MCP2004-E/SNVAO [MICROCHIP]

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO8;
MCP2004-E/SNVAO
型号: MCP2004-E/SNVAO
厂家: MICROCHIP    MICROCHIP
描述:

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO8

驱动 光电二极管 接口集成电路 驱动器
文件: 总34页 (文件大小:772K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Not Recommended for New Designs  
Please use ATA663211 or MCP2003B  
MCP2003/4/3A/4A  
LIN J2602 Transceiver  
Description  
Features  
• The MCP2003/2003A and MCP2004/2004A are  
Compliant with Local Interconnect Network (LIN)  
Bus Specifications 1.3, 2.0 and 2.1, and are  
Compliant to SAE J2602  
This device provides a bidirectional, half-duplex commu-  
nication, physical interface to automotive and industrial  
LIN systems to meet the LIN Bus Specification  
Revision 2.1 and SAE J2602. The device is short-circuit  
and overtemperature protected by internal circuitry. The  
device has been specifically designed to operate in the  
automotive operating environment and will survive all  
specified transient conditions, while meeting all of the  
stringent quiescent current requirements.  
• Supports Baud Rates up to 20 Kbaudwith  
LIN Bus Compatible Output Driver  
• 43V Load Dump Protected  
• Very Low/High Electromagnetic Immunity (EMI)  
meets Stringent Original Equipment  
Manufacturers (OEM) Requirements  
MCP200X family members:  
• Very High Electrostatic Discharge (ESD)  
Immunity:  
• 8-pin PDIP, DFN and SOIC packages:  
- MCP2003: LIN bus compatible driver with  
- >20 kV on V (IEC 61000-4-2)  
WAKE pins, wake-up on falling edge of L  
BB  
BUS  
- >14 kV on L  
(IEC 61000-4-2)  
- MCP2003A: LIN bus compatible driver with  
WAKE pins, wake-up on rising edge of L  
BUS  
• Very High Immunity to RF Disturbances meets  
Stringent OEM Requirements  
BUS  
- MCP2004: LIN bus compatible driver with  
FAULT/T pins, wake-up on falling edge of  
• Wide Supply Voltage, 6.0V-27.0V Continuous  
• Extended Temperature Range: -40°C to +125°C  
XE  
L
BUS  
- MCP2004A: LIN bus compatible driver with  
FAULT/T pins, wake-up on rising edge of  
®
• Interface to PIC MCU EUSART and Standard  
USARTs  
XE  
L
BUS  
• LIN Bus Pin:  
- Internal pull-up resistor and diode  
- Protected against battery shorts  
- Protected against loss of ground  
- High-current drive  
Package Types  
MCP2003/2003A  
MCP2004/2004A  
PDIP, SOIC  
PDIP, SOIC  
• Automatic Thermal Shutdown  
• Low-Power mode:  
RXD  
RXD  
VREN  
VBB  
VREN  
VBB  
1
8
1
2
8
CS  
WAKE  
TXD  
2
3
4
CS/WAKE  
FAULT/  
7
6
5
7
6
5
- Receiver monitoring bus and transmitter off  
TXE  
LBUS  
VSS  
LBUS  
VSS  
3
4
(  
5 µA)  
TXD  
MCP2003/2003A  
MCP2004/2004A  
4x4 DFN*  
4x4 DFN*  
RXD  
RXD  
VREN  
1
2
VREN  
VBB  
1
8
7
8
7
CS  
WAKE  
TXD  
VBB  
2
3
4
CS/WAKE  
EP  
9
EP  
9
LBUS  
VSS  
3
4
LBUS  
VSS  
FAULT/TXE  
TXD  
6
5
6
5
* Includes Exposed Thermal Pad (EP); see Table 1-2.  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 1  
MCP2003/4/3A/4A  
MCP2003/2003A Block Diagram  
V
V
BB  
REN  
Ratiometric  
Reference  
Wake-up  
Logic and  
4.3V  
WAKE  
Power Control  
R
XD  
+
~30 k  
CS  
T
L
OC  
XD  
BUS  
V
SS  
Thermal  
Protection  
Short-Circuit  
Protection  
MCP2004/2004A Block Diagram  
V
V
BB  
REN  
Ratiometric  
Reference  
4.3V 4.3V  
Wake-up  
Logic and  
Power Control  
+
R
XD  
~30 k  
CS/WAKE  
T
L
BUS  
OC  
XD  
FAULT/T  
V
XE  
SS  
Thermal  
Protection  
Short-Circuit  
Protection  
DS20002230G-page 2  
2010-2016 Microchip Technology Inc.  
MCP2003/4/3A/4A  
1.2.2  
GROUND LOSS PROTECTION  
1.0  
DEVICE OVERVIEW  
The LIN Bus Specification states that the LIN pin must  
transition to the Recessive state when the ground is  
disconnected. Therefore, a loss of ground effectively  
forces the LIN line to a high-impedance level.  
The MCP2003/4/3A/4A devices provide a physical  
interface between a microcontroller and a LIN bus.  
These devices will translate the CMOS/TTL logic levels  
to the LIN logic level and vice versa. It is intended for  
automotive and industrial applications with serial bus  
speeds up to 20 Kbaud.  
1.2.3  
THERMAL PROTECTION  
The thermal protection circuit monitors the die  
temperature and is able to shut down the LIN  
transmitter.  
LIN Bus Specification Revision 2.1 requires that the  
transceiver of all nodes in the system is connected via  
the LIN pin, referenced to ground, and with a maximum  
external termination resistance load of 510from LIN  
bus to battery supply. The 510 corresponds to  
1 master and 15 slave nodes.  
There are two causes for a thermal overload. A thermal  
shutdown can be triggered by either, or both, of the  
following thermal overload conditions:  
• LIN bus output overload  
The V  
pin can be used to drive the logic input of an  
REN  
external voltage regulator. This pin is high in all modes  
except for Power-Down mode.  
• Increase in die temperature due to increase in  
environment temperature  
Driving the T pin and checking the R pin makes it  
XD  
XD  
1.1  
External Protection  
possible to determine whether there is a bus contention  
(R = low, T = high) or a thermal overload condition  
XD  
XD  
1.1.1  
REVERSE BATTERY PROTECTION  
(R = high, T = low). After a thermal overload event,  
XD  
XD  
the device will automatically recover once the die  
temperature has fallen below the recovery temperature  
threshold (see Figure 1-1).  
An external reverse battery blocking diode should be  
used to provide polarity protection (see Example 1-1).  
1.1.2  
TRANSIENT VOLTAGE  
PROTECTION (LOAD DUMP)  
FIGURE 1-1:  
THERMAL SHUTDOWN  
STATE DIAGRAM  
An external 43V Transient Suppressor (TVS) diode,  
between V and ground with a 50Transient  
BB  
Shorted LIN Bus  
to VBB  
Protection Resistor (RTP) in series with the battery  
supply and the V pin, serve to protect the device from  
BB  
