply Current: 0.1 µA (typical)  
(MCP1824 only)  
Using CMOS construction, the quiescent current  
consumed by the MCP1824/MCP1824S is typically  
less than 120 µA over the entire input voltage range,  
making it attractive for portable computing applications  
that demand high output current. The MCP1824  
versions have a Shutdown (SHDN) pin. When shut  
down, the quiescent current is reduced to less than  
0.1 µA.  
• Fixed Delay on Power Good Output  
(MCP1824 only)  
• Short Circuit Current Limiting and  
Overtemperature Protection  
• 5-Lead Plastic SOT-223, SOT-23 Package  
Options (MCP1824)  
• 3-Lead Plastic SOT-223 Package Option  
(MCP1824S)  
On the MCP1824 fixed output versions, the scaled-  
down output voltage is internally monitored and a  
power good (PWRGD) output is provided when the  
output is within 92% of regulation (typical). The  
PWRGD delay is internally fixed at 110 µs (typical).  
Applications  
• High-Speed Driver Chipset Power  
• Networking Backplane Cards  
• Notebook Computers  
The overtemperature and short circuit current-limiting  
provide additional protection for the LDO during system  
fault conditions.  
• Network Interface Cards  
• Palmtop Computers  
• 2.5V to 1.XV Regulators  
2007 Microchip Technology Inc.  
DS22070A-page 1  
MCP1824/MCP1824S  
Package Types  
MCP1824  
MCP1824S  
Fixed/Adjustable  
SOT-223-5  
SOT-23-5  
SOT-223-3  
6
4
5
4
3
1
2
2
1
3
1
2
4
3
5
SOT-223  
Adjustable  
SOT-23  
Pin  
SOT-223  
1
2
3
4
VIN  
Pin  
Fixed  
Fixed  
Adjustable  
GND (TAB)  
VOUT  
1
2
3
4
5
6
SHDN  
VIN  
SHDN  
VIN  
VIN  
GND (TAB)  
SHDN  
PWRGD  
VOUT  
VIN  
GND (TAB)  
SHDN  
ADJ  
GND (TAB)  
GND (TAB)  
VOUT  
GND (TAB)  
VOUT  
PWRGD  
GND (TAB)  
ADJ  
VOUT  
GND (TAB)  
DS22070A-page 2  
2007 Microchip Technology Inc.  
MCP1824/MCP1824S  
Typical Applications  
MCP1824 Fixed Output Voltage  
PWRGD  
R1  
100 kΩ  
On  
SHDN  
VIN  
Off  
1
VOUT = 1.8V @ 300 mA  
VOUT  
VIN = 2.3V to 2.8V  
GND  
C1  
C2  
1 µF  
4.7 µF  
MCP1824 Adjustable Output Voltage  
VADJ  
R2  
20 kΩ  
R1  
40 kΩ  
On  
SHDN  
VIN  
Off  
1
VOUT = 1.2V @ 300 mA  
VOUT  
VIN = 2.1V to 2.8V  
C1  
4.7 µF  
C2  
1 µF  
GND  
2007 Microchip Technology Inc.  
DS22070A-page 3  
MCP1824/MCP1824S  
Functional Block Diagram - Adjustable Output (MCP1824)  
PMOS  
VIN  
VOUT  
Undervoltage  
Lock Out  
(UVLO)  
ISNS  
Cf  
Rf  
SHDN  
ADJ/SENSE  
+
Driver w/limit  
and SHDN  
EA  
Overtemperature  
Sensing  
SHDN  
VREF  
V
IN  
Reference  
SHDN  
Soft-Start  
Comp  
TDELAY  
GND  
92% of VREF  
DS22070A-page 4  
2007 Microchip Technology Inc.  
MCP1824/MCP1824S  
Functional Block Diagram - Fixed Output (MCP1824S)  
PMOS  
VIN  
VOUT  
Undervoltage  
Lock Out  
Sense  
(UVLO)  
ISNS  
Cf  
Rf  
SHDN  
+
Driver w/limit  
and SHDN  
EA  
Overtemperature  
Sensing  
SHDN  
VREF  
V
IN  
Reference  
SHDN  
Soft-Start  
Comp  
TDELAY  
GND  
92% of VREF  
2007 Microchip Technology Inc.  
DS22070A-page 5  
MCP1824/MCP1824S  
Functional Block Diagram - Fixed Output (MCP1824)  
PMOS  
VIN  
VOUT  
Undervoltage  
Lock Out  
Sense  
(UVLO)  
ISNS  
Cf  
Rf  
SHDN  
+
Driver w/limit  
and SHDN  
EA  
Overtemperature  
Sensing  
SHDN  
VREF  
V
IN  
Reference  
SHDN  
Soft-Start  
PWRGD  
Comp  
TDELAY  
GND  
92% of VREF  
DS22070A-page 6  
2007 Microchip Technology Inc.  
MCP1824/MCP1824S  
† Notice: Stresses above those listed under “Maximum Rat-  
ings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Input Voltage, V .............................................................6.5V  
IN  
Maximum Voltage on Any Pin ... (GND – 0.3V) to (V + 0.3)V  
IN  
Maximum Power Dissipation......... Internally-Limited (Note 6)  
Output Short Circuit Duration................................Continuous  
Storage temperature .....................................-65°C to +150°C  
Maximum Junction Temperature, T ...........................+150°C  
J
Operating Junction Temperature, T .............-40°C to +125°C  
EESD protection on all pins ...........J4 kV HBM; 300V MM  
AC/DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, V = V  
+ V  
, Note 1, V = 1.8V for Adjustable Output,  
DROPOUT(MAX) R  
IN  
OUT(MAX)  
I
= 1 mA, C = C  
= 4.7 µF (X7R Ceramic), T = +25°C.  
OUT  
IN  
OUT A  
Boldface type applies for junction temperatures, T (Note 7) of -40°C to +125°C  
J
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Operating Voltage  
Output Voltage Range  
Input Quiescent Current  
V
2.1  
0.8  
6.0  
5.0  
V
V
IN  
V
OUT  
I
120  
220  
µA  
I = 0 mA, V  
= 0.8V to  
OUT  
q
L
5.0V  
Input Quiescent Current for  
SHDN Mode  
I
300  
0.1  
3
µA  
mA  
%/V  
%
SHDN = GND  
SHDN  
Maximum Continuous Output  
Current  
I
V
V
= 2.1V to 6.0V  
= 0.8V to 5.0V  
OUT  
IN  
R
Line Regulation  
ΔV  
OUT  
/
±0.05  
±0.5  
±0.17  
1.0  
(Note 1) V 6V  
IN  
OUT  
x ΔV )  
(V  
IN  
Load Regulation  
ΔV  
/V  
-1.0  
I
= 1 mA to 300 mA,  
OUT  
OUT OUT  
(Note 4)  
R < 0.1Ω, Peak Current  
LOAD  
Output Short Circuit Current  
Dropout Voltage  
I
720  
200  
mA  
mV  
OUT_SC  
V
320  
Note 5, I  
= 300 mA,  
DROPOUT  
OUT  
V
= 2.1V  
IN(MIN)  
Pulsed Applications  
Maximum Pulsed Output  
Current  
I
500  
mA  
V
V
= 2.1V to 6.0V  
= 0.8V to 5.0V,  
PULSE  
IN  
R
Duty Cycle ≤ 60%,  
Period < 10 ms  
Note 1: The minimum V must meet two conditions: V 2.1V and V V  
+ V  
DROPOUT(MAX).  
IN  
IN  
IN  
OUT(MAX)  
2:  
V
is the nominal regulator output voltage for the fixed cases. V = 1.2V, 1.8V, etc. V is the desired set point output  
R
R
R
voltage for the adjustable cases. V = V  
((R /R )+1). Figure 4-1.  
1 2  
R
ADJ *  
6
3: TCV  
= (V  
– V  
) *10 / (V * ΔTemperature). V is the highest voltage measured over the  
OUT  
OUT-HIGH  
OUT-LOW  
R
OUT-HIGH  
temperature range. V  
is the lowest voltage measured over the temperature range.  
