MCP2003BT-H/MF [MICROCHIP]

LIN Transceiver;
MCP2003BT-H/MF
型号: MCP2003BT-H/MF
厂家: MICROCHIP    MICROCHIP
描述:

LIN Transceiver

文件: 总32页 (文件大小:832K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP2003B  
LIN Transceiver  
Features  
Description  
• The MCP2003B is Compliant with Local  
Interconnect Network (LIN) Bus Specifications  
1.3, 2.0, 2.1, 2.2, SAE J2602, and ISO17987  
This device provides a bidirectional, half-duplex  
communication, physical interface to automotive and  
industrial LIN systems to meet the LIN Bus  
Specification Revision 2.2, SAE J2602, and ISO  
17987. The device is both short-circuit and  
overtemperature protected by internal circuitry. The  
device has been specifically designed to operate in the  
automotive operating environment and will survive all  
specified transient conditions while meeting all of the  
stringent quiescent current requirements.  
• Supports Baud Rates up to 20 Kbaudwith  
LIN-Compatible Output Driver  
• 60V Load Dump Protected  
• Very High Electromagnetic Immunity (EMI) Meets  
Stringent Original Equipment Manufacturers  
(OEM) Requirements  
• Direct Capacitor Coupling Robustness without  
Transient Voltage Suppressor (TVS):  
Package Types  
- ±35V on LBUS (SAE J2962-1)  
- ±85V on LBUS (SAE J2962-1)  
MCP2003B  
SOIC  
• High Electrostatic Discharge (ESD)  
Immunity without TVS:  
RXD  
CS  
VREN  
VBB  
1
8
- >25 kV on LBUS (SAE J2962-1)  
- >15 kV on VBB (IEC 61000-4-2)  
- >6 kV on LBUS (IEC 61000-4-2)  
2
3
4
7
6
5
WAKE  
TXD  
LBUS  
VSS  
• Very High Immunity to RF Disturbances Meets  
Stringent OEM Requirements  
• Wide Supply Voltage: 5.5V – 30.0V Continuous  
• Extended (E) Temperature Range: -40°C to +125°C  
• High (H) Temperature Range: -40°C to +150°C  
• Interfaces to PIC® MCU EUSART and Standard  
USARTs  
MCP2003B  
2x3 DFN*  
RXD  
CS  
VREN  
1
2
3
8
7
6
VBB  
EP  
9
WAKE  
LBUS  
• LIN Bus Pin:  
- Internal pull-up resistor and diode  
- Protected against battery shorts  
- Protected against loss of ground  
- High current drive: >40 mA  
• Automatic Thermal Shutdown  
• Low-Power Mode:  
TXD 4  
5 VSS  
MCP2003B  
3x3 DFN*  
RXD  
CS  
VREN  
VBB  
1
8
7
- Receiver monitoring bus and transmitter off:  
(5 µA)  
2
EP  
9
WAKE  
TXD  
LBUS  
VSS  
3
4
6
5
* Includes Exposed Thermal Pad (EP); see Table 1-2.  
2015-2016 Microchip Technology Inc.  
DS20005463C-page 1  
MCP2003B  
MCP2003B Block Diagram  
DS20005463C-page 2  
2015-2016 Microchip Technology Inc.  
MCP2003B  
1.2  
Internal Protection  
1.0  
DEVICE OVERVIEW  
The MCP2003B devices provide a physical interface  
between a microcontroller and a LIN bus. These  
devices will translate the CMOS/TTL logic levels to LIN  
logic level, and vice versa. It is intended for automotive  
and industrial applications with serial bus speeds up to  
20 Kbaud.  
1.2.1  
ESD PROTECTION  
For component-level ESD ratings, please refer to the  
maximum operation specifications.  
1.2.2  
GROUND LOSS PROTECTION  
The LIN Bus specification states that the LIN pin must  
transition to the recessive state when ground is  
disconnected. Therefore, a loss of ground effectively  
forces the LIN line to a high-impedance level.  
LIN Bus Specification Revision 2.2 requires that the  
transceiver of all nodes in the system is connected via  
the LIN pin, referenced to ground and with a maximum  
external termination resistance load of 510from LIN  
bus to battery supply. The 510 corresponds to  
1 master and 15 slave nodes.  
1.2.3  
THERMAL PROTECTION  
The thermal protection circuit monitors the die  
temperature and is able to shut down the LIN  
transmitter.  
The VREN pin can be used to drive the logic input of an  
external voltage regulator. This pin is high in all modes  
except for Power-Down mode.  
There are two causes for a thermal overload. A thermal  
shutdown can be triggered by either, or both, of the  
following thermal overload conditions.  
1.1  
External Protection  
1.1.1  
REVERSE BATTERY PROTECTION  
• LIN bus output overload  
• Increase in die temperature due to increase in  
environment temperature  
An external reverse-battery-blocking diode should be  
used to provide polarity protection (see Example 1-1).  
Driving the TXD and checking the RXD pin makes it  
possible to determine whether there is a bus contention  
(RX = low, TX = high) or a thermal overload condition  
(RX = high, TX = low). After a thermal overload event,  
the device will automatically recover once the die  
temperature has fallen below the recovery temperature  
threshold (see Figure 1-1).  
1.1.2  
TRANSIENT VOLTAGE  
PROTECTION (LOAD DUMP)  