power transients (see Example 1-1) and ESD events.  
While this protection is optional, it is considered good  
engineering practice.  
Transmitter  
Shutdown  
Operation  
Mode  
1.2  
Internal Protection  
1.2.1  
ESD PROTECTION  
Temp < ShutdownTEMP  
For component-level ESD ratings, please refer to the  
maximum operation specifications.  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 3  
MCP2003/4/3A/4A  
Upon V supply pin power-on, the device will remain  
in Ready mode as long as CS is low. When CS  
transitions high, the device will either enter Operation  
1.3  
Modes of Operation  
BB  
For an overview of all operational modes, refer to  
Table 1-1.  
mode, if the T pin is held high, or the device will enter  
XD  
Transmitter Off mode, if the T pin is held low.  
XD  
1.3.1  
POWER-DOWN MODE  
1.3.3  
OPERATION MODE  
In Power-Down mode, everything is off except the  
wake-up section. This is the lowest power mode. The  
receiver is off, thus its output is open-drain.  
In this mode, all internal modules are operational.  
The device will go into Power-Down mode on the falling  
edge of CS. For the MCP2003/4 device, a specific  
process should be followed to put all nodes into Power-  
Down mode. Refer to Section 1.6 “MCP2003/4 and  
MCP2003A/4A Difference Details” and Figure 1-6.  
The device will enter Transmitter Off mode in the event  
of a Fault condition, such as thermal overload, bus  
On CS going to a high level or a falling edge on WAKE  
(MCP2003/MCP2003A only), the device will enter  
Ready mode as soon as the internal voltage stabilizes.  
Refer to Section 2.4 “AC Specifications” for further  
information. In addition, LIN bus activity will change the  
device from Power-Down mode to Ready mode;  
MCP2003/4 wakes up on a falling edge on L  
,
BUS  
contention and T timer expiration.  
XD  
followed by a low level lasting at least 20 µs.  
MCP2003A/4A wakes up on a rising edge on L  
The MCP2004/2004A device can also enter Transmitter  
,
BUS  
Off mode if the FAULT/T pin is pulled low. The V to  
XE  
BB  
followed by a high level lasting 70 µs, typically. See  
Figures 1-2 to 1-5 about remote wake-up. If CS is held  
high as the device transitions from Power-Down to  
Ready mode, the device will transition to either Opera-  
L
pull-up resistor is connected only in Operation  
BUS  
mode.  
1.3.4  
TRANSMITTER OFF MODE  
tion or Transmitter Off mode, depending on the T  
input, as soon as internal voltages stabilize.  
XD  
Transmitter Off mode is reached whenever the  
transmitter is disabled, either due to a Fault condition or  
1.3.2  
READY MODE  
pulling the FAULT/T pin low on the MCP2004/2004A.  
XE  
The Fault conditions include: thermal overload, bus  
Upon entering Ready mode, V  
is enabled and the  
REN  
contention, R monitoring or T timer expiration.  
XD  
XD  
receiver detect circuit is powered up. The transmitter  
remains disabled and the device is ready to receive  
data but not to transmit.  
The device will go into Power-Down mode on the falling  
edge of CS or return to Operation mode if all Faults are  
resolved and the FAULT/T pin on the MCP2004/2004A  
XE  
is high.  
FIGURE 1-2:  
OPERATIONAL MODES STATE DIAGRAM – MCP2003  
Ready  
VREN ON  
RX ON  
TX OFF  
POR  
VBAT > 5.5V  
VREN OFF  
RX OFF  
TX OFF  
CS = 1and TXD = 1  
CS = 1and TXD = 0  
CS = 1and TXD = 1and No Fault  
TOFF  
Operation  
Mode  
VREN ON  
RX ON  
TX ON  
Falling Edge on LIN  
or CS = 1  
Mode  
VREN ON  
RX ON  
TX OFF  
or Falling Edge on WAKE Pin  
Fault (thermal or timer)  
CS = 0  
CS = 0  
POWER-  
DOWN  
VREN OFF  
RX OFF  
TX OFF  
DS20002230G-page 4  
2010-2016 Microchip Technology Inc.  
MCP2003/4/3A/4A  
FIGURE 1-3:  
OPERATIONAL MODES STATE DIAGRAM – MCP2003A  
Ready  
VREN ON  
RX OFF  
TX OFF  
POR  
VBAT > 5.5V  
VREN OFF  
RX OFF  
TX OFF  
CS = 1and TXD = 1  
CS = 1and TXD = 0  
CS = 1and TXD = 1and No Fault  
TOFF  
Operation  
Mode  
VREN ON  
RX ON  
TX ON  
Rising Edge on LIN  
or CS = 1  
Mode  
VREN ON  
RX ON  
TX OFF  
or Falling Edge on WAKE Pin  
Fault (thermal or timer)  
CS = 0  
CS = 0  
POWER-  
DOWN  
VREN OFF  
RX OFF  
TX OFF  
FIGURE 1-4:  
OPERATIONAL MODES STATE DIAGRAM – MCP2004  
Ready  
POR  
VREN ON  
RX ON  
TX OFF  
VBAT > 5.5V  
VREN OFF  
RX OFF  
TX OFF  
CS = 1and TXD = 1and TXE = 1  
CS = 1and (TXE = 0or TXD = 0)  
CS = 1and TXD = 1and TXE = 1  
and No Fault  
TOFF  
Operation  
Mode  
VREN ON  
RX ON  
TX ON  
Falling Edge on LIN or  
CS = 1  
Mode  
Fault (thermal or time-out) or  
FAULT/TXE = 0  
VREN ON  
RX ON  
TX OFF  
CS = 0  
CS = 0  
POWER-  
DOWN  
VREN OFF  
RX OFF  
TX OFF  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 5  
MCP2003/4/3A/4A  
FIGURE 1-5:  
OPERATIONAL MODES STATE DIAGRAM – MCP2004A  
Ready  
VREN ON  
RX ON  
TX OFF  
POR  
VBAT > 5.5V  
VREN OFF  
RX OFF  
TX OFF  
CS = 1 and TXD = 1and TXE = 1  
CS = 1and (TXE = 0or TXD = 0)  
CS = 1and TXD = 1and  
XE = 1and No Fault  
T
TOFF  
Operation  
Rising Edge on LIN  
or CS = 1  
Mode  
Mode  
VREN ON  
RX ON  
TX ON  
Fault (thermal or time-out) or  
FAULT/TXE = 0  
VREN ON  
RX ON  
TX OFF  
CS = 0  
CS = 0  
POWER-  
DOWN  
VREN OFF  
RX OFF  
TX OFF  
TABLE 1-1:  
State  
OVERVIEW OF OPERATIONAL MODES  
Transmitter Receiver  
V
Operation  
Comments  
OFF Check CS; if low, then proceed to Ready mode. V > V and  
BB BB(MIN)  
REN  
POR  
OFF  
OFF  
If high, transitions to either T  
or Operation internal supply is  
OFF  
mode, depending on T (MCP2003/A), or T  
stable  
XD  
XD  
and FAULT/T (MCP2004/A).  
XE  
Ready  
OFF  
ON  
ON  
ON  
ON If CS is a high level, then proceed to Operation Bus Off state  
or T mode.  
OFF  
Operation  
ON If CS is a low level, then proceed to  
Normal Operation  
Power-Down mode. If FAULT/T is a low level, mode  
XE  
then proceed to Transmitter Off mode.  