OUT-LOW  
4: Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is  
tested over a load range from 1 mA to the maximum specified output current.  
5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its  
nominal value that was measured with an input voltage of V = V  
+ V  
.
IN  
OUT(MAX)  
DROPOUT(MAX)  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air. (i.e., T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained  
junction temperatures above 150°C can impact device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired junction temperature. The test time is small enough such that the rise in the junction temperature over the  
ambient temperature is not significant.  
2007 Microchip Technology Inc.  
DS22070A-page 7  
MCP1824/MCP1824S  
AC/DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise noted, V = V  
+ V  
, Note 1, V = 1.8V for Adjustable Output,  
DROPOUT(MAX) R  
IN  
OUT(MAX)  
I
= 1 mA, C = C  
= 4.7 µF (X7R Ceramic), T = +25°C.  
OUT  
IN  
OUT A  
Boldface type applies for junction temperatures, T (Note 7) of -40°C to +125°C  
J
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Maximum Pulsed Output Duty  
Cycle  
I
60  
%
V
V
= 2.1V to 6.0V,  
= 0.8V to 5.0V,  
PULSE_DUTY  
IN  
R
I
= 500 mA,  
OUT  
Period < 10 ms  
Maximum Pulsed Output Period  
I
10  
ms  
V
V
= 2.1V to 6.0V  
= 0.8V to 5.0V,  
PULSE_PERIOD  
IN  
R
I
= 500 mA  
OUT  
Adjust Pin Characteristics (Adjustable Output Only)  
Adjustable Output Voltage  
Range  
V
0.8  
5.5  
V
V
OUT_ADJ  
Adjust Pin Reference Voltage  
V
0.402  
0.410  
0.418  
V
= 2.1V to V = 6.0V,  
IN  
ADJ  
IN  
I
= 1 mA  
OUT  
Adjust Pin Leakage Current  
I
-10  
±0.01  
40  
+10  
nA  
V
= 6.0V, V  
= 0V to 6V  
ADJ  
IN  
ADJ  
Adjust Temperature Coefficient  
TCV  
ppm/°C Note 3  
OUT  
Fixed-Output Characteristics (Fixed Output Only)  
Voltage Regulation  
V
V
- 2.5%  
V
±0.5%  
V + 2.5%  
R
V
V
Note 2  
OUT  
R
R
Power Good Characteristics  
PWRGD Input Voltage Operat-  
ing Range  
V
1.0  
6.0  
T = +25°C  
A
PWRGD_VIN  
1.2  
6.0  
T = -40°C to +125°C  
A
For V < 2.1V, I  
= 100 µA  
SINK  
IN  
PWRGD Threshold Voltage  
V
%V  
Falling Edge  
PWRGD_TH  
OUT  
(Referenced to V  
)
OUT  
89  
92  
95  
V
V
< 2.5V Fixed,  
= Adj.  
OUT  
OUT  
90  
1.0  
92  
94  
3.0  
0.4  
V
>= 2.5V Fixed  
OUT  
PWRGD Threshold Hysteresis  
PWRGD Output Voltage Low  
V
2.0  
%V  
PWRGD_HYS  
OUT  
V
0.05  
V
I
= 1.2 mA,  
PWRGD SINK  
PWRGD_L  
ADJ = 0V  
PWRGD Output Current Sink  
Capability  
I
1.2  
6.0  
mA  
V
= 0.200V  
PWRGD  
PWRGD  
PWRGD  
PWRGD Leakage  
P
_
1
nA  
µs  
V
= V = 6.0V  
IN  
WRGD LK  
PWRGD Time Delay  
T
110  
Rising Edge  
= 10 kΩ  
PG  
R
PULLUP  
Note 1: The minimum V must meet two conditions: V 2.1V and V V  
+ V  
DROPOUT(MAX).  
IN  
IN  
IN  
OUT(MAX)  
2:  
V
is the nominal regulator output voltage for the fixed cases. V = 1.2V, 1.8V, etc. V is the desired set point output  
R
R
R
voltage for the adjustable cases. V = V  
((R /R )+1). Figure 4-1.  
R
ADJ *  
6
1 2  
3: TCV  
= (V  
– V  
) *10 / (V * ΔTemperature). V is the highest voltage measured over the  
OUT  
OUT-HIGH  
OUT-LOW  
R
OUT-HIGH  
temperature range. V  
is the lowest voltage measured over the temperature range.  
OUT-LOW  
4: Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is  
tested over a load range from 1 mA to the maximum specified output current.  
5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its  
nominal value that was measured with an input voltage of V = V  
+ V  
.
IN  
OUT(MAX)  
DROPOUT(MAX)  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air. (i.e., T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained  
junction temperatures above 150°C can impact device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired junction temperature. The test time is small enough such that the rise in the junction temperature over the  
ambient temperature is not significant.  
DS22070A-page 8  
2007 Microchip Technology Inc.  
MCP1824/MCP1824S  
AC/DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise noted, V = V  
+ V  
, Note 1, V = 1.8V for Adjustable Output,  
DROPOUT(MAX) R  
IN  
OUT(MAX)  
I
= 1 mA, C = C  
= 4.7 µF (X7R Ceramic), T = +25°C.  
OUT  
IN  
OUT A  
Boldface type applies for junction temperatures, T (Note 7) of -40°C to +125°C  
J
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
= V + 50 mV  
Detect Threshold to PWRGD  
Active Time Delay  
T
200  
µs  
V
OUT  
to V  
VDET-PWRGD  
PWRGD_TH  
- 50 mV  
PWRGD_TH  
Shutdown Input  
Logic High Input  
V
45  
15  
%V  
%V  
V
V
V
= 2.1V to 6.0V  
= 2.1V to 6.0V  
= 6V, SHDN =V ,  
IN  
SHDN-HIGH  
IN  
IN  
IN  
IN  
Logic Low Input  
V
SHDN-LOW  
IN  
SHDN Input Leakage Current  
SHDN  
-0.1  
±0.001  
+0.1  
µA  
ILK  
SHDN = GND  
AC Performance  
Output Delay From SHDN  
T
100  
2.0  
µs  
SHDN = GND to V ,  
IN  
OR  
V
= GND to 95% V  
OUT  
R
Output Noise  
e
µV/Hz  
I
= 200 mA, f = 1 kHz,  
N
OUT  
C
V
= 10 µF (X7R Ceramic),  
= 2.5V  
OUT  
OUT  
Power Supply Ripple Rejection  
Ratio  
PSRR  
55  
dB  
f = 100 Hz,  
= 10 mA,  
I
OUT  
V
= 200 mV pk-pk,  
INAC  
C
= 0 µF  
IN  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
T
150  
10  
°C  
°C  
I
V
= 100 µA, V  
= 2.8V  
= 1.8V,  
= 1.8V,  
SD  
OUT  
OUT  
OUT  
IN  
ΔT  
I
= 100 µA, V  
SD  
OUT  
V
= 2.8V  
IN  
Note 1: The minimum V must meet two conditions: V 2.1V and V V + V  
OUT(MAX)  
IN  
IN  
IN  
DROPOUT(MAX).  
2:  
V
is the nominal regulator output voltage for the fixed cases. V = 1.2V, 1.8V, etc. V is the desired set point output  
R
R
R
voltage for the adjustable cases. V = V  
((R /R )+1). Figure 4-1.  
1 2  
R
ADJ *  
6
3: TCV  
= (V  
– V  
) *10 / (V * ΔTemperature). V is the highest voltage measured over the  
OUT  
OUT-HIGH  
OUT-LOW  
R
OUT-HIGH  
temperature range. V  
is the lowest voltage measured over the temperature range.  
OUT-LOW  
4: Load regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is  
tested over a load range from 1 mA to the maximum specified output current.  
5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its  
nominal value that was measured with an input voltage of V = V  
+ V  
.
IN  
OUT(MAX)  
DROPOUT(MAX)  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air. (i.e., T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained  
junction temperatures above 150°C can impact device reliability.  