An external 60V transient suppressor (TVS) diode,  
between VBB and ground, with a 50transient  
protection resistor (RTP) in series with the battery  
supply and the VBB pin serve to protect the device from  
power transients (see Example 1-1) and ESD events.  
While this protection is optional, it is considered good  
engineering practice.  
FIGURE 1-1:  
THERMAL SHUTDOWN  
STATE DIAGRAM  
LIN bus  
Shorted  
to VBB  
Operation  
Mode  
Transmitter  
Shutdown  
Temp < ShutdownTEMP  
2015-2016 Microchip Technology Inc.  
DS20005463C-page 3  
MCP2003B  
The device will go into Power-Down mode on the falling  
edge of CS, or return to Operation mode if all faults are  
resolved.  
1.3  
Modes of Operation  
For an overview of all operational modes, refer to  
Table 1-1.  
1.3.1  
POWER-DOWN MODE  
In Power-Down mode, everything is off except the  
wake-up section. The internal 30 kpull-up resistor  
switch is open, which enables the high ohmic pull-up  
resistor (900 ktypical). This is the lowest power  
mode. The receiver is off, thus its output is open-drain.  
On CS going to a high level or a falling edge on WAKE,  
the device will enter Ready mode as soon as internal  
voltage stabilizes. Refer to Section 2.4 “AC  
Specifications” for further information. In addition, LIN  
bus activity will change the device from Power-Down  
mode to Ready mode; The MCP2003B wakes up on a  
rising edge on LBUS preceded by a low level lasting at  
least 70 µs typically. See Figure 1-2 about remote  
wake-up. If CS is held high as the device transitions  
from Power-Down to Ready mode, the device will  
transition to either Operation or Transmitter Off mode,  
depending on TXD input, as soon as internal voltages  
stabilize.  
1.3.2  
READY MODE  
Transitioning from POR into Ready mode is achieved  
when VBB > VBBUV_RISE. Upon entering Ready mode,  
VREN is enabled and the receiver detect circuit is  
powered-up. The transmitter remains disabled and the  
device is ready to receive data but not to transmit.  
Upon VBB supply pin power-on, the device will remain  
in Ready mode as long as CS is low. When CS  
transitions high, the device will either enter Operation  
mode if the TXD pin is held high, or the device will enter  
Transmitter Off mode if the TXD pin is held low.  
1.3.3  
OPERATION MODE  
In this mode, all internal modules are operational. Note  
that the part cannot transmit if the pull-up resistance is  
missing on RX pin. See Section 1.5.1.1 “RXD  
Monitoring” for details.  
The device will go into Power-Down mode on the falling  
edge of CS and the TXD pin is held high. The device will  
enter Transmitter Off mode in the event of a Fault con-  
dition such as thermal overload, bus contention or TXD  
timer expiration.  
The VBB to LBUS ~30 kpull-up resistor (RSLAVE) is  
connected only in Operation mode.  
1.3.4  
TRANSMITTER OFF MODE  
Transmitter Off mode is reached whenever the  
transmitter is disabled due to a Fault condition. Fault  
conditions include thermal overload, bus contention,  
RXD monitoring and TXD timer expiration.  
DS20005463C-page 4  
2015-2016 Microchip Technology Inc.  
MCP2003B  
FIGURE 1-2:  
OPERATIONAL MODES STATE DIAGRAM – MCP2003B  
POR  
VBAT >VBBUV_RISE  
VREN OFF  
RX OFF  
TX OFF  
Ready Mode  
VREN ON  
RX ON  
RPU switch OFF  
TX OFF  
RPU switch OFF  
TXD = 1 And CS = 1  
NO Fault,  
TOFF Mode  
VREN ON  
Operation Mode  
VREN ON  
And RXD > 2.5V while LBUS recessive(1)  
RX ON  
RX ON  
TX OFF  
RPU switch OFF  
TX ON  
RPU switch ON  
Rising Edge on LBUS or  
CS = 1 or  
Fault:  
Thermal or Timer  
Falling Edge on WAKE pin  
Power-Down  
Mode  
VREN OFF  
RX OFF  
TX OFF  
RPU switch OFF  
Note 1: Achieved via pull-up resistor on RXD (See Example 1-1)  
TABLE 1-1:  
OVERVIEW OF OPERATIONAL MODES  
State  
POR  
Transmitter Receiver VREN  
Operation  
Comments  
OFF  
OFF  
OFF Check CS: if low, then proceed to Ready mode;  
If high, transition to either TOFF or Operation mode,  
depending on TXD.  
VBB > VBB(MIN) and  
Internal Supply stable.  
High ohmic pull-up resistor  
enabled (900 ktypical).  
Ready  
OFF  
ON  
ON  
ON  
ON On CS high level, proceed to Operation or TOFF mode. Bus Off state.  
High ohmic pull-up resistor  
enabled (900 ktypical).  
Operation  
ON On CS low level, proceed to Power-Down.  
On a fault condition, proceed to TOFF mode.  
Normal Operation mode.  
RXD has to be at a high  
level (>2.5V typical) while  
LBUS is recessive.  
Power-Down  
OFF  
OFF  
Activity  
Detect  
OFF On CS high level, proceed to Ready mode then  
proceed to either Operation or TOFF mode.  
Falling edge on WAKE will put the device into  