Power-Down  
OFF  
Activity  
Detect  
OFF On CS high level, proceed to Ready mode; then Low-Power mode  
proceed to either Operation mode or TOFF mode.  
MCP2003/2003A: Falling edge on WAKE will  
put the device into Ready mode.  
MCP2003/MCP2004: Falling edge on LIN bus  
will put the device into Ready mode.  
MCP2003A/MCP2004A: Rising edge on  
LIN bus will put the device into Ready mode.  
Transmitter Off  
OFF  
ON  
ON If CS is a low level, then proceed to  
FAULT/T is only  
XE  
Power-Down mode. If FAULT/T and T are available on  
XE  
XD  
high, then proceed to Operation mode.  
MCP2004/2004A  
DS20002230G-page 6  
2010-2016 Microchip Technology Inc.  
MCP2003/4/3A/4A  
1.4  
Typical Applications  
EXAMPLE 1-1:  
TYPICAL MCP2003/2003A APPLICATION  
+12  
Optional Resistor and  
Transient Suppressor  
+12  
50  
43V  
Master Node Only  
+12  
(Note 1)  
3.9 k  
1.0 µF  
V
V
T
V
BB  
Voltage Reg  
DD  
REN  
4.7 k  
T
1 k  
XD  
XD  
XD  
R
R
L
LIN Bus  
XD  
BUS  
(2)  
MMBZ27V  
I/O  
CS  
WAKE  
33 k  
220 pF  
Wake-up  
V
SS  
Note 1: For applications with current requirements of less than 20 mA, the connection to +12V can be deleted and voltage  
to the regulator can be supplied directly from the V  
pin.  
REN  
2: ESD protection diode.  
EXAMPLE 1-2:  
TYPICAL MCP2004/2004A APPLICATION  
+12  
Optional Resistor and  
Transient Suppressor  
+12  
50  
43V  
Wake-up  
Master Node Only  
+12  
1.0 µF  
(Note 1)  
220 k  
V
L
V
V
T
Voltage Reg  
BB  
DD  
REN  
4.7 k  
T
XD  
XD  
XD  
1 k  
R
R
XD  
LIN Bus  
BUS  
CS/WAKE  
FAULT/T  
I/O  
I/O  
(2)  
MMBZ27V  
220 pF  
XE  
V
SS  
100 nF  
Note 1: For applications with current requirements of less than 20 mA, the connection to +12V can be deleted and voltage  
to the regulator can be supplied directly from the V  
pin.  
REN  
2: ESD protection diode.  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 7  
MCP2003/4/3A/4A  
EXAMPLE 1-3:  
TYPICAL LIN NETWORK CONFIGURATION  
40m + Return  
LIN Bus  
1 k  
V
BB  
LIN Bus  
MCP2000X  
Slave 1  
(MCU)  
LIN Bus  
MCP200X  
LIN Bus  
MCP200X  
LIN Bus  
MCP200X  
Slave 2  
(MCU)  
Slave n < 23  
(MCU)  
Master  
(MCU)  
DS20002230G-page 8  
2010-2016 Microchip Technology Inc.  
MCP2003/4/3A/4A  
1.5  
TABLE 1-2:  
Pin Name  
Pin Descriptions  
PINOUT DESCRIPTIONS  
8-Lead  
4x4  
MCP2003/2003A  
MCP2004/2004A  
PDIP,  
SOIC  
DFN  
Normal Operation  
Normal Operation  
R
1
2
3
1
Receive Data Output (OD),  
HV tolerant  
Receive Data Output (OD),  
HV tolerant  
XD  
CS  
2
3
Chip Select (TTL), HV tolerant  
Chip Select/Local WAKE (TTL),  
HV tolerant  
WAKE  
(MCP2003/2003A only)  
Wake-up, HV tolerant  
Fault Detect Output (OD),  
Transmitter Enable (TTL),  
HV tolerant  
FAULT/T  
XE  
(MCP2004/2004A only)  
T
4
4
Transmit Data Input (TTL),  
HV tolerant  
Transmit Data Input (TTL),  
HV tolerant  
XD  
V
5
6
5
6
7
8
9
Ground  
Ground  
SS  
L
LIN Bus (bidirectional)  
Battery Positive  
LIN Bus (bidirectional)  
Battery Positive  
BUS  
V
V
7
BB  
8
Voltage Regulator Enable Output Voltage Regulator Enable Output  
REN  
EP  
Exposed Thermal Pad; do not  
electrically connect or connect  
Exposed Thermal Pad; do not  
electrically connect or connect  
to V  
to V  
SS  
SS  
Legend: TTL = TTL Input Buffer; OD = Open-Drain Output  
If CS = 1 when the V supply is turned on, the device  
1.5.1 RECEIVE DATA OUTPUT (RXD  
)
BB  
will proceed to Operation mode or TOFF mode (refer to  
Figures 1-2 to 1-5) as soon as internal voltages  
stabilize.  
The Receive Data Output pin is an Open-Drain (OD)  
output and follows the state of the LIN pin, except in  
Power-Down mode.  
This pin may also be used as a local wake-up input  
(refer to Example 1-1). In this implementation, the  
microcontroller I/O controlling the CS should be con-  
verted to a high-impedance input, allowing the internal  
pull-down resistor to keep CS low. An external switch,  
or other source, can then wake-up both the transceiver  
and the microcontroller (if powered). Refer to  
Section 1.3 “Modes of Operation”, for detailed  
operation of CS.  
1.5.1.1  
RXD Monitoring  
The R pin is internally monitored. It has to be at a  
XD  
high level (> 2.5V typical) while L  
Otherwise, an internal Fault will be created and the  
device will transition to Transmitter Off mode. On the  
MCP2004/2004A, the FAULT/T pin will be driven low  
to indicate the Transmitter Off state.  
is recessive.  
BUS  
XE  
1.5.2  
CHIP SELECT (CS)  
This is the Chip Select input pin. An internal pull-down  
resistor will keep the CS pin low. This is done to ensure  
that no disruptive data will be present on the bus while  
the microcontroller is executing a Power-on Reset and  
an I/O initialization sequence. The pin must detect a high  
level to activate the transmitter. An internal low-pass  
filter, with a typical time constant of 10 µs, prevents  
unwanted wake-up (or transition to Power-Down mode)  
on glitches.  
Note:  
It is not recommended to tie CS high as  
this can result in the device entering  
Operation mode before the microcontrol-  
ler is initialized and may result in  
unintentional LIN traffic.  
1.5.3  
WAKE-UP INPUT (WAKE)  
This pin is only available on the MCP2003/2003A.  
The WAKE pin has an internal 800 kpull-up to V  
.
BB  
If CS = 0 when the V supply is turned on, the device  
BB  
A falling edge on the WAKE pin causes the device to  
wake from Power-Down mode. Upon waking, the  
MCP2003/3A will enter Ready mode.  
goes to Ready mode as soon as internal voltages sta-  
bilize and stays there as long as the CS pin is held low  
(0). In Ready mode, the receiver is on and the LIN  
transmitter driver is off.  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 9  
MCP2003/4/3A/4A  
Fault condition or by an external drive. While the trans-  
mitter is disabled, the internal 30 kpull-up resistor on  