7: The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the  
desired junction temperature. The test time is small enough such that the rise in the junction temperature over the  
ambient temperature is not significant.  
2007 Microchip Technology Inc.  
DS22070A-page 9  
MCP1824/MCP1824S  
TEMPERATURE SPECIFICATIONS  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Operating Junction Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
TJ  
TJ  
TA  
-40  
+125  
+150  
+150  
°C  
°C  
°C  
Steady State  
Transient  
-65  
Thermal Package Resistances  
Thermal Resistance, 3LD SOT-223  
θJA  
θJC  
θJA  
θJC  
θJA  
θJC  
62  
15  
°C/W EIA/JEDEC JESD51-751-7  
4 Layer Board  
Thermal Resistance, 5LD SOT-23  
Thermal Resistance, 5LD SOT-223  
256  
81  
°C/W EIA/JEDEC JESD51-751-7  
4 Layer Board  
62  
°C/W EIA/JEDEC JESD51-751-7  
4 Layer Board  
15  
DS22070A-page 10  
2007 Microchip Technology Inc.  
MCP1824/MCP1824S  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF Ceramic (X7R), IOUT = 1 mA,  
Temperature = +25°C, VIN = VOUT + 0.5V, Fixed output, SHDN = 10 kΩ pullup to VIN.  
140  
130  
120  
110  
100  
90  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
IOUT = 1 mA  
VOUT = 1.2V adj  
IN = 2.1V to 6.0V  
VOUT = 1.2V Adj  
V
I
OUT = 0 mA  
IOUT = 50 mA  
130°C  
90°C  
IOUT=100 mA  
IOUT=200 mA  
IOUT=300 mA  
25°C  
0°C  
-45°C  
2
3
4
Input Voltage (V)  
5
6
-45  
-20  
5
30  
55  
80  
105 130  
Temperature (°C)  
FIGURE 2-1:  
Quiescent Current vs. Input  
FIGURE 2-4:  
Line Regulation vs.  
Voltage (Adjustable Version).  
Temperature (Adjustable Version).  
180  
170  
0.10  
IOUT = 1.0 mA to 300 mA  
VOUT = 1.2V Adj  
VOUT = 3.3V  
VOUT = 0.8V  
0.05  
0.00  
160  
VIN=5.0V  
150  
VIN=3.3V  
VOUT = 1.8V  
140  
130  
120  
-0.05  
-0.10  
-0.15  
-0.20  
VOUT = 5.0V  
110  
100  
VIN=2.5V  
0
50  
100  
150  
200  
250  
300  
-45  
-20  
5
30  
55  
80  
105 130  
Load Current (mA)  
Temperature (°C)  
FIGURE 2-2:  
Ground Current vs. Load  
FIGURE 2-5:  
Load Regulation vs.  
Current (Adjustable Version).  
Temperature (Adjustable Version).  
170  
160  
150  
0.413  
VOUT = 0.8V Adj  
OUT = 0 mA  
VOUT = 1.2V  
OUT = 1.0 mA  
I
I
0.412  
0.411  
0.410  
0.409  
0.408  
0.407  
VIN = 6.0V  
140  
VIN=6.0V  
VIN=5.0V  
130  
120  
110  
100  
90  
VIN = 4.0V  
VIN = 2.1V  
VIN=4.0V  
VIN=3.0V  
55  
VIN=2.1V  
30  
-45  
-20  
5
80  
105  
130  
-45 -20  
5
30  
55  
80  
105 130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-3:  
Quiescent Current vs.  
FIGURE 2-6:  
Adjust Pin Voltage vs.  
Junction Temperature (Adjustable Version).  
Temperature (Adjustable Version).  
2007 Microchip Technology Inc.  
DS22070A-page 11  
MCP1824/MCP1824S  
Note: Unless otherwise indicated, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF Ceramic (X7R), IOUT = 1 mA,  
Temperature = +25°C, VIN = VOUT + 0.5V, Fixed output, SHDN = 10 kΩ pullup to VIN.  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
160  
150  
140  
130  
120  
110  
100  
90  
VOUT = 0.8V  
IOUT = 0 mA  
+130°C  
VOUT = 5.0V Adj  
+90°C  
+25°C  
0°C  
VOUT = 2.5V Adj  
-45°C  
0
50  
100  
150  
200  
250  
300  
2
3
4
5
6
Load Current (mA)  
Input Voltage (V)  
FIGURE 2-7:  
Dropout Voltage vs. Load  
FIGURE 2-10:  
Quiescent Current vs. Input  
Current (Adjustable Version).  
Voltage.  
0.24  
0.23  
0.22  
150  
140  
130  
120  
110  
100  
90  
IOUT = 300 mA  
VOUT = 2.5V  
IOUT = 0 mA  
VOUT = 5.0V Adj  
0.21  
0.20  
0.19  
0.18  
0.17  
0.16  
0.15  
0.14  
+130°C  
+90°C  
VOUT = 3.3V Adj  
+25°C  
+0°C  
VOUT = 2.5V Adj  
-45°C  
-45  
-20  
5
30  
55  
80  
105 130  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Temperature (°C)  
Input Voltage (V)  
FIGURE 2-8:  
Dropout Voltage vs.  
FIGURE 2-11:  
Quiescent Current vs. Input  
Temperature (Adjustable Version).  
Voltage.  
110  
250  
200  
150  
100  
50  
VIN = 2.1V for VR=0.8V  
VIN = 3.5V for VR=3.0V  
VOUT = 0.8V Fixed  
OUT = 0 mA  
I
100  
VIN = 5.0V  
90  
VOUT=3.0V  
VOUT=0.8V  
80  
70  
VIN = 2.1V  
VIN = 3.3V  
60  
50  
0
0
-45  
-20  
5
30  
55  
80  
105 130  
50  
100  
150  
200  
250  
300  
Temperature (°C)  
Load Current (mA)  
FIGURE 2-9:  
Power Good (PWRGD)  
FIGURE 2-12:  
Ground Current vs. Load  
Time Delay vs. Temperature.  
Current.  
DS22070A-page 12  
2007 Microchip Technology Inc.  
MCP1824/MCP1824S  
Note: Unless otherwise indicated, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF Ceramic (X7R), IOUT = 1 mA,  
Temperature = +25°C, VIN = VOUT + 0.5V, Fixed output, SHDN = 10 kΩ pullup to VIN.  
130  
125  
120  
115  
110  
105  
100  
95  
0.042  
0.038  
0.034  
0.030  
0.026  
0.022  
0.018  
0.014  
0.010  
IOUT = 0 mA  
VR = 2.5V  
IN = 3.0V to 6.0V  
V
IOUT = 1 mA  
IOUT = 50 mA  
VOUT = 2.5V  
IOUT = 100 mA  
V
= 0.8V  
OUTc  
IOUT = 300 mA  
IOUT = 200 mA  
90  
-45  
-20  
5
30  
55  
80  
105  
130  
-45  
-20  
5
30  
55  
80  
105 130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-13:  
Quiescent Current vs.  
FIGURE 2-16:  
Line Regulation vs.  
Temperature.  
Temperature.  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.20  
0.15  
0.10  
0.05  
VR = 0.8V  
VOUT = 0.8V  
I
OUT = 1 mA to 300 mA  
VIN = 4.0V  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
VIN = 2.1V  
VIN = 6.0V  
VIN = 2.3V  
VIN = 3.3V  
VIN = 6.0V  
0.08  
0.06  
0.04  
0.02  
0.00  
VIN = 5.0V  
-45  
-20  
5
30  
55  
80  
105 130  
-45  
-20  
5
30  
55  
80  
105 130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-14:  
ISHDN vs. Temperature.  
FIGURE 2-17:  
Load Regulation vs.  
Temperature.  
0.10  
0.09  
0.10  
0.05  
IOUT = 1 mA to 300 mA  
VOUT = 0.8V  
VOUT = 0.8V  
IOUT = 1 mA  
IOUT = 50 mA  
V
IN = 2.1V to 6.0V  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
VOUT = 2.5V  
VOUT = 5.0V  
IOUT = 100 mA  
IOUT = 200 mA  
IOUT = 300 mA  
-45  
-20  
5
30  
55  
80  
105 130  
-45  
-20  
5
30  
55  
80  
105 130  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-15:  
Line Regulation vs.  