Ready mode.  
Low-Power mode.  
High ohmic pull-up resistor  
enabled (900 ktypical).  
Rising edge on LIN bus will put the device into  
Ready mode.  
Transmitter  
Off  
ON  
ON On CS low level, proceed to Power-Down mode;  
On TXD high and no fault condition, proceed to  
Operation mode.  
High ohmic pull-up resistor  
enabled (900ktypical).  
2015-2016 Microchip Technology Inc.  
DS20005463C-page 5  
MCP2003B  
1.4  
Typical Applications  
EXAMPLE 1-1:  
TYPICAL MCP2003B APPLICATION  
VBAT  
optional resistor and transient suppressor  
VBAT  
50  
60V  
Master Node Only  
VBAT  
1.0 µF  
(Note 1)  
3.9 k  
Voltage Reg  
VREN  
VBB  
VDD  
4.7 k(2)  
1 k  
TXD  
RXD  
TXD  
RXD  
LIN Bus  
LBUS  
I/O  
CS  
33 k  
WAKE  
220pF  
Wake-up  
VSS  
Note 1: For applications with current requirements of less than 20 mA, the connection to VBAT can be  
deleted, and voltage to the regulator supplied directly from the VREN pin.  
2: Required for transmission.  
3: A Transient Voltage Suppressor on the LIN Bus is not required to sustain SAE J2962-1 ESD  
and Direct Capacitor Coupling tests.  
EXAMPLE 1-2:  
TYPICAL LIN NETWORK CONFIGURATION  
40m  
+ Return  
LIN bus  
1 k  
VBB  
LIN bus  
LIN bus  
LIN bus  
LIN bus  
MCP2003B  
MCP2003B  
MCP2003B  
MCP2003B  
Slave 1  
(MCU)  
Slave 2  
(MCU)  
Slave n <23  
(MCU)  
Master  
(MCU)  
DS20005463C-page 6  
2015-2016 Microchip Technology Inc.  
MCP2003B  
1.5  
Pin Descriptions  
TABLE 1-2:  
PINOUT DESCRIPTIONS  
8-Lead  
Pin Name  
2x3 DFN  
3x3 DFN  
Normal Operation  
SOIC  
RXD  
CS  
1
2
3
1
2
3
1
2
3
Receive Data Output (OD), HV tolerant  
Chip Select (TTL), HV tolerant  
Wake-up, HV tolerant  
WAKE  
TXD  
4
5
4
5
6
7
8
9
4
5
6
7
8
9
Transmit Data Input (TTL), HV tolerant  
Ground  
VSS  
LBUS  
VBB  
6
LIN Bus (bidirectional)  
Battery Positive  
7
VREN  
EP  
8
Voltage Regulator Enable Output  
Exposed Thermal Pad. Do not electrically  
connect or connect to Vss.  
Legend: TTL = TTL Input Buffer; OD = Open-Drain Output  
1.5.1 RECEIVE DATA OUTPUT (RXD)  
If CS = 1 when the VBB supply is turned on, the device  
will proceed to Operation mode, or TXOFF (refer to  
Figure 1-2), as soon as internal voltages stabilize.  
The Receive Data Output pin is an open-drain (OD)  
output and follows the state of the LIN pin, except in  
Power-Down mode.  
This pin may also be used as a local wake-up input  
(refer to Example 1-1). In this implementation, the  
microcontroller I/O controlling the CS should be  
converted to a high-impedance input allowing the  
internal pull-down resistor to keep CS low. An external  
switch, or other source, can then wake-up both the  
transceiver and the microcontroller (if powered). Refer  
to Section 1.3 “Modes of Operation”, for detailed  
operation of CS.  
1.5.1.1  
RXD Monitoring  
The RXD pin is internally monitored. It has to be at a  
high level (> 2.5V typical) while LBUS is recessive in  
Operation mode. Otherwise, an internal fault will be  
created and the device will transition to Transmitter Off  
mode.  
Note:  
A voltage regulator sensing circuit is  
connected to RXD. This sensing circuit  
internally monitors the RXD pin when  
LBUS is recessive (RXD = 1). It will not  
allow the device to switch (or stay) in  
Operation Mode if the RXD pin is left  
open. The RXD pin must be connected to  
a valid supply through a pull-up resistor as  
RXD is an open drain pin.  
Note:  
It is not recommended to tie CS high, as  
this can result in the device entering  
Operation  
mode  
before  
the  
microcontroller is initialized and may  
result in unintentional LIN traffic. The CS  
pin is internally pulled down to ground with  
190 kwhen CS is less than VIL, and  
2 Mwhen CS is greater than VIH. The  
current on CS is limited to about 2 µA  
when CS is greater than VIH.  
1.5.2  
CHIP SELECT (CS)  
This is the Chip Select Input pin. An internal pull-down  
resistor will keep the CS pin low. This is done to ensure  
that no disruptive data will be present on the bus while  
the microcontroller is executing a Power-on Reset and  
an I/O initialization sequence. The pin must detect a  
high level to activate the transmitter. An internal Low-  
Pass filter, with a typical time constant of 10 µs,  
prevents unwanted wake-up (or transition to Power-  
Down mode) on glitches.  
1.5.3  
WAKE-UP INPUT (WAKE)  
The WAKE pin has an internal 800 kpull-up to VBB.  
A falling edge on the WAKE pin causes the device to  
wake from Power-Down mode. Upon waking, the  
MCP2003B will enter Ready mode.  
1.5.4  
TRANSMIT DATA INPUT (TXD)  
The Transmit Data Input pin has an internal pull-up.  