1.5.4  
FAULT/TXE  
This pin is only available on the MCP2004/2004A. This  
pin is bidirectional and allows disabling of the transmitter,  
as well as Fault reporting related to disabling the  
transmitter. This pin is an open-drain output with states  
as defined in Table 1-3. The transmitter is disabled  
whenever this pin is low (‘0’), either from an internal  
the L  
pin is also disconnected to reduce current.  
BUS  
Note:  
The FAULT/T pin is true (‘0’) whenever  
XE  
the internal circuits have detected a short  
or thermal excursion and have disabled  
the L  
output driver.  
BUS  
TABLE 1-3:  
FAULT/TXE TRUTH TABLE  
FAULT/T  
XE  
R
Out  
LIN  
I/O  
Thermal  
Override  
XD  
BUS  
T
In  
Definition  
XD  
External  
Driven  
Output  
Input  
L
H
V
V
OFF  
H
L
FAULT, T driven low, L  
(Note 1)  
shorted to V  
BUS BB  
BB  
XD  
H
L
H
x
H
L
L
x
OFF  
OFF  
OFF  
ON  
x
H
H
H
H
L
H
H
H
L
OK  
BB  
GND  
GND  
OK  
OK, data is being received from L  
BUS  
V
V
FAULT, transceiver in thermal shutdown  
NO FAULT, the CPU is commanding the  
BB  
BB  
x
x
x
transceiver to turn off the transmitter driver  
Legend: x = don’t care.  
Note 1: The FAULT/T is valid after approximately 25 µs after the T falling edge. This is to eliminate false Fault  
XE  
XD  
reporting during bus propagation delays.  
1.5.5  
The Transmit Data input pin has an internal pull-up.  
The LIN pin is low (dominant) when T is low and high  
TRANSMIT DATA INPUT (TXD  
)
1.5.7.1  
The Bus Dominant Timer is an internal timer that  
deactivates the L transmitter after approximately  
Bus Dominant Timer  
XD  
BUS  
(recessive) when T is high.  
25 ms of Dominant state on the L  
pin. The timer is  
XD  
BUS  
reset on any recessive L  
state.  
BUS  
For extra bus security, T  
is internally forced to ‘1’  
XD  
whenever the transmitter is disabled, regardless of the  
external T voltage.  
The LIN bus transmitter will be reenabled after a  
Recessive state on the L pin as long as CS is high.  
XD  
BUS  
Disabling can be caused by the LIN bus being  
externally held dominant or by T being driven low.  
Additionally, on the MCP2004/2004A, the FAULT pin  
will be driven low to indicate the Transmitter Off state.  
1.5.5.1  
If T  
TXD Dominant Time-out  
is driven low for longer than approximately  
XD  
XD  
25 ms, the L  
pin is switched to Recessive mode and  
BUS  
the part enters T  
node from permanently driving the LIN bus dominant.  
The transmitter is reenabled on the T rising edge.  
mode. This is to prevent the LIN  
OFF  
1.5.8  
BATTERY (VBB)  
This is the Battery Positive Supply Voltage pin.  
XD  
1.5.6  
GROUND (VSS  
)
1.5.9  
VOLTAGE REGULATOR ENABLE  
OUTPUT (VREN  
This is the External Voltage Regulator Enable pin. The  
)
This is the Ground pin.  
1.5.7  
LIN BUS (LBUS)  
open source output is pulled high to V in all modes,  
BB  
except Power-Down.  
The bidirectional LIN Bus pin (L  
) is controlled by the  
BUS  
T
input. L  
has a current-limited open-collector  
XD  
BUS  
1.5.10  
EXPOSED THERMAL PAD (EP)  
output. To reduce EMI, the edges, during the signal  
changes, are slope controlled, and include corner  
rounding control for both falling and rising edges.  
Do not electrically connect or connect to V  
.
SS  
The internal LIN receiver observes the activities on the  
LIN bus and matches the output signal, R , to follow  
XD  
the state of the L  
pin.  
BUS  
DS20002230G-page 10  
2010-2016 Microchip Technology Inc.  
MCP2003/4/3A/4A  
If the MCP2003/4 is placed into Operational mode, the  
1.6  
MCP2003/4 and MCP2003A/4A  
Difference Details  
V
to L  
pull-up resistor is automatically connected,  
BB  
BUS  
which will raise the LIN bus to a Recessive level; then  
putting the device into Power-Down mode may cause  
The differences between the MCP2003/4 and the  
MCP2003A/4A devices are isolated to the wake-up  
functionality. The changes were implemented to make  
the device more robust to LIN bus conditions outside of  
the normal operating conditions. The MCP2003/4 will  
wake-up from Power-Down mode during any LIN falling  
edge held low longer than 20 µs.  
L
to be floating, and thus, wake-up all bus nodes. To  
BUS  
prevent this, the designer should ensure T (MCP2003)  
XD  
or T (MCP2004) is held low until valid bus activity is  
XE  
verified (see Figure 1-6). This will ensure the transceiver  
transitions from Ready mode to Transmitter Off mode  
until bus activity can be verified.  
In the case where a LIN system is designed to minimize  
standby current by disconnecting all bus pull-up resis-  
tors (including the external master pull-up resistor to  
In the case of valid bus activity, the transceiver can shift to  
Operation mode; while if there is no bus activity, the  
device can again be placed into Power-Down mode. The  
design practices needed to accomplish this are fully  
detailed in Tech Brief TB3067, “MCP2003 Power-Down  
Mode and Wake-up Handling in the Case of LIN Bus  
Loss” (DS93067).  
V
), the original MCP2003/4 could wake-up if the float-  
BB  
ing bus drifted to a valid low level. The MCP2003A/4A  
revisions were modified to require a rising edge after a  
valid low level. This will prevent an undesired system  
wake-up in this scenario, while maintaining functional  
capability with the original version.  
The revised MCP2003A/4A devices now eliminate the  
need for firmware to prevent system wide wake-up.  
The revised devices now require a longer valid bus low  
It should be noted that the original MCP2003/4 meets  
all LIN transceiver specification requirements and  
modules can be designed to pass all LIN system  
requirements. However, when all bus pull-up resistors  
are disconnected, the MCP2003/4 requires the module  
designer to write firmware to monitor the LIN bus, after  