FIGURE 2-18:  
Load Regulation vs.  
Temperature.  
Temperature.  
2007 Microchip Technology Inc.  
DS22070A-page 13  
MCP1824/MCP1824S  
Note: Unless otherwise indicated, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF Ceramic (X7R), IOUT = 1 mA,  
Temperature = +25°C, VIN = VOUT + 0.5V, Fixed output, SHDN = 10 kΩ pullup to VIN.  
0.20  
10.000  
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
VR=3.0V, VIN=3.8V  
VR=0.8V, VIN=2.1V  
COUT=10 F cer  
CIN=4.7 F cer  
VOUT = 5.0V  
1.000  
0.100  
0.010  
IOUT=200 mA  
VOUT = 2.5V  
0
50  
100  
150  
200  
250  
300  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Load Current (mA)  
FIGURE 2-19:  
Dropout Voltage vs. Load  
FIGURE 2-22:  
Output Noise Voltage  
Current.  
Density vs. Frequency.  
0.24  
0.22  
0.0  
-10.0  
-20.0  
-30.0  
-40.0  
-50.0  
-60.0  
-70.0  
-80.0  
IOUT = 300 mA  
0.20  
0.18  
0.16  
0.14  
0.12  
VOUT = 5.0V  
VR=1.2V Adj  
V
V
IN=2.5V  
INAC = 200 mV p-p  
VOUT = 2.5V  
C
IN=0  
F
I
OUT=10 mA  
-45  
-20  
5
30  
55  
80  
105 130  
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Temperature (°C)  
FIGURE 2-20:  
Dropout Voltage vs.  
FIGURE 2-23:  
Power Supply Ripple  
Temperature.  
Rejection (PSRR) vs. Frequency (Adj.).  
0.0  
-10.0  
-20.0  
-30.0  
-40.0  
600.00  
500.00  
400.00  
300.00  
200.00  
100.00  
VOUT = 0.8V  
VR=3.0V (Fixed)  
-50.0  
V
V
C
IN=3.5V  
INAC=200 mV p-p  
IN=0 F  
-60.0  
-70.0  
-80.0  
-90.0  
I
OUT=10 mA  
0.00  
0
1
2
3
4
5
6
0.01  
0.1  
1
10  
100  
1000  
Frequency (kHz)  
Input Voltage (V)  
FIGURE 2-21:  
Short Circuit Current vs.  
FIGURE 2-24:  
Power Supply Ripple  
Input Voltage.  
Rejection (PSRR) vs. Frequency.  
DS22070A-page 14  
2007 Microchip Technology Inc.  
MCP1824/MCP1824S  
Note: Unless otherwise indicated, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF Ceramic (X7R), IOUT = 1 mA,  
Temperature = +25°C, VIN = VOUT + 0.5V, Fixed output, SHDN = 10 kΩ pullup to VIN.  
FIGURE 2-28:  
Timing.  
Power Good (PWRGD)  
FIGURE 2-25:  
(Adjustable Version).  
Startup from VIN  
FIGURE 2-26:  
(Adjustable Version).  
Startup from Shutdown  
FIGURE 2-29:  
Dynamic Line Response.  
FIGURE 2-30:  
Dynamic Line Response.  
FIGURE 2-27:  
Power Good (PWRGD)  
Timing.  
2007 Microchip Technology Inc.  
DS22070A-page 15  
MCP1824/MCP1824S  
Note: Unless otherwise indicated, COUT = 4.7 µF Ceramic (X7R), CIN = 4.7 µF Ceramic (X7R), IOUT = 1 mA,  
Temperature = +25°C, VIN = VOUT + 0.5V, Fixed output, SHDN = 10 kΩ pullup to VIN.  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VR = 0.8V  
VR = 3.0V  
VR = 5.0V  
0
2
4
6
8
10 12 14 16 18 20  
PWRGD Sink Current (mA)  
FIGURE 2-33:  
Voltage Vs Load.  
Power Good Pulldown  
FIGURE 2-31:  
Dynamic Load Response.  
FIGURE 2-32:  
Dynamic Load Response.  
FIGURE 2-34:  
Startup Current.  
DS22070A-page 16  
2007 Microchip Technology Inc.  
MCP1824/MCP1824S  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
SOT-23  
SOT-223  
Name  
Description  
3-Pin  
Fixed  
5-Pin  
Fixed  
5-Pin  
Adj  
5-Pin  
Fixed  
5-Pin  
Adj  
1
2
1
2
3
1
3
1
SHDN  
VIN  
Shutdown Control Input (active-low)  
Input Voltage Supply  
Ground  
1
2
3
3
2
2
GND  
VOUT  
3
4
4
5
5
Regulated Output Voltage  
5
4
PWRGD Power Good Output  
5
4
ADJ  
EP  
Output Voltage Adjust/Sense Input  
Exposed Pad of the Package (ground potential)  
Exposed Exposed Exposed  
Pad Pad Pad  
3.1  
Shutdown Control Input (SHDN)  
3.4  
Regulated Output Voltage (V  
)
OUT  
The SHDN input is used to turn the LDO output voltage  
on and off. When the SHDN input is at a logic-high  
level, the LDO output voltage is enabled. When the  
SHDN input is pulled to a logic-low level, the LDO  
output voltage is disabled. When the SHDN input is  
pulled low, the PWRGD output also goes low and the  
LDO enters a low quiescent current shutdown state  
where the typical quiescent current is 0.1 µA.  
The VOUT pin is the regulated output voltage of the  
LDO. A minimum output capacitance of 1.0 µF is  
required for LDO stability. The MCP1824/MCP1824S is  
stable with ceramic, tantalum, and aluminum-  
electrolytic capacitors. See Section 4.3 “Output  
Capacitor” for output capacitor selection guidance.  
3.5  
Power Good Output (PWRGD)  
For fixed applications, the PWRGD output is an open-  
drain output used to indicate when the LDO output  
voltage is within 92% (typically) of its nominal  
regulation value. The PWRGD threshold has a typical  
hysteresis value of 2%. The PWRGD output is delayed  
by 110 µs (typical) from the time the LDO output is  
within 92% + 3% (maximum hysteresis) of the  
regulated output value on power-up. This delay time is  
internally fixed.  
3.2  
Input Voltage Supply (V )  
IN  
Connect the unregulated or regulated input voltage  
source to VIN. If the input voltage source is located  
several inches away from the LDO, or the input source  
is a battery, it is recommended that an input capacitor  
be used. A typical input capacitance value of 1 µF to  
10 µF should be sufficient for most applications. The  
type of capacitor used can be ceramic, tantalum, or  
aluminum electrolytic. The low ESR characteristics of  
the ceramic capacitor will yield better noise and PSRR  
performance at high frequency.  
3.6  
Output Voltage Adjust Input (ADJ)  
For adjustable applications, the output voltage is  
connected to the ADJ input through a resistor divider  
that sets the output voltage regulation value. This  
provides the users the capability to set the output  
voltage to any value they desire within the 0.8V to 5.0V  
range of the device.  
3.3  
Ground (GND)  
For the optimal Noise and Power Supply Rejection  
Ratio (PSRR) performance, the GND pin of the LDO  
should be tied to an electrically quiet circuit ground.  
This will help the LDO power supply rejection ratio and  
noise performance. The ground pin of the LDO only  
conducts the ground current of the LDO, so a heavy  
3.7  
Exposed Pad (EP)  
The SOT-223 package has an exposed metal pad on  
the bottom of the package. The exposed metal pad  
gives the device better thermal characteristics by  
providing a good thermal path to either the PCB or  
heatsink to remove heat from the device. The exposed  
pad of the package is at ground potential.  
trace is not required.  
For applications that have  
switching or noisy inputs, tie the GND pin to the return  
of the output capacitor. Ground planes help lower  
inductance and voltage spikes caused by fast transient  
load currents and are recommended for applications  
that are subjected to fast load transients.  