The LIN pin is low (dominant) when TXD is low, and high  
(recessive) when TXD is high.  
If CS = 0 when the VBB supply is turned on, the device  
goes to Ready mode as soon as internal voltages sta-  
bilize, and stays there as long as the CS pin is held low  
(0). In Ready mode, the receiver is on and the LIN  
transmitter driver is off.  
For extra bus security, TXD is internally forced to ‘1’  
whenever the transmitter is disabled, regardless of  
external TXD voltage.  
2015-2016 Microchip Technology Inc.  
DS20005463C-page 7  
MCP2003B  
1.5.4.1  
TXD Dominant Timeout  
If TXD is driven low for longer than approximately  
25 ms, the LBUS pin is switched to Recessive mode and  
the part enters TOFF Mode. This is to prevent the LIN  
node from permanently driving the LIN Bus dominant.  
The transmitter is reenabled on TXD rising edge.  
1.5.5  
GROUND (VSS)  
This is the Ground pin.  
1.5.6  
LIN BUS (LBUS)  
The bidirectional LIN Bus pin (LBUS) is controlled by the  
TXD input. LBUS has a current limited open collector  
output. To reduce EMI, the edges during the signal  
changes are slope controlled and include corner  
rounding control for both falling and rising edges.  
The internal LIN receiver observes the activities on the  
LIN bus, and matches the output signal RXD to follow  
the state of the LBUS pin.  
1.5.6.1  
Bus Dominant Timer  
The Bus Dominant Timer is an internal timer that  
deactivates the LBUS transmitter after approximately  
25 ms of dominant state on the LBUS pin. The timer is  
reset on any recessive LBUS state.  
The LIN bus transmitter will be reenabled after a  
recessive state on the LBUS pin as long as CS is high.  
Disabling can be caused by the LIN bus being  
externally held dominant, or by TXD being driven low.  
1.5.7  
BATTERY (VBB)  
This is the Battery Positive Supply Voltage pin.  
1.5.8  
VOLTAGE REGULATOR ENABLE  
OUTPUT (VREN)  
This is the External Voltage Regulator Enable pin.  
Open-drain output is pulled high to VBB in all modes  
except Power-Down.  
1.5.9  
EXPOSED THERMAL PAD (EP)  
Do not electrically connect, or connect to VSS.  
DS20005463C-page 8  
2015-2016 Microchip Technology Inc.  
MCP2003B  
2.0  
2.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings†  
VIN DC Voltage on RXD, TXD, CS...................................................................................................................-0.3 to +50V  
VIN DC Voltage on WAKE and VREN..............................................................................................................-0.3 to +VBB  
VBB Battery Voltage, continuous, non-operating(1) ........................................................................................-0.3 to +50V  
VBB Battery Voltage, non-operating (LIN bus recessive)(2)............................................................................-0.3 to +60V  
VBB Battery Voltage, transient ISO 7637 Test 1 ......................................................................................................-200V  
VBB Battery Voltage, transient ISO 7637 Test 2a ...................................................................................................+150V  
VBB Battery Voltage, transient ISO 7637 Test 3a ....................................................................................................-300V  
VBB Battery Voltage, transient ISO 7637 Test 3b ...................................................................................................+200V  
VLBUS Bus Voltage, continuous.......................................................................................................................-18 to +50V  
VLBUS Bus Voltage, transient(3).......................................................................................................................-27 to +60V  
VLBUS Bus Voltage, Direct Capacitor Coupling without TVS (SAE J2962-1) ........................................... ±35V and ±85V  
ILBUS Bus Short-Circuit Current Limit....................................................................................................................200 mA  
ESD protection on LIN, without TVS (SAE J2962-1) .............................................................................................±25 kV  
ESD protection on LIN, VBB, WAKE (IEC 61000-4-2)(4) ..........................................................................................±6 kV  
ESD protection on LIN, VBB, WAKE, CS (Human Body Model)(5) ........................................................................... ±8 kV  
ESD protection on all other pins (Human Body Model)(5) ........................................................................................ ±4 kV  