any wake-up event, to prevent the transceiver from  
automatically transitioning from Ready mode to  
Operational mode.  
(see updated t  
value in Section 2.3 “DC Specifi-  
BDB  
cations” and Figure 2-7), which enables a rising edge  
detect circuit. The device will now only wake-up after a  
rising edge, following a low longer than t  
. While  
BDB  
the module designer can still hold T (MCP2003) or  
XD  
T
(MCP2004) low during wake-up to enter Transmitter  
XE  
Off mode from Ready mode, it is not required to prevent  
an advertent system wake-up.  
In addition to the longer t  
value, the time from wake-  
BDB  
up detect to V  
enable is shortened, as documented  
REN  
in Section 2.3 “DC Specifications”.  
FIGURE 1-6:  
MCP2003/2004 SWITCHING TIMING DIAGRAM FOR THE FORCED  
POWER-DOWN MODE SEQUENCE  
tTx2CS •ꢀꢁꢂꢂꢀQV  
tCSactive •ꢀꢁꢂꢂꢀ—V  
CS  
TXD State Depending  
on how the Slave  
Microcontroller is  
Powered  
TXD to ‘0’  
VREN  
Forced  
Externally  
TXD  
LBUS  
LIN Bus  
Disconnected  
Power-Down  
Mode after Master  
SLEEP Instruction  
Ready  
Mode  
Transmitter Off  
Mode  
Power-Down  
Mode  
State  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 11  
MCP2003/4/3A/4A  
2.0  
2.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings†  
V
V
V
V
V
V
V
V
V
V
DC Voltage on R , T , FAULT/T , CS .............................................................................................. -0.3 to +43V  
XD XD XE  
IN  
DC Voltage on WAKE and V  
............................................................................................................. -0.3 to +V  
BB  
IN  
REN  
Battery Voltage, Continuous, Non-Operating (Note 1)........................................................................... -0.3 to +40V  
Battery Voltage, Non-Operating (LIN bus recessive) (Note 2)............................................................... -0.3 to +43V  
Battery Voltage, Transient ISO 7637 Test 1..................................................................................................... -200V  
Battery Voltage, Transient ISO 7637 Test 2a...................................................................................................+150V  
Battery Voltage, Transient ISO 7637 Test 3a................................................................................................... -300V  
Battery Voltage, Transient ISO 7637 Test 3b...................................................................................................+200V  
BB  
BB  
BB  
BB  
BB  
BB  
Bus Voltage, Continuous..................................................................................................................... -18 to +40V  
LBUS  
LBUS  
Bus Voltage, Transient (Note 3).......................................................................................................... -27 to +43V  
I
Bus Short-Circuit Current Limit....................................................................................................................200 mA  
LBUS  
ESD Protection on LIN, V , WAKE (IEC 61000-4-2) (Note 4) .............................................................................. ±8 KV  
BB  
ESD Protection on LIN, V (Human Body Model) (Note 5) .................................................................................. ±8 KV  
BB  
ESD Protection on All Other Pins (Human Body Model) (Note 5) .......................................................................... ±4 KV  
ESD Protection on All Pins (Charge Device Model) (Note 6) ................................................................................. ±2 KV  
ESD Protection on All Pins (Machine Model) (Note 7)............................................................................................±200V  
Maximum Junction Temperature.............................................................................................................................150C  
Storage Temperature...................................................................................................................................-65 to +150C  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device, at those or any other conditions above  
those indicated in the operational listings of this specification, is not implied. Exposure to maximum rating conditions  
for extended periods may affect device reliability.  
Note 1: LIN 2.x compliant specification.  
2: SAE J2602 compliant specification.  
3: ISO 7637/1 load dump compliant (t < 500 ms).  
4: According to IEC 61000-4-2, 330 ohm, 150 pF and Transceiver EMC Test Specifications [2] to [4]. For  
WAKE pin to meet the specification, a series resistor must be in place (refer to Example 1-2).  
5: According to AEC-Q100-002/JESD22-A114.  
6: According to AEC-Q100-011B.  
7: According to AEC-Q100-003/JESD22-A115.  
2.2  
Nomenclature Used in This Document  
Some terms and names used in this data sheet deviate from those referred to in the LIN specifications. Equivalent  
values are shown below.  
LIN 2.1 Name  
Term Used in the Following Tables  
Definition  
ECU operating voltage  
V
not used  
BAT  
V
V
Supply voltage at device pin  
Current limit of driver  
Recessive state  
SUP  
BB  
SC  
I
I
BUS_LIM  
V
V
IH(LBUS)  
BUSREC  
BUSDOM  
V
V
Dominant state  
IL(LBUS)  
DS20002230G-page 12  
2010-2016 Microchip Technology Inc.  
MCP2003/4/3A/4A  
2.3  
DC Specifications  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for  
= 6.0V to 30.0V, T = -40°C to +125°C  
DC Specifications  
V
BB  
A
Parameter  
Power  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
V
Quiescent Operating  
I
90  
75  
150  
120  
µA  
µA  
Operating mode, bus is  
Recessive (Note 1)  
BB  
BBQ  
Current  
V
Transmitter Off  
I
Transmitter off, bus is  
BB  
BBTO  
Current  
Recessive (Note 1)  
V
V
Power-Down Current  
Current  
I
-1  
5