2007 Microchip Technology Inc.  
DS22070A-page 17  
MCP1824/MCP1824S  
The allowable resistance value range for resistor R2 is  
from 10 kΩ to 200 kΩ. Solving Equation 4-1 for R1  
yields Equation 4-2.  
4.0  
DEVICE OVERVIEW  
The MCP1824/MCP1824S is a 300 mA output current,  
Low Dropout (LDO) voltage regulator. The low dropout  
voltage of 200 mV typical at 300 mA of current makes  
it ideal for battery-powered applications. The input  
voltage range is 2.1V to 6.0V. Unlike other high output  
current LDOs, the MCP1824/MCP1824S only draws a  
maximum of 220 µA of quiescent current. The  
MCP1824 adds a shutdown control input pin and a  
power good output pin. The two output voltage options  
are fixed or adjustable. The adjustable option is  
available on the MCP1824 devices. The adjustable out-  
put voltage is set using two external resistors.  
EQUATION 4-2:  
CALCULATING ADJ PIN  
RESISTOR VALUES  
VOUT  
------------  
R1 = R2  
1  
VADJ  
Where:  
VOUT  
VADJ  
=
=
LDO Output Voltage  
ADJ Pin Voltage  
(typically 0.41V)  
4.1  
LDO Output Voltage  
4.2  
Output Current and Current  
Limiting  
The MCP1824 LDO is available with either a fixed  
output voltage or an adjustable output voltage. The  
output voltage range is 0.8V to 5.0V for either version.  
The MCP1824S LDO is available as a fixed voltage  
device.  
The MCP1824/MCP1824S LDO is tested and ensured  
to supply a minimum of 300 mA of output current. The  
MCP1824/MCP1824S has no minimum output load, so  
the output load current can go to 0 mA and the LDO will  
continue to regulate the output voltage to within  
tolerance.  
4.1.1  
ADJUST INPUT  
The adjustable version of the MCP1824 uses the ADJ  
pin to get the output voltage feedback for output voltage  
regulation. This allows the user to set the output volt-  
age of the device with two external resistors. The nom-  
inal voltage for ADJ is 0.41V.  
The MCP1824/MCP1824S also incorporates an output  
current limit. If the output voltage falls below 0.7V due  
to an overload condition (usually represents a shorted  
load condition), the output current is limited to 720 mA  
(typical). If the overload condition is a soft overload, the  
MCP1824/MCP1824S will supply higher load currents  
of up to 900 mA. The MCP1824/MCP1824S should not  
be operated in this condition continuously as it may  
result in failure of the device. However, this does allow  
for device usage in applications that have higher  
pulsed load currents having an average output current  
value of 300 mA or less.  
Figure 4-1 shows the adjustable version of the  
MCP1824. Resistors R1 and R2 form the resistor  
divider network necessary to set the output voltage.  
With this configuration, Equation 4-1 represents the  
equation for setting VOUT  
.
EQUATION 4-1:  
CALCULATING VOUT  
R1 + R2  
Output overload conditions may also result in an over-  
temperature shutdown of the device. If the junction  
temperature rises above 150°C (typical), the LDO will  
shut down the output voltage. See Section 4.8 “Over-  
temperature Protection” for more information on  
overtemperature shutdown.  
-----------------  
VOUT = VADJ  
R2  
Where:  
VOUT  
VADJ  
=
=
LDO Output Voltage  
ADJ Pin Voltage  
(typically 0.41V)  
MCP1824-ADJ  
VOUT  
R1  
On  
C2  
1 µF  
1
3
2 4 5  
Off  
SHDN  
ADJ  
VIN  
C1  
R2  
GND  
4.7 µF  
FIGURE 4-1:  
Typical Adjustable Output  
Voltage Application Circuit.  
DS22070A-page 18  
2007 Microchip Technology Inc.  
MCP1824/MCP1824S  
delay is fixed at 110 µs (typical). After the time delay  
period, the PWRGD output will go high, indicating that  
the output voltage is stable and within regulation limits.  
4.3  
Output Capacitor  
The MCP1824/MCP1824S requires a minimum output  
capacitance of 1 µF for output voltage stability. Ceramic  
capacitors are recommended because of their size,  
cost, and environmental robustness qualities.  
If the output voltage of the LDO falls below the power  
good threshold, the power good output will transition  
low. The power good circuitry has a 200 µs delay when  
detecting a falling output voltage, which helps to  
increase noise immunity of the power good output and  
avoid false triggering of the power good output during  
fast output transients. See Figure 4-2 for power good  
timing characteristics.  
Aluminum-electrolytic and tantalum capacitors can be  
used on the LDO output as well. The Equivalent Series  
Resistance (ESR) of the electrolytic output capacitor  
must be no greater than 1 ohm. The output capacitor  
should be located as close to the LDO output as is  
practical. Ceramic materials X7R and X5R have low  
temperature coefficients and are well within the  
acceptable ESR range required. A typical 1 µF X7R  
0805 capacitor has an ESR of 50 milli-ohms.  
When the LDO is put into Shutdown mode using the  
SHDN input, the power good output is pulled low  
immediately, indicating that the output voltage will be  
out of regulation. The timing diagram for the power  
good output when using the shutdown input is shown in  
Figure 4-3.  
Larger LDO output capacitors can be used with the  
MCP1824/MCP1824S  
to  
improve  
dynamic  
performance and power supply ripple rejection  
performance. A maximum of 22 µF is recommended.  
Aluminum-electrolytic capacitors are not recom-  
mended for low temperature applications of < -25°C.  
The power good output is an open-drain output that can  
be pulled up to any voltage that is equal to or less than  
the LDO input voltage. This output is capable of sinking  
1.2 mA minimum (VPWRGD < 0.4V maximum).  
4.4  
Input Capacitor  
VPWRGD_TH  
Low input source impedance is necessary for the LDO  
output to operate properly. When operating from  
batteries, or in applications with long lead length  
(> 10 inches) between the input source and the LDO,  
some input capacitance is recommended. A minimum  
of 1.0 µF to 4.7 µF is recommended for most  
applications.  
VOUT  
TPG  
VOH  
TVDET_PWRGD  
For applications that have output step load  
requirements, the input capacitance of the LDO is very  
important. The input capacitance provides the LDO  
with a good local low-impedance source to pull the  
transient currents from, in order to respond quickly to  
the output load step. For good step response  
performance, the input capacitor should be of  
equivalent (or higher) value than the output capacitor.  
The capacitor should be placed as close to the input of  
the LDO as is practical. Larger input capacitors will also  
help reduce any high-frequency noise on the input and  
output of the LDO and reduce the effects of any  
inductance that exists between the input source  
voltage and the input capacitance of the LDO.  
PWRGD  
VOL  
FIGURE 4-2:  
Power Good Timing.  
V
IN  
T
OR  
70 µs  
30 µs  
T
PG  
SHDN  
4.5  
Power Good Output (PWRGD)  
The PWRGD output is used to indicate when the output  
voltage of the LDO is within 92% (typical value, see  
Section 1.0 “Electrical Characteristics” for Minimum  
and Maximum specifications) of its nominal regulation  
value.  
V
OUT  
As the output voltage of the LDO rises, the PWRGD  
output will be held low until the output voltage has  
exceeded the power good threshold plus the hysteresis  
value. Once this threshold has been exceeded, the  
power good time delay is started (shown as TPG in the  
Electrical Characteristics table). The power good time  
PWRGD  
FIGURE 4-3:  
Power Good Timing from  
Shutdown.  
2007 Microchip Technology Inc.  
DS22070A-page 19  
MCP1824/MCP1824S  
4.6  
Shutdown Input (SHDN)  
4.7  
Dropout Voltage and Undervoltage  
Lockout  
The SHDN input is an active-low input signal that turns  
the LDO on and off. The SHDN threshold is a  
percentage of the input voltage. The typical value of  
this shutdown threshold is 30% of VIN, with minimum  
and maximum limits over the entire operating  
temperature range of 45% and 15%, respectively.  