ESD protection on all pins (Charge Device Model)(6) .............................................................................................. ±2 kV  
ESD protection on all pins (Machine Model)(7) .......................................................................................................±400V  
Maximum Junction Temperature........................................................................................................................... +150C  
Storage Temperature ..................................................................................................................................-65 to +150C  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device, at those or any other conditions above those  
indicated in the operational listings of this specification, is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Note 1: LIN 2.x compliant specification.  
2: SAE J2602 compliant specification.  
3: ISO 7637/1 load dump compliant (t < 500 ms).  
4: According to IEC 61000-4-2, 330, 150 pF and Transceiver EMC Test Specifications [2] to [4]. For WAKE  
pin to meet the specification, series resistor must be in place (refer to Example 1-2).  
5: According to AEC-Q100-002/JESD22-A114.  
6: According to AEC-Q100-011B.  
7: According to AEC-Q100-003/JESD22-A115.  
2015-2016 Microchip Technology Inc.  
DS20005463C-page 9  
MCP2003B  
2.2  
Nomenclature Used in This Document  
Some terms and names used in this data sheet deviate from those referred to in the LIN specifications. Equivalent  
values are shown in Table 2-1.  
TABLE 2-1:  
EQUIVALENT VALUES  
LIN specifications Name  
Term used in the following tables  
Definition  
ECU operating voltage  
VBAT  
VSUP  
not used  
VBB  
Supply voltage at device pin  
Current Limit of driver  
Recessive state  
IBUS_LIM  
VBUSREC  
VBUSDOM  
ISC  
VIH(LBUS)  
VIL(LBUS)  
Dominant state  
2.3  
DC Specifications  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for  
VBB = 5.5V to 30.0V  
Extended (E): TA = -40°C to +125°C  
DC Specifications  
Parameter  
High (H): TA = -40°C to +150°C  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Power  
VBB Quiescent Operating  
Current  
IBBQ  
65  
150  
µA  
Operating Mode,  
bus recessive  
160  
120  
µA  
µA  
VBB > 18V  
VBB Transmitter-off Current  
VBB Power-Down Current  
IBBTO  
IBBPD  
60  
Transmitter off,  
bus recessive  
6
130  
15  
µA  
µA  
µA  
µA  
VBB > 18V  
14  
20  
VBB > 18V  
20  
LIN bus shorted to GND  
VLIN = 0V, VBB < 12V  
VBB Current  
with VSS Floating  
IBBNOGND  
-1  
4
1
mA VBB = 12V, GND to VBB,  
VLIN = 0-27V  
VBB Undervoltage  
VBBUV_FALL  
3.8  
4.4  
V
VBB falling (Note 3)  
Threshold (switching from  
Operation mode to TOFF  
and VREN OFF)  
VBB Undervoltage  
Recovery Threshold  
(switching from POR to  
Ready mode)  
VBBUV_RISE  
5.5  
5.6  
6.0  
V
VBB rising (Note 3)  
Microcontroller Interface  
High-Level Input Voltage  
(TXD)  
VIH  
VIL  
IIH  
2.0  
-0.3  
-5  
30  
0.8  
V
V
Low-Level Input Voltage  
(TXD)  
High-Level Input Current  
(TXD)  
µA  
Input voltage = 4.0V  
Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0, TX = 0.4 VREG, VLBUS = VBB).  
2: Node has to sustain the current that can flow under this condition; bus must be operational under this  
condition.  
3: Characterized; not 100% tested.  
DS20005463C-page 10  
2015-2016 Microchip Technology Inc.  
MCP2003B  
2.3  
DC Specifications (Continued)  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for  
VBB = 5.5V to 30.0V  
Extended (E): TA = -40°C to +125°C  
DC Specifications  
High (H): TA = -40°C to +150°C  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Low-Level Input Current  
(TXD)  
IIL  
-12  
µA  
Input voltage = 0.5V  
High-Level Voltage (VREN)  
VHVREN  
IHVREN  
-0.3  
-40  
VBB + 0.3  
V
High-Level Output Current  
(VREN)  
-5  
-20  
30  
mA Output voltage = VBB - 0.5V  
Output voltage = VBB - 2.0V  
-120  
2.0  
High-Level Input Voltage  
(CS)  
VIH  
VIL  
IIH  
V
Through a current limiting  
resistor  
Low-Level Input Voltage  
(CS)  
-0.3  
0.8  
10.0  
7.0  
V
High-Level Input Current  
(CS)  
µA  
µA  
V
Input voltage = 4.0V  
Input voltage = 0.5V  
Low-Level Input Current  
(CS)  
IIL  
Low-Level Input Voltage  
(WAKE)  
VIL  
IIH  
VBB - 4.0V  
High-Level Input Current  
(WAKE)  
-12  
-15  
-30  
-45  
µA  
µA  
µA  
µA  
V
VBB > 18V  
Low-Level Input Current  
(WAKE)  
IIL  
VBB > 18V  
IIN = 2 mA  
Low-Level Output Voltage  
(RXD)  
VOL  
0.4  
Input Threshold Level  
(RXD)  
VTH(RXD)  
-1  
2.5  
-1  
V
RXD > VTH;  
LBUS recessive in  