15  
1
µA  
BB  
BBPD  
I
mA  
V
V
= 12V, GND to V  
= 0-27V  
,
BB  
BB  
BBNOGND  
BB  
with V Floating  
SS  
LIN  
Microcontroller Interface  
High-Level Input Voltage  
V
2.0  
-0.3  
-2.5  
-10  
30  
0.8  
V
V
IH  
(T , FAULT/T  
)
XD  
XE  
Low-Level Input Voltage  
(T , FAULT/T  
V
IL  
)
XE  
XD  
High-Level Input Current  
(T , FAULT/T  
I
µA  
µA  
V
Input voltage = 4.0V  
Input voltage = 0.5V  
IH  
)
XE  
XD  
Low-Level Input Current  
(T , FAULT/T  
I
IL  
)
XE  
XD  
High-Level Voltage (V  
)
V
-0.3  
-40  
V
+ 0.3  
REN  
HVREN  
BB  
High-Level Output Current  
(V  
I
-10  
-35  
30  
mA Output voltage = V – 0.5V  
BB  
HVREN  
)
REN  
-125  
2.0  
Output voltage = V -2.0V  
BB  
High-Level Input Voltage  
(CS)  
V
V
V
Through a current-limiting  
resistor  
IH  
Low-Level Input Voltage  
(CS)  
V
-0.3  
0.8  
10.0  
5.0  
IL  
High-Level Input Current  
(CS)  
I
µA  
µA  
V
Input voltage = 4.0V  
Input voltage = 0.5V  
IH  
Low-Level Input Current  
(CS)  
I
IL  
Low-Level Input Voltage  
(WAKE)  
V
V
– 4.0V  
IL  
BB  
Low-Level Output Voltage  
V
-1  
0.4  
-1  
V
I
= 2 mA  
IN  
OL  
(R  
)
XD  
High-Level Output Current  
(R  
I
µA  
V
= V , V  
= 5.5V  
OH  
LIN  
BB  
RXD  
)
XD  
Note 1: Internal current limited; 2.0 ms maximum recovery time (R  
= 0, TX = 0.4 V  
, V  
= V ).  
LBUS  
REG LBUS BB  
2: Node has to sustain the current that can flow under this condition; bus must be operational under this  
condition.  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 13  
MCP2003/4/3A/4A  
2.3  
DC Specifications (Continued)  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for  
DC Specifications  
Parameter  
V
= 6.0V to 30.0V, T = -40°C to +125°C  
BB  
A
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Bus Interface  
High-Level Input Voltage  
Low-Level Input Voltage  
Input Hysteresis  
V
0.6 V  
-8  
V
V
V
Recessive state  
Dominant state  
– V  
IL(LBUS)  
IH(LBUS)  
BB  
V
0.4 V  
BB  
IL(LBUS)  
V
0.175 V  
200  
V
IH(LBUS)  
HYS  
BB  
Low-Level Output Current  
I
40  
mA Output voltage = 0.1 V  
,
OL(LBUS)  
BB  
V
= 12V  
BB  
High-Level Output Current  
Pull-up Current on Input  
I
5
20  
µA  
µA  
OH(LBUS)  
I
180  
~30 kinternal pull-up  
@ V = 0.7 V  
PU(LBUS)  
IH(LBUS)  
BB  
Short-Circuit Current Limit  
High-Level Output Voltage  
Driver Dominant Voltage  
Driver Dominant Voltage  
Driver Dominant Voltage  
Driver Dominant Voltage  
I
50  
0.9 V  
200  
mA (Note 1)  
SC  
V
V
V
OH(LBUS)  
BB  
BB  
V_  
1.2  
2.0  
V
V
V
V
V
V
V
V
= 7V, R  
= 500  
LOSUP  
BB  
BB  
BB  
BB  
LOAD  
V_  
= 18V, R  
= 500  
LOAD  
HISUP  
V_  
– 1k  
0.6  
0.8  
-1  
= 7V, R  
= 1 k  
= 1 k  
LOSUP  
LOAD  
V_  
– 1k  
= 18V, R  
LOAD  
HISUP  
BUS_PAS_DOM  
Input Leakage Current  
(at the receiver during  
Dominant bus level)  
I
-0.4  
mA Driver off, V  
= 0V,  
BUS  
V
= 12V  
BB  
Input Leakage Current  
(at the receiver during  
Recessive bus level)  
I
12  
1.0  
20  
µA  
µA  
Driver off, 8V < V < 18V,  
BB  
BUS_PAS_REC  
8V < V  
< 18V,  
BUS  
V
V  
BUS  
BB  
Leakage Current  
(disconnected from ground)  
I
-10  
+10  
GND  
= V  
,
BUS_NO_GND  
DEVICE  
BB  
0V < V  
< 18V,  
BUS  
V
= 12V  
BB  
Leakage Current  
I
10  
µA  
V
V
= GND,  
BUS_NO_VBB  
BB  
(disconnected from V  
)
0 < V  
< 18V (Note 2)  
BB  
BUS  
Receiver Center Voltage  
V
0.475 V  
0.5 V  
0.525 V  
V
V
= (V  
/2  
+
BUS_CNT  
BB  
BB  
BB  
BUS_CNT  
IL(LBUS)  
IH(LBUS)  
Slave Termination  
R
C
20  
30  
47  
50  
k  
SLAVE  
Capacitance of Slave  
Node  
pF  
SLAVE  
Note 1: Internal current limited; 2.0 ms maximum recovery time (R  
= 0, TX = 0.4 V  
, V  
= V ).  
LBUS  
REG LBUS BB  
2: Node has to sustain the current that can flow under this condition; bus must be operational under this  
condition.  
DS20002230G-page 14  
2010-2016 Microchip Technology Inc.  
MCP2003/4/3A/4A  
2.4  
AC Specifications  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for  
AC Characteristics  
Parameter  
V
= 6.0V to 27.0V; T = -40°C to +125°C  
BB  
A
Sym.  
Min. Typ. Max. Units  
Test Conditions  
Bus Interface – Constant Slope Time Parameters  
Slope Rising and Falling Edges  
t
3.5  
22.5  
4.0  
µs 7.3V V 18V  
BB  
SLOPE  
Propagation Delay of  
Transmitter  
t
µs  
t
t
= max (t  
TRANSPDR  
or  
TRANSPD  
TRANSPD  
)
TRANSPDF  
Propagation Delay of Receiver  
t
6.0  
2.0  
µs  
µs  
t
= max (t  
or t  
)
RECPDF  
RECPD  
RECPD  
RECPDR  
Symmetry of Propagation  
Delay of Receiver Rising Edge  
w.r.t. Falling Edge  
t
-2.0  
t
= max (t  
– t  
)
RECPDR  
RECSYM  
RECSYM  
RECPDF  
R
2.4to V , C  
20 pF  
RXD  
CC  
RXD  
Symmetry of Propagation  
Delay of Transmitter Rising  
Edge w.r.t. Falling Edge  
t
-2.0  
2.0  
µs  
t
(t  
= max  
TRANSSYM  
TRANSSYM  
– t  
)
TRANSPDF  
TRANSPDR  
Time to Sample FAULT/T for  
Bus Conflict Reporting  
t
32.5  
µs  
t
(t  
= max  
XE  
FAULT  
FAULT  
+
+ t  
)
RECPD  
TRANSPD TSLOPE  
Duty Cycle 1 @ 20.0 kbit/sec  
0.396  
C
; R  
Conditions:  
BUS  
BUS  
1 nF; 1 k| 6.8 nF; 660| 10 nF; 500,  
TH  
TH  
= 0.744 x V  
= 0.581 x V  
,
REC(MAX)  
DOM(MAX)  
BB  
,
BB  
V
= 7.0V – 18V, t  
= 50 µs,  
BB  
BIT  
D1 = t  
/2 x t  
)
BIT  
BUS_REC(MIN)  
Duty Cycle 2 @ 20.0 kbit/sec  
Duty Cycle 3 @ 10.4 kbit/sec  
Duty Cycle 4 @ 10.4 kbit/sec  
0.417  
0.581  
C
; R  
Conditions:  
BUS  
BUS  
1 nF; 1 k| 6.8 nF; 660| 10 nF; 500,  
TH  
TH  
= 0.284 x V  
= 0.422 x V  
,
REC(MAX)  
BB  
,
DOM(MAX)  
= 7.6V – 18V, t  
BB  
V
= 50 µs,  
BB  
BIT  
D2 = t  
/2 x t  
)
BIT  
BUS_REC(MAX)  
C
; R  
Conditions:  
BUS  
BUS  
1 nF; 1 k| 6.8 nF; 660| 10 nF; 500,  
TH  
TH  
= 0.778 x V  
= 0.616 x V  
,
REC(MAX)  
DOM(MAX)  
= 7.0V – 18V, t  
BB  
,
BB  
V
= 96 µs,  
BB  
BIT  
D3 = t  
/2 x t  
)
BIT  
BUS_REC(MIN)  
0.590  
C
; R  
Conditions:  
BUS  
BUS  
1 nF; 1 k| 6.8 nF; 660| 10 nF; 500,  