Dropout voltage is defined as the input-to-output  
voltage differential at which the output voltage drops  
2% below the nominal value that was measured with a  
VR  
+ 0.5V differential applied. The MCP1824/  
MCP1824S LDO has a very low dropout voltage  
specification of 210 mV (typical) at 300 mA of output  
current. See Section 1.0 “Electrical Characteristics”  
for maximum dropout voltage specifications.  
The SHDN input will ignore low-going pulses (pulses  
meant to shut down the LDO) that are up to 400 ns in  
pulse width. If the shutdown input is pulled low for more  
than 400 ns, the LDO will enter Shutdown mode. This  
small bit of filtering helps to reject any system noise  
spikes on the shutdown input signal.  
The MCP1824/MCP1824S LDO operates across an  
input voltage range of 2.1V to 6.0V and incorporates  
input Undervoltage Lockout (UVLO) circuitry that keeps  
the LDO output voltage off until the input voltage  
reaches a minimum of 2.00V (typical) on the rising  
edge of the input voltage. As the input voltage falls, the  
LDO output will remain on until the input voltage level  
reaches 1.82V (typical).  
On the rising edge of the SHDN input, the shutdown  
circuitry has a 30 µs delay before allowing the LDO  
output to turn on. This delay helps to reject any false  
turn-on signals or noise on the SHDN input signal. After  
the 30 µs delay, the LDO output enters its soft-start  
period as it rises from 0V to its final regulation value. If  
the SHDN input signal is pulled low during the 30 µs  
delay period, the timer will be reset and the delay time  
will start over again on the next rising edge of the  
SHDN input. The total time from the SHDN input going  
high (turn-on) to the LDO output being in regulation is  
typically 100 µs. See Figure 4-4 for a timing diagram of  
the SHDN input.  
Since the MCP1824/MCP1824S LDO undervoltage  
lockout activates at 1.82V as the input voltage is falling,  
the dropout voltage specification does not apply for  
output voltages that are less than 1.8V.  
For high-current applications, voltage drops across the  
PCB traces must be taken into account. The trace  
resistances can cause significant voltage drops  
between the input voltage source and the LDO. For  
applications with input voltages near 2.1V, these PCB  
trace voltage drops can sometimes lower the input  
TOR  
400 ns (typ)  
voltage enough to trigger  
undervoltage lockout.  
a shutdown due to  
70 µs  
30 µs  
4.8  
Overtemperature Protection  
SHDN  
The MCP1824/MCP1824S LDO has temperature-  
sensing circuitry to prevent the junction temperature  
from exceeding approximately 150°C. If the LDO  
junction temperature does reach 150°C, the LDO  
output will be turned off until the junction temperature  
cools to approximately 140°C, at which point the LDO  
output will automatically resume normal operation. If  
the internal power dissipation continues to be  
excessive, the device will again shut off. The junction  
temperature of the die is a function of power  
dissipation, ambient temperature and package thermal  
resistance. See Section 5.0 “Application Circuits/  
Issues” for more information on LDO power  
dissipation and junction temperature.  
VOUT  
FIGURE 4-4:  
Diagram.  
Shutdown Input Timing  
DS22070A-page 20  
2007 Microchip Technology Inc.  
MCP1824/MCP1824S  
In addition to the LDO pass element power dissipation,  
there is power dissipation within the MCP1824/  
MCP1824S as a result of quiescent or ground current.  
The power dissipation as a result of the ground current  
can be calculated using the following equation:  
5.0  
5.1  
APPLICATION CIRCUITS/  
ISSUES  
Typical Application  
The MCP1824/MCP1824S is used for applications that  
require high LDO output current and a power good  
output.  
EQUATION 5-2:  
PI(GND) = VIN(MAX) × IVIN  
Where:  
VOUT = 2.5V @ 300 mA  
PI(GND  
=
Power dissipation due to the  
quiescent current of the LDO  
MCP1824-2.5  
R1  
On  
C2  
1
3
2 4 5  
VIN(MAX)  
IVIN  
=
=
Maximum input voltage  
10 kΩ  
Off  
SHDN  
10 µF  
Current flowing in the VIN pin  
with no LDO output current  
(LDO quiescent current)  
VIN  
C1  
3.3V  
4.7 µF  
PWRGD  
GND  
The total power dissipated within the MCP1824/  
MCP1824S is the sum of the power dissipated in the  
LDO pass device and the P(IGND) term. Because of the  
CMOS construction, the typical IGND for the MCP1824/  
MCP1824S is 120 µA. Operating at a maximum VIN of  
3.465V results in a power dissipation of 0.12 milli-Watts  
for a 2.5V output. For most applications, this is small  
compared to the LDO pass device power dissipation  
and can be neglected.  
FIGURE 5-1:  
Typical Application Circuit.  
5.1.1 APPLICATION CONDITIONS  
Package Type  
=
=
=
=
=
=
=
=
=
SOT-223-5  
3.3V ± 5%  
3.465V  
Input Voltage Range  
VIN maximum  
VIN minimum  
VDROPOUT (max)  
VOUT (typical)  
IOUT  
3.135V  
The maximum continuous operating junction  
temperature specified for the MCP1824/MCP1824S is  
+125°C. To estimate the internal junction temperature  
of the MCP1824/MCP1824S, the total internal power  
dissipation is multiplied by the thermal resistance from  
junction to ambient (RθJA) of the device. The thermal  
resistance from junction to ambient for the SOT-223-5  
package is estimated at 62° C/W.  
0.350V  
2.5V  
300 mA maximum  
0.240W  
PDISS (typical)  
Temperature Rise  
14.88°C  
5.2  
Power Calculations  
EQUATION 5-3:  
TJ(MAX) = PTOTAL × RθJA + TAMAX  
5.2.1  
POWER DISSIPATION  
The internal power dissipation within the MCP1824/  
MCP1824S is a function of input voltage, output  
voltage, output current and quiescent current.  
Equation 5-1 can be used to calculate the internal  
power dissipation for the LDO.  
TJ(MAX) = Maximum continuous junction  
temperature  
PTOTAL = Total device power dissipation  
RθJA = Thermal resistance from junction to  
ambient  
EQUATION 5-1:  
TAMAX = Maximum ambient temperature  
PLDO = (VIN(MAX)) VOUT(MIN)) × IOUT(MAX))  
Where:  
PLDO  
=
LDO Pass device internal  
power dissipation  
VIN(MAX)  
=
=
Maximum input voltage  
VOUT(MIN)  
LDO minimum output voltage  
2007 Microchip Technology Inc.  
DS22070A-page 21  
MCP1824/MCP1824S  
The maximum power dissipation capability for a  
package can be calculated given the junction-to-  
ambient thermal resistance and the maximum ambient  
temperature for the application. Equation 5-4 can be  
used to determine the package maximum internal  
power dissipation.  
5.3  
Typical Application  
Internal power dissipation, junction temperature rise,  
junction temperature, and maximum power dissipation  
is calculated in the following example. The power  
dissipation as a result of ground current is small  
enough to be neglected.  