Operating mode  
High-Level Output Current  
(RXD)  
IOH  
µA  
VLIN = VBB, VRXD = 5.5V  
Bus Interface  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Hysteresis  
VIH(LBUS)  
VIL(LBUS)  
VHYS  
0.6 VBB  
V
V
V
Recessive state  
Dominant state  
-8  
40  
0.4 VBB  
0.175 VBB  
200  
VIH(LBUS) - VIL(LBUS)  
Low-Level Output Current  
IOL(LBUS)  
mA Output voltage = 0.2 VBB,  
VBB = 12V  
16.5  
mA Output voltage = 0.2 VBB,  
VBB = 18V  
High-Level Output Current  
Short-Circuit Current Limit  
High-Level Output Voltage  
Driver Dominant Voltage  
IOH(LBUS)  
ISC  
50  
20  
200  
VBB  
1.2  
µA  
mA (Note 1)  
VOH(LBUS)  
V_LOSUP  
0.8 VBB  
V
V
RLOAD = 500  
Input Leakage Current  
(at the receiver during  
dominant bus level)  
IBUS_PAS_DO  
M
-1  
-0.4  
mA Driver off,  
VBUS = 0V,  
VBB = 12V  
Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0, TX = 0.4 VREG, VLBUS = VBB).  
2: Node has to sustain the current that can flow under this condition; bus must be operational under this  
condition.  
3: Characterized; not 100% tested.  
2015-2016 Microchip Technology Inc.  
DS20005463C-page 11  
MCP2003B  
2.3  
DC Specifications (Continued)  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for  
VBB = 5.5V to 30.0V  
Extended (E): TA = -40°C to +125°C  
DC Specifications  
High (H): TA = -40°C to +150°C  
Parameter  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Driver off,  
8V < VBB < 18V  
8V < VBUS < 18V  
VBUS VBB  
Input Leakage Current  
(at the receiver during  
recessive bus level)  
IBUS_PAS_REC  
12  
20  
µA  
Leakage Current  
(disconnected from ground)  
IBUS_NO_GND  
IBUS_NO_VBB  
VBUS_CNT  
-10  
1.0  
+10  
10  
µA  
µA  
V
GNDDEVICE = VBB,  
0V < VBUS < 18V,  
VBB = 12V  
Leakage Current  
(disconnected from VBB)  
VBB = GND,  
0 < VBUS < 18V,  
(Note 2)  
Receiver Center Voltage  
0.475 VBB 0.5 VBB 0.525 VBB  
VBUS_CNT = (VIL (LBUS) +  
VIH (LBUS))/2  
Slave Termination  
RSLAVE  
CSLAVE  
20  
30  
60  
k  
Capacitance of Slave Node  
100  
pF  
(Note 3)  
Note 1: Internal current limited. 2.0 ms maximum recovery time (RLBUS = 0, TX = 0.4 VREG, VLBUS = VBB).  
2: Node has to sustain the current that can flow under this condition; bus must be operational under this  
condition.  
3: Characterized; not 100% tested.  
DS20005463C-page 12  
2015-2016 Microchip Technology Inc.  
MCP2003B  
2.4  
AC Specifications  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for  
VBB = 5.5V to 27.0V  
Extended (E): TA = -40°C to +125°C  
AC Characteristics  
Parameter  
High (H): TA = -40°C to +150°C  
Sym.  
Min. Typ. Max. Units  
Test Conditions  
Bus Interface – Constant Slope Time Parameters  
Slope Rising and Falling Edges  
tSLOPE  
3.5  
22.5  
4.0  
µs 7.3V VBB 18V  
Propagation Delay of  
Transmitter  
tTRANSPD  
µs  
tTRANSPD = max (tTRANSPDR or  
tTRANSPDF)  
Propagation Delay of Receiver  
tRECPD  
6.0  
2.0  
µs  
µs  
tRECPD = max (tRECPDR or tRECPDF)  
Symmetry of Propagation  
Delay of Receiver Rising Edge  
w.r.t. Falling Edge  
tRECSYM  
-2.0  
tRECSYM = max (tRECPDF - tRECPDR)  
RRXD 2.4to VCC, CRXD 20 pF  
Symmetry of Propagation  
Delay of Transmitter Rising  
Edge w.r.t. Falling Edge  
tTRANSSYM -2.0  
0.396  
2.0  
µs  
t
TRANSSYM = max (tTRANSPDF - tTRANSPDR  
)
Duty Cycle 1 @20.0 kbit/sec  
Duty Cycle 2 @20.0 kbit/sec  
Duty Cycle 3 @10.4 kbit/sec  
Duty Cycle 4 @10.4 kbit/sec  
CBUS; RBUS conditions:  
1 nF; 1 k| 6.8 nF; 660| 10 nF; 500  
THREC(MAX) = 0.744 × VBB,  
THDOM(MAX) = 0.581 × VBB,  
VBB =7.0V - 18V; tBIT = 50 µs  
D1 = tBUS_REC(MIN)/2 × tBIT)  
0.417  
0.581  
CBUS; RBUS conditions:  
1 nF; 1 k| 6.8 nF; 660| 10 nF; 500  
THREC(MAX) = 0.284 × VBB,  
THDOM(MAX) = 0.422 × VBB,  
VBB =7.6V - 18V; tBIT = 50 µs  
D2 = tBUS_REC(MAX)/2 × tBIT)  
CBUS; RBUS conditions:  
1 nF; 1 k| 6.8 nF; 660| 10 nF; 500  
THREC(MAX) = 0.778 × VBB,  
THDOM(MAX) = 0.616 × VBB,  
VBB =7.0V – 18V; tBIT = 96 µs  
D3 = tBUS_REC(MIN)/2 × tBIT)  
0.590  
CBUS; RBUS conditions:  
1 nF; 1 k| 6.8 nF; 660| 10 nF; 500  
THREC(max) = 0.251 × VBB,  
THDOM(MAX) = 0.389 × VBB,  
VBB =7.6V – 18V; tBIT = 96 µs  
D4 = tBUS_REC(MAX)/2 × tBIT)  
Wake-up Timing  
Bus Activity Debounce time  
Bus Activity to VREN on  
tBDB  
tBACTVE  
tWAKE  
30  
10  
70  
60  
125  
110  
µs  
µs  
WAKE to VREN on  
150  
µs  
µs  
Chip Select to VREN on  
VREN floating  
tCSOR  
tCSPD  
150  
200  
Chip Select to VREN off  
µs VREN floating  
2015-2016 Microchip Technology Inc.  
DS20005463C-page 13  
MCP2003B  
2.5  
Thermal Specifications  
Parameter  
Symbol  
Typ.  
Max.  
Units  
Test Conditions  
Recovery Temperature  
RECOVERY  
SHUTDOWN  
tTHERM  
+160  
+180  
1.5  