TH  
= 0.251 x V  
,
REC(MAX)  
BB  
TH  
= 0.389 x V  
,
DOM(MAX)  
BB  
V
= 7.6V – 18V, t  
= 96 µs,  
BB  
BIT  
D4 = t  
/2 x t  
BIT  
BUS_REC(MAX)  
Wake-up Timing  
Bus Activity Debounce Time  
t
5
70  
30  
20  
125  
150  
90  
µs MCP2003/2004  
µs MCP2003A/2004A  
µs MCP2003/2004  
µs MCP2003A/2004A  
µs  
BDB  
30  
35  
10  
Bus Activity to V  
On  
t
BACTVE  
REN  
WAKE to V  
On  
t
t
150  
150  
80  
REN  
WAKE  
Chip Select to V  
Chip Select to V  
On  
Off  
µs  
µs  
V
V
floating  
floating  
REN  
REN  
CSOR  
REN  
REN  
t
CSPD  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 15  
MCP2003/4/3A/4A  
(1)  
2.5  
Thermal Specifications  
Parameter  
Symbol  
Typ.  
Max.  
Units  
Test Conditions  
Recovery Temperature  
+140  
+150  
1.5  
C  
C  
ms  
RECOVERY  
Shutdown Temperature  
SHUTDOWN  
Short-Circuit Recovery Time  
Thermal Package Resistances  
Thermal Resistance, 8L-DFN  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
t
5.0  
THERM  
JA  
JA  
JA  
35.7  
89.3  
C/W  
C/W  
C/W  
149.5  
Note 1: The maximum power dissipation is a function of T  
, and ambient temperature, T . The maximum  
JMAX JA  
A
allowable power dissipation at an ambient temperature is P = (T  
– T ) . If this dissipation is  
D
JMAX  
A
JA  
exceeded, the die temperature will rise above +150C and the device will go into thermal shutdown.  
DS20002230G-page 16  
2010-2016 Microchip Technology Inc.  
MCP2003/4/3A/4A  
2.6  
Typical Performance Curves  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, V = 6.0V to 18.0V, T = -40°C to +125°C.  
BB  
A
FIGURE 2-1:  
TYPICAL IBBQ  
FIGURE 2-3:  
TYPICAL IBBTO  
0.14  
0.12  
0.1  
0.12  
0.1  
0.08  
0.06  
0.04  
0.02  
-40C  
-40C  
0.08  
0.06  
0.04  
0.02  
25C  
85C  
125C  
25C  
85C  
125C  
0
0
6
7.3  
12  
14.4  
18  
6V  
7.3V  
12V  
14.4V  
18V  
VBB (V)  
VBB (V)  
FIGURE 2-2:  
TYPICAL IBBPD  
0.008  
0.007  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
-40C  
25C  
85C  
125C  
0
6
7.3  
12  
14.4  
18  
VBB (V)  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 17  
MCP2003/4/3A/4A  
2.7  
Timing Diagrams and Specifications  
BUS TIMING DIAGRAM  
FIGURE 2-4:  
T
50%  
50%  
XD  
.95 V  
.50 V  
L
LBUS  
BUS  
BB  
0.05 V  
LBUS  
0.0V  
T
T
TRANSPDR  
TRANSPDF  
T
T
RECPDF  
RECPDR  
R
XD  
50%  
50%  
Internal T /R  
XD XD Match  
Match  
Match  
Match  
Match  
Compare  
FAULT Sampling  
T
T
FAULT  
FAULT  
Hold  
Value  
Hold  
Value  
FAULT/T Output  
Stable  
Stable  
Stable  
XE  
FIGURE 2-5:  
CS TO VREN TIMING DIAGRAM  
CS  
T
CSOR  
V
BB  
V
REN  
Off  
T
CSPD  
DS20002230G-page 18  
2010-2016 Microchip Technology Inc.  
MCP2003/4/3A/4A  
FIGURE 2-6:  
LBUS  
MCP2003/4 REMOTE WAKE-UP  
0.4 VBB  
tBDB  
tBACTIVE  
VBB  
VREN  
FIGURE 2-7:  
MCP2003A/4A REMOTE WAKE-UP  
LBUS  
0.4 VBB  
tBDB  
tBACTIVE  
VBB  
VREN  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 19  
MCP2003/4/3A/4A  
3.0  
3.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead DFN (4x4x0.9 mm)  
Example:  
2003  
e
3
E/MD
1642  
256  
8-Lead PDIP (300 mil)  
Example:  
MCP2003  
e
3
E/P^256  
1642  
8-Lead SOIC (150 mil)  
Example:  
MCP2003E  
e
3
SN1642  
256  
NNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
®
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS20002230G-page 20  
2010-2016 Microchip Technology Inc.  
MCP2003/4/3A/4A  
8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Microchip Technology Drawing C04-131E Sheet 1 of 2  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 21  
MCP2003/4/3A/4A  
8-Lead Plastic Dual Flat, No Lead Package (MD) – 4x4x0.9 mm Body [DFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Microchip Technology Drawing C04-131E Sheet 2 of 2  
DS20002230G-page 22  
2010-2016 Microchip Technology Inc.  
MCP2003/4/3A/4A  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 23  
MCP2003/4/3A/4A  
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
N
B
E1  
NOTE 1  
1
2
TOP VIEW  
E
A2  
A
C
PLANE  
L
c
A1  
e
eB  
8X b1  
8X b  
.010  
C
SIDE VIEW  
END VIEW  
Microchip Technology Drawing No. C04-018D Sheet 1 of 2  
DS20002230G-page 24  
2010-2016 Microchip Technology Inc.  
MCP2003/4/3A/4A  
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
ALTERNATE LEAD DESIGN  
(VENDOR DEPENDENT)  
DATUM A  
DATUM A  
b
b
e
2
e
2
e
e
Units  
Dimension Limits  
INCHES  
NOM  
8
.100 BSC  
-
MIN  
MAX  
Number of Pins  
Pitch  
N
e
A
Top to Seating Plane  
-
.210  
.195  
-
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
A2  
A1  
E
E1  
D
L
c
b1  
b
eB  
.115  
.015  
.290  
.240  
.348  
.115  
.008  
.040  
.014  
-
.130  
-
.310  
.250  
.365  
.130  
.010  
.060  
.018  
-
.325  
.280  
.400  
.150  
.015  
.070  
.022  
.430  
Lower Lead Width  
Overall Row Spacing  
§
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-018D Sheet 2 of 2  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 25  
MCP2003/4/3A/4A  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20002230G-page 26  
2010-2016 Microchip Technology Inc.  
MCP2003/4/3A/4A  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 27  
MCP2003/4/3A/4A  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢍꢓꢔꢆꢕꢆꢓꢄꢖꢖꢗꢘꢙꢆꢚꢛꢜꢝꢆꢎꢎꢆꢞꢗꢅꢟꢆꢠꢍꢏꢡꢢꢣ  
ꢓꢗꢊꢃꢤ ꢀꢁꢂꢃꢄꢅꢆꢃ!ꢁ"ꢄꢃꢇ#ꢂꢂꢆꢈꢄꢃꢉꢊꢇ$ꢊꢋꢆꢃ%ꢂꢊ&ꢌꢈꢋ"'ꢃꢉꢍꢆꢊ"ꢆꢃ"ꢆꢆꢃꢄꢅꢆꢃꢎꢌꢇꢂꢁꢇꢅꢌꢉꢃ(ꢊꢇ$ꢊꢋꢌꢈꢋꢃꢏꢉꢆꢇꢌ)ꢌꢇꢊꢄꢌꢁꢈꢃꢍꢁꢇꢊꢄꢆ%ꢃꢊꢄꢃ  
ꢅꢄꢄꢉ*++&&&ꢐ!ꢌꢇꢂꢁꢇꢅꢌꢉꢐꢇꢁ!+ꢉꢊꢇ$ꢊꢋꢌꢈꢋ  
DS20002230G-page 28  
2010-2016 Microchip Technology Inc.  
MCP2003/4/3A/4A  
APPENDIX A: REVISION HISTORY  
Revision G (December 2016)  
The following is the list of modifications”  
1. Added note to page 1 header: “Not recommended  
for new designs”.  
2. Updated Section 3.1 “Package Marking  
Information”.  
3. Minor typographical corrections.  
Revision F (November 2014)  
The following is the list of modifications:  
1. Updated typical application circuits with values  