EQUATION 5-4:  
5.3.1  
POWER DISSIPATION EXAMPLE  
(TJ(MAX) TA(MAX)  
)
---------------------------------------------------  
=
PD(MAX)  
RθJA  
Package  
Package Type = SOT-223-5  
Input Voltage  
PD(MAX) = Maximum device power dissipation  
TJ(MAX) = maximum continuous junction  
temperature  
VIN = 3.3V ± 5%  
LDO Output Voltage and Current  
VOUT = 2.5V  
TA(MAX) = maximum ambient temperature  
RθJA = Thermal resistance from junction-to-  
IOUT = 300 mA  
ambient  
Maximum Ambient Temperature  
TA(MAX) = 60°C  
EQUATION 5-5:  
Internal Power Dissipation  
PLDO(MAX) = (VIN(MAX) – VOUT(MIN)) x IOUT(MAX)  
TJ(RISE) = PD(MAX) × RθJA  
PLDO = ((3.3V x 1.05) – (2.5V x 0.975))  
x 300 mA  
TJ(RISE) = Rise in device junction temperature  
over the ambient temperature  
PLDO = 0.308 Watts  
PD(MAX) = Maximum device power dissipation  
RθJA = Thermal resistance from junction-to-  
5.3.1.1  
Device Junction Temperature Rise  
ambient  
The internal junction temperature rise is a function of  
internal power dissipation and the thermal resistance  
from junction-to-ambient for the application. The  
thermal resistance from junction-to-ambient (RθJA) is  
derived from EIA/JEDEC standards for measuring  
thermal resistance. The EIA/JEDEC specification is  
JESD51. The standard describes the test method and  
board specifications for measuring the thermal  
resistance from junction to ambient. The actual thermal  
EQUATION 5-6:  
TJ = TJ(RISE) + TA  
TJ = Junction temperature  
TJ(RISE) = Rise in device junction temperature  
over the ambient temperature  
resistance for  
a particular application can vary  
TA = Ambient temperature  
depending on many factors such as copper area and  
thickness. Refer to AN792, “A Method to Determine  
How Much Power a SOT23 Can Dissipate in an  
Application” (DS00792), for more information regarding  
this subject.  
TJ(RISE) = PTOTAL x RθJA  
TJRISE = 0.308 W x 62° C/W  
TJRISE = 19.1°C  
DS22070A-page 22  
2007 Microchip Technology Inc.  
MCP1824/MCP1824S  
5.3.1.2  
Junction Temperature Estimate  
To estimate the internal junction temperature, the  
calculated temperature rise is added to the ambient or  
offset temperature. For this example, the worst-case  
junction temperature is estimated below:  
TJ = TJRISE + TA(MAX)  
TJ = 19.1°C + 60.0°C  
TJ = 79.1°C  
5.3.1.3  
Maximum Package Power  
Dissipation at 60°C Ambient  
Temperature  
SOT-223-5 (62°C/W RθJA):  
D(MAX) = (125°C – 60°C) / 62°C/W  
P
PD(MAX) = 1.048W  
SOT-23-5 (256°C/Watt RθJA):  
PD(MAX) = (125°C – 60°C)/ 256°C/W  
PD(MAX) = 0.254W  
From this table, you can see the difference in maximum  
allowable power dissipation between the SOT-223-5  
package and the SOT-23-5 package.  
2007 Microchip Technology Inc.  
DS22070A-page 23  
MCP1824/MCP1824S  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
3-Lead SOT-223 (MCP1824S)  
Example:  
Marking  
Code  
Part Number  
XXXXXXX  
XXXYYWW  
1824S08  
EDB0710  
MCP1824ST-0802E/DB  
MCP1824ST-1202E/DB  
MCP1824ST-1802E/DB  
MCP1824ST-2502E/DB  
MCP1824ST-3002E/DB  
MCP1824ST-3302E/DB  
MCP1824ST-5002E/DB  
1824S08  
1824S12  
1824S18  
1824S25  
1824S30  
1824S33  
1824S50  
NNN  
256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS22070A-page 24  
2007 Microchip Technology Inc.  
MCP1824/MCP1824S  
Package Marking Information (Continued)  
5-Lead SOT-223 (MCP1824)  
Example:  
Marking  
Code  
Part Number  
XXXXXXX  
XXXYYWW  
1824082  
EDC0710  
MCP1824T-0802E/DC  
1824082  
1824122  
1824182  
1824252  
1824302  
1824332  
1824502  
1824ADJ  
MCP1824T-1202E/DC  
NNN  
256  
MCP1824T-1802E/DC  
MCP1824T-2502E/DC  
MCP1824T-3002E/DC  
MCP1824T-3302E/DC  
MCP1824T-5002E/DC  
MCP1824T-ADJE/DC  
5-Lead SOT-23  
Example:  
Marking  
Code  
Part Number  
MCP1824T-0802E/OT  
ULNN  
UMNN  
UPNN  
UQNN  
URNN  
USNN  
UTNN  
UKNN  
XXNN  
UL25  
MCP1824T-1202E/OT  
MCP1824T-1802E/OT  
1
1
MCP1824T-2502E/OT  
MCP1824T-3002E/OT  
MCP1824T-3302E/OT  
MCP1824T-5002E/OT  
MCP1824T-ADJE/OT  
2007 Microchip Technology Inc.  
DS22070A-page 25  
MCP1824/MCP1824S  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢖꢗꢘꢆꢙꢍꢏꢒꢁꢚꢚꢀꢛ  
ꢜꢔꢊꢃꢝ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
D
b2  
E1  
E
3
2
1
e
e1  
A2  
c
A
φ
b
L
A1  
.ꢆꢃꢍꢇ  
ꢕ/00/ꢕꢌ%ꢌ1ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ0ꢅꢊꢋꢇ  
0ꢅꢊꢋꢉ,ꢃꢍꢎꢒ  
3ꢐꢍꢇꢃꢋꢅꢉ0ꢅꢊꢋꢉ,ꢃꢍꢎꢒ  
3'ꢅꢓꢊꢏꢏꢉ8ꢅꢃꢚꢒꢍ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ8ꢅꢃꢚꢒꢍ  
3'ꢅꢓꢊꢏꢏꢉ;ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ;ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
0ꢅꢊꢋꢉ;ꢃꢋꢍꢒ  
2
ꢅꢀ  
ꢛꢀ  
ꢛꢘ  
ꢌꢀ  
5
5ꢘ  
0
6
ꢘꢁ6ꢗꢉ"ꢜ#  
 ꢁ7ꢗꢉ"ꢜ#  
M
M
ꢀꢁ:ꢗ  
ꢗꢁꢀꢗ  
ꢀꢁꢙꢗ  
ꢙꢁ6ꢗ  
6ꢁꢙꢗ  
7ꢁꢙꢗ  
ꢗꢁ6!  
ꢗꢁ:  
6ꢁꢀꢗ  
M
ꢗꢁꢗꢘ  
ꢀꢁ!ꢗ  
7ꢁꢙꢗ  
6ꢁ6ꢗ  
7ꢁ6ꢗ  
ꢗꢁꢘ6  
ꢗꢁ7ꢗ  
ꢘꢁ<ꢗ  
ꢗꢁꢙ!  
ꢗꢞ  
M
ꢀꢁ7ꢗ  
ꢙꢁꢗꢗ  
6ꢁ!ꢗ  
7ꢁ!ꢗ  
ꢗꢁ6ꢗ  
ꢗꢁꢙ7  
6ꢁꢗꢗ  
M
%5ꢉ0ꢅꢊꢋꢉ;ꢃꢋꢍꢒ  
)ꢈꢈꢍꢉ0ꢅꢆꢚꢍꢒ  
0ꢅꢊꢋꢉꢛꢆꢚꢏꢅ  
M
ꢀꢗꢞ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ "ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ >ꢗ6ꢘ"  
DS22070A-page 26  
2007 Microchip Technology Inc.  
MCP1824/MCP1824S  
 ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢖ!ꢘꢆꢙꢍꢏꢒꢁꢚꢚꢀꢛ  
ꢜꢔꢊꢃꢝ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
D
b2  
E
E1  
3
4
2
N
1
e
e1  
A2  
c
A
φ
L
b
A1  
.ꢆꢃꢍꢇ  
ꢕ/00/ꢕꢌ%ꢌ1ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
!
ꢀꢁꢘꢙꢉ"ꢜ#  
!ꢁꢗ:ꢉ"ꢜ#  
M
ꢗꢁꢗ7  
ꢀꢁ7ꢗ  
ꢙꢁꢗꢗ  
6ꢁ!ꢗ  
7ꢁ!ꢗ  
ꢗꢁꢘ:  
ꢗꢁ !ꢙ  
6ꢁꢗꢗ  
M
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ0ꢅꢊꢋꢇ  
0ꢅꢊꢋꢉ,ꢃꢍꢎꢒ  
3ꢐꢍꢇꢃꢋꢅꢉ0ꢅꢊꢋꢉ,ꢃꢍꢎꢒ  
3'ꢅꢓꢊꢏꢏꢉ8ꢅꢃꢚꢒꢍ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ8ꢅꢃꢚꢒꢍ  
3'ꢅꢓꢊꢏꢏꢉ;ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ;ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
0ꢅꢊꢋꢉ;ꢃꢋꢍꢒ  
2
ꢅꢀ  
ꢛꢀ  
ꢛꢘ  
ꢌꢀ  
5
5ꢘ  
0
M
ꢀꢁ:ꢗ  
ꢗꢁꢀꢗ  
ꢀꢁ7!  