C  
C  
ms  
Shutdown Temperature  
Short-Circuit Recovery Time  
Thermal Package Resistances  
Thermal Resistance, 2x3 8L-DFN  
Thermal Resistance, 3x3 8L-DFN  
Thermal Resistance, 8L-SOIC  
5.0  
JA  
JA  
JA  
75  
C/W  
C/W  
C/W  
56.7  
149.5  
Note 1: The maximum power dissipation is a function of TJMAX, JA and ambient temperature TA. The maximum  
allowable power dissipation at an ambient temperature is PD = (TJMAX - TA)JA. If this dissipation is  
exceeded, the die temperature will rise above 150C and the device will go into thermal shutdown.  
DS20005463C-page 14  
2015-2016 Microchip Technology Inc.  
MCP2003B  
2.6  
Typical Performance Curves  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VBB = 5.5V to 18.0V, Extended (E): TA = -40°C to +125°C and  
High (H): TA = -40°C to +150°C.  
150  
-45  
-10  
25  
130  
150  
125  
100  
75  
50  
25  
0
5.5  
6
7
V
12  
BB (V)  
18  
27  
30  
FIGURE 2-1:  
Typical IBBQ.  
15.0  
-45  
-10  
150  
25  
130  
12.5  
10.0  
7.5  
5.0  
2.5  
0.0  
5.5  
6
7 12  
VBB (V)  
18  
27  
30  
FIGURE 2-2:  
Typical IBBPD.  
120  
-45  
-10  
150  
25  
130  
100  
80  
60  
40  
20  
0
5.5  
6
7 12  
VBB (V)  
18  
27  
30  
FIGURE 2-3:  
Typical IBBTO.  
2015-2016 Microchip Technology Inc.  
DS20005463C-page 15  
MCP2003B  
2.7  
Timing Diagrams and Specifications  
FIGURE 2-4:  
BUS TIMING DIAGRAM  
TXD  
50%  
50%  
LBUS  
.95VLBUS  
.50VBB  
0.05VLBUS  
TTRANSPDR  
0.0V  
TTRANSPDF  
TRECPDF  
TRECPDR  
RXD  
50%  
50%  
FIGURE 2-5:  
CS TO VREN TIMING DIAGRAM  
CS  
TCSOR  
VBB  
VREN  
OFF  
TCSPD  
FIGURE 2-6:  
REMOTE WAKE-UP  
LBUS  
0.4VBB  
tBDB  
tBACTIVE  
VBB  
VREN  
DS20005463C-page 16  
2015-2016 Microchip Technology Inc.  
MCP2003B  
3.0  
3.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead DFN (2x3)  
Examples:  
Device  
Code  
MCP2003B-E/MC  
MCP2003BT-E/MC  
MCP2003B-H/MC  
MCP2003BT-H/MC  
ADP  
ADP  
ADR  
ADR  
ADP  
613  
25  
Examples:  
8-Lead DFN (3x3)  
Device  
Code  
DAEC  
1613  
256  
MCP2003B-E/MF  
MCP2003BT-E/MF  
MCP2003B-H/MF  
MCP2003BT-H/MF  
DAEC  
DAEC  
DAEE  
DAEE  
Examples:  
8-Lead SOIC (150 mil)  
MCP2003B  
SN1613  
e
3
256  
NNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2015-2016 Microchip Technology Inc.  
DS20005463C-page 17  
MCP2003B  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢗꢘꢆꢙꢆꢚꢛꢜꢛꢝꢞꢟꢆꢠꢠꢆꢡꢒꢅꢢꢆꢣꢍꢏꢑꢤ  
ꢑꢒꢊꢃꢥ ꢫꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅꢡꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜꢨꢬꢬꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑꢬꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
e
D
b
N
N
L
K
E2  
E
EXPOSED PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
ꢭꢄꢃꢏꢇꢢꢮꢯꢯꢮꢢꢣꢩꢣꢪꢡ  
A3  
A1  
ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢅꢯꢃꢑꢃꢏꢇ  
ꢢꢮꢰ  
ꢰꢱꢢ  
ꢢꢠꢲ  
ꢰꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇꢰ  
ꢂꢃꢏꢖꢘ  
ꢱꢆꢌꢐꢉꢊꢊꢅꢵꢌꢃꢛꢘꢏ  
ꢡꢏꢉꢄꢋꢕꢎꢎꢅ  
ꢧꢕꢄꢏꢉꢖꢏꢅꢩꢘꢃꢖꢚꢄꢌꢇꢇ  
ꢱꢆꢌꢐꢉꢊꢊꢅꢯꢌꢄꢛꢏꢘ  
ꢱꢆꢌꢐꢉꢊꢊꢅꢷꢃꢋꢏꢘ  
ꢣꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋꢅꢯꢌꢄꢛꢏꢘ  
ꢣꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋꢅꢷꢃꢋꢏꢘ  
ꢧꢕꢄꢏꢉꢖꢏꢅꢷꢃꢋꢏꢘ  
ꢠꢀ  
ꢠꢝ  
ꢴꢁꢥꢴꢅꢦꢡꢧ  
ꢴꢁꢶꢴ  
ꢴꢁꢴꢙ  
ꢴꢁꢙꢴꢅꢪꢣꢫ  
ꢙꢁꢴꢴꢅꢦꢡꢧ  
ꢝꢁꢴꢴꢅꢦꢡꢧ  
ꢴꢁꢙꢥ  
ꢴꢁꢞꢴ  
ꢴꢁꢳꢴ  
ꢴꢁꢴꢴ  
ꢀꢁꢴꢴ  
ꢴꢁꢴꢥ  
ꢟꢙ  
ꢣꢙ  
ꢀꢁꢝꢴ  
ꢀꢁꢥꢴ  
ꢴꢁꢙꢴ  
ꢴꢁꢝꢴ  
ꢴꢁꢙꢴ  
ꢀꢁꢥꢥ  
ꢀꢁꢹꢥ  
ꢴꢁꢝꢴ  
ꢴꢁꢥꢴ  
ꢧꢕꢄꢏꢉꢖꢏꢅꢯꢌꢄꢛꢏꢘ  
ꢧꢕꢄꢏꢉꢖꢏꢺꢏꢕꢺꢣꢍꢜꢕꢇꢌꢋꢅꢂꢉꢋ  
ꢑꢒꢊꢃꢉꢥ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ ꢂꢉꢖꢚꢉꢛꢌꢅꢑꢉꢒꢅꢘꢉꢆꢌꢅꢕꢄꢌꢅꢕꢐꢅꢑꢕꢐꢌꢅꢌꢍꢜꢕꢇꢌꢋꢅꢏꢃꢌꢅꢔꢉꢐꢇꢅꢉꢏꢅꢌꢄꢋꢇꢁ  
ꢝꢁ ꢂꢉꢖꢚꢉꢛꢌꢅꢃꢇꢅꢇꢉꢗꢅꢇꢃꢄꢛꢈꢊꢉꢏꢌꢋꢁ  
ꢞꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢛꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢛꢅꢜꢌꢐꢅꢠꢡꢢꢣꢅꢤꢀꢞꢁꢥꢢꢁ  
ꢦꢡꢧꢨ ꢦꢉꢇꢃꢖꢅꢟꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅꢩꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
ꢪꢣꢫꢨ ꢪꢌꢎꢌꢐꢌꢄꢖꢌꢅꢟꢃꢑꢌꢄꢇꢃꢕꢄꢓꢅꢈꢇꢈꢉꢊꢊꢒꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢓꢅꢎꢕꢐꢅꢃꢄꢎꢕꢐꢑꢉꢏꢃꢕꢄꢅꢜꢈꢐꢜꢕꢇꢌꢇꢅꢕꢄꢊꢒꢁ  
ꢢꢃꢖꢐꢕꢖꢘꢃꢜ ꢖꢘꢄꢕꢊꢕꢛꢒ ꢟꢐꢉꢗꢃꢄꢛ ꢧꢴꢞꢺꢀꢙꢝꢧ  
DS20005463C-page 18  
2015-2016 Microchip Technology Inc.  
MCP2003B  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2015-2016 Microchip Technology Inc.  
DS20005463C-page 19  
MCP2003B  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20005463C-page 20  
2015-2016 Microchip Technology Inc.  
MCP2003B  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2015-2016 Microchip Technology Inc.  
DS20005463C-page 21  
MCP2003B  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20005463C-page 22  
2015-2016 Microchip Technology Inc.  
MCP2003B  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2015-2016 Microchip Technology Inc.  
DS20005463C-page 23  
MCP2003B  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20005463C-page 24  
2015-2016 Microchip Technology Inc.  
MCP2003B  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢦꢠꢄꢈꢈꢆꢧꢎꢊꢈꢋꢨꢃꢆꢕꢦꢑꢘꢆꢙꢆꢑꢄꢩꢩꢒꢪꢐꢆꢜꢞꢟꢝꢆꢠꢠꢆꢡꢒꢅꢢꢆꢣꢦꢧꢫꢗꢤ  
ꢑꢒꢊꢃꢥ ꢫꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢜꢉꢖꢚꢉꢛꢌꢅꢋꢐꢉꢗꢃꢄꢛꢇꢓꢅꢜꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢜꢅꢂꢉꢖꢚꢉꢛꢃꢄꢛꢅꢡꢜꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢜꢨꢬꢬꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢜꢁꢖꢕꢑꢬꢜꢉꢖꢚꢉꢛꢃꢄꢛ  
2015-2016 Microchip Technology Inc.  
DS20005463C-page 25  
MCP2003B  
NOTES:  
DS20005463C-page 26  
2015-2016 Microchip Technology Inc.  
MCP2003B  
APPENDIX A: REVISION HISTORY  
Revision C (April 2016)  
The following is the list of modifications:  
• Updated MCP2003B Block Diagram.  
• Updated Section 1.3.1, Power-Down Mode.  
• Updated Figure 1-2.  
• Updated Table 1-1.  
• Added VBBUV_FALL, VBBUV_RISE and updated  
IBBPD.  
Revision B (December 2015)  
The following is the list of modifications:  
• Included Features and Electrical Characteristics  
for the SAE J2962-1.  
• Minor typographical changes.  
Revision A (November 2015)  
• Original release of this document.  
2015-2016 Microchip Technology Inc.  
DS20005463C-page 27  
MCP2003B  
NOTES:  
DS20005463C-page 28  
2015-2016 Microchip Technology Inc.  
MCP2003B  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a)  
b)  
c)  
d)  
MCP2003B-E/MC: Extended Temperature,  
8LD 2x3 DFN package  
Temperature  
Range  
Package  
MCP2003B-E/MF: Extended Temperature,  
8LD 3x3 DFN package  
MCP2003B-E/SN: Extended Temperature,  
8LD SOIC package  
Device:  
MCP2003B: LIN Transceiver  
MCP2003BT: LIN Transceiver (Tape and Reel)  
MCP2003BT-H/MC: Tape and Reel,  
High Temperature,  
Temperature Range:  
Package:  
E
H
=
=
-40°C to +125°C (Extended)  
-40°C to +150°C (High)  
8LD 2x3 DFN package  
e)  
f)  
MCP2003BT-H/MF: Tape and Reel,  
High Temperature,  
MC  
MF  
SN  
=
=
=
8-Lead Plastic Dual Flat, No Lead Package –  
2x3x0.9 mm Body (DFN)  
8-Lead Plastic Dual Flat, No Lead Package –  
3x3x0.9 mm Body (DFN)  
8-Lead Plastic Small Outline – Narrow 3.90 mm Body  
(SOIC)  
8LD 3x3 DFN package  
MCP2003BT-H/SN: Tape and Reel,  
High Temperature,  
8LD SOIC package  
2015-2016 Microchip Technology Inc.  
DS20005463C-page 29  
MCP2003B  
NOTES:  
DS20005463C-page 30  
2015-2016 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate,  
dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,  
KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST,  
MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo,  
RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O  
are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
ETHERSYNCH, Hyper Speed Control, HyperLight Load,  
IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut,  
BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN,  
EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip  
Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi,  
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,  
MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker,  
Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
© 2015-2016, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
ISBN: 978-1-5224-0505-4  
== ISO/TS 16949 ==  
2015-2016 Microchip Technology Inc.  
DS20005463C-page 31  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Karlsruhe  
Tel: 49-721-625370  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Dongguan  
Tel: 86-769-8702-9880  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
Cleveland  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Poland - Warsaw  
Tel: 48-22-3325737  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Novi, MI  
UK - Wokingham  
Tel: 44-118-921-5800  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Tel: 248-848-4000  
Fax: 44-118-921-5820  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
San Jose, CA  
Tel: 408-735-9110  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
07/14/15  
DS20005463C-page 32  
2015-2016 Microchip Technology Inc.  

相关型号:

MCP2003BT-H/SN

LIN Transceiver
MICROCHIP

MCP2003T-E/MD

LIN J2602 Transceiver
MICROCHIP

MCP2003T-E/P

LIN J2602 Transceiver
MICROCHIP

MCP2003T-E/SN

LIN J2602 Transceiver
MICROCHIP

MCP2003T-E/SNVAO

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO8
MICROCHIP

MCP2003_13

LIN J2602 Transceiver
MICROCHIP

MCP2003_14

LIN J2602 Transceiver
MICROCHIP

MCP2004

LIN J2602 Transceiver
MICROCHIP

MCP2004-E/MD

LIN J2602 Transceiver
MICROCHIP

MCP2004-E/P

LIN J2602 Transceiver
MICROCHIP

MCP2004-E/SN

LIN J2602 Transceiver
MICROCHIP

MCP2004-E/SNVAO

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO8
MICROCHIP