used during ESD tests.  
Revision E (October 2013)  
The following is the list of modifications:  
1. Added additional specification for IHVREN in  
Section 2.3 “DC Specifications”.  
2. Clarified wake-up on L  
functionality.  
BUS  
3. Added R monitoring description.  
XD  
Revision D (December 2011)  
The following is the list of modifications:  
1. Added the MCP2003A and MCP2004A devices  
and related information throughout the docu-  
ment.  
2. Updated Figures 1.2, 1.3, 1.4, 1.5, 2.6, 2.7.  
Revision C (August 2010)  
The following is the list of modifications:  
1. Updated all references of Sleep mode to Power-  
Down mode, and updated the Max. parameter  
for Duty Cycle 2 in Section 2.4 “AC Specifica-  
tions”.  
Revision B (July 2010)  
The following is the list of modifications:  
1. Added Section 2.2 “Nomenclature Used in  
This Document”, and added the “Capacitance  
of Slave Node” parameter to Section 2.3 “DC  
Specifications”.  
Revision A (March 2010)  
• Original release of this document.  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 29  
MCP2003/4/3A/4A  
NOTES:  
DS20002230G-page 30  
2010-2016 Microchip Technology Inc.  
MCP2003/4/3A/4A  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office  
.
PART NO.  
Device  
X
/XX  
Examples:  
a)  
b)  
c)  
d)  
MCP2003A-E/MD: Extended Temperature,  
8L-DFN package  
Temperature  
Range  
Package  
MCP2003A-E/P:  
Extended Temperature,  
8L-PDIP package  
MCP2003A-E/SN: Extended Temperature,  
8L-SOIC package  
Device:  
MCP2003: LIN Transceiver with WAKE pins, wake-up on  
falling edge of LBUS  
MCP2003AT-E/MD: Tape and Reel,  
Extended Temperature,  
MCP2003T: LIN Transceiver with WAKE pins, wake-up on  
falling edge of LBUS (Tape and Reel) (DFN and  
SOIC only)  
8L-DFN package  
e)  
MCP2003AT-E/SN: Tape and Reel,  
Extended Temperature,  
MCP2003A: LIN Transceiver with WAKE pins, wake-up on  
rising edge of LBUS  
8L-SOIC package  
MCP2003AT: LIN Transceiver with WAKE pins, wake-up on  
rising edge of LBUS (Tape and Reel) (DFN and  
SOIC only)  
a)  
b)  
c)  
d)  
MCP2004-E/MD: Extended Temperature,  
8L-DFN package  
MCP2004: LIN Transceiver with FAULT/TXE pins, wake-up  
on falling edge of LBUS  
MCP2004-E/P:  
Extended Temperature,  
8L-PDIP package  
MCP2004T: LIN Transceiver with FAULT/TXE pins, wake-up  
on falling edge of LBUS (Tape and Reel) (DFN  
and SOIC only)  
MCP2004A-E/SN: Extended Temperature,  
8L-SOIC package  
MCP2004AT-E/MD: Tape and Reel,  
Extended Temperature,  
MCP2004A: LIN Transceiver with FAULT/TXE pins, wake-up  
on rising edge of LBUS  
8L-DFN package  
MCP2004AT: LIN Transceiver with FAULT/TXE pins, wake-up  
on rising edge of LBUS (Tape and Reel) (DFN  
and SOIC only)  
e)  
MCP2004AT-E/SN: Tape and Reel,  
Extended Temperature,  
8L-SOIC package  
Temperature Range:  
Package:  
E
=
=
-40°C to +125°C  
MD  
Plastic Dual Flat, No Lead Package – 4x4x0.9mm  
Body, 8-Lead  
P
SN  
=
=
Plastic Dual In-Line – 300 mil Body, 8-Lead  
Plastic Small Outline – Narrow 3.90 mm Body, 8-Lead  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 31  
MCP2003/4/3A/4A  
NOTES:  
DS20002230G-page 32  
2010-2016 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,  
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEE  
LOQ,  
K
EEL  
OQ logo, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST  
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, CryptoAuthentication, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
are for its PIC® MCUs and dsPIC® DSCs, KEE OQ® code hopping  
L
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology  
Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
© 2010-2016, Microchip Technology Incorporated, All Rights  
Reserved.  
ISBN: 978-1-5224-1230-4  
== ISO/TS 16949 ==  
2010-2016 Microchip Technology Inc.  
DS20002230G-page 33  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Finland - Espoo  
Tel: 358-9-4520-820  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
France - Saint Cloud  
Tel: 33-1-30-60-70-00  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Garching  
Tel: 49-8931-9700  
Germany - Haan  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
Tel: 49-2129-3766400  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
China - Dongguan  
Tel: 86-769-8702-9880  
Germany - Karlsruhe  
Tel: 49-721-625370  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Israel - Ra’anana  
Tel: 972-9-744-7705  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Detroit  
Novi, MI  
Tel: 248-848-4000  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Houston, TX  
Tel: 281-894-5983  
Italy - Padova  
Tel: 39-049-7625286  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-3326-8000  
Fax: 86-21-3326-8021  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Norway - Trondheim  
Tel: 47-7289-7561  
Los Angeles  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Poland - Warsaw  
Tel: 48-22-3325737  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Romania - Bucharest  
Tel: 40-21-407-87-50  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Raleigh, NC  
Tel: 919-844-7510  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
DS20002230G-page 34  
2010-2016 Microchip Technology Inc.  
11/07/16  

相关型号:

MCP2004A

LIN J2602 Transceiver
MICROCHIP

MCP2004A-E/MD

LIN J2602 Transceiver
MICROCHIP

MCP2004A-E/P

LIN J2602 Transceiver
MICROCHIP

MCP2004A-E/SN

LIN J2602 Transceiver
MICROCHIP

MCP2004AT-E/MD

LIN J2602 Transceiver
MICROCHIP

MCP2004AT-E/P

LIN J2602 Transceiver
MICROCHIP

MCP2004AT-E/SN

LIN J2602 Transceiver
MICROCHIP

MCP2004T-E/MD

LIN J2602 Transceiver
MICROCHIP

MCP2004T-E/P

LIN J2602 Transceiver
MICROCHIP

MCP2004T-E/SN

LIN J2602 Transceiver
MICROCHIP

MCP201

LIN Transceiver with Voltage Regulator
MICROCHIP

MCP201-E

LIN Transceiver with Voltage Regulator
MICROCHIP