ꢙꢁꢘ7  
6ꢁ!!  
7ꢁ!!  
ꢗꢁ6ꢘ  
ꢗꢁ!ꢀ  
6ꢁꢗ!  
ꢀꢁꢀ  
:ꢞ  
ꢗꢁꢗꢘ  
ꢀꢁ!!  
7ꢁ:7  
6ꢁ !  
7ꢁ !  
ꢗꢁꢘ  
ꢗꢁ ꢀ  
ꢘꢁ<!  
ꢗꢁ<ꢀ  
ꢗꢞ  
%5ꢉ0ꢅꢊꢋꢉ;ꢃꢋꢍꢒ  
)ꢈꢈꢍꢉ0ꢅꢆꢚꢍꢒ  
0ꢅꢊꢋꢉꢛꢆꢚꢏꢅ  
 ꢞ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ "ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ >ꢀ6ꢙ"  
2007 Microchip Technology Inc.  
DS22070A-page 27  
MCP1824/MCP1824S  
 ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢘꢆꢙꢍꢏꢒꢁꢚꢀꢛ  
ꢜꢔꢊꢃꢝ )ꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎ*ꢊꢚꢅꢉꢋꢓꢊ(ꢃꢆꢚꢇ+ꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉ,ꢊꢎ*ꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔ$--(((ꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄ-ꢔꢊꢎ*ꢊꢚꢃꢆꢚ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
.ꢆꢃꢍꢇ  
ꢕ/00/ꢕꢌ%ꢌ1ꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉ0ꢃꢄꢃꢍꢇ  
ꢕ/2  
23ꢕ  
ꢕꢛ4  
2ꢐꢄ5ꢅꢓꢉꢈꢑꢉ,ꢃꢆꢇ  
0ꢅꢊꢋꢉ,ꢃꢍꢎꢒ  
2
!
ꢗꢁ<!ꢉ"ꢜ#  
3ꢐꢍꢇꢃꢋꢅꢉ0ꢅꢊꢋꢉ,ꢃꢍꢎꢒ  
3'ꢅꢓꢊꢏꢏꢉ8ꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
3'ꢅꢓꢊꢏꢏꢉ;ꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉ,ꢊꢎ*ꢊꢚꢅꢉ;ꢃꢋꢍꢒ  
3'ꢅꢓꢊꢏꢏꢉ0ꢅꢆꢚꢍꢒ  
)ꢈꢈꢍꢉ0ꢅꢆꢚꢍꢒ  
)ꢈꢈꢍꢔꢓꢃꢆꢍ  
)ꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
0ꢅꢊꢋꢉ%ꢒꢃꢎ*ꢆꢅꢇꢇ  
0ꢅꢊꢋꢉ;ꢃꢋꢍꢒ  
ꢅꢀ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
0
ꢀꢁ<ꢗꢉ"ꢜ#  
ꢗꢁ<ꢗ  
ꢗꢁ:<  
ꢗꢁꢗꢗ  
ꢘꢁꢘꢗ  
ꢀꢁ6ꢗ  
ꢘꢁꢙꢗ  
ꢗꢁꢀꢗ  
ꢗꢁ6!  
ꢗꢞ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁ !  
ꢀꢁ6ꢗ  
ꢗꢁꢀ!  
6ꢁꢘꢗ  
ꢀꢁ:ꢗ  
6ꢁꢀꢗ  
ꢗꢁ7ꢗ  
ꢗꢁ:ꢗ  
6ꢗꢞ  
0ꢀ  
5
ꢗꢁꢗ:  
ꢗꢁꢘꢗ  
ꢗꢁꢘ7  
ꢗꢁ!ꢀ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀ ꢁ!ꢕꢁ  
"ꢜ#$ "ꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉ%ꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏ&ꢉꢅꢖꢊꢎꢍꢉ'ꢊꢏꢐꢅꢉꢇꢒꢈ(ꢆꢉ(ꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ %ꢎꢒꢆꢈꢏꢈꢚ& ꢂꢓꢊ(ꢃꢆꢚ #ꢗ >ꢗ<ꢀ"  
DS22070A-page 28  
2007 Microchip Technology Inc.  
MCP1824/MCP1824S  
APPENDIX A: REVISION HISTORY  
Revision A (November 2007)  
• Original Release of this Document.  
2007 Microchip Technology Inc.  
DS22070A-page 29  
MCP1824/MCP1824S  
NOTES:  
DS22070A-page 30  
2007 Microchip Technology Inc.  
MCP1824/MCP1824S  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
XX  
X
X
X/  
XX  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1824-0802E/XX: 0.8V LDO Regulator  
Output Feature Tolerance Temp. Package  
Voltage  
MCP1824-1002E/XX: 1.0V LDO Regulator  
MCP1824-1202E/XX: 1.2V LDO Regulator  
MCP1824-1802E/XX: 1.8V LDO Regulator  
MCP1824-2502E/XX: 2.5V LDO Regulator  
MCP1824-3002E/XX: 3.0V LDO Regulator  
MCP1824-3302E/XX: 3.3V LDO Regulator  
MCP1824-5002E/XX: 5.0V LDO Regulator  
MCP1824-ADJE/XX: ADJ LDO Regulator  
Code  
Device:  
MCP1824: 300 mA Low Dropout Regulator  
MCP1824T: 300 mA Low Dropout Regulator  
Tape and Reel  
MCP1824S: 300 mA Low Dropout Regulator  
MCP1824ST: 300 mA Low Dropout Regulator  
Tape and Reel  
g)  
h)  
i)  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1824S-0802E/XX:0.8V LDO Regulator  
MCP1824S-1002E/XX:1.0V LDO Regulator  
MCP1824S-1202E/XX:1.2V LDO Regulator  
MCP1824S-1802E/XX:1.8V LDO Regulator  
MCP1824S-2502E/XX:2.5V LDO Regulator  
MCP1824S-2502E/XX:3.0V LDO Regulator  
MCP1824S-3302E/XX:3.3V LDO Regulator  
MCP1824S-5002E/XX:5.0V LDO Regulator  
Output Voltage *:  
08  
12  
18  
25  
30  
33  
50  
=
=
=
=
=
=
=
0.8V “Standard”  
1.2V “Standard”  
1.8V “Standard”  
2.5V “Standard”  
3.0V “Standard”  
3.3V “Standard”  
5.0V “Standard”  
ADJ = Adjustable Output Voltage ** (MCP1824 Only)  
g)  
h)  
*Contact factory for other output voltage options  
** When ADJ is used, the “extra feature code” and  
“tolerance” columns do not apply. Refer to examples.  
XX  
=
=
=
DB for 3LD SOT-223 package  
DC for 5LD SOT-223 package  
OT for 5LD SOT-23 package  
Extra Feature Code:  
Tolerance:  
0
2
E
=
=
=
Fixed  
2.5% (Standard)  
-40°C to +125°C  
Temperature:  
Package Type:  
DB  
DC  
OT  
=
=
=
Plastic Small Transistor Outline, SOT-223, 3-lead  
Plastic Small Transistor Outline, SOT-223, 5-lead  
Plastic Small Transistor Outline, SOT-23, 5-lead  
Note: ADJ (Adjustable) only available in 5-lead version.  
2007 Microchip Technology Inc.  
DS22070A-page 31  
MCP1824/MCP1824S  
NOTES:  
DS22070A-page 32  
2007 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The  
Embedded Control Solutions Company are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select  
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,  
WiperLock and ZENA are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2007 Microchip Technology Inc.  
DS22070A-page 33  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
10/05/07  
DS22070A-page 34  
2007 